能量和动量的综合应用(超详细)

合集下载

高三物理动量和能量的综合应用

高三物理动量和能量的综合应用

F
(1)对A分析:
mgt mv mv0
mg(l
s)
1 2
mv2
1 2
mv02
(2)对B分析: (F mg)t Mv
(F mg)s 1 Mv2
(3)对系统分析:
2
Fs
mgl
1 (M 2
m)v2
1 2
mv02
解题步骤:
1、认真审题,明确题目所述的物理情景, 确定研究对象。
2、分析研究对象受力、运动状态及运动状 态变化过程。
V0
A B
F
VA B
F
解:
A
v0
F
B
s
v
AF B
(1)对A分析: (F mg)t mv mv0
(F
mg)(l
s)
1 2
mv2
1 2
mv02
(2)对B分析: mgt Mv mgs 1 Mv2
2
ቤተ መጻሕፍቲ ባይዱ
(3)对系统分析:
F (l
s)
mgl
1 (M 2
m)v2
1 2
mv02
解: A v0
B
F
s
v
A
B
A
BB
V0
A
V
B
Mv0 (M m)v
mgl
1 (M 2
m)v2
1 2
Mv02
A
V V0
V
V V0
B BB
B
A B
V0
ABA
A V0
V0
V0
AA
V A
VV00VV00
AB B B
V
A B
V
用能量的 观点列方程 时可以不涉及运动过 程中的细节,比牛顿 运动定律解题 更为方 便。

动量、能量综合应用

动量、能量综合应用

§6 动量、能量综合应用知识目标一、动量和动能动量和动能都是描述物体运动状态的物理量,但它们存在明显的不同:动量是矢量,动能是标量.物体动量变化时,动能不一定变化;但动能一旦发生变化,动量必发生变化.如做匀速圆周运动的物体,动量不断变化而动能保持不变.动量是力对时间的积累效应,动量的大小反映物体可以克服一定阻力运动多久,其变化量用所受冲量来量度;动能是力对空间的积累效应,动能的大小反映物体可以克服一定阻力运动多么远,其变化量用外力对物体做的功来量度.动量的大小与速度成正比,动能大小与速率的平方成正比.不同物体动能相同时动量可以不同,反之亦然,p=常用于比较动能相同而质量不同物体的动量大小;22 kpEm=常用来比较动量相同而质量不同物体的动能大小.二、动量守恒定律与机械能守恒(包括能量守恒)定律动量守恒定律和机械能守恒定律所研究的对象都是相互作用的物体组成的系统,且研究的都是某一物理过程一但两者守恒的条件不同:系统动量是否守恒,决定于系统所受合外力是否为零;而机械能是否守恒,则决定于是否有重力以外的力(不管是内力还是外力)做功.所以,在利用机械能守恒定律处理问题时要着重分析力的做功情况,看是否有重力以外的力做功;在利用动量守恒定律处理问题时着重分析系统的受力情况(不管是否做功),并着重分析是否满足合外力为零.应特别注意:系统动量守恒时,机械能不一定守恒;同样机械能守恒时,动量不一定守恒,这是因为两个守恒定律的守恒条件不同必然导致的结果.如各种爆炸、碰撞、反冲现象中,因F内》F外,动量都是守恒的,但因很多情况下有内力做功使其他形式的能转化为机械能而使其机械能不守恒.另外,动量守恒定律表示成为矢量式,应用时必须注意方向,且可在某一方向独立使用;机械能守恒定律表示成为标量式,对功或能量只需代数加减,不能按矢量法则进行分解或合成.三、处理力学问题的基本方法处理力学问题的基本方法有三种:一是牛顿定律,二是动量关系,三是能量关系.若考查有关物理量的瞬时对应关系,须应用牛顿定律,若考查一个过程,三种方法都有可能,但方法不同,处理问题的难易、繁简程度可能有很大的差别.若研究对象为一个系统,应优先考虑两大守恒定律,若研究对象为单一物体,可优先考虑两个定理,特别涉及时间问题时应优先考虑动量定理,涉及功和位移问题的应优先考虑动能定理.因为两个守恒定律和两个定理只考查一个物理过程的始末两个状态有关物理量间关系,对过程的细节不予细究,这正是它们的方便之处.特别对于变力作用问题,在中学阶段无法用牛顿定律处理时,就更显示出它们的优越性.四、求解动量守恒定律、机械能守恒定律、动能定理、功能关系的综合应用类题目时要注意:1.认真审题,明确物理过程.这类问题过程往往比较复杂,必须仔细阅读原题,搞清已知条件,判断哪一个过程机械能守恒,哪一个过程动量守恒2.灵活应用动量、能量关系.有的题目可能动量守恒,机械能不守恒,或机械能守恒,动量不守恒,或者动量在整个变化过程中守恒,而机械能在某一个过程中有损失等,过程的选取要灵活,既要熟悉一定的典型题,又不能死套题型、公式.【例1】如图所示,A和B并排放在光滑的水平面上,A上有一光滑的半径为R 的半圆轨道,半圆轨道右侧顶点有一小物体C ,C 由顶点自由滑下,设A 、B 、C 的质量均为m .求:(1)A 、B 分离时B 的速度多大?(2)C 由顶点滑下到沿轨道上升至最高点的过程中做的功是多少?分析:小物体C 自由滑下时,对槽有斜向右下方的作用力,使A 、B 一起向右做加速运动,当C 滑至槽的最低点时,C 、A 之间的作用力沿竖直方向,这就是A 、B 分离的临界点,因C 将沿槽上滑,C 对A 有斜向左下方的作用力,使A 向右做减速运动,而B 以A 分离时的速度向右做匀速运动,C 沿轨道上升到最大高度时,C 与A 的相对速度为零,而不是C 对地的速度为零,至于C 在全过程中所做的功,应等于A 、B 、C 组成的系统动能的增加(实际上是等于C 的重力所做的功)。

动量与能量综合专题

动量与能量综合专题

动量与能量综合专题一、动量守恒定律动量守恒定律是物理学中的一个重要定律,它表述的是物体动量的变化遵循一定的规律。

当两个或多个物体相互作用时,它们的总动量保持不变。

这个定律的适用范围非常广泛,从微观粒子到宏观宇宙,只要有物体之间的相互作用,就可以应用动量守恒定律来描述。

在理解动量守恒定律时,需要注意以下几点:1、系统:动量守恒定律适用于封闭的系统,即系统内的物体之间相互作用,不受外界的影响。

2、总动量:动量的变化是指物体之间的总动量的变化,而不是单个物体的动量变化。

3、方向:动量是矢量,具有方向性。

在计算动量的变化时,需要考虑动量的方向。

二、能量守恒定律能量守恒定律是物理学中的另一个重要定律,它表述的是能量不能被创造或消灭,只能从一种形式转化为另一种形式。

这个定律的适用范围同样非常广泛,从微观粒子到宏观宇宙,只要有能量的转化和转移,就可以应用能量守恒定律来描述。

在理解能量守恒定律时,需要注意以下几点:1、封闭系统:能量守恒定律适用于封闭的系统,即系统内的能量之间相互转化和转移,不受外界的影响。

2、转化与转移:能量的转化和转移是不同的。

转化是指一种形式的能量转化为另一种形式的能量,而转移是指能量从一个物体转移到另一个物体。

3、方向:能量的转化和转移是有方向的。

在计算能量的变化时,需要考虑能量的方向。

三、动量与能量的综合应用在实际问题中,动量和能量往往是相互的。

当一个物体受到力的作用时,不仅会引起物体的运动状态的变化,还会引起物体能量的变化。

因此,在解决复杂问题时,需要综合考虑动量和能量的因素。

例如,在碰撞问题中,两个物体相互作用后可能会发生弹射、粘合、破碎等情况。

这些情况的发生不仅与物体的动量有关,还与物体的能量有关。

如果两个物体的总动量不为零,它们将会继续运动;如果两个物体的总能量不为零,它们将会继续发生能量的转化和转移。

因此,在解决碰撞问题时,需要综合考虑物体的动量和能量因素。

四、总结动量守恒定律和能量守恒定律是物理学中的两个重要定律,它们分别描述了物体动量的变化和能量的转化和转移遵循的规律。

动量定律和能量守恒定律的综合应用

动量定律和能量守恒定律的综合应用

动量守恒和能量守恒定律的综合应用1.解决该类问题用到的规律动量守恒定律,机械能守恒定律,能量守恒定律,功能关系等。

2.解决该类问题的基本思路(1)认真审题,明确题目所述的物理情景,确定研究对象。

(2)如果物体间涉及多过程,要把整个过程分解为几个小的过程。

(3)对所选取的对象进行受力分析,判定系统是否符合动量守恒的条件。

(4)对所选系统进行能量转化的分析。

例如,系统是否满足机械能守恒,如果系统内有摩擦则机械能不守恒,有机械能转化为内能。

(5)选取所需要的方程列式并求解。

例3.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。

P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L 。

物体P 置于P 1的最右端,质量为2m 且可看做质点。

P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起。

P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内)。

P 与P 2之间的动摩擦因数为μ。

求:(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2;(2)此过程中弹簧的最大压缩量x 和相应的弹性势能E p 。

[解析] (1)对P 1、P 2组成的系统,由动量守恒定律得m v 0=2m v 1 解得v 1=v 02 对P 1、P 2、P 组成的系统,由动量守恒定律得2m v 1+2m v 0=4m v 2 解得v 2=34v 0。

(2)对P 1、P 2、P 组成的系统,从P 1、P 2碰撞结束到最终P 停在A 点,由能量守恒定律得μ·2mg (2L +2x )=12·2m v 20+12·2m v 21-12·4m v 22 解得x =v 2032μg-L 对P 1、P 2、P 组成的系统,从P 1、P 2碰撞结束到弹簧压缩到最短,此时P 1、P 2、P 的速度均为v 2,由能量守恒定律得μ·2mg (L +x )+E p =12·2m v 20+12·2m v 21-12·4m v 22 解得E p =m v 2016。

动量和能量的综合应用 板块模型课件

动量和能量的综合应用 板块模型课件

原理
动量定理描述了物体动量的变化 与其所受力的关系。
公式
Ft = Δp,其中F表示力的大小,t 表示力的作用时间,Δp表示动量 的变化量。
能量定理的原理和公式
原理
能量定理描述了系统能量的转化和守 恒关系。
公式ห้องสมุดไป่ตู้
E = E0 + ΔE,其中E表示系统的总能 量,E0表示初始能量,ΔE表示能量的 变化量。
动量和能量在板块模型中的综合应用
动量与能量的相互转化
在板块模型中,物体的动量和能量可以 相互转化。例如,在碰撞过程中,物体 的动能可能转化为内能或势能,反之亦 然。通过分析动量和能量的变化,可以 深入了解物体的相互作用过程。
VS
动量和能量的同时分析
在解决板块模型问题时,通常需要同时考 虑动量和能量的综合应用。通过结合动量 定理和能量守恒定律,可以更全面地分析 物体的运动过程和相互作用效果。
04
板块模型的实例分析
BIG DATA EMPOWERS TO CREATE A NEW
ERA
实例一:汽车碰撞分析
总结词
汽车碰撞分析是板块模型的重要应用之一,通过分析碰撞过程中动量和能量的变化,可以更好地理解碰撞的物理 机制,为汽车安全设计提供理论支持。
详细描述
在汽车碰撞分析中,板块模型可以用来模拟汽车在碰撞过程中的运动状态和受力情况。通过分析碰撞前后的动量 和能量变化,可以评估碰撞对车辆和乘员的影响,从而优化汽车的结构设计,提高汽车的安全性能。
板块模型可以模拟地震发 生的机制和过程,为地震 预测提供理论支持。
地质构造分析
通过板块模型可以分析地 壳运动和地质构造的形成 与演化,有助于地质学研 究和资源勘探。
气候变化研究

高中物理选修课件动量和能量的综合应用

高中物理选修课件动量和能量的综合应用
动量定理
根据动量守恒定律,可以推导出动量 定理,即物体动量的变化等于作用在 物体上的合外力的冲量。
能量在变质量问题中应用
01
能量守恒定律
在变质量问题中,系统内的能量仍然守恒,即系统初能量等于系统末能
量。
02
功能原理
根据能量守恒定律,可以推导出功能原理,即物体动能的变化等于作用
在物体上的合外力所做的功。
高中物理选修课件动量和能 量的综合应用
汇报人:XX
汇报时间:20XX-01-18
目录
• 动量与能量基本概念 • 碰撞过程中动量与能量守恒 • 火箭飞行原理及宇宙速度计算 • 爆炸、反冲现象中动量与能量应用
目录
• 变质量问题中动量与能量应用 • 综合性问题中动量与能量综合应用
01
动量与能量基本概念
计算方法
第一宇宙速度的计算公式为v1=√(GM/R),其中G为万有引力常数,M为地球质 量,R为地球半径。通过测量地球的质量和半径,可以计算出第一宇宙速度。
第二、第三宇宙速度简介
第二宇宙速度定义
第二宇宙速度是指物体完全摆脱地球引力束缚,飞离地球的所需要的最小初始速 度,数值上等于11.2km/s。
第三宇宙速度定义
第三宇宙速度是指在地球上发射的物体摆脱太阳引力束缚,飞出太阳系所需的最 小初始速度,数值上等于16.7km/s。
04
爆炸、反冲现象中动量与 能量应用
爆炸现象分析
01
爆炸定义
爆炸是物质在极短时间内产生 大量气体,体积迅速膨胀,对
外界做出巨大功的现象。
02
爆炸特点
作用时间短,内力远大于外力 ,系统动量守恒。
碰撞后速度相同
在完全非弹性碰撞中,两个物体会粘在一起继续运动,因 此它们的速度相同。

专题07动量和能量的综合应用

专题07动量和能量的综合应用

专题07动量和能量的综合应用知识梳理考点一 动量与动量定理应用动量定理解题的一般步骤及注意事项线如图所示,则( )A .t=1 s 时物块的速率为1 m/sB .t=2 s 时物块的动量大小为4 kg·m/sC .t=3 s 时物块的动量大小为5 kg·m/sD .t=4 s 时物块的速度为零【答案】AB【解析】由动量定理可得:Ft=mv ,解得m Ft v = ,t=1 s 时物块的速率为s m m Ft v /212⨯===1 m/s ,故A 正确;在Ft 图中面积表示冲量,所以,t=2 s 时物块的动量大小P=Ft=2×2=4kg.m/s ,t=3 s 时物块的动量大小为P /=(2×21×1)kgm/s=3 kg·m/s ,t=4 s 时物块的动量大小为P //=(2×21×2)kgm/s=2 kg·m/s ,所以t=4 s 时物块的速度为1m/s ,故B正确 ,C 、D 错误 考点二 动量守恒定律一、应用动量守恒定律的解题步骤二、几种常见情境的规律碰撞(一维)动量守恒动能不增加即p122m1+p222m2≥p1′22m1+p2′22m2速度要合理①若两物体同向运动,则碰前应有v后>v前;碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′。

②若两物体相向运动,碰后两物体的运动方向不可能都不改变。

爆炸动量守恒:爆炸物体间的相互作用力远远大于受到的外力动能增加:有其他形式的能量(如化学能)转化为动能位置不变:爆炸的时间极短,物体产生的位移很小,一般可忽略不计反冲动量守恒:系统不受外力或内力远大于外力机械能增加:有其他形式的能转化为机械能人船模型两个物体动量守恒:系统所受合外力为零质量与位移关系:m1x1=m2x2(m1、m2为相互作用的物体质量,x1、x2为其位移大小)例一(多选)(2021·甘肃天水期末)如图所示,木块B与水平面间的摩擦不计,子弹A沿水平方向射入木块并在极短时间内相对于木块静止下来,然后木块压缩弹簧至弹簧最短。

动量与能量的综合应用

动量与能量的综合应用

课后作业2:如图,一条轨道固定在竖直平面内,粗 糙的ab段水平,bcde段光滑,cde段是以O为圆心、R 为半径的一小段圆弧。可视为质点的物块A和B紧靠在 一起,静止于b处,A的质量是B的3倍。两物块在足够 大的内力作用下突然分离,分别向左、右始终沿轨道 运动。B到d点时速度沿水平方向,此时轨道对B的支 持力大小等于B所受重力的3/4,A与ab段的动摩擦因 数为μ,重力加速度g,求: (1)物块B在d点的速度大小; (2)物块A滑行的距离。
除重力和系统内弹力 之外的其他力做功
等于机械能的增加
W其=E2-E1
系统克服一对滑动摩 擦力或介质阻力做功
等于系统内能的增加Q
Q= fx相对
二、滑块滑板
例2:如图所示,质量mA=0.9 kg的长木板A静 止在光滑的水平面上,质量mB=0.1 kg的木块B 以 (初 1)速若v0B=以10mv0/的s滑速上度A从板A.板求另:一端滑离,B离
1m2 m)vv202
答案:
d
Mmv
2 0
2F (M m)
v0
s2
s1 d
v
E损
Mmv
2 0
2(M m)
明确:当构成系统的双方相对运动出现往复的 情况时,公式中的d应理解为“相对路程”而不 是“相对位移的大小”。
归纳小结:
解 途通决径过复:杂以多上变的问“题子的弹打研木究块”,的你问题对,解一决般有“两子条
v0
v0
解析: 以m、M为系统动量守恒,
mv0
(M
m)v
v
mv0 mM
动能定理
s2
s1 d
v
阻力F与相对位移
对子弹,
Fs1
1 2
mv2

专题6动力学、动量和能量观点的综合应用

专题6动力学、动量和能量观点的综合应用

考题一 动量定理和能量观点的综合应用1.动量定理公式:Ft =p ′-p 说明:(1)F 为合外力①恒力,求Δp 时,用Δp =Ft②b.变力,求I 时,用I =Δp =mv 2-mv 1③牛顿第二定律的第二种形式:合外力等于动量变化率 ④当Δp 一定时,Ft 为确定值:F =Δptt 小F 大——如碰撞;t 大F 小——缓冲(2)等式左边是过程量Ft ,右边是两个状态量之差,是矢量式.v 1、v 2是以同一惯性参照物为参照的.Δp 的方向可与mv 1一致、相反或成某一角度,但是Δp 的方向一定与Ft 一致. 2.力学规律的选用原则单个物体:宜选用动量定理、动能定理和牛顿运动定律.若其中涉及时间的问题,应选用动量定理;若涉及位移的问题,应选用动能定理;若涉及加速度的问题,只能选用牛顿第二定律.例1 据统计人在运动过程中,脚底在接触地面瞬间受到的冲击力是人体自身重力的数倍.为探究这个问题,实验小组同学利用落锤冲击的方式进行了实验,即通过一定质量的重物从某一高度自由下落冲击地面来模拟人体落地时的情况.重物与地面的形变很小,可忽略不计.g 取10 m/s 2.下表为一次实验过程中的相关数据.重物(包括传感器)的质量m /kg重物下落高度H /cm 45 重物反弹高度h /cm 20 最大冲击力F m /N 850 重物与地面接触时间t /s(1)请你选择所需数据,通过计算回答下列问题: ①重物受到地面的最大冲击力时的加速度大小;②在重物与地面接触过程中,重物受到的地面施加的平均作用力是重物所受重力的多少倍. (2)如果人从某一确定高度由静止竖直跳下,为减小脚底在与地面接触过程中受到的冲击力,可采取什么具体措施,请你提供一种可行的方法并说明理由. 解析 (1)①重物受到最大冲击力时加速度的大小为a 由牛顿第二定律:a =F m -mgm解得a =90 m/s 2②重物在空中运动过程中,由动能定理mgh =12mv 2重物与地面接触前瞬时的速度大小v 1=2gH 重物离开地面瞬时的速度大小v 2=2gh重物与地面接触过程,重物受到的平均作用力大小为F ,设竖直向上为正方向 由动量定理:(F -mg )t =mv 2-m (-v 1) 解得F =510 N ,故F mg=6因此重物受到的地面施加的平均作用力是重物所受重力的6倍.(2)可以通过增加人与地面接触时间来减小冲击力(如落地后双腿弯曲),由动量定理Ft =Δmv 可知,接触时间增加了,冲击力F 会减小. 答案 (1)①90 m/s 2②6倍 (2)见解析 变式训练1.高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动).此后经历时间t 安全带达到最大伸长量,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( ) +mg -mg +mg -mg答案 A解析 由自由落体运动公式得人下降h 距离时的速度为v =2gh ,在t 时间内对人由动量定理得(F -mg )t =mv ,解得安全带对人的平均作用力为F =m 2ght+mg ,A 项正确. 2.一质量为 kg 的小物块放在水平地面上的A 点,距离A 点5 m 的位置B 处是一面墙,如图1所示.物块以v 0=9 m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7 m/s ,碰后以6 m/s 的速度反向运动直至静止.g 取10 m/s 2.图1(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为 s ,求碰撞过程中墙面对物块平均作用力的大小F ; (3)求物块在反向运动过程中克服摩擦力所做的功W . 答案 (1) (2)130 N (3)9 J解析 (1)对小物块从A 运动到B 处的过程中 应用动能定理-μmgs =12mv 2-12mv 20代入数值解得μ=(2)取向右为正方向,碰后滑块速度v ′=-6 m/s 由动量定理得:F Δt =mv ′-mv 解得F =-130 N其中“-”表示墙面对物块的平均作用力方向向左. (3)对物块反向运动过程中应用动能定理得 -W =0-12mv ′2解得W =9 J.考题二动量守恒定律和能量观点的综合应用1.动量守恒定律(1)表达式:m1v1+m2v2=m1v1′+m2v2′;或p=p′(系统相互作用前总动量p等于相互作用后总动量p′);或Δp=0(系统总动量的增量为零);或Δp1=-Δp2(相互作用的两个物体组成的系统,两物体动量的增量大小相等、方向相反).(2)动量守恒条件:①理想守恒:系统不受外力或所受外力合力为零.②近似守恒:外力远小于内力,且作用时间极短,外力的冲量近似为零,或外力的冲量比内力冲量小得多.③单方向守恒:合外力在某方向上的分力为零,则系统在该方向上动量守恒.动量守恒定律应用要注意的三性(1)矢量性:在一维运动中要选取正方向,未知速度方向的一律假设为正方向,带入求解.(2)同时性:m1v1和m2v2——作用前的同一时刻的动量m1v1′和m2v2′——作用后的同一时刻的动量(3)同系性:各个速度都必须相对于同一个惯性参考系.定律的使用条件:在惯性参考系中普遍适用(宏观、微观、高速、低速)2.力学规律的选用原则多个物体组成的系统:优先考虑两个守恒定律,若涉及碰撞、爆炸、反冲等问题时,应选用动量守恒定律,然后再根据能量关系分析解决.例2 如图2所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R= m,物块A以v0=6 m/s的速度滑入圆轨道,滑过最高点Q,再沿圆轨道滑出后,与直轨上P处静止的物块B碰撞,碰后粘在一起运动,P点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L= m,物块与各粗糙段间的动摩擦因数都为μ=,A、B的质量均为m=1 kg(重力加速度g取10 m/s2;A、B视为质点,碰撞时间极短).图2(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值; (3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式. 解析 (1)从A →Q 由动能定理得 -mg ·2R =12mv 2-12mv 2解得v =4 m/s >gR = 5 m/s在Q 点,由牛顿第二定律得F +mg =m v 2R解得F =22 N.(2)A 撞B ,由动量守恒得mv 0=2mv ′ 解得v ′=v 02=3 m/s设摩擦距离为x ,则-2μmgx =0-12·2mv ′2解得x = m 所以k =x L=45.(3)AB 滑至第n 个光滑段上,由动能定理得 -μ·2mgnL =12·2mv 2n -12·2mv ′2所以v n =错误! m/s (n <45). 答案 (1)4 m/s 22 N (2)45 (3)v n =错误! m/s (n <45) 变式训练3.如图3,在足够长的光滑水平面上,物体A 、B 、C 位于同一直线上,A 位于B 、C 之间.A 的质量为m ,B 、C 的质量都为M ,三者均处于静止状态.现使A 以某一速度向右运动,求m 和M 之间应满足什么条件,才能使A 只与B 、C 各发生一次碰撞.设物体间的碰撞都是弹性的.图3答案 (5-2)M ≤m <M解析 设A 运动的初速度为v 0,A 向右运动与C 发生碰撞,由动量守恒定律得mv 0=mv 1+Mv 2由机械能守恒定律得12mv 20=12mv 21+12Mv 22可得v 1=m -M m +M v 0,v 2=2m m +Mv 0 要使得A 与B 能发生碰撞,需要满足v 1<0,即m <MA 反向向左运动与B 发生碰撞过程,有 mv 1=mv 3+Mv 412mv 21=12mv 23+12Mv 24 整理可得v 3=m -M m +M v 1,v 4=2mm +Mv 1 由于m <M ,所以A 还会向右运动,根据要求不发生第二次碰撞,需要满足v 3≤v 2 即2m m +M v 0≥m -M m +M v 1=(m -M m +M)2v 0 整理可得m 2+4Mm ≥M 2解方程可得m ≥(5-2)M 另一解m ≤-(5+2)M 舍去所以使A 只与B 、C 各发生一次碰撞,须满足 (5-2)M ≤m <M .考题三 电学中动量和能量观点的综合应用系统化思维方法,就是根据众多的已知要素、事实,按照一定的联系方式,将其各部分连接成整体的方法.(1)对多个物理过程进行整体思维,即把几个过程合为一个过程来处理,如用动量守恒定律解决比较复杂的运动.(2)对多个研究对象进行整体思维,即把两个或两个以上的独立物体合为一个整体进行考虑,如应用动量守恒定律时,就是把多个物体看成一个整体(或系统).例3 如图4所示,直角坐标系xOy 位于竖直平面内,x 轴与绝缘的水平面重合,在y 轴右方有垂直纸面向里的匀强磁场和竖直向上的匀强电场.质量为m 2=8×10-3kg 的不带电小物块静止在原点O ,A 点距O 点l = m ,质量m 1=1×10-3kg 的带电小物块以初速度v 0= m/s 从A 点水平向右运动,在O 点与m 2发生正碰并把部分电量转移到m 2上,碰撞后m 2的速度为 m/s ,此后不再考虑m 1、m 2间的库仑力.已知电场强度E =40 N/C ,小物块m 1与水平面的动摩擦因数为μ=,取g =10 m/s 2,求:图4(1)碰后m 1的速度;(2)若碰后m 2做匀速圆周运动且恰好通过P 点,OP 与x 轴的夹角θ=30°,OP 长为l OP = m ,求磁感应强度B 的大小;(3)其他条件不变,若改变磁场磁感应强度的大小,使m 2能与m 1再次相碰,求B ′的大小. 解析 (1)设m 1与m 2碰前速度为v 1,由动能定理 -μm 1gl =12m 1v 21-12m 1v 20代入数据解得:v 1= m/sv 2= m/s ,m 1、m 2正碰,由动量守恒有: m 1v 1=m 1v 1′+m 2v 2代入数据得:v 1′=- m/s ,方向水平向左 (2)m 2恰好做匀速圆周运动,所以qE =m 2g 得:q =2×10-3C由洛伦兹力提供向心力,设物块m 2做圆周运动的半径为R ,则qv 2B =m 2v22R轨迹如图,由几何关系有:R =l OP 解得:B =1 T(3)当m 2经过y 轴时速度水平向左,离开电场后做平抛运动,m 1碰后做匀减速运动.m 1匀减速运动至停止,其平均速度大小为: v =12|v 1′|= m/s>v 2= m/s ,所以m 2在m 1停止后与其相碰由牛顿第二定律有:F f =μm 1g =m 1am 1停止后离O 点距离:s =v 1′22a则m 2平抛的时间:t =s v 2平抛的高度:h =12gt 2设m 2做匀速圆周运动的半径为R ′,由几何关系有:R ′=12h由qv 2B ′=m 2v 22R ′,联立得:B ′= T答案 (1)- m/s ,方向水平向左 (2)1 T (3) T 变式训练4.如图5所示,C 1D 1E 1F 1和C 2D 2E 2F 2是距离为L 的相同光滑导轨,C 1D 1和E 1F 1为两段四分之一的圆弧,半径分别为r 1=8r 和r 2=r .在水平矩形D 1E 1E 2D 2内有竖直向上的匀强磁场,磁感应强度为B .导体棒P 、Q 的长度均为L ,质量均为m ,电阻均为R ,其余电阻不计,Q 停在图中位置,现将P 从轨道最高点无初速度释放,则:图5(1)求导体棒P 进入磁场瞬间,回路中的电流的大小和方向(顺时针或逆时针);(2)若P 、Q 不会在轨道上发生碰撞,棒Q 到达E 1E 2瞬间,恰能脱离轨道飞出,求导体棒P 离开轨道瞬间的速度;(3)若P 、Q 不会在轨道上发生碰撞,且两者到达E 1E 2瞬间,均能脱离轨道飞出,求回路中产生热量的范围.答案 (1)2BL grR,方向逆时针 (2)3gr(3)3mgr ≤Q ≤4mgr解析 (1)导体棒P 由C 1C 2下滑到D 1D 2,根据机械能守恒定律:mgr 1=12mv 2D ,v D =4gr导体棒P 到达D 1D 2瞬间:E =BLv D回路中的电流I =E 2R =2BL grR方向逆时针(2)棒Q 到达E 1E 2瞬间,恰能脱离轨道飞出,此时对Q :mg =mv 2Q r 2,v Q =gr设导体棒P 离开轨道瞬间的速度为v P ,根据动量守恒定律:mv D =mv P +mv Q 代入数据得,v P =3gr(3)由(2)知,若导体棒Q 恰能在到达E 1E 2瞬间飞离轨道,P 也必能在该处飞离轨道.根据能量守恒,回路中产生的热量:Q 1=12mv 2D -12mv 2P -12mv 2Q =3mgr若导体棒Q 与P 能达到共速v ,回路中产生的热量最多,则根据动量守恒:mv D =(m +m )v ,v =2gr回路中产生的热量:Q 2=12mv 2D-12(m +m )v 2=4mgr 综上所述,回路中产生热量的范围是3mgr ≤Q ≤4mgr .专题规范练1.如图1所示,水平桌面左端有一顶端高为h 的光滑圆弧形轨道,圆弧的底端与桌面在同一水平面上.桌面右侧有一竖直放置的光滑圆轨道MNP ,其形状为半径R = m 的圆环剪去了左上角135°后剩余的部分,MN 为其竖直直径,P 点到桌面的竖直距离也为R .一质量m = kg 的物块A 自圆弧形轨道的顶端静止释放,到达圆弧形轨道底端恰与一停在圆弧底端水平桌面上质量也为m 的物块B 发生弹性正碰(碰撞过程没有机械能的损失),碰后物块B 的位移随时间变化的关系式为x =6t -2t 2(关系式中所有物理量的单位均为国际单位),物块B 飞离桌面后恰由P 点沿切线落入圆轨道.(重力加速度g 取10 m/s 2)求:图1(1)BP 间的水平距离x BP ;(2)判断物块B 能否沿圆轨道到达M 点; (3)物块A 由静止释放的高度h . 答案 (1) m (2)不能 (3) m解析 (1)设碰撞后物块B 由D 点以初速度v D 做平抛运动,落到P 点时其竖直速度为v y =2gR同时v y v D=tan 45°,解得v D =4 m/s设平抛用时为t ,水平位移为x ,则有R =12gt 2x =v D t解得x = m物块B 碰后以初速度v 0=6 m/s ,加速度大小a =-4 m/s 2减速到v D ,则BD 间的位移为x 1=v 2D -v 202a= m故BP 之间的水平距离x BP =x +x 1= m(2)若物块B 能沿轨道到达M 点,在M 点时其速度为v M ,则有12mv 2M -12mv 2D =-22mgR设轨道对物块的压力为F N ,则F N +mg =m v 2MR解得F N =(1-2)mg <0,即物块不能到达M 点. (3)对物块A 、B 的碰撞过程,有:m A v A =m A v A ′+m B v 012m A v 2A =12m A v A ′2+12m B v 20 解得:v A =6 m/s设物块A 释放的高度为h ,则mgh =12mv 2A ,解得h = m2.如图2所示为过山车简易模型,它由光滑水平轨道和竖直面内的光滑圆形轨道组成,Q 点为圆形轨道最低点,M 点为最高点,圆形轨道半径R = m.水平轨道PN 右侧的水平地面上,并排放置两块长木板c 、d ,两木板间相互接触但不粘连,长木板上表面与水平轨道PN 平齐,木板c 质量m 3= kg ,长L =4 m ,木板d 质量m 4= kg.质量m 2= kg 的小滑块b 放置在轨道QN 上,另一质量m 1= kg 的小滑块a 从P 点以水平速度v 0向右运动,沿圆形轨道运动一周后进入水平轨道与小滑块b 发生碰撞,碰撞时间极短且碰撞过程中无机械能损失.碰后a 沿原路返回到M 点时,对轨道压力恰好为0.已知小滑块b 与两块长木板间动摩擦因数均为μ0=,重力加速度g =10 m/s 2.图2(1)求小滑块a 与小滑块b 碰撞后,a 和b 的速度大小v 1和v 2;(2)若碰后滑块b 在木板c 、d 上滑动时,木板c 、d 均静止不动,c 、d 与地面间的动摩擦因数μ至少多大(木板c 、d 与地面间的动摩擦因数相同,最大静摩擦力等于滑动摩擦力)(3)若不计木板c 、d 与地面间的摩擦,碰后滑块b 最终恰好没有离开木板d ,求滑块b 在木板c 上滑行的时间及木板d 的长度.答案 (1)4 m/s m/s (2) (3)1 s m解析 (1)根据题意可知:小滑块a 碰后返回到M 点时:m 1v 2M R=m 1g 小滑块a 碰后返回到M 点过程中机械能守恒:12m 1v 21=12m 1v 2M +m 1g (2R ) 代入数据,解得:v 1=4 m/s取水平向右为正方向,小滑块a 、b 碰撞前后:动量守恒:m 1v 0=-m 1v 1+m 2v 2机械能守恒:12m 1v 20=12m 1v 21+12m 2v 22 代入数据,解得:v 0= m/s ,v 2= m/s(2)若b 在d 上滑动时d 能静止,则b 在c 上滑动时c 和d 一定能静止μ(m 2+m 4)g >μ0m 2g解得μ>m 2m 2+m 4μ0≈ (3)小滑块b 滑上长木板c 时的加速度大小:a 1=μ0g = m/s 2此时两块长木板的加速度大小:a 2=μ0m 2m 3+m 4g = m/s 2 令小滑块b 在长木板c 上的滑行时间为t ,则:时间t 内小滑块b 的位移x 1=v 2t -12a 1t 2 两块长木板的位移x 2=12a 2t 2 且x 1-x 2=L解得:t 1=1 s 或t 2=103 s(舍去) b 刚离开长木板c 时b 的速度v 2′=v 2-a 1t 1= m/sb 刚离开长木板c 时d 的速度v 3=a 2t 1= m/sd 的长度至少为x :由动量守恒可知:m 2v 2′+m 4v 3=(m 2+m 4)v解得:v =2 m/sμ0m 2gx =12m 2v 2′2+12m 4v 23-12(m 2+m 4)v 2 解得:x = m3.如图3所示,两个圆形光滑细管在竖直平面内交叠,组成“8”字形通道,在“8”字形通道底端B 处连接一内径相同的粗糙水平直管AB .已知E 处距地面的高度h = m ,一质量m =1 kg 的小球a 从A 点以速度v 0=12 m/s 的速度向右进入直管道,到达B 点后沿“8”字形轨道向上运动,到达D 点时恰好与轨道无作用力,直接进入DE 管(DE 管光滑),并与原来静止于E 处的质量为M =4 kg 的小球b 发生正碰(a 、b 均可视为质点).已知碰撞后a 球沿原路返回,速度大小为碰撞前速度大小的13,而b 球从E 点水平抛出,其水平射程s = m.(g =10 m/s 2)图3(1)求碰后b 球的速度大小;(2)求“8”字形管道上下两圆的半径r 和R ;(3)若小球a 在管道AB 中运动时所受阻力为定值,请判断a 球返回到BA 管道时,能否从A 端穿出答案 (1)1 m/s (2) m m (3)不能解析 (1)b 球离开E 点后做平抛运动h =12gt 2,s =v b t ,解得v b =1 m/s(2)a 、b 碰撞过程,动量守恒,以水平向右为正方向,则有: mv a =-m ×13v a +Mv b解得v a =3 m/s碰前a 在D 处恰好与轨道无作用力,则有:mg =m v 2a rr = mR =h -2r 2= m (3)小球从B 到D ,机械能守恒:12mv 2B =12mv 2a +mgh 解得:12mv 2B = J 从A 到B 过程,由动能定理得:-W f =12mv 2B -12mv 20 解得:W f = J从D 到B ,机械能守恒:12m (v a 3)2+mgh =12mv B ′2 解得:12mv B ′2= J<W f 所以,a 球返回到BA 管道中时,不能从A 端穿出.4.如图4所示,整个空间中存在竖直向上的匀强电场,经过桌边的虚线PQ 与桌面成45°角,其上方有足够大的垂直纸面向外的匀强磁场,磁感应强度为B ,光滑绝缘水平桌面上有两个可以视为质点的绝缘小球,A 球对桌面的压力为零,其质量为m ,电量为q ;B 球不带电且质量为km (k >7).A 、B 间夹着质量可忽略的火药.现点燃火药(此时间极短且不会影响小球的质量、电量和各表面的光滑程度).火药炸完瞬间A 的速度为v 0.求:图4(1)火药爆炸过程中有多少化学能转化为机械能;(2)A 球在磁场中的运动时间;(3)若一段时间后A 、B 在桌上相遇,求爆炸前A 球与桌边P 的距离.答案 (1)k +12k mv 20 (2)3πm 2qB (3)2k -2-3π2k +1·mv 0qB解析 (1)设爆炸之后B 的速度大小为v B ,选向左为正方向,在爆炸前后由动量守恒可得:0=mv 0-kmv BE =12mv 20+12kmv 2B =k +12kmv 20(2)由A 球对桌面的压力为零可知重力和电场力等大反向,故A 球进入电场中将会做匀速圆周运动,如图所示则T =2πm qB 有几何知识可得:粒子在磁场中运动了34个圆周 则t 2=3πm 2qB(3)由0=mv 0-kmv B 可得:v B =v 0k由qv 0B =m v 20R 知,R =mv 0qB 设爆炸前A 球与桌边P 的距离为x A ,爆炸后B 运动的位移为x B ,时间为t B则t B =x A v 0+t 2+R v 0,x B =v B t B由图可得:R =x A +x B联立上述各式解得:x A =2k -2-3π2k +1·mv 0qB .。

动量和能量的综合应用 板块模型课件

动量和能量的综合应用 板块模型课件

板块模型的应用
板块模型的应用包括解释地震、 火山喷发、山脉形成等地质现 象,以及帮助预测地质灾害和 资源பைடு நூலகம்布。
实例分析
通过具体案例分析,展示板块 模型在解释地质现象和预测地 质灾害方面的应用。
结论
1 动量和能量的关系
动量和能量是物体运动的两个重要方面。动 量可以描述物体的运动状态,而能量可以描 述物体的运动能力。
动量和能量的综合应用 板块模型ppt课件
本课件将介绍动量和能量的综合应用,包括动量的定义和单位、动量守恒定 律及其应用、动量定理及其应用、能量的定义和单位、动能和势能的转化、 能量守恒定律及其应用、弹性碰撞及其应用、非弹性碰撞及其应用、动能定 理与动量定理的综合应用、板块模型的概念、板块模型的应用、以及动量和 能量的关系和对实际问题的启示。
动量
动量的定义和单位
动量是物体运动的描述,它 等于物体的质量乘以速度。 单位是千克·米/秒。
动量守恒定律及其应用
动量守恒定律指出,在没有 外力作用下,系统的总动量 保持不变。应用场景包括碰 撞和爆炸。
动量定理及其应用
动量定理描述了力对物体动 量的改变。应用场景包括推 进器和火箭的工作原理。
能量
1 能量的定义和单位
2 动量和能量的综合应用对实际问题
的启示
动量和能量的综合应用可以帮助我们理解和 解决实际问题,如交通事故、能源转换等。
2
非弹性碰撞及其应用
非弹性碰撞是指碰撞后物体发生形变或损失动能的碰撞。应用场景包括汽车碰撞 事故的分析。
3
动能定理与动量定理的综合应用
将动能定理和动量定理结合应用于实际问题,如火箭发射、物体自由落体等。
板块模型
板块模型的概念

专题6 力学三大观点的综合运用

专题6  力学三大观点的综合运用

高考定位力学中三大观点是指动力学观点,动量观点和能量观点.动力学观点主要是牛顿运动定律和运动学公式,动量观点主要是动量定理和动量守恒定律,能量观点包括动能定理、机械能守恒定律和能量守恒定律.此类问题过程复杂、综合性强,能较好地考查应用有关规律分析和解决综合问题的能力.考题1 动量和能量的观点在力学中的应用例1 如图1所示,长为L 的平台固定在地面上,平台的上平面光滑,平台上放有小物体A 和B ,两者彼此接触.物体A 的上表面是半径为R (R ≪L )的光滑半圆形轨道,轨道顶端有一小物体C ,A 、B 、C 的质量均为m .现物体C 从静止状态沿轨道下滑,已知在运动过程中,A 、C 始终保持接触.试求:图1(1)物体A 和B 刚分离时,物体B 的速度;(2)物体A 和B 刚分离后,物体C 所能达到距台面的最大高度; (3)判断物体A 从平台左边还是右边落地并简要说明理由.解析 (1)设C 物体到达最低点的速度是v C ,A 、B 、C 组成的系统在水平方向动量守恒,系统内机械能守恒.m v A +m v B -m v C =0①mgR =12m v 2A +12m v 2B +12m v 2C②在C 物体到达最低点之前一直有:v A =v B③ 联立①②③解得:v B =133gR ,方向水平向右④(2)设C 能够到达轨道最大高度为h ,A 、C 此时的水平速度相等,设它们的共同速度为v ,对系统应用动量守恒和机械能守恒规律可得:m v B -2m v =0⑤ mgR =mgh +12m v 2B +12·2m v 2⑥ 联立⑤⑥式解得:h =34R⑦(3)因为A 与B 脱离接触后B 的速度向右,A 、C 的总动量是向左的,又R ≪L ,所以A 从平台的左边落地.答案 (1)133gR ,方向水平向右 (2)34R (3)A 从平台的左边落地1.如图2,半径R =0.8 m 的四分之一圆弧形光滑轨道竖直放置,圆弧最低点D 与长为L =6 m 的水平面相切于D 点,质量M =1.0 kg 的小滑块A 从圆弧顶点C 由静止释放,到达最低点后,与D 点右侧m =0.5 kg 的静止物块B 相碰,碰后A 的速度变为v A =2.0 m /s ,仍向右运动.已知两物块与水平面间的动摩擦因数均为μ=0.1,若B 与E 处的竖直挡板相碰,没有机械能损失,取g =10 m/s 2.求:图2(1)滑块A 刚到达圆弧的最低点D 时对圆弧的压力; (2)滑块B 被碰后瞬间的速度; (3)讨论两滑块是否能发生第二次碰撞.答案 (1)30 N ,方向竖直向下 (2)4 m/s (3)见解析解析 (1)设小滑块运动到D 点的速度为v ,由机械能守恒定律有:MgR =12M v 2由牛顿第二定律有F N -Mg =M v2R联立解得小滑块在D 点所受支持力F N =30 N由牛顿第三定律有,小滑块在D 点时对圆弧的压力为30 N ,方向竖直向下. (2)设B 滑块被碰后的速度为v B ,由动量守恒定律: M v =M v A +m v B解得小滑块在D 点右侧碰后的速度v B =4 m/s(3)讨论:由于B 物块的速度较大,如果它们能再次相碰一定发生在B 从竖直挡板弹回后,假设两物块能运动到最后停止,达到最大的路程,则对于A 物块 -μMgs A =0-12M v 2A 解得s A =2 m对于B 物块,由于B 与竖直挡板的碰撞无机械能损失,则-μmgs B =0-12m v 2B解得s B =8 m(即从E 点返回2 m)由于s A +s B =10 m<2×6 m =12 m ,故它们停止运动时仍相距2 m ,不能发生第二次碰撞.1.弄清有几个物体参与运动,并划分清楚物体的运动过程.2.进行正确的受力分析,明确各过程的运动特点.3.光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打击木块、不受其他外力作用的两物体相互作用问题,一般考虑用动量守恒定律分析. 4.如含摩擦生热问题,则考虑用能量守恒定律分析.考题2 应用动力学观点、能量观点、动量观点解决综合问题例2 如图3所示,一倾斜的传送带倾角θ=37°,始终以v =12 m /s 的恒定速度顺时针转动,传送带两端点P 、Q 间的距离L =2 m ,紧靠Q 点右侧有一水平面长为x =2 m ,水平面右端与一光滑的半径R =1.6 m 的竖直半圆轨道相切于M 点,MN 为竖直的直径.现有一质量M =2.5 kg 的物块A 以v 0=10 m/s 的速度自P 点沿传送带下滑,A 与传送带间的动摩擦因数μ1=0.75,到Q 点后滑上水平面(不计拐弯处的能量损失),并与静止在水平面最左端的质量m =0.5 kg 的B 物块相碰,碰后A 、B 粘在一起,A 、B 与水平面的动摩擦因数相同均为μ2,忽略物块的大小.已知sin 37°=0.6,cos 37°=0.8,取g =10 m/s 2.求:图3(1)A 滑上传送带时的加速度a 和到达Q 点时的速度; (2)若AB 恰能通过半圆轨道的最高点N ,求μ2;(3)要使AB 能沿半圆轨道运动到N 点,且从N 点抛出后能落到传送带上,则μ2应满足什么条件?审题突破 (1)由牛顿第二定律求出加速度,由运动学公式求出A 的速度.(2)A 、B 碰撞过程动量守恒,由动量守恒定律可以求出碰后的速度;由牛顿第二定律求出AB 在最高点的速度,然后应用机械能守恒定律与动能定理求出动摩擦因数.(3)物块离开N 点后做平抛运动,应用平抛运动规律、机械能守恒定律与动能定理求出动摩擦因数的范围.解析 (1)A 刚滑上传送带时,由牛顿第二定律得: Mg sin θ+μ1Mg cos θ=Ma , 代入数据得:a =12 m/s 2,A 在传送带上运动,速度与传送带速度相等时,由匀变速运动的速度位移公式得:v 2-v 20=2 as代入数据得:s =116m <L =2 m ,A 没有到达Q 点前已经与传送带速度相等,到达Q 点的速度为:v =12 m/s ;(2)设AB 碰后的共同速度为v 1,以A 的初速度方向为正方向,A 、B 碰撞过程中,由动量守恒定律得: M v =(M +m )v 1,代入数据得:v 1=10 m/s ,AB 恰好滑到最高点N 时速度为v 3,在最高点,由牛顿第二定律得:(M +m )g =(M +m )v 23R设AB 在M 点速度为v 2,由机械能守恒定律得: 12(M +m )v 22=12(M +m )v 23+(M +m )g ·2R , 在水平面上由动能定理得: 12(M +m )v 21-12(M +m )v 22=μ2(M +m )gx , 代入数据得:μ2=0.5;(3)①若以v 3由N 点抛出,做平抛运动,在竖直方向上:2R =12gt 2,水平方向上:x 1=v 3t ,联立并代入数据得:x 1=3.2 m >x ,则要使AB 能沿半圆轨道运动到N 点,并能落在传动带上,则μ2≤0.5; ②若AB 恰能落在P 点,在竖直方向上:2R -L sin θ=12gt ′2,水平方向上:x +L cos θ=v 3′t ′,由机械能守恒定律得:12(M +m )v 2′2=12(M +m )v 3′2+(M +m )g ·2R ,在水平面上由动能定理得:12(M +m )v 21-12(M +m )v 2′2=μ2(M +m )gx , 联立并代入数据得:μ2=0.09, 综上所述,μ2应满足:0.09≤μ2≤0.5.答案 (1)12 m /s 2 12 m/s (2)0.5 (3)0.09≤μ2≤0.52.(2014·广东·35)如图4所示的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿光滑轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作.已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞.图4(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE ;(2)若P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E .答案 (1)3 m /s 9 J (2)10 m/s ≤v 1≤14 m/s 17 J解析 (1)设P 1和P 2发生弹性碰撞后速度为v 2,根据动量守恒定律有:m v 1=2m v 2①解得:v 2=v 12=3 m/s碰撞过程中损失的动能为:ΔE =12m v 21-12×2m v 22②解得ΔE =9 J(2)P 滑动过程中,由牛顿第二定律知 ma =-μmg③ 可以把P 从A 点运动到C 点再返回B 点的全过程看作匀减速直线运动,根据运动学公式有3L =v 2t +12at 2④由①③④式得v 1=6L -at 2t①若t =2 s 时通过B 点,解得:v 1=14 m/s ②若t =4 s 时通过B 点,解得:v 1=10 m/s 故v 1的取值范围为:10 m /s ≤v 1≤14 m/s设向左经过A 点的速度为v A ,由动能定理知 12×2m v 2A -12×2m v 22=-μ·2mg ·4L 当v 2=12v 1=7 m/s 时,复合体向左通过A 点时的动能最大,E =17 J.根据题中设及的问题特点选择上述观点联合应用求解.一般地,要列出物体量间瞬时表达式,可用力和运动的观点即牛顿运动定律和运动学公式;如果碰撞及涉及时间的问题,优先考虑动量定理;涉及力做功和位移的情况时,优先考虑动能定理;若研究对象是互相作用的物体系统,优先考虑两大守恒定律.知识专题练 训练6题组1 动量和能量的观点在力学中的应用1.如图1所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,0点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B相碰后立即一起沿斜面向下运动,并恰好回到0点(A 、B 均初为质点).试求:图1(1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧的具有的弹性势能;(3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆轨道与斜面相切于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,试问:v 为多大时物块A 恰能通过圆弧轨道的最高点?答案 (1)123gx 0 (2)14mgx 0 (3) (20+43)gx 0解析 (1)设A 与B 相碰前的速度为v 1,A 与B 相碰后共同速度为v 2由机械能守恒定律得mg 3x 0sin 30°=12m v 21由动量守恒定律得m v 1=2m v 2解以上二式得v 2=123gx 0(2)设A 、B 相碰前弹簧所具有的弹性势能为E p ,从A 、B 相碰后一起压缩弹簧到它们恰好到达O 点过程中,由机械能守恒定律知E p +12(2m )v 22=2mgx 0sin 30° 解得E p =14mgx 0(3)设物块A 与B 相碰前的速度为v 3,碰后A 、B 的共同速度为v 4 12m v 2+mg 3x 0sin 30°=12m v 23 m v 3=2m v 4A 、B 一起压缩弹簧后再回到O 点时二者分离,设此时共同速度为v 5,则 12(2m )v 24+E p =12(2m )v 25+2mgx 0sin 30° 此后A 继续上滑到半圆轨道最高点时速度为v 6,则 12m v 25=12m v 26+mg 2x 0sin 30°+mgR (1+sin 60°) 在最高点有mg =m v 26R联立以上各式解得v =(20+43)gx 0.2.如图2所示,质量为m 1的滑块(可视为质点)自光滑圆弧形槽的顶端A 处无初速度地滑下,槽的底端与水平传送带相切于左传导轮顶端的B 点,A 、B 的高度差为h 1=1.25 m .传导轮半径很小,两个轮之间的距离为L =4.00 m .滑块与传送带间的动摩擦因数μ=0.20.右端的轮子上沿距离地面高度h 2=1.80 m ,g 取10 m/s 2.图2(1)若槽的底端没有滑块m 2,传送带静止不运转,求滑块m 1滑过C 点时的速度大小v ;(结果保留两位有效数字)(2)在m 1下滑前将质量为m 2的滑块(可视为质点)停放在槽的底端.m 1下滑后与m 2发生弹性碰撞,且碰撞后m 1速度方向不变,则m 1、m 2应该满足什么条件?(3)满足(2)的条件前提下,传送带顺时针运转,速度为v =5.0 m/s.求出滑块m 1、m 2落地点间的最大距离(结果可带根号).答案 (1)3.0 m/s (2)m 1>m 2 (3)(6215-3) m解析 (1)滑块m 1滑到B 点有m 1gh 1=12m 1v 20 解得v 0=5 m/s滑块m 1由B 滑到C 点有-μm 1gL =12m 1v 2-12m 1v 20 解得v =3.0 m/s.(2)滑块m 2停放在槽的底端,m 1下滑并与滑块m 2弹性碰撞,则有 m 1v 0=m 1v 1+m 2v 2 12m 1v 20=12m 1v 21+12m 2v 22 m 1速度方向不变即v 1=m 1-m 2m 1+m 2v 0>0则m 1>m 2.(3)滑块经过传送带作用后做平抛运动h 2=12gt 2当两滑块速度相差最大时,它们的水平射程相差最大,当m 1≫m 2时,滑块m 1、m 2碰撞后的速度相差最大,经过传送带后速度相差也最大v 1=m 1-m 2m 1+m 2v 0=1-m 2m 11+m 2m 1v 0≈v 0=5.0 m/sv 2=2m 1m 1+m 2v 0=21+m 2m 1v 0≈2v 0=10.0 m/s 滑块m 1与传送带同速度,没有摩擦,落地点射程为 x 1=v 1t =3.0 m滑块m 2与传送带发生摩擦,有-μm 2gL =12m 2v 2′2-12m 2v 22 解得v 2′=221 m/s落地点射程为x 2=v 2′t =6215mm 2、m 1的水平射程相差最大值为Δx =(6215-3) m.题组2 应用动力学观点、能量观点、动量观点解决综合问题3.如图3所示,质量为M =4 kg 的木板静置于足够大的水平地面上,木板与地面间的动摩擦因数μ=0.01,板上最左端停放着质量为m =1 kg 可视为质点的电动小车,车与木板右端的固定挡板相距L =5 m .现通电使小车由静止开始从木板左端向右做匀加速运动,经时间t =2 s ,车与挡板相碰,车与挡板粘合在一起,碰撞时间极短且碰后自动切断小车的电源.(计算中取最大静摩擦力等于动摩擦力,并取g =10 m/s 2)图3(1)试通过计算说明:车与挡板相碰前,木板相对地面是静止还是运动的? (2)求出小车与挡板碰撞前,车的速率v 1和板的速率v 2; (3)求出碰后木板在水平地面上滑动的距离s . 答案 (1)向左运动 (2)4.2 m /s 0.8 m/s (3)0.2 m解析 (1)假设木板不动,电动车在板上运动的加速度为a 0,由L =12a 0t 2得:a 0=2Lt 2=2.5 m/s 2此时木板使车向右运动的摩擦力:f =ma 0=2.5 N 木板受车向左的反作用力:f ′=f =2.5 N木板受地面向右最大静摩擦力:f 0=μ(M +m )g =0.5 N 由于f ′>f 0,所以木板不可能静止,将向左运动;(2)设车与木板碰前,车与木板的加速度分别为a 1和a 2,相互作用力为F ,由牛顿定律与运动学公式: 对小车:F =ma 1 v 1=a 1t对木板:F -μ(m +M )g =Ma 2 v 2=a 2t两者的位移的关系:v 12t +v 22t =L联立并代入数据解得:v 1=4.2 m /s ,v 2=0.8 m/s ;(3)设车与木板碰后其共同速度为v ,两者相碰时系统动量守恒,以向右为正方向,有m v 1-M v 2=(m +M )v对碰后滑行s 的过程,由动能定理得: -μ(M +m )gs =0-12(M +m )v 2联立并代入数据,解得:s =0.2 m.4.如图4所示,光滑的水平面AB (足够长)与半径为R =0.8 m 的光滑竖直半圆轨道BCD 在B 点相切,D 点为半圆轨道最高点.A 点的右侧等高地放置着一个长为L =20 m 、逆时针转动且速度为v =10 m /s 的传送带.用轻质细线连接甲、乙两物体,中间夹一轻质弹簧,弹簧与甲、乙两物体不拴接.甲的质量为m 1=3 kg ,乙的质量为m 2=1 kg ,甲、乙均静止在光滑的水平面上.现固定乙,烧断细线,甲离开弹簧后进入半圆轨道并可以通过D 点,且过D 点时对轨道的压力恰好等于甲的重力.传送带与乙物体间的动摩擦因数为0.6,重力加速度g 取10 m/s 2,甲、乙两物体可看作质点.图4(1)求甲球离开弹簧时的速度;(2)若甲固定,乙不固定,细线烧断后乙可以离开弹簧滑上传送带,求乙在传送带上滑行的最远距离;(3)甲、乙均不固定,烧断细线以后,求甲和乙能否再次在AB 面上水平碰撞?若碰撞,求再次碰撞时甲、乙的速度;若不会再次碰撞,请说明原因.解析 (1)设甲离开弹簧时的速度大小为v 0,运动至D 点的过程中机械能守恒: 12m 1v 20=m 1g ·2R +12m 1v 2D 在最高点D ,由牛顿第二定律,有2m 1g =m 1v 2D R联立解得:v 0=4 3 m/s(2)甲固定,烧断细线后乙的速度大小为v 乙,由能量守恒得E p =12m 1v 20=12m 2v 2乙得v 乙=12 m/s之后乙滑上传送带做匀减速运动:μm 2g =m 2a 得a =6 m/s 2乙速度为零时离A 端最远,最远距离为:s =v 2乙2a=12 m<20 m即乙在传送带上滑行的最远距离为12 m.(3)甲、乙均不固定,烧断细线后,设甲、乙速度大小分别为v 1、v 2,甲、乙分离瞬间动量守恒:m 1v 1=m 2v 2甲、乙弹簧组成的系统能量守恒:E p =12m 1v 20=12m 1v 21+12m 2v 22 答案 (1)4 3 m/s (2)12 m (3)见解析 解得:v 1=2 3 m/s ,v 2=6 3 m/s 甲沿轨道上滑时,设上滑最高点高度为h , 则12m 1v 21=m 1gh 得h =0.6 m<0.8 m则甲上滑不到等圆心位置就会返回,返回AB 面上时速度大小仍然是v 1=2 3 m/s 乙滑上传送带,因v 2=6 3 m /s<12 m/s ,则乙先向右做匀减速运动,后向左匀加速. 由对称性可知乙返回AB 面上时速度大小仍然为v 2=6 3 m/s故甲、乙会再次相撞,碰撞时甲的速度为2 3 m/s ,方向向右,乙的速度为6 3 m/s ,方向向左。

能量和动量的综合应用(超详细)

能量和动量的综合应用(超详细)

【本讲主要内容】能量和动量的综合应用相互作用过程中的能量转化及动量守恒的问题【知识掌握】【知识点精析】1. 应用动量和能量的观点求解的问题综述:该部分是力学中综合面最广,灵活性最大,内容最为丰富的部分。

要牢固树立能的转化和守恒思想,许多综合题中,当物体发生相互作用时,常常伴随多种能量的转化和重新分配的过程。

因此,必须牢固地以守恒(系统总能量不变)为指导,这样才能正确无误地写出能的转化和分配表达式。

2. 有关机械能方面的综述:(1)机械能守恒的情况:例如,两木块夹弹簧在光滑水平面上的运动,过程中弹性势能和木块的动能相互转化;木块冲上放在光滑面上的光滑曲面小车的过程,上冲过程中,木块的动能减少,转化成木块的重力势能和小车的动能。

等等……(2)机械能增加的情况:例如,炸弹爆炸的过程,燃料的化学能转化成弹片的机械能;光滑冰面上两个人相互推开的过程,生物能转化成机械能。

等等……(3)机械能减少的情况:例如,“子弹击木块”模型,包括“木块在木板上滑动”模型等;这类模型为什么动量守恒,而机械能不守恒(总能量守恒),请看下面的分析:如图1所示,一质量为M 的长木板B 静止在光滑水平面上,一质量为m 的小滑块A 以水平速度v 0从长木板的一端开始在长木板上滑动,最终二者相对静止以共同速度一起滑行。

滑块A 在木板B 上滑动时,A 与B 之间存在着相互作用的滑动摩擦力,大小相等,方向相反,设大小为f 。

因水平面光滑,合外力为零,以A 、B 为系统,动量守恒。

(过程中两个滑动摩擦力大小相等,方向相反,作用时间相同,对系统总动量没有影响,即系统的内力不影响总动量)。

由动量守恒定律可求出共同速度0v m M m v += 上述过程中,设滑块A 对地的位移为s A ,B 对地位移为s B 。

由图可知,s A ≠s B ,且s A =(s B +Δs ),根据动能定理:对A :W fA =2020202B 21)(212121)(mv m M mv m mv mv s s f -+=-=∆+- 对B :202B fB )(21021mM mv M Mv fs W +=-== 以上两式表明:滑动摩擦力对A 做负功,对B 做正功,使A 的动能减少了,使B 的动(1)撤去力F 后木块B 能够达到的最大速度是多大?(2)木块A 离开墙壁后,弹簧能够具有的弹性势能的最大值多大?分析:本题第一问,撤去力F 后木块B 只在弹簧弹力作用下运动,木块A 不动,弹簧的弹性势能转化为木块B 的动能,弹簧第一次恢复原长时,木块B 有最大速度。

动量和能量的综合应用 例题精选

动量和能量的综合应用 例题精选

动量和能量的综合应用 例题精选例题1: 如图,质量为3m 、长度为L 的木块放于光滑水平面上,质量为m 的子弹以初速度v 0水平向右射入木块,穿出木块时速度变为0.4v 0 ,设木块对子弹的阻力始终保持不变,求:(1)子弹穿出木块后,木块的速度大小;(2)子弹穿出木块中所受平均阻力大小。

解:(1)子弹与木块组成的系统动量守恒,有mv 0=0.4mv 0+3mv ,则子弹穿出后木块的速度为v=0.2v 0 ;(2)子弹穿越木块的过程中,设木块的位移为s , 则据动能定理对子弹有:-f(s+L)= 12m(0.4v 0)2-12mv 02 对木块有: fs=123mv 2 联立解得:f=9mv 20/(25L)变式训练1:如图所示,质量为M 的木块固定在水平面上,有一质量为m 的子弹以初速度v 1水平射向木块,并恰能射穿,设木块的厚度及木块对子弹的平均阻力恒定. 试问若木块可以在光滑的水平面上自由滑动,子弹要射穿该木块速度至少应为多少?【解析】若木块在光滑水平面上能自由滑动,设子弹以速度v 0射入恰好打穿木块,那么子弹穿出木块时(子弹看为质点),子弹和木块具有相同的速度,把此时的速度记为v ,把子弹和木块当做一个系统,在它们作用前后系统的动量守恒,即 mv 0=(m +M )v设木块对子弹阻力为f, 木块厚度为d ,对系统应用能量守恒得fd =12mv 02-12(M +m )v 2由上面两式消去v 可得fd =12mv 02-12(m +M )(mv 0m +M)2 整理得12mv 20=m +M Mfd -----------------① 据题目条件,在木板固定时对子弹列动能定理有 -fd= - 12mv 12 ………………②联立① ② 可得v 0v 1例题2:如图甲质量m B =1 kg 的平板小车B 在光滑水平面上以v1=1 m/s 的速度向左匀速运动.当t =0时,质量m A =2 kg 的小铁块A 以v 2=2 m/s 的速度水平向右滑上小车,A 与小车间的动摩擦因数为μ=0.2.若A 最终没有滑出小车,取水平向右为正方向,g =10 m/s 2,则:1)A 在小车上停止运动时,小车的速度为多大?(2)小车的长度至少为多少?(3)在图乙所示的坐标纸中画出1.5 s 内的小车B 运动的速度—时间图象.解:因p A =m A v 2>p B =m B v 1,所以系统的总动量水平向右,即A 在车上停止运动时,它们必定以共同速度向右运动.此过程中A 的运动方向不变,做减速运动,而B 是先向左做匀减速运动而后再向右做匀加速运动,最后与A 达到共同速度.(1)A 在小车上停止运动时,A 、B 以共同速度运动,设其速度为v ,取水平向右为正方向,由动量守恒定律得 m A v 2-m B v 1=(m A +m B )v解得:v =1 m/s.(2)设小车的最小长度为L ,由功能关系得μmAgL =12m A v 22+12m B v 12-12(m A +m B )v 2 解得:L =0.75 m.(3)设小车匀变速运动的时间为t ,由动量定理得μmAgt =mB (v +v 1)解得:t =0.5 s故小车的速度—时间图象如右图所示.答案:(1)1 m/s (2)0.75 m (3)见解析图变式训练2:如图所示,一质量m 2=0.20 kg 的平顶小车,车顶右端放一质量m 3=0.25 kg 的小物体,小物体可视为质点,与车顶之间的动摩擦因数μ=0.4,小车静止在光滑的水平轨道上.现有一质量m 1=0.05 kg 的子弹以水平速度v 0=12 3 m/s 射中小车左端,并留在车中.子弹与车相互作用时间很短.若使小物体不从车顶上滑落,g 取10 m/s 2.求:(1)小车的最小长度应为多少?最后小物体与小车的共同速度为多少?(2)小物体在小车上相对小车滑行的时间.【解析】(1)子弹进入小车的过程中,子弹与小车组成的系统动量守恒,由动量守恒定律得 m 1v 0=(m 2+m 1)v 1 ①由三物体组成的系统动量守恒得(m 2+m 1)v 1=(m 2+m 1+m 3)v 2 ②设小车最小长度为L ,三物体相对静止后,对系统利用能量守恒定律得12(m 2+m 1)v 21-12(m 2+m 1+m 3)v 22=μm 3gL ③联立以上方程解得L =0.9 m车与物体的共同速度为 v 2=2.1 m/s(或1.2 3 m/s)(2)以m 3为研究对象,利用动量定理得:μm 3gt =m 3v 2 ④解得t =0.52 s(或0.3 3 s)例题3:如图所示,一轻质弹簧两端连着物体A 和物体B ,放在光滑的水平面上,水平速度为v 0的子弹射中物体A 并嵌在其中(作用时间极短),已知物体B 的质量为m B ,物体A 的质量是物体B的质量的34,子弹的质量是物体B 的质量的14,求(1) 弹簧被压缩至最短时的弹性势能;(2) B 物体的最大速度。

动量与能量的综合应用.ppt

动量与能量的综合应用.ppt

解:1.锤自由下落,碰桩前速度v1向下,
v1= ① 2.碰后,已知锤上升高度为(h-l),故刚 碰后向上的速度为v2= ②
3.设碰后桩的速度为v,方向向下,由动量 守恒得,mv1=Mv-mv2 ③ 4 .桩下降的过程中,根据动能定理得 Mgl -Fl = 0 - Mv2 ④
由①、②、③、④式得 F=Mg+ ( )[2h-l+2 ]
B
l2
A l1
P
解: 1.设A、B质量均为m,A刚接触B时速度为v1(碰前),
1 2 1 2 A运动 l1过程由动能定理得, mv mv mgl 1 0 1 1 2 2
2.碰撞过程中动量守恒,令碰后A、B共同运动的速度为v2 m v1 =2m v2 ( 2) 3.碰后设A、B在弹簧恢复到原长时, 共同速度为v3,在 这过程中,由动能定理,有
解得 h=0.16m.
题型3、动量守恒与能量守恒的综合应用 如图,长木板ab的b端固定一档板,木板连同档 板的质量为M=4.0 kg,a、b间距离s=2.0 m。木 板位于光滑水平面上。在木板a端有一小物块, 其质量m=1.0 kg,小物块与木板间的动摩擦因 数μ =0.10,它们都处于静止状态。现令小物块 以初速v0=4.0 m/s沿木板向前滑动,直到和档 板相碰。碰撞后,小物块恰好回到a端而不脱离 木板。求碰撞过程中损失的机械能。
解:设木板和物块最后共同速度为v,由动量守恒定律
mv0=(m+M)v E =
设全过程损失的机械能为E,
mv02- (m+M)v2
滑块与挡板间碰撞过程中损失的机械能为Q1,小滑块与木板 见摩擦损失的机械能为Q2,即为摩擦过程中产生的热量,由能 量守恒 得:Q1=
mv02- (m+M)v2 –Q2

6动量和能量的综合应用(已改)

6动量和能量的综合应用(已改)

专题 动量和能量的综合应用考点1、碰撞作用 碰撞类问题应注意: ⑴由于碰撞时间极短,作用力很大,因此动量守恒;⑵动能不增加,即1212k k k k E '+E 'E +E ≤; ⑶速度要符合物理情景:碰前两物体同向运动,即v v 后前>,碰撞后, ≥v v 后前;例1、A 、B 两球在光滑水平面上沿同一直线运动,A 球动量为p A =5kg·m/s ,B 球动量为p B =7kg·m/s ,当A 球追上B 球时发生碰撞,则碰后A 、B 两球的动量可能是:( ) A .p A =6kg·m/s 、p B =6kg·m/s B .p A =3kg·m/s 、p B =9kg·m/s C .p A =-2kg·m/s 、p B =14kg·m/s D .p A =5kg·m/s 、p B =17kg·m/s考点2、爆炸和反冲⑴爆炸时内力远大于外力,系统动量守恒; ⑵由于有其它形式的能转化为动能(机械能),系统动能增大。

例2.2007年10月24日18时05分,中国首枚绕月探测卫星“嫦娥一号”顺利升空,24日18时29分,搭载 “嫦娥一号”的“长征三号甲”火箭成功实施“星箭分离”。

此次采用了爆炸方式分离星箭,爆炸产生的推力将置于箭首的卫星送入预定轨道运行。

为了保证在爆炸时卫星不致于由于受到过大冲击力而损坏,分离前关闭火箭发动机,用“星箭分离冲击传感器”测量和控制爆炸作用力,使星箭分离后瞬间火箭仍沿原方向飞行,关于星箭分离,下列说法正确的是( )A .由于爆炸,系统总动能增大,总动量增大B .卫星的动量增大,火箭的动量减小,系统动量守恒C .星箭分离后火箭速度越大,系统的总动能越大D .若爆炸作用力持续的时间一定,则星箭分离后火箭速度越小,卫星受到的冲击力越大考点3、两个定理的结合例3:如图所示,质量m1为4kg 的木板A 放在水平面C 上,木板与水平面间的动摩擦因数μ=0.24,木板右端放着质量m2为1.0kg 的小物块B(视为质点),它们均处于静止状态.木板突然受到水平向右的12N S ∙的瞬时冲量I 作用开始运动,当小物块滑离木板时,木板的动能1k E 为8.0J ,小物块的动能2k E 为0.50J ,重力加速度取10m/s2,求:(1)瞬时冲量作用结束时木板的速度V0. (2)木板的长度L考点4、动量与圆周运动的结合例4..如图8所示,A、B两球质量均为m,期间有压缩的轻短弹簧处于锁定状态。

高考物理总复习 专题五 动力学、动量和能量观点的综合应用

高考物理总复习 专题五 动力学、动量和能量观点的综合应用

专题五动力学、动量和能量观点的综合应用力学的三个基本观点:①动力学观点(牛顿运动定律、运动学基本规律);②能量观点(动能定理、机械能守恒定律、功能关系与能量守恒定律);③动量观点(动量定理、动量守恒定律).熟练应用三大观点分析和解决综合问题是本专题要达到的目的.考点一碰撞模型的拓展模型1“弹簧系统”模型1.模型图2.模型特点(1)在能量方面,由于弹簧的形变会具有弹性势能,系统的总动能将发生变化,若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒.(2)在动量方面,系统动量守恒.(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大.(4)弹簧处于原长时,弹性势能为零.例1. (多选)如图甲所示,物块a、b间拴接一个压缩后被锁定的轻质弹簧,整个系统静止放在光滑水平地面上,其中a物块最初与左侧固定的挡板相接触,b物块质量为1 kg.现解除对弹簧的锁定,在a物块离开挡板后,b物块的v ­ t关系图象如图乙所示.则下列分析正确的是( )A.a的质量为1 kgB.a的最大速度为4 m/sC.在a离开挡板后,弹簧的最大弹性势能为1.5 JD.在a离开挡板前,a、b及弹簧组成的系统动量和机械能都守恒模型2“滑块—木板”模型1.模型图2.模型特点(1)当滑块和木板的速度相等时木板的速度最大,两者的相对位移也最大.(2)系统的动量守恒,但系统的机械能不守恒,摩擦力与两者相对位移的乘积等于系统机械能的减少量,当两者的速度相等时,系统机械能损失最大.例2.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m.P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L.物体P 置于P 1的最右端,质量为2m 且可看作质点.P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起.P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内).P 与P 2之间的动摩擦因数为μ.求:(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧的最大压缩量x 和相应的弹性势能E p . 教你解决问题第一步:审条件 挖隐含①“与静止的P 2发生碰撞,碰撞时间极短”隐含→ P 的速度不变. ②“碰撞后P 1与P 2粘连在一起”隐含→ P 1、P 2获得共同速度. ③“P 压缩弹簧后被弹回并停在A 点”隐含→ P 1、P 2、P 三者有共同速度及整个碰撞过程中的弹性势能变化为零.第二步:审情景 建模型 ①P 1与P 2碰撞建模→ 碰撞模型.②P 与P 2之间的相互作用建模→ 滑块—滑板模型. 第三步:审过程 选规律 ①动量守恒定律―→求速度.②能量守恒定律―→求弹簧的压缩量x 及弹性势能E p .模型3“子弹打木块”模型 1.模型图2.模型特点(1)子弹打入木块若未穿出,系统动量守恒,能量守恒,即mv 0=(m+M)v,Q热=fL相对=12mv02-12(M+m)v2.(2)若子弹穿出木块,有mv0=mv1+Mv2,Q热=fL相对=1 2mv−0212mv−1212Mv22.例3.(多选)如图所示,一质量m2=0.25 kg的平顶小车,车顶右端放一质量m3=0.30 kg的小物体,小物体可视为质点,与车顶之间的动摩擦因数μ=0.45,小车静止在光滑的水平轨道上.现有一质量m1=0.05 kg 的子弹以水平速度v0=18 m/s射中小车左端,并留在车中,子弹与车相互作用时间很短.若使小物体不从车顶上滑落,g取10ms2.下列分析正确的是( )A.小物体在小车上相对小车滑行的时间为13sB.最后小物体与小车的共同速度为3 m/sC.小车的最小长度为1.0 mD.小车对小物体的摩擦力的冲量为0.45 N·s跟进训练1.[黑龙江哈尔滨模拟](多选)如图所示,两个小球A、B大小相等,质量分布均匀,分别为m1、m2,m1<m2,A、B与轻弹簧拴接,静止在光滑水平面上,第一次用锤子在左侧与A球心等高处水平快速向右敲击A,作用于A的冲量大小为I1,第二次两小球及弹簧仍静止在水平面上,用锤子在右侧与B球心等高处水平快速向左敲击B,作用于B的冲量大小为I2,I1=I2,则下列说法正确的是( )A.若两次锤子敲击完成瞬间,A、B两球获得的动量大小分别为p1和p2,则p1=p2B.若两次锤子敲击分别对A、B两球做的功为W1和W2,则W1=W2C.若两次弹簧压缩到最短时的长度分别为L1和L2,则L1<L2D.若两次弹簧压缩到最短时,A、弹簧、B的共同速度大小分别为v1和v2,则v1>v22.如图甲所示,质量为M=3.0 kg的平板小车C静止在光滑的水平面上,在t=0时,两个质量均为1.0 kg的小物体A和B同时从左右两端水平冲上小车,1.0 s内它们的v ­ t图象如图乙所示,g取10 m/s2.(1)小车在1.0 s内的位移为多大?(2)要使A、B在整个运动过程中不会相碰,车的长度至少为多少?考点二力学三大观点解决多过程问题1.三大力学观点的选择技巧根据问题类型,确定应采用的解题方法.一般来说,只涉及作用前后的速度问题,考虑采用动量守恒和能量守恒;涉及运动时间与作用力的问题,采用动量定理,考虑动能定理;涉及变化情况分析时由于涉及变量较多,一般采用图象法等.2.三大解题策略(1)力的观点解题:要认真分析运动状态的变化,关键是求出加速度.(2)两大定理解题:应确定过程的初、末状态的动量(动能),分析并求出过程中的冲量(功).(3)过程中动量或机械能守恒:根据题意选择合适的初、末状态,列守恒关系式,一般这两个守恒定律多用于求某状态的速度(率).例4.如图所示,质量为M=100 g、带有光滑弧形槽的滑块放在水平面上,弧形槽上圆弧对应的圆心角为θ=60°,半径R=0.2 m,与其处于同一竖直平面内的光滑半圆轨道cd的半径为r=0.2 m,c、d两点为半圆轨道竖直直径的两个端点,轨道与水平面相切于c点,已知b点左侧水平面光滑,b、c间的水平面粗糙.两质量分别为m1=100 g、m2=50 g的物块P、Q放在水平面上,两物块之间有一轻弹簧(弹簧与两物块均不拴接),用外力将轻弹簧压缩一定长度后用细线将两物块拴接在一起,初始时弹簧储存的弹性势能为E p=0.6 J.某时刻将细线烧断,弹簧将两物块弹开,两物块与弹簧分离时,物块P还未滑上弧形槽,物块Q还未滑到b点,此后立即拿走弹簧,物块P冲上弧形槽,已知/s2,两物块均可看成质点,忽略物块P冲上弧形槽瞬间的能量损失.(1)通过计算分析物块P能否从滑块左侧冲出,若能,求出物块P上升的最大高度,若不能,求出物块P和滑块的最终速度大小.(2)要使物块Q能冲上半圆轨道且不脱离半圆轨道,则物块Q与水平面间的动摩擦因数μ应满足什么条件?跟进训练3.如图所示,在竖直平面(纸面)内固定一内径很小、内壁光滑的圆管轨道ABC,它由两个半径均为R的四分之一圆管顺接而成,A、C两端切线水平.在足够长的光滑水平台面上静置一个光滑圆弧轨道DE,圆弧轨道D 端上缘恰好与圆管轨道的C端内径下缘水平对接.一质量为m的小球(可视为质点)以某一水平速度从A点射入圆管轨道,通过C点后进入圆弧轨道运动,过C点时轨道对小球的压力为2mg,小球始终没有离开圆弧轨道.已知圆弧轨道DE的质量为2m.重力加速度为g.求:(1)小球从A点进入圆管轨道时的速度大小;(2)小球沿圆弧轨道上升的最大高度.专题五 动力学、动量和能量观点的综合应用 关键能力·分层突破例1 解析:由题意可知,当b 的速度最小时,弹簧恰好恢复原长,设此时a 的速度最大为v ,由动量守恒定律和机械能守恒定律得:m b v 0=m b v 1+m a v ,12m b v 02=12m b v 12+12m a v 2,代入数据解得:m a =0.5 kg ,v =4m/s ,故A 错误,B 正确;两物块的速度相等时,弹簧弹性势能最大,由动量守恒定律和机械能守恒定律得:m b v 0=(m a +m b )v 2,E p =12m b v −0212(ma + mb)v 22,代入数据解得:E p =1.5 J ,故C 正确;在a 离开挡板前,a 、b 及弹簧组成的系统受到挡板向右的力,所以系统机械能守恒、动量不守恒,故D 错误.答案:BC例2 解析:(1)P 1、P 2碰撞瞬间,P 的速度不受影响,根据动量守恒mv 0=2mv 1,解得v 1=v02最终三个物体具有共同速度,根据动量守恒: 3mv 0=4mv 2, 解得v 2=34v 0(2)根据能量守恒,系统动能减少量等于因摩擦产生的内能:12×2mv +1212×2mv −0212×4mv 22=2mgμ(L+x)×2解得x =v 0232μg-L在从第一次共速到第二次共速过程中,弹簧弹性势能等于因摩擦产生的内能,即:E p=2mgμ(L+答案:(1)v0234v0(2)v0232μg-L 116mv02例3 解析:子弹射入小车的过程中,由动量守恒定律得:m1v0=(m1+m2)v1,解得v1=3 m/s;小物体在小车上滑行过程中,由动量守恒定律得(m1+m2)v1=(m1+m2+m3)v2,解得v2=1.5 m/s,选项B错误;以小物体为研究对象,由动量定理得I=μm3gt=m3v2,解得t=13s,选项A正确;小车对小物体的摩擦力的冲量为I=0.45 N·s,选项D正确;当系统相对静止时,小物体在小车上滑行的距离为l,由能量守恒定律得μm3gl=1 2(m1+m2)v−1212(m1+m2+m3)v22,解得l=0.5 m,所以小车的最小长度为0.5 m,选项C错误.答案:AD1.解析:由动量定理I=Δp可知,由于I1=I2,则两次锤子敲击完成瞬间有p1=p2,故A正确;由于两次锤子敲击完成瞬间两球具有动量大小相等,由E k=p 22m可知,A球获得的初动能更大,由动能定理可知W1>W2,故B错误;由动量守恒定律可得m1v0=(m1+m2)v,得v=m1v0m1+m2,由能量守恒有12m1v02=12(m1+m2)v2+E p,得E p=m1m22(m1+m2)v02,由于p1=p2,则质量越大的,初速度越小,即A球获得的初速度较大,则敲击A球后弹簧的最大弹性势能较大,即L1<L2,故C正确;由动量守恒定律可得m1v0=(m1+m2)v=p,得v=m1v0m1+m2=pm1+m2,则两次共速的速度大小相等,即v1=v2,故D错误.答案:AC2.解析:(1)由v-t图象可知:A、B的加速度大小为a A=2 m/s2,a B=2 m/s2由牛顿第二定律可知,f A=2 N,f B=2 N所以平板小车在1.0 s内所受合力为零,故小车不动,即位移为零.(2)由图象可知0~1.0 s内A、B的位移分别为:=3 m,=1 m1.0 s后,系统的动量守恒,三者的共同速度为v,则mv A=(M+2m)v,代入数据得:v=0.4 m/s1.0 s后A减速,小车和B一起加速且a车=23+1m/s2=0.5 m/s2车的长度至少为l=x A+x B+例 4 解析:(1)弹簧将两物块弹开的过程中弹簧与两物块组成的系统动量守恒、机械能守恒,设弹簧恢复原长后P、Q两物块的速度大小分别为v1、v2,则有0=m1v1-m2v2,E p=12m1v+1212m2v22解得v1=2 m/s,v2=4 m/s物块P以速度v1冲上滑块,P与滑块相互作用的过程中水平方向动量守恒,系统的机械能守恒,假设P不能从滑块的左侧冲出,且P在滑块上运动到最高点时的速度为v ,距水平面的高度为h ,则有m 1v 1=(m 1+M )v ,12m 1v 12=12(m 1+M)v 2+m 1gh解得h =0.1 m由于h =R(1-cos 60°),所以物块P 恰好不能从滑块左侧冲出,假设成立,之后物块P 沿弧形槽从滑块上滑下,设物块P 返回到水平面时的速度为v 3、滑块的速度为v 4,由动量守恒定律和机械能守恒定律得m 1v 1=m 1v 3+Mv 4,12m 1v 12=12m 1v +3212Mv 42 解得v 3=0,v 4=2 m/s.(2)若Q 恰能经过d 点,则Q 在d 点的速度v d 满足m 2g =m 2v d2rQ 从b 点运动到半圆轨道最高点d 的过程,由动能定理有-μm 2gx bc -2m 2gr =12m 2v −d 212m2v 22解得Q 恰能经过半圆轨道最高点时μ=0.3若Q 恰好能运动到与半圆轨道圆心等高点,则由动能定理得-μm 2g 解得Q 恰能运动到与半圆轨道圆心等高点时μ=0.6 若Q 恰能到达c 点,则由动能定理得-μm 2g 解得Q 恰能运动到c 点时μ=0.8分析可知,要使Q 能冲上半圆轨道且不脱离半圆轨道,应使0<μ≤0.3或0.6≤μ<0.8.答案:(1)见解析 (2)0<μ≤0.3或0.6≤μ<0.83.解析:(1)小球过C 点时,有2mg +mg =m v C2R,解得v C =√3gR .小球从A 到C ,由机械能守恒定律得12mv 02=12mv C 2+mg·2R,联立解得v 0=√7gR(2)小球冲上圆弧轨道后的运动过程,在水平方向上,由动量守恒定律得mv C=(m+2m)v共.由机械能守恒定律得12mv C2=12(m+2m)v共2+mgh,联立解得h=R.答案:(1)√7gR(2)R。

动量动能定理机械能守恒能量守恒综合运用

动量动能定理机械能守恒能量守恒综合运用

动量动能定理机械能守恒能量守恒综合运用假设我们有一个木箱,质量为m,放在一个水平的滑道上。

初始时,木箱以速度v0沿滑道向右运动。

滑道底部和末端的垂直高度分别为h1和h2,木箱在滑道上运动的过程中还受到了一个与速度方向相反的恒力F。

首先我们来分析初始时刻的动能和势能。

木箱的初始动能为:(1) K = 1/2 mv0^2木箱的初始势能为:(2) U = mgh1其中,g为重力加速度。

根据机械能守恒定律,系统的总机械能守恒,即初始机械能和末端机械能的和保持不变。

因为末端只有势能,所以有:(3) K + U = mg(h1 + h2)接下来我们来考虑木箱在滑道上受到的恒力F对动能的影响。

根据动量动能定理,恒力对物体的作用会改变物体的动能。

恒力对木箱的总功为:(4)W=Fx其中x为恒力F作用的距离。

假设木箱在滑道上受到恒力F作用的时间为t,速度增加的大小为△v。

根据动量动能定理,恒力对木箱的总功等于木箱速度的变化与质量的乘积:(5)W=△K=m△v因此,根据(4)式和(5)式,我们可以得到:(6)m△v=Fx接下来我们将初始动能、势能以及木箱在滑道上受到的恒力F对动能的影响结合起来,综合运用动量动能定理、机械能守恒和能量守恒。

根据能量守恒定律,初始机械能和末端机械能的和保持不变,即:(7) K + U + W = mg(h1 + h2)代入(1)式和(2)式,可以得到:(8) 1/2 mv0^2 + mgh1 + m△v = mg(h1 + h2)再由(6)式,即:m△v=Fx代入(8)式,得到:1/2 mv0^2 + mgh1 + Fx = mg(h1 + h2)通过以上运算我们可以发现,当木箱滑到末端时,速度变为v,并且速度、质量和滑道的高度之间存在关系。

同时可以通过给定的恒力F、质量m、初始速度v0和滑道的高度差h1和h2来求解滑道上的各个物理量。

这样我们就用到了动量动能定理、机械能守恒和能量守恒这三个定律进行综合运用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【本讲主要内容】能量和动量的综合应用相互作用过程中的能量转化及动量守恒的问题【知识掌握】【知识点精析】1. 应用动量和能量的观点求解的问题综述:该部分是力学中综合面最广,灵活性最大,内容最为丰富的部分。

要牢固树立能的转化和守恒思想,许多综合题中,当物体发生相互作用时,常常伴随多种能量的转化和重新分配的过程。

因此,必须牢固地以守恒(系统总能量不变)为指导,这样才能正确无误地写出能的转化和分配表达式。

2. 有关机械能方面的综述:(1)机械能守恒的情况:例如,两木块夹弹簧在光滑水平面上的运动,过程中弹性势能和木块的动能相互转化;木块冲上放在光滑面上的光滑曲面小车的过程,上冲过程中,木块的动能减少,转化成木块的重力势能和小车的动能。

等等……(2)机械能增加的情况:例如,炸弹爆炸的过程,燃料的化学能转化成弹片的机械能;光滑冰面上两个人相互推开的过程,生物能转化成机械能。

等等…… (3)机械能减少的情况:例如,“子弹击木块”模型,包括“木块在木板上滑动”模型等;这类模型为什么动量守恒,而机械能不守恒(总能量守恒),请看下面的分析:如图1所示,一质量为M 的长木板B 静止在光滑水平面上,一质量为m 的小滑块A 以水平速度v 0从长木板的一端开始在长木板上滑动,最终二者相对静止以共同速度一起滑行。

滑块A 在木板B 上滑动时,A 与B 之间存在着相互作用的滑动摩擦力,大小相等,方向相反,设大小为f 。

因水平面光滑,合外力为零,以A 、B 为系统,动量守恒。

(过程中两个滑动摩擦力大小相等,方向相反,作用时间相同,对系统总动量没有影响,即系统的内力不影响总动量)。

由动量守恒定律可求出共同速度0v m M m v += 上述过程中,设滑块A 对地的位移为s A ,B 对地位移为s B 。

由图可知,s A ≠s B , 且s A =(s B +Δs ),根据动能定理:对A :W fA =2020202B 21)(212121)(mv m M mv m mv mv s s f -+=-=∆+-对B :202B fB )(21021mM mv M Mv fs W +=-== 以上两式表明:滑动摩擦力对A 做负功,对B 做正功,使A 的动能减少了,使B 的动能增加了。

我们计算一下系统机械能的变化量:)21(21))((2121)(21202020202mv m M M mv m M mv m M mv v m M E +-=-++=-+=∆ 我们再研究一下W fA 和W fB 的代数和W fA +W fB s f fs s s f ∆-=+∆+-=B B )(又W fA +W fB )21(21)2121(202202mv m M M Mv mv mv +-=+-= 从中可以看出:本题中一对滑动摩擦力做功的代数和(为负值)恰为系统机械能的变化量,其绝对值即s f ∆正是系统机械能的减少量,即“摩擦生热”。

即A 的动能减少了,B 的动能增加了,但二者的变化的绝对值并不等,其差值|W fA |-|W fB |=f (s A -s B )=f Δs ,等于A 和B 系统的机械能减少量,即“摩擦生热”,即系统的初始机械能(木块A 的动能)等于系统末态机械能(木板的动能和木块的动能)加上产生的内能。

可以认为摩擦力对滑块A 做负功使其动能减少,一部分通过摩擦力对木板B 做正功,转移给木板B ,另一部分转化为系统的内能。

简言之,相互作用的滑动摩擦力对A 、B 作用时间相同,而A 、B 发生的位移不同,使得系统动量守恒而机械能不守恒。

【解题方法指导】例1. 两个木块A 和B 的质量分别为m A =3kg ,m B =2kg ,A 、B 之间用一轻弹簧连接在一起。

A 靠在墙壁上,用力F 推B 使两木块之间弹簧压缩,地面光滑,如图2所示。

当轻弹簧具有8J 的势能时,突然撤去力F 将木块B 由静止释放。

求:(1)撤去力F 后木块B 能够达到的最大速度是多大?(2)木块A 离开墙壁后,弹簧能够具有的弹性势能的最大值多大?分析:本题第一问,撤去力F 后木块B 只在弹簧弹力作用下运动,木块A 不动,弹簧的弹性势能转化为木块B 的动能,弹簧第一次恢复原长时,木块B 有最大速度。

弹簧第一次恢复原长后,由于惯性,木块B 将继续运动,弹簧被拉长,木块A 将离开墙壁。

木块A 离开墙壁后,只有弹簧弹力做功,三者组成的系统机械能仍守恒,且墙壁对此系统不再施加外力,所以此系统的动量也守恒。

此后当木块A 和B 具有相同的速度时,弹簧形变最大,弹簧具有最大弹性势能。

解答:(1)设撤去力F 后,木块B 的最大速度v 0,根据机械能守恒有2021v m E B = B02m E v =∴=22m/s (2)设两木块具有的相同速度为v ,根据动量守恒定律有m B v 0=(m A +m B )v2 礼花弹在爆炸过程中,化学能转化成机械能的大小即为弹片动能的改变量, 2222121221221mv v m v m E -+=∆ 解得ΔE =180J评价:该题是机械能增加的情况:炸弹爆炸的过程,燃料的化学能转化成弹片的机械能;光滑冰面上两个人相互推开的过程,生物能转化成机械能。

【考点突破】【考点指要】动量和能量的综合问题,是高中力学最重要的综合问题,也是难度较大的问题,分析这类问题时,应首先建立清晰的物理图景,抽象出物理模型,选择物理规律,建立方程进行求解。

例3. 在水平桌面上固定有一块质量为M的木块,一粒质量为m,速度为v0的子弹沿水平方向射入木块,子弹深入木块d后停在其中。

若将该木块放在光滑水平面上,仍用原来的子弹射击木块,求子弹射入木块的深度d′多大?有多少机械能转化为内能?设两种情况下子弹相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P,右边有一小球C沿轨道以速度v0射向B球,如图3所示。

C与B发生碰撞并立即结成一个整体D,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A球与挡板P发生碰撞,碰后,A、D都静止不动,A与P接触而不粘连。

过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失)。

已知A、B、C三球的质量均为m。

(1)求弹簧长度刚被锁定后A 球的速度?(2)求在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能?分析:C 与B 发生碰撞结成一个整体D 的过程,是一个瞬时的碰撞过程,可以不考虑弹簧对它们的作用,以B 、C 为系统,属于完全非弹性碰撞,满足动量守恒,机械能有损失。

C 与B 合为D 后,向左压缩弹簧,D 减速,A 加速,D 的动能减少,A 的动能增加,弹簧弹性势能增加,A 和D 速度相等时,弹簧最短,弹性势能最大,此过程A 和D 及弹簧组成的系统合外力为零,满足动量守恒,且只有弹簧弹力做功,满足机械能守恒。

A 球与挡板P 发生碰撞后A 、D 都静止不动,说明P 对A 和D 及弹簧组成的系统做了负功,使它们的动能减为零,由于此前弹簧已被锁定,所以,此时弹簧仍具有最大弹性势能。

解除锁定后,开始A 不动,弹性势能转化成D 的动能,弹簧达到原长时D 的速度最大,此后A 被带动离开P ,D 减速、A 加速,弹簧开始伸长,弹性势能增加,当A 和D 速度相等时,弹性势能达到最大。

从A 离开P 开始,A 和D 及弹簧组成的系统合外力为零,满足动量守恒,且只有弹簧弹力做功,满足机械能守恒。

解答:(1)设C 球与B 球粘结成D 时,D 的速度为v 1,由动量守恒,有:mv 0=2mv 1 ① 当弹簧压至最短时,D 与A 的速度相等,设此速度为v 2,由动量守恒有:2mv 1=3mv 2 ② 由①②两式得A 的速度为v 2=031v ③(2)设弹簧长度被锁定后,贮存在弹簧中的势能为E p ,由能量守恒有:2221)3(21)2(21v m v m =+E P ④撞击P 后,A 与D 的动能都为零,解除锁定后,当弹簧刚恢复到自然长度时,势能全部转化成D 的动能,设D 的速度为v 3,则有:E p =23)2(21v m ⑤ 以后弹簧伸长,A 球离开挡板,并获得速度。

当A 、D 的速度相等时,弹簧伸至最长,设此时速度为v 4,由动量守恒,有:2mv 3=3mv 4 ⑥ 当弹簧伸到最长时,其势能最大,设此势能为E p ′,由能量守恒有:P 2423)3(21)2(21E v m v m '+= ⑦解以上各式得 P E '=20361mv 评述:从解答过程可以看出,本题过程复杂,但我们可以把复杂的过程分解成多个我们熟知的模型,这是解决复杂问题的一般方法。

一定要仔细分析物理过程,确定好关键的物理状态,认真分析每一过程的特点(受力情况、能量转化情况等),选择合适的规律解决。

请同学们类比一下,本题的多个过程与我们熟悉的哪些模型类同。

例5. (上海市高考)柴油打桩机的重锤由气缸、活塞等若干部件组成,气缸与活塞间有柴油与空气的混合物。

在重锤与桩碰撞的过程中,通过压缩使混合物燃烧,产生高温高压气体,从而使桩向下运动,锤向上运动。

现把柴油打桩机和打桩过程简化如下:柴油打桩机重锤的质量为m ,锤在桩帽以上高度为h 处(如图4)从静止开始沿竖直轨道自由落下,打在质量为M (包括桩帽)的钢筋混凝土桩子上。

同时,柴油燃烧,产生猛烈推力,锤和桩分离,这一过程的时间极短。

随后,桩在泥土中向下移动一距离l 。

已知锤反跳后到达最高点时,锤与已停下的桩帽之间的距离也为h (如图5)。

已知m =1.0×103kg ,M =2.0×103kg ,h =2.0m ,l =0.20m ,重力加速度g =10m/s 2,混合物的质量不计。

设桩向下移动的过程中泥土对桩的作用力F 是恒力,求此力的大小。

解答:锤自由下落,碰桩前速度v 1向下,gh v 21= ①碰后,已知锤上升高度为(h -l ),故刚碰后向上的速度为)(22l h g v -= ②设碰后桩的速度为V ,方向向下,由动量守恒,21mv MV mv -= ③桩下降的过程中,根据功能关系,Fl Mgl MV =+221 ④ 由①、②、③、④式得])(22)[(l h h l h Mm l mg Mg F -+-+= ⑤ 代入数值,得5101.2⨯=F N ⑥【达标测试】1. 如图1所示,在光滑水平面上有两块木块A 和B ,质量均为m ,B 的左侧固定一轻质弹簧。

开始时B 静止,A 以v 0速度向右运动与B 发生无机械能损失的碰撞,那么A 与B 碰撞过程中( )A. 任意时刻,A 、B 系统的总动量应守恒B. 任意时刻,A 、B 系统的总动能恒定不变C. 当弹簧压缩到最短长度时,A 与B 具有相同的速度D. 当弹簧恢复到原长时,A 与B 具有相同的速度2. 质量为m的子弹以初速度v0水平射入一静止在光滑水平面上,质量为M的木块中,但并未穿透,则下述说法正确的是()A. 子弹动能的增量等于子弹克服阻力做功的负值B. 子弹克服阻力做的功等于系统增加的内能C. 子弹克服阻力f做的功等于f的反作用对木块做的功D. 子弹机械能的损失量等于木块获得的动能和系统损失的机械能之和3. 质量为6.0kg的物体A静止在水平桌面上,另一个质量为2.0kg的物体B以5.0m/s的水平速度与物体A相碰,碰撞后物体B以1.0m/s的速度反向弹回,则相碰撞过程中损失的机械能是______J。

相关文档
最新文档