微波技术与天线 第5章

合集下载

《微波技术与天线》第五章微波元件

《微波技术与天线》第五章微波元件

15
微波电抗性元件
波导元件的实现方法
谐振窗
0 2a' r (
a 2 b 2 )( ) a' b' ( 1, ) r1 r2 r b 2 1( ) b'
微波电抗性元件
传输线中的不均匀区域
指传输线中的结构、尺寸、参数发生突变的区域。 具有电容或电感的性质,可等效为电感或电容,即电 抗元件。 原理 在传输线的不均匀区域附近,电磁场比较复杂,可分 解为主模和多个高次模式的叠加,其中主模可以传输、 而高次模截止,只能分布在不均匀区附近。因此不均 匀区附近储存了高次模式的电磁场能量。 若储存的主要是磁场能量(在某区域磁场储能>电场 储能不均匀区域相当于一个储存磁能的电感。 若储存的主要是电场能量(在某区域电场储能>磁场 储能)不均匀区域相当于一个储存电能的电容。 8 3/26/2019
主要内容
微波电阻性元件 微波电抗性元件
波导元件的实现方法 微带元件的实现方法
衰减器 匹配负载 阻抗调配器和阻抗变换器 连接元件 分支元件 定向耦合器 功率分配器 3/26/2019
5
衰减器
微波电阻性元件
用来控制微波传输线中传输功率的装置。 通过对波的吸收、反射或截止来衰减微波能量。 主要应用 去耦 消除负载失配对信号源的影响。 调节微波源输出的功率电平。
10
微波电抗性元件
波导元件的实现方法
电容膜片 电容膜片并联电纳的相对值:
bC BC 4b d 2t b d ln(csc ) ( ) Y0 g 2b g d b
3/26/2019
11
微波电抗性元件
波导元件的实现方法
电感膜片 主模在膜片处有平行于膜片的电场,为满足膜片的边 界条件,需要反方向的电场来抵消,故产生的高次模 是TE模。 此高次模是截止模,在膜片附近储存的磁能大于电能, 相当于一个电感。 由于膜片起分流作用,故该膜片为并联电感。

微波技术与天线课程总结

微波技术与天线课程总结

1
《天线技术基础》要点
第二章 对称阵子 理解对称振子的概念、辐射场计算方法(叠加原理); 电流分布公式与各种不同长度对称振子的电流分布图象; 方向性函数表达通式与各种不同长度对称振子的方向图、方向性系数和有效 长度; 随振子长度的逐渐增大,其方向性系数、旁瓣电平和半功率宽度如何变化; 熟悉天线的辐射场幅度与辐射功率、方向性系数及距离的关系; 输入阻抗的计算思路和随振子长度的变化曲线。
2
《天线技术基础》要点
第三章 阵列天线的方向性 二元阵的方向性函数与方向图(会描点绘图); 方向图相乘定理与应用; 均匀直线阵的方向性函数,会画阵因子的方向图,明确阵因子参数(半功率 宽度、零点位置,旁瓣电平等)的计算思路; 侧射阵、端射阵和斜射阵的实现条件、特性差异与原因; 可见区的概念、栅瓣抑制条件; 掌握地面影响的处理方法(镜像原理处理各种方向放置的单个与多个天线) 。
4 8
并联混和支节)。
6
《微波技术基础》要点
第三章 规则波导理论
TE10 模的场结构、管壁电流分布;
波导的单模传输条件、传输特性参数、等效阻抗; 波导中填充介质与否,波导的传输特性参数的计算。
7
《微波技术基础》要点
第四章 其它形式的微波传输线 同轴线、带状线、微带的特性阻抗随结构参数的变化规律; 同轴线、带状线:主模(高次模)、横截面场结构; 微带:主模(高次模)、横截面场结构,等效介电常数; 耦合线:等效电路、奇偶模方法、特性阻抗。
8
《微波技术基础》要点
第五章 微波谐振腔 为什么微波中不能用 LC 回路作为谐振器? 微波谐振器与 LC 回路的异同点有哪些? 品质因数的概念及公式; 传输线型谐振器,谐振波长的概念与计算。
9
《微波技术基础》要点

自考 微波技术与天线02367 整理(科创学院)

自考 微波技术与天线02367 整理(科创学院)

第 1 章 电 磁 场 与 电 磁 波 的 基 本 原 理电 磁 场 的 基 本 方 程一、电磁场中的基本场矢量电磁场中的基本场矢量有四个:电场强度E,电位移矢量D,磁感应强度B 和磁场强度H 。

(一) 电场强度E 场中某点的电场强度E 定义为单位正电荷在该点所受的力,即 : 电场强度E 的单位为伏/米(V/m)。

(二) 电位移矢量D如果电解质中存在电场,则电介质中分子将被极化,极化的程度用极化强度P 来表示。

此时电介质中的电场必须用电位移矢量D 来描写。

它定义为 : 在SI 单位制中,D 的单位为库仑/米2(C/m2)。

对于线性媒质中某点的电极化强度P 正比于该点的电场强度E 。

在各向同性媒质中某点的P 和E 方向相同,即 : 故 ,式中ε=ε0(1+χe)称为介质的介电常数,而εr=1+χe 称为介质的相对介电常数。

(三) 磁感应强度B磁感应强度B 是描写磁场性质的基本物理量。

它表示运动电荷在磁场中某点受洛仑兹力的大小。

磁感应强度B 定义为: (四) 磁场强度H如果磁介质中有磁场,则磁介质被磁化。

描写磁介质磁化的程度用磁化强度M 来表 示。

此时磁介质中的磁场必须引入磁场强度H 来描写,它定义为: M 和H 的单位为安培/米 (A/m)。

在各向同性媒质中M 和H 方向相同。

即有: 故 B=μ0(H+M)=μ0(1+χm)H=μ0μrH=μH 。

式中χm 称为媒质的磁极化率,它是一个没有量纲的纯数。

μ=μ0(1+χm)称为媒质的磁导率。

μr=1+χm 称为相对磁导率。

二、全电流定律式中Jc 和Jd 分别为传导电流密度和位移电流密度,ic 和id 分别为传导电流和位移电流。

三、电磁感应定律感应电场沿着任意的封闭曲线的积分应等于感应电势,用数学式子表示即为 :由此得出一个结论:随时间变化的磁场会产生电场,而且磁通量的时间变化率愈大,则感应电动势愈大、电场愈强;反之则愈弱。

同时,穿过一个曲面S 的磁通量为:F E q =0D E P ε=+0e P x Eε=0000(1)e e r D E x E x E E E εεεεεε=+=+==F qv B=⨯0B H M μ=-m M Hχ=()()D e c l e d l Sc Sd H dl i i i dt H dl J J dS dD J dS dtφ===+=+=+⎰⎰⎰⎰ ml d e E dL dtφ==-⎰ m S l SB dS d E dL B dS dt φ==-⎰⎰⎰四、高斯定律 在普通物理中讨论了静电场的高斯定律,即: 式中V 是封闭曲面S 所包围的体积,∑q 为封闭曲面S 所包围的自由电荷电量的代数和,ρ为S 曲面所包围的自由电荷的体密度。

微波技术与天线复习知识要点

微波技术与天线复习知识要点

《微波技术与天线》复习知识要点绪论●微波的定义: 微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。

●微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~0.1mm●微波的特点 (要结合实际应用):似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析)第一章均匀传输线理论●均匀无耗传输线的输入阻抗(2个特性)定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关.两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in(z)= Z in(z+λ/2)2、λ/4变换性: Z in(z)- Z in(z+λ/4)=Z02证明题:(作业题)●均匀无耗传输线的三种传输状态(要会判断)1.行波状态:无反射的传输状态▪匹配负载:负载阻抗等于传输线的特性阻抗▪沿线电压和电流振幅不变▪电压和电流在任意点上同相2.纯驻波状态:全反射状态▪负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数●传输线的三类匹配状态(知道概念)▪负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波.▪源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。

此时,信号源端无反射.▪共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。

共轭匹配的目的就是使负载得到最大功率.●传输线的阻抗匹配(λ/4阻抗变换)(P15和P17)●阻抗圆图的应用(*与实验结合)史密斯圆图是用来分析传输线匹配问题的有效方法。

1.反射系数圆图:Γ(z)=|Γ1|e j(Φ1—2βz)= |Γ1|e jΦΦ1为终端反射系数的幅度,Φ=Φ1—2βz是z处反射系数的幅角.反射系数圆图中任一点与圆心的连线的长度就是与该点相应的传输线上某点处的反射系数的大小。

天津大学李媛微波技术与天线-第五章

天津大学李媛微波技术与天线-第五章

9
5.2 连接元件和终端元件
二、终端元件
1.匹配负载:吸收全部入射波能量而无反射波。 作用:接在传输线的终端,尽量吸收全部入射功率,保证传输线的终端无反射,其驻 波比在 1.05 左右 ~1.1 左右。 工作原理:采用高阻衰减材料、吸波材料,吸收入射的电磁波。 特点:吸波材料与空气的界面应做成渐变式过渡,减小反射;高功率匹配负载需要散 热装置,将吸收的电磁能转化成的热能散发出去。
喇叭天线
抛物面天线
15
5.2 连接元件和终端元件
三、阻抗匹配元件
定义:将导行波进行阻抗匹配。 作用:消除反射,提高传输效率,改善系统稳定性。
螺钉调配器 阶梯阻抗变换器 渐变型阻抗变换器
5.4 分支微波元件
一、分支器
定义:把一路电磁能量分为两路或多路;或将多路电磁能量相加或相减。
+ -
17
5.4 分支微波元件
2.短路负载(短路器):不吸收入射波任何能量而使其产生全反射。 作用:提供尽量大的反射系数。
固定式—金属片 移动式—短路活塞 接触式
扼流式
14
5.2 连接元件和终端元件
3.辐射终端:将电磁波能量辐射至空间。 作用:能量尽量辐射出去,尽量减小终端反射。 波导喇叭天线
E面喇叭
H面喇叭
金字塔形喇叭
圆形喇叭
21
5.4 分支微波元件
2、波导H-T分支
1
1
2
3 并联支路
3
2
1
jX
2
22
5.4 分支微波元件
能量分配功能 1
3
1 3
1 3
2
3臂输入时,从1、2臂等幅、同相输出;
3臂自身有反射,但若在该分支波导加入匹

微波技术与天线

微波技术与天线

课程名称:微波技术与天线课程代码:02367理论第一部分课程性质与目标一、课程性质与特点微波技术与天线是电子与信息工程专业、通信技术专业的一门专业基础课;该课程研究的基本内容是电磁场的基础理论、导行电磁波和导模概念、各个导行波场的求解方法、传输线的基本理论和计算方法、微波网络基础与器件、天线的基本概念、基本理论及天线的基本结构并且与现代通信紧密相关的新技术;二、课程目标与基本要求通过本课程的学习,可以使学生掌握微波与天线的基本概念、基本理论和基本分析方法;并在此基础上,学会利用所学知识去解决微波与天线领域的工程实际问题,为今后从事微波与天线研究和工程设计工作打下良好的基础;三、与本专业其他课程的关系本课程的前导课程是高等数学、电路分析基础、数学物理方法、电磁场理论;是无线通信技术的基础课程;第二部分考核内容与考核目标第一章场论与静态电磁场一、学习目地与要求本章主要研究静态电磁场的基本规律和分析方法;通过本章的学习,使学生能够理解电荷与电流密度的概念,理解并掌握电流连续性方程;理解并掌握静电场和恒定磁场的基础—库仑定律和安培力定律,牢固建立静电场和恒定磁场的概念,并能根据不同电荷分布和电流分布的相关电磁场强度计算表达式,计算一些典型电荷分布和电流分布的电场强度和磁感应强;牢固掌握静电场和恒定磁场的基本方程 ,深刻理解静电场和恒定磁场的基本性质;深刻理解电位和磁位的物理意义,掌握电位与电场强度、磁位与磁感应强度的关系;了解电介质极化和磁介质磁化的物理过程;二、考核知识点与考核目标(一)场论一般识记:矢量运算中的相关规则及矢量恒等式理解:标量场与矢量场的概念、标量场的等值面和矢量场的矢量线、矢量场的散度与旋度、标量场的梯度;应用:应学会应用矢量分析这一重要数学工具去研究电磁场在空间的分布和变化规律;(二)静电场次重点识记:电荷与电荷密度、电场强度、均匀介质中的电场理解:、电场强度的相关计算公式、库仑定律应用:用静电场的基本方程高斯定律求解静电场、计算点电荷系统和一些连续分布电荷系统的电位(三)稳恒电流场一般识记:电流密度、欧姆定律、焦耳定律的微分形式理解:、电荷守恒定律、稳恒电流场的基本方程四恒定磁场次重点识记:磁感应强度、介质的磁化理解:稳恒磁场的基本方程、矢量磁位、磁介质中的安培定律应用:运用安培环路定律求解具有一定对称性分布的磁场、利用矢量磁位求解一些简单的磁场分布问题第二章电磁波原理一、学习目地与要求本章主要讨论了时变电磁场的普遍规律、电场和磁场在交替变化的过程中所形成的电磁波的相关特性,并重点讲述了均匀平面电磁波在无界空间的传播特性和在分界面上的反射和透射特性;通过本章的学习,要求学生们必须牢固掌握麦克斯韦方程组的积分形式、微分形式,深刻理解其物理意义;必须正确理解和使用边界条件、深刻理解坡印廷矢量的物理意义并能用其分析计算电磁能量的传输情况;掌握电磁场的波动方程以及理解矢量位和标量位的概念和满足的相应方程;深刻理解和掌握均匀平面电磁波在无界理想介质中的传播特性,理解描述传播特性的参量的物理意义;掌握三种极化方式的产生条件;熟练掌握平面电磁波对理想导体和理想介质垂直入射时的分析方法和过程;理解平面电磁波向理想导体界面的斜入射;二、考核知识点与考核目标(一)时变电磁场重点识记:正弦电磁场的复数表示法、坡印廷定理、波动方程、唯一性定理理解:麦克斯韦方程、时变场的边界条件、坡印廷矢量应用:从麦氏方程出发,结合边界条件求解相关问题;(二)平面电磁波重点识记:沿任意方向传播的平面波理解:理想介质中的均匀平面波、波的极化应用:计算在自由空间传播的均匀平面波的电场强度或磁场强度;计算描述均匀平面波传播特性的参量如波矢量、波阻抗等;计算坡印廷矢量(三)平面电磁波的反射与折射次重点识记:垂直极化波、平行极化波、理解:垂直极化波入射、平行极化波入射、全透射与全反射(四)平面电磁波向理想导体界面的斜入射一般识记:垂直极化波斜入射、平行极化波斜入射第三章 导行电磁波一、 学习目地与要求本章主要讨论电磁波在导波系统中的传输问题;通过本章的学习,要求同学们必须掌握求解波导中场的重要方法—纵向场分析法,该方法中所涉及到的有关物理量,如传播常数、截止波数的物理意义必须深刻理解,计算公式必须牢固掌握;牢固掌握波沿规则波导传输的一般特性;熟知波沿不同形状的波导传输的相关特性,如矩形波导、圆形波导等,重点掌握矩形波导中的主要传输模式—10TE 模;必须了解同轴线中的传输模式,并能通过恰当选择尺寸的情况下,保证TEM 波的传输;了解波导激励与耦合的方式;二、考核知识点与考核目标(一)规则波导的分析方法和一般特性重点识记:波导中的波型—TE,TM 和TEM 波、波的速度—相速度,群速度、波导波长、波阻抗理解:不同模式的传输条件、截止现象和截止波长应用:能用纵向场法求解波导中电磁波的场解、应用相关公式求出波导中描述波传输特性的相关参量;(二)金属矩形波导的场解重点理解:矩形波导中不同波型的场解、矩形波导中的传输特性、波导的功率容量应用:计算不同模式的截止波长、能确定波导中能传输或截止的模式、熟悉单模传输条件、能绘出10TE 模式的场结构,壁电流分布、计算10TE 模式的相关传输参量(三)圆柱形波导次重点识记:圆波导中不同波型的场解理解:圆波导中的三个主要波型及其应用(四)同轴传输线次重点识记:、同轴线中的高模及尺寸选择理解:同轴线中的TEM 波(五)波导的激励与耦合一般识记:波导激励的方式及激励装置第四章 微波传输线的基本理论一、 学习目地与要求本章以双导线为例用路的分析方法主要讨论了微波传输线上的传输特性和电压电流的分布规律,同时推出了一种重要的计算工具—阻抗圆图,并将这一计算工具应用于工程实际中,如阻抗匹配技术;通过本章的学习,要求同学们必须深刻理解微波传输线的分布参数概念,了解传输线方程及其解以及传输线的工作特性参数;必须掌握传输线的三种不同工作状态的条件和特点;必须掌握用阻抗圆图来解决传输线应用中的计算问题;了解不同阻抗匹配器的匹配方法,学会在阻抗匹配时用阻抗圆图来进行计算;了解微波集成电路的主要组成部分—微带线二、考核知识点与考核目标(一)微波传输线的分析次重点识记:分布参数概念、传输线方程及其一般解理解:传输线方程的定解已知终端电压和电流、传输线的工作参数,如特性阻抗、反射系数、输入阻抗、传播常数、相速及波长;应用:应用相关公式计算传输线上的电压和电流、反射系数、输入阻抗(二)均匀无耗传输线的工作状态重点理解:形成行波状态、驻波状态、行驻波状态的条件和特点应用:求出不同工作状态下的电压、电流、输入阻抗、驻波比,并能绘制出相关图形;(三)阻抗圆图重点应用:在传输线问题的相关运算中使用阻抗圆图来进行计算;(四)传输线的阻抗匹配重点应用:会采用不同的阻抗匹配器进行传输线的阻抗匹配(五)微带传输线一般识记:对称微带和不对称微带的演变过程及结构、它们中所传输的波型第五章微波网络与元器件一、学习目地与要求本章主要讨论了微波等效电路的方法,这就是将本质上是场的问题转化为电路问题来处理的重要方法,这对处理横截面形状不均匀物体时极为有用,如微波元器件的分析和处理;通过本章的学习,要求同学们必须掌握如何将波导等效为双线传输线、不均匀体等效为网络,必须深刻理解模式电压和模式电流的意义;必须深刻理解网络参量的物理意义,并学会用任意网络参量去描述一个具体的微波电路;对于二端口网络的级联其重点放在A 参量, 其余参量中的S参量是微波网络所乐于采用的重要参量;微波网络理论的主要应用场合就是对各种微波元器件的分析和处理,对于各种不同的元器件,必须了解其功能及结构,熟知其工作原理及应用场合;二、考核知识点与考核目标(一)微波网络的等效重点理解:模式电压和模式电流的概念、模式矢量函数的归一化条件、归一化模式电压和归一化模式电流的概念;应用:根据相关条件求对应模式的模式电压和模式电流(二)双端口网络的阻抗矩阵、导纳矩阵及A矩阵A重点,Z、Y次重点识记: 阻抗矩阵、导纳矩阵的特点及性质理解:A参量的特点及性质以及不同电路的A矩阵应用:用A矩阵解决二端口网络的级联问题(三)双端口网络的散射矩阵重点理解:散射参量的物理意义、散射参量的性质应用:求解具体电路的S参量(四)多端口网络的散射矩阵一般识记:多口网络的特点及性质(五)微波元件一般识记:各元件的功能及工作原理第六章天线基本原理一、学习目地与要求本章主要讨论了天线产生辐射场的基本原理和各种不同天线的辐射性能;通过本章的学习,要求同学们必须掌握基本振子的辐射性能;必须深刻理解为了增加辐射电阻,提高天线的辐射能力所采用的振子天线的工作原理;必须了解为了获得较强的方向性和其它特性所采用的天线阵列的性能;必须熟知发射天线和接收天线的电参数;简单了解各种线天线和面天线的辐射性能和应用场合;二、考核知识点与考核目标(一)基本振子的辐射重点理解:电流的场解、电基本振子场解、电偶极子的近区场、电偶极子的远区场、磁基本振子;应用:分析和计算天线的辐射场、辐射方向性、半功率宽度、零功率宽度和副瓣电平以及辐射电阻;(二)振子天线重点理解:对称振子的场解、对称振子的方向性,辐射电阻,输入阻抗、发射天线的参数、天线的极化和天线的频带宽度应用:对称振子天线的辐射与电长度之间的关系,重点掌握半波振子天线的方向图(三)天线阵次重点理解: 直线阵列天线的方向图、波瓣宽度、旁瓣电平等的分析与计算(四)接收天线一般识记:接收天线的电参数(五)常用线天线一般识记:各种常用线天线的工作原理(六)面天线一般识记:抛物面天线和双反射面天线的工作原理说明:该项需编纲教师全面考量该课程内容,并对各章节都给出相应的知识层次重点、次重点、一般,在知识层次下对各知识点提出相应的能力层次要求识记、理解、应用;在分配知识层次和能力层次过程中,应注意以下问题:1、知识层次包括“重点、次重点、一般”三个层次,此三层次在命题中的固定比重分别为:65% ,25%,10%;要求编纲教师在分配知识层次时,除考虑知识点本身的重要性外,兼顾各层次在命题中的比例要求;避免出现某一层次知识点过少,不能满足命题中比例要求的情况;2、①能力层次包括“识记、理解、应用”三个层次,此三层次在命题中无固定比重要求,需编纲教师结合本课程的具体考核要求给出比例在“有关说明与实施要求”中给出比例,并在分配知识点能力层次时结合命题比例,做到大纲与试卷要求统一;②大纲中知识点的能力层次分配应全面涵盖三个能力层次,尽量不要缺少,但各章节不是必须全有三个层次的知识点,应根据各章实际情况具体安排;3、大纲中的考核知识点只具体到章,不需要将知识点细化到节;第三部分有关说明与实施要求一、考核的能力层次表述本大纲在考核目标中,按照“识记”、“理解”、“应用”三个能力层次规定其应达到的能力层次要求;各能力层次为递进等级关系,后者必须建立在前者的基础上,其含义是:识记:能知道有关的名词、概念、知识的含义,并能正确认识和表述,是低层次的要求;理解:在识记的基础上,能全面把握基本概念、基本原理、基本方法,能掌握有关概念、原理、方法的区别与联系,是较高层次的要求;应用:在理解的基础上,能运用基本概念、基本原理、基本方法联系学过的多个知识点分析和解决有关的理论问题和实际问题,是最高层次的要求;说明:省考委统一加以说明,编纲教师不需自行解释;二、教材1、指定教材电磁波工程国防科技大学出版社朱建清第一版2、参考教材微波技术与天线电子工业出版社殷际杰第一版说明:1、大纲中的指定教材为省自考委核准的指定教材,此次配合我省自考教材清理工作,部分课程教材已由主考校提出审核意见并要求调整为推荐教材,如编纲教师认为需更换指定教材或推荐教材不合理,需提交由主考校盖章的教材变更报告,经批准后,方可更改;2、所列教材均需写明:书名、出版社、作者、版本,参考教材可以没有;三、自学方法指导1、在开始阅读指定教材某一章之前,先翻阅大纲中有关这一章的考核知识点及对知识点的能力层次要求和考核目标,以便在阅读教材时做到心中有数,有的放矢;2、阅读教材时,要逐段细读,逐句推敲,集中精力,吃透每一个知识点,对基本概念必须深刻理解,对基本理论必须彻底弄清,对基本方法必须牢固掌握;3、在自学过程中,既要思考问题,也要做好阅读笔记,把教材中的基本概念、原理、方法等加以整理,这可从中加深对问题的认知、理解和记忆,以利于突出重点,并涵盖整个内容,可以不断提高自学能力;4、完成书后作业和适当的辅导练习是理解、消化和巩固所学知识,培养分析问题、解决问题及提高能力的重要环节,在做练习之前,应认真阅读教材,按考核目标所要求的不同层次,掌握教材内容,在练习过程中对所学知识进行合理的回顾与发挥,注重理论联系实际和具体问题具体分析,解题时应注意培养逻辑性,针对问题围绕相关知识点进行层次步骤分明的论述或推导,明确各层次步骤间的逻辑关系;说明:该项省考委统一说明,若编纲教师需做个别说明,该部分也可自行撰写;四、对社会助学的要求1、应熟知考试大纲对课程提出的总要求和各章的知识点;2、应掌握各知识点要求达到的能力层次,并深刻理解对各知识点的考核目标;3、辅导时,应以考试大纲为依据,指定的教材为基础,不要随意增删内容,以免与大纲脱节;4、辅导时,应对学习方法进行指导,宜提倡"认真阅读教材,刻苦钻研教材,主动争取帮助,依靠自己学通"的方法;5、辅导时,要注意突出重点,对考生提出的问题,不要有问即答,要积极启发引导;6、注意对应考者能力的培养,特别是自学能力的培养,要引导考生逐步学会独立学习,在自学过程中善于提出问题,分析问题,做出判断,解决问题;7、要使考生了解试题的难易与能力层次高低两者不完全是一回事,在各个能力层次中会存在着不同难度的试题;8说明:1、该项1-7省考委统一说明;若编纲教师需做个别说明,该部分也可自行撰写;2、该项中对助学学时的分配,需由编纲教师完成;高等教育自学考试规定每学分18学时,请教师按此规定分配学时;涉及实践考核的课程,实践与理论课时应分别列出;五、关于命题考试的若干规定包括能力层次比例、难易度比例、内容程度比例、题型、考试方法和考试时间等1、本大纲各章所提到的内容和考核目标都是考试内容;试题覆盖到章,适当突出重点;2、试卷中对不同能力层次的试题比例大致是:"识记"为 20 %、"理解"为 30 %、"应用"为 50%;3、试题难易程度应合理:易、较易、较难、难比例为2:3:3:2;4、每份试卷中,各类考核点所占比例约为:重点占65%,次重点占25%,一般占10%;5、试题类型一般分为:试题类型一般分为:填空题、简答题、证明题、计算题等;6、考试采用闭卷笔试,考试时间150分钟,采用百分制评分,60分合格;说明:1、该部分1、3、4、6项省考委统一规定,编纲教师不用自行填写;2、其中第2项“不同能力层次的试题比例”需编纲教师结合大纲中各章知识点能力层次分配给定;3、第5项“试题类型”,也需编纲教师结合命题要求给出;应尽量全面的涵盖该课程考试中可能出现的试题类型,避免出现考试中出现的题型在大纲中没有举出的情况;六、题型示例样题一、 填空题:1、 已知在自由空间中传播的电磁波的电场强度为y ez t E ˆ)2106cos(7.378ππ+⨯= v/m ,可见此波的波长为 ,自由空间的波数为 ,它是沿 方向传播的;2、终端接任意负载L Z 时,距终端为2λ整数倍的各处,其输入阻抗为 ;距终端为4λ奇数倍的各处其输入阻抗为 ;二、简答题:1、空气填充的矩形波导其单模传输条件是什么若兼顾功率容量,该条件有什么变化3、何谓简并圆波导中有几类简并试举例说明;三、证明题:在无耗传输线某选定参考面上测得sc in Z 接短路负载时、oc in Z 接开路负载时、in Z 接实际负载时,试证明负载阻抗四、计算题:1、有一个二端口网络,如下图,图中jx = j2 为归一化电抗,jb = j1为归一化电纳, 试求: 1散射参量矩阵[]S ;2插入衰减a L 用分贝表示及插入相移θ;4、已知某天线在E 平面上的方向函数为1画出其E 面方向图2计算其半功率波瓣宽度;。

《微波技术与天线》习题答案

《微波技术与天线》习题答案

Sb
0 e j
y
e
j
2
y
0
2
2
y
2
2
y
0
y 2 y
e
j
e j
0
S11
S22
y e j2 2 y
jc e j2 2Y0 jc
S12
S21
2 e j2 2 y
2Y0 e j2 2Y0 jc
12
【13】求图 4-24 所示电路中 T1 与T2 参考面所确定网络的归一化转移参量矩阵和归一化散射
终端反射系数为:
1
R1 R1
Z0 Z0
49 51
0.961
输入反射系数为:
in
1e j2l
49 0.961 51
根据传输线的 4 的阻抗变换性,输入端的阻抗为:
Z in
Z02 R1
2500
1.5
试证明无耗传输线上任意相距λ/4 的两点处的阻抗的乘积等于传输线特性阻抗的平方。
证明:令传输线上任意一点看进去的输入阻抗为
1 e j0.8 3
(0.5) 1 (二分之一波长重复性) 3
(0.25) 1 3
Zin (0.2)
Z0
Z1 Z0
jZ 0 jZ1
tan l tan l
29.43 23.79
Zin (0.25) 502 /100 25 (四分之一波长阻抗变换性)
Zin (0.5) 100
(二分之一波长重复性)
1
2YA YB
Y12 Y21
11
【8】求图 4-21 所示电路的散射矩阵。
【解】(返回) (a)
图 4-21 习题 8 图
Sa

2023年大学_微波技术与天线(王新稳著)课后答案下载

2023年大学_微波技术与天线(王新稳著)课后答案下载

2023年微波技术与天线(王新稳著)课后答案下载2023年微波技术与天线(王新稳著)课后答案下载绪篇电磁场理论概要第1章电磁场与电磁波的基本概念和规律1.1 电磁场的四个基本矢量1.1.1 电场强度E1.1.2 高斯(Gauss)定律1.1.3 电通量密度D1.1.4 电位函数p1.1.5 磁通密度B1.1.6 磁场强度H1.1.7 磁力线及磁通连续性定理1.1.8 矢量磁位A1.2 电磁场的基本方程1.2.1 全电流定律:麦克斯韦第一方程1.2.2 法拉第一楞次(Faraday-Lenz)定律:麦克斯韦第二方程1.2.3 高斯定律:麦克斯韦第三方程1.2.4 磁通连续性原理:麦克斯韦第四方程1.2.5 电磁场基本方程组的微分形式1.2.6 不同时空条件下的麦克斯韦方程组1.3 电磁场的媒质边界条件1.3.1 电场的边界条件1.3.2 磁场的边界条件1.3.3 理想导体与介质界面上电磁场的边界条件1.3.4 镜像法1.4 电磁场的能量1.4.1 电场与磁场存储的能量1.4.2 坡印廷(Poyllfing)定理1.5 依据电磁场理论形成的电路概念1.5.1 电路是特定条件下对电磁场的简化表示1.5.2 由电磁场方程推导出的电路基本定律1.5.3 电路参量1.6 电磁波的产生——时变场源区域麦克斯韦方程的解 1.6.1 达朗贝尔(DAlembert)方程及其解1.6.2 电流元辐射的电磁波1.7 平面电磁波1.7.1 无源区域的时变电磁场方程1.7.2 理想介质中的均匀平面电磁波1.7.3 导电媒质中的均匀平面电磁波1.8 均匀平面电磁波在不同媒质界面的入射反射和折射 1.8.1 电磁波的极化1.8.2 均匀平面电磁波在不同媒质界面上的垂直入射 1.8.3 均匀平面电磁波在不同媒质界面上的斜入射__小结习题上篇微波传输线与微波元件第2章传输线的基本理论2.1 传输线方程及其解2.1.1 传输线的电路分布参量方程2.1.2 正弦时变条件下传输线方程的解2.1.3 对传输线方程解的讨论2.2 无耗均匀传输线的工作状态2.2.1 电压反射系数2.2.2 传输线的工作状态2.2.3 传输线工作状态的测定2.3 阻抗与导纳厕图及其应用2.3.1 传输线的匹配2.3.2 阻抗圆图的构成原理2.3.3 阻抗圆图上的特殊点和线及点的移动2.3.4 导纳圆图2.3.5 圆图的应用举例2.4 有损耗均匀传输线2.4.1 线上电压、电流、输入阻抗及电压反射系数的'分布特性 2.4.2 有损耗均匀传输线的传播常数2.4.3 有损耗均匀传输线的传输功率和效率__小结习题二第3章微波传输线3.1 平行双线与同轴线3.1.1 平行双线传输线3.1.2 同轴线3.2 微带传输线3.2.1 微带线的传输模式3.2.2 微带线的传输特性3.3 矩形截面金属波导3.3.1 矩形截面波导中场方程的求解3.3.2 对解式的讨论3.3.3 矩形截面波导中的TElo模3.3.4 矩形截面波导的使用3.4 圆截面金属波导3.4.1 圆截面波导中场方程的求解3.4.2 基本结论3.4.3 圆截面波导中的三个重要模式TE11、TM01与TE01 3.4.4 同轴线中的高次模3.5 光波导3.5.1 光纤的结构形式及导光机理3.5.2 单模光纤的标量近似分析__小结习题三第4章微波元件及微波网络理论概要4.1 连接元件4.1.1 波导抗流连接4.1.2 同轴线——波导转接器4.1.3 同轴线——微带线转接器4.1.4 波导——微带线转接器4.1.5 矩形截面波导——圆截面波导转接器4.2 波导分支接头……微波技术与天线(王新稳著):内容简介本书是在作者三十多年教学及科研实践基础上编写而成的,系统讲述电磁场与电磁波、微波技术、天线的基本概念、理论、分析方法和基本技术。

微波技术与天线(重点)

微波技术与天线(重点)

微波:是电磁波中介于超短波与红外线之间的波段,它属于无线电波中波长最短(频率最高)的波段,其频率范围从300Mhz(波长1m)至3000GHz(波长).微波的特性:1.似光性2.穿透性3.宽频带特性4.热效应特性5.散射特性6.抗低频干扰特性.与低频区别:趋肤效应,辐射效应,长线效应,分布参数。

微波传输线的三种类型:1.双导体传输线,2.金属波导管3.介质传输线。

集总参数:在一般的电路分析中,电路的所有参数,如阻抗、容抗、感抗都集中于空间的各个点上,各个元件上,各点之间的信号是瞬间传递的,这种理想化的电路模型称为集总电路。

这类电路所涉及电路元件的电磁过程都集中在元件内部进行。

用集总电路近似实际电路是有条件的,这个条件是实际电路的尺寸要远小于电路工作时的电磁波长。

对于集总参数电路,由基尔霍夫定律唯一地确定了电压电流。

分布参数:电路是指电路中同一瞬间相邻两点的电位和电流都不相同。

这说明分布参数电路中的电压和电流除了是时间的函数外,还是空间坐标的函数。

分布参数电路的实际尺寸能和电路的工作波长相比拟。

对于分布参数电路由传输线理论对其进行分析。

均匀传输线方程(电报方程):tt ziLt zRizt zu∂∂+=∂∂),(),(),(,tt zuCt zGizt zi∂∂+=∂∂),(),(),(传输线瞬时电压电流:)cos()cos(),(21zteAzteAt zu zzβωβωαα-++=-+)]cos()cos([1),(21zteAzteAZt zi zzβωβωαα-++=-+特性阻抗:CjGLjRZωω++=(无耗传输线R=G=0.)平行双导线(直径为d,间距为D):dDZr2ln1200ε=同轴线(内外导体半径a,b):abZrln600ε=相移常数:λπωβ2==LC输入阻抗:)tan()tan(110zZZzZZZZinββ++=反射系数:z jzj eeZZZZzββ--Γ=+-=Γ111)(终端反射系数:1||101011φj e Z Z ZZ Γ=+-=Γ输入阻抗与反射系数关系:)(1)(10z z Z Z in Γ-Γ+= 驻波比:||1||111Γ-Γ+=ρ;11||1+-=Γρρ 1. 行波状态沿线电压电流振幅不变,驻波比为1,终端反射系数0,传输线上各点阻抗等于传输线特性阻抗。

第5章缝隙天线与微带天线

第5章缝隙天线与微带天线

其E面无方向性。
半波缝半隙波天缝线隙的天H面H线面方的方向 向图 图
z
y
x< 0
x> 0
缝隙的场矢量线分布图
(a)电力线;(b)磁力线
理想缝隙天线 辐射电阻
以缝隙波腹处电压值Um=Emw为计算辐射电阻的参考电压, 则
缝隙的辐射功率
Pr,m

1 2
um 2 Rr,m
缝隙辐射电阻
若理想缝隙天线与其互补的电对称振子的辐射功率相等,

)
b
a
r
2g
g
(a)
(b)
(c)
宽边横向半波谐振缝隙
a
x1
a
x1
b
r
g
g
其(a归) 一化电阻为
(b)
(c)
r 0.523( g )3 2 cos2 ( ) cos2( x1 )
b ab 4a
a
窄边斜半波谐振缝隙

a
x1
b
r g
(b)
(c)
其归一化电导为
g

0.131
缝隙天线 辐射特性
对于开在矩形波导上的缝隙,E面(垂直于缝隙轴向和波导
壁面的平面)方向图与理想缝隙天线相比有一定的畸变。 宽边上的纵缝,由于沿E面的电尺寸对标准波导来说只有 0.72λ,所以其E面方向图的差别较大;
波 导缝 隙 理 想缝 隙
宽边上纵缝的E面方向图
宽边上的横缝,随着波导的纵向尺寸变长,其E面方向图 逐渐趋向于理想的半圆形。
x1

g/2
图示的波导宽壁上的匹配偏斜缝隙天线阵,适当地调整缝隙 对中线的偏移x1和斜角δ,可使得缝隙所等效的归一化输入 电导为1,其电纳部分由缝隙中心附近的电抗振子补偿,各 缝隙可以得到同相,最大辐射方向与宽壁垂直。

微波技术与天线实验5利用HFSS仿真分析波导膜片

微波技术与天线实验5利用HFSS仿真分析波导膜片

一、实验原理矩形波导中的金属膜片分为两类,一类为容性膜片如图1(a),这种结构的膜片能储存净电磁能,具有电容的性质,其等效电路如图1(b)。

一类为感性膜片如图2(a),其等效电路如图2(b)。

容性膜片是设置在矩形波导宽壁上的金属薄片;感性膜片是设置在矩形波导窄壁上的金属薄片。

jBY=Y0Y(a)容性膜片(b)等效电路图1容性膜片及等效电路jBY=Y0Y(a)感性膜片(b)等效电路图2感性膜片及等效电路对称结构的容性膜片的归一化电纳近似计算公式为)2'ln(csc4bbbYBBgπλ==式中,Y为矩形波导的导纳;a、b为矩形波导横截面尺寸;a'、b'为膜片间距。

对称结构的感性膜片的归一化电纳近似计算公式为)2'(cot2aaaYBB gπλ-==[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+++-=y y y y y y S 222222 其中B j y =是膜片的归一化导纳。

二、实验步骤1. 画波导:(1)在菜单栏中点击(Draw Box ),顶点坐标(0,0,0),尺寸(23mm,10mm,50mm ),名字:waveguide 。

2. 画容性膜片1 (b ’=0.5b )(1)在菜单栏中点击(Draw Rectangle );(2)在右下角的坐标栏中输入长方体的起始点位置坐标X=0,Y=0,Z=10,然后按回车键;(3)输入尺寸,dX=23,dY =2.5,dZ=10,然后按回车键;(4)名字改为iris1。

3. 画容性膜片2(1)在菜单栏中点击Draw>Rectangle(2)在右下角的坐标栏中输入长方体的起始点位置坐标X=0,Y=10 ,Z=10 (3)输入X,Y,Z三个方向尺寸,dX:23,dY:-2.5(4)名字改为iris2。

4. 设置waveguide的颜色的透明度双击waveguide,点击Transparent右侧的栏目,通过拖动比例值调整颜色的透明度(如图3)。

天线基本原理与技术

天线基本原理与技术

电流元 方向图
18:21
电子科技大学电子工程学院
微波技术与天线
第五章 天线基本原理与技术
1 20 ° 1 50 °
9 0°
1
0.8 0.6 0.4
60
微波天线方向图通常由与场矢量相平行的两个平面表示:
E 平面:通过最大辐射方向, 与电场矢量平行的平面; H 平面:通过 最大辐射方向, 与磁场矢量平行的平面;
微波技术与天线
第五章 天线基本原理与技术
5.1 电流元的辐射场
一、电流元 电流元也称电基本振子,它是一段长度远小于波长 , 电 流I振幅均匀分布、 相位相同的直线电流。
注:电流元线天线的基本组成部分, 任意线天线均可看成 是由一系列电基本振子构成的。
二、电流元的辐射场 Idl 1 jr z z Er j cos ( 3 j 2 )e 20 r r Idl 1 2 jr E j sin ( 3 j 2 )e 40 r r r Idl 1 j j r lO O H sin ( 2 )e l dl 4 r r E 0 H 0 Hr 0 x x
上的辐射功率流密度Smax,与相同输入功率在理想无方向性
天线在同一位置处的辐射功率流密度S0之比。
G AD
18:21
电子科技大学电子工程学院
微波技术与天线
第五章 天线基本原理与技术
由方向系数及增益定义,有:
Smax G A S0 2 输入功率 Em 2 2 r Em P 240 Pi P 60 P A 2 4 r 2 r 2 Em 60 Pi 由上式可得一个天线最大辐射方向上的场强为
0
20
40
6

微波技术微波技术第五章(1)

微波技术微波技术第五章(1)

当GA、GB 都远小于1 时,在A-A’处的总反射系数可近似为
令q = l,得
j 2l0
G = G = GA GBe 4 G = GA GBe j2q = GA (1+e j2q )
= GAe jq (e jq e jq ) = 2GAe jq cos q
(3-158)
以保证接头处 (如图示1、2之间) 有良好的电接触。扼流接头安装方
便、功率容量大;但频带较窄。
扼流接头
平接头
2. 拐角、弯曲与扭转元件
改变电磁波的传输方向用拐角、弯曲元件;改变电磁波的极化
方向而不改变其传输方向用扭转元件。要求r 小、频带宽、功率容 量大。为使反射最小, 拐角和扭转段长度l =(2n+1)lg/4。E面弯波
Γ = Z Z0 Z Z0
1
r=
1
Γ Γ


=





Z
e
Z

=
b
a
b

Z0 b0
Z0 = b0 Zb
(Z Z0) (Z Z0)
(5 5) ( 5 – 6)
第二节 二端口元件
无耗二端口网络的基本性质(已在课件第四章(1) 讲解)
一、连接元件 连接元件的作用是将作用不同的微波元件连接成完整的系统。 要求接触损耗小, 驻波比小, 功率容量大, 工作频带宽。 这里只介绍单纯起连接作用的接头、拐角、弯曲和扭转元件。
Rmax Z0 Rmax Z0
B-B’处的局部反射系数为
GB
=
Rmax Rmax
Z01 Z01
=
Rmax Rmax
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《微波技术与天线》
基本概念: • 相当于低频中的谐振回路,具有储能、选频、稳频 的功能; • 用途:微波源、滤波器、选频器等等; • 特点: 理论上说,有无穷多个谐振频率(多谐性); 品质因素Q值很高(几万~几十万); Q=ω×
谐振系统谐振时的平均储能
系统中每秒的能量消耗
《微波技术与天线》

对于谐振腔而言,已经无法分出哪里是电感、哪里是电容,腔 体内充满电磁场,因此只能用场的方法进行分析。
3
2 3 4
g 4
4
2
1 3
1
• 多孔定向耦合器(频带较宽)
4
1
2 3
2
N
1
《微波技术与天线》
• 单孔定向耦合器
• 理想状态下,隔离端口应当没有输出,但实际上仍有一定 输出,因此应在隔离端口接匹配负载,吸收这一部分功率。
吸波材料
《微波技术与天线》
• 定向耦合器实例
《微波技术与天线》
(2)微带定向耦合器 距离较近的微带线之间都有能量耦合。 • 平行耦合线定向耦合器
(3) 渐变型阻抗变换器(graded model impedance changer)
增加阶梯的级数就可以增加工作带宽,但增加了阶梯级数,变换器 的总长度也要增加,尺寸会过大,另一方面结构设计越困难,因此 提出用渐变线代替多阶梯。 渐变线:其特性阻抗按一定规律平滑地由一条传输线的特性阻抗变 换到另一条传输线的特性阻抗。 Zl
扼流法兰特点:功率容量大,接触表面光洁度要求不高,但工作频 带较窄,驻波比的典型值是1.02。一般用于高功率、窄频带场合。
《微波技术与天线》
波导连接头除了法兰接头之外,还有各种扭转 (twist) 和弯曲 (bend) 元件,从而改变电磁波方向。
《微波技术与天线》
(2)衰减元件和相移元件
1、衰减器: • 作用:根据需要,减小所传输信号的幅度。 • 原理:用吸波材料吸收一定的电磁能量来实现衰减。
《微波技术与天线》
5.1 连接匹配元件
微波连接匹配元件包括三大类: •终端负载元件(terminal load devices)是连接在传输系统 终端实现终端短路、匹配或失配等功能的元件;
•微波连接元件(microwave connector)是将作用不同的两 个微波系统按一定要求连接起来,主要包括:波导接头、 衰减器、相移器及转换接头等; •阻抗匹配元器件(impedance matched devices)是用于调 整传输系统与终端之间阻抗匹配的器件,主要包括螺钉 调配器、多阶梯阻抗变换器及渐变型变换器等。
将一路微波功率按一定比例分成n路输出的功率元件 称为功率分配器。按输出功率比例不同,可分为等功率分 配器和不等功率分配器。 在结构上,大功率往往采用同轴线,而中小功率常采用微 带线。
《微波技术与天线》
(1) 微带功率分配器:
• T形分支 微带线 微带天线阵元
• Y形分支
微带天线阵
《微波技术与天线》
第五章 微波元器件
任何频段工作的电子设备,都需要各种功能的元器件, 既有如电容、电感、电阻、滤波器、分配器、谐振回路 等无源元器件,以实现信号匹配、分配、滤波等功能; 又有晶体管等有源元器件,实现信号产生、放大、调制、 变频等功能。 在微波系统中,实现对微波信号的产生、放大、变频、 匹配、分配、滤波等功能的部件,统称为微波元器件。
《微波技术与天线》
微波元器件按其变换性质可分为三大类: •线性互易元器件(linear reciprocal devices)只对微波信号 进行线性变换而不改变频率特性并满足互易定理,主要 包括:各种微波连接匹配元件、功率分配元器件、微波 滤波器件及微波谐振器件等; •线性非互易元器件 (linear nonreciprocal devices)主要是 指铁氧体器件,它的散射矩阵不对称,但仍工作在线性 区域,主要包括:隔离器、环行器等; •非线性器件(nonlinear devices)能引起频率的改变,从而 实现放大、调制、变频等,主要包括微波电子管、微波 晶体管、微波固态谐振器、微波场效应管及微波电真空 器件等。
劈形吸收片
波导内放置锲 形吸收体
当功率较大时
或在波导外侧加装 散热片以利于散热
劈形玻璃容器
当功率 很大时采用
《微波技术与天线》
水负载
同轴线锥型匹配负载
同轴线梯形匹配负载
微带匹配负载用半圆形电 阻作为吸收体,特点是频带 宽而且功率容量也大
《微波技术与天线》
《微波技术与天线》
(3)失配负载(mismatch load)
• 可调波导衰减器
g 4
• 同轴线衰减器
吸波材料片
《微波技术与天线》
2、移相器: • 作用:可以人为地改变传输电磁波的相位。 • 原理:电磁波在不同介质中具有不同的相移常数。因 此改变电磁波经过的介质就可以改变其相移量。
当将衰减器的衰减片换成 介电常数r>1的低耗介质片 时,就构成了移相器
l
低损耗介质片
《微波技术与天线》
2) H面T型分支
当微波信号从端口③输入时,平均地分给端口①②,这 两端口得到是等幅同相的波;当在端口①②同相激励时, 则在端口③合成输出最大,而当反相激励时端口③将无输 出。
《微波技术与天线》
3)匹配双T或魔T(magic-T circuit)
将E―T分支和H―T分支合并,并在接头内 加匹配以消除各路的反射,则构成匹配双T , 也称为魔T 。
失配负载既吸收一部分微波功率又反射一部分微波功率,而且一 般制成一定大小驻波的标准失配负载,主要用于微波测量。失配负 载和匹配负载的制作相似,只是略微改变一下尺寸,使之和原传输 系统失配。
《微波技术与天线》
2.微波连接元件
微波连接元件是二端口互易元件,主要包括:波导接头、衰减 器、相移器和转换接头。
201阻抗匹配元件
(1)螺钉调配器(bolt tuner)
螺钉不同的 深度等效为 不同的电抗 元件
使用时为了避免波导短路击穿,螺钉都设计成容性,即螺钉旋入 波导中的深度应小于3b/4。
螺钉调配器可分为单螺钉、双螺钉、三螺钉和四螺钉调配器。单螺 钉调配器通过调整螺钉的纵向位置和深度来实现匹配的。
《微波技术与天线》
• 应用举例:用于相控阵天线中,要求每个天线阵元 辐射相位不同的电磁波。 天线阵元 移相器 移相器的 相移量
0

2

( N 1)
功率分配网络

《微波技术与天线》
~
(3)转换接头(switching connector)
微波从一种传输系统过渡到另一种传输系统时需要用转换器
1.同轴线―波导转接器 它将同轴线的一端加信号,另一端的内导体伸入 矩形波导内,则同轴线中TEM模就会激励起矩形波导中 TE10模,反之亦然。这样实现了模式变换。
《微波技术与天线》
2.波导―微带转接器
由于矩形波导的等效阻抗通常
在300Ω 400Ω 之间,而微带线
特性阻抗一般为50Ω ;而且矩 形波导的高度b又比微带线衬
2、圆波导谐振腔
• 应采用两端短路的方式;
a l
V Q0 S
• 品质因数正比于腔体积,反比于腔内壁面积,故在同样体 积情况下,圆波导谐振腔比矩形谐振腔品质因数高,性能好, 加工也容易,是最常用的谐振腔。
主线 副线
锯齿形定向耦合器 《微波技术与天线》 提高性能
锯齿形定向耦合器实例
《微波技术与天线》
• 微带双分支定向耦合器
g 4
B
1
A
2
g 4
4
D
C
3
• 1输入,2、3输出,相位差90度;
• 4为隔离端口,无输出;
《微波技术与天线》
微带双分支定向耦合器实例
《微波技术与天线》
2.功率分配器(power divider)
连接点接触可靠; 不引起电磁波的反射, 输入驻波比尽可能小,一般在1.2以下; 工作频带要宽; 电磁能量不会泄漏到接头外面; 而且结构要牢靠,装拆方便,容易加工等。
《微波技术与天线》
(1)波导接头
平法兰
(waveguide connector)
扼流法兰
平法兰特点:加工方便、体积小、频带宽,其驻波比可以做到1.002 以下,但要求接触表面光洁度较高。常用于低功率、宽频带场合。
《微波技术与天线》
1. 终端负载元件(单口元件);
(1) 短路负载 (short circuit load)
短路负载又称为短路器,它的作用是将电磁能量全部反射回去 。对金属波导最方便的短路负载是在波导终端接上一块金属片。
实际中的短路器都是做成可以移动的,这种短路负载又称为可 调短路活塞。 有效短路面 有效短路面 g/4
g/4
g/4
同轴线短路活塞
波导短路活 塞
《微波技术与天线》
(2)匹配负载(matched load)
匹配负载是一种几乎能全部吸收输入功率的元件 。 对波导来说,小功率匹配负载一般在一段终端短路的波导内放置 一块或几块劈形吸收片。当吸收片平行地放置在波导中电场最强处, 吸收片强烈吸收微波能量,其反射变小,劈尖的长度越长吸收效果越 好,匹配性能越好,劈尖长度一般取g/2的整数倍。
《微波技术与天线》
5.2 功率分配元器件
•在微波系统中,往往需将一路微波功率按比例分成几路, 这就是功率分配问题。 •实现上述功能的元件称为功率分配元器件(power divider), 主要包括:定向耦合器、功率分配器以及各种微波分支器 件。
《微波技术与天线》
1、定向耦合器
• 作用:从主传输线中取出一些电磁能量并向设定的方向
《微波技术与天线》
(1)波导型谐振器:
1、矩形波导谐振腔 • 应采用两端短路的方式;
相关文档
最新文档