多孔材料的金属粒子填充及催化中的应用
金属_有机骨架材料及其在催化反应中的应用
金属-有机骨架材料及其在催化反应中的应用金属-有机骨架(metal-organic frameworks,MOFs)材料是由金属离子和有机配体通过自组装而成的具有多孔结构的特殊晶体材料。
由于其种类的多样性、孔道的可调性和结构的易功能化,已在气体的吸附和分离、催化、磁学、生物医学等领域表现出了诱人的应用前景。
本文介绍了MOFs 材料的类型和常用的合成方法,综述了近年来MOFs 材料在催化领域的应用,特别是以MOFs 材料中骨架金属作为活性中心、骨架有机配体作为活性中心和负载催化活性组分的催化反应,并对MOFs 材料的催化应用趋势做了展望,以期对MOFs 材料的催化性能有比较全面的认识。
引言MOFs 材料的出现可以追溯到1989 年以Robson 和Hoskins 为主要代表的工作,他们通过4,4',4″,4 -四氰基苯基甲烷和正一价铜盐[Cu(CH3CN)4]·BF4在硝基甲烷中反应,制备出了具有类似金刚石结构的三维网状配位聚合物,同时预测了该材料可能产生出比沸石分子筛更大的孔道和空穴,从此开始了MOFs 材料的研究热潮。
但早期合成的MOFs 材料的骨架和孔结构不够稳定,容易变形。
直到1995 年Yaghi 等合成出了具有稳定孔结构的MOFs,才使其具有了实用价值。
由于MOFs 材料具有大的比表面积和规整的孔道结构,并且孔尺寸的可调控性强,骨架金属离子和有机配体易实现功能化,因此在催化研究、气体吸附、磁学性能、生物医学以及光电材料等领域得到了广泛应用。
这些特性貌似与现有的沸石和介孔分子筛很相似,但实际上却有较大差别14]:如在孔尺寸方面,沸石的孔尺寸通常小于 1 nm,介孔分子筛的孔尺寸通常大于 2 nm,而MOFs 的孔尺寸可以从微米到纳米不等;在比表面积方面,沸石通常小于600 m2/g,介孔分子筛小于2 000m2/g,而MOFs的比表面积可达10 400 m2/g[15]。
多孔金属材料的制备方法及应用研究论文(通用)
多孔金属材料的制备方法及应用研究论文(通用)1、多孔金属材料的制备方法1.1铸造法铸造法分为熔融金属发泡法、渗流铸造法和熔模铸造法等.1.1.1熔融金属发泡法熔融金属发泡法包括气体发泡法和固体发泡法.此方法的关键措施是选择合适的增粘剂,控制金属粘度和搅拌速度,以优化气泡均匀性和样品孔结构控制的程度.此法主要用于制备泡沫铝、泡沫镁、泡沫锌等低熔点泡沫金属.对于熔融金属发泡法,当前研究较多的是泡沫铝.李言祥对泡沫铝的制备工艺、泡沫结构特点及气孔率方面进行了深入的实验研究;于利民等人根据采用此法生产泡沫铝在国内外泡沫金属的发展形势,总结并探讨了其制备工艺及优缺点.1)气体发泡法气体发泡法指的是向金属熔体的底部直接吹入气体的方法.为增加金属熔体的粘度,需要加入高熔点的固体小颗粒作为增粘剂,如Al2O3和SiC等.吹入的气体可选择空气或者像CO2等惰性气体.虽然设备简单、成本低,但孔隙尺寸和均匀程度难以控制.徐方明等用这种方法制备出了孔隙率为90!以上的闭孔泡沫铝;覃秀凤等介绍了该方法原理,并研究了增粘剂、发泡气体流量和搅拌速度等工艺参数对实验结果的影响.2)固体发泡法固体发泡法即向熔融金属中加入金属氢化物的方法. 发泡剂之所以为金属氢化物,是因为它会受热分解,生成的气体逐渐膨胀致使金属液发泡,然后在冷却的过程中形成多孔金属. 增粘剂主要选择Ca粉来调节熔体粘度,发泡剂一般为TiH2 . 采用同样的方法原理,可以通过向铁液中加入钨粉末和发泡剂的方式生成泡沫铁,但很少有相关的文献报道.Miyoshi T 等人采用这种方法制备出了泡沫铝.1.1.2渗流铸造法和熔模铸造法两种方法的相似之处在于都是将液态金属注入装有填料的模型中,构成多孔金属的复合体,然后通过热处理等的方式将杂质除去,经过冷却凝固得到终产物多孔金属;区别在于前者模型中填充的是固体可溶性颗粒(如NaCl、MgSO4等)或低密度中空球,后者铸模由无机或有机塑料泡沫(如聚氨酯)和良好的耐火材料构成.Covaciu M等用渗流铸造法制备了开孔型和闭孔型的多孔金属材料,John Banhart用熔模铸造法制备了多孔金属,详细研究了产品结构、性能及应用. 用渗流铸造法制备的多孔金属,其孔隙率小于80!,常用来制备多孔不锈钢及多孔铸铁、镍、铝等合金,虽然用这种方法制备的多孔金属孔隙尺寸得到准确控制,但成本较高. 熔模铸造法制备的多孔金属成本也很高,孔隙率比前者高,但产品强度低.1.2金属烧结法金属烧结法包括粉末烧结法、纤维烧结法、中空球烧结法、金属氧化物还原烧结法、有机化合物分解法等.1.2.1粉末烧结法粉末烧结法指的是金属粉末或合金粉末与添加剂按一定的配比均匀混合,压制成型,形成具有一定致密度的预制体,然后进行真空环境下高温烧结或钢模中加热的方式除去添加剂,最终得到多孔金属材料.此法可用来制备多孔铝、铜、镍、钛、铁、不锈钢等材料.通过粉末烧结法制备的多孔金属材料,其孔隙特性主要取决于采用的方法工艺和粉末的粒度.王录才等采用冷压、热压、挤压三种方式制备预制体,详细研究了铝在不同炉温下加热的发泡行为.根据所选添加剂的不同,粉末烧结法又分为粉末冶金法和浆料发泡法.两者选用的添加剂分别为造孔剂和发泡剂.造孔剂分为很多种,如NH4HCO3、尿素等. 陈巧富等用NH4HCO3作造孔剂,经过低温加热和高温烧结的方式制备出了多孔Ti-HA 生物复合材料,孔径范围100 ~500 μm,抗压强度高达20 MPa,可作为人体骨修复材料. 国外David C. D等用尿素作造孔剂制备出了具有一定孔隙率的泡沫钛; JaroslavCapek等以NH4HCO3为造孔剂,用粉末冶金法制备出了孔隙率为34 !~ 51!的多孔铁,并作出了多孔铁在骨科应用方面的设想.关于发泡剂的选择,TiH2或ZrH2常作发泡剂制备多孔铝、锌,而SrCO3常作为发泡剂制备多孔碳钢. 李虎等用H2O2作发泡剂,用浆料发泡法制备出了多孔钛,经过对其力学性能测试和碱性处理获得了有望成为负重骨修复的理想材料.1.2.2纤维烧结法纤维烧结法指金属纤维经过特殊处理后经过压制、成型、高温烧结的过程形成的多孔金属.运用这种方法制备的多孔金属材料,其强度高于烧结法.1.2.3中空球烧结法中空球烧结法指金属空心球粘结起来进行烧结,从而得到多孔金属材料的方法.常用来制备多孔镍、钛、铜、铁等,制得的金属兼具闭孔和开孔结构.其中金属空心球的制备方法是:用化学沉积或电沉积的方法在球形树脂表面镀一层金属,然后除去球形树脂.特别的是,多孔金属的孔隙尺寸可以通过调整空心球的方式来进行控制.1.2.4金属氧化物还原烧结法该方法旨在氧化气氛中加热金属氧化物获得多孔的、透气的、可还原金属氧化物烧结体,再在还原气氛中且低于金属的熔点温度下进行还原,从而得到开口的多孔金属. 这种方法可用来制备多孔镍、钼、铁、铜、钨等. 因为很难找到制备高孔隙率的多孔铁的方法,Taichi Murakami等用炉渣中的氧化物发泡,并采用氧化还原法制备出了多孔铁基材料.1.2.5有机化合物分解法将金属的草酸盐或醋酸盐等进行成型处理后,再在合适的气氛下加热烧结.如草酸盐分解反应式为Mx(COO)y→xM+YCO2式中:M为金属·金属的草酸盐分解释放CO2,在烧结体中形成贯通的孔隙.在制备过程中金属有机化合物可以成型后加热分解,再进行烧结.1.3沉积法此法是指通过采用物理或化学的方法,将金属沉积在易分解的且具有一定孔隙结构的有机物上,然后通过热处理方法或其他方法除去有机物,从而得到多孔金属.沉积法一般分为电沉积法、气相沉积法、反应沉积法等.1.3.1电沉积法该法是以金属的离子态为起点,用电化学的方法将金属沉积在易分解的且有高孔隙率三维网状结构的有机物基体上,然后经过焙烧使有机物材料分解或用其他的工艺将其除去,最终得到多孔金属. 具体操作步骤为:预处理、基体导电化处理、电镀、后续处理. 常用来制备多孔铜、镍、铁、钴、金、银等.国外Badiche X等用这种方法对泡沫镍的制备及性能进行了深入研究; 单伟根等电沉积法制备了泡沫铁,确定了基体的热解方式对泡沫铁的结构性能方面造成不同的影响,并且确定了最佳实验条件. Nina Kostevsek等研究了平板电极上和多孔氧化铝模板上的铁钯合金,并对二者的电化学沉积动力学进行了比较.1.3.2气相沉积法该法是在真空状态下加热液态金属,使其以气态的形式蒸发,金属蒸气会沉积在固态的基底上,待形成一定厚度的金属沉积层后进行冷却,然后采用热处理方法或化学方法去除基底聚合物,从而得到通孔泡沫金属材料.蒸镀金属可以为Al、Zn、Cu、Fe、Ti等.1.3.3反应沉积法反应沉积法,顾名思义指的是金属化合物通过发生反应,然后沉积在基体上的过程.具体操作环节是,首先将泡沫结构体放置在含有金属化合物的装置中,加热使金属化合物分解,分解得到的金属沉积在多孔泡沫基体上,然后进行烧结去除基底,得到多孔金属.通常情况下,金属化合物为羟基金属,在高温条件下发生分解反应,如制备多孔铁、镍等.2、多孔金属材料的性能及应用多孔金属材料可作为结构材料,也可作为功能材料. 同时结构决定性能,对于多孔金属而言,它的结构特点表现为气孔的类型( 开孔或闭孔) 、大小、形状、数量、分布、比表面积等方面. 多孔金属材料在航空航天、化学工程、建筑行业、机械工程、冶金工业等行业得到了广泛的应用,此外,在医学和生物领域也具有广阔的发展潜力. Qin Junhua等对多孔金属材料性能和用途两方面的研究进展做了重要阐述,并提出针对当前的形势,需要拓展多孔金属材料其他方面用途的必要性.2.1结构材料多孔金属材料具有比重小、强度高、导热性好等特点,常用作结构材料.可作汽车的高强度构件,如盖板等;可作建筑上的元件或支撑体,如电梯、高速公路的护栏等;也可作为航天工业上的支撑结构,如机翼金属外壳支撑体、光学系统支架,或用来制作飞行器等.最常用的是多孔铝.魏剑等提到了多孔金属材料可用来制作节能门窗、防火板材等,实现了其在建筑领域的应用价值.利用多孔金属材料的吸能性能,可制作能量吸收方面的材料,如缓冲器、吸震器等.最常见的是多孔铝.比如汽车的冲击区安装上泡沫铝元件,可控制最大能耗的变形;还有将泡沫铝填充入中空钢材中,可以防止部件承受载荷时出现严重的变形.与此同时,多孔铝兼具了吸音、耐热、防火、防潮等优势.2.2功能材料2.2.1过滤与分离材料根据多孔金属的渗透性,由多孔金属材料制作的过滤器可用来进行气-固、液-固、气-液、气-总第209期李欣芳,等:多孔金属材料的制备方法及应用研究13气分离.多孔金属的渗透性主要取决于孔的性质和渗透流体的性质.过滤器的原理是利用多孔金属的孔道对流体介质中粒子的阻碍作用,使得要过滤的粒子在渗透过程中得到过滤,从而达到净化分离的目的.铜、不锈钢、钛等多孔金属常用来制作金属过滤器,多孔金属过滤器被广泛应用于冶金、化工、宇航工业、环保等领域.在冶金工业中,通常用多孔不锈钢对高炉煤气进行除尘;回收流化床尾气中的催化剂粉尘;在锌冶炼中用多孔钛过滤硫酸锌溶液;熔融的金属钠所采用的是镍过滤器,此过程用于湿法冶炼钽粉等.在化工行业中,多孔不锈钢、多孔钛具有耐腐蚀性,常用作过滤器来进行过滤.比如一些无机酸或有机酸,如硝酸、亚硝酸、硼酸、96!硫酸、醋酸、草酸;碱、氢氧化钠;熔融盐;酸性气体,如硫化氢、气态氟化氢;一些有机物,如乙炔;此外,还有蒸汽、海水等.在宇航工业中,航空器的净化装置采用的是多孔不锈钢,制导舵螺中液压油和自动料管路中气体的净化也是采用这种材料,此外还可用于碳氢化合工艺中催化剂的回收.在环保领域里,主要是利用过滤器来净化烟气、废气及污水处理等方面.其中要实现气-气分离,需要对多孔材料的尺寸有更精准的要求,涉及到纳米多孔金属材料的制备工艺及其具有的性能等问题.奚正平等对洁净煤、高温气体净化、汽车尾气净化等技术作了具体的阐述,使用这些技术有利于缓解当前的环保问题.此外,医学上常用多孔钛可过滤氯霉素水解物,也可作为医疗器械中人工心肺机的发泡板等.2.2.2消音减震材料利用多孔金属材料的高孔隙率性能,可制作吸声材料.在吸声的作用上,通孔材料明显优于闭孔材料.通过改善声波的传播途径来达到消音的目的,这与多孔金属材料的材质和孔洞的结构密切相关.因为多孔钛还具有良好的耐高温、高速气流冲刷和抗腐蚀性能,所以被应用到燃气轮机排气系统等一些特殊的工作条件中,这种排气消声装置轻质、高效率、使用寿命长.段翠云等介绍了吸声材料的分类及应用,探讨了空气流阻和孔隙结构对吸声特性的影响. 王月等制备了孔径为2 ~ 7 mm,孔隙率为80!~90!,平均吸声系数为0. 4 ~ 0. 52 的泡沫铝,结果表明孔径越小,孔隙率、厚度越大,吸声性能越好. Ashby MF等在书中提到了利用泡沫金属的吸声性能可以生产消声器产品.利用多孔金属材料的抗冲击性,可用来制作减震材料.多孔金属的应力-应变(σ-ε)曲线可以分为三个阶段,即弹性变形阶段、脆性破碎阶段和紧实阶段,进而可以划分为三个区域.从曲线走势来分析,当多孔金属材料在受到冲击力时,应变滞后于应力,所以其在受到外界应力时首先变形的是它的骨架部分,随着外界应力的增大,骨架易发生破碎,当骨架受到挤压时,应变不再发生很大的变化.其中破碎阶段的起点为多孔材料的屈服强度.当受到外加载荷时,孔的变形和坍塌会消耗大量能量,从而使得在较低的应力水平上有效地吸收冲击能.中间部分区域表现出它的能量吸收能力,左边部分区域面积表现出它的抗冲击能力,面积越大,它所属的性能越好.2.2.3电极材料由于多孔金属材料具有高孔隙率、比表面积大等优点,因此常用来制作电极材料,常用的有多孔铅、镍等.刘培生等结合多孔金属电极的类型和特点,阐述了其制备工艺和性能强化的必要性,值得深思.多孔铅可用作铅酸电池中反应物的载体,可以填充更多的活性物质,减轻了电池重量,也可以用作良好的导电网络以降低电池内电阻.轻质高孔隙率的泡沫基板和纤维基板,与传统的烧结镍基板相比有明显的优势,前者有高能量密度、良好的耐过充放电能力、低成本,满足了氢镍、镉镍等二次碱性电池的技术要求.多孔镍在化学反应工程中用作流通性和流经型多孔电极,因为它除具有上述优点外,还可以促进电解质的扩散、迁移以及物质交换等.此外,它还可用作电化学反应器.袁安保等具体分析了镍电极活性物质的结构、性质以及热力学和动力学,而且研究了它的制备工艺及应用,对MH-Ni电池的开发具有重要意义.孔德帅等制备出了纳米多孔结构的镍基复合膜电极,结果表明,此复合膜在20A·g-1的冲放电流密度下,经过1000次充放电循环,电容保持率为94!.近年来,对锌镍电池的研究受到了国内外的热切关注,费锡明等针对锌镍电池制作技术的进展,阐述了当前面临的诸多问题并提出了相应的解决方案,为新型化学电池的进一步研究提供了重要线索.2.2.4催化载体材料泡沫金属韧性强、高传导、耐高温、耐腐蚀等性能,可制作催化载体材料.由于载体本身的比表面积较小,为增大金属载体与催化剂活性组分之间的结合力,需预先在载体上涂上一层氧化物.然后将催化剂浆料均匀涂抹在泡沫金属片的表面,经过压制成型,再将其置于高温环境中,可以使电厂废弃料得到有效妥善处理.2.2.5生物医学材料多孔钛及钛合金在医学上作为修复甚至替代骨组织的材料,需要具有较好的生物相容性,否则会使人体产生不良反应.而且要与需替代组织的力学性能相匹配.一般通过控制孔隙的结构和数量来调整多孔钛的强度和杨氏模量.多孔镁在生物降解和生物吸收上有很好的作用,也可作为植入骨的生物材料.此外,多孔金属材料具有良好的电磁波吸收性能,可以作电磁屏蔽材料;对流体流量控制有较高的精准度;具有独特的视觉效果,利润高,可以用作如珠宝、家具等装饰材料.3、多孔金属材料的研究现状及存在问题1)近些年来对多孔金属的研究多为低熔点、轻金属,其中研究最多的为泡沫铝.人们利用多孔金属的性能,将其运用到了实际生产和生活中,但对它的其他性能还有待研究和探索.多孔金属的研究范围、应用领域还需要进一步扩展,如多孔金属在催化领域、电化学领域或其他领域的应用等.2)在多孔金属材料的制备方法中,都存在孔隙在金属基体上的数量和分布等关键问题.孔径尺寸、孔隙率的可控性和孔隙分布的均匀性等性质,以及多孔金属的作用机制还需要进一步探究和完善.3)多孔金属材料作为冶金和材料科学的交叉领域,需要强化综合多方面的理论知识,而不是就单一方面进行研究.在多孔金属材料课题研究过程中,需要在理论分析的基础上,在实践过程中尽可能降低成本,避免材料的浪费,简化工艺,缩短工序.4)一些多孔金属材料的开发,还停留在实验室阶段,距工业中大规模生产和应用还存在着很大距离,需要研究者们共同努力,早日实现需求-设计-制备-性能-应用一体化.对金属多空材料的应用有着重要的作用,金属多孔材料是有着功能和结构双重属性的工程材料,尤其是在近些年的'发展过程中使其得到了较为广泛的应用。
纳米多孔材料在催化领域的应用
纳米多孔材料在催化领域的应用近年来,纳米多孔材料在催化领域中展现出了广阔的应用前景。
纳米多孔材料,指的是孔径分布在纳米级别的材料,这种材料具有均匀的孔道结构和高比表面积,因此能够提供更多的催化活性位点,增加反应物质与催化剂的接触面积,从而加速反应速率、提高催化效率。
本文将重点探讨纳米多孔材料在催化领域的应用以及相关研究进展。
一、纳米多孔材料在催化领域的应用概述纳米多孔材料在催化领域中有广泛的应用。
首先,纳米多孔材料在催化剂的设计中扮演着重要的角色。
由于其孔径分布均匀、孔道结构可调、比表面积高等特点,纳米多孔材料能够提供丰富的催化活性位点,从而提高催化剂的活性和选择性。
其次,纳米多孔材料可用于催化反应底物的分离与纯化。
由于其高比表面积和孔道结构的特点,纳米多孔材料能够通过调控孔径大小和表面性质来实现对不同分子的选择性吸附,从而能够高效地分离和纯化反应底物,提高催化反应的纯度和产率。
二、纳米多孔材料在催化剂设计中的应用纳米多孔材料在催化剂设计中具有广泛的应用前景。
例如,一种名为"纳米多孔金属-有机骨架材料"的纳米多孔材料被广泛应用于催化剂的设计中。
这种材料具有均匀的孔道结构和高比表面积,可以提供丰富的催化活性位点,增加反应物与催化剂的接触面积。
因此,在这种纳米多孔材料的基础上设计的催化剂具有更高的活性和选择性,能够有效降低反应的温度和压力,提高反应的产率和效率。
除了纳米多孔金属-有机骨架材料,还有一种名为“纳米多孔碳”材料也被应用于催化剂设计中。
纳米多孔碳材料由纳米级石墨烯或玻璃碳等构成,具有均匀的孔道结构和高比表面积,并且可以通过调控碳材料的孔径和孔壁宽度来控制其催化性能。
因此,利用纳米多孔碳材料作为催化剂载体,可以增加活性金属的分散度,提高催化剂的活性和稳定性。
三、纳米多孔材料在反应底物分离和纯化中的应用纳米多孔材料在反应底物分离和纯化上也具有广泛的应用前景。
例如,纳米多孔金属-有机骨架材料可以通过调控孔径大小和表面性质来实现对不同分子的选择性吸附,从而能够高效地分离和纯化反应底物。
金属多孔材料的研究现状与发展前景
金属多孔材料的研究现状与发展前景金属多孔材料的研究现状与发展前景摘要:介绍了金属多孔材料的制备方法、应用、发展方向以及前景。
关键字:金属多孔材料;制备方法;应用金属多孔材料是一类具有明显孔隙特征的金属材料(孔隙率可达98%),由于孔隙的存在而呈现出一系列有别于金属致密材料的特殊功能,广泛应用于冶金机械、石油化工、能源环保、国防军工、核技术和生物制药等工业过程中的过滤分离、流体渗透与分布控制、流态化、高效燃烧、强化传质传热、阻燃防爆等,是上述工业实现技术突破的关键材料。
近年来金属多孔材料的开发和应用日益受到人们的关注。
金属多孔(泡沫金属)材料是20世纪80年代后期国际上迅速发展起来的,是由刚性骨架和内部的孔洞组成,具有优异的物理特性和良好的机械性能的新型工程材料。
它具备的优异物理性能,如密度小、刚度大、比表面积大、吸能减振性能好、消音降噪效果好、电磁屏蔽性能高,使其应用领域已扩展到航空、电子、医用材料及生物化学领域等。
通孔的金属多孔材料还具有换热散热能力强、渗透性好、热导率高等优点;而闭孔金属多孔材料的物理特性则与通孔的相反。
为了得到不同性能的多孔金属,各种制备方法被相继提出,如直接发泡法,精密铸造法,气泡法,烧结法和电沉积法等[1,2]。
2 金属多孔材料制备方法2.1 从液态(熔融)金属开始制备2.1.1熔体发泡法在一定的条件下金属熔体中可生成气泡,并且一般情况下多数气泡由于浮力作用会迅速上升到液体表面而溢出。
为了使更多气泡留在熔体中,可在其中加入增粘剂来阻碍气泡的上浮。
19世纪60至70年代,人们就已经尝试用这种方法制备铝、镁、锌及其合金的泡沫材料。
过去的10年中,又涌现出了大量的新思路、新工艺,其中有两种熔体发泡工艺特别具有发展前景:其一是直接将气体通入金属熔体中,其二是将发泡剂加入熔体中,发泡剂分解释放大量气体[3]。
①直接吹气法:首先在熔融的金属中加入增粘剂以防止气泡从熔体中逸出。
随后,采用旋转浆或振动的喷嘴将发泡气体(空气、氮气、二氧化碳、氩气等)通入熔体中,旋转浆或喷嘴的作用是在熔体中产生足够多的优良气泡并使他们分布均匀。
金属有机框架多孔材料的制备及其应用研究
金属有机框架多孔材料的制备及其应用研究一、本文概述金属有机框架(MOFs)多孔材料作为一种新兴的功能材料,近年来在化学、材料科学和工程等领域引起了广泛关注。
由于其独特的结构和性质,MOFs在气体存储、分离、催化、传感和药物输送等领域展现出了巨大的应用潜力。
本文旨在全面综述MOFs多孔材料的制备方法,探讨其结构特点与性能之间的关系,并深入分析MOFs在多个领域的应用研究进展。
文章将首先介绍MOFs的基本概念、分类及特点,随后重点讨论不同制备方法的优缺点,包括溶剂热法、微波辅助法、机械化学法等。
在此基础上,本文将综述MOFs在气体吸附与存储、催化、化学传感、生物医学等领域的应用实例,并展望其未来的发展趋势和挑战。
通过本文的阐述,旨在为MOFs多孔材料的制备和应用研究提供全面的理论支撑和实践指导。
二、金属有机框架多孔材料的制备方法金属有机框架(MOFs)多孔材料的制备是MOFs应用的基础,其制备方法的选择直接影响着MOFs的结构、形貌和性能。
目前,常用的MOFs制备方法主要包括溶液法、水热/溶剂热法、微波辅助法、机械化学法以及电化学法等。
溶液法:溶液法是最常用的MOFs制备方法之一。
通常,将金属盐和有机配体溶解在适当的溶剂中,通过控制反应条件(如温度、pH 值、浓度等),使金属离子与有机配体在溶液中自组装形成MOFs。
这种方法操作简单,但通常需要较长的反应时间。
水热/溶剂热法:水热/溶剂热法是在高温高压的条件下,利用溶剂(如水或其他有机溶剂)的物理化学性质,促进金属离子与有机配体的反应,从而制备MOFs。
这种方法可以加速反应速率,制备出结晶度高、形貌规整的MOFs。
微波辅助法:微波辅助法是利用微波产生的快速加热和均匀加热效应,促进MOFs的快速合成。
这种方法具有反应时间短、能耗低、产物纯度高等优点,是近年来备受关注的一种MOFs制备方法。
机械化学法:机械化学法是通过机械力(如研磨、球磨等)促进金属盐和有机配体之间的反应,制备MOFs。
多孔金属材料
多孔金属材料
多孔金属材料是一种具有特殊结构和性能的材料,其具有许多独特的优点,因
此在各个领域都有着广泛的应用。
多孔金属材料通常具有高度的孔隙率和较大的比表面积,这使得它们在吸附、过滤、隔热、隔声等方面具有独特的优势。
本文将介绍多孔金属材料的组成、制备方法以及应用领域。
多孔金属材料通常由金属颗粒或纤维通过一定的方法组装而成,其孔隙结构可
以精确控制,从而实现对材料性能的调控。
常见的多孔金属材料包括泡沫金属、多孔板、网状结构等。
这些材料具有高度的孔隙率和连通的孔隙结构,使得气体和液体可以在其中自由流动,具有优秀的过滤和吸附性能。
制备多孔金属材料的方法多种多样,常见的方法包括模板法、发泡法、粉末冶
金法等。
模板法是利用模板的空隙结构来制备多孔金属材料,可以通过模板的选择来控制孔隙结构和孔隙大小;发泡法是利用金属的发泡性质来制备多孔金属材料,可以实现大面积、连续生产;粉末冶金法是利用金属粉末的成型和烧结来制备多孔金属材料,可以实现复杂形状和微观结构的控制。
多孔金属材料在各个领域都有着广泛的应用。
在能源领域,多孔金属材料可以
作为催化剂载体、电极材料等,具有优异的传质性能和催化性能;在航空航天领域,多孔金属材料可以作为轻质结构材料、隔热隔烟材料等,具有优异的强度和耐高温性能;在生物医学领域,多孔金属材料可以作为植入材料、药物载体等,具有良好的生物相容性和生物活性。
总之,多孔金属材料具有独特的结构和性能,其制备方法多样,应用领域广泛。
随着材料科学的不断发展,相信多孔金属材料将会在更多领域展现出其独特的价值,为人类社会的进步做出更大的贡献。
多孔材料在催化反应中的应用
多孔材料在催化反应中的应用催化反应是一种常用的化学方法,通过添加催化剂,可以大大提高反应速率,降低能量消耗,并且可以选择性地产生特定的产物。
多孔材料,作为一种特殊的材料,具有具有高比表面积、可调控孔径和大量的孔道等优势,广泛应用于催化反应领域。
在本文中,将重点介绍多孔材料在催化反应中的应用。
首先,多孔材料可作为催化剂的载体。
催化剂的载体是指将活性物质固定在固体表面或内部的材料,用于提供支撑和稳定。
多孔材料具有高比表面积和大量的孔道结构,可以承载更多的活性物质,从而增加催化剂的活性。
例如,金属氧化物纳米颗粒可以被负载在二氧化硅等多孔材料上,并用于氧化还原反应,如催化氧化苯酚为苯醌。
另外,由于多孔材料的孔径可以调控,可以根据反应需求选择不同孔径的载体,使催化剂具有更好的选择性和活性。
其次,多孔材料可以作为反应物的分离和传递介质。
在某些反应过程中,需要将不同反应物分隔开来,以防止它们之间的相互作用。
多孔材料的孔道结构能够有效分隔反应物,并提供通道以实现反应物之间的传递。
例如,在有机合成中,有时需要将两个不同的化合物分隔开来,通过多孔材料的作用,可以实现反应物的分子间隔离,并减少不必要的副反应。
同时,多孔材料还可用于催化剂的改性。
催化剂的改性是指通过在催化剂内部或表面引入特定的功能基团或金属离子等,改变催化剂的性质和活性。
多孔材料作为催化剂的载体,可以通过控制多孔结构和表面性质,实现对催化剂的改性。
例如,通过控制多孔材料表面氧、羟基等官能团的含量,可以增加催化剂与反应物之间的相互作用力,从而提高催化活性和选择性。
此外,多孔材料还可以用于催化反应的催化剂的再生。
在催化反应过程中,催化剂会受到热、中毒物质等的影响,导致活性下降或失活。
多孔材料可用于催化剂的再生,通过将失活的催化剂置于多孔材料中,利用多孔材料的吸附和扩散性能,将中毒物质从催化剂中去除,恢复催化剂的活性。
这为实现催化剂的高效重复使用提供了新的途径。
多孔金属材料的制备方法及应用
多孔金属材料的制备方法及应用摘要:孔金属材料由于具有独特的综合性能,近年来逐渐成为研究热点。
科研水平的提高使一些多孔金属材料的孔隙率可以达到90%以上,但许多的多孔金属材料的制备仍然存在很大的挑战。
本文主要对多孔金属材料的几种制备方法和多孔金属材料的应用进行了介绍,并对今后的研究热点作了展望。
关键词:多孔金属材料;制备方法;应用引言:多孔金属材料是一类新型的金属材料,与传统金属材料和其他多孔材料相比在某些方面具有更佳的性能,且随着研究的发展,多孔金属材料的应用领域变得更加宽泛。
简要回顾了多孔金属材料的研究历史,重点综述了几种常用的多孔金属材料的制备方法及其适用性,并对多孔金属材料的应用领域作了介绍,最后展望了多孔金属材料的研究趋势。
1多孔金属材料的制备工艺铝合金在工业上广泛用于制造金属泡沫。
除了铝之外,钛、铁、锌、铜等材料也在工业上得到了应用,但与铝相比,它们的存在率仍然很低。
不同的应用需求对多孔金属材料的孔隙率要求不同,根据多孔金属材料加工产生孔隙时的金属的物质状态(固态、液态、气态或电离态)对各种制备工艺进行分类:固相法、液相法、沉积法。
1.1固相法固相法制备多孔金属材料是对固相金属进行烧结,且在此过程中金属始终保持固态,此工艺方法包含的种类较多,较容易制备大块的材料,该方法操作简单,得到的金属孔隙率高、分辨率高、孔隙分布均匀,缺点是得到的多孔金属材料强度低,常用于制备的多孔金属材料有铝、钛、不锈钢、铜、钼等。
通常固相法常用的制备方法主要有粉末烧结法、粉末发泡法、氧化还原烧结法、空心球烧结法等。
1.2液相法液相法制备多孔金属材料是在液态金属中获得孔隙结构或者是熔化含有气体发泡剂预制体释放气体,气体扩散获得孔隙结构,以此获得多孔金属材料。
该方法的优点是操作简单、成本低、孔隙率高,但不太适用于熔点高的材质。
受液态金属粘度的影响,所得到的多孔金属材料孔隙结构不均匀,力学性能较差,多适用于制备铝合金、钢、铜、青铜、黄铜等多孔金属材料。
新型多孔材料在催化领域的应用
新型多孔材料在催化领域的应用近年来,随着科学技术的不断发展,新型多孔材料在催化领域的应用越来越受到人们的关注。
这些材料具有独特的微孔结构和特殊的表面性质,能够有效地调控化学反应的速率和选择性。
本文将通过具体的实例来探讨新型多孔材料在催化领域中的应用,并深入分析其在催化反应中的机理。
首先,让我们来认识一下什么是新型多孔材料。
新型多孔材料,是指在材料中有大量的小孔或者微孔的材料。
这些孔道具有很小的尺寸,通常在纳米级别。
常见的新型多孔材料包括金属有机框架(MOFs)、介孔材料、纳米孔材料等。
这些材料之所以在催化领域应用广泛,是因为它们具有高的比表面积和可调控的孔径尺寸。
其次,新型多孔材料在催化反应中的应用非常广泛。
以金属有机框架(MOFs)为例,它是由金属离子和有机配体组成的晶体材料,具有独特的多孔结构。
MOFs具有极高的比表面积和孔容,因此可以作为催化剂载体,用于吸附催化剂或者催化物质。
研究表明,将催化剂负载在MOFs上可以提高其催化活性和选择性。
比如,将金属纳米颗粒负载在MOFs上可以形成高效的催化剂,用于有机合成反应。
这是因为MOFs具有可调控的孔径和孔道结构,可以实现对反应物分子的分子筛效应。
此外,新型多孔材料还可以被用于催化反应的催化剂设计。
催化剂设计是催化领域的一个重要课题,通过设计新型的催化剂,可以提高催化反应的效率和选择性。
在这方面,新型多孔材料具有独特的优势。
例如,金属有机框架具有可调控的孔径和孔道结构,可以通过设计合适的有机配体来实现对催化剂的调控。
另外,介孔材料具有大的孔径和孔容,可以用来控制催化反应的扩散和传质过程。
因此,通过合理设计多孔材料,可以实现对催化反应过程的精确控制。
最后,让我们来分析一下新型多孔材料在催化反应中的机理。
新型多孔材料在催化反应中的作用机理主要包括两个方面:分子筛效应和催化剂调控。
分子筛效应是指催化剂中的孔道可以筛选分子的大小和形状,从而实现对反应物的选择性吸附和转化。
多孔金属材料的制备方法及应用研究论文
多孔金属材料的制备方法及应用研究论文多孔金属材料是一种具有开放孔隙结构的金属材料,其具有较大的比表面积、高孔隙度和良好的传质性能。
多孔金属材料广泛应用于催化剂载体、过滤器、吸附剂、能源储存等领域。
本文将介绍多孔金属材料的制备方法,并综述其在不同领域的应用研究。
多孔金属材料的制备方法主要包括模板法、重浸渗法和自由空间滴定法等。
模板法是最常用的制备方法之一,其原理是利用模板物质的模板效应,在金属材料表面形成孔隙结构。
常用的模板物质包括硅胶、陶瓷和树脂等。
重浸渗法是将金属固体与液态金属浸渍剂接触,经过多次渗透后,形成多孔金属材料。
自由空间滴定法是将金属粉末悬浮液滴入高温容器中,通过控制滴定速度和温度,使金属粉末形成多孔结构。
多孔金属材料在催化剂载体领域具有广泛应用。
催化剂载体是催化剂的重要组成部分,能够提高催化反应的效率和选择性。
多孔金属材料具有高比表面积和较大的孔隙度,能够提供充足的反应活性位点和更好的传质性能,从而增强催化剂的催化活性。
研究表明,多孔铝合金材料可用作高性能汽车尾气催化剂载体,其孔隙结构能够提供更大的表面积和更好的热稳定性,从而提高汽车尾气催化剂的催化效率。
多孔金属材料在过滤器领域也有广泛的应用。
传统的过滤器材料如滤纸和滤布往往无法有效过滤微米级颗粒物。
多孔金属材料具有较大的孔隙度和高效的固液分离能力,能够有效过滤微米级颗粒物和悬浊液体。
研究表明,多孔不锈钢材料可用于水处理过滤器,其优良的固液分离性能能够有效去除水中的悬浊物和颗粒物,从而提高水的质量。
此外,多孔金属材料还应用于吸附剂和能源储存等领域。
多孔金属材料可以通过控制孔隙结构和表面化学性质,具有高效吸附和储存气体、液体和离子的能力。
研究表明,多孔铜材料可用于储氢材料,其高比表面积和可调控的孔隙结构能够提高氢气的吸附容量和释放速率,从而提高储氢材料的储氢性能。
综上所述,多孔金属材料通过不同的制备方法可以获得不同孔隙结构和性能,具有广泛的应用前景。
MOF的制备、结构表征及催化应用
《催化化学》课程学习报告专题:MOF的制备、结构表征及催化应用学院名称:材料化学与化工学院学生姓名:学生学号:教师姓名:考核时间:MOF的制备、结构表征及催化应用摘要:金属有机骨架(MOFs)配位化合物作为一种新型有机无机杂化材料,具有高空隙率、孔道尺寸形状可调性、易于功能化等优点,在气体存储和分离、催化、载药、光电磁性材料等领域展示了良好的应用前景。
本文介绍了MOFS材料的常用制备方法和结构表征方法,综述了近年来MOFS材料在催化领域的应用,特别是以MOFS材料中骨架金属作为活性中心骨架有机配体作为活性中心和负载催化活性组分的催化反应,并对MOFS 材料的催化应用趋势做了展望,以期对MOFS 材料的催化性能有比较全面的认识。
关键词金属-有机骨架合成结构表征催化应用1.引言金属-有机骨架 (metal-organic frameworks,MOFs)材料是由金属离子与有机配体通过自组装过程杂化生成的一类具有周期性多维网状结构的多孔晶体材料,具有纳米级的骨架型规整的孔道结构,大的比表面积和孔隙率以及小的固体密度,在吸附、分离、催化等方面均表现出了优异的性能,已成为新材料领域的研究热点与前沿。
MOFs材料的出现可以追溯到1989年以Robson和 Hoskins为主要代表的工作,他们通过 4,4´,4´´,4´´´-四氰基苯基甲烷和正一价铜盐[Cu(CH3CN)4].BF4在硝基甲烷中反应,制备出了具有类似金刚石结构的三维网状配位聚合物[1],同时预测了该材料可能产生出比沸石分子筛更大的孔道和空穴,从此开始了MOFs材料的研究热潮。
但早期合成的MOFs材料的骨架和孔结构不够稳定,容易变形。
直到1995年Yaghi等合成出了具有稳定孔结构的MOFs[2],才使其具有了实用价值。
由于MOFs材料具有大的比表面积和规整的孔道结构,并且孔尺寸的可调控性强,骨架金属离子和有机配体易实现功能化,因此在催化研究、气体吸附、磁学性能、生物医学以及光电材料等领域得到了广泛应用。
MOF的制备结构表征及催化应用
《催化化学》课程学习报告专题:MOF的制备、结构表征及催化应用学院名称:材料化学与化工学院学生姓名:学生学号:教师姓名:考核时间:MOF的制备、结构表征及催化应用摘要:金属有机骨架(MOFs)配位化合物作为一种新型有机无机杂化材料,具有高空隙率、孔道尺寸形状可调性、易于功能化等优点,在气体存储和分离、催化、载药、光电磁性材料等领域展示了良好的应用前景。
本文介绍了MOFS材料的常用制备方法和结构表征方法,综述了近年来MOFS材料在催化领域的应用,特别是以MOFS材料中骨架金属作为活性中心骨架有机配体作为活性中心和负载催化活性组分的催化反应,并对MOFS 材料的催化应用趋势做了展望,以期对MOFS 材料的催化性能有比较全面的认识。
关键词金属-有机骨架合成结构表征催化应用1.引言金属-有机骨架 (metal-organic frameworks,MOFs)材料是由金属离子与有机配体通过自组装过程杂化生成的一类具有周期性多维网状结构的多孔晶体材料,具有纳米级的骨架型规整的孔道结构,大的比表面积和孔隙率以及小的固体密度,在吸附、分离、催化等方面均表现出了优异的性能,已成为新材料领域的研究热点与前沿。
MOFs材料的出现可以追溯到1989年以Robson和 Hoskins为主要代表的工作,他们通过 4,4′,4′′,4′′′-四氰基苯基甲烷和正一价铜盐[Cu(CH3CN)4].BF4在硝基甲烷中反应,制备出了具有类似金刚石结构的三维网状配位聚合物[1],同时预测了该材料可能产生出比沸石分子筛更大的孔道和空穴,从此开始了MOFs材料的研究热潮。
但早期合成的MOFs材料的骨架和孔结构不够稳定,容易变形。
直到1995年Yaghi等合成出了具有稳定孔结构的MOFs[2],才使其具有了实用价值。
由于MOFs材料具有大的比表面积和规整的孔道结构,并且孔尺寸的可调控性强,骨架金属离子和有机配体易实现功能化,因此在催化研究、气体吸附、磁学性能、生物医学以及光电材料等领域得到了广泛应用。
水凝胶_金属纳米粒子复合物的制备及其在催化反应中的应用_高友志
高分子凝胶是由溶剂和高分子三维网络所组成 的复合体系,介于液体和固体之间。水凝胶结构中 通常含有—OH,—NH2 ,—COOH 或—SO3 H 等极性 或亲水基团,这些极性基团能通过氢键和静电作用 等与水分子缔合,使凝胶吸附大量的水。形成水凝 胶的分子链之间可以通过共价键交联,或物理作用 ( 范德华力、氢键、分子链间的缠结等) 交联,还可以 通过金属离子与分子链上的功能基团之间的作用力 交联[1 ~ 3],其中化学交联的水凝胶结构最稳定。宏 观凝胶的孔尺寸相对比较大( > 50 nm) ,孔的尺寸 可以通过功能基团的种类或在制备凝胶过程中加入 交联剂的量来调节。与宏观凝胶不同,微凝胶中孔 的尺寸小的多(50 ~ 2 nm 或 < 2 nm)[4,5]。孔尺寸 的可调节性赋予了水凝胶良好的吸附和解吸附性 能,同时改变水凝胶中功能基团的种类能使其负载 多种功能物质( 如酶、金属粒子、药物等) ,从而扩大 水凝胶的应用范围。外界环境如温度、pH 值、溶剂、 盐浓度、光、电场和化学物质等发生微小的物理或化 学变化时,水 凝 胶 的 自 身 性 质 会 发 生 明 显 的 改 变。 由于其独特的环境响应性,在化学转换器、记忆元件 开关、传感器、人工器官、化学存储器、物质分离、调 光材料、酶和细胞的智能固定以及药物可控释放等 高新技术领域都有广泛研究与应用,引起越来越广 泛的关注和重视[6 ~ 9]。
金属纳米粒子具有独特的量子尺寸效应、体积 效应、表面界面效应及宏观量子隧道效应,已经广泛 用于催化剂、生物医药和传感器等领域的研究。纳 米粒子具有的性能是以其小尺度为基础的,但通常 较高的比表面能及很强的团聚趋势,使其作为催化 剂时催化活性和选择性大大降低,且反应结束后不 易分离而导致流失,造成环境污染。选择合适的金 属纳米粒子载体可有效解决这一问题。国内外的研
多孔材料的应用及发展
多孔材料的应用及发展摘要:本文综合介绍了多孔金属材料的应用,目的在于促进该材料性能结构的进一步改善,并获得更好的应用前景。
关键词: 多孔金属;应用;介绍1引言多孔金属由金属骨架及孔隙所组成,具有金属材料的可焊性等基本的金属属性。
相对于致密金属材料,多孔金属的显著特征是其内部具有大量的孔隙。
而大量的内部孔隙又使多孔金属材料具有诸多优异的特性,如比重小、比表面大、能量吸收性好、导热率低(闭孔体)、换热散热能力高(通孔体)、吸声性好(通孔体)、渗透性优(通孔体)、电磁波吸收性好(通孔体)、阻焰、耐热耐火、抗热震、气敏(一些多孔金属对某些气体十分敏感)、能再生、加工性好,等等。
多孔有机高分子材料强度低且不耐高温,多孔陶瓷则质脆且不抗热震,因此,多孔金属材料被广泛应用于航空航天、原子能、电化学、石油化工、冶金、机械、医药、环保、建筑等行业的分离、过滤、布气、催化、电化学过程、消音、吸震、屏蔽、热交换等工艺过程中,制作过滤器、催化剂及催化剂载体、多孔电极、能量吸收器、消音器、减震缓冲器、电磁屏蔽器件、电磁兼容器件、换热器和阻燃器,等等[1~7] 。
另外,还可制作多种的复合材料和填充材料。
多孔金属既可作为许多场合的功能材料,也可作为一些场合的结构材料,而一般情况下它兼有功能和结构双重作用,是一种性能优异的多用工程材料。
本文以文献[1~7]为基础分别介绍该材料的不同用途。
2过滤与分离多孔金属具有优良的渗透性,是适合于制备多种过滤器的理想材料。
利用多孔金属的孔道对流体介质中固体粒子的阻留和捕集作用,将气体或液体进行过滤与分离,从而达到介质的净化或分离作用。
多孔金属过滤器可用于从液体(如石油、汽油、致冷剂、聚合物熔体和悬浮液等)或空气和其它气流中滤掉固体颗粒。
使用最广的金属过滤器材料是多孔青铜和多孔不锈钢。
多孔金属材料用作分离媒介,如从水中分离出油、从冷冻剂中分离水。
还可作充气液体或液体分布CO 2 等的扩散媒介。
纳米贵金属催化剂的制备及其在催化加氢中的应用
Au/TiO STEM
0.09mgAu /ml 甲苯 溶液担载
2
的
(a)Au粒优先分散的位置
(b)Au粒分散后形成的表面晶相
图
0.39mgAu/
ml 甲苯溶
液担载
(a)Au粒优先分散的位置
E. Blomsma. J. Catal. 1996, 159:323
(b)Au粒分散后形成的表面晶相
负载型纳米贵金属催化剂的制备
多相催化 均相催化
多相催化在工业应用中占 主要地位,尤其在化工、 能源、材料工业和环保领 域占举足轻重的地位。
环境可持续发展
(多相)纳米贵金属催化剂
对多相催化而言,吸附是发生催化转化的前提。纳米贵金属催化剂具有发 达的表面,有比常规材料优越得多的吸附潜力。其催化性能是由以下结构 特点决定。
(i) 贵金属表面原子是周期性排列的端点,至少有一个配位不饱和位, 即悬挂键 ,表面原子配位不饱和度较高这使催化剂有较强的活 化反应物分子的能力。
(a)采用混合保护膜,Au粒子5.5nm, 3.6%载量
(b)采用单组分保护膜,Au粒子8.1nm, 4.0%载量
Au/TiO2的TEM图
在焙烧除去有机保护分子时,金属粒子会从载体体相迁移到载体表面,并有一定程 度烧结和具部长大,如Au粒子会从2nm增长到6nm。
嵌入型纳米贵金属催化剂的制备
(i) 模板剂法—— 采用无机分子筛类多孔性物质为模板剂,以合成贵金属
Formation of Nanoparticles Yijun Jiang and Qiuming Gao J. AM. CHEM. SOC. 2006, 128, 716-717
催化剂表征
Figure (a) The low-angle XRD patterns of G4-PAMAM-SBA-15 (1)and Pd(0)-G4-PAMAMSBA-15 (2) with the insert of the wide-angle XRD pattern of Pd(0)-G4-PAMAM-SBA-15. (b)HRTEM image of Pd(0)-G4-PAMAM-SBA-15.
金属多孔材料的制备及其应用
金属多孔材料的制备及其应用金属多孔材料是一种具有广泛应用前景的材料。
随着人们对环境、能源等问题的关注与日俱增,金属多孔材料因其独特的孔隙结构、高表面积、优异的机械性能等特点,正在成为材料科学领域研究的热点。
一、金属多孔材料的制备1.1 自组装法自组装法是一种简单、低成本、易于操作的制备多孔材料的方法。
其主要原理是利用自组装分子的特性,在表面活性剂、聚合物等有机分子的调控下,使金属或金属氧化物自组装成多孔结构。
例如,通过自组装法制备的多孔铜材料,在电催化氧还原反应、吸附气体、传感器、催化剂等领域具有广泛的应用。
1.2 模板法模板法是通过利用各种模板,在其表面及内部涂覆金属或金属氧化物,并在模板去除后得到多孔材料的一种方法。
常用的模板包括有机高分子、硅藻土、介孔二氧化硅等。
通过调控模板的形貌和结构,可以得到不同形状和孔径大小的多孔材料。
例如,利用硅藻土为模板制备的铝氧化物多孔材料,具有优异的催化性能和吸附性能。
1.3 电化学氧化还原法电化学氧化还原法是一种利用电化学反应在电极表面或液相中形成多孔材料的方法。
该方法制备的材料具有良好的可控性和可重复性。
例如,利用电化学氧化还原法制备的钼纳米线多孔材料,在电催化和电化学吸附领域有着广泛的应用。
二、金属多孔材料的应用2.1 催化剂金属多孔材料作为催化剂载体具有较大的比表面积和孔隙体积,可以提高催化反应的效率和选择性。
例如,利用模板法制备的介孔硅藻土载体负载金属催化剂,在有机物合成、石油加工等领域有着重要应用。
2.2 气体分离金属多孔材料的孔径大小和孔隙结构可以被调控,可以用于气体的分离。
例如,通过调节多孔铝材料的孔径和孔隙结构,可以实现对不同大小分子的分离,具有应用前景。
2.3 生物医学材料金属多孔材料可以被用作生物医学材料的载体,其中具有重要性的应用是利用多孔金属材料制备骨修复材料。
例如,利用钛多孔材料可以促进骨细胞的增殖和成骨,具有广泛的应用前景。
2.4 电化学储能金属多孔材料作为电极增材材料,可以提高电化学储能器件的性能。
泡沫金属的制备_性能及其在催化反应中的应用
催化剂与载体制备收稿日期:2006203203;修回日期:2006207210 基金项目:上海市科委纳米技术专项基金(0452nm017)作者简介:胡 海(1976-),男,湖北省武汉市人,在读博士研究生,从事光触媒材料以及光催化降解污染物的研究。
通讯联系人:上官文峰,教授,博士生导师。
E 2mail :shangguan @泡沫金属的制备、性能及其在催化反应中的应用胡 海,肖文浚,上官文峰(上海交通大学燃烧与环境技术研究中心,上海200030)摘 要:泡沫金属是一种具有独特结构和性能的新型功能材料。
介绍了泡沫金属材料常见的制备工艺(发泡法,烧结法,铸造法,沉积法)、物理性能和在催化反应中的应用(载体和催化剂),并对泡沫金属材料在应用中存在的问题和前景作了评述。
关键词:泡沫金属;制备;催化剂中图分类号:T B303;T B34;TQ426.94 文献标识码:A 文章编号:100821143(2006)1020055204Preparation and properties of foam metal and its application in catalysisHU Hai ,X IA O Wen 2j un ,S HA N GGUA N Wen 2f eng(Research Center for Combustion and Environment Technology ,Shanghai Jiaotong University ,Shanghai 200030,China )Abstract :Foam metal ,as a new 2type functional material ,has unique characteristics and structure.The preparation techniques ,properties of foam metal and its application in catalytic reaction were re 2viewed.Preparation techniques for foam metal include forming ,sintering ,casting and deposition.Foam metal can be used as both carrier and catalyst.K ey w ords :foam metal ;preparation ;catalystC LC numb er :T B303;T B34;TQ426.94 Docum ent cod e :A A rticle ID :100821143(2006)1020055204 泡沫金属是一种结构内部含有大量孔隙的、功能与结构一体化的新型功能材料,常见的有泡沫镍、泡沫铜、泡沫铁以及泡沫合金等。
金属有机框架在催化剂设计与合成中的应用
金属有机框架在催化剂设计与合成中的应用金属有机框架(MOF)作为一种应用广泛的材料,在催化剂设计与合成方面发挥了重要的作用。
本文将探讨金属有机框架在催化剂设计与合成中的应用,并就其优势与挑战进行分析。
一、金属有机框架简介金属有机框架是由金属离子或金属团簇与有机配体通过共价键或配位键连接而成的晶态材料。
这种复合材料具有高度可调性和多样性,并具有高比表面积、多孔性、稳定性好等特点,因此被广泛应用于催化剂设计与合成领域。
二、金属有机框架在催化剂设计中的应用1. 晶态催化剂设计金属有机框架可以作为载体材料用于催化剂的设计,其可调性和多样性使得催化剂的活性和选择性可以得到有效调控。
通过调节配位基团的种类和含量,可以实现对催化剂表面酸碱性质的调控,进而影响反应的活性。
此外,MOF材料的多孔性可以提供较大的反应表面积,使催化剂的反应效果更好。
2. 催化反应的分子筛效应金属有机框架的多孔结构可以通过分子筛效应选择性地吸附催化反应中的底物,从而提高催化反应的选择性和产率。
这种分子筛效应可以使得底物在催化剂表面上有序排列,并减少副反应的发生。
三、金属有机框架在催化剂合成中的应用1. 基底催化剂的制备金属有机框架可以作为催化剂的基底材料,通过合成特定的有机配体和金属离子,可以制备出具有高效催化性能的催化剂。
这些催化剂具有高度可控性,并可以通过改变金属离子和配体的种类实现对催化剂活性和选择性的调控。
2. 金属纳米粒子的控制合成金属有机框架可以被用作模板,在其内部合成和成核金属纳米粒子。
通过调控MOF的结构和组分,可以实现对金属纳米粒子形状和大小的精确控制,从而影响催化反应的性能。
四、金属有机框架在催化剂设计与合成中的优势与挑战1. 优势金属有机框架具有高度可调性和多样性,可以满足不同反应的要求。
其多孔性结构能够提供较大的反应表面积,提高催化反应的效率。
此外,MOF材料还具有较高的稳定性和重复使用性,有助于减少催化剂的使用成本。
新型多孔材料的制备及应用
新型多孔材料的制备及应用随着科技的不断进步和创新,新型多孔材料的制备和应用得到了越来越广泛的应用。
而这些新型多孔材料不仅仅可以用于环境保护、催化剂等领域,还可以用于生物医学、电化学、电子器件等诸多领域。
本文将从制备方法和应用领域两个方面着手,简要介绍新型多孔材料的制备及应用。
一、制备方法新型多孔材料的制备方法通常分为物理法和化学法两种。
物理法制备多孔材料通常采用放电法、溶液晶体法、蒸发法等方法。
其中放电法是利用电弧放电的能量,使金属表面产生高热、高压、高速等效应,使物质熔化、蒸发,并在周围凝结形成多孔膜。
而溶液晶体法则是通过让分子等离子体被注入到液晶胆甾中来制备多孔材料。
另外,蒸发法则是将溶液进行蒸发,来制备多孔材料。
化学法制备多孔材料通常采用水热法、溶胶凝胶法、氧化石墨烯法等方法。
其中,水热法是通过将反应物在高温、高压和水的条件下进行反应,同时通过水的溶解作用形成多孔结构。
而溶胶凝胶法是通过将溶液中的金属离子或有机化合物转化成固态物质的过程,形成多孔结构。
另外,氧化石墨烯法则是通过在石墨烯上进行氧化,使其表面形成丰富的活性基团,进而制备多孔材料。
二、应用领域新型多孔材料的应用领域非常广泛,包括了环境保护、催化剂、电化学、生物医学等领域。
在环境保护领域,新型多孔材料可以作为吸附剂和分离剂,用于治理废水、废气等环境问题。
例如,活性炭、多孔材料等材料可以用于污水的净化和气体吸附。
在催化剂领域,新型多孔材料可以作为催化剂的载体,用于催化反应。
例如,金属有机多孔材料可以用于酸碱、氧化还原等催化反应。
在电化学领域,新型多孔材料可以用于电池、电容器等电子器件的制备。
例如,锂离子电池的正极材料可以采用多孔材料,同时在电容器的电极中,多孔材料可以提高电极的表面积,增加电容量。
在生物医学领域,新型多孔材料可以被运用于药物传递。
例如,通过将药物载入多孔材料中,形成纳米粒子、纳米管等的形式,以在人体中释放药物,提高治疗效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
溶胶-凝胶法填充多孔材料
M+ 混合陈化 焙烧
Sol-gel
Au/SBA-15
• 多孔材料的晶化与金属粒子的形成同时进行 • 金属含量高时会影响材料的形成,只适用于低含量的填充 • 金属颗粒同时存在于孔道内及孔壁间
嫁接法填充多孔材料
外表面硅烷化 内表面嫁接-NH2,-SH
-NH2
-NH2
金属前体 后处理
-NH2
多孔硅表面的-OH基团与-NH2、-SOH等基团发生反应,使表 面生成一定数量的-SH、-NH基团,然后加入的金属前驱体与 这些基团发生化学作用而强烈吸附,将金属前体还原后就可 以得到填充于孔道内的纳米粒子。
研磨法填充多孔材料
cobalt oxide in silica FDU-12
mesoporous Co3O4 FDU-12
mesoporous Co3O4 SBA-16
Co(NO3)2▪6H2O的融点为55oC,低于其分解温度(77oC) 研磨过程中及后续热处理使 Co(NO3)2▪6H2O 发生融化,然后在毛细作用力下进入 FDU 孔内 加热使Co(NO3)2▪6H2O分解生成Co2O3
Seminar II
多孔材料的金属粒子填充及催 化中的应用
王传付 导师:包信和
纳米金属粒子填充方法
后处理法:浸渍、嫁接、CVD、研磨
共合成法: 溶胶-凝胶法
浸渍法填充多孔材料低担载量来自还原或热解高担载量
• 当多孔材料与溶液接触时,由于表面张力作用而产生的毛细 管压力,使活性组分(金属前驱体,助剂等)以盐溶液形式 进入毛细管内部,然后盐溶液在孔表面上吸附,通过后续焙 烧还原等步骤将金属粒子填充在多孔材料孔内部。
[10] B. F. G. Johnson, Top. Catal. 2003, 24, 147. [11] L. Zhang, G. C. Papaefthymiou, J. Y. Ying, J. Phys. Chem. B 2001, 105, 7414. [12] Y. C. Wu, L. Zhang, G. H. Li, C. H. Liang, X. M. Huang, Y. Zhang, G. M. Song, J. H. Jia, Z. X. Chen, Mater. Res. Bull. 2001, 36, 253. [13] M. H. Huang, A. Choudrey, P. D. Yang, Chem. Commun. 2000, 1063. [14] Y. J. Han, J. M. Kim, G. D. Stucky, Chem. Mater. 2000, 12, 2068. [15] R. S. Mulukutla, K. Asakura, T. Kogure, S. Namba, Y. Iwasawa, Phys. Chem. Chem. Phys. 1999, 1, 2027. [16] C. P. Mehnert, D. W. Weaver, J. Y. Ying, J. Am. Chem. Soc. 1998, 120, 12289. [17] A. Fukuoka, N. Higashimoto, Y. Sakamoto, S. Inagaki, Y. Fukushima, M. Ichikawa, Microp. Mesop. Mater. 2001, 48, 171.
Au/SBA-15催化苯乙烯环氧化
Y. Jin et al. Microporous Mesoporous Mater. 2008, 111, 569
Rh-MCM-41应用于手性合成
B.F.G. Johnson. Topics in Catal, 2003, 24, 147
参考文献
[1] C. Kosanovic, S. Bosnar, B. Subotic, V. Svetlicic, T. Misic, G. Draizic, K. Havancsak, Microporous Mesoporous Mater. 2008, 110, 177. [2] W. B. Yue, A. H. Hill, A. Harrison, W. Z. Zhou, Chemical Communications 2007, 2518. [3] E. J. Garcia, A. J. Hart, B. L. Wardle, A. H. Slocum, Nanotechnology 2007, 18. [4] Y. M. Wang, Z. Y. Wu, H. J. Wang, J. H. Zhu, Adv. Funct. Mater. 2006, 16, 2374. [5] J. M. Sun, D. Ma, H. Zhang, X. M. Liu, X. W. Han, X. H. Bao, G. Weinberg, N. Pfander, D. S. Su, J. Am. Chem. Soc. 2006, 128, 15756. [6]H. Song, R. M. Rioux, J. D. Hoefelmeyer, R. Komor, K. Niesz, M. Grass, P. D. Yang, G. A. Somorjai, J. Am. Chem. Soc. 2006, 128, 3027. [7] L. H. Guan, Z. J. Shi, M. X. Li, Z. N. Gu, Carbon 2005, 43, 2780. [8] M. Schreier, J. R. Regalbuto, J Catal 2004, 225, 190. [9] J. Zhu, Z. Konya, V. F. Puntes, I. Kiricsi, C. X. Miao, J. W. Ager, A. P. Alivisatos, G. A. Somorjai, Langmuir 2003, 19, 4396.
优点: (1)可以制得高 分散的金属纳米粒 子,在高温下具有 较好的热稳定性 (2)通过外表面 钝化,可以使纳米 粒子选择性地填充 在孔道内部
HRSEM 8%Ag/SBA-15
TEM 8%Ag/SBA-15
限制条件:材料表 面 含 有 丰 富 的 -OH 等官能团,以利于 后续嫁接步骤,多 适用于硅基材料
Pt particles/FSM-16
Pt-Rh wire/FSM-16
Pt-Rh particles/FSM-16
Pt/SBA-15催化乙烯加氢
Pt/SBA-15 1.7nm Pt/SBA-15 2.9nm
Pt/SBA-15 3.6nm
Pt/SBA-15 7.1nm
H. Song et al., J. Am. Chem. Soc., 2006, 128, 3027
嫁接法填充纳米粒子过程 中的Si-OH
浸渍过程中材料表面等电点
纳米粒子复合材料催化反应
受孔尺寸的限制,纳米粒子在高温下可以 保持较小的尺寸,暴露出较多的活性中心, 从而显示出优异的催化性能。 孔的尺寸可以限制某些中间产物的生成, 从而影响反应途径,对某些特定反应具有 很高的选择性。
Pt-Rh/FSM-16用于丁烷氢解
为了使金属粒子选择性地在孔内均匀填充,通常需要在材料内外表面 进行化学修饰。
Mehnert CP,Weaver DW,Ying JY,J. Am. Chem. Soc. 1998,120:12289 L. Zhang, G. C. Papaefthymiou, J. Y. Ying, J. Phys. Chem. B 2001, 105, 7414
浸渍法填充多孔材料
优点: 简便易操作,适用于各类多 孔材料的低担载量填充。 缺点: (1)易团聚,形貌难以控制 (2)在较高的金属担载量时, 经常形成纳米线 (3)多孔材料的外表面也存在 大量纳米粒子
P. Yang et al., Chem. Commun. 2000, 1063–1064
W.B Yue, et al. Chem. Commun., 2007, 2518
表面化学性质在填充过程中的角色?
CuO filled mesoporous materials
NiO-in-SBA15
研磨法填充纳米粒子过程中Si-OH的作用
Y. M. Wang, Z. Y. Wu, H. J. Wang, J. H. Zhu, Adv. Funct. Mater. 2006, 16, 2374
化学气相沉积(CVD)法填充多孔材料
二茂铁填充SWCNTs
Fe(CO)5填充MCM-41
气体比液体更容易进入多孔材料的内表面 使用挥发性的金属有机化合物如Fe(CO)x等
L. H. Guan, Z. J. Shi, M. X. Li, Z. N. Gu, Carbon 2005, 43: 2780 L. Zhang, Papaefthymiou C, J.Y.Ying , J Phys Chem B 2001, 105:7414
G. A. Somorjai et al., Langmuir 2003, 19, 4396
Ni-AlMCM-41
Mulukutla RS, Asakura K, et al. Phys Chem Chem Phys,1999,1:2027 Wu Y, Zhang L, et al. Mater Res Bull, 2001,36:253
浸渍法填充影响因素
纳米孔能否被填充取决 于孔径、固-液间表面 张力、接触角大小
x p1 p2
2 cos r Δp 0,可以填充 Δp p1 p2 Δp 0,不可以填充
填充效果与液体的粘度、 表面张力、孔长度、孔 径有关
2 x 2 t r
E. Dujardin, T. W. Ebbesen, et al., Scinece, 1994, 265,1850