正方体的涂色问题

合集下载

正方形表面涂色问题观后感

正方形表面涂色问题观后感

正方形表面涂色问题观后感
一、题目。

1. 一个棱长为n(n>1且n为整数)的正方体表面涂色后,将其分割成棱长为1的小正方体。

(1)三面涂色的小正方体有多少个?(3分)
(2)两面涂色的小正方体有多少个?(3分)
(3)一面涂色的小正方体有多少个?(4分)
二、解析。

1. 对于(1):
正方体有8个顶点。

三面涂色的小正方体位于正方体的顶点处,所以不管大正方体的棱长n是多少,三面涂色的小正方体个数始终是8个。

2. 对于(2):
两面涂色的小正方体位于每条棱上(除去顶点处的小正方体)。

每条棱上两面涂色的小正方体个数为(n 2)个。

正方体有12条棱,所以两面涂色的小正方体总个数为12(n 2)个。

3. 对于(3):
一面涂色的小正方体位于每个面的中间部分(除去棱上的小正方体)。

每个面上一面涂色的小正方体个数为(n 2)^2个。

正方体有6个面,所以一面涂色的小正方体总个数为6(n 2)^2个。

正方体各面涂色规律

正方体各面涂色规律

正方体各面涂色规律
将一个棱长为整数的立方体各面均涂色,小明用刀在它的上表面、前表面、右侧面各切数刀,
变式1:由若干个小正方体堆成的大正方体,其表面被涂成红色,在所有小正方体中,三面被涂成红的有a 个,两面被涂成红的有b 个,一面被涂成红的有c 个,那么在a ,b ,c 三个数中( D )
A 、a 最大
B 、b 最大
C 、c 最大
D 、哪一个最大与堆成大正方体的小正方体个数有关变式2:一个木制的立方体,棱长为n (n 是大于2的整数),表面涂上黑色,用刀片平行于立方体的各面,将它切成
3n 个棱长为1的小立方体,若恰有一个面涂黑色的小立方体的个数等
于没有一个面涂黑色的小立方体的个数,则n = 8 .
变式3:将一个正方体木块表面涂上红色, 如果每面等距离地切4刀, 则可以得到 _8__ 个三面红色的小正方体, __36__ 个两面红色的小正方体, __54__ 个一面红色的小正方体, __27__ 个没有涂色的小正方体; 如果要得到各面都没有涂色的小正方体1000个, 则每面至少需切__11_ 刀.
变式4:由若干个单位立方体组成一个较大的立方体,然后把这个大立方体的某些面上涂上油漆,油漆干后,把大立方体拆开成单位立方体,发现有45个单位立方体上任何一面都没有漆。

那么大立方体被涂过油漆的面数是( C )
A :2
B :3
C :4
D :5。

五年级:美妙数学之“正方体涂色问题”(0807五)

五年级:美妙数学之“正方体涂色问题”(0807五)

五年级:美妙数学之“正方体涂色问题”(0807五)
我们人教版五年级下册学过了探索图形,你还记得吗?
探索图形中的其中一类就是正方体涂色问题,把小正方体拼成大正方体,这样的大正方体的规格可以简单地表示成2×2×2,3×3×3……n×n×n,问,三面涂色,两面涂色,一面涂色的和没有涂色的小正方体各有几个?
大家回忆一下这样的问题我们一般怎样解决呢?
算三面涂色的小正方体的个数方法是这样的:三面涂色的小正方体都是大正方体的顶点所在的小正方体,大正方体一共有8个顶点也就是三面涂色的小正方体有8个;两面涂色的小正方体分布在大正方体的棱处,但要去掉头尾,所以两面涂色小正方体个数为(n-2)×12;一面涂色小正方体分布在大正方体的面上,但是要去掉面上一圈,也就是(n-2)×(n-2)×6;没有涂色的小正方体分布在内心,也就是要剥去大正方体华丽的外表,所以没有涂色的小正方体个数是(n-2)×(n-2)×(n-2)。

同学们想起来了吗?那我的问题来了,正方体是这样那长方体呢?敬请期待下一期的分享。

五年级下册数学教案《探索图形——正方体的涂色问题》人教版

五年级下册数学教案《探索图形——正方体的涂色问题》人教版
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“正方体涂色在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
五年级下册数学教案《探索图形——正方体的涂色问题》人教版
一、教学内容
本节课选自五年级下册数学教材《探索图形——正方体的涂色问题》(人教版),涉及以下内容:正方体的特征及其展开图,正方体表面涂色的方法及其应用。具体包括:1.理解正方体的面、棱、顶点概念;2.掌握正方体展开图的画法;3.学习正方体表面涂色的基本方法,探讨如何用最少的颜色完成正方体表面的涂色,并解决相关问题。通过本节课的学习,使学生能够运用所学的正方体知识解决实际问题,提高空间想象能力和逻辑思维能力。
-举例:讲解正方体表面涂色的方法,如相邻面不同色、相对面同色等,并通过实际操作让学生理解如何用最少的颜色进行涂色。
(3)解决实际涂色问题:运用正方体知识解决生活中的涂色问题,提高数学应用能力。
-举例:给出具体的涂色问题,如“用3种颜色给正方体表面涂色,有多少种不同的涂色方法?”,引导学生运用所学知识解决问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解正方体的基本概念。正方体是一个具有6个相同正方形面的立体图形。它是研究立体几何的基础,也在生活中有广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何用最少的颜色完成正方体表面的涂色,以及这个方法如何帮助我们解决实际问题。
3.重点难点解析:在讲授过程中,我会特别强调正方体的结构特征和表面涂色的方法这两个重点。对于难点部分,比如正方体展开图的画法和涂色原理,我会通过实物操作和图示来帮助大家理解。

数学———正方体涂色问题

数学———正方体涂色问题

数学———正⽅体涂⾊问题 将⼀个正⽅体的表⾯涂上颜⾊.把正⽅体的棱等分,然后沿等分线把正⽅体切开,能够得到个⼩正⽅体,通过观察我们可以发现个⼩正⽅体全是个⾯涂有颜⾊的. 如果把正⽅体的棱三等分,然后沿等分线把正⽅体切开,能够得到27个⼩正⽅体,我们可以发现这些⼩正⽅体中有8个是三⾯涂有颜⾊的,有12个是两⾯涂有颜⾊的,有6个是⼀⾯涂有颜⾊的,还有1个⾯没有涂⾊. 如果把正⽅体的棱四等分,然后沿等分线把正⽅体切开,能够得到64个⼩正⽅体,我们可以发现这些⼩正⽅体中有8个是三⾯涂有颜⾊的,有24个是两⾯涂有颜⾊,有24个⾯是⼀⾯涂有颜⾊的,还有8个⾯没有涂⾊。

如果把正⽅体的棱五等分,然后沿等分线把正⽅体切开,能够得到125个⼩正⽅体,我们可以发现这些⼩正⽅体中有8个是三⾯涂有颜⾊的,有36个是两⾯涂有颜⾊,有54个⾯是⼀⾯涂有颜⾊的,还有27个⾯没有涂⾊。

如果把正⽅体的棱n等分,然后沿等分线把正⽅体切开,能够得到n3个⼩正⽅体,我们可以发现这些⼩正⽅体中有 8个是三⾯涂有颜⾊的,有12(n-2)个是两⾯涂有颜⾊,有6(n-2)(n-2)个是⼀⾯涂有颜⾊的,还有(n-2)3个⾯没有涂⾊。

例:将棱长4厘⽶的正⽅体表⾯涂成蓝⾊,再将它锯成棱长1厘⽶的⼩正⽅体,则三⾯涂蓝,两⾯涂蓝,⼀⾯涂蓝和没有颜⾊的⾯各⼏个? 解: 1、以原来⼤正⽅体的顶点为顶点的⼩正⽅体才有可能三⾯涂⾊,共8个。

2、两个⾯相交成⼀条棱,所以只有以原来⼤正⽅体的棱为⼀条棱【此时不包括顶点】的⼩正⽅体才有可能两⾯涂⾊,⼀条棱上两⾯涂⾊的⼩正⽅体2个,12条棱共有12*2=24个。

3、⼀⾯涂⾊的正⽅体是被三⾯涂⾊和两⾯涂⾊的正⽅体包围在中间,且在⼤正⽅体表⾯的,原⼤正⽅体⼀⾯有(4-2)*(4-2)=4个,6个⾯有6*4=24个。

4、没有涂⾊的⼩正⽅体有:4*4*4-8-24-24=8个或(4-2)*(4-2)*(4-2)=8个。

第三单元《探索图形——正方体表面的涂色问题》教案

第三单元《探索图形——正方体表面的涂色问题》教案
(2)正方体表面涂色方法:单色涂法、双色涂法、三色涂法等。
(举例:介绍不同的涂色方法,并让学生动手实践,理解各种涂色方法在实际操作中的应用。)
(3)计算涂色所需的颜料数量:根据不同涂色方法,计算所需颜料的数量。
(举例:引导学生运用数学计算方法,根据正方体的特征和涂色方法,求解涂色所需的颜料数量。)
2.教学难点
4.在实践活动和小组讨论中,学生们的表现让我深感他们在合作学习中的潜力。今后,我将继续采用这种教学方式,培养学生的团队协作能力和沟通能力。
5.本次教学中,我尝试将正方体表面涂色问题与学生的日常生活相结合,让他们感受到数学知识在实际生活中的应用。从学生的反馈来看,这种教学方式取得了较好的效果。今后,我会继续探索更多贴近生活的教学案例,提高学生的学习兴趣和积极性。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“正方体表面涂色问题在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(1)空间观念的培养:学生对三维图形的认知能力较弱,难以把握正方体的空间结构。
(举例:通过观察、操作正方体模型,引导学生从不同角度观察正方体,提高空间观念。)
(2)逻辑推理能力的运用:学生在解决正方体表面涂色问题时,可能难以运用逻辑推理方法进行分析。
(举例:在教学过程中,教师应引导学生通过逻辑推理,分析不同涂色方法的规律,从而解决问题。)
(二)新课讲授Leabharlann 用时10分钟)1.理论介绍:首先,我们要了解正方体表面涂色问题的基本概念。正方体表面涂色是指对正方体的六个面进行不同颜色或同颜色的涂抹。它可以帮助我们了解正方体的特征,提高空间观念和逻辑推理能力。

探索图形正方体涂色问题

探索图形正方体涂色问题
摆一个棱长是2厘米的大正方体,可以怎么摆?要 多少块棱长1厘米的小正方体?动手试一试!
1厘米
2厘米
2厘米
2厘米
2×2×2=8(块)
摆一个棱长是3厘米的大正方体,可以怎么摆?要 多少块棱长1厘米的小正方体?如何计算?
3厘米
3厘米
3×3×3=27(块)
3厘米
再大一点的正方体你会摆吗?
一共要多少块棱长1厘米
1、三面涂色的小正方体有多少块? 2、两面涂色的小正方体有多少块? 3、一面涂色的小正方体有多少块? 4、没有涂色的小正方体有多少块?
把棱长3厘米的大正方体表面也涂上颜色,再 拆开,这些小正方体的6个面的涂色情况会是 怎样的呢?
三面涂色的小正方体
如果拼成的大正方体的棱长是n厘米,三面涂色 的小正方体有 8 块?
一共要多少块棱长1厘米的小正方体? 5×5×5=125(块)
摆一个棱长是10厘米的大正方体, 要多少块棱长1厘米的小正方体?
10×10×10=1000(块)
摆一个棱长是n厘米的大正方体, 要多少块棱长1厘米的小正方体?
n× n× n= n 3 (块)
在下面的大正方体表面涂上颜色,再拆开,请你 思考:
大正方体的棱长 小正方体的块数 三面涂色的块数 两面涂色的块数 一面涂色的块数 没有涂色的块数
2厘米 3厘米 4厘米 5厘米 n厘米
8
27
64 125 n 3
8
8
8
8
8
0
12
24 36 (n-2) ×12
0
6
24
54 (n-2)2 ×6
0
1
8
27 (n-2)3
通过这节课的学习,你有什么收获吗?

(正方体涂色问题的教案及反思)

(正方体涂色问题的教案及反思)

正方体涂色问题【课堂实录】一、复习导入1、正方体有什么特征?2、提问:把一个表面涂上红色的正方体每条棱平均分成2份,切开!能够切成多少个小正方体?你能用算式表示吗?(生:23=8)想象一下如果给这个正方体的表面涂上颜色,小正方体会有什么变化?(生:8个小正方体都是3面涂色的)师:为什么8个小正方体都是三面涂色?生:因为这8个小正方体都在顶点处。

二、探索新知(一)发现规律1、理解三阶正方体师出示三阶正方体:把这个表面涂上红色的正方体的每条棱平均分成3份,切开一共能够切成多少个小正方体?猜想小正方体涂色的面有什么不同?生:小正方体除了有三面涂色的,还可能有两面涂色、一面涂色和没有涂色的。

2、观察验证师:请你利用手中的正方体学具观察验证找出每种小正方体的涂色情况和数量,跟组内同学交流一下并填写学习单。

(学生观察分类:三面涂色的块数、两面涂色的块数、一面涂色的块数、没有涂色的块数)指名多个小组汇报,师根据生汇报数据板书。

3、规律初探师:要想准确地知道三面涂色、两面涂色、一面涂色和没有涂色的各有几个,还得知道它们所处的位置。

说给你的小组同学听一听。

小组汇报4、深化理解师:发现了涂色正方体分布的规律,下面我们使用这个规律挑战一下——把学具袋里涂色面不同的小正方体快速还原成一个大正方体,比一比看谁拼的最快。

(1)合作前小组讨论分工及复原策略。

(2)速拼比赛(3)指名速度较快的小组介绍方法,教师指出有效分工有序合作的重要性。

(二)验证规律师:(课件出示4阶正方体)这个小正方体的涂色情况又是怎样的呢?请你们在小组里研究,并填写学习单。

1、小组交流,并指名汇报。

生1:三面涂色的在正方体的顶点位置,所以有8个。

生2:两面涂色的有24个,每条棱上有2个,一共12条棱。

生3:一面涂色的有24个,因为每个面有4个,有6个面。

生4:没有涂色的有8个,在这个正方体的最里面。

2、师:这些数据是怎么得到的呢?生1:学生是用2×12算出来的,说一说“为什么用2×12”?从而引导学生发现两面涂色的小正方体都在原来大正方体的棱的位置,体会能够从一条棱上有2个两面涂色的,推算出12条棱上就有24个两面涂色的。

(完整版)正方体、长方体的涂色问题

(完整版)正方体、长方体的涂色问题

生活趣味数学题:涂色的正方体一个棱长1分米的正方体木块,表面涂满了红色,把它切成棱长1厘米的小正方体。

在这些小正方体中:(1)三个面涂有红色的有多少个?(2)两个面涂有红色的有多少个?(3)一个面涂有红色的有多少个?(4)六个面都没有涂色的有多少个?下面我们结合图示,分别来看看这几个问题。

(1)三个面都涂有红色的小正方体在大正方体的顶点处,正方体有8个顶点,所以三个面涂有红色的有8个。

(2)两个面都涂有红色的小正方体在大正方体的棱上,每条棱上有8个,正方体有12条棱,所以两个面涂有红色的有8×12=96个。

(3)一个面都涂有红色的小正方体在大正方体的面上,每个面上有8×8=64个,正方体有6个面,所以一个面涂有红色的有8×8×6=3 84个。

(4)六个面都没有涂色的在大正方体的中间,有两种算法:1. 1000-8-96-384=512(个);2. 8×8×8=512(个)。

注意正方体有8个顶点、12条棱、6个面假设把棱n等分(n≥3),那么:N的三次方个小立方体组成的立方体的表面图涂上颜色,则未被涂色的小立方体有(n-2)的三次方个.则一面被涂色的小立方体为(n-2)*(n-2)*6两面被涂色的小立方体有(n-2)*12三面被涂色的有8长方体, 有a*b*c个立方体组成的长方体表面涂上颜色.则未被涂色的小立方体有(a-2)*(b-2)*(c-2)个一面被涂色的小立方体有(a-2)* (b-2)*2+(b-2)* (c-2)*2+(c-2)* (a-2)*2两面被涂色的小立方体有(a-2)*4+(b-2)*4+(c-2)*4三面被涂色的有8个。

正方体涂色问题

正方体涂色问题

(1)三面涂色:大正方体每个顶点处的
小正方体有三面涂色,正方体共有8个顶
点,所以是8个
(2)两面涂色:大正方体每条棱上除去
顶点处的1个小正方体,其余每个小正方
体各有两面被涂色,共有12条棱,所以是
12个
(3)一面涂色:大正方体每个面上除上、
下两排和左、右两列外,剩下的小正方体有
一面被涂色,大正方体共有6个面,所以
是6个
(4)分析法解决数正方体的问题,我们知道正中间的那个小整体被余下了,所以没涂色的就剩1个。

或者用减法:27-8-12-6=1(个)
正方体涂色专项练习
【练习1】
如图是用27个小正方体拼成的一个大正方体,把它的
表面都涂成红色
请你数一数,算一算:每条棱上3个小正方体,a=3
(1)三面涂成红色的小正方体有(8)块;
(2)两面涂成红色的小正方体有(12)块;
(3)一面涂成红色的小正方体有(6)块;
(4)没有涂成红色的小正方体有(1)块。

【方法总结】
用若干个小正方体拼成一个大正方体,并将拼成的大正方体的表面涂色。

如果大正方体的每条棱上有a个小正方体,则
三面涂色的小正方体在顶点处,共有8 个;
两面涂色的小正方体在棱上,共有[(a-2)×12] 个;
一面涂色的小正方体在面上,共有[(a-2)×(a-2)×6] 个。

正方体、长方体的涂色问题

正方体、长方体的涂色问题

生活趣味数学题:涂色的正方体一个棱长1分米的正方体木块,表面涂满了红色,把它切成棱长1厘米的小正方体。

在这些小正方体中:(1)三个面涂有红色的有多少个?(2)两个面涂有红色的有多少个?(3)一个面涂有红色的有多少个?(4)六个面都没有涂色的有多少个?下面我们结合图示,分别来看看这几个问题。

(1)三个面都涂有红色的小正方体在大正方体的顶点处,正方体有8个顶点,所以三个面涂有红色的有8个。

(2)两个面都涂有红色的小正方体在大正方体的棱上,每条棱上有8个,正方体有12条棱,所以两个面涂有红色的有8×12=96个。

(3)一个面都涂有红色的小正方体在大正方体的面上,每个面上有8×8=64个,正方体有6个面,所以一个面涂有红色的有8×8×6=3 84个。

(4)六个面都没有涂色的在大正方体的中间,有两种算法:1. 1000-8-96-384=512(个);2. 8×8×8=512(个)。

注意正方体有8个顶点、12条棱、6个面假设把棱n等分(n≥3),那么:N的三次方个小立方体组成的立方体的表面图涂上颜色, 则未被涂色的小立方体有(n-2)的三次方个.则一面被涂色的小立方体为(n-2)*(n-2)*6两面被涂色的小立方体有(n-2)*12三面被涂色的有8长方体, 有a*b*c个立方体组成的长方体表面涂上颜色.则未被涂色的小立方体有(a-2)*(b-2)*(c-2)个一面被涂色的小立方体有(a-2)* (b-2)*2+(b-2)* (c-2)*2+(c-2)* (a-2)*2两面被涂色的小立方体有(a-2)*4+(b-2)*4+(c-2)*4三面被涂色的有8个。

正方体、长方体的涂色问题

正方体、长方体的涂色问题

生活趣味数学题:涂色的正方体一个棱长1分米的正方体木块,表面涂满了红色,把它切成棱长1厘米的小正方体。

在这些小正方体中:(1)三个面涂有红色的有多少个?(2)两个面涂有红色的有多少个?(3)一个面涂有红色的有多少个?(4)六个面都没有涂色的有多少个?下面我们结合图示,分别来看看这几个问题。

(1)三个面都涂有红色的小正方体在大正方体的顶点处,正方体有8个顶点,所以三个面涂有红色的有8个。

(2)两个面都涂有红色的小正方体在大正方体的棱上,每条棱上有8个,正方体有12条棱,所以两个面涂有红色的有8×12=96个。

(3)一个面都涂有红色的小正方体在大正方体的面上,每个面上有8×8=64个,正方体有6个面,所以一个面涂有红色的有8×8×6=3 84个。

(4)六个面都没有涂色的在大正方体的中间,有两种算法:1. 1000-8-96-384=512(个);2. 8×8×8=512(个)。

注意正方体有8个顶点、12条棱、6个面假设把棱n等分(n≥3),那么:N的三次方个小立方体组成的立方体的表面图涂上颜色, 则未被涂色的小立方体有(n-2)的三次方个.则一面被涂色的小立方体为(n-2)*(n-2)*6两面被涂色的小立方体有(n-2)*12三面被涂色的有8长方体, 有a*b*c个立方体组成的长方体表面涂上颜色.则未被涂色的小立方体有(a-2)*(b-2)*(c-2)个一面被涂色的小立方体有(a-2)* (b-2)*2+(b-2)* (c-2)*2+(c-2)* (a-2)*2两面被涂色的小立方体有(a-2)*4+(b-2)*4+(c-2)*4三面被涂色的有8个仅供个人用于学习、研究;不得用于商业用途。

For personal use only in study and research; not for commercial use.Nur für den persönlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.以下无正文仅供个人用于学习、研究;不得用于商业用途。

正方体、长方体的涂色问题

正方体、长方体的涂色问题

生活趣味数学题:涂色的正方体一个棱长1分米的正方体木块,表面涂满了红色,把它切成棱长1厘米的小正方体。

在这些小正方体中:(1)三个面涂有红色的有多少个?(2)两个面涂有红色的有多少个?(3)一个面涂有红色的有多少个?(4)六个面都没有涂色的有多少个?下面我们结合图示,分别来看看这几个问题。

(1)三个面都涂有红色的小正方体在大正方体的顶点处,正方体有8个顶点,所以三个面涂有红色的有8个。

(2)两个面都涂有红色的小正方体在大正方体的棱上,每条棱上有8个,正方体有12条棱,所以两个面涂有红色的有8×12=96个。

(3)一个面都涂有红色的小正方体在大正方体的面上,每个面上有8×8=64个,正方体有6个面,所以一个面涂有红色的有8×8×6=3 84个。

(4)六个面都没有涂色的在大正方体的中间,有两种算法:1. 1000-8-96-384=512(个);2. 8×8×8=512(个)。

注意正方体有8个顶点、12条棱、6个面假设把棱n等分(n≥3),那么:N的三次方个小立方体组成的立方体的表面图涂上颜色, 则未被涂色的小立方体有(n-2)的三次方个.则一面被涂色的小立方体为(n-2)*(n-2)*6两面被涂色的小立方体有(n-2)*12三面被涂色的有8长方体, 有a*b*c个立方体组成的长方体表面涂上颜色.则未被涂色的小立方体有(a-2)*(b-2)*(c-2)个一面被涂色的小立方体有(a-2)* (b-2)*2+(b-2)* (c-2)*2+(c-2)* (a-2)*2两面被涂色的小立方体有(a-2)*4+(b-2)*4+(c-2)*4三面被涂色的有8个选择是难,更何况是心灵选择。

高渐离为了荆轲,他选择了死;马本斋母亲为了革命,她选择了牺牲;祝英台为了真挚爱情,她选择了化蝶。

在这友情、亲情与爱情之间选择,他们是这样做。

正方体长方体的涂色问题

正方体长方体的涂色问题

生活趣味数学题:涂色的正方体一个棱长1分米的正方体木块,表面涂满了红色,把它切成棱长1厘米的小正方体。

在这些小正方体中:(1)三个面涂有红色的有多少个?(2)两个面涂有红色的有多少个?(3)一个面涂有红色的有多少个?(4)六个面都没有涂色的有多少个?下面咱们结合图示,别离来看看这几个问题。

(1)三个面都涂有红色的小正方体在大正方体的极点处,正方体有8个极点,因此三个面涂有红色的有8个。

(2)两个面都涂有红色的小正方体在大正方体的棱上,每条棱上有8个,正方体有12条棱,因此两个面涂有红色的有8×12=96个。

(3)一个面都涂有红色的小正方体在大正方体的面上,每一个面上有8×8=64个,正方体有6个面,因此一个面涂有红色的有8×8×6 =384个。

(4)六个面都没有涂色的在大正方体的中间,有两种算法:1. 1000-8-96-384=512(个);2. 8×8×8=512(个)。

注意正方体有8个极点、12条棱、6个面假设把棱n等分(n≥3),那么:N的三次方个小立方体组成的立方体的表面图涂上颜色, 那么未被涂色的小立方体有(n-2)的三次方个.那么一面被涂色的小立方体为(n-2)*(n-2)*6两面被涂色的小立方体有(n-2)*12三面被涂色的有8长方体, 有a*b*c个立方体组成的长方体表面涂上颜色.那么未被涂色的小立方体有(a-2)*(b-2)*(c-2)个一面被涂色的小立方体有(a-2)* (b-2)*2+(b-2)* (c-2)*2+(c-2)* (a-2)*2两面被涂色的小立方体有(a-2)*4+(b-2)*4+(c-2)*4三面被涂色的有8个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正方体的涂色问题集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-
《正方体的涂色问题》
教学目标:
1进一步认识和理解正方体特征。

2通过观察、列表、想象等活动经历“找规律”过程,获得“化繁为简”的解决问题的经验,培养学生的空间想象力,让学生体会分类、数形结合、归纳、推理、模型等数学思想。

积累数学思维的活动经验。

3在相互交流中,学会倾听他人意见,及时自我修正、自我反思,增强学好数学的信心。

教学重点:学会从简单的情况找规律,解决复杂问题的化繁为简的思想方法。

教学难点:探索规律的归纳方法。

教学过程:小正方体学具课件
教学过程:
(一)激趣:引发问题
1.谈话激趣
出示魔方(6阶魔方):你们玩过吗?怎么玩呢?
老师相信很多同学都会玩,而且玩的还很不错,那谁有知道在这个小小的魔方中还蕴含不少数学知识呢!你知道吗?
生:。

(这里学生会说到是正方体,正方体的特征,由小正方体组成及小正方体的个数,每个面都有颜色等)
2.引出问题
刚才,同学们有说到魔方是正方体,有6个面,每个面都是不同的颜色。

其实在魔方刚生产出来时是没有颜色的,这些颜色是工人叔叔涂上的,他们在组装和涂色的时候发现了一些问题?
请同学们猜猜他们发现了什么样的涂色问题呢?
生试猜。

(学生可能会说出小正方体涂色的面是不同的)
那我们今天就来研究正方体的涂色问题。

(板书课题)
(二)体悟,化繁为简
正如同学们猜的一样,工人叔叔们在组装和涂色时就发现不是所有的小正方体都要涂色,有的小正方体只需要涂一面,有的需要涂二面,有的需要涂三面,还有的可以不用涂色,如果请你来数一数每一种涂色的情况的小正方体有多少个,你会有什么感觉呢?
生:这个正方体太大了,小正方体的个数太多了,我们数起来不方便。

怎样才能解决这个问题,你们有什么好办法吗?
老子曰:天下难事,必作于易。

教师引导学生先研究简单的图形,发现规律后,再利用规律去解决复杂的图形。

(三)活动,探索规律
1.初步体验
(1)你认为什么样的图形比较简单,我们容易找到答案?
(2)请把你认为简单的正方体摆出来,四人小组合作研究。

(3)四人一组,小组合作探究
①用正方体学具摆出正方体
②观察每类小正方体都在什么位置
③把结果用你喜欢的方式记录下来
(4)汇报交流
①适时提问:你们发现规律了吗?
生:没有。

师:那怎么办呢?
2、再次探究
摆一个稍为复杂些的正方体进行合作研究。

汇报交流,有发现些什么规律吗?(可能会有学生说出一些规律,但是不确定)
看来,通过对一、二个正方体的研究,发现的规律好像不太确定,没关系我们再来研究一个正方体,看看能不能发现规律。

3、对比发现
汇报交流(引导学生把三次研究的数据进行对比,同时要引导学生利用表格的形式进行记录更加方便)
追问:怎么计算没有涂色的个数?
初步发现规律
4、验证猜想
(1)按照这样的规律摆下去,你能猜想一下这2个大正方体的每种涂色的个数吗?
(2)课件验证学生猜想
(四)、总结,归纳发现
师:这些正方体中,涂色的小正方体为什么会有这样的规律呢?
1、文字表示
(1)三面涂色的在正方体顶点位置,因为正方体有8顶点,所以都有8个.
(2)两面涂色的在正方体棱上除去两端的位置块数,因为正方体有12棱,
所以有(每条棱上小正方体块数-2)×12个
(3)一面涂色的在正方体每个面除去周边一圈的位置,因为正方体有6个面,
所以有(每条棱上小正方体块数-2)2×6个
(4)没有涂色的在正方体里面除去表面一层的位置,所以有(每条棱上小正方体块数-2)3个
II)字母表示
若用n表示大正方体每条棱上小正方体块数,则小正方体涂色规律为
a三面涂色的小正方体块数:8
b两面涂色的小正方体块数:(n-2)×12
c一面涂色的小正方体块数:(n-2)2×6
d没有涂色的小正方体块数:(n-2)3
(五)、应用,解决问题
解决开始的六阶魔方的涂色问题
(六)课堂小结
通过这节课的学习,你有什么收获?
分类的思想,转化与化归的思想,...
板书设计:
若用n表示大正方体每条棱上小正方体块数,则小正方体涂色规律为
a三面涂色的小正方体块数:8
b两面涂色的小正方体块数:(n-2)×12
c一面涂色的小正方体块数:(n-2)2×6
d没有涂色的小正方体块数:(n-2)3。

相关文档
最新文档