(历年中考)四川省宜宾市中考数学试题 含答案
2024年四川省宜宾市中考真题数学试卷含答案解析
2024年四川省宜宾市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.2的绝对值是( )A .12-B .12C .2-D .2【答案】D【分析】根据绝对值的意义即可求解.【详解】解:2的绝对值是是2,故选:D .【点睛】本题考查了绝对值的计算,掌握正数的绝对值是它本身,零的绝对值是零,负数的绝对值是它的相反数,是解题的关键.2.下列计算正确的是( )A .2a a a +=B .532a a -=C .2326x x x ⋅=D .32()()x x x -÷-=【答案】C【分析】本题主要考查了同底数幂的运算法则,合并同类项.根据同底数幂的运算法则以及合并同类项的法则,逐个进行计算,即可解答.【详解】解:A 、22a a a a +=≠,故本选项不符合题意;B 、5322a a a -=≠,故本选项不符合题意;C 、2326x x x ⋅=,故本选项符合题意;D 、32()()x x x x -÷-=-≠,故本选项不符合题意;故选:C .3.某校为了解九年级学生在校的锻炼情况,随机抽取10名学生,记录他们某一天在校的锻炼时间(单位:分钟):65,67,75,65,75,80,75,88,78,80.对这组数据判断正确的是( )A .方差为0B .众数为75C .中位数为77.5D .平均数为754.如图,AB 是O 的直径,若60CDB ∠=︒,则ABC ∠的度数等于( )A .30︒B .45︒C .60︒D .90︒【答案】A 【分析】本题考查了直径所对的圆周角为直角,同弧或等弧所对的圆周角相等.根据直径所对的圆周角为直角得到90ACB ∠=︒,同弧或等弧所对的圆周角相等得到60CDB A ∠=∠=︒,进一步计算即可解答.【详解】解:AB 是O 的直径,90ACB ∴∠=︒,60CDB ∠=︒ ,60A CDB ∴∠=∠=︒,9030ABC A ∴∠=︒-∠=︒,故选:A .5.元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,问快马几天可追上慢马?则快马追上慢马的天数是( )A .5天B .10天C .15天D .20天【答案】D【分析】本题考查了一元一次方程的应用.设快马x 天可以追上慢马,根据快马和慢马所走的路程相等建立方程,解出即可.【详解】解:设快马x 天可以追上慢马,据题题意:24015012150x x =+⨯,解得:20x =.答:快马20天可以追上慢马.故选:D .6.如果一个数等于它的全部真因数(含单位1,不含它本身)的和,那么这个数称为完美数.例如:6的真因数是1、2、3,且6123=++,则称6为完美数.下列数中为完美数的是( )A .8B .18C .28D .32【答案】C【分析】本题考查新定义,解题的关键是正确读懂新定义.根据新定义逐个判断即可得到答案.【详解】解∶∵81824=⨯=⨯,12478++=≠,∴8不是完美数,故选项A 不符合题意;∵181182936=⨯=⨯=⨯,123692118++++=≠,∴18不是完美数,故选项B 不符合题意;∵2812821447=⨯=⨯=⨯,12471428++++=,∴28是完美数,故选项C 符合题意;∵3213221648=⨯=⨯=⨯,1248163132++++=≠,∴32不是完美数,故选项D 不符合题意;故选:C7.如图是正方体表面展开图.将其折叠成正方体后,距顶点A 最远的点是( )A .B 点B .C 点C .D 点D .E 点【答案】B【分析】本题考查了平面图形和立体图形,把图形围成立体图形求解.【详解】解:把图形围成立方体如图所示:所以与顶点A 距离最远的顶点是C ,故选:B .8.某果农将采摘的荔枝分装为大箱和小箱销售,其中每个大箱装4千克荔枝,每个小箱装3千克荔枝.该果农现采摘有32千克荔枝,根据市场销售需求,大小箱都要装满,则所装的箱数最多为( )A .8箱B .9箱C .10箱D .11箱9.如图,ABC 内接于O ,BC 为O 的直径,AD 平分BAC ∠交O 于D .则AB AC AD+的值为( )A B C .D .【答案】A 【分析】本题考查了三角形的外接圆,特殊角的三角函数,圆周角定理,图形的旋转等知识点,合理作辅助线为解题的关键.作辅助线如图,先证明BD CD =,180ACD ABD ∠+∠=︒,从而可以得到旋转后的图形,再证明A DA ' 是等腰直角三角形,利用三角函数即可求得结果.【详解】解:如图,连接BD 、CD ,∵BC 是O 的直径,∴90BAC BDC ∠=∠=︒,∵AD 平分BAC ∠,∴BAD CAD ∠=∠,∴ BDDC =,∴BD CD =,在四边形ABDC 中,90BAC BDC ∠=∠=︒,∴180ACD ABD ∠+∠=︒,∴ADC △绕D 点逆时针旋转90︒,如图所示∴AB AC AB A B AA ''+=+=,∵由旋转可知A DB ADC '=∠∠,A D AD'=∴90A DA A DB BDA ADC BDA BDC ''∠=∠+∠=∠+∠=∠=︒,10.如图,等腰三角形ABC 中,AB AC =,反比例函数()0k y k x =≠的图象经过点A 、B 及AC 的中点M ,BC x ∥轴,AB 与y 轴交于点N .则AN AB的值为( )A .13B .14C .15D .25在等腰三角形ABC 中,AD BC ⊥设,k A a a ⎛⎫ ⎪⎝⎭,,k B b b ⎛⎫ ⎪⎝⎭,由BC 中点为D ,AB AC =,故等腰三角形∴BD DC a b ==-,11.如图,在ABC 中,2AB AC ==,以BC 为边作Rt BCD ,BC BD =,点D 与点A 在BC 的两侧,则AD 的最大值为( )A .2+B .6+C .5D .812.如图,抛物线()2<0y ax bx c a =++的图象交x 轴于点()30A -,、()10B ,,交y 轴于点C .以下结论:①0a b c ++=;②320a b c ++<;③当以点A 、B 、C 为顶点的三角形是等腰三角形时,c =④当3c =时,在AOC 内有一动点P ,若2OP =,则23CP AP +.其中正确结论有( )A .1个B .2个C .3个D .4个∴423OH==,二、填空题13.分解因式:222m -= .【答案】2(1)(1)m m +-【详解】解:222m -=22(1)m -=2(1)(1)m m +-.故答案为2(1)(1)m m +-.14.分式方程1301x x +-=-的解为 .15.如图,正五边形ABCDE 的边长为4,则这个正五边形的对角线AC 的长是 .∵五边形ABCDE 是正五边形,∴(5ABC BCD ∠=∠=∴180BCA BAC ∠=∠=∴10836ABF ∠=︒-︒=16.如图,在平行四边形ABCD 中,24AB AD ==,,E 、F 分别是边CD AD 、上的动点,且CE DF =.当AE CF +的值最小时,则CE = .∵四边形ABCD 为平行四边形,∴2AB DC ==,4AD BC ==,AD BC ∥∴D ECG ∠=∠,CD CG =∵AD CG ,∴AED GEC ∽△△,∴AD DE GC CE=,即422CE CE -=,17.如图,一个圆柱体容器,其底部有三个完全相同的小孔槽,分别命名为甲槽、乙槽、丙槽.有大小质地完全相同的三个小球,每个小球标有从1至9中选取的一个数字,且每个小球所标数字互不相同.作如下操作:将这三个小球放入容器中,摇动容器使这三个小球全部落入不同的小孔槽(每个小孔槽只能容下一个小球),取出小球记录下各小孔槽的计分(分数为落入该小孔槽小球上所标的数字),完成第一次操作.再重复以上操作两次.已知甲槽、乙槽、丙槽三次操作计分之和分别为20分、10分、9分,其中第一次操作计分最高的是乙槽,则第二次操作计分最低的是 (从“甲槽”、“乙槽”、“丙槽”中选填).【答案】乙槽【分析】设第一次操作乙得x 分,第二次操作乙得y 分,第三次操作乙得z 分,根据题意,得10x y z ++=,当1y z ==时,x 最大,为8,根据每次操作数字不相同,故数字1不可能再出现,故第二次操作最小的是乙槽.本题考查了方程的应用,特殊解,熟练掌握整数解是解题的关键.【详解】设第一次操作乙得x 分,第二次操作乙得y 分,第三次操作乙得z 分,根据题意,得10x y z ++=,当1y z ==时,x 最大,为8,根据每次操作数字不相同,故数字1不可能再出现,故第二次操作计分最低的是乙槽.故答案为:乙槽.18.如图,正方形ABCD 的边长为1,M 、N 是边BC 、CD 上的动点.若45MAN ∠=︒,则MN 的最小值为 .将ADN △顺时针旋转∴DAN BAP ∠=∠,∠∴点P 、B 、M 、C 共线,∵45MAN ∠=︒,∴MAP MAB BAP ∠=∠+三、解答题19.(1)计算:()022sin302︒-+--(2)计算:2211111a a a ⎫⎛÷- ⎪--+.=.120.某校为了落实“五育并举”,提升学生的综合素养.在课外活动中开设了四个兴趣小组:A.插花组:B.跳绳组;C.话剧组;D.书法组.为了解学生对每个兴趣小组的参与情况,随机抽取了部分学生进行调查,并将调查结果绘制成不完整的统计图.请结合图中信息解答下列问题:(1)本次共调查了___________名学生,并将条形统计图补充完整;(2)话剧组所对应扇形的圆心角为___________度;(3)书法组成绩最好的4名学生由3名男生和1名女生构成.从中随机抽取2名参加比赛,请用列表或画树状图的方法,求刚好抽到1名男生与1名女生的概率.;故答案为:40;(2)解:83607240⨯︒=︒,故答案为:72;(3)解:画树状图如下:共有12种等可能的结果,其中刚好抽到1名男生与1名女生的结果共有6121.如图,点D、E分别是等边三角形ABC边BC、AC上的点,且BD CE=,BE与AD交于点F.求证:AD BE=.【答案】见解析【分析】本题考查了等边三角形的性质,全等三角形的判定与性质,根据等边三角形的性质得出AB BC=,60ABD BCE∠=∠=︒,然后根据SAS证明ABD BCE≌,根据全等三角形的性质即可得证.【详解】证明∶∵ABC是等边三角形,∴AB BC =,60ABD BCE ∠=∠=︒,又BD CE =,∴()SAS ABD BCE ≌△△,∴AD BE =.22.宜宾地标广场位于三江汇合口(如图1,左侧是岷江,右侧是金沙江,正面是长江).某同学在数学实践中测量长江口的宽度,他在长江口的两岸选择两个标点C 、D ,在地标广场上选择两个观测点A 、B (点A 、B 、C 、D 在同一水平面,且AB CD ).如图2所示,在点A 处测得点C 在北偏西18.17︒方向上,测得点D 在北偏东21.34︒方向上;在B 处测得点C 在北偏西21.34︒方向上,测得点D 在北偏东18.17︒方向上,测得100AB =米.求长江口的宽度CD 的值(结果精确到1米).(参考数据:sin18.170.31︒≈,cos18.170.95︒≈,tan18.170.33︒≈,sin 21.340.36︒≈,cos21.340.93︒≈,tan 21.340.39︒≈)【答案】长江口的宽度CD 为1200米.【分析】如图,过C 作CH AB ⊥于H ,过A 作AG CD ⊥于G ,过B 作BK CD ⊥于K ,而AB CD ∥,可得四边形AHCG ,ABKG 都是矩形,由题意可得:18.17CAG DBK ∠=∠=︒,21.34GAD CBK ∠=∠=︒,证明AGC BKD ≌,可得CG DK =,设AH x =,CH y =,再利用三角函数建立方程组求解即可.【详解】解:如图,过C 作CH AB ⊥于H ,过A 作AG CD ⊥于G ,过B 作BK CD ⊥于K ,而AB CD ∥,∴四边形AHCG ,ABKG 都是矩形,∴100GK AB ==,CG AH =,CH =∵由题意可得:18.17CAG DBK ∠=∠=∴18.17ACH CAG ∠=∠=︒,BCH ∠=∵90AGC BKD ∠=∠=︒,∴AGC BKD ≌,∴CG DK =,23.如图,一次函数.()0y ax b a =+≠的图象与反比例函数()0k y k x=≠的图象交于点()()1,4,1A B n -、.(1)求反比例函数和一次函数的表达式;(2)利用图象,直接写出不等式k ax b x+<的解集;(3)已知点D 在x 轴上,点C 在反比例函数图象上.若以A 、B 、C 、D 为顶点的四边形是平行四边形,求点C 的坐标.24.如图,ABC 内接于O ,10AB AC ==,过点A 作AE BC ∥,交O 的直径BD 的延长线于点E ,连接CD .(1)求证:AE 是O 的切线;(2)若1tan2ABE ∠=,求CD 和DE 的长.∵OA OB OC ==,∴OAB ABO ∠=∠,OAC ∠∵AB AC =,∴A ABC CB =∠∠,∵BD 是O 的直径,∴90BAD BCD ∠=∠=︒,∵1tan 2ABE ∠=,AB AC =∴5AD =,25.如图,抛物线2y x bx c =++与x 轴交于点()1,0A -和点B ,与y 轴交于点()0,4C -,其顶点为D .(1)求抛物线的表达式及顶点D 的坐标;(2)在y 轴上是否存在一点M ,使得BDM 的周长最小.若存在,求出点M 的坐标;若不存在,请说明理由;(3)若点E 在以点()3,0P 为圆心,1为半径的P 上,连接AE ,以AE 为边在AE 的下方作等边三角形AEF ,连接BF .求BF 的取值范围.则B M BM'=,∴DM BM DM B M'+=+设直线DB'的解析式为y则40325 24k nk n-+=⎧⎪⎨+=-⎪⎩,。
四川省宜宾市中考数学试题(解析版)
2021年四川省宜宾市中考数学试卷一、选择题〔8题×3分=24分〕1.9的算术平方根是〔〕A.3 B.﹣3C.±3D.2.据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是〔〕A.55×106B.×108 C.×106D.×1073.下面的几何体中,主视图为圆的是〔〕A.B.C.D.22x+=0的根的情况是〔〕4.一元二次方程4x﹣A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断5.如图,BC∥DE,假设∠A=35°,∠C=24°,那么∠E等于〔〕A.24°B.59°C.60°D.69°6.某单位组织职工开展植树活动,植树量与人数之间关系如图,以下说法不正确的是〔〕第1页〔共26页〕A.参加本次植树活动共有30人B.每人植树量的众数是4棵C.每人植树量的中位数是5棵D.每人植树量的平均数是5棵7.如图,在矩形ABCD中BC=8,CD=6,将△ABE沿BE折叠,使点A恰好落在对角线BD上F处,那么DE的长是〔〕A.3B.C.5D.8.如图,抛物线y1=〔x+1〕2+1与y2=a〔x﹣4〕2﹣3交于点A〔1,3〕,过点A作x轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点.那么下列结论:①a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2其中正确结论的个数是〔〕第2页〔共26页〕A.1个B.2个C.3个D.4个二、填空题〔8题×3分=24分〕9.分解因式:xy2﹣4x=.10.在平面直角坐标系中,点M〔3,﹣1〕关于原点的对称点的坐标是.11.如图,在菱形ABCD中,假设AC=6,BD=8,那么菱形ABCD的面积是.12.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,假设∠AOB=15°,那么∠AOD的度数是.13.假设关于x、y的二元一次方程组的解满足x+y>0,那么m的取值范围是.14.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是.15.如图,⊙O的内接正五边形ABCDE的对角线AD与BE相交于点G,AE=2,那么EG的长是.16.规定:[x]表示不大于x的最大整数,〔x〕表示不小于 x的最小整数,[x〕第3页〔共26页〕表示最接近x的整数〔x≠,n为整数〕,例如:[2.3]=2,〔〕=3,[〕=2.那么以下说法正确的选项是.〔写出所有正确说法的序号〕①当时,[x]+〔x〕+[x〕=6;②当x=﹣时,[x]+〔x〕+[x〕=﹣7;③方程4[x]+3〔x〕+[x〕=11的解为1<x<;④当﹣1<x<1时,函数y=[x]+〔x〕+x的图象与正比例函数y=4x的图象有两个交点.三、解答题〔本大题共8个题,共72分〕.〔〕计算0﹣〔〕﹣1117+|﹣2|〔2〕化简〔1﹣〕÷〔〕.18.如图,点B、E、C、F在同一条直线上,AB=DE,∠A=∠D,AC∥DF.求证:BE=CF.19.端午节放假期间,小明和小华准备到宜宾的蜀南竹海〔记为A〕、兴文石海〔记为B〕、夕佳山民居〔记为C〕、李庄古镇〔记为D〕的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点都被选中的可能性相同.〔1〕小明选择去蜀南竹海旅游的概率为.〔2〕用树状图或列表的方法求小明和小华都选择去兴文石海旅游的概率.20.用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.21.如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边去两点B、C测得∠α=30°,∠β=45,°量得BC长为100米.求河的宽度〔结果保存根号〕.第4页〔共26页〕22.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A〔﹣3,(m+8〕,B〔n,﹣6〕两点.1〕求一次函数与反比例函数的解析式;2〕求△AOB的面积.23.如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.〔1〕求证:直线CE是⊙O的切线.〔2〕假设BC=3,CD=3,求弦AD的长.24.如图,抛物线y=﹣x2+bx+c与x轴分别交于A〔﹣1,0〕,B〔5,0〕两点.1〕求抛物线的解析式;2〕在第二象限内取一点C,作CD垂直X轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;第5页〔共26页〕(3〕在〔2〕的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?假设存在,请出点Q的坐标;假设不存在,请说明理由.第6页〔共26页〕2021年四川省宜宾市中考数学试卷参考答案与试题解析一、选择题〔8题×3分=24分〕1.9的算术平方根是〔〕A.3B.﹣3C.±3D.【考点】22:算术平方根.【分析】根据算术平方根的定义解答.【解答】解:∵32=9,9的算术平方根是3.应选:A.2.据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是〔〕A.55×106B.×108C.×106D.×107【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤a<10,n为整数.确||定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:×107,应选:D.3.下面的几何体中,主视图为圆的是〔〕A.B.C.D.【考点】U1:简单几何体的三视图.第7页〔共26页〕【分析】根据常见几何体的主视图,可得答案.【解答】解:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;应选:C.22x+=0的根的情况是〔〕4.一元二次方程4x﹣A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断【考点】AA:根的判别式.【分析】根据方程的系数结合根的判别式,即可得出△=0,由此即可得出原方程有两个相等的实数根.【解答】解:在方程4x2﹣2x+ =0中,△=〔﹣2〕2﹣4×4×〔〕=0,∴一元二次方程4x2﹣2x+=0有两个相等的实数根.应选B.5.如图,BC∥DE,假设∠A=35°,∠C=24°,那么∠E等于〔〕∵A.24°B.59°C.60°D.69°【考点】JA:平行线的性质.【分析】先由三角形的外角性质求出∠CBE的度数,再根据平行线的性质得出∠E=∠CBE即可.【解答】解:∵∠A=35°,∠C=24°,∴∠CBE=∠A+∠C=59°,BC∥DE,第8页〔共26页〕∴∠E=∠CBE=59°;应选:B.6.某单位组织职工开展植树活动,植树量与人数之间关系如图,以下说法不正确的是〔〕A.参加本次植树活动共有 30人B.每人植树量的众数是4棵C.每人植树量的中位数是 5棵D.每人植树量的平均数是5棵【考点】VC:条形统计图;W2:加权平均数;W4:中位数;W5:众数.【分析】A、将人数进行相加,即可得出结论A正确;B、由种植4棵的人数最多,可得出结论B正确;C、由4+10=14,可得出每人植树量数列中第15、16个数为5,即结论C正确;D、利用加权平均数的计算公式,即可求出每人植树量的平均数约是棵,结论D错误.此题得解.【解答】解:A、∵4+10+8+6+2=30〔人〕,∴参加本次植树活动共有30人,结论A正确;B、∵10>8>6>4>2,∴每人植树量的众数是4棵,结论B正确;C、∵共有30个数,第15、16个数为5,∴每人植树量的中位数是5棵,结论C正确;D、∵〔3×4+4×10+5×8+6×6+7×2〕÷30≈〔棵〕,∴每人植树量的平均数约是棵,结论D不正确.应选D.第9页〔共26页〕7.如图,在矩形ABCD中BC=8,CD=6,将△ABE沿BE折叠,使点A恰好落在对角线BD上F处,那么DE的长是〔〕A.3B.C.5D.【考点】PB:翻折变换〔折叠问题〕;LB:矩形的性质.【分析】由ABCD为矩形,得到∠BAD为直角,且三角形BEF与三角形BAE全等,利用全等三角形对应角、对应边相等得到EF⊥BD,AE=EF,AB=BF,利用勾股定理求出BD的长,由BD﹣BF求出DF的长,在Rt△EDF中,设EF=x,表示出ED,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出DE的长.【解答】解:∵矩形ABCD,∴∠BAD=90°,由折叠可得△BEF≌△BAE,EF⊥BD,AE=EF,AB=BF,在Rt△ABD中,AB=CD=6,BC=AD=8,根据勾股定理得:BD=10,即FD=10﹣6=4,设EF=AE=x,那么有ED=8﹣x,根据勾股定理得:x2+42=〔8﹣x〕2,第10页〔共26页〕解得:x=3〔负值舍去〕,那么DE=8﹣3=5,应选C8.如图,抛物线y1=〔x+1〕2+1与y2=a〔x﹣4〕2﹣3交于点A〔1,3〕,过点A作x轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点.那么下列结论:①a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2其中正确结论的个数是〔〕A.1个B.2个C.3个D.4个【考点】H3:二次函数的性质;H2:二次函数的图象;KW:等腰直角三角形.【分析】把点A坐标代入y2,求出a 的值,即可得到函数解析式;令,求出y=3A、B、C的横坐标,然后求出BD、AD的长,利用勾股定理的逆定理以及结合二次函数图象分析得出答案.【解答】解:∵抛物线y1=〔x+1〕2+1与y2〔﹣〕2﹣3交于点A〔1,3〕,=ax43=a〔1﹣4〕2﹣3,解得:a=,故①正确;E是抛物线的顶点,∴AE=EC,∴无法得出AC=AE,故②错误;第11页〔共26页〕当y=3时,3=〔x+1〕2+1,解得:x1=1,x2=﹣3,故B〔﹣3,3〕,D〔﹣1,1〕,那么AB=4,AD=BD=2,AD2+BD2=AB2,∴③△ABD是等腰直角三角形,正确;∵〔x+1〕2+1=〔x﹣4〕2﹣3时,解得:x1=1,x2=37,∴当37>x>1时,y1>y2,故④错误.应选:B.二、填空题〔8题×3分=24分〕9.分解因式:xy2﹣4x= x〔y+2〕〔y﹣2〕.【考点】55:提公因式法与公式法的综合运用.【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x〔y2﹣4〕=x〔y+2〕〔y﹣2〕,故答案为:x〔y+2〕〔y﹣2〕10.在平面直角坐标系中,点M〔3,﹣1〕关于原点的对称点的坐标是〔﹣3,1〕.【考点】R6:关于原点对称的点的坐标.【分析】根据两点关于原点对称,那么两点的横、纵坐标都是互为相反数解答.【解答】解:点M〔3,﹣1〕关于原点的对称点的坐标是〔﹣3,1〕.故答案为:〔﹣3,1〕.11.如图,在菱形ABCD中,假设AC=6,BD=8,那么菱形ABCD的面积是24.第12页〔共26页〕【考点】L8:菱形的性质.【分析】根据菱形的面积等于对角线乘积的一半列式计算即可得解.【解答】解:∵菱形ABCD的对角线AC=6,BD=8,∴菱形的面积S=AC?BD=×8×6=24.故答案为:24.12.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,假设∠AOB=15°,那么∠AOD的度数是60°.【考点】R2:旋转的性质.【分析】如图,首先运用旋转变换的性质求出∠AOC的度数,结合∠AOB=27°,即可解决问题.【解答】解:如图,由题意及旋转变换的性质得:∠AOC=45°,∵∠AOB=15°,∴∠AOD=45°+15°=60°,故答案为:60°.13.假设关于x、y的二元一次方程组的解满足xy>0,那么m的取值范+围是m>﹣2.第13页〔共26页〕【考点】C6:解一元一次不等式;97:二元一次方程组的解.【分析】首先解关于x和y的方程组,利用m表示出x和y,代入x+y>0即可得到关于m的不等式,求得m的范围.【解答】解:,+②得2x+2y=2m+4,那么x+y=m+2,根据题意得m+2>0,解得m>﹣2.故答案是:m>﹣2.14.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是50〔1﹣x〕2=32.【考点】AC:由实际问题抽象出一元二次方程.【分析】根据某药品经过连续两次降价,销售单价由原来50元降到32元,平均每次降价的百分率为x,可以列出相应的方程即可.【解答】解:由题意可得,50〔1﹣x〕2=32,故答案为:50〔1﹣x〕2=32.15.如图,⊙O的内接正五边形ABCDE的对角线AD与BE相交于点G,AE=2,那么EG的长是﹣1.【考点】MM:正多边形和圆.【分析】在⊙O的内接正五边形ABCDE中,设EG=x,易知:∠AEB=∠ABE=∠EAG=36°,∠BAG=∠AGB=72°,推出AB=BG=AE=2,由△AEG∽△BEA,可得第14页〔共26页〕AE2=EG?EB,可得22=x〔x+2〕,解方程即可.【解答】解:在⊙O的内接正五边形ABCDE中,设EG=x,易知:∠AEB=∠ABE=∠EAG=36°,BAG=∠AGB=72°,∴AB=BG=AE=2,∵∠AEG=∠AEB,∠EAG=∠EBA,∴△AEG∽△BEA,AE2=EG?EB,22=x〔x+2〕,解得x=﹣1+或﹣1﹣,EG=﹣1,故答案为﹣1.16.规定:[x]表示不大于x的最大整数,〔x〕表示不小于x的最小整数,[x〕表示最接近x的整数〔x≠,n为整数〕,例如:[2.3]=2,〔〕=3,[〕=2.那么以下说法正确的选项是②③.〔写出所有正确说法的序号〕①当时,[x]+〔x〕+[x〕=6;②当x=﹣时,[x]+〔x〕+[x〕=﹣7;③方程4[x]+3〔x〕+[x〕=11的解为1<x<;④当﹣1<x<1时,函数y=[x]+〔x〕+x的图象与正比例函数y=4x的图象有两个交点.【考点】FF:两条直线相交或平行问题;18:有理数大小比拟;CB:解一元一次不等式组.【分析】根据题意可以分别判断各个小的结论是否正确,从而可以解答此题.【解答】解:①当时,[x]+〔x〕+[x〕=[1.7]+〔〕+[〕=1+2+2=5,故①错误;②当x=﹣时,[x]+〔x〕+[x〕第15页〔共26页〕=[﹣2.1]+〔﹣〕+[﹣〕=〔﹣3〕+〔﹣2〕+〔﹣2〕=﹣7,故②正确;③当1<x<时,4[x]+3〔x〕+[x〕=4×1+3×2+1=4+6+1=11,故③正确;④∵﹣1<x<1时,∴当﹣1<x<﹣时,y=[x]+〔x〕+x=﹣1+0+x=x﹣1,当﹣<x<0时,y=[x]+〔x〕+x=﹣1+0+x=x﹣1,当x=0时,y=[x]+〔x〕+x=0+0+0=0,当0<x<时,y=[x]+〔x〕+x=0+1+x=x+1,当<x<1时,y=[x]+〔x〕+x=0+1+x=x+1,∵y=4x,那么x﹣1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,∴当﹣1<x<1时,函数y=[x]+〔x〕+x的图象与正比例函数y=4x的图象有三个交点,故④错误,故答案为:②③.三、解答题〔本大题共8个题,共72分〕17.〔1〕计算0﹣〔〕﹣12+|﹣|〔2〕化简〔1﹣〕÷〔〕.【考点】6C:分式的混合运算;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】〔1〕根据零指数幂、负整数指数幂、绝对值分别求出每个局部的值,再代入求出即可;2〕先算减法和分解因式,把除法变成乘法,最后根据分式的乘法法那么进行计算即可.【解答】解:〔1〕原式=1﹣4+2第16页〔共26页〕=﹣1;〔2〕原式=÷?.18.如图,点B、E、C、F在同一条直线上,AB=DE,∠A=∠D,AC∥DF.求证:BE=CF.【考点】KD:全等三角形的判定与性质.【分析】欲证BE=CF,那么证明两三角形全等,已经有两个条件,只要再有一个条件就可以了,而AC∥DF可以得出∠ACB=∠F,条件找到,全等可证.根据全等三角形对应边相等可得BC=EF,都减去一段EC即可得证.此题主要考查三角形全等的判定和全等三角形的对应边相等;要牢固掌握并灵活运用这些知识.【解答】证明:∵AC∥DF,∴∠ACB=∠F,在△ABC和△DEF中,,∴△ABC≌△DEF〔AAS〕;BC=EF,BC﹣CE=EF﹣CE,即BE=CF.19.端午节放假期间,小明和小华准备到宜宾的蜀南竹海〔记为A〕、兴文石海第17页〔共26页〕〔记为B〕、夕佳山民居〔记为C〕、李庄古镇〔记为D〕的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点都被选中的可能性相同.〔1〕小明选择去蜀南竹海旅游的概率为.2〕用树状图或列表的方法求小明和小华都选择去兴文石海旅游的概率.【考点】X6:列表法与树状图法;X4:概率公式.【分析】〔1〕利用概率公式直接计算即可;2〕首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去兴文石海旅游的情况,再利用概率公式即可求得答案.【解答】解:1〕∵小明准备到宜宾的蜀南竹海〔记为A〕、兴文石海〔记为B〕、夕佳山民居〔记为C〕、李庄古镇〔记为D〕的一个景点去游玩,∴小明选择去蜀南竹海旅游的概率=,故答案为:;〔2〕画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去兴文石海旅游的概率=.20.用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.【考点】B7:分式方程的应用.【分析】工作效率:设A型机器人每小时搬大米x袋,那么B型机器人每小时搬运〔x﹣20〕袋;工作量:A型机器人搬运700袋大米,B型机器人搬运500袋大米;工作时间就可以表示为:A型机器人所用时间=,B型机器人所用时间=,第18页〔共26页〕由所用时间相等,建立等量关系.【解答】解:设A型机器人每小时搬大米x袋,那么B型机器人每小时搬运〔x﹣20〕袋,依题意得:=,解这个方程得:x=70经检验x=70是方程的解,所以x﹣20=50.答:A型机器人每小时搬大米70袋,那么B型机器人每小时搬运50袋.21.如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边去两点B、C测得∠α=30°,∠β=45,°量得BC长为100米.求河的宽度〔结果保存根号〕.【考点】T8:解直角三角形的应用.【分析】直接过点A作AD⊥BC于点D,利用tan30°==,进而得出答案.【解答】解:过点A作AD⊥BC于点D,∵∠β=45,°∠ADC=90°,AD=DC,设AD=DC=xm,那么tan30°==,解得:x=50〔+1〕,答:河的宽度为50〔+1〕m.第19页〔共26页〕22.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A〔﹣3,m+8〕,B〔n,﹣6〕两点.1〕求一次函数与反比例函数的解析式;2〕求△AOB的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】〔1〕将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;2〕设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据S△AOB=S△AOC+S△BOC列式计算即可得解.【解答】解:〔1〕将A〔﹣3,m+8〕代入反比例函数y=得,=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,点A的坐标为〔﹣3,2〕,第20页〔共26页〕反比例函数解析式为y=﹣,将点B〔n,﹣6〕代入y=﹣得,﹣=﹣6,解得n=1,所以,点B的坐标为〔1,﹣6〕,将点A〔﹣3,2〕,B〔1,﹣6〕代入y=kx+b得,,解得,所以,一次函数解析式为y=﹣2x﹣4;2〕设AB与x轴相交于点C,令﹣2x﹣4=0解得x=﹣2,所以,点C的坐标为〔﹣2,0〕,所以,OC=2,S△AOB=S△AOC+S△BOC,×2×3+×2×1,=3+1,=4.23.如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.第21页〔共26页〕∠1〕求证:直线CE是⊙O的切线.2〕假设BC=3,CD=3,求弦AD的长.【考点】ME:切线的判定与性质.【分析】〔1〕连结OC,如图,由AD平分∠EAC得到∠1=∠3,加上∠1=∠2,那么3=∠2,于是可判断OD∥AE,根据平行线的性质得OD⊥CE,然后根据切线的判定定理得到结论;〔2〕由△CDB∽△CAD,可得==,推出CD2,可得〔3〕2,=CB?CA=3CA 推出CA=6,推出AB=CA﹣BC=3,==,设BD=K,AD=2K,在Rt△ADB中,可得2k2+4k2=5,求出k即可解决问题.【解答】〔1〕证明:连结OC,如图,AD平分∠EAC,∴∠1=∠3,OA=OD,∴∠1=∠2,∴∠3=∠2,OD∥AE,∵AE⊥DC,OD⊥CE,CE是⊙O的切线;2〕∵∠CDO=∠ADB=90°,∴∠2=∠CDB=∠1,∵∠C=∠C,∴△CDB∽△CAD,∴==,第22页〔共26页〕∴2CD=CB?CA,∴〔3〕2=3CA,CA=6,∴AB=CA﹣BC=3,==,设BD=K,AD=2K,在Rt△ADB中,2k2+4k2=5,∴k=,∴AD=.24.如图,抛物线y=﹣x2+bx+c与x轴分别交于A〔﹣1,0〕,B〔5,0〕两点.1〕求抛物线的解析式;2〕在第二象限内取一点C,作CD垂直X轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;3〕在〔2〕的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?假设存在,请出点Q的坐标;假设不存在,请说明理由.【考点】HF:二次函数综合题.第23页〔共26页〕【分析】〔1〕由A、B的坐标,利用待定系数法可求得抛物线的解析式;2〕由题意可求得C点坐标,设平移后的点C的对应点为C′,那么C′点的纵坐标为8,代入抛物线解析式可求得C′点的坐标,那么可求得平移的单位,可求得m的值;3〕由〔2〕可求得E点坐标,连接BE交对称轴于点M,过E作EF⊥x轴于点F,当BE为平行四边形的边时,过Q作对称轴的垂线,垂足为N,那么可证得△PQN≌△EFB,可求得QN,即可求得Q到对称轴的距离,那么可求得Q点的横坐标,代入抛物线解析式可求得Q点坐标;当BE为对角线时,由B、E的坐标可求得线段BE的中点坐标,设Q〔x,y〕,由P点的横坐标那么可求得Q点的横坐标,代入抛物线解析式可求得Q点的坐标.【解答】解:〔1〕∵抛物线y=﹣x2+bx+c与x轴分别交于A〔﹣1,0〕,B〔5,0〕两点,∴,解得,∴抛物线解析式为y=﹣x2+4x+5;2〕∵AD=5,且OA=1,OD=6,且CD=8,C〔﹣6,8〕,设平移后的点C的对应点为C′,那么C′点的纵坐标为8,代入抛物线解析式可得8=﹣x2+4x+5,解得x=1或x=3,C′点的坐标为〔1,8〕或〔3,8〕,∵C〔﹣6,8〕,∴当点C落在抛物线上时,向右平移了7或9个单位,m的值为7或9;3〕∵y=﹣x2+4x+5=﹣〔x﹣2〕2+9,∴抛物线对称轴为x=2,∴可设P〔2,t〕,由〔2〕可知E点坐标为〔1,8〕,第24页〔共26页〕①当BE为平行四边形的边时,连接BE交对称轴于点M,过E作EF⊥x轴于点F,当BE为平行四边形的边时,过Q作对称轴的垂线,垂足为N,如图,那么∠BEF=∠BMP=∠QPN,在△PQN和△EFB中∴△PQN≌△EFB〔AAS〕,NQ=BF=OB﹣OF=5﹣1=4,设Q〔x,y〕,那么QN=|x﹣2|,|x﹣2|=4,解得x=﹣2或x=6,当x=﹣2或x=6时,代入抛物线解析式可求得y=﹣7,Q点坐标为〔﹣2,﹣7〕或〔6,﹣7〕;②当BE为对角线时,∵B〔5,0〕,E〔1,8〕,∴线段BE的中点坐标为〔3,4〕,那么线段PQ的中点坐标为〔3,4〕,设Q〔x,y〕,且P〔2,t〕,x+2=3×2,解得x=4,把x=4代入抛物线解析式可求得y=5,Q〔4,5〕;综上可知Q点的坐标为〔﹣2,﹣7〕或〔6,﹣7〕或〔4,5〕.第25页〔共26页〕2021年6月26日第26页〔共26页〕。
初中毕业升学考试(四川宜宾卷)数学(解析版)(初三)中考真卷.doc
初中毕业升学考试(四川宜宾卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】﹣5的绝对值是()A. B. 5 C. D. ﹣5【答案】B【解析】试题分析:根据负数的绝对值是它的相反数,得|﹣5|=5.故选B.考点:绝对值.【题文】科学家在实验中检测出某微生物细胞直径约为0.0000035米,将0.0000035用科学记数法表示为( )A. 3.5×106B. 3.5×10-6C. 3.5×10-5D. 35×10-5【答案】A【解析】试题分析:0.0000035=3.5×10﹣6,故选A.考点:科学记数法—表示较小的数.【题文】如图,立体图形的俯视图是()A. B. C. D.【答案】C.【解析】试题分析:立体图形的俯视图是C.故选C.考点:简单组合体的三视图.【题文】半径为6,圆心角为120°的扇形的面积是()A. 3πB. 6πC. 9πD. 12π【答案】D评卷人得分【解析】试题分析:S==12π,故选D.考点:扇形面积的计算.【题文】如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A. B. C.3 D.【答案】A.【解析】试题分析:∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD==.故选A.考点:旋转的性质.【题文】如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8 B.5 C.6 D.7.2【答案】A.【解析】试题分析:连接OP,∵矩形的两条边AB、BC的长分别为6和8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD=10,∴OA=OD=5,∴S△ACD=S矩形ABCD=24,∴S△AOD=S△ACD=12,∵S△AOD=S△AOP+S△DOP=OA •PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,解得:PE+PF=4.8.故选A.考点:矩形的性质;和差倍分;定值问题.【题文】宜宾市某化工厂,现有A种原料52千克,B种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,则生产方案的种数为()A.4 B.5 C.6 D.7【答案】B.【解析】试题分析:设生产甲产品x件,则乙产品(20﹣x)件,根据题意得:,解得:8≤x≤12,∵x为整数,∴x=8,9,10,11,12,∴有5种生产方案:方案1,A产品8件,B产品12件;方案2,A产品9件,B产品11件;方案3,A产品10件,B产品10件;方案4,A产品11件,B产品9件;方案5,A产品12件,B产品8件;故选B.考点:二元一次方程组的应用;方案型.【题文】如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度【答案】C.【解析】试题分析:A.根据图象可得,乙前4秒行驶的路程为12×4=48米,正确;B.根据图象得:在0到8秒内甲的速度每秒增加4米秒/,正确;C.根据图象可得两车到第3秒时行驶的路程不相等,故本选项错误;D.在4至8秒内甲的速度都大于乙的速度,正确;故选C.考点:函数的图象.【题文】分解因式:=.【答案】.【解析】试题分析:原式==.故答案为:.考点:提公因式法与公式法的综合运用.【题文】如图,直线a∥b,∠1=45°,∠2=30°,则∠P=°.【答案】75.【解析】试题分析:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠1=45°,∠2=30°,∴∠EPM=∠2=30°,∠FPM=∠1=45°,∴∠EPF=∠EPM+∠FPM=30°+45°=75°,故答案为:75.考点:平行线的性质.【题文】已知一组数据:3,3,4,7,8,则它的方差为.【答案】4.4.【解析】试题分析:这组数据的平均数是:(3+3+4+7+8)÷5=5,则这组数据的方差为: [(3﹣5)2+(3﹣5)2+(4﹣5)2+(7﹣5)2+(8﹣5)2]=4.4.故答案为:4.4.考点:方差.【题文】今年“五一”节,A、B两人到商场购物,A购3件甲商品和2件乙商品共支付16元,B购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组.【答案】.【解析】试题分析:设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组:.故答案为:.考点:由实际问题抽象出二元一次方程组.【题文】在平面直角坐标系内,以点P(1,1)为圆心、为半径作圆,则该圆与y轴的交点坐标是.【答案】(0,3),(0,﹣1).【解析】试题分析:以(1,1)为圆心,为半径画圆,与y轴相交,构成直角三角形,用勾股定理计算得另一直角边的长为2,则与y轴交点坐标为(0,3)或(0,﹣1).故答案为:(0,3),(0,﹣1).考点:坐标与图形性质.【题文】已知一元二次方程的两根为、,则=.【答案】13.【解析】试题分析:根据题意得,,所以==.故答案为:13.考点:根与系数的关系.【题文】规定:logab(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:logaan=n.logNM=(a>0,a≠1,N>0,N≠1,M>0).例如:log223=3,log25=,则log1001000=_____.【答案】.【解析】试题分析:===.故答案为:.考点:实数的运算;新定义.【题文】如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP 翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有(写出所有正确结论的序号)①△CMP∽△BPA;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为;⑤当△ABP≌△ADN时,BP=.【答案】①②⑤.【解析】试题分析:∵∠APB=∠APE,∠MPC=∠MPN,∵∠CPN+∠NPB=180°,∴2∠NPM+2∠APE=180°,∴∠MPN+∠APE=90°,∴∠APM=90°,∵∠CPM+∠APB=90°,∠APB+∠PAB=90°,∴∠CPM=∠PAB,∵四边形ABCD是正方形,∴AB=CB=DC=AD=4,∠C=∠B=90°,∴△CMP∽△BPA.故①正确,设PB=x,则CP=4﹣x,∵△CMP∽△BPA,∴,∴CM=x(4﹣x),∴S四边形AMCB=[4+x(4﹣x)]×4==,∴x=2时,四边形AMCB面积最大值为10,故②正确,当PB=PC=PE=2时,设ND=NE=y,在RT△PCN中,解得,∴NE≠EP,故③错误,作MG⊥AB于G,∵AM==,∴AG最小时AM最小,∵AG=AB﹣BG=AB﹣CM=4﹣x(4﹣x)=,∴x=1时,AG最小值=3,∴AM的最小值==5,故④错误.∵△ABP≌△ADN时,∴∠PAB=∠DAN=22.5°,在AB上取一点K使得AK=PK,设PB=z,∴∠KPA=∠KAP=22.5°.∵∠PKB=∠KPA+∠KAP=45°,∴∠BPK=∠BKP=45°,∴PB=BK=z,AK=PK=z,∴z+z=4,∴z=,∴PB=故⑤正确.故答案为:①②⑤.考点:相似形综合题.【题文】(1)计算;;(2)化简:.【答案】(1)4;(2).【解析】试题分析:(1l试题分析:先根据题意得出∠DAB=∠CBA,再由ASA定理可得出△ADB≌△BCA,由此可得出结论.试题解析:∵∠CAB=∠DBA,∠CBD=∠DAC,∴∠DAB=∠CBA.在△ADB与△BCA中,∵∠CAB=∠DBA,AB=AB ,∠DAB=∠CBA,∴△ADB≌△BCA(ASA),∴BC=AD.考点:全等三角形的判定与性质.【题文】某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:根据图中提供的信息,解答下列问题:(1)a=,b=;(2)该校八年级学生共有600人,则该年级参加足球活动的人数约人;(3)该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.【答案】(1)16,17.5;(2)90;(3).【解析】试题分析:(1)首先求得总人数,然后根据百分比的定义求解;(2)利用总数乘以对应的百分比即可求解;(3)利用列举法,根据概率公式即可求解.试题解析:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案为:16,17.5;(2)600×[6÷(5÷12.5%)]=90(人),故答案为:90;(3)如图,∵共有20种等可能的结果,两名主持人恰为一男一女的有12种情况,∴则P(恰好选到一男一女)==.考点:列表法与树状图法;用样本估计总体;扇形统计图.【题文】2016年“母亲节”前夕,宜宾某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?【答案】20.【解析】试题分析:设第一批花每束的进价是x元/束,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×1.5可得方程.试题解析:设第一批花每束的进价是x元/束,依题意得:,解得x=20.经检验x=20是原方程的解,且符合题意.答:第一批花每束的进价是20元/束.考点:分式方程的应用.【题文】如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角β=60°,求树高AB(结果保留根号)【答案】.【解析】试题分析:作CF⊥AB于点F,设AF=x米,在直角△ACF中利用三角函数用x表示出CF的长,在直角△ABE 中表示出BE的长,然后根据CF﹣BE=DE即可列方程求得x的值,进而求得AB的长.试题解析:作CF⊥AB于点F,设AF=x米,在Rt△ACF中,tan∠ACF=,则CF==,在直角△ABE中,AB=x+BF=4+x(米),在直角△ABF中,tan∠AEB=,则BE==(x+4)米.∵CF﹣BE=DE,即.解得:x=,则AB=+4=(米).答:树高AB是米.考点:解直角三角形的应用-仰角俯角问题.【题文】如图,一次函数y=kx+b的图象与反比例函数(x>0)的图象交于A(2,﹣1),B(,n )两点,直线y=2与y轴交于点C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积.【答案】(1)y=2x﹣5,;(2).【解析】试题分析:(1)把A坐标代入反比例解析式求出m的值,确定出反比例解析式,再将B坐标代入求出n的值,确定出B坐标,将A与B坐标代入一次函数解析式求出k与b的值,即可确定出一次函数解析式;(2)利用两点间的距离公式求出AB的长,利用点到直线的距离公式求出点C到直线AB的距离,即可确定出三角形ABC面积.试题解析:(1)把A(2,﹣1)代入反比例解析式得:﹣1=,即m=﹣2,∴反比例解析式为,把B(,n)代入反比例解析式得:n=﹣4,即B(,﹣4),把A与B坐标代入y=kx+b中得:,解得:k=2,b=﹣5,则一次函数解析式为y=2x﹣5;(2)∵A(2,﹣1),B(,﹣4),直线AB解析式为y=2x﹣5,∴AB==,原点(0,0)到直线y=2x﹣5的距离d==,则S△ABC=AB•d=.考点:反比例函数与一次函数的交点问题;一次函数及其应用;反比例函数及其应用.【题文】如图1,在△APE中,∠PAE=90°,PO是△APE的角平分线,以O为圆心,OA为半径作圆交AE于点G.(1)求证:直线PE是⊙O的切线;(2)在图2中,设PE与⊙O相切于点H,连结AH,点D是⊙O的劣弧上一点,过点D作⊙O的切线,交PA于点B,交PE于点C,已知△PBC的周长为4,tan∠EAH=,求EH的长.【答案】(1)证明见解析;(2).【解析】试题分析:(1)作OH⊥PE,由PO是∠APE的角平分线,得到∠APO=∠EPO,判断出△PAO≌△PHO,得到OH=OA ,用“圆心到直线的距离等于半径”来得出直线PE是⊙O的切线;(2)先利用切线的性质和△PBC的周长为4求出PA=2,再用三角函数求出OA,AG,然后用三角形相似,得到EH=2EG,AE=2EH,用勾股定理求出EG,最后用切割线定理即可.试题解析:(1)如图1,作OH⊥PE,∴∠OHP=90°,∵∠PAE=90,∴∠OHP=∠OAP,∵PO是∠APE的角平分线,∴∠APO=∠EPO,在△PAO和△PHO中,∵∠OHP=∠OAP,∠OPH=∠OPA,OP=OP,∴△PAO≌△PHO,∴OH=OA,∵OA是⊙O的半径,∴OH是⊙O的半径,∵OH⊥PE,∴直线PE是⊙O的切线.(2)如图2,连接GH,∵BC,PA,PB是⊙O的切线,∴DB=DA,DC=CH,∵△PBC的周长为4,∴PB+PC+BC=4,∴PB+PC+DB+DC=4,∴PB+AB+PC+CH=4,∴PA+PH=4,∵PA,PH是⊙O的切线,∴PA=PH,∴PA=2,由(1)得,△PAO≌△PHO,∴∠OFA=90°,∴∠EAH+∠AOP=90°,∵∠OAP=90°,∴∠AOP+∠APO=90°,∴∠APO=∠EAH,∵tan∠EAH=,∴tan∠APO==,∴OA=PA=1,∴AG=2,∵∠AHG=90°,∵tan∠EAH==,∵△EGH∽△EHA,∴==,∴EH=2EG,AE=2EH,∴AE=4EG,∵AE=EG+AG,∴EG+AG=4EG,∴EG=AG=,∵EH是⊙O的切线,EGA是⊙O的割线,∴=EG×EA=EG×(EG+AG)==,∴EH=.考点:切线的判定与性质.【题文】如图,已知二次函数过(﹣2,4),(﹣4,4)两点.(1)求二次函数的解析式;(2)将沿x轴翻折,再向右平移2个单位,得到抛物线,直线y=m(m>0)交于M、N两点,求线段MN 的长度(用含m的代数式表示);(3)在(2)的条件下,、交于A、B两点,如果直线y=m与、的图象形成的封闭曲线交于C、D两点(C在左侧),直线y=﹣m与、的图象形成的封闭曲线交于E、F两点(E在左侧),求证:四边形CEFD是平行四边形.【答案】(1);(2);(3)证明见解析.【解析】试题分析:(1)根据待定系数法即可解决问题.(2)先求出抛物线y2的顶点坐标,再求出其解析式,利用方程组以及根与系数关系即可求出MN.(3)用类似(2)的方法,分别求出CD、EF即可解决问题.试题解析:(1)∵二次函数过(﹣2,4),(﹣4,4)两点,∴,解得:,∴二次函数的解析式.(2)∵=,∴顶点坐标(﹣3,),∵将沿x轴翻折,再向右平移2个单位,得到抛物线,∴抛物线的顶点坐标(﹣1,),∴抛物线为,由,消去y 整理得到,设,是它的两个根,则MN===;(3)由,消去y整理得到,设两个根为,,则CD===,由,消去y得到,设两个根为,,则EF===,∴EF=CD,EF∥CD,∴四边形CEFD是平行四边形.考点:二次函数综合题.。
2022年四川省宜宾市中考数学试卷(解析版)
2022年四川省宜宾市中考数学试卷(真题)一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上.1.(4分)(2022•宜宾)4的平方根是()A.2 B.﹣2 C.±2 D.162.(4分)(2022•宜宾)如图是由5个相同的正方体搭成的几何体,从正面看,所看到的图形是()A.B.C.D.3.(4分)(2022•宜宾)下列计算不正确的是()A.a3+a3=2a6B.(﹣a3)2=a6C.a3÷a2=a D.a2•a3=a5 4.(4分)(2022•宜宾)某校在中国共产主义青年团成立100周年之际,举行了歌咏比赛,七位评委对某个选手的打分分别为:91,88,95,93,97,95,94.这组数据的众数和中位数分别是()A.94,94 B.95,95 C.94,95 D.95,94 5.(4分)(2022•宜宾)如图,在△ABC中,AB=AC=5,D是BC上的点,DE∥AB交AC于点E,DF∥AC交AB于点F,那么四边形AEDF的周长是()A.5 B.10 C.15 D.206.(4分)(2022•宜宾)2020年12月17日,我国嫦娥五号返回器携带着月球样本玄武岩成功着陆地球.2021年10月19日,中国科学院发布了一项研究成果:中国科学家测定,嫦娥五号带回的玄武岩形成的年龄为20.30±0.04亿年.用科学记数法表示此玄武岩形成的年龄最小的为(单位:年)()A.2.034×108B.2.034×109C.2.026×108D.2.026×109 7.(4分)(2022•宜宾)某家具厂要在开学前赶制540套桌凳,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的桌凳比原计划多2套,结果提前3天完成任务.问原计划每天完成多少套桌凳?设原计划每天完成x 套桌凳,则所列方程正确的是()A.﹣=3 B.﹣=3C.﹣=3 D.﹣=38.(4分)(2022•宜宾)若关于x的一元二次方程ax2+2x﹣1=0有两个不相等的实数根,则a的取值范围是()A.a≠0 B.a>﹣1且a≠0 C.a≥﹣1且a≠0 D.a>﹣1 9.(4分)(2022•宜宾)如图,在矩形纸片ABCD中,AB=5,BC=3,将△BCD 沿BD折叠到△BED位置,DE交AB于点F,则cos∠ADF的值为()A.B.C.D.10.(4分)(2022•宜宾)已知m、n是一元二次方程x2+2x﹣5=0的两个根,则m2+mn+2m的值为()A.0 B.﹣10 C.3 D.1011.(4分)(2022•宜宾)已知抛物线y=ax2+bx+c的图象与x轴交于点A(﹣2,0)、B(4,0),若以AB为直径的圆与在x轴下方的抛物线有交点,则a的取值范围是()A.a≥B.a>C.0<a<D.0<a≤12.(4分)(2022•宜宾)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连结CE.下列结论:①BD=CE;②∠DAC=∠CED;③若BD=2CD,则=;④在△ABC内存在唯一一点P,使得PA+PB+PC的值最小,若点D在AP的延长线上,且AP的长为2,则CE=2+.其中含所有正确结论的选项是()A.①②④B.①②③C.①③④D.①②③④二、填空题:本大题共6个小题,每小题4分,共24分.请把答案直接填在答题卡对应题中横线上.13.(4分)(2022•宜宾)分解因式:x3﹣4x=.14.(4分)(2022•宜宾)不等式组的解集为.15.(4分)(2022•宜宾)如图,△ABC中,点E、F分别在边AB、AC上,∠1=∠2.若BC=4,AF=2,CF=3,则EF=.16.(4分)(2022•宜宾)《数书九章》是中国南宋时期杰出数学家秦九韶的著作,书中提出了已知三角形三边a、b、c求面积的公式,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即为S=.现有周长为18的三角形的三边满足a:b:c =4:3:2,则用以上给出的公式求得这个三角形的面积为.17.(4分)(2022•宜宾)我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为.18.(4分)(2022•宜宾)如图,△OMN是边长为10的等边三角形,反比例函数y=(x>0)的图象与边MN、OM分别交于点A、B(点B不与点M重合).若AB⊥OM于点B,则k的值为.三、解答题:本大题共7个小题,共78分.解答应写出文字说明、证明过程或演算步骤.19.(10分)(2022•宜宾)计算:(1)﹣4sin30°+|﹣2|;(2)(1﹣)÷.20.(10分)(2022•宜宾)已知:如图,点A、D、C、F在同一直线上,AB∥DE,∠B=∠E,BC=EF.求证:AD=CF.21.(10分)(2022•宜宾)在4月23日世界读书日来临之际,为了解某校九年级(1)班同学们的阅读爱好,要求所有同学从4类书籍中(A:文学类;B:科幻类;C:军事类;D:其他类),选择一类自己最喜欢的书籍进行统计.根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息回答问题:(1)求九年级(1)班的人数并补全条形统计图;(2)在扇形统计图中,求m的值;(3)如果选择C类书籍的同学中有2名女同学,其余为男同学,现要在选择C类书籍的同学中选取两名同学去参加读书交流活动,请你用画树状图或列表的方法求出恰好是一男一女同学去参加读书交流活动的概率.22.(10分)(2022•宜宾)宜宾东楼始建于唐代,重建于宜宾建城2200周年之际的2018年,新建成的东楼(如图1)成为长江首城会客厅、旅游休闲目的地、文化地标打卡地.某数学小组为测量东楼的高度,在梯步A处(如图2)测得楼顶D的仰角为45°,沿坡比为7:24的斜坡AB前行25米到达平台B 处,测得楼顶D的仰角为60°,求东楼的高度DE.(结果精确到1米.参考数据:≈1.7,≈1.4)23.(12分)(2022•宜宾)如图,一次函数y=ax+b的图象与x轴交于点A(4,0),与y轴交于点B,与反比例函数y=(x>0)的图象交于点C、D.若tan∠BAO=2,BC=3AC.(1)求一次函数和反比例函数的表达式;(2)求△OCD的面积.24.(12分)(2022•宜宾)如图,点C是以AB为直径的⊙O上一点,点D是AB 的延长线上一点,在OA上取一点F,过点F作AB的垂线交AC于点G,交DC 的延长线于点E,且EG=EC.(1)求证:DE是⊙O的切线;(2)若点F是OA的中点,BD=4,sin∠D=,求EC的长.25.(14分)(2022•宜宾)如图,抛物线y=ax2+bx+c与x轴交于A(3,0)、B(﹣1,0)两点,与y轴交于点C(0,3),其顶点为点D,连结AC.(1)求这条抛物线所对应的二次函数的表达式及顶点D的坐标;(2)在抛物线的对称轴上取一点E,点F为抛物线上一动点,使得以点A、C、E、F为顶点、AC为边的四边形为平行四边形,求点F的坐标;(3)在(2)的条件下,将点D向下平移5个单位得到点M,点P为抛物线的对称轴上一动点,求PF+PM的最小值.2022年四川省宜宾市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上.1.(4分)(2022•宜宾)4的平方根是()A.2 B.﹣2 C.±2 D.16【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.(4分)(2022•宜宾)如图是由5个相同的正方体搭成的几何体,从正面看,所看到的图形是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看,底层是三个相邻的小正方形,上层的右边是一个小正方形.故选:D.【点评】本题考查了三视图的知识.注意主视图是指从物体的正面看物体得到的图形.3.(4分)(2022•宜宾)下列计算不正确的是()A.a3+a3=2a6B.(﹣a3)2=a6C.a3÷a2=a D.a2•a3=a5【分析】利用合并同类项法则、幂的乘方法则、同底数幂的乘除法则逐个计算,根据计算结果得结论.【解答】解:A.a3+a3=2a3≠2a6,故选项A计算不正确;B.(﹣a3)2=a6,故选项B计算正确;C.a3÷a2=a,故选项C计算正确;D.a2•a3=a5,故选项D计算正确.故选:A.【点评】本题考查了整式的运算,掌握合并同类项法则、同底数幂的乘除法法则、幂的乘方法则是解决本题的关键.4.(4分)(2022•宜宾)某校在中国共产主义青年团成立100周年之际,举行了歌咏比赛,七位评委对某个选手的打分分别为:91,88,95,93,97,95,94.这组数据的众数和中位数分别是()A.94,94 B.95,95 C.94,95 D.95,94【分析】先将这组数据从小到大重新排列,再根据众数和中位数的概念求解可得.【解答】解:将这组数据从小到大排列为88,91,93,94,95,95,97,所以这组数据的众数是95,中位数是94.故选:D.【点评】本题主要考查众数和中位数,解题的关键是掌握一组数据中出现次数最多的数据叫做众数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.(4分)(2022•宜宾)如图,在△ABC中,AB=AC=5,D是BC上的点,DE∥AB交AC于点E,DF∥AC交AB于点F,那么四边形AEDF的周长是()A.5 B.10 C.15 D.20【分析】由于DE∥AB,DF∥AC,则可以推出四边形AFDE是平行四边形,然后利用平行四边形的性质可以证明▱AFDE的周长等于AB+AC.【解答】解:∵DE∥AB,DF∥AC,∴四边形AFDE是平行四边形,∠B=∠EDC,∠FDB=∠C∵AB=AC,∴∠B=∠C,∴∠B=∠FDB,∠C=∠EDF,∴BF=FD,DE=EC,∴▱AFDE的周长=AB+AC=5+5=10.故选:B.【点评】本题考查了等腰三角形的性质,平行四边形的判定与性质,根据平行四边形的性质,找出对应相等的边,利用等腰三角形的性质把四边形周长转化为已知的长度去解题.6.(4分)(2022•宜宾)2020年12月17日,我国嫦娥五号返回器携带着月球样本玄武岩成功着陆地球.2021年10月19日,中国科学院发布了一项研究成果:中国科学家测定,嫦娥五号带回的玄武岩形成的年龄为20.30±0.04亿年.用科学记数法表示此玄武岩形成的年龄最小的为(单位:年)()A.2.034×108B.2.034×109C.2.026×108D.2.026×109【分析】先求出此玄武岩形成的年龄最小值,再运用科学记数法进行表示.【解答】解:∵20.30﹣0.04=20.26(亿),且20.26亿=2026000000=2.026×109,故选:D.【点评】此题考查了运用科学记数法表示较大数的能力,关键是能准确理解相关知识,并能进行相关计算.7.(4分)(2022•宜宾)某家具厂要在开学前赶制540套桌凳,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的桌凳比原计划多2套,结果提前3天完成任务.问原计划每天完成多少套桌凳?设原计划每天完成x 套桌凳,则所列方程正确的是()A.﹣=3 B.﹣=3C.﹣=3 D.﹣=3【分析】设原计划每天完成x套桌凳,则实际每天完成(x+2)套,根据原计划完成的时间﹣实际完成的时间=3天列出方程即可.【解答】解:设原计划每天完成x套桌凳,则实际每天完成(x+2)套,根据原计划完成的时间﹣实际完成的时间=3天得:﹣=3,故选:C.【点评】本题考查了由实际问题抽象出分式方程,根据原计划完成的时间﹣实际完成的时间=3天列出方程是解题的关键.8.(4分)(2022•宜宾)若关于x的一元二次方程ax2+2x﹣1=0有两个不相等的实数根,则a的取值范围是()A.a≠0 B.a>﹣1且a≠0 C.a≥﹣1且a≠0 D.a>﹣1【分析】根据根的判别式即可列不等式,计算即可得答案,注意a≠0.【解答】解:由题意可得:,∴a>﹣1且a≠0,故选:B.【点评】本题主要考查根的判别式,解题关键是熟练掌握根的判别式.9.(4分)(2022•宜宾)如图,在矩形纸片ABCD中,AB=5,BC=3,将△BCD 沿BD折叠到△BED位置,DE交AB于点F,则cos∠ADF的值为()A.B.C.D.【分析】利用矩形和折叠的性质可得BF=DF,设BF=x,则DF=x,AF=5﹣x,在Rt△ADF中利用勾股定理列方程,即可求出x的值,进而可得cos∠ADF.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,AB∥CD,AD=BC=3,AB=CD=5,∴∠BDC=∠DBF,由折叠的性质可得∠BDC=∠BDF,∴∠BDF=∠DBF,∴BF=DF,设BF=x,则DF=x,AF=5﹣x,在Rt△ADF中,32+(5﹣x)2=x2,∴x=,∴cos∠ADF=,故选:C.【点评】本题主要考查矩形的性质、解直角三角形、折叠的性质、勾股定理等,解题关键是利用矩形和折叠的性质得到DF=BF.10.(4分)(2022•宜宾)已知m、n是一元二次方程x2+2x﹣5=0的两个根,则m2+mn+2m的值为()A.0 B.﹣10 C.3 D.10【分析】由于m、n是一元二次方程x2+2x﹣5=0的两个根,根据根与系数的关系可得m+n=﹣2,mn=﹣5,而m是方程的一个根,可得m2+2m﹣5=0,即m2+2m=5,那么m2+mn+2m=m2+2m+mn,再把m2+2m、m+n的值整体代入计算即可.【解答】解:∵m、n是一元二次方程x2+2x﹣5=0的两个根,∴m+n=﹣2,mn=﹣5,∵m是x2+2x﹣5=0的一个根,∴m2+2m﹣5=0,∴m2+2m=5,∴m2+mn+2m=m2+2m+mn=5﹣5=0.故选:A.【点评】本题考查了根与系数的关系,解题的关键是熟练掌握一元二次方程ax2+bx+c=0(a≠0)两根x、x2之间的关系:x1+x2=﹣,x1x2=.111.(4分)(2022•宜宾)已知抛物线y=ax2+bx+c的图象与x轴交于点A(﹣2,0)、B(4,0),若以AB为直径的圆与在x轴下方的抛物线有交点,则a的取值范围是()A.a≥B.a>C.0<a<D.0<a≤【分析】把A、B两点坐标代入二次函数解析式,用a表示b、c,进而把抛物线的解析式用a表示,设抛物线在x轴下方一点P的横坐标为t,由CP≥AB,列出a与t的不等式式,进而根据不等式的性质求得结果.【解答】解:把A(﹣2,0)、B(4,0)代入y=ax2+bx+c得,,解得,∴抛物线的解析式为:y=ax2﹣2ax﹣8a=a(x﹣1)2﹣9a,设P(t,a(t﹣1)2﹣9a)为x轴下方的抛物线上的点,则﹣2<t<4,设C为AB的中点,则C(1,0),∵以AB为直径的圆与在x轴下方的抛物线有交点,∴CP≥,即CP≤3,∴(t﹣1)2+[a(t﹣1)2﹣9a]2≥9,∴,∴a≤﹣或a≥,∵以AB为直径的圆与在x轴下方的抛物线有交点,∴抛物线开口向上,即a>0,∴a≥,∵,即,∴a≥.故选:A.【点评】本题主要考查了二次函数的图象与性质,点与圆的位置关系的应用,关键是根据点与圆的位置关系列出不等式.12.(4分)(2022•宜宾)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连结CE.下列结论:①BD=CE;②∠DAC=∠CED;③若BD=2CD,则=;④在△ABC内存在唯一一点P,使得PA+PB+PC的值最小,若点D在AP的延长线上,且AP的长为2,则CE=2+.其中含所有正确结论的选项是()A.①②④B.①②③C.①③④D.①②③④【分析】①正确.证明△BAD≌△DAE(SAS),可得结论;②正确.证明A,D,C,E四点共圆,利用圆周角定理证明;③正确.设CD=m,则BD=CE=2m.DE=m,OA=m,过点C作CJ⊥DF于点J,求出AO,CJ,可得结论;④错误.将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,当点A,点P,点N,点M共线时,PA+PB+PC值最小,此时∠APB=∠APC=∠BPC=120°,PB=PC,AD⊥BC,设PD=t,则BD=AD=t,构建方程求出t,可得结论.【解答】解:如图1中,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△DAE(SAS),∴BD=EC,∠ADB=∠AEC,故①正确,∵∠ADB+∠ADC=180°,∴∠AEC+∠ADC=180°,∴∠DAE+∠DCE=180°,∴∠DAE=∠DCE=90°,取DE的中点O,连接OA,OA,OC,则OA=OD=OE=OC,∴A,D,C,E四点共圆,∴∠DAC=∠CED,故②正确,设CD=m,则BD=CE=2m.DE=m,OA=m,过点C作CJ⊥DF于点J,∵tan∠CDF===2,∴CJ=m,∵AO⊥DE,CJ⊥DE,∴AO∥CJ,∴===,故③正确.如图2中,将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,∴BP=BN,PC=NM,∠PBN=60°,∴△BPN是等边三角形,∴BP=PN,∴PA+PB+PC=AP+PN+MN,∴当点A,点P,点N,点M共线时,PA+PB+PC值最小,此时∠APB=∠APC=∠BPC=120°,PB=PC,AD⊥BC,∴∠BPD=∠CPD=60°,设PD=t,则BD=AD=t,∴2+t=t,∴t=+1,∴CE=BD=t=3+,故④错误.故选:B.【点评】本题考查等腰直角三角形的性质,全等三角形的判定和性质,四点共圆,圆周角定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题,属于中考选择题中的压轴题.二、填空题:本大题共6个小题,每小题4分,共24分.请把答案直接填在答题卡对应题中横线上.13.(4分)(2022•宜宾)分解因式:x3﹣4x=x(x+2)(x﹣2).【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.14.(4分)(2022•宜宾)不等式组的解集为﹣4<x≤﹣1 .【分析】先解出每个不等式的解集,即可得到不等式组的解集.【解答】解:,解不等式①,得:x≤﹣1,解不等式②,得:x>﹣4,故原不等式组的解集为﹣4<x≤﹣1,故答案为:﹣4<x≤﹣1.【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式组的方法.15.(4分)(2022•宜宾)如图,△ABC中,点E、F分别在边AB、AC上,∠1=∠2.若BC=4,AF=2,CF=3,则EF=.【分析】由∠1=∠2,∠A=∠A,得出△AEF∽△ABC,再由相似三角形的性质即可得出EF的长度.【解答】解:∵∠1=∠2,∠A=∠A,∴△AEF∽△ABC,∴,∵BC=4,AF=2,CF=3,∴,∴EF=,故答案为:.【点评】本题考查了相似三角形的判定与性质,根据已知条件求证△AEF∽△ABC是解决问题的关键.16.(4分)(2022•宜宾)《数书九章》是中国南宋时期杰出数学家秦九韶的著作,书中提出了已知三角形三边a、b、c求面积的公式,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即为S=.现有周长为18的三角形的三边满足a:b:c =4:3:2,则用以上给出的公式求得这个三角形的面积为3.【分析】根据题意先求出a、b、c,再代入公式进行计算即可.【解答】解:根据a:b:c=4:3:2,设a=4k,b=3k,c=2k,则4k+3k+2k=18,解得:k=2,∴a=4k=4×2=8,b=3k=3×2=6,c=2k=2×2=4,∴S===3,故答案为:3.【点评】本题考查了二次根式的运算,要注意运算顺序,解答的关键是对相应的运算法则的熟练掌握.17.(4分)(2022•宜宾)我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为289 .【分析】如图,设内切圆的圆心为O,连接OE、OD,则四边形EODC为正方形,然后利用内切圆和直角三角形的性质得到AC+BC=AB+6,(BC﹣AC)2=49,接着利用完全平方公式进行代数变形,最后解关于AB的一元二次方程解决问题.【解答】解:如图,设内切圆的圆心为O,连接OE、OD,则四边形EODC为正方形,∴OE=OD=3=,∴AC+BC﹣AB=6,∴AC+BC=AB+6,∴(AC+BC)2=(AB+6)2,∴BC2+AC2+2BC×AC=AB2+12AB+36,而BC2+AC2=AB2,∴2BC×AC=12AB+36①,∵小正方形的面积为49,∴(BC﹣AC)2=49,∴BC2+AC2﹣2BC×AC=49②,把①代人②中得AB2﹣12AB﹣85=0,∴(AB﹣17)(AB+5)=0,∴AB=17(负值舍去),∴大正方形的面积为 289.故答案为:289.【点评】本题主要考查了三角形的内切圆的性质,正方形的性质及勾股定理的应用,同时也利用了完全平方公式和一元二次方程,综合性强,能力要求高.18.(4分)(2022•宜宾)如图,△OMN是边长为10的等边三角形,反比例函数y=(x>0)的图象与边MN、OM分别交于点A、B(点B不与点M重合).若AB⊥OM于点B,则k的值为9.【分析】过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,设OC=b,通过解直角三角形和等边三角形的性质用b表示出A、B两点的坐标,进而代入反比例函数的解析式列出b的方程求得b,便可求得k的值.【解答】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,如图,∵△OMN是边长为10的等边三角形,∴OM=ON=MN=10,∠MON=∠M=∠MNO=60°,设OC=b,则BC=,OB=2b,∴BM=OM﹣OB=10﹣2b,B(b,b),∵∠M=60°,AB⊥OM,∴AM=2BM=20﹣2b,∴AN=MN﹣AM=10﹣(20﹣2b)=2b﹣10,∵∠AND=60°,∴DN==b﹣5,AD=AN=b﹣5,∴OD=ON﹣DN=15﹣b,∴A(15﹣b,b﹣5),∵A、B两点都在反比例函数数y=(x>0)的图象上,∴k=(15﹣b)(b﹣5)=b•b,解得b=3或5,当b=5时,OB=2b=10,此时B与M重合,不符题意,舍去,∴b=3,∴k=b•b=9,故答案为:9.【点评】本题主要考查了反比例函数的图象与性质,等边三角形的性质,解直角三角形,关键是列出b的方程.三、解答题:本大题共7个小题,共78分.解答应写出文字说明、证明过程或演算步骤.19.(10分)(2022•宜宾)计算:(1)﹣4sin30°+|﹣2|;(2)(1﹣)÷.【分析】(1)先计算二次根式、特殊角的三角函数值和绝对值,再计算乘法,最后计算加减;(2)先计算括号里面的,再变除法为乘法进行分式的乘法运算.【解答】解:(1)﹣4sin30°+|﹣2|=2﹣4×+2﹣=2﹣2+2﹣=;(2)(1﹣)÷=().==a﹣1.【点评】此题考查了实数与分式的混合运算能力,关键是能准确确定运算顺序与方法,并能进行正确的计算.20.(10分)(2022•宜宾)已知:如图,点A、D、C、F在同一直线上,AB∥DE,∠B=∠E,BC=EF.求证:AD=CF.【分析】利用平行线的性质和全等三角形的判定与性质解答即可.【解答】证明:∵AB∥DE,∴∠A=∠EDF.在△ABC和△DEF中,,∴△ABC≌△DEF(AAS).∴AC=DF,∴AC﹣DC=DF﹣DC,即:AD=CF.【点评】本题主要考查了平行线的性质和全等三角形的判定与性质,准确利用全等三角形的判定定理解答是解题的关键.21.(10分)(2022•宜宾)在4月23日世界读书日来临之际,为了解某校九年级(1)班同学们的阅读爱好,要求所有同学从4类书籍中(A:文学类;B:科幻类;C:军事类;D:其他类),选择一类自己最喜欢的书籍进行统计.根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息回答问题:(1)求九年级(1)班的人数并补全条形统计图;(2)在扇形统计图中,求m的值;(3)如果选择C类书籍的同学中有2名女同学,其余为男同学,现要在选择C类书籍的同学中选取两名同学去参加读书交流活动,请你用画树状图或列表的方法求出恰好是一男一女同学去参加读书交流活动的概率.【分析】(1)根据选择A类书籍的同学的人数和百分比计算,求出九年级(1)班的人数,求出选择C类书籍的人数,补全条形统计图;(2)求出选择B类书籍的人数,求出m;(3)根据题意画出画树状图,求出恰好是一男一女同学去参加读书交流活动的概率.【解答】解:(1)九年级(1)班的人数为:12÷30%=40(人),选择C类书籍的人数为:40﹣12﹣16﹣8=4(人),补全条形统计图如图所示;(2)m%=×100%=40%,则m=40;(3)∵选择C类书籍的同学共4人,有2名女同学,∴有2名男同学,画树状图如图所示:则P(一男一女)==.【点评】本题考查的是求随机事件的概率、条形统计图和扇形统计图,能够正确从统计图中获取相关的信息是解题的关键.22.(10分)(2022•宜宾)宜宾东楼始建于唐代,重建于宜宾建城2200周年之际的2018年,新建成的东楼(如图1)成为长江首城会客厅、旅游休闲目的地、文化地标打卡地.某数学小组为测量东楼的高度,在梯步A处(如图2)测得楼顶D的仰角为45°,沿坡比为7:24的斜坡AB前行25米到达平台B 处,测得楼顶D的仰角为60°,求东楼的高度DE.(结果精确到1米.参考数据:≈1.7,≈1.4)【分析】根据锐角三角函数和勾股定理,可以得到AF和BF的值,然后根据题目中的数据,可以计算出DE的值.【解答】解:由已知可得,tan∠BAF==,AB=25米,∠DBE=60°,∠DAC=45°,∠C=90°,设BF=7a米,AF=24a米,∴(7a)2+(24a)2=252,解得a=1,∴AF=24米,BF=7米,∵∠DAC=45°,∠C=90°,∴∠DAC=∠ADC=45°,∴AC=DC,设DE=x米,则DC=(x+7)米,BE=CF=x+7﹣24=(x﹣17)米,∵tan∠DBE==,∴tan60°=,解得x≈40,答:东楼的高度DE约为40米.【点评】本题考查解直角三角形的应用—仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想解答.23.(12分)(2022•宜宾)如图,一次函数y=ax+b的图象与x轴交于点A(4,0),与y轴交于点B,与反比例函数y=(x>0)的图象交于点C、D.若tan∠BAO=2,BC=3AC.(1)求一次函数和反比例函数的表达式;(2)求△OCD的面积.【分析】(1)求出A,B两点坐标,代入直线的解析式求出a,b,再求出点C 的坐标,求出k即可;(2)构建方程组求出点D的坐标,再利用割补法求出三角形面积.【解答】解:(1)在Rt△AOB中,tan∠BAO==2,∵A(4,0),∴OA=4,OB=8,∴B(0,8),∵A,B两点在直线y=ax+b上,∴,∴,∴直线AB的解析式为y=﹣2x+8,过点C作CE⊥OA于点E,∵BC=3AC,∴AB=4AC,∴CE∥OB,∴==,∴CE=2,∴C(3,2),∴k=3×2=6,∴反比例函数的解析式为y=;(2)由,解得或,∴D(1,6),过点D作DF⊥y轴于点F,∴S△OCD=S△AOB﹣S△BOD﹣S△COA=•OA•OB﹣•OB•DF﹣•OA•CE=×4×8﹣×8×1﹣×4×2=8【点评】本题考查一次函数与反比例函数的交点,解直角三角形等知识,解题的关键是熟练掌握待定系数法,属于中考常考题型.24.(12分)(2022•宜宾)如图,点C是以AB为直径的⊙O上一点,点D是AB 的延长线上一点,在OA上取一点F,过点F作AB的垂线交AC于点G,交DC 的延长线于点E,且EG=EC.(1)求证:DE是⊙O的切线;(2)若点F是OA的中点,BD=4,sin∠D=,求EC的长.【分析】(1)要证明DE是⊙O的切线,只要证明OC⊥CD即可,根据题目中的条件和等腰三角形的性质、直角三角形的性质,可以得到∠OCD=90°,从而可以证明结论成立;(2)根据相似三角形的判定与性质和题目中的数据,可以求得DE和CD的长,从而可以得到EC的长.【解答】(1)证明:连接OC,如图所示,∵EF⊥AB,AB为⊙O的切线,∴∠GFA=90°,∠ACB=90°,∴∠A+∠AGF=90°,∠A+∠ABC=90°,∴∠AGF=∠ABC,∵EG=EC,OC=OB,∴∠EGC=∠ECG,∠ABC=∠BCO,又∵∠AGF=∠EGC,∴∠ECG=∠BCO,∵∠BCO+∠ACO=90°,∴∠ECG+∠ACO=90°,∴∠ECO=90°,∴DE是⊙O的切线;(2)解:由(1)知,DE是⊙O的切线,∴∠OCD=90°,∵BD=4,sin∠D=,OC=OB,∴=,即=,解得OC=2,∴OD=6,∴DC===4,∵点E为OA的中点,OA=OC,∴OF=1,∴DF=7,∵∠EFD=∠OCD,∠EDF=∠ODC,∴△EFD∽△OCD,∴,即,解得DE=,∴EC=ED﹣DC=﹣4=,即EC的长是.【点评】本题考查相似三角形的判定与性质、圆周角定理、切线的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.25.(14分)(2022•宜宾)如图,抛物线y=ax2+bx+c与x轴交于A(3,0)、B (﹣1,0)两点,与y轴交于点C(0,3),其顶点为点D,连结AC.(1)求这条抛物线所对应的二次函数的表达式及顶点D的坐标;(2)在抛物线的对称轴上取一点E,点F为抛物线上一动点,使得以点A、C、E、F为顶点、AC为边的四边形为平行四边形,求点F的坐标;(3)在(2)的条件下,将点D向下平移5个单位得到点M,点P为抛物线的对称轴上一动点,求PF+PM的最小值.【分析】(1)利用待定系数法,把问题转化为解方程组即可;(2)过点F作FG⊥DE于点G,证明△OAC≌△GFE(AAS),推出OA=FG=3,设F(m,﹣m2+2m+3),则G(1,﹣m2+2m+3),可得FG=|m﹣1|=3,推出m=﹣2或m=4,即可解决问题;(3)由题意,M(1,﹣1),F1(4,﹣5),F2(﹣2,﹣5)关于对称轴直线x =1对称,连接F1F2交对称轴于点H,连接F1M,F2M,过点F2作F2N⊥F1M于点N,交对称轴于点P,连接PF.则MH=4,HF1=3,MF1=5,证明PN=PM,1由PF2=PF1,推出PF+PM=PF1+PN=FN2为最小值.【解答】解:(1)∵抛物线y=ax2+bx+c经过A(3,0)、B(﹣1,0),C(0,3),∴,解得,∴抛物线的解析式为y=﹣x2+2x+3,∵y=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4);(2)设直线AC是解析式为y=kx+b,把A(3,0),C(0,3)代入,得,∴,∴直线AC的解析式为y=﹣x+3,过点F作FG⊥DE于点G,∵以A,C,E,F为顶点的四边形是以AC为边的平行四边形,∴AC=EF,AC∥EF,∵OA∥FG,∴∠OAC=∠GFE,∴△OAC≌△GFE(AAS),∴OA=FG=3,设F(m,﹣m2+2m+3),则G(1,﹣m2+2m+3),∴FG=|m﹣1|=3,∴m=﹣2或m=4,当m=﹣2时,﹣m2+2m+3=﹣5,∴F1(﹣2,﹣5),当m=时,﹣m2+2m+3=﹣5,∴F2(4,﹣5)综上所述,满足条件点点F的坐标为(﹣2,﹣5)或(4,﹣5);(3)由题意,M(1,﹣1),F1(4,﹣5),F2(﹣2,﹣5)关于对称轴直线x =1对称,连接F1F2交对称轴于点H,连接F1M,F2M,过点F2作F2N⊥F1M于点N,交对称轴于点P,连接PF.则MH=4,HF1=3,MF1=5,1在Rt△MHF1中,sin∠HMF1==,则在RtMPN中,sin∠PMN==,∴PN=PM,∵PF2=PF1,∴PF+PM=PF1+PN=FN2为最小值,∵=×6×4=×5×F2N,∴F2N=,∴PF+PM的最小值为.【点评】本题属于二次函数综合题,考查了二次函数的性质,平行四边形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程解决问题,学会用转化的思想思考问题,属于中考压轴题.。
【中考专题】2022年四川省宜宾市中考数学历年真题汇总 (A)卷(含详解)
2022年四川省宜宾市中考数学历年真题汇总 (A )卷 考试时间:90分钟;命题人:教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、一元二次方程2610x x --=配方后可变形为( ) A .()238x -=B .()238x +=C .()2310x +=D .()2310x -= 2、一辆汽车在公路上行驶,看到里程表上是一个两位数,1小时后其里程表还是一个两位数,且刚好它的十位数字与个位数字与第一次看到的两位数的十位数字与个位数字颠倒了位置,又过了1小时后看到里程表是一个三位数,它是第一次看到的两位数中间加一个0,则汽车的速度是( )千米/小时.A .35B .40C .45D .50 3、某中学制作了108件艺术品,现用A 、B 两种不同的包装箱进行包装,已知每个B 型包装箱比A 型包装箱多装5件艺术品,单独使用B 型包装箱比单独使用A 型包装箱可少用2个.设B 型包装箱每个可以装x 件艺术品,根据题意列方程为( )A .10810825x x =+-B .10810825x x =--C .10810825x x =-+D .10810825x x =++ ·线○封○密○外4、下列方程中是一元一次方程的是( )A .210x -= B .21x = C .21x y +=D .132x -= 5、已知()11,x y ,()22,x y ,()33,x y 是反比例函数2y x =-图像上的三点,且1230x x x <<<,则1y ,2y ,3y 的大小关系是( )A .1230y y y <<<B .1320y y y >>>C .1320y y y <<<D .1230y y y >>>6、如图,在△ABC 中,∠C=90°,AC =6,BC =8,点P 为斜边AB 上一动点,过点P 作PE⊥AC 于点E ,PF⊥BC 于点F ,连结EF ,则线段EF 的最小值为( )A .1.2B .2.4C .2.5D .4.87、如图,在ABC ∆中,点D ,E ,F 分别在三边上,E 是AC 的中点,AD ,BE ,CF 交于一点G ,2BD DC =,8BGD S ∆=,3AGE S ∆=,则ABC ∆的面积是( )A .16B .19C .22D .308、若0a <,则不等式组23x a x a⎧⎨⎩>>的解集是( )A .2a x >B .3a x >C .2a x ->D .3a x >- 9、已知函数y =k x 中,当x >0时,y 随x 增大而增大,那么函数y =kx ﹣k 的大致图象为( ) A . B . C .D . 10、如图,数轴上点N 表示的数可能是( ) ABCD第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、某校规定:学生的数学期未总计成须由卷面成绩、研究性学习成绩、平时成绩三部分构成,各部分所占比例如图所示.小明本学期数学学科的卷面成绩、研究性学习成绩、平时成绩得分依次为90分、80分、85分,则小明的数学期末总评成绩为________分. ·线○封○密○外2、已知4m a =,3n a =,则2m n a +=__________.3、如图,在矩形纸片ABCD 中,AB=12,BC=5,点E 在AB 上,将DAE 沿DE 折叠,使点A 落在对角线BD 上的点A '处,则AE 的长为___.4、已知四个二次函数的图象如图所示,那么a 1,a 2,a 3,a 4的大小关系是_____.(请用“>”连接排序)5、生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的雀鸟有5只.请你帮助工作人员估计这片山林中雀鸟的数量约为 只.三、解答题(5小题,每小题10分,共计50分)1、如图,数轴上有三个点A 、B 、C ,它们可以沿着数轴左右移动,请回答:(1)点A 、B 、C 分别表示的数是______________________.(2)将点B 向右移动三个单位长度后到达点D ,点D 表示的数是_____________.(3)移动点A 到达点E ,使B 、C 、E 三点的其中任意一点为连接另外两点之间线段的中点,请直接写出所有点A 移动的距离和方向. 2、如图,在四边形ABCD 中,EF 交AC 于点O ,交CD 、AB 于点E 、F ;若OE=OF ,OA=OC ,且DE=FB.猜想:AD 与BC 有怎样的关系?并说明理由.3、如图,在四边形ABCD 中,AB =CD ,BF =DE ,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F . (1)求证:△ABE ≌△CDF ; (2)若AC 与BD 交于点O ,求证:AO =CO .4、如图,△ABC 中,AE 交BC 于点D ,∠C=∠E,AD :DE =3:5,AE =16,BD =8, (1)求证:△ACD∽△BED;(2)求DC 的长.5、如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C ,使DC =BD ,连结AC 交⊙O 于点F . (1)AB 与AC 的大小有什么关系?请说明理由; (2)若AB =8,∠BAC =45°,求:图中阴影部分的面积.·线○封○密○外-参考答案-一、单选题1、D【分析】先移项,再根据完全平方公式配方,即可得出选项.【详解】2610--=,x x261∴-=,x x∴26919-+=+,x xx-=,∴()2310故选:D.【点睛】本题考查了用配方法解一元二次方程,能够正确配方是解此题的关键.2、C【解析】【分析】设第一次他看到的两位数的个位数为x,十位数为y,汽车行驶速度为v,第一次看到的两位数为10y+x ,行驶一小时后看到的两位数为10x+y ,第三次看到的三位数为100y+x ,由汽车均速行驶可得三段时间的路程相等,即可列出两个方程求解即可.由速度=总里程时间,求得答案. 【详解】 设第一次他看到的两位数的个位数为x ,十位数为y ,汽车行驶速度为v ,根据题意得: ()()10101100101x y y x v y x x y v ⎧+-+=⨯⎪⎨+-+=⨯⎪⎩, 解得:6x y =, ∵xy 为1-9内的自然数,∴61x y =⎧⎨=⎩; 即两位数为16. 即:第一次看到的两位数是16.第二次看到的两位数是61.第三次看到的两位数是106. 则汽车的速度是:10616452-=(千米/小时). 故选:C. 【点睛】 本题考查了二元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组.本题涉及一个常识问题:两位数=10×十位数字+个位数字,并且在求两位数或三位数时,一般是不能直接设这个两位数或三位数的,而是设它各个数位上的数字为未知数. 3、B 【解析】 【分析】 ·线○封○密○外关键描述语:每个B型包装箱比A型包装箱多装5件艺术品,单独使用B型包装箱比单独使用A型包装箱可少用2个;可列等量关系为:所用B型包装箱的数量=所用A型包装箱的数量-2,由此可得到所求的方程.【详解】解:根据题意可列方程:10810825x x=--故选:B.【点睛】本题考查分式方程的问题,关键是根据所用B型包装箱的数量=所用A型包装箱的数量-2的等量关系解答.4、D【分析】根据一元一次方程的定义逐一判断即可得到答案.【详解】解:210x-=是分式方程,故A错误;21x=是一元二次方程,故B错误;21x y+=是二元一次方程,故C错误;132x-=是一元一次方程,故D正确;故选D.【点睛】本题考查的是一元一次方程的定义,掌握一元一次方程的定义是解题的关键.5、B【解析】【分析】根据反比例函数的增减性解答即可.【详解】解:∵k=-2<0,故反比例函数图象的两个分支在第二四象限,且在每个象限内y 随x 的增大而增大, 又∵(x 2,y 2),(x 3,y 3)是双曲线2y x =-上的两点,且0<x 2<x 3, ∴0>y3>y2, 又∵x 1<0,故(x 1,y 1)在第二象限,y 1>0,∴y 1>0>y 3>y 2.故选B . 【点睛】 本题考查反比例函数的性质,熟悉掌握其图像是解题关键. 6、D 【分析】 根据题意可得当四边形CEPF 为正方形时,EF 取最小值,因此设正方形的边长为x ,所以可得AE=6-x , 根据题意可得AEP ACB ∆∆ ,利用相似比可得x 的值. 【详解】 根据题意设四边形CEPF 的CE=x , 所以可得AE=6-xPE⊥AC,∠C=90° ∴ EP//BC·线○封○密○外A A AEP C APEB ∠=∠⎧⎪∴∠=∠⎨⎪∠=∠⎩∴ AEP ACB ∆∆686EP x -∴= 即4(6)3EP x =- 222222162564(6)64(06)993EF CE CF x x x x x ∴=+=+-=-+<< 当649632522529b x a -=-=-=⨯ 取得最小值 2222564464()49323.0425449ac b EF a ⨯⨯---===⨯ 所以EF=4.8故选D.【点睛】本题主要考查二次函数的最值问题在几何中的应用,关键在于根据勾股定理列出函数关系式.相似三角形判定和性质也是关键点.7、D【分析】根据部分三角形的高相等,由这些三角形的底边的比例关系可求三角形ABC 的面积.【详解】三角形BDG 和CDG 中,BD=2DC.根据这两个三角形在BC 边上的高相等,那么S △BDG =2S △GDC ,因此S △GDC =4,同理S △AGE =S △GEC =3,S △BE C=S △BGC +S △GEC =8+4+3=15,∴三角形ABC 的面积=2S △BEC =30.故选D.【点睛】此题考查三角形的面积,解题关键在于由这些三角形的底边的比例关系来求面积8、B【解析】【分析】根据不等式的性质分别解出各不等式,再求出其公共解集.【详解】 解不等式组23x a x a ⎧⎨⎩>>得23a x a x ⎧⎪⎪⎨⎪⎪⎩>> ∵0a <, ∴23<a a ∴不等式组的解集为3a x > 【点睛】 此题主要考查不等式组的求解,解题的关键是熟知负数的比较大小的方法.9、A【分析】根据题意,函数y =k x 中,x >0时,y 随x 的增大而增大;分析可得k 的符号,再根据一次函数的性质,可得y =kx −k 的图象所过的象限.【详解】·线○封○密○外∵在函数y=kx中,x>0时,y随x的增大而增大,∴k<0,根据一次函数的性质,y=kx﹣k过一、二、四象限.故选A.【点睛】此题主要考查了反比例函数、一次函数的性质,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.10、C【分析】根据数轴及算术平方根可直接进行求解.【详解】由数轴可得点N在2和3之间,∵459,∴23<,故选C.【点睛】本题主要考查数轴上数的表示及算术平方根,熟练掌握数轴上数的表示及算术平方根是解题的关键.二、填空题1、87【分析】按统计图中各部分所占比例算出小明的期末数学总评成绩即可.【详解】解:小明的期末数学总评成绩=90×60%+80×20%+85×20%=87(分).故答案为87.2、48【分析】利用幂的运算中同底数幂相乘,底数不变指数相加的运算方法,先将2m n a +分解成几个数相乘的形式,即可得出结果. 【详解】 解:244348m n m m n a a a a +=⨯⨯=⨯⨯= 故答案为:48. 【点睛】 本题主要考查的是幂的运算中同底数幂相乘的运算法则,掌握同底数幂相乘,底数不变指数相加是解题的关键. 3、103 【详解】 试题分析:∵AB=12,BC=5,∴AD=5.∴BD 13==. 根据折叠可得:AD=A′D=5,∴A′B=13-5=8.设AE=x ,则A′E=x,BE=12-x ,·线○封○密○外在Rt△A′EB中:()22212x x8-=+,解得:10x3 =.4、a1>a2>a3>a4【分析】直接利用二次函数的图象开口大小与a的关系进而得出答案.【详解】解:如图所示:①y=a1x2的开口小于②y=a2x2的开口,则a1>a2>0,③y=a3x2的开口大于④y=a4x2的开口,开口向下,则a4<a3<0,故a1>a2>a3>a4.故答案是:a1>a2>a3>a4.【点睛】考查了二次函数的图象,正确记忆开口大小与a的关系是解题关键.5、10000【分析】由题意可知:重新捕获500只,其中带标记的有5只,可以知道,在样本中,有标记的占到5500.而在总体中,有标记的共有100只,根据比例即可解答.【详解】解:100÷5500=10000只.故答案为10000.本题考查了用样本估计总体的知识,体现了统计思想,统计的思想就是用样本的信息来估计总体的信息.三、解答题1、(1)﹣4,﹣2,3;(2)1;(3)点A 向右移动4.5个单位长度或12个单位长度,点A 向左移动3个单位长度.【分析】(1)根据点A 、B 、C 在数轴上的位置写出即可;(2)将点B 向右移动三个单位长度后到达点D ,则点D 表示的数为-2+3=1; (3)分类讨论:当点A 向左移动时,则点B 为线段AC 的中点;当点A 向右移动并且落在BC 之间,则A 点为BC 的中点;当点A 向右移动并且在线段BC 的延长线上,则C 点为BA 的中点,然后根据中点的定义分别求出对应的A 点表示的数,从而得到移动的距离. 【详解】 解:(1)点A 、B 、C 分别表示的数分别是﹣4,﹣2,3; (2)将点B 向右移动三个单位长度后到达点D ,点D 表示的数是1; (3)当点A 向左移动时,则点B 为线段AC 的中点, ∵线段BC=3-(-2)=5, ∴点A 距离点B 有5个单位, ∴点A 要向左移动3个单位长度; 当点A 向右移动并且落在BC 之间,则A 点为BC 的中点, ∴A 点在B 点右侧,距离B 点2.5个单位, ∴点A 要向右移动4.5 单位长度; 当点A 向右移动并且在线段BC 的延长线上,则C 点为BA 的中点, ∴点A 要向右移动12个单位长度. 故答案为(1)﹣4,﹣2,3;(2)1;(3)点A 向右移动4.5个单位长度或12个单位长度,点A 向左移动3个单位长度. 【点睛】 本题考查数轴:数轴三要素(原点、正方向和单位长度);数轴上左边的点表示的数比右边的点表示的数要小.也考查了平移的性质,注意数形结合的运用. 2、AD BC ∥,AD BC ,见解析. 【分析】 ·线○封○密○外连结AE ,CF ,证明四边形ABCD 是平行四边形即可解答.【详解】解:AD BC ,AD BC =.理由如下:如图,连结AE ,CF .∵ OE OF =,OA OC =,∴四边形AFCE 是平行四边形,∴EC AF ,EC AF =又∵DE FB =∴DC AB ,DC AB =∴四边形ABCD 是平行四边形,∴AD BC 且AD BC =.【点睛】本题考查证明平行四边形,关键是画出合适的辅助线.3、(1)见解析;(2)见解析【分析】(1)由BF =DE ,可得BE =DF ,由AE⊥BD,CF⊥BD,可得∠AEB=∠CFD=90°,又由AB =CD ,在直角三角形中利用HL 即可证得:△ABE≌△CDF;(2)由Rt ABE Rt CDF ∆∆≌,即可得∠ABE=∠CDF,根据内错角相等,两直线平行,即可得//D AB C ,又由AB =CD ,根据有一组对边平行且相等的四边形是平行四边形,即可证得四边形ABCD 是平行四边形,则可得AO =CO .【详解】证明:(1)∵BF=DE,∴BF EF DE EF -=-,即BE=DF ,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在Rt△ABE 与Rt△CDF 中, AB CD BE DF =⎧⎨=⎩,∴Rt ABE Rt CDF ∆∆≌(HL ); (2)如图,连接AC 交BD 于O , ∵Rt ABE Rt CDF ∆∆≌, ∴ABE CDF ∠=∠, ∴//D AB C , ∵=D AB C , ∴四边形ABCD 是平行四边形, ∴AO CO =. 【点睛】 此题考查了全等三角形的判定与性质以及平行四边形的判定与性质.此题难度不大,解题的关键是要注意数形结合思想的应用. ·线○封○密○外4、(1)见解析;(2)DC =152. 【分析】 (1)根据相似三角形的判定,可得答案;(2)根据相似三角形的性质,可得DC DE =AD BD,再根据AD :DE =3:5,AE =16,可得AD 、DE 的长,根据比例的性质,可得答案.【详解】解:(1)∵∠C=∠E,∠ADC=∠BDE,∴△ACD∽△BED;(2)∵△ACD∽△BED, ∴DC DE =AD BD , 又∵AD:DE =3:5,AE =16,∴AD=6,DE =10,∵BD=8, ∴10DC =68. ∴DC=152. 【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定定理和性质定理是解题关键.5、(1)AB =AC ;(2)2π-【分析】(1)连接AD ,根据圆周角定理可以证得AD 垂直且平分BC ,然后根据垂直平分线的性质证得AB =AC ;(2)连接OD 、过D 作DH⊥AB,根据扇形的面积公式解答即可.【详解】(1)AB =AC .理由是:连接AD .∵AB 是⊙O 的直径,∴∠ADB =90°,即AD ⊥BC , 又∵DC =BD ,∴AB =AC ;(2)连接OD 、过D 作DH ⊥AB . ∵AB =8,∠BAC =45°, ∴∠BOD =45°,OB =OD =4,∴DH,∴△OBD 的面积=142⨯⨯=扇形OBD 的面积=24542360ππ⋅⋅=, 阴影部分面积=2π- 【点睛】 本题考查了圆周角定理以及等腰三角形的性质定理,理解弧的度数和对应 圆心角的度数的关系是关键.·线○封○密○外。
(中考精品)四川省宜宾市中考数学真题(解析版)
宜宾市2022年初中学业水平考试暨高中阶段学校招生考试数学一、选择题:本大题共12个小题,每小题4分,共48分.1. 4的平方根是( )A. ±2B. 2C. ﹣2D. 16【答案】A【解析】【详解】【分析】根据平方根的定义,求数a 的平方根,也就是求一个数x ,使得x 2=a ,则x 就是a 的一个平方根.【详解】∵(±2 )2=4,∴4的平方根是±2,故选A .【点睛】本题主要考查平方根定义,熟练掌握平方根的定义是解题的关键. 2. 如图是由5个相同的正方体搭成的几何体,从正面看,所看到的图形是( )A. B. C. D.【答案】D【解析】【分析】根据所给几何体判断即可.【详解】解:从正面看,所看到的图形是:故选:D .的【点睛】考查几何体的三视图的知识,从正面看到的图形是主视图,从左面看到的图形是左视图,从上面看到的图形是俯视图.掌握以上知识是解题的关键.3. 下列计算不正确的是( )A. 3362a a a +=B. ()236a a -=C. 32a a a ÷=D. 235a a a ⋅=【答案】A【解析】【分析】根据合并同类项法则判定A ;根据幂的乘方法则计算并判定B ;根据同底数幂相除法则计算并判定C ;根据同底数幂相乘运算法则计算并判定D .【详解】解:A 、a 3+a 3=2a 3,故此选项符合题意;B 、(-a 3)2=a 6,故此选项不符合题意;C 、32a a a ÷=,故此选项不符合题意;D 、235a a a ⋅=,故此选项不符合题意;故选:A .【点睛】本题考查合并同类项,幂的乘方,同底数幂相除法,同底数幂相除法,熟练掌握合并同类项、幂的乘方 、,同底数幂相除法、同底数幂相除法运算法则是解题的关键. 4. 某校在中国共产主义青年团成立100周年之际,举行了歌咏比赛,七位评委对某个选手的打分分别为:91,88,95,93,97,95,94.这组数据的众数和中位数分别是( )A. 94,94B. 95,95C. 94,95D. 95,94 【答案】D【解析】【分析】将这组数据从小到大重新排列,再根据中位数的定义以及众数的定义求解即可.【详解】将这组数据从小到大重新排列为88,91,93,94,95,95,97,∴这组数据的中位数为94,95出现了2次,次数最多,故众数为95故选:D .【点睛】本题主要考查中位数和众数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数的平均数就是这组数据的中位数.众数:在一组数据中出现次数最多的数.5. 如图,在ABC ∆中,5AB AC ==,D 是BC 上的点,DE ∥AB 交AC 于点E ,DF ∥AC 交AB 于点F ,那么四边形AFDE 的周长是( )A. 5B. 10C. 15D. 20【答案】B【解析】 【分析】由于DE ∥AB ,DF ∥AC ,则可以推出四边形AFDE 是平行四边形,然后利用平行四边形的性质可以证明□AFDE 的周长等于AB +A C .【详解】∵DE ∥AB ,DF ∥AC ,则四边形AFDE 是平行四边形,∠B =∠EDC ,∠FDB =∠C∵AB =AC ,∴∠B =∠C ,∴∠B =∠FDB ,∠C =∠EDF ,∴BF =FD ,DE =EC ,所以□AFDE 的周长等于AB +AC =10.故答案为B【点睛】本题考查了平行四边形的性质、等腰三角形的性质、平行四边形的判定,熟练掌握这些知识点是本题解题的关键.6. 2020年12月17日,我国嫦娥五号返回器携带着月球样本玄武岩成功着陆地球.2021年10月19日,中国科学院发布了一项研究成果:中国科学家测定,嫦娥五号带回的玄武岩形成的年龄为20.300.04±亿年.用科学记数法表示此玄武岩形成的年龄最小的为( )(单位:年)A 82.03410⨯ B. 92.03410⨯ C. 82.02610⨯ D. 92.02610⨯【答案】D【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,看小数点移动了多少位,n 的绝对值与小数点移动的位数相同.小数点向左移动时,n 是正整数;小数点向右移动时,n 是负整数.【详解】解:20.30亿-0.04亿=20.26亿=2026000000=2.026×109,故选:D ..【点睛】本题主要考查科学记数法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.解题关键是正确确定a 的值以及n 的值.7. 某家具厂要在开学前赶制540套桌凳,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的桌凳比原计划多2套,结果提前3天完成任务.问原计划每天完成多少套桌凳?设原计划每天完成x 套桌凳,则所列方程正确的是( ) A. 54054032x x -=- B. 54054032x x -=+ C. 54054032x x -=+ D. 54054032x x -=- 【答案】C【解析】分析】设原计划每天完成x 套桌凳,根据“提前3天完成任务”列出分式方程即可.【详解】解:设原计划每天完成x 套桌凳,根据题意得,54054032x x -=+. 故选:C .【点睛】本题考查了列分式方程,理解题意是解题的关键.8. 若关于x 的一元二次方程2210ax x +-=有两个不相等的实数根,则a 的取值范围是( )A. 0a ≠B. 1a >-且0a ≠C. 1a ≥-且0a ≠D. 1a >-【答案】B【解析】【分析】根据一元二次方程的定义和根的判别式得出a ≠0,Δ=22-4a ×(-1)=4+4a >0,再求出即可.【详解】解:∵关于x 的一元二次方程ax 2+2x -1=0有两个不相等的实数根,∴a ≠0,Δ=22-4a ×(-1)=4+4a >0,解得:a >-1且a ≠0,故选:B .【点睛】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键,注意:一元二次方程ax 2+bx +c =0(a 、b 、c 为常数,a ≠0),当b 2-4ac >0时,方程有两个不相等的实数根;当b 2-4ac =0时,方程有两个相等的实数根;当b 2-4ac <0时,方程没有实数根. 9. 如图,在矩形纸片ABCD 中,5AB =,3BC =,将BCD △沿BD 折叠到BED 位置,DE 交AB 于点F ,则cos ADF ∠的值为( ) 【A. 817B. 715C. 1517D. 815【答案】C【解析】【分析】先根据矩形的性质和折叠的性质,利用“AAS ”证明AFD EFB ∆∆≌,得出AF EF =,DF BF =,设AF EF x ==,则5BF x =-,根据勾股定理列出关于x 的方程,解方程得出x 的值,最后根据余弦函数的定义求出结果即可.【详解】解:∵四边形ABCD 为矩形,∴CD =AB =5,AB =BC =3,90A C ∠=∠=︒,根据折叠可知,3BE BC ==,5DE DE ==,90∠=∠=︒E C ,∴在△AFD 和△EFB 中903A E AFD EFB AD BE ∠=∠=︒⎧⎪∠=∠⎨⎪==⎩,∴AFD EFB ∆∆≌(AAS ),∴AF EF =,DF BF =,设AF EF x ==,则5BF x =-,在Rt BEF ∆中,222BF EF BE =+,即()22253x x -=+, 解得:85x =,则817555DF BF ==-=, ∴315cos 17175AD ADF DF ∠===,故C 正确.故选:C .【点睛】本题主要考查了矩形的折叠问题,三角形全等的判定和性质,勾股定理,三角函数的定义,根据题意证明AFD EFB ∆∆≌,是解题的关键.10. 已知m 、n 是一元二次方程2250x x +-=的两个根,则22m mn m ++的值为( )A. 0B. -10C. 3D. 10 【答案】A【解析】【分析】根据一元二次方程根与系数关系得出mn =-5,把x =m 代入方程得m 2+2m -5=0,即m 2+2m =5,代入即可求解.【详解】解:∵m 、n 是一元二次方程2250x x +-=两个根,∴mn =-5,m 2+2m -5=0,∴m 2+2m =5,∴22m mn m ++=5-5=10,故选:A .【点睛】本题考查代数式求值,一元二次方程根与系数关系,方程解的意义,根据一元二次方程根与系数关系和方程解的意义得出mn =-5,m 2+2m =5是解题的关键.11. 已知抛物线2y ax bx c =++的图象与x 轴交于点()2,0A -、()4,0B ,若以AB 为直径的圆与在x 轴下方的抛物线有交点,则a 的取值范围是( ) A. 13a ≥ B. 13a > C. 103a << D. 103a <≤ 【答案】A【解析】【分析】根据题意,设抛物线的解析式为()()24y a x x =+-,进而求得顶点的的坐标,结合图形可知当顶点纵坐标小于或等于-3满足题意,即可求解.【详解】解: 抛物线2y ax bx c =++的图象与x 轴交于点()2,0A -、()4,0B , 设抛物线的解析式为()()24y a x x =+-()222819y ax ax a a x a ∴=--=--顶点坐标为()1,9a -, 6AB = ,以AB 为直径的圆与在x 轴下方的抛物线有交点,则圆的半径为3,如图,的93a ∴-≤- 解得13a ≥ 故选:A【点睛】本题考查了圆的的性质,二次函数图象的性质,求得抛物线的顶点纵坐标的范围是解题的关键.12. 如图,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点D 是BC 边上的动点(不与点B 、C 重合),DE 与AC 交于点F ,连结CE .下列结论:①BD CE =;②DAC CED ∠=∠;③若2BD CD =,则45CF AF =;④在ABC 内存在唯一一点P ,使得PA PB PC ++的值最小,若点D 在AP 的延长线上,且AP 的长为2,则2CE = )A. ①②④B. ①②③C. ①③④D. ①②③④【答案】B【解析】【分析】证明BAD CAE ≌,即可判断①,根据①可得ADB AEC ∠=∠,由180ADC AEC ∠+∠=︒可得,,,A D C E 四点共圆,进而可得DAC DEC ∠=∠,即可判断②,过点A 作AG BC ⊥于G ,交ED 的延长线于点H ,证明FAH FCE ∽,根据相似三角形的性质可得45CF AF =,即可判断③,将APC △绕A 点逆时针旋转60度,得到AB P ''△,则APP ' 是等边三角形,根据当,,,B P P C ''共线时,PA PB PC ++取得最小值,可得四边形ADCE 是正方形,勾股定理求得DP , 根据CE AD AP PD ==+即可判断④.【详解】解: ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒, ,,AB AC AD AE BAD CAE ∴==∠=∠BAD CAE ∴△≌△BD CE ∴=故①正确;BAD CAE ≌ADB AEC ∴∠=∠180ADC AEC ∴∠+∠=︒,,,A D C E ∴四点共圆,CD CD =DAC DEC ∴∠=∠故②正确;如图,过点A 作AG BC ⊥于G ,交ED 的延长线于点H ,BAD CAE ≌,45,45ACE ABD ACB ∴∠=∠=︒∠=︒90DCE ∴∠=︒FC AH ∴∥2BD CD =,BD CE =1tan 2DC DEC CE ∴∠==,13CD BC = 设6BC a =,则2DC a =,132AG BC a ==,24EC DC a == 则32GD GC DC a a a =-=-=FC AH ∥1tan 2GD H GH ∴== 22GH GD a ∴==325AH AG GH a a a ∴=+=+=AH ∥CE ,FAH FCE ∴ ∽CF CE AF AH ∴= 4455CF a AF a ∴== 则45CF AF =; 故③正确如图,将ABP 绕A 点逆时针旋转60度,得到AB P ''△,则APP ' 是等边三角形,PA PB PC PP P B PC B C '''+++∴'+=≥,当,,,B P P C ''共线时,PA PB PC ++取得最小值,此时180********CPA APP '∠=-∠=︒-=︒︒︒,180********APB AP B AP P ∠=∠=︒-∠=︒-︒='''︒,360360*********BPC BPA APC ∠=︒-∠-∠=︒-︒-︒=︒,此时120APB BPC APC ∠=∠=∠=︒,AC AB AB '== ,AP AP '=,APC AP B ''∠=∠,AP B APC ''∴ ≌,PC P B PB ''∴==,60APP DPC '∠=∠=︒ ,DP ∴平分BPC ∠,PD BC ∴⊥,,,,A D C E 四点共圆,90AEC ADC ∴∠=∠=︒,又AD DC BD ==,BAD CAE ≌,AE EC AD DC ∴===,则四边形ADCE 是菱形,又90ADC ∠=︒,∴四边形ADCE 是正方形,9060150B AC B AP PAC P AP ''''∠=∠+∠+∠=︒+︒=︒ ,则'B A BA AC ==,()1180152B ACB B AC '''∠=∠=︒-∠=︒, 30PCD ∠=︒ ,DC ∴=,DC AD = ,2AP =,则)12AP AD DP DP =-=-=,1DP ∴==+, 2AP = ,3CE AD AP PD ∴==+=,故④不正确,故选B .【点睛】本题考查了旋转的性质,费马点,圆内接四边形的性质,相似三角形的性质与判定,全等三角形的性质与判定,勾股定理,解直角三角形,正方形的性质与判定,掌握以上知识是解题的关键.二、填空题:本大题共6个小题,每小题4分,共24分.13. 分解因式:34x x -=______.【答案】x (x +2)(x ﹣2).【解析】【详解】解:34x x -=2(4)x x -=x (x+2)(x ﹣2). 故答案为x (x+2)(x ﹣2).14. 不等式组325,212x x -≥⎧⎪⎨+>-⎪⎩的解集为______.【答案】41x -<≤- 【解析】【分析】先分别求出不等式组中每一个不等式的解集,再根据确定不等式组解集原则“大大取较大,小小取较小,大小小大,中间找,大大小小无处找”确定出不等式组的公共解集即可.【详解】解:325212x x -≥⎧⎪⎨+>-⎪⎩①②,解①得:x ≤–1, 解②得:x >-4, ∴-4<x ≤-1.故答案为:-4<x ≤-1.【点睛】本题考查解不等式组,掌握确定不等式组解集原则“大大取较大,小小取较小,大小小大,中间找,大大小小无处找”是解题的关键.15. 如图,ABC 中,点E 、F 分别在边AB 、AC 上,12∠=∠.若4BC =,2AF =,3CF =,则EF =______.【答案】85【解析】【分析】易证△AEF ∽△ABC ,得EF AFBC AC =即EF AF BC AF CF=+即可求解. 【详解】解:∵∠1=∠2,∠A =∠A , ∴△AEF ∽△ABC , ∴EF AFBC AC =,即EF AF BC AF CF =+ ∵4BC =,2AF =,3CF =, ∴2423EF =+, ∴EF =85, 故答案为:85. 【点睛】本题考查相似三角形的判定与性质,熟练掌握相似三角形的判定与性质定理是解题的关键.16. 《数学九章》是中国南宋时期杰出数学家秦九韶的著作,书中提出了已知三角形三边a 、b 、c 求面积的公式,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即为S =.现有周长为18的三角形的三边满足::4:3:2a b c =,则用以上给出的公式求得这个三角形的面积为______.【答案】 【解析】【分析】根据周长为18的三角形的三边满足::4:3:2a b c =,求得8,6,4a b c ===,代入公式即可求解.【详解】解:∵周长为18的三角形的三边满足::4:3:2a b c =,设4,3,2a k b k c k ===∴43218k k k ++= 解得2k =∴8,6,4a b c ===∴S =====故答案为:【点睛】本题考查了化简二次根式,正确的计算是解题的关键.17. 我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为______.【答案】289 【解析】【分析】设直角三角形的三边分别为,,a b c ,较长的直角边为,a 较短的直角边为,b c 为斜边,由切线长定理可得,直角三角形的内切圆的半径等于2a b c+-,即6a b c +-=,根据小正方的面积为49,可得()249a b -=,进而计算2c 即22a b +即可求解.【详解】解:设四个全等的直角三角形的三边分别为,,a b c ,较长的直角边为,a 较短的直角边为,b c 为斜边,直角三角形的内切圆半径为3,小正方形的面积为49,∴()23492a b c a b +-=-=,, ∴6a b c +-=①,7a b -=②,131,22c c a b +-∴==, 222ab c += ③,22213122c c c +-⎛⎫⎛⎫∴+= ⎪ ⎪⎝⎭⎝⎭, 解得=17c 或5c =-(舍去), 大正方形的面积为2217289c ==, 故答案为:289.【点睛】本题考查了切线长定理,勾股定理,解一元二次方程,二元一次方程组,掌握直角三角形的内切圆的半径等于2a b c+-是解题的关键. 18. 如图,△OMN 是边长为10的等边三角形,反比例函数y =kx(x >0)的图象与边MN 、OM 分别交于点A 、B (点B 不与点M 重合).若AB ⊥OM 于点B ,则k 的值为______.【答案】【解析】【分析】过点B 作BC ⊥x 轴于点C ,过点A 作AD ⊥x 轴于点D ,设OC =x ,利用含30度角的直角三角形的性质以及勾股定理求得点B (x ),点A (15-2x ,,再利用反比例函数的性质列方程,解方程即可求解.【详解】解:过点B 作BC ⊥x 轴于点C ,过点A 作AD ⊥x 轴于点D ,如图:∵△OMN 是边长为10的等边三角形,∴OM =MN =ON =10,∠MON =∠MNO =∠M =60°, ∴∠OBC =∠MAB =∠NAD =30°,设OC =x ,则OB =2x ,BC x ,MB =10-2x ,MA =2MB =20-4x ,∴NA =10-MA =4x -10,DN =12NA =2x -5,AD DN (2x x , ∴OD =ON -DN =15-2x ,∴点B (x x ),点A (15-2x ,x ), ∵反比例函数y =kx(x >0)的图象与边MN 、OM 分别交于点A 、B ,∴x x =(15-2x x , 解得x =5(舍去)或x =3,∴点B (3,),∴k .故答案为:【点睛】本题是反比例函数的综合题,考查了等边三角形的性质,含30度角的直角三角形的性质以及勾股定理,解题的关键是学会利用参数构建方程解决问题.三、解答题:本大题共7个小题,共78分.19. 计算:(14sin 302--;(2)21111aa a ⎛⎫-÷ ⎪+-⎝⎭.【答案】(1(2)1a - 【解析】【分析】(1)先化简二次根式,把特殊角三角函数值代入,并求绝对值,再计算乘法,最后合并同类二次根式即可;(2)先计算括号,再运用除法法则转化成乘法计算即可求解. 【小问1详解】解:原式1422=-⨯+=【小问2详解】解:原式211111a a a a a+-⎛⎫=-⋅ ⎪++⎝⎭()()111a a a a a+-=⋅+ 1a =-.【点睛】本题考查实数的混合运算,分式的混合运算,熟练掌握实数混合运算与分式混合运算法则,熟记特殊角的三角函数值.20. 已知:如图,点A 、D 、C 、F 在同一直线上,AB DE ∥,B E ∠=∠,BC EF =. 求证:AD CF =.【答案】见解析 【解析】【分析】根据AB DE ∥,可得A EDF ∠=∠,根据AAS 证明ABC DEF △≌△,进而可得AC DF =,根据线段的和差关系即可求解. 【详解】证明:∵AB DE ∥, ∴A EDF ∠=∠, 在ABC 与DEF 中,A EDFB E BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()AAS ABC DEF ≌△△, ∴AC DF =,∴AC DC DF DC -=-, ∴AD CF =.【点睛】本题考查了平行线的性质,全等三角形的判定与性质,掌握全等三角形的性质与判定是解题的关键.21. 在4月23日世界读书日来临之际,为了解某校九年级(1)班同学们的阅读爱好,要求所有同学从4类书籍中(A :文学类;B :科幻类;C :军事类;D :其他类),选择一类自己最喜欢的书籍进行统计.根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息回答问题:(1)求九年级(1)班的人数并补全条形统计图; (2)在扇形统计图中,求m 的值;(3)如果选择C 类书籍的同学中有2名女同学,其余为男同学,现要在选择C 类书籍的同学中选取两名同学去参加读书交流活动,请你用画树状图或列表的方法求出恰好是一男一女同学去参加读书交流活动的概率. 【答案】(1)40人,见解析(2)40 (3)23【解析】【分析】(1)根据A 类的人数与占比即可求得总人数,进而即可求得C 类的人数,补全统计图;(2)根据B 的人数与总人数即可求解.(3)用画树状图或列表的方法求概率即可求解. 【小问1详解】九(1)班人数:1230%40÷=(人), ∴C 类的人数()40121684=-++=(人), ∴补全的条形统计图为:【小问2详解】16%100%40%40m =⨯=,∴40m =, 【小问3详解】 (方法一)画树状图:共有12种等可能性结果,其中一男一女的机会有8种, ∴()82123P ==一男一女. (方法二)列表:1女2女 1男 2男 1女1女2女1女1男 1女2男 2女 2女1女2女1男2女2男 1男 1男1女 1男2女1男2男2男2男1女2男2女2男1男共有12种等可能性结果,其中一男一女的机会有8种, ∴()82123P ==一男一女. 【点睛】本题考查是条形统计图和扇形统计图的综合运用,样本估计总体,画树状图或列表的方法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. .22. 宜宾东楼始建于唐代,重建于宜宾建城2200周年之际的2018年,新建成的东楼(如图1)成为长江首城会客厅、旅游休闲目的地、文化地标打卡地.某数学小组为测量东楼的高度,在梯步A 处(如图2)测得楼顶D 的仰角为45°,沿坡比为7:24的斜坡AB 前行25米到达平台B 处,测得楼顶D 的仰角为60°,求东楼的高度DE .(结果精确到1米.参1.7≈ 1.4≈)的【答案】40m 【解析】【分析】根据7:24i =,25AB =,设7BF a =,则24AF a =,根据勾股定理求得1a =,又设BE x =,则FC BE x ==,7CE BF ==,求出DE ,根据AC DC =列出方程,解方程进而根据DE =即可求解.【详解】解:在Rt ABF 中,7:24i =,25AB =, 设7BF a =,则24AF a =,由222AF BF AB +=, 得()()22224725a a +=, 解得:1a =, ∴7BF =,24AF =又设BE x =,则FC BE x ==,7CE BF == 在Rt BDE 中,60DBE ∠=︒,则DE ==,∴7DC DE EC =+=+,在Rt ACD △中,45DAC ∠=︒,则AC DC =, ∴24AF FC x +=+,∴247x +=+,解得:(1712x =+,∴173402DE ==⨯≈. ∴东楼的高度约为40m .【点睛】本题考查了解直角三角形的实际应用,掌握三角形中的边角关系是解题的关键.23. 如图,一次函数y ax b =+的图象与x 轴交于点()40A ,,与y 轴交于点B ,与反比例函数()0ky x x=>的图象交于点C 、D .若tan 2BAO ∠=,3BC AC =.(1)求一次函数和反比例函数的表达式; (2)求OCD 的面积. 【答案】(1)28y x =-+,6y x= (2)8 【解析】【分析】(1)根据tan 2BAO ∠=,可得出B 点的坐标,运用待定系数法即可求出AB 的解析式;再通过比例关系解出点C 的坐标,可得反比例函数表达式; (2)过D 作DF y ⊥轴,垂足为点F ,联列方程组解出点D 的坐标,再根据OCD AOB ODB OAC S S S S =--△△△△即可求出OCD 的面积.【小问1详解】在Rt AOB 中,∵tan 2BAO ∠=, ∴2BO OA =,∵()40A ,,∴()08B ,, ∵A 、B 两点在函数y ax b =+上,将()40A ,、()08B ,代入y ax b =+得 408a b b +=⎧⎨=⎩解得2a =-,8b =, ∴28y x =-+设()11C x y ,,过点C 作CE x ⊥轴,垂足为E ,则CE BO ,∴AC CEAB BO=, 又∵3BC AC =,∴14AC CE AB BO ==, 即184CE =,2CE =,即12y =, ∴1282x -+=,∴13x =,∴()32C ,∴11326k x y ==⨯=, ∴6y x=; 【小问2详解】 解方程组286y x y x =-+⎧⎪⎨=⎪⎩,得1116x y =⎧⎨=⎩,2232x y =⎧⎨=⎩ ∴()32C ,,()16D , 过D 作DF y ⊥轴,垂足为点F∵OCD AOB ODB OAC S S S S =--△△△△ ∴111222OCD S OA OB BO DF OA CE =⋅-⋅-⋅△ ()14881422=⨯-⨯-⨯ 8=.【点睛】本题考查反比例函数的性质,涉及反比例函数与一次函数的交点问题,反比例函数中的面积问题,熟练运用反比例函数的性质,以及灵活运用面积计算的方法是解题的关键.24. 如图,点C 是以AB 为直径的O 上一点,点D 是AB 的延长线上一点,在OA 上取一点F ,过点F 作AB 的垂线交AC 于点G ,交DC 的延长线于点E ,且EG EC =.(1)求证:DE 是O 的切线;(2)若点F 是OA 的中点,4BD =,1sin 3D ∠=,求EC 的长.【答案】(1)见解析(2【解析】 【分析】(1)连结OC ,利用等腰三角形的性质和圆周角定理证90OCE ∠=︒,即可由切线的判定定理得出结论;(2)解Rt OCD △,求出2CO =,从而求得6OD =,则可求得CD =,再证OCD EFD ∽△△,得OD CD ED FD =,即可求得ED =,即可由EC ED CD =-求解.【小问1详解】 证明:如图,连结OC ,∵OA OC =,∴1A ∠=∠,又∵EG EC =,∴32∠=∠,又∵34∠=∠,∴42∠=∠,又∵EF AB ⊥,∴490A ∠+∠=︒,∴1290∠+∠=︒,即90OCE ∠=︒,∴OC DE ⊥,∴DE 是O 的切线;【小问2详解】解:在Rt OCD △中,4BD =,1sin 3CO D OD ∠==, ∴143CO CO CO OD OB BD OB ===++, ∴2CO =,∴6OD =,∴CD ===又∵点F 为AO 中点, ∴112122FO AO ==⨯=, ∴7FD FO OD =+=,∵D D ∠=∠,90OCD EFD ∠=∠=︒∴OCD EFD ∽△△,∴OD CD ED FD =,即6ED =∴ED =,∴EC ED CD =-=-=. 【点睛】本题考查切线的判定,圆周角定理,等腰三角形的性质,解直角三角形,相似三角形的判定与性质,熟练掌握相关性质与判定是解题的关键.25. 如图,抛物线2y ax bx c =++与x 轴交于()3,0A 、()1,0B -两点,与y 轴交于点()0,3C ,其顶点为点D ,连结AC .(1)求这条抛物线所对应的二次函数的表达式及顶点D 的坐标;(2)在抛物线的对称轴上取一点E ,点F 为抛物线上一动点,使得以点A 、C 、E 、F 为顶点、AC 为边的四边形为平行四边形,求点F 的坐标;(3)在(2)的条件下,将点D 向下平移5个单位得到点M ,点P 为抛物线的对称轴上一动点,求35PF PM +的最小值. 【答案】(1)2y x 2x 3=-++,顶点D 的坐标为()1,4(2)()2,5F --或()4,5F -(3)245【解析】【分析】(1)用待定系数法求解二次函数解析式,再化成顶点式即可得出顶点坐标; (2)先用待定系数法求直线AC 解析式为3y x =-+,再过点F 作FG DE ⊥于点G ,证OAC GFE ≌△△,得3OA GF ==,设F 点的坐标为()2,23m m m -++,则G 点的坐标为()21,23m m -++,所以13FG m =-=,即可求出2m =-或4m =,从而求得点F 坐标;(3),是平移得得点M 的坐标为()1,1-,则(2)知点()14,5F -与点()22,5F --关于对称轴1x =对称,连结12F F ,对称轴于点H ,连结1F M 、2F M ,过点2F 作21F N F M ⊥于点N ,交对称轴于点P ,则4MH =,13HF =,15MF =.在1Rt MHF 中,1113sin 5F H HMF MF ∠==,则在Rt MPN 中,13sin 5PN HMF PM ∠==,所以35PN PM =,所以1235PF PM PF PN F N +=+=为最小值,根据1221164522MF F S F N =⨯⨯=⨯⋅△,所以2245F N =,即可求出35PF PM +. 【小问1详解】解:∵抛物线2y ax bx c =++经过点()3,0A ,()1,0B -,()0,3C ,∴9330303a b a b c ++=⎧⎪-+=⎨⎪=⎩,解得:123a b c =-⎧⎪=⎨⎪=⎩,∴抛物线的解析式为:2y x 2x 3=-++=-(x -1)2+4,∴顶点D 的坐标为()1,4;【小问2详解】解:设直线AC 的解析式为:y kx b =+,把点()3,0A ,()0,3C 代入得:1k =-,3b =,∴直线AC 解析式为:3y x =-+,过点F 作FG DE ⊥于点G ,∵以A 、C 、E 、F 四点为顶点的四边形是以AC 为边的平行四边形,∴AC EF ∥,AC =EF ,又∵OA FG ,∴OAC GFE ∠=∠∴OAC GFE ≌△△,∴3OA GF ==,设F 点的坐标为()2,23m m m -++,则G 点的坐标为()21,23m m -++, ∴13FG m =-=,∴2m =-或4m =,当2m =-时,2235m m -++=-,∴()12,5F --,当4m =时,2235m m -++=-∴()24,5F -,∴()2,5F --或()4,5F -;【小问3详解】解:由题意,得点M 的坐标为()1,1-,由题意知:点()14,5F -与点()22,5F --关于对称轴1x =对称,连结12F F ,对称轴于点H ,连结1F M 、2F M ,过点2F 作21F N F M ⊥于点N ,交对称轴于点P ,则4MH =,13HF =,15MF =.在1Rt MHF 中,1113sin 5F H HMF MF ∠==,则在Rt MPN 中,13sin 5PN HMF PM ∠== ∴35PN PM =, 又∵21PF PF = ∴1235PF PM PF PN F N +=+=为最小值, 又∵1221164522MF F S F N =⨯⨯=⨯⋅△, ∴2245F N =, ∴求得35PF PM +的最小值为245. 【点睛】本题考查用待定系数法求函数解析式,二次函数图象性质,平行四边形的性质,解直角三角形,利用轴对称求最小值,本题属二次函数综合题目,掌握二交次函数图象性质和灵活运用是解题的关键。
2023年四川省宜宾市中考数学试卷(含答案)164304
2023年四川省宜宾市中考数学试卷试卷考试总分:149 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 12 小题 ,每题 4 分 ,共计48分 )1. 下列各对数中,互为相反数的是 A.与B.与C.与D.与2. 下列计算正确的是( )A.B.C.D.3. 下列交通标识,既是中心对称图形,又是轴对称图形的是( )A.B.C.D.4. 年人口普查显示,河南某市户籍人口约为人,则该市户籍人口数据用科学记数法可表示为( )A.人B.人C.人D.人5. 如图, ,若,,则等于( )()+(−1)−3−(+3)−3−(−3)−3−(−3)+34a +3b =7ab+=a 3a 2a 5−2−=−a 2a 2a 24b −b =b a 272a 212a 2201725360002.536×1042.536×1052.536×1062.536×107BC//DE ∠A =35∘∠C =24∘∠EA.B.C.D.6. 某班学生分组搞活动,若每组人,则余下人;若每组人,则有一组少人.设全班有学生人,分成 个小组,则可得方程组( )A.B.C.D.7. 已知:如图,是 的直径,点是圆上一点,连接,,,若 , 则( )A.B.C.D.8. 解分式方程,去分母得( )A.B.C.D.9. 如图,扇形是圆锥的侧面展开图,若小正方形方格的边长为,则这个圆锥的底面半径为( )24∘59∘60∘69∘7483x y {7x+4=y 8x−3=y{7y =x+48y+3=x{7y =x−48y =x+3{7y =x+48y =x+3AB ⊙O C CA CO BC ∠ACO =28∘∠ABC =56∘72∘28∘62∘−2=1x−131−x 1−2(x−1)=−31−2(x−1)=31−2x−2=−31−2x+2=3OAB 1cm m2–√A.B.C.D.10. 如图,已知正方形边长为,连接、,平分交于点,则长为( )A.B.C.D. 11. 如图,双曲线=经过斜边上的中点,且与交于点,若=,则的值为( )A.B.C.D.12. 如图,在中,,于点,平分交于点,,,则的长为( )A.B.cm 2–√4cm2–√cm 2–√2cm 12ABCD 1AC BD CE ∠ACD BD E DE 2−2−1−12−y Rt △BOC A BC D S △BOD 6k 2468Rt △ABC ∠ACB =90∘CD ⊥AB D AE ∠CAB CD E AD =4BD =9DE 24−813−−√35C.D.二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )13. 数据,,,,,,的中位数是________.14. 分解因式:________.15. 若,是一元二次方程的两根,则的值是________.16. 不等式组:的整数解有三个,则的取值范围是________.17. 如图,菱形,对角线 于点,则的长为________.18. 如图,在正方形中,是等边三角形,,的延长线分别交于点,,连接,,与相交于点.给出下列结论:①=; ②=;③; ④=,其中正确的是________.(填写正确结论的序号)三、 解答题 (本题共计 7 小题 ,每题 11 分 ,共计77分 )19. 计算:.20. 如图,已知, 直线经过点,过点作于, 于.我们把这种常见图形称为“”字图.悟空同学对图进行一番探究后,得出结论:,现请你替悟空同学完成证明过程;悟空同学进一步对类似图形进行探究,在图中,若,,则结论还成立吗?如果成立,请证明之.21. 年是决战决胜扶贫攻坚之年,为走好走稳“最后一公里”,某社区为了加强社区居民对“脱贫攻坚知识”的了解,通过微信宣传脱贫攻坚知识,并鼓励社区居民在线参与作答《脱贫攻坚知识竞赛》,社区管理员随机从有人的某小区抽取出位居民的答卷成绩,并对他们的成绩(单位:分)统计如下:522−413−−√78807575808083m−m =n 2x 1x 25+x−5=0x 2+x 1x 2{x−a >0,1−x >2x−5a ABCD AC =8cm ,DB =6cm ,DH ⊥AB H DH cm ABCD △BPC BP CP AD E F BD DP BD CF H AF DE ∠ADP 15∘PD 2PH ⋅PB (−1+2sin −|1−|+)201660∘3–√π01AB =AC AB ⊥AC.m A B BD ⊥m D CE ⊥m E K (1)1DE =BD+CE(2)2AB =AC ∠BAC =∠BDA =∠AEC DE =BD+CE 2020202080040按如下分段整理样本数据:等级成绩频数频率________________合计补全条形统计图;表中, .根据抽样调查结果,请估计该小区答题成绩为“级”的有多少人?该社区有名男管理员和名女管理员,现从中随机挑选名管理员参加“脱贫攻坚”宣传活动,请用列表法或画树状图法求出恰好选中“一男一女”的概率.22. 如图,已知水平地面上有两栋大楼,,它们之间相距,小王在地面处测得楼顶的仰角为,在楼顶处测得点的仰角为.小王说他知道这两栋楼的高度了,你认为他说的有道理吗?如果能够,请帮他求出来;如果不能,请说明理由. 23. 如图,直线与双曲线相交于点.已知,,连接、,将沿方向平移,使点移动到点,得到.过点作轴交双曲线于点,连接.求与的值.求直线的解析式.直接写出线段扫过的面积.858095100909585657585909070901008080909575806080958510090858580957580907080957510090(x)A 90<x ≤100100.25B 80<x ≤90a C 70<x ≤80120.3D 60<x ≤70b 401(1)(2)a =______b =________(3)A (4)222AB CD 30m B C 45∘A C 30∘y =x(x ≤0)k 1y =(x <0)k 2x P (−3,2)A(−1,2)B(−2,0)AB AO △ABO OP O P △P A ′B ′B ′C ⊥x B ′C CP (1)k 1k 2(2)CP (3)AB24. 如图,是的直径,点是上一点,点是上一点,连接并延长至点,使,与交于点.求证:为的切线;若平分,求证:.25. 如图,在平面直角坐标系中,直线交轴于点,交轴于点,经过点的交直线于另一点,且点到轴的距离为.求抛物线的解析式;点是直线上方的抛物线上一动点(不与点、重合),过点作于点,过点作轴交于点,设的周长为,点的横坐标为,求与的函数关系式,并直接写出自变量的取值范围;在()的条件下,当最大时,连接,将沿直线方向平移,点、、的对应点分别为、、,当的顶点在抛物线上时,求点的横坐标,并判断此时点是否在直线上.AB ⊙O E ⊙O D AEˆAE C ∠CBE=∠BDE BD AE F (1)BC ⊙O (2)BD ∠ABE AD 2=DF ⋅DB y =x−3432x A y B A y =−+bx+c 14x 2AB D D y 8(1)(2)P AD A D P PE ⊥AD E P PF//y AD F △PEF L P m L m m (3)2L PD △PED PE P E F Q M N △QMN M M N PF参考答案与试题解析2023年四川省宜宾市中考数学试卷试卷一、 选择题 (本题共计 12 小题 ,每题 4 分 ,共计48分 )1.【答案】C【考点】相反数【解析】本题考查了相反数的知识,比较简单,注意掌握互为相反数的两数之和为.根据相反数的定义,只有符号不同的两个数互为相反数,的相反数是,且一对相反数的和为,即可解答.【解答】解:只有符号不同的两个数叫做互为相反数.互为相反数的两数之和为.,,故本选项错误;,,故本选项错误;,,故本选项正确;,,故本选项错误.故选.2.【答案】D【考点】合并同类项【解析】此题暂无解析【解答】解:,与不是同类项,不能合并,故此选项错误;,与不是同类项,不能合并,故此选项错误;,,故故此选项错误;,,故此选项正确.故选.3.【答案】D【考点】中心对称图形轴对称图形【解析】00000A +(−1)+(−3)=−4B −(+3)+(−3)=−6C −(−3)+(−3)=0D −(−3)+(+3)=6C A 4a 3b B a 3a 2C −2−=−3a 2a 2a 2D 4b −b =b a 272a 212a 2D根据轴对称图形与中心对称图形的概念求解.【解答】解:根据轴对称图形与中心对称图形的概念,知:,不是轴对称图形,也不是中心对称图形;,不是轴对称图形,也不是中心对称图形;,是轴对称图形,但不是中心对称图形;,既是中心对称图形,又是轴对称图形.故选.4.【答案】C【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.【解答】人=人,5.【答案】B【考点】三角形的外角性质平行线的性质【解析】先由三角形的外角性质求得的度数,再根据平行线的性质得出即可.【解答】解:,,,,.故选.6.【答案】C【考点】由实际问题抽象出二元一次方程组【解析】此题中的关键性的信息是:①若每组人,则余下人;②若每组人,则有一组少人.A B C D D a ×10n 1≤|a |<10n n a n >1n <1n 2536000 2.536×106∠CBE ∠E =∠CBE ∵∠A =35∘∠C =24∘∴∠CBE =∠A+∠C =59∘∵BC//DE ∴∠E =∠CBE =59∘B 7483解:根据若每组人,则余下人,得方程;根据若每组人,则有一组少人,得方程.可列方程组为故选.7.【答案】D【考点】圆周角定理圆心角、弧、弦的关系【解析】此题暂无解析【解答】解:∵是直径,且点C 在圆上,∴,.∴.故选.8.【答案】A【考点】解分式方程【解析】此题暂无解析【解答】解:分式方程同乘去分母得,故选.9.【答案】C【考点】弧长的计算勾股定理【解析】用“此扇形的弧长等于圆锥底面周长”作为相等关系,求圆锥的底面半径.747y =x−4838y =x+3{7y =x−4,8y =x+3.C AB ∠BAC =∠ACO =28∘∠ACB =90∘∠CBA =−∠CAB =−=90∘90∘28∘62∘D −2=1x−131−x x−11−2(x−1)=−3A解:由图可知,,,,所以是直角三角形,,设圆锥的底面半径为,则,所以.故选.10.【答案】C【考点】正方形的性质【解析】此题暂无解析【解答】此题暂无解答11.【答案】B【考点】反比例函数图象上点的坐标特征反比例函数系数k 的几何意义【解析】此题暂无解析【解答】此题暂无解答12.【答案】B【考点】勾股定理角平分线的性质全等三角形的性质与判定相似三角形的性质与判定【解析】设,首先证明求出的长,然后证明求出和的长,最后在OA =OB ==2+2222−−−−−−√2–√AB =4O +O =8+8=16=A A 2B 2B 2△AOB ∠AOB =90∘r 2πr =90π×22–√180r =cm 2–√2C DE =x △ADC ∼△CDB CD Rt △AFE ≅Rt △ADE AF DE中根据勾股定理即可求出的长.【解答】解:如图,过点作,垂足为.∵,∴,∴.∵,∴,∴,∴,∴,∴.在中,,,根据勾股定理,得.设,∵是的平分线,,,∴.∵,∴,∴,∴.在中,,,根据勾股定理,得.解方程,得.故选.二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )13.【答案】【考点】中位数【解析】中位数是指将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).【解答】解:将这组数据从小到大的顺序排列为:,,,,,,,中位数是.故答案为:.14.【答案】Rt △EFC DE E EF ⊥AC F CD ⊥AB ∠ADC =∠CDB =90∘∠ACD+∠CAD =90∘∠CAD+∠B =90∘∠ACD =∠B △ADC ∼△CDB =AD CD CD BD =4CD CD 9CD =6Rt △ADC AD =4CD =6AC ===2A +C D 2D 2−−−−−−−−−−√+4262−−−−−−√13−−√DE =x AE ∠CAB EF ⊥AC CD ⊥AB EF =DE =x AE =AE Rt △AFE ≅Rt △ADE(HL)AF =AD =4CF =AC −AF =2−413−−√Rt △EFC CE =6−x CF =2−413−−√=+(6−x)2(2−4)13−−√2x 2x =4−813−−√3B 80757578808080838080m(1+n)(1−n)【考点】提公因式法与公式法的综合运用【解析】首先提取公因式,再利用平方差公式进行二次分解即可.【解答】解:.故答案为:.15.【答案】【考点】根与系数的关系【解析】由根与系数的关系,直接解答.【解答】解:根据根与系数的关系可知.故答案为:.16.【答案】【考点】一元一次不等式组的整数解【解析】先解出不等式组中的不等式,再根据三个整数解,得出的取值范围.【解答】解:由可得:有三个整数解,整数解为,.故答案为:.17.【答案】【考点】m m−m =m(1−)=m(1−n)(1+n)n 2n 2m(1−n)(1+n)−15+=−x 1x 215−15−2≤a ≤−1a {x−a >0,1−x >2x−5,{x >a ,x <2,∵∴1,0,−1∴−2≤a <−1−2≤a <−1245全等三角形的性质与判定菱形的性质角平分线的性质【解析】此题暂无解析【解答】解:四边形是菱形,.故答案为:.18.【答案】①②④【考点】正方形的性质等边三角形的性质全等三角形的性质与判定相似三角形的性质与判定【解析】先判断出==,===,再判断出==,===,进而得出==,即可判断出,即可得出结论;由等腰三角形的性质得出=,则可得出答案;证明,得出,设=,=,则=,得出=,则可求出答案;先判断出=,进而判断出,即可得出结论.【解答】∵是等边三角形,∴==,===,在正方形中,∵==,===,∴==,∴,∴=,∴=,∴=;故①正确;∵=,=,∴=,∴===.故②正确;∵==,∴是等边三角形,∴,∴,ABCD AC ⊥BD,OA =OC =AC =4cm,OB =OD =3cm 12AB =5cm =AC ⋅BD =AB ⋅DH S 菱形ABCD 12DH ==cm AC ⋅BD 2AB 245245BP PC BC ∠PBC ∠PCB ∠BPC 60∘AB BC CD ∠A ∠ADC ∠BCD 90∘∠ABE ∠DCF 30∘△ABE ≅△DCF(ASA)∠PDC 75∘△FPE ∽△CPB PF x PC y DC y y (x+y)∠DPH ∠DPC △DPH ∽△CPD △BPC BP PC BC ∠PBC ∠PCB ∠BPC 60∘ABCD AB BC CD ∠A ∠ADC ∠BCD 90∘∠ABE ∠DCF 30∘△ABE ≅△DCF(ASA)AE DF AE−EF DF −EF AF DE PC CD ∠PCD 30∘∠PDC 75∘∠ADP ∠ADC −∠PDC −90∘75∘15∘∠FPE ∠PFE 60∘△FEP △FPE ∽△CPB设=,=,则=,∵=,∴=,整理得:)=,解得:,则,故③错误;∵=,=,∴=,∵=,∴==,∵=,∴,∴,∴=,∵=,∴=;故④正确.三、 解答题 (本题共计 7 小题 ,每题 11 分 ,共计77分 )19.【答案】原式=.【考点】零指数幂实数的运算特殊角的三角函数值【解析】先计算乘方、代入三角函数值、去绝对值符号、计算零指数幂,再去括号,最后计算加减可得.【解答】原式=.20.【答案】证明:在和中,∴,∴,,∴.解:成立.理由如下:∵ ,PF x PC y DC y ∠FCD 30∘y (x+y)(1−y x PC CD ∠DCF 30∘∠PDC 75∘∠BDC 45∘∠PDH ∠PCD 30∘∠DPH ∠DPC △DPH ∽△CPD PD 2PH ⋅CP PB PC PD 2PH ⋅PB =1+2×−(−1)+13–√23–√=1+−+1+13–√3–√3=1+2×−(−1)+13–√23–√=1+−+1+13–√3–√3(1)△ABD △CAE ∠ABD =∠EAC ,∠BDA =∠AEC ,AB =AC ,△ABD ≅△CAE(AAS)BD =A E AD =C E DE =AE+DA =BD+CE (2)∠BAC +∠BAD+∠EAC =180∘,,∴ ,在和 中,∴ ,∴,,∴ .【考点】全等三角形的性质与判定【解析】【解答】证明:在和中,∴,∴,,∴.解:成立.理由如下:∵ ,,,∴ ,在和 中,∴ ,∴,,∴ .21.【答案】解:补全条形统计图如图所示.,人.答:估计该小区答题为级的有人.由题意列出树状图,∠ADB+∠BAD+∠ABD =180∘∠BAC =∠BDA ∠ABD =∠EAC △ABD △CAE ∠ABD =∠EAC ,∠BDA =∠AEC ,AB =AC ,△ABD ≅△CAE(AAS)BD =AE AD =CE DE =AE+DA =BD+CE (1)△ABD △CAE ∠ABD =∠EAC ,∠BDA =∠AEC ,AB =AC ,△ABD ≅△CAE(AAS)BD =A E AD =C E DE =AE+DA =BD+CE (2)∠BAC +∠BAD+∠EAC =180∘∠ADB+∠BAD+∠ABD =180∘∠BAC =∠BDA ∠ABD =∠EAC △ABD △CAE ∠ABD =∠EAC ,∠BDA =∠AEC ,AB =AC ,△ABD ≅△CAE(AAS)BD =AE AD =CE DE =AE+DA =BD+CE (1)0.350.1(3)800×0.25=200A 200(4)所有可能的结果有种,恰好选中男女的有种,故概率为.【考点】条形统计图频数(率)分布表用样本估计总体列表法与树状图法【解析】根据题中数据即可求得、的值;根据中表格数据即可补全条形统计图;根据树状图法求即可求出恰好选中“男女”的概率.【解答】解:补全条形统计图如图所示.由题意可知:等级的频数,频率,∴等级的频数为,.故答案为:;.人.答:估计该小区答题为级的有人.由题意列出树状图,所有可能的结果有种,恰好选中男女的有种,故概率为.22.12118=81223(1)a b (2)(1)(4)11(1)(2)B 14a =14÷40=0.35D 4b =1−0.25−0.35−0.3=0.10.350.1(3)800×0.25=200A 200(4)12118=81223【答案】解:小王说得有道理.过点作的垂线,垂足为.,,.在中,,,故,且.高,高.【考点】解直角三角形的应用-仰角俯角问题【解析】通过等腰直角三角形的性质得出一个楼高,再通过解特殊三角形得出另一个.【解答】解:小王说得有道理.过点作的垂线,垂足为.,,.在中,,,故,且.高,高.23.【答案】解:把点代入直线中,得,.把点代入双曲线中,得,.如图,延长交轴于点,延长 交轴于点,,,点必在线段上.,A CD E ∵∠BDC =90∘∠CBD =45∘∴CD =BD =30m △ACE ∠A =30∘∴tan ∠A =CE AE =tan =30∘3–√3∴=CE 303–√3CE =10m 3–√AB =CD−CE =(30−10)m 3–√∴CD 30m AB (30−10)m 3–√A CD E ∵∠BDC =90∘∠CBD =45∘∴CD =BD =30m △ACE ∠A =30∘∴tan ∠A =CE AE =tan =30∘3–√3∴=CE 303–√3CE =10m 3–√AB =CD−CE =(30−10)m 3–√∴CD 30m AB (30−10)m 3–√(1)P (−3,2)y =x k 1−3=2k 1∴=−k 123P (−3,2)y =k 2x 2=k 2−3∴=−6k 2(2)C B ′x D P B ′y E ∵P (−3,2)A(−1,2)∴A E B ′∵A(−1,2)B(−2,0),.由平移得.,.轴,点的横坐标为,在中,令,得,.设直线 的解析式为,把,代入,得解得直线的解析式为.由平移可得,,,,,,∴四边形、四边形、四边形都是平行四边形.,,,,,又,线段 扫过的面积.【考点】待定系数法求反比例函数解析式待定系数法求一次函数解析式反比例函数与一次函数的综合平移的性质平行四边形的面积【解析】此题暂无解析【解答】解:把点代入直线中,∴BO =2OE =2P =BO =2B ′∵P (−3,2)∴(−5,2)B ′∵C ⊥x B ′∴C −5y =−6xx =−5y =65∴C(−5,)65CP y =kx+b P (−3,2)C(−5,)65{−3k +b =2,−5k +b =,65 k =,25b =,165∴CP y =x+25165(3)//AB A ′B ′=AB A ′B ′P//BO B ′P =BO B ′P//AO A ′P =AO A ′BA A ′B ′POA A ′POB B ′∵(−5,2)B ′P (−3,2)A(−1,2)∴D =OE =2B ′AP =2△ABO ≅△P A ′B ′∴AB =S ▱BA A ′B ′=+S ▱BOP B ′S ▱POA A ′=+2×S ▱BOP B ′S △APO =BO ×D+2××AP ×OE B ′12=2×2+2××2×2=812(1)P (−3,2)y =x k 1得,.把点代入双曲线中,得,.如图,延长交轴于点,延长 交轴于点,,,点必在线段上.,,.由平移得.,.轴,点的横坐标为,在中,令,得,.设直线 的解析式为,把,代入,得解得直线的解析式为.由平移可得,,,,,,∴四边形、四边形、四边形都是平行四边形.,,,,,又,线段 扫过的面积.24.【答案】证明:∵是的直径,∴,∴.−3=2k 1∴=−k 123P (−3,2)y =k 2x 2=k 2−3∴=−6k 2(2)C B ′x D P B ′y E ∵P (−3,2)A(−1,2)∴A E B ′∵A(−1,2)B(−2,0)∴BO =2OE =2P =BO =2B ′∵P (−3,2)∴(−5,2)B ′∵C ⊥x B ′∴C −5y =−6x x =−5y =65∴C(−5,)65CP y =kx+b P (−3,2)C(−5,)65{−3k +b =2,−5k +b =,65 k =,25b =,165∴CP y =x+25165(3)//AB A ′B ′=AB A ′B ′P//BO B ′P =BO B ′P//AO A ′P =AO A ′BA A ′B ′POA A ′POB B ′∵(−5,2)B ′P (−3,2)A(−1,2)∴D =OE =2B ′AP =2△ABO ≅△P A ′B ′∴AB =S ▱BA A ′B ′=+S ▱BOP B ′S ▱POA A ′=+2×S ▱BOP B ′S △APO =BO ×D+2××AP ×OE B ′12=2×2+2××2×2=812(1)AB ⊙O ∠AEB=90∘∠EAB+∠EBA =90∘∵,,∴,∴,即,∴.∵是的直径,∴是的切线.∵平分,∴.∵,∴.∵,∴,∴,∴.【考点】圆周角定理切线的判定相似三角形的性质与判定【解析】(1)根据圆周角定理即可得出=,再由已知得出=,则,从而证得是的切线;(2)通过证得,得出相似三角形的对应边成比例即可证得结论.【解答】证明:∵是的直径,∴,∴.∵,,∴,∴,即,∴.∵是的直径,∴是的切线.∵平分,∴.∵,∴.∵,∴,∴,∴.25.【答案】解:()由题意知.∵点到轴的距离为,∴点的横坐标为.∵点在上,∴ ∴.∵在抛物线上,∠CBE=∠BDE ∠BDE=∠EAB ∠EAB=∠CBE ∠EBA+∠CBE =90∘∠ABC=90∘CB ⊥AB AB ⊙O BC ⊙O (2)BD ∠ABE ∠ABD=∠DBE ∠DAF=∠DBE ∠DAF=∠ABD ∠ADB=∠ADF △ADF ∽△BDA =AD BD DF AD AD 2=DF ⋅DB ∠EAB+∠EBA 90∘∠ABE+∠CBE 90∘CB ⊥AB BC ⊙O △ADF ∽△BDA (1)AB ⊙O ∠AEB=90∘∠EAB+∠EBA =90∘∠CBE=∠BDE ∠BDE=∠EAB ∠EAB=∠CBE ∠EBA+∠CBE =90∘∠ABC=90∘CB ⊥AB AB ⊙O BC ⊙O (2)BD ∠ABE ∠ABD=∠DBE ∠DAF=∠DBE ∠DAF=∠ABD ∠ADB=∠ADF △ADF ∽△BDA =AD BD DF AD AD 2=DF ⋅DB 1A(2,0),B(0,−)32D y 8D −8D y =x−3432y =×(−8)−=−.3432152D(−8,−)152A(2,0),D(−8,−)152=−×+2b +c,1∴ 解得 ∴抛物线解析式为.∵,∴.∴ .∴的周长为.∵轴,∴,,.∴.又∵ ,∴ .∴ .∴ .∴..∵ ,∴当时,最大.∴.设交轴于点.∴.∵ ,∴ .∴.∴.∴.∵,∴.∴.∴点与点重合,如图.∵,∴直线的解析式为.设点的坐标为,∵点在抛物线上,∴ ,0=−×+2b +c,1422−=−×(−8−8b +c ,15214)2 b =−,34c =,52y =−−x+14x 23452(2)A(2,0),B(0,−)32OA =2,OB =32AB =52△AOB 6PF//y ∠PFE =∠AOB P (m,−−m+)14m 23452F (m,m−)3432PF =−−m+−(m−)=−−m+414m 23452343214m 232PE ⊥AD ∠PEF =∠AOB =90∘△PEF∽△ABO =L △AOB 的周长PF AB L =−−m+35m 2185485(−8<x <2)(3)L =−+1535(m+3)2−<035m=−3L P (−3,),F (−3,−)52154PF x KPK =,KF =,PF =52154254OB//FK △OAB ∼△KAF =AB AF OB KFAF =254BF =AF −AB =154△PEF ∽△ABO =EF OB PF AB EF =154B E P (−3,),B(0,−)5232PB y =−x−4332M (n,−n−)4332M y =−−x+14x 23452−n−4332=−−n+14n 2345216解得(舍),.∵点的横坐标为,点的横坐标为,∴向右平移了个单位长度.∴点也向右平移了个单位长度得到点.∴点的横坐标为.∵直线上的点的横坐标都为–,∴点不在直线上.【考点】二次函数综合题【解析】此题暂无解析【解答】解:()由题意知.∵点到轴的距离为,∴点的横坐标为.∵点在上,∴∴.∵在抛物线上,∴解得 ∴抛物线解析式为.∵,∴.∴ .∴的周长为.∵轴,∴,,.∴.又∵ ,∴ .∴ .∴ .∴..∵ ,∴当时,最大.=−3n 1=n 2163E 0M 163△PED 163D 163N N −8+=−16383PF 3N PF 1A(2,0),B(0,−)32D y 8D −8D y =x−3432y =×(−8)−=−.3432152D(−8,−)152A(2,0),D(−8,−)1520=−×+2b +c,1422−=−×(−8−8b +c ,15214)2 b =−,34c =,52y =−−x+14x 23452(2)A(2,0),B(0,−)32OA =2,OB =32AB =52△AOB 6PF//y ∠PFE =∠AOB P (m,−−m+)14m 23452F (m,m−)3432PF =−−m+−(m−)=−−m+414m 23452343214m 232PE ⊥AD ∠PEF =∠AOB =90∘△PEF∽△ABO =L △AOB 的周长PF AB L =−−m+35m 2185485(−8<x <2)(3)L =−+1535(m+3)2−<035m=−3L (−3,),F (−3,−)515∴.设交轴于点.∴.∵ ,∴ .∴.∴.∴.∵,∴.∴.∴点与点重合,如图.∵,∴直线的解析式为.设点的坐标为,∵点在抛物线上,∴ ,解得(舍),.∵点的横坐标为,点的横坐标为,∴向右平移了个单位长度.∴点也向右平移了个单位长度得到点.∴点的横坐标为.∵直线上的点的横坐标都为–,∴点不在直线上.P (−3,),F (−3,−)52154PF x K PK =,KF =,PF =52154254OB//FK △OAB ∼△KAF =AB AF OB KF AF =254BF =AF −AB =154△PEF ∽△ABO =EF OB PF AB EF =154B E P (−3,),B(0,−)5232PB y =−x−4332M (n,−n−)4332M y =−−x+14x 23452−n−4332=−−n+14n 23452=−3n 1=n 2163E 0M 163△PED 163D 163N N −8+=−16383PF 3N PF。
2023年四川省宜宾市中考数学试卷(含答案解析)035329
2023年四川省宜宾市中考数学试卷试卷考试总分:149 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 12 小题 ,每题 4 分 ,共计48分 )1. 的相反数是( )A.B.C.D.2. 下列计算正确的是( )A.=B.=C.=D.=3. 下列图形中,只是中心对称图形而不是轴对称图形的是( )A.B.C.D.4. 年,全国实行地区生产总值统一核算改革,某城区约为亿元,第一次进入千亿城区,将数据亿用科学记数法表示为( )1616−66−162a +3b 5ab5a −3a 22−3a a 2−a−2b +3b a 2a 2ba 22019GDP 1004.21004.21.0042×11A.B.C.D.5. 已知直线,把如图所示放置,点在直线上,,,若,则等于( )A.B.C.D.6. 已知互补,比小,设的度数分别为,下列方程组中符合题意的是( )A.B.C.D.7. 如图,点,,,在上,,点是弧的中点,则的度数是( )A.1.0042×10111.0042×10121.0042×10710.042×1011a//b Rt △ABC B b ∠ABC =90∘∠A =30∘∠1=28∘∠228∘32∘58∘60∘∠A,∠B ∠A ∠B 30∘∠A,∠B ,x ∘y ∘{x+y =180,x =y−30{x+y =180,x =y+30{x+y =90,x =y+30{x+y =90,x =y−30A B C D ⊙O ∠AOC =120∘B AC ∠D 30∘B.C.D.8. 将分式方程 去分母,得到正确的整式方程是 ( )A.B.C.D.9. 对于长度为的线段(图),小若用尺规进行如下操作(图)根据作图痕迹,有下列说法:①是等腰三角形;②是直角三角形;③是等边三角形;④的长度为,⑤是直角三角形的依据是直径所对的圆周角为直角,则其中正确的个数是( )A.B.C.D.10. 如图,已知正方形边长为,连接、,平分交于点,则长为( )40∘50∘60∘1−=2x x−13x−11−2x =3x−1−2x =31+2x =3x−1+2x =34AB 12△ABC △ABC △ABC AD ^π34△ABC 1234ABCD 1AC BD CE ∠ACD BD E DEA. B. C.D. 11. 如图,双曲线=经过斜边上的中点,且与交于点,若=,则的值为( )A.B.C.D.12. 如图,从一块半径为 的圆形铁皮上裁出一个圆周角为的扇形,如果将裁下来的图形围成一个圆锥,则该圆锥的底面半径为A.B.C.D.二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )2−2−1−12−y Rt △BOC A BC D S △BOD 6k 246860cm 120∘ABC ( )10cm20cm30cm40cm13. 一组数据,,,,,的中位数是________.14. 分解因式:________.15. 已知关于方程有一个根为,则方程的另一个根为________.16. 若关于的不等式组,有且仅有三个整数解,则的取值范围是________.17. 如图,在▱中,,,,对角线与交于点,将直线绕点按顺时针方向旋转,分别交、于点、,则四边形周长的最小值是________.18. 如图,为的平分线上一点,过点作任意一条直线分别与的两边相交于点,,为的中点,过点作的垂线交射线于点,若,则的大小为________(用含的代数式表示).三、 解答题 (本题共计 7 小题 ,每题 11 分 ,共计77分 )19. 计算:.20. 如图,点,在线段上, ,,.求证: 21. 某校开设有(类)、音乐(类)、体育(类)、舞蹈(类)四类社团活动,要求学生全员参加,每人限报一类.为了了解学生参与社团活动的情况,校学生会随机抽查了部分学213124−2+a =a 3a 2x −3x+a =0x 21x ≥2+x x−123x >2m−1m ABCD AB =2BC =3∠ABC =60∘AC BD O l O AD BC E F ABFE A ∠MON OD A ∠MON B C P BC P BC OA D ∠BDC =α∠BOD α(−1+2sin −|1−|+)201660∘3–√π0C D BF AB//DE AB =DF BC =DE ∠A =∠F.STEAM A B C D生,将所收集的数据绘制成如图所示不完整的统计图.请根据图中提供的信息解答下列问题:类型频数频率________,并补全条形统计图;若该校共有人,报的有________人;如果学生会想从类的甲、乙、丙三人中随机选择两人参加舞蹈演出,请用列表法或树状图的方法求出恰好选中甲的概率.22. 如图,某人在处测得山顶的仰角为,向前走米来到山脚处,测得山坡的坡度为,求山的高度(不计测角仪的高度,参考数据:,,).23. 已知直线分别与轴相交于点,与轴相交于点.求直线的解析式;过点的直线与轴交于点,若的面积为,求点的坐标. 24. 如图,为直径,,为上的点, 交的延长线于点,且.A30x B180.15Cm 0.40D n y(1)x =(2)1800STEAM (3)D D C 37∘100A AC i=1:0.5sin ≈0.6037∘cos ≈0.8037∘tan ≈0.7537∘AB x A(−,0)32y B(0,3)(1)AB (2)B x C △ABC 154C AB ⊙O C D ⊙O CE ⊥DB DB E ∠CBE =∠ABC判断直线与的位置关系,并说明理由;若,,求的长.25. 在平面直角坐标系中,点为坐标原点,直线与轴相交于点,与轴相交于点.经过点,的抛物线与轴的另一个交点为点.如图,求的值;如图,点,分别在线段,上,且,连接,将线段绕点顺时针旋转得到线段,且旋转角,连接,求的值;如图,在()的条件下,当时,在线段的延长线上取点,过点作交抛物线于点,连接,,若,求点的横坐标.(1)CE ⊙O (2)AC =4AB =5CE O y =−x+b 34x A y C A C y =ax 2+3ax−3x B (1)1a (2)2D E AC AB BE =2AD DE DE D DF ∠EDF =∠OAC CF tan ∠ACF (3)32∠DFC =135∘AC M M MN//DE N DN EM MN =DF N参考答案与试题解析2023年四川省宜宾市中考数学试卷试卷一、 选择题 (本题共计 12 小题 ,每题 4 分 ,共计48分 )1.【答案】D【考点】相反数【解析】根据相反数的定义(只有符号不同的两个数,其中一个数是另一个数的相反数)求出即可.【解答】解:的相反数是 .故选.2.【答案】D【考点】合并同类项【解析】此题暂无解析【解答】此题暂无解答3.【答案】A【考点】16−16D中心对称图形轴对称图形【解析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】、是中心对称图形,故本选项符合题意;、既是轴对称图形,故本选项不合题意;、是轴对称图形,故本选项不合题意;、既是轴对称图形,故本选项不合题意.4.【答案】A【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】解:亿.故选.5.【答案】C【考点】平行线的性质三角形的外角性质【解析】利用对顶角相等及三角形外角的性质,可求出的度数,由直线,利用“两直线平行,内错角相等”可求出的度数.【解答】A B C D 1004.2=100420000000=1.0042×1011A ∠DEB a//b ∠2解:如图,,,,.直线,.故选.6.【答案】A【考点】由实际问题抽象出二元一次方程组【解析】设,的度数分别为,,根据“,互补,比小”列出方程组解答即可.【解答】解:设,的度数分别为,,由题意得故选.7.【答案】A【考点】圆周角定理圆心角、弧、弦的关系【解析】连接,如图,利用圆心角、弧、弦的关系得到==,然后根据圆周角定理得到的度数.【解答】∵∠A+∠ADE =∠DEB ∠A =30∘∠ADE =∠1=28∘∴∠DEB =+=30∘28∘58∘∵a//b ∴∠2=∠DEB =58∘C ∠A ∠B x ∘y ∘∠A ∠B ∠A ∠B 30∘∠A ∠B x ∘y ∘{x+y =180,x =y−30.A OB ∠AOB ∠COB =∠AOC 1260∘∠D解:连接,如图,∵点是弧的中点,∴,∴.故选.8.【答案】B【考点】解分式方程【解析】【解答】解:两边同乘以得,.故选.9.【答案】C【考点】弧长的计算作图—基本作图等边三角形的性质与判定等腰三角形的性质与判定圆周角定理【解析】OB B AC ∠AOB =∠COB =∠AOC =×1212120∘=60∘∠D =∠AOB 12=30∘A 1−=2xx−13x−1x−1x−1−2x =3B利用作图得到得垂直平分,点为的中点,=,以为直径作,则=,所以为等腰三角形,利用圆周角定理得到=,则为等腰直角三角形,然后计算=,则=,根据弧长公式可计算出的长度,从而可对各选项进行判断.【解答】由作法得垂直平分,点为的中点,=,以为直径作,∵垂直平分,∴=,即为等腰三角形,∵为直径,∴=,所以⑤正确∴为等腰直角三角形,所以①②正确,③错误;∵=,∴=,∵==,∴=,∴===,∴=,∴的长度,所以④错误.10.【答案】C【考点】正方形的性质【解析】此题暂无解析【解答】此题暂无解答11.【答案】B【考点】反比例函数图象上点的坐标特征反比例函数系数k 的几何意义【解析】PQ AB O AB CE CB AB ⊙O CA CB △ABC ∠ACB 90∘△ACB ∠ABD 22.5∘∠AOD 45∘AD^PQ AB O AB CE CB AB ⊙O PQ AB CA CB △ABC AB ∠ACB 90∘△ACB CB CE ∠CBE ∠CEB ∠OCB ∠OBC 45∘∠CBE =(−)12180∘45∘67.5∘∠ABD ∠CBE−∠CBO −67.5∘45∘22.5∘∠AOD 45∘AD ^==π45⋅π⋅218012此题暂无解析【解答】此题暂无解答12.【答案】B【考点】弧长的计算全等三角形的性质与判定等边三角形的性质与判定【解析】求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.【解答】解:如图,连接,,,,,,,.,是等边三角形,.由题意得,阴影扇形的半径为,圆心角的度数为,则扇形的弧长为: ,而扇形的弧长相当于围成圆锥的底面周长,因此有:,解得:.故选.二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )13.【答案】OB OC OA ∵OB =OA OA =OC AB =AC ∴△ABO ≅△ACO(SSS)∴∠BAO =∠CAO =60∘∵AO =BO ∴△ABO ∴AB =AO =6060cm 120∘120π×601802πr =120π×60180r =20B中位数【解析】此题暂无解析【解答】此题暂无解答14.【答案】【考点】提公因式法与公式法的综合运用【解析】原式提取后,利用完全平方公式分解即可.【解答】解:原式.故答案为:.15.【答案】【考点】根与系数的关系【解析】【解答】解:由根与系数的关系得,,已知方程一个根为,解得方程的另一个根为.故答案为:.a(a −1)2a =a(−2a +1)a 2=a(a −1)2a(a −1)22+=3x 1x 2122【考点】一元一次不等式组的整数解【解析】解不等式组可得不等式组的解集,根据不等式组的整数解个数得出关于的不等式组,解之可得答案.【解答】由,解得:,由关于的不等式组,有且仅有三个整数解,解得:,解得,17.【答案】【考点】平行四边形的性质轴对称——最短路线问题含30度角的直角三角形对顶角全等三角形的性质与判定勾股定理旋转的性质【解析】作于,证明,即可推出四边形周长,所以当最小时,四边形周长最小即可算出最小值.【解答】−5.5≤m<−5m ≥2+x x−123x ≤−9x ≥2+x x−123x >2m−1−12≤2m−1<−11−5.5≤m<−55+3–√AM ⊥BC M △AOE ≅△COF ABFE =5+EF EF ABFE解:作于,如图所示,∵,∴,由勾股定理得,∵四边形为平行四边形,∴,,∴,在和中,∴,∴,四边形周长,当的值最小时,四边形的周长有最小值,此时,即时有最小值,∴四边形周长的最小值是.故答案为:.18.【答案】【考点】角平分线的性质等腰三角形的性质全等三角形的性质与判定【解析】【解答】解:如图,过作于,于,AM ⊥BC M ∠ABC =60∘BM =AB =112AM =3–√ABCD OA =OC AD//CB ∠EAO =∠FCO △AOE △COF ∠EAO =∠FCO,OA =OC,∠AOE =∠COF,△AOE ≅△COF AE =CF ABFE =AB+BF +EF +AE =AB+BF +FC +EF =AB+BC +EF =5+EF EF ABFE EF ⊥BC EF =AM =3–√ABFE 5+3–√5+3–√−90∘α2D DE ⊥OM E DF ⊥ON F则.∵为的角平分线,∴.为的中点,,,∴(),∴.∵,,即,,.故答案为:.三、 解答题 (本题共计 7 小题 ,每题 11 分 ,共计77分 )19.【答案】原式=.【考点】零指数幂实数的运算特殊角的三角函数值【解析】先计算乘方、代入三角函数值、去绝对值符号、计算零指数幂,再去括号,最后计算加减可得.【解答】原式=.20.∠DEB =∠DFC =∠DFO =90∘OA ∠MON DE =DF ∵P BC PD ⊥BC ∴BD =CD Rt △DEB ≅Rt △DFC HL ∠BDE =∠CDF ∠BDC =α∴∠BDF +∠CDF =∠BDF +∠BDE ∠EDF =α∴∠MON =(180−α)∘∴∠BOD =[(180−α)=−12]∘90∘α2−90∘α2=1+2×−(−1)+13–√23–√=1+−+1+13–√3–√3=1+2×−(−1)+13–√23–√=1+−+1+13–√3–√3【答案】证明:∵,∴,在和中,∴ ,∴.【考点】全等三角形的性质与判定【解析】证明:在和中【解答】证明:∵,∴,在和中,∴ ,∴.21.【答案】解:抽取的学生数为(人),∴,类人数为(人),∴类人数为(人).补全条形统计图如图所示.AB//DE ∠ABC =∠FDE △ABC △FDE AB =FD ,∠ABC =∠FDE ,BC =DE ,△ABC ≅△FDE(SAS)∠A =∠F ∵AB ∥DE,∴∠ABC =∠FDE△ABC △FDE AB =FD∠ABC =∠FDE BC =DE∴△ABC ≅△FDE∴∠A =∠FAB//DE ∠ABC =∠FDE △ABC △FDE AB =FD ,∠ABC =∠FDE ,BC =DE ,△ABC ≅△FDE(SAS)∠A =∠F (1)18÷0.15=120x =30÷120=0.25C 120×0.40=48D 120−30−18−48=24由题意,画树状图如图,共有种等可能的结果,其中恰好选中里的种情况,则恰好选中甲的概率为.【考点】条形统计图频数(率)分布表用样本估计总体列表法与树状图法【解析】【解答】解:抽取的学生数为(人),∴,类人数为(人),∴类人数为(人).补全条形统计图如图所示.450(3)64=4623(1)18÷0.15=120x =30÷120=0.25C 120×0.40=48D 120−30−18−48=24报的有(人).故答案为:.由题意,画树状图如图,共有种等可能的结果,其中恰好选中里的种情况,则恰好选中甲的概率为.22.【答案】解:设山高,则,由,得:,解得,经检验,是原方程的根.答:山的高度是米.【考点】解直角三角形的应用-仰角俯角问题【解析】首先分析图形:根据题意构造直角三角形;本题涉及到两个直角三角形、,应利用其公共边构造等量关系,借助构造方程关系式,进而可求出答案.【解答】解:设山高,则,由,得:,(2)STEAM 1800×0.25=450450(3)64=4623BC =x AB =x 12tan ==0.7537∘BC BD=0.75x 100+x 12x =120x =120120△DBC △ABC BC AD =DB−DA BC =x AB =x 12tan ==0.7537∘BC BD=0.75x 100+x 12解得,经检验,是原方程的根.答:山的高度是米.23.【答案】解:设直线的解析式为,直线过点,两点,解得直线的解析式为.由,,得:,,,,解得:,设点的坐标为,则或,解得:或,点坐标为或.【考点】位置的确定待定系数法求一次函数解析式三角形的面积【解析】【解答】解:设直线的解析式为,直线过点,两点,解得x =120x =120120(1)AB y =kx+b ∵AB A(−,0)32B(0,3)∴{−k +b =0,32b =3,{k =2,b =3.∴AB y =2x+3(2)B(0,3)A(−,0)32OB =3OA =32∵=AC ⋅OB =S △ABC 12154∴AC =32154AC =52C (m,0)m−(−)=3252−−m=3252m=1−4∴C (1,0)(−4,0)(1)AB y =kx+b ∵AB A(−,0)32B(0,3)∴{−k +b =0,32b =3,{k =2,b =3.直线的解析式为.由,,得:,,,,解得:,设点的坐标为,则或,解得:或,点坐标为或.24.【答案】解:直线与相切. 理由如下:如图,连接.∵为 的直径,∴ .,∴,∴.又∵,∴ .,∴.,∴,∴.又∵是的半径,∴直线与相切.如图,连接.∴AB y =2x+3(2)B(0,3)A(−,0)32OB =3OA =32∵=AC ⋅OB =S △ABC 12154∴AC =32154AC =52C (m,0)m−(−)=3252−−m=3252m=1−4∴C (1,0)(−4,0)(1)CE ⊙O OC AB ⊙O ∠ACB =90∘∵CE ⊥DE ∠E =90∠CBE+∠ECB =∠ABC +∠A =90∘∠CBE =∠ABC ∠ECB =∠A ∵OC =OA ∠A =∠ACO ∵∠ACO +∠OCB =90∘∠ECB+∠OCB =90∘OC ⊥CE OC ⊙O CE ⊙O (2)AD∵为的直径,∴.∵,∴,∴,∵,,∴,∴,∴.在中,, ,,由勾股定理,得.∵, ,∴, ∴,即, ∴ .【考点】直线与圆的位置关系勾股定理圆周角定理相似三角形的性质与判定【解析】【解答】解:直线与相切. 理由如下:如图,连接.AB ⊙O AD ⊥DE CE ⊥DE CE//AD ∠ECD =∠ADC ∠ECB =∠BAC ∠BCD =∠BAD ∠CAD =∠ECD ∠CAD =∠ADC AC =CD Rt △ACB ∠ACB =90∘AC =4AB =5BC =3∠CAB =∠CDB ∠ACB =∠DEC =90∘Rt △ACB ∼Rt △DEC =AB CD CB CE =543CE EC =125(1)CE ⊙O OC∵为 的直径,∴ .,∴,∴.又∵,∴ .,∴.,∴,∴.又∵是的半径,∴直线与相切.如图,连接.∵为的直径,∴.∵,∴,∴,∵,,∴,∴,∴.在中,, ,,由勾股定理,得.∵, ,∴, ∴,即,AB ⊙O ∠ACB =90∘∵CE ⊥DE ∠E =90∠CBE+∠ECB =∠ABC +∠A =90∘∠CBE =∠ABC ∠ECB =∠A ∵OC =OA ∠A =∠ACO ∵∠ACO +∠OCB =90∘∠ECB+∠OCB =90∘OC ⊥CE OC ⊙O CE ⊙O (2)AD AB ⊙O AD ⊥DE CE ⊥DE CE//AD ∠ECD =∠ADC ∠ECB =∠BAC ∠BCD =∠BAD ∠CAD =∠ECD ∠CAD =∠ADC AC =CD Rt △ACB ∠ACB =90∘AC =4AB =5BC =3∠CAB =∠CDB ∠ACB =∠DEC =90∘Rt △ACB ∼Rt △DEC =AB CD CB CE =543CE C =12∴ .25.【答案】解:().当时, .∴.代入得.∴.当时,.∴.代入得,解得..当时,解得,,∴,,.∵,∴.在上截取,连接,过点作,垂足为.∵,,,∴.又∵,∴.∴.在中,,.∵,∴.∴.又∵,∴.在中,,令,则,∴.∴.EC =1251y =a +3ax−3x 2x =0y =−3C(0,−3)y =−x+b 34b =−3y =−x−334y =0x =4A(−4,0)y =a +3ax−3x 20=16a −12a −3a =34(2)y =+x−334x 294y =0,0=+x−334x 294=−4x 1=1x 2B(1,0)OB =1OA =4C(0,3)OC =3DC DC =AE FC F FH ⊥CD H ∠OAC +∠AED =∠EDC ∠EDF +∠FDG =∠EDC ∠EDF =∠OAC ∠AED =∠FDG DE =DF △ADE ≅△GFD AD =FG,∠OAC =∠DGF Rt △AOC AC ===5O +O A 2C 2−−−−−−−−−−√+4232−−−−−−√tan ∠OAC ===tan ∠DGF OC OA 34AB =AC =5AB−AE =AC −DG BE =AD+CG BE =2AD AD =CG =FG Rt △GFH tan ∠HGF ==FH GH 34FH =3m CH =4m FG ===5m=CGF +GH 2H 2−−−−−−−−−−√+(3m)2(4m)2−−−−−−−−−−−−√CH =4m+5m=9m ∠ACF ===FH 3m 1在中,.过点作于点,过点作交的延长线于点.在中,.令,则.在中,∵,∴.∴.在中,,∴.∴.∴.过点作于点.令,可求.∵,∴.解得, ∴.过点作轴的垂线分别交轴,的延长线于点,,过点作分别交轴,的延长线于点,.∵轴,轴,.∴.∵,∴.又∵,∴.∴.∵点在直线上,可设.∵,∴四边形为矩形.∴.∴.,∴代入中得,解得(舍去),Rt △CFH tan ∠ACF ===FH CH 3m 9m 13(3)F FH ⊥CD H D DR ⊥CF CF R Rt △CDR tan ∠DCR ==DR CR 13DR =t 10−−√CR =3,CD =10t 10−−√Rt △DFR ∠DFR =−∠DFC ==∠FDR 180∘45∘FR =DR =t 10−−√CF =3t−t =2t 10−−√10−−√10−−√Rt △FCH tan ∠FCH =13FH =2t,CH =6t DH =4t tan ∠FDH ====tan ∠AED FH DH 2t 4t 12D DT ⊥OA T DT =3n AT =4n,AD =5n,ET =2DT =6n,BE =2AD =10n AT +ET +BE =AB 4n+6n+10n =5n =14ET =,DT =3234M x x DE P Q N NS ⊥PM y PM L S DT ⊥x MQ ⊥x DT//MQ ∠EDT =∠Q MN//DE ∠NMS =∠Q =∠EDT ∠ETD ==∠S,DE =DF =MN 90∘△DET ≅△MNS MS =DT =,NS =ET =3432M y =−x−334M(s,−s −3)34∠POL =∠OPS =∠LSP =90∘OPSL SL =OP =4s NL =−s 32OL =PS =s +3+=s +343434154N (s −,−s −)3234154y =+x−334x 294−s −=+(s −)−33415434(s −)3229432=,=s 1−1+6–√2s 2−1−6–√2−=−−1+6–√∴.∴点的横坐标为.【考点】二次函数综合题【解析】此题暂无解析【解答】解:().当时, .∴.代入得.∴.当时,.∴.代入得,解得..当时,解得,,∴,,.∵,∴.在上截取,连接,过点作,垂足为.∵,,,∴.又∵,∴.∴.在中,,.∵,s −=−32−1+6–√232N −46–√21y =a +3ax−3x 2x =0y =−3C(0,−3)y =−x+b 34b =−3y =−x−334y =0x =4A(−4,0)y =a +3ax−3x 20=16a −12a −3a =34(2)y =+x−334x 294y =0,0=+x−334x 294=−4x 1=1x 2B(1,0)OB =1OA =4C(0,3)OC =3DC DC =AE FC F FH ⊥CD H ∠OAC +∠AED =∠EDC ∠EDF +∠FDG =∠EDC ∠EDF =∠OAC ∠AED =∠FDG DE =DF △ADE ≅△GFD AD =FG,∠OAC =∠DGF Rt △AOC AC ===5O +O A 2C 2−−−−−−−−−−√+4232−−−−−−√tan ∠OAC ===tan ∠DGF OC OA 34AB =AC =5∴.∴.又∵,∴.在中,,令,则,∴.∴.在中,.过点作于点,过点作交的延长线于点.在中,.令,则.在中,∵,∴.∴.在中,,∴.∴.∴.过点作于点.令,可求.∵,∴.解得, ∴.过点作轴的垂线分别交轴,的延长线于点,,过点作分别交轴,的延长线于点,.∵轴,轴,.∴.∵,∴.又∵,∴.∴.∵点在直线上,可设.∵,AB−AE =AC −DGBE =AD+CG BE =2AD AD =CG =FG Rt △GFH tan ∠HGF ==FH GH 34FH =3m CH =4m FG ===5m=CG F +G H 2H 2−−−−−−−−−−√+(3m)2(4m)2−−−−−−−−−−−−√CH =4m+5m=9m Rt △CFH tan ∠ACF ===FH CH 3m 9m 13(3)F FH ⊥CD H D DR ⊥CF CF R Rt △CDR tan ∠DCR ==DR CR 13DR =t 10−−√CR =3,CD =10t 10−−√Rt △DFR ∠DFR =−∠DFC ==∠FDR 180∘45∘FR =DR =t 10−−√CF =3t−t =2t 10−−√10−−√10−−√Rt △FCH tan ∠FCH =13FH =2t,CH =6t DH =4t tan ∠FDH ====tan ∠AED FH DH 2t 4t 12D DT ⊥OA T DT =3n AT =4n,AD =5n,ET =2DT =6n,BE =2AD =10n AT +ET +BE =AB 4n+6n+10n =5n =14ET =,DT =3234M x x DE P Q N NS ⊥PM y PM L S DT ⊥x MQ ⊥x DT//MQ ∠EDT =∠Q MN//DE ∠NMS =∠Q =∠EDT ∠ETD ==∠S,DE =DF =MN 90∘△DET ≅△MNS MS =DT =,NS =ET =3432M y =−x−334M(s,−s −3)34∠POL =∠OPS =∠LSP =90∘∴四边形为矩形.∴.∴.,∴代入中得,解得(舍去),∴.∴点的横坐标为.OPSL SL =OP =4s NL =−s 32OL =PS =s +3+=s +343434154N (s −,−s −)3234154y =+x−334x 294−s −=+(s −)−33415434(s −)3229432=,=s 1−1+6–√2s 2−1−6–√2s −=−32−1+6–√232N −46–√2。
四川省宜宾市中考数学真题试题含解析.docx
2019年四川省宜宾市中考数学试卷注:请使用office word 软件打开,wps word 会导致公式错乱一、选择题(本大题共8小题,共24.0分) 1. 2的倒数是( )A. 12B. −2C. −12D. ±122. 人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为52微米,52微米为0.000052米.将0.000052用科学记数法表示为( ) A. 5.2×10−6 B. 5.2×10−5 C. 52×10−6 D. 52×10−5 3. 如图,四边形ABCD 是边长为5的正方形,E 是DC 上一点,DE =1,将△ADE 绕着点A 顺时针旋转到与△ABF 重合,则EF =( ) A. √41 B. √42 C. 5√2 D. 2√134. 一元二次方程x 2-2x +b =0的两根分别为x 1和x 2,则x 1+x 2为( )A. −2B. bC. 2D. −b 5. 已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是( )A. 10B. 9C. 8D. 76. 如表记录了两位射击运动员的八次训练成绩:次数 环数 运动员 第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲 10 7 7 8 8 8 9 7 乙1055899810根据以上数据,设甲、乙的平均数分别为b 甲−、b 乙−,甲、乙的方差分别为s 甲2,s乙2,则下列结论正确的是( )A. b 甲−=b 乙−,b 甲2<b 乙2B. b 甲−=b 乙−,b 甲2>b 乙2C. b 甲−>b 乙−,b 甲2<b 乙2D. b 甲−<b 乙−,b 甲2<b 乙27. 如图,∠EOF 的顶点O 是边长为2的等边△ABC 的重心,∠EOF 的两边与△ABC 的边交于E ,F ,∠EOF =120°,则∠EOF 与△ABC 的边所围成阴影部分的面积是( )A. √32B.2√35 C. √33 D. √348. 已知抛物线y =x 2-1与y 轴交于点A ,与直线y =kx (k 为任意实数)相交于B ,C 两点,则下列结论不正确的是( )A. 存在实数k ,使得△bbb 为等腰三角形B. 存在实数k ,使得△bbb 的内角中有两角分别为30∘和60∘C. 任意实数k ,使得△bbb 都为直角三角形D. 存在实数k ,使得△bbb 为等边三角形 二、填空题(本大题共8小题,共24.0分) 9. 分解因式:b 2+c 2+2bc -a 2=______.10. 如图,六边形ABCDEF 的内角都相等,AD ∥BC ,则∠DAB =______°.11. 将抛物线y =2x 2的图象,向左平移1个单位,再向下平移2个单位,所得图象的解析式为______. 12. 如图,已知直角△ABC 中,CD 是斜边AB 上的高,AC =4,BC =3,则AD =______. 13. 某产品每件的生产成本为50元,原定销售价65元,经市场预测,从现在开始的第一季度销售价格将下降10%,第二季度又将回升5%.若要使半年以后的销售利润不变,设每个季度平均降低成本的百分率为x ,根据题意可列方程是______. 14. 若关于x的不等式组{b −24<b −132b −b ≤2−b有且只有两个整数解,则m 的取值范围是______.15. 如图,⊙O 的两条相交弦AC 、BD ,∠ACB =∠CDB =60°,AC =2√3,则⊙O 的面积是______.16. 如图,△ABC 和△CDE 都是等边三角形,且点A 、C 、E 在同一直线上,AD 与BE 、BC分别交于点F 、M ,BE 与CD 交于点N .下列结论正确的是______(写出所有正确结论的序号).①AM =BN ;②△ABF ≌△DNF ;③∠FMC +∠FNC =180°;④1bb =1bb +1bb三、计算题(本大题共1小题,共10.0分)17.(1)计算:(2019-√2)0-2-1+|-1|+sin245°(2)化简:2bbb2−b2÷(1b−b+1b+b)四、解答题(本大题共7小题,共62.0分)18.如图,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.19.某校在七、八、九三个年级中进行“一带一路”知识竞赛,分别设有一等奖、二等奖、三等奖、优秀奖、纪念奖.现对三个年级同学的获奖情况进行了统计,其中获得纪念奖有17人,获得三等奖有10人,并制作了如图不完整的统计图.(1)求三个年级获奖总人数;(2)请补全扇形统计图的数据;(3)在获一等奖的同学中,七年级和八年级的人数各占14,其余为九年级的同学,现从获一等奖的同学中选2名参加市级比赛,通过列表或者树状图的方法,求所选出的2人中既有七年级又有九年级同学的概率.20. 甲、乙两辆货车分别从A 、B 两城同时沿高速公路向C 城运送货物.已知A 、C 两城相距450千米,B 、C 两城的路程为440千米,甲车比乙车的速度快10千米/小时,甲车比乙车早半小时到达C 城.求两车的速度.21. 如图,为了测得某建筑物的高度AB ,在C 处用高为1米的测角仪CF ,测得该建筑物顶端A 的仰角为45°,再向建筑物方向前进40米,又测得该建筑物顶端A 的仰角为60°.求该建筑物的高度AB .(结果保留根号)22. 如图,已知反比例函数y =bb (k >0)的图象和一次函数y =-x +b的图象都过点P (1,m ),过点P 作y 轴的垂线,垂足为A ,O 为坐标原点,△OAP 的面积为1.(1)求反比例函数和一次函数的解析式;(2)设反比例函数图象与一次函数图象的另一交点为M ,过M 作x 轴的垂线,垂足为B ,求五边形OAPMB 的面积.23.如图,线段AB经过⊙O的圆心O,交⊙O于A、C两点,BC=1,AD为⊙O的弦,连结BD,∠BAD=∠ABD=30°,连结DO并延长交⊙O于点E,连结BE交⊙O于点M.(1)求证:直线BD是⊙O的切线;(2)求⊙O的半径OD的长;(3)求线段BM的长.24.如图,在平面直角坐标系xOy中,已知抛物线y=ax2-2x+c与直线y=kx+b都经过A(0,-3)、B(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M的坐标;若不存在,请说明理由;(3)设点P是直线AB下方抛物线上的一动点,当△PAB面积最大时,求点P的坐标,并求△PAB面积的最大值.答案和解析1.【答案】A【解析】解:2的倒数是,故选:A.根据倒数的定义,可以求得题目中数字的倒数,本题得以解决.本题考查倒数,解答本题的关键是明确倒数的定义.2.【答案】B【解析】解:0.000052=5.2×10-5;故选:B.由科学记数法可知0.000052=5.2×10-5;本题考查科学记数法;熟练掌握科学记数法a×10n中a与n的意义是解题的关键.3.【答案】D【解析】解:由旋转变换的性质可知,△ADE≌△ABF,∴正方形ABCD的面积=四边形AECF的面积=25,∴BC=5,BF=DE=1,∴FC=6,CE=4,∴EF===2.故选:D.根据旋转变换的性质求出FC、CE,根据勾股定理计算即可.本题考查的是旋转变换的性质、勾股定理的应用,掌握性质的概念、旋转变换的性质是解题的关键.4.【答案】C【解析】解:根据题意得:x1+x2=-=2,故选:C.根据“一元二次方程x2-2x+b=0的两根分别为x1和x2”,结合根与系数的关系,即可得到答案.本题考查了根与系数的关系,正确掌握一元二次方程根与系数的关系是解题的关键.5.【答案】B【解析】解:从俯视图可得最底层有5个小正方体,由主视图可得上面一层是2个,3个或4个小正方体,则组成这个几何体的小正方体的个数是7个或8个或9个,组成这个几何体的小正方体的个数最多是9个.故选:B.从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.本题考查三视图的知识及从不同方向观察物体的能力,解题中用到了观察法.确定该几何体有几列以及每列方块的个数是解题关键.6.【答案】A【解析】解:(1)=(10+7+7+8+8+8+9+7)=8;=(10+5+5+8+9+9+8+10)=8;s甲2=[(10-8)2+(7-8)2+(7-8)2+(8-8)2+(8-8)2+(8-8)2+(9-8)2+(7-8)2]=1;s乙2=[(10-8)2+(5-8)2+(5-8)2+(8-8)2+(9-8)2+(9-8)2+(8-8)2+(10-8)2]=,∴=,s甲2<s乙2,故选:A.分别计算平均数和方差后比较即可得到答案.本题考查了方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.【答案】C【解析】解:连接OB、OC,过点O作ON⊥BC,垂足为N,∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵点O为△ABC的内心∴∠OBC=∠OBA=∠ABC,∠OCB=∠ACB.∴∠OBA=∠OBC=∠OCB=30°.∴OB=OC.∠BOC=120°,∵ON⊥BC,BC=2,∴BN=NC=1,∴ON=tan∠OBC•BN=×1=,∴S△OBC=BC•ON=.∵∠EOF=∠AOB=120°,∴∠EOF-∠BOF=∠AOB-∠BOF,即∠EOB=∠FOC.在△EOB和△FOC中,,∴△EOB≌△FOC(ASA).∴S阴影=S△OBC=故选:C.连接OB、OC,过点O作ON⊥BC,垂足为N,由点O是等边三角形ABC的内心可以得到∠OBC=∠OCB=30°,结合条件BC=2即可求出△OBC的面积,由∠EOF=∠BOC,从而得到∠EOB=∠FOC,进而可以证到△EOB≌△FOC,因而阴影部分面积等于△OBC的面积.此题考查了等边三角形的性质、等腰三角形的性质、三角函数的定义、全等三角形的判定与性质、三角形的内心、三角形的内角和定理,有一定的综合性,作出辅助线构建全等三角形是解题的关键.8.【答案】D【解析】解:A、如图1,可以得△ABC为等腰三角形,正确;B、如图3,∠ACB=30°,∠ABC=60°,可以得△ABC的内角中有两角分别为30°和60°,正确;C、如图2和3,∠BAC=90°,可以得△ABC为直角三角形,正确;D、不存在实数k,使得△ABC为等边三角形,不正确;本题选择结论不正确的,故选:D.通过画图可解答.本题考查了二次函数和正比例函数图象,等边三角形和判定,直角三角形的判定,正确画图是关键.9.【答案】(b+c+a)(b+c-a)【解析】解:原式=(b+c)2-a2=(b+c+a)(b+c-a).故答案为:(b+c+a)(b+c-a)当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题考查了分组分解法分解因式,难点是采用两两分组还是三一分组.比如本题有a的二次项,a的一次项,有常数项,所以首要考虑的就是三一分组.10.【答案】60【解析】解:在六边形ABCDEF中,(6-2)×180°=720°,=120°,∴∠B=120°,∵AD∥BC,∴∠DAB=180°-∠B=60°,故答案为:60°.先根据多边形内角和公式(n-2)×180°求出六边形的内角和,再除以6即可求出∠B 的度数,由平行线的性质可求出∠DAB的度数.本题考查了多边形的内角和公式,平行线的性质等,解题关键是能够熟练运用多边形内角和公式及平行线的性质.11.【答案】y=2(x+1)2-2【解析】解:将抛物线y=2x2的图象,向左平移1个单位,再向下平移2个单位,所得图象的解析式为:y=2(x+1)2-2.故答案为:y=2(x+1)2-2.直接利用二次函数的平移规律进而得出答案.此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.12.【答案】165【解析】解:在Rt△ABC中,AB==5,由射影定理得,AC2=AD•AB,∴AD==,故答案为:.根据勾股定理求出AB,根据射影定理列式计算即可.本题考查的是射影定理、勾股定理,在直角三角形中,每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.13.【答案】65×(1-10%)×(1+5%)-50(1-x)2=65-50【解析】解:设每个季度平均降低成本的百分率为x,依题意,得:65×(1-10%)×(1+5%)-50(1-x)2=65-50.故答案为:65×(1-10%)×(1+5%)-50(1-x)2=65-50.设每个季度平均降低成本的百分率为x,根据利润=售价-成本价结合半年以后的销售利润为(65-50)元,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.14.【答案】-2≤m<1【解析】解:解不等式①得:x>-2,解不等式②得:x≤,∴不等式组的解集为-2<x≤,∵不等式组只有两个整数解,∴0≤<1,解得:-2≤m<1,故答案为-2≤m<1.先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于m的不等式组,求出即可.本题考查了解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出关于m的不等式组,难度适中.15.【答案】16π【解析】解:∵∠A=∠BDC,而∠ACB=∠CDB=60°,∴∠A=∠ACB=60°,∴△ACB为等边三角形,∵AC=2,∴圆的半径为4,∴⊙O的面积是16π,故答案为:16π.由∠A=∠BDC,而∠ACB=∠CDB=60°,所以∠A=∠ACB=60°,得到△ACB为等边三角形,又AC=2,从而求得半径,即可得到⊙O的面积.本题考查了圆周角定理,解题的关键是能够求得圆的半径,难度不大.16.【答案】①③④【解析】证明:①∵△ABC和△CDE都是等边三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=60°,∴∠ACB+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴AD=BE,∠ADC=∠BEC,∠CAD=∠CBE,在△DMC和△ENC中,,∴△DMC≌△ENC(ASA),∴DM=EN,CM=CN,∴AD-DM=BE-EN ,即AM=BN ;②∵∠ABC=60°=∠BCD ,∴AB ∥CD ,∴∠BAF=∠CDF ,∵∠AFB=∠DFN ,∴△ABF ∽△DNF ,找不出全等的条件;③∵∠AFB+∠ABF+∠BAF=180°,∠FBC=∠CAF ,∴∠AFB+∠ABC+∠BAC=180°,∴∠AFB=60°,∴∠MFN=120°,∵∠MCN=60°,∴∠FMC+∠FNC=180°;④∵CM=CN ,∠MCN=60°,∴△MCN 是等边三角形,∴∠MNC=60°,∵∠DCE=60°,∴MN ∥AE , ∴==,∵CD=CE ,MN=CN , ∴=, ∴=1-,两边同时除MN 得=-, ∴=. 故答案为①③④①根据等边三角形性质得出AC=BC ,CE=CD ,∠ACB=∠ECD=60°,求出∠BCE=∠ACD ,根据SAS 推出两三角形全等即可;②根据∠ABC=60°=∠BCD ,求出AB ∥CD ,可推出△ABF ∽△DNF ,找不出全等的条件; ③根据角的关系可以求得∠AFB=60°,可求得MFN=120°,根据∠BCD=60°可解题; ④根据CM=CN ,∠MCN=60°,可求得∠CNM=60°,可判定MN ∥AE ,可求得==,可解题.本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,考查了平行线的运用,考查了正三角形的判定,本题属于中档题.17.【答案】解:(1)原式=1-12+1+(√22)2=2-12+12=2(2)原式=2bb (b +b )(b −b )÷2b(b +b )(b −b )=2bb (b +b )(b −b )×(b +b )(b −b )2b=y.【解析】(1)先根据0指数幂、负整数指数幂的意义、特殊角的三角函数值,计算出(2019-)0、2-1、sin245°的值,再加减;(2)先算括号里面的加法,再把除法转化为乘法,求出结果.本题考查了零指数、负整数指数幂的意义,特殊角的三角函数值、分式的混合运算等知识点,题目难度不大,综合性较强,是中考热点题型.a0=1(a≠0);a-p=(a≠0).18.【答案】证明:∵∠BAE=∠DAC∴∠BAE+∠CAE=∠DAC+∠CAE∴∠CAB=∠EAD,且AB=AD,AC=AE∴△ABC≌△ADE(SAS)∴∠C=∠E【解析】由“SAS”可证△ABC≌△ADE,可得∠C=∠E.本题考查了全等三角形的判定和性质,证明∠CAB=∠EAD是本题的关键.19.【答案】解:(1)三个年级获奖总人数为17÷34%=50(人);(2)三等奖对应的百分比为10×100%=20%,50则一等奖的百分比为1-(14%+20%+34%+24%)=4%,补全图形如下:(3)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人,画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,.所以所选出的两人中既有七年级又有九年级同学的概率为13【解析】(1)由获得纪念奖的人数及其所占百分比可得答案;(2)先求出获得三等奖所占百分比,再根据百分比之和为1可得一等奖对应百分比,从而补全图形;(3)画树状图(用A 、B 、C 分别表示七年级、八年级和九年级的学生)展示所有12种等可能的结果数,再找出所选出的两人中既有七年级又有九年级同学的结果数,然后利用概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.也考查了统计图.20.【答案】解:设乙车的速度为x 千米/时,则甲车的速度为(x +10)千米/时. 根据题意,得:450b +10+12=440b ,解得:x =80,或x =-110(舍去),∴x =80,经检验,x =,80是原方程的解,且符合题意.当x =80时,x +10=90.答:甲车的速度为90千米/时,乙车的速度为80千米/时.【解析】设乙车的速度为x 千米/时,则甲车的速度为(x+10)千米/时,路程知道,且甲车比乙车早半小时到达C 城,以时间做为等量关系列方程求解.本题考查分式方程的应用、分式方程的解法,分析题意,找到合适的等量关系是解决问题的关键.根据时间=,列方程求解. 21.【答案】解:设AM =x 米,在Rt △AFM 中,∠AFM =45°,∴FM =AM =x , 在Rt △AEM 中,tan ∠AEM =bb bb ,则EM =bb bbb∠bbb =√33x ,由题意得,FM -EM =EF ,即x -√33x =40,解得,x =60+20√3,∴AB =AM +MB =61+20√3,答:该建筑物的高度AB 为(61+20√3)米.【解析】设AM=x 米,根据等腰三角形的性质求出FM ,利用正切的定义用x 表示出EM ,根据题意列方程,解方程得到答案.本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.22.【答案】解:(1)∵过点P 作y 轴的垂线,垂足为A ,O 为坐标原点,△OAP 的面积为1.∴S △OPA =12|k |=1,∴|k |=2,∵在第一象限,∴k =2,∴反比例函数的解析式为y =2b ;∵反比例函数y =b b (k >0)的图象过点P (1,m ),∴m =21=2,∴P (1,2),∵次函数y =-x +b 的图象过点P (1,2),∴2=-1+b ,解得b =3,∴一次函数的解析式为y =-x +3;(2)设直线y =-x +3交x 轴、y 轴于C 、D 两点,∴C (3,0),D (0,3),解{b =−b +3b =2b 得{b =2b =1或{b =1b =2, ∴P (1,2),M (2,1),∴PA =1,AD =3-2=1,BM =1,BC =3-2=1,∴五边形OAPMB 的面积为:S △COD -S △BCM -S △ADP =12×3×3-12×1×1-12×1×1=72.【解析】(1)根据系数k 的几何意义即可求得k ,进而求得P (1,2),然后利用待定系数法即可求得一次函数的解析式;(2)设直线y=-x+3交x 轴、y 轴于C 、D 两点,求出点C 、D 的坐标,然后联立方程求得P 、M 的坐标,最后根据S 五边形=S △COD -S △APD -S △BCM ,根据三角形的面积公式列式计算即可得解;本题考查了反比例函数与一次函数的交点问题,三角形的面积以及反比例函数系数k 的几何意义,求得交点坐标是解题的关键.23.【答案】(1)证明:∵OA =OD ,∠A =∠B =30°,∴∠A =∠ADO =30°,∴∠DOB =∠A +∠ADO =60°,∴∠ODB =180°-∠DOB -∠B =90°,∵OD 是半径,∴BD 是⊙O 的切线;(2)∵∠ODB =90°,∠DBC =30°,∴OD =12OB ,∵OC =OD ,∴BC =OC =1,∴⊙O 的半径OD 的长为1;(3)∵OD =1,∴DE =2,BD =√3,∴BE =√bb 2+bb 2=√7,∵BD 是⊙O 的切线,BE 是⊙O 的割线,∴BD 2=BM •BE ,∴BM =bb 2bb =√7=3√77. 【解析】(1)根据等腰三角形的性质得到∠A=∠ADO=30°,求出∠DOB=60°,求出∠ODB=90°,根据切线的判定推出即可;(2)根据直角三角形的性质得到OD=OB ,于是得到结论;(3)解直角三角形得到DE=2,BD=,根据勾股定理得到BE==,根据切割线定理即可得到结论.本题考查了切线的判定和性质,圆周角定理,直角三角形的性质,勾股定理,切割线定理,正确的识别图形是解题的关键.24.【答案】解:(1)∵抛物线y =ax 2-2x +c 经过A (0,-3)、B (3,0)两点,∴{b =−39b −6+b =0,∴{b =−3b =1,∴抛物线的解析式为y =x 2-2x -3,∵直线y =kx +b 经过A (0,-3)、B (3,0)两点,∴{b =−33b +b =0,解得:{b =−3b =1, ∴直线AB 的解析式为y =x -3,(2)∵y =x 2-2x -3=(x -1)2-4,∴抛物线的顶点C 的坐标为(1,-4),∵CE ∥y 轴,∴E (1,-2),∴CE =2,①如图,若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE =MN ,设M (a ,a -3),则N (a ,a 2-2a -3),∴MN =a -3-(a 2-2a -3)=-a 2+3a ,∴-a 2+3a =2,解得:a =2,a =1(舍去),∴M (2,-1),②如图,若点M 在x 轴上方,四边形CENM 为平行四边形,则CE =MN ,设M (a ,a -3),则N (a ,a 2-2a -3),∴MN =a 2-2a -3-(a -3)=a 2-3a ,∴a 2-3a =2,解得:a =3+√172,a =3−√172(舍去), ∴M (3+√172,−3+√172), 综合可得M 点的坐标为(2,-1)或(3+√172,−3+√172). (3)如图,作PG ∥y 轴交直线AB 于点G ,设P (m ,m 2-2m -3),则G (m ,m -3),∴PG =m -3-(m 2-2m -3)=-m 2+3m ,∴S △PAB =S △PGA +S △PGB =12bb ⋅bb =12×(−b 2+3b )×3=−32b 2+92b =-32(b −32)2+278, ∴当m =32时,△PAB 面积的最大值是278,此时P 点坐标为(32,−32).【解析】(1)将A (0,-3)、B (3,0)两点坐标分别代入二次函数的解析式和一次函数解析式即可求解;(2)先求出C 点坐标和E 点坐标,则CE=2,分两种情况讨论:①若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE=MN ,②若点M 在x 轴上方,四边形CENM 为平行四边形,则CE=MN ,设M (a ,a-3),则N (a ,a 2-2a-3),可分别得到方程求出点M 的坐标;(3)如图,作PG ∥y 轴交直线AB 于点G ,设P (m ,m 2-2m-3),则G (m ,m-3),可由,得到m 的表达式,利用二次函数求最值问题配方即可.本题是二次函数综合题,考查了待定系数法求函数解析式,二次函数求最值问题,以及二次函数与平行四边形、三角形面积有关的问题.。
四川省宜宾市中考数学试卷(含答案)
2022年中考往年真题练习: 四川省宜宾市中考数学试卷一.挑选题(共8小题)1.(2021宜宾) ﹣3的倒数是()A.B. 3 C.﹣3 D.﹣考点分析: 倒数。
解答: 解: 根据倒数的定义得:﹣3×(﹣) =1,因此倒数是﹣.故选: D.2.(2021宜宾) 下面四个几何体中, 其左视图为圆的是()A.B.C.D.考点分析: 简单几何体的三视图。
解答: 解: A.圆柱的左视图是矩形, 不符合题意;B.三棱锥的左视图是三角形, 不符合题意;C.球的左视图是圆, 符合题意;D.长方体的左视图是矩形, 不符合题意.故选C.3.(2021宜宾) 下面运算正确的是()A. 7a2b﹣5a2b=2 B. x8÷x4=x2C.(a﹣b) 2=a2﹣b2D.(2x2) 3=8x6考点分析: 完全平方公式;合并同类项;幂的乘方与积的乘方;同底数幂的除法。
解答: 解: A.7a2b﹣5a2b=2a2b, 故本选项错误;B.x8÷x4=x4, 故本选项错误;C.(a﹣b) 2=a2﹣2ab+b2, 故本选项错误;D.(2x2) 3=8x6, 故本选项正确.故选D.区县翠屏区南溪长宁江安宜宾县珙县高县兴文筠连屏山最高气温(℃) 32 32 30 32 30 31 29 33 30 32 A.32, 31. 5 B.32, 30 C.30, 32 D.32, 31考点分析: 众数;中位数。
解答: 解: 在这一组数据中32是出现次数最多的, 故众数是32;按大小排列后, 处于这组数据中间位置的数是31、32, 那么由中位数的定义可知, 这组数据的中位数是31. 5.故选: A.5.(2021宜宾) 将代数式x2+6x+2化成(x+p) 2+q的形式为()A.(x﹣3) 2+11 B.(x+3) 2﹣7 C.(x+3) 2﹣11 D.(x+2) 2+4 考点分析: 配方法的应用。
解答: 解: x2+6x+2=x2+6x+9﹣9+2=(x+3) 2﹣7.故选B.6.(2021宜宾) 分式方程的解为()A. 3 B.﹣3 C.无解D. 3或﹣3考点分析: 解分式方程。
2013-2019年四川省宜宾市中考数学试题汇编(含参考答案与解析)
【中考数学试题汇编】2013—2019年四川省宜宾市数学试题汇编(含参考答案与解析)1、2013年四川省宜宾市中考数学试题及参考答案与解析 (2)2、2014年四川省宜宾市中考数学试题及参考答案与解析 (20)3、2015年四川省宜宾市中考数学试题及参考答案与解析 (38)4、2016年四川省宜宾市中考数学试题及参考答案与解析 (58)5、2017年四川省宜宾市中考数学试题及参考答案与解析 (79)6、2018年四川省宜宾市中考数学试题及参考答案与解析 (96)7、2019年四川省宜宾市中考数学试题及参考答案与解析 (119)2013年四川省宜宾市中考数学试题及参考答案与解析一.选择题(本大题共8小题,每小题3分,满分24分)1.下列各数中,最小的数是()A.2 B.﹣3 C.13-D.02.据宜宾市旅游局公布的数据,今年“五一”小长假期间,全市实现旅游总收入330000000元.将330000000用科学记数法表示为()A.3.3×108B.3.3×109C.3.3×107D.0.33×10103.下列水平放置的四个几何体中,主视图与其它三个不相同的是()A.B.C.D.4.要判断小强同学的数学考试成绩是否稳定,那么需要知道他最近几次数学考试成绩的()A.方差B.众数C.平均数D.中位数5.若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k>1 C.k=1 D.k≥06.矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等7.某棵果树前x年的总产量y与x之间的关系如图所示,从目前记录的结果看,前x年的年平均产量最高,则x的值为()A.3 B.5 C.7 D.98.对于实数a、b,定义一种运算“⊗”为:a⊗b=a2+ab﹣2,有下列命题:①1⊗3=2;②方程x⊗1=0的根为:x1=﹣2,x2=1;③不等式组()240130xx⎧-⊗-⎪⎨⊗-⎪⎩<<的解集为:﹣1<x<4;④点15,22⎛⎫⎪⎝⎭在函数y=x⊗(﹣1)的图象上.其中正确的是()A.①②③④B.①③C.①②③D.③④二.填空题(本大题共8小题,每小题3分,满分24分)9.分式方程1321x x=+的解为.10.分解因式:am2﹣4an2=.11.如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=25°,则∠2=.12.某企业五月份的利润是25万元,预计七月份的利润将达到36万元.设平均月增长率为x,根据题意所列方程是.13.如图,将面积为5的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,那么图中的四边形ACED的面积为.14.如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.15.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD 的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG的周长为.16.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足13CFFD=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠;④S△DEF=其中正确的是(写出所有正确结论的序号).三.解答题(本大题共8小题,满分72分)17.(10分)(1)计算:|﹣﹣4sin45°﹣1﹣2(2)化简:221b a a b a b ⎛⎫÷- ⎪-+⎝⎭. 18.(6分)如图:已知D 、E 分别在AB 、AC 上,AB=AC ,∠B=∠C ,求证:BE=CD .19.(8分)为响应我市“中国梦”•“宜宾梦”主题教育活动,某中学在全校学生中开展了以“中国梦•我的梦”为主题的征文比赛,评选出一、二、三等奖和优秀奖.小明同学根据获奖结果,绘制成如图所示的统计表和数学统计图.请你根据以上图表提供的信息,解答下列问题:(1)a= ,b= ,n= .(2)学校决定在获得一等奖的作者中,随机推荐两名作者代表学校参加市级比赛,其中王梦、李刚都获得一等奖,请用画树状图或列表的方法,求恰好选中这二人的概率.20.(8分)2013年4月20日,我省芦山县发生7.0级强烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到任务,须在规定时间内生产一批帐篷.如果按原来的生产速度,每天生产120顶帐篷,那么在规定时间内只能完成任务的90%.为按时完成任务,该企业所有人员都支援到生产第一线,这样,每天能生产160顶帐篷,刚好提前一天完成任务.问规定时间是多少天?生产任务是多少顶帐篷?21.(8分)宜宾是国家级历史文化名城,大观楼是标志性建筑之一(如图①).喜爱数学实践活动的小伟查资料得知:大观楼始建于明代(一说是唐代韦皋所建),后毁于兵火,乾隆乙酉年(1765年)重建,它是我国目前现存最高大、最古老的楼阁之一.小伟决定用自己所学习的知识测量大观楼的高度.如图②,他利用测角仪站在B处测得大观楼最高点P的仰角为45°,又前进了12米到达A处,在A处测得P的仰角为60°.请你帮助小伟算算大观楼的高度.(,结果保留整数).22.(10分)如图,直线y=x﹣1与反比例函数kyx的图象交于A、B两点,与x轴交于点C,已知点A的坐标为(﹣1,m).(1)求反比例函数的解析式;(2)若点P(n,1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB于点F,求△CEF的面积.23.(10分)如图,AB是⊙O的直径,∠B=∠CAD.(1)求证:AC是⊙O的切线;(2)若点E是BD的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.24.(12分)如图,抛物线y1=x2﹣1交x轴的正半轴于点A,交y轴于点B,将此抛物线向右平移4个单位得抛物线y2,两条抛物线相交于点C.(1)请直接写出抛物线y2的解析式;(2)若点P是x轴上一动点,且满足∠CPA=∠OBA,求出所有满足条件的P点坐标;(3)在第四象限内抛物线y2上,是否存在点Q,使得△QOC中OC边上的高h有最大值?若存在,请求出点Q的坐标及h的最大值;若不存在,请说明理由.参考答案与解析一.选择题(本大题共8小题,每小题3分,满分24分)1.下列各数中,最小的数是()A.2 B.﹣3 C.13-D.0【知识考点】有理数大小比较.【思路分析】根据正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,进行比较即可.【解答过程】解:∵﹣3<13-<0<2,∴最小的数是﹣3;故选B.【总结归纳】此题考查了有理数的大小比较,要熟练掌握任意两个有理数比较大小的方法:正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小.2.据宜宾市旅游局公布的数据,今年“五一”小长假期间,全市实现旅游总收入330000000元.将330000000用科学记数法表示为()A.3.3×108B.3.3×109C.3.3×107D.0.33×1010【知识考点】科学记数法—表示较大的数.【思路分析】找出所求数字的位数,减去1得到10的指数,表示成科学记数法即可.【解答过程】解:330000000用科学记数法表示为3.3×108.故选A.【总结归纳】此题考查了科学记数法﹣表示较大的数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.。
四川省宜宾市中考数学试卷及答案
四川省宜宾市高中阶段招生试卷数学试题(考试时间:120分钟 全卷满分120分)注意事项:1. 答题前,必须把考号和姓名写在密封线内;2. 直接在试卷上作答,不得将答案写到密封线内.Ⅰ基础卷(全体考生必做,共3个大题,共72分)一、选择题:(本大题8个小题,每小题3分,共24分)以下每个小题均给出了代号为A,B,C,D 的四个答案,其中只有一个答案是正确的,请将正确答案的代号直接填在题后的括号中.1、-4的相反数是()A. 4B.41C. 41-D.-42、下列各式中,计算错误的是( ) A. 2a+3a=5a B. –x 2·x= -x 3 C. 2x-3x= -1 D.(-x 3)2= x 63、若分式122--x x 的值为0,则x 的值为( ) A. 1 B. -1 C. ±1 D.24、到2008年5月8日止,青藏铁路共运送旅客265.3万人次,用科学记数法表示265.3万正确的是( )A. 2.653×105B. 2.653×106C. 2.653×107D. 2.653×1085、如图,AB ∥CD ,直线PQ 分别交AB 、CD 于点E 、F ,FG 是∠EFD 的平分线,交AB 于点G . 若∠PFD=40°,那么∠FGB 等于( )A. 80°B. 100°C. 110°D.120°6、小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x 月后他能捐出100元,则下列方程中能正确计算出x 的是 ( ) A. 10x+20=100 B.10x-20=100 C. 20-10x=100 D.20x+10=1007、一个口袋中装有4个红球,3个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是 ( ) A.94 B.92 C.31 D.32 8、下面几何的主视图是( )二,填空题: (本大题共4小题,每小题3分,共12分),请把答案直接填在题中横线上.9、因式分解:3y 2-27= . Q PG F E DC B A10、一组数据:2,3,2,5,6,2,4,3,的众数是11、如图,△ABC 内接于⊙0,∠BAC=120°,AB=AC=4. BD 为⊙0的直径,则BD=12、若方程组⎩⎨⎧=-=+.,2a by x b y x 的解是⎩⎨⎧==.0,1y x ,那么=-b a三.解答题.(本大题共4小题,共36分),解答应写出文字说明,证明过程或演算步骤.13、(本题共3小题,每小题5分,共15分)(1)请先将下式化简,再选择一个你喜欢又使原式有意义的数代入求值..121)11(2+-÷--a a a a(2)计算:︒---+-45tan 2)510()31(401(3)某地为了解从2004年以来初中学生参加基础教育课程改革的情况,随机调查了本地区1000名初中学生学习能力优秀的情况.调查时,每名学生可以在动手能力,表达能力,创新能力,解题技巧,阅读能力和自主学习等六个方面中选择自己认为是优秀的项.调查后绘制了如下图所示的统计图.请根据统计图反映的信息解答下列问题:①学生获得优秀人数最多的一项和最有待加强的一项各是什么? ②这1000名学生平均每人获得几个项目为优秀?③若该地区共有2万名初中学生,请估计他们表达能力为优秀的学生有多少人?14、(本小题满分7分)已知:如图,AD=BC,AC=BD.求证:OD=OCO D CBABA15、(本小题满分7分)某学校准备添置一些“中国结”挂在教室。
2023年四川省宜宾市中考数学试卷(含答案)070849
2023年四川省宜宾市中考数学试卷试卷考试总分:149 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 12 小题 ,每题 4 分 ,共计48分 )1. 的相反数是 A.B.C.D.2. 下列计算正确的是( )A.=B.=C.=D.=3. 下列图案中,既是轴对称图形又是中心对称图形的有 ( )A.个B.个C.个D.个4. 这段时间,一个叫“学习强国”的理论学习平台火了,很多人主动下载、积极打卡,兴起了一股全民学习的热潮,据不完全统计,截止月号,华为官方应用市场“学习强国”下载量已达次,请将用科学记数法表示为( )A.B.C.D.5. 如图所示,直线、被直线、所截,且,与相交于点,则( )−12()−22−12122a +3b 5ab5a −3a 22−3a a 2−a−2b +3b a 2a 2ba 2123442APP 88300000883000000.883×1098.83×1088.83×10788.3×106a b c d a//b c d O α=A.B.C.D.6. 将克含糖的糖水与克含糖的糖水混合,混合后的糖水含糖( )A.%B.C.D.7. 如图,是的直径,点,是圆上两点,且,则( )A.B.C.D.8. 分式方程的解是( )A.=B.=C.=D.=11∘33∘43∘68∘x 10%y 30%20×100%x+y2×100%x+3y20×100%x+3y10x+10y AB ⊙O C D ∠AOC =126∘∠CDB =27∘64∘54∘32∘=11x+2x 1x −1x 2x −29. 如图,用一个半径为的定滑轮带动重物上升,滑轮上一点旋转了,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了( )A.B.C.D.10. 如图,已知正方形边长为,连接、,平分交于点,则长为( )A. B.C.D.11. 在平面直角坐标系中,点是坐标原点,点是轴正半轴上的一个动点,过点作轴的平行线交反比例函数 的图象于点,当点的横坐标逐渐增大时,的面积将会( )A.先增大后减小B.不变C.逐渐减小D.逐渐增大12. 如图,正方形中,点在边上,点在边上,若,则下列结论:①;②;③;④;⑤.其中结论正确的序号是 ( )A.①②③B.④⑤5cm A 108∘πcm2πcm3πcm5πcmABCD 1AC BD CE ∠ACD BD E DE 2−2−1−12−O A x A y y =(x >0)2x B A △OAB ABCD E AD F CD ∠BEF =∠EBC,AB =3AE DF =FC AE+DF =EF ∠BFE =∠BFC ∠DEF +∠CBF =∠BFC BF :EF =3:55–√C.①②③④D.①②③④⑤二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )13. 已知一组样本数据:,,,,,,则这组样本的中位数为________.14. 分解因式:________.15. 若关于的方程的一个根是,则另一个根是________.16. 定义:对于实数,符号表示不大于的最大整数.例如: ,,,如果,满足条件的所有整数有________.17. 已知的半径为,为圆上一定点,为圆上一动点,以为边作等腰,点在圆上运动一周的过程中,的最大值为________.18. 如图,为的平分线上一点,过点作任意一条直线分别与的两边相交于点,,为的中点,过点作的垂线交射线于点,若,则的大小为________(用含的代数式表示).三、 解答题 (本题共计 7 小题 ,每题 11 分 ,共计77分 )19. 计算:.20. 如图,在中,,,是边上两点且,求证:.21. 某校开设有(类)、音乐(类)、体育(类)、舞蹈(类)四类社团活动,要求学生全员参加,每人限报一类.为了了解学生参与社团活动的情况,校学生会随机抽查了部分学生,将所收集的数据绘制成如图所示不完整的统计图.请根据图中提供的信息解答下列问题:类型频数频率123451b −8ab +16b =a 2x +3x+k =0x 21a [a]a [5.7]=5[5]=5[−π]=−4[]=−2x+12x ⊙O 2A P AP Rt △APG P OG A ∠MON OD A ∠MON B C P BC P BC OA D ∠BDC =α∠BOD α(−1+2sin −|1−|+)201660∘3–√π0△ABE AB =AE C D BE AC =AD BC =DE STEAM A B C D A30x B180.15Cm 0.40D n y________,并补全条形统计图;若该校共有人,报的有________人;如果学生会想从类的甲、乙、丙三人中随机选择两人参加舞蹈演出,请用列表法或树状图的方法求出恰好选中甲的概率.22. 某建筑工地的平衡力矩塔吊如图所示,在配重点处测得塔帽的仰角为,在点的正下方处的点处测得塔帽的仰角为,请你依据相关数据计算塔帽与地面的距离的高度.(计算结果精确到,参考数据:) 23. 如图,已知一次函数的图象与反比例函数的图象交于,两点,且点的横坐标和点的纵坐标都是.求:一次函数的解析式;的面积;并利用图象指出,当为何值时有.24. 如图,在中.(1)若=,=,求的度数;(2)若的半径为,且=,求点到的距离. 25. 如图,抛物线 与轴相交于,两点,点在点的右侧,与轴相交于点(1)x =(2)1800STEAM (3)D E A 30∘E 23m D A 53∘AC 0.1m ≈1.732,sin ≈0.80,cos ≈0.60,tan ≈3–√53∘53∘53∘43=kx+b y 1=−y 28x A B A B −2(1)(2)△AOB (3)x >y 1y 2⊙O ∠ACB 80∘∠BOC ⊙O 13BC 10O BC y =−+2x+12x 252x A B B A y C.求点,,的坐标;在抛物线的对称轴上有一点,使 的值最小,求点的坐标;点为轴上一动点,在抛物线上是否存在一点,使以,,,四点构成的四边形为平行四边形?若存在,求点的坐标;若不存在,请说明理由.(1)A B C (2)P PA+PC P (3)M x N A C M N N参考答案与试题解析2023年四川省宜宾市中考数学试卷试卷一、 选择题 (本题共计 12 小题 ,每题 4 分 ,共计48分 )1.【答案】D【考点】相反数【解析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“-”,据此解答即可.【解答】解:根据相反数的含义,可得的相反数是:.故选.2.【答案】D【考点】合并同类项【解析】此题暂无解析【解答】此题暂无解答3.【答案】C【考点】中心对称图形轴对称图形【解析】此题暂无解析【解答】此题暂无解答4.−12−(−)=1212D【答案】C【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正整数;当原数的绝对值时,是负整数.【解答】将用科学记数法表示为:.5.【答案】B【考点】平行线的性质三角形的外角性质【解析】由平行线的性质可得,又由外角的性质可得,可求得.【解答】解:如图,,,又,.故选.6.【答案】D【考点】由实际问题抽象出二元一次方程组【解析】a ×10n 1≤|a |<10n n a n ≥10n <1n 883000008.83×107∠1=79∘∠1+α=112∘α∵a//b ∴∠1=79∘∵∠1+α=112∘∴α=−=112∘79∘33∘B此题暂无解析【解答】解:混合之后糖的含量:,故选.7.【答案】A【考点】圆周角定理圆心角、弧、弦的关系【解析】由=,可求得的度数,然后由圆周角定理,求得的度数.【解答】解:∵=,∴==,∵=.故选.8.【答案】B【考点】解分式方程【解析】根据分式方程的求解方法解题,注意检验根的情况;【解答】,两侧同时乘以,可得=,解得=;经检验=是原方程的根;9.【答案】C【考点】弧长的计算【解析】根据定滑轮的性质得到重物上升的即为转过的弧长,利用弧长公式计算即可.=×100%10%x+30%y x+y x+3y 10x+10yD ∠AOC 126∘∠BOC ∠CDB ∠AOC 126∘∠BOC −∠AOC 180∘54∘∠CDB =∠BOC 1227∘A =11x+2(x+2)x+21x −1x −1【解答】解:根据题意得:,则重物上升了.故选10.【答案】C【考点】正方形的性质【解析】此题暂无解析【解答】此题暂无解答11.【答案】B【考点】反比例函数图象上点的坐标特征反比例函数系数k 的几何意义【解析】此题暂无解析【解答】此题暂无解答12.【答案】D【考点】全等三角形的性质与判定正方形的性质翻折变换(折叠问题)【解析】【解答】解:①项,延长交的延长线于点.不妨设正方形的边长为,假设是的中点,l==3π(cm)108π×51803πcm C.EF BC G 3F CD F =3则,,,所以在和中,有 所以 ,所以,所以,,所以,所以,故假设成立,所以,故①项正确.②项 ,,,所以 ,故②项正确.③项,过点作于点,,即,因为,所以,所以在与中,有所以,所以即,故③项正确.④项,过点作交于点,所以,所以, ,所以.因为,所以,故④项正确.⑤项,,故⑤正确.故选.二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )13.【答案】【考点】中位数【解析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:将这组数据小到大排列:,,,,,,所以中位数为.故答案为:.14.【答案】.AE =1DE =2DF =32EF ==D +D E 2F 2−−−−−−−−−−√52△EDF △CCF ∠EDF =∠GCF ,DF =CF ,∠EFD =∠GFC ,△EDF ≅△GCF (ASA)GF =EF =,CG =DE =252EG =EF +GF =5BG =B +CG =5C ′EG =BG ∠BEF =∠EBC DF =FC AE =1DF =32AE+DF ==EF 52B BH ⊥EF H =−−−S △BEF S 正方形ABCD S △ABE S △EDF S △BCF =3×3−×3×1−×2×−×3×=S △BEF 1212321232154=EF ⋅BH =×⋅BH S △BEF 121252BH =3Rt △BHF Rt △BCF {BF =BF,BH =BC,Rt △BHF ≅Rt △BCF (HL)∠BFH =∠BFC ∠BFE =∠BFC F FP//BC AB P FP//AD ∠DEF =∠EFP ∠CBF =∠BFP ∠DEF +∠CBF =∠EFP +∠BFP =∠BFE ∠BFE =∠BFC ∠DEF +∠CBF =∠BFC BF ∶EF =∶=3∶5+32 1.52−−−−−−−√525–√D 2.5112345=2.52+322.5b(a −4)2【考点】提公因式法与公式法的综合运用【解析】先提公因式,再用完全平方公式进行因式分解.【解答】.15.【答案】【考点】根与系数的关系【解析】设方程的两根分别为,,则由根与系数关系得,,由可得.【解答】解:根据题意,设方程的两根分别为,,令,则由根与系数关系得,,∵,∴.故答案为:.16.【答案】,【考点】一元一次不等式组的整数解【解析】根据已知得出,求出即可.【解答】解:由定义可知,解得,所以满足条件的所有整数有,.故答案为:,.17.【答案】【考点】旋转的性质等腰直角三角形b −8ab +16b =b(−8a +16)=b(a −4a 2a 2)2−4x 1x 2+=−3x 1x 2=1x 1=−4x 2x 1x 2=1x 1+=−3x 1x 2=1x 1=−4x 2−4−5−4−2≤<−1x+12−2≤<−1x+12−5≤x <−3−5−4−5−42+2全等三角形的性质与判定三角形三边关系【解析】连接,作交于点,连接,,.首先证明,推出==,由=,可得=,由,推出,由此即可解决问题;【解答】连接,作交于点,连接,,.∵=,=,∴=,∴=,=,∴=,∴==,∵==,∴,∴==,∵=,∴=,∵,∴,∴的最大值为.18.【答案】【考点】角平分线的性质等腰三角形的性质全等三角形的性质与判定【解析】【解答】解:如图,过作于,于,OA OH ⊥OA ⊙O H AH HC OP ∠OAP ∽△HAG OP 2HG 2OG ≤OH+HG OG ≤2+2OA OH ⊥OA ⊙O H AH HG OP OA OH ∠AOH 90∘AH OA AP PG ∠APG 90∘AG AP ∠OAH ∠PAG 45∘∠OAP ∽△HAG OP 2HG 2OG ≤OH+HG OG ≤2+2OG 2+2−90∘α2D DE ⊥OM E DF ⊥ON F则.∵为的角平分线,∴.为的中点,,,∴(),∴.∵,,即,,.故答案为:.三、 解答题 (本题共计 7 小题 ,每题 11 分 ,共计77分 )19.【答案】原式=.【考点】零指数幂实数的运算特殊角的三角函数值【解析】先计算乘方、代入三角函数值、去绝对值符号、计算零指数幂,再去括号,最后计算加减可得.【解答】原式=.20.【答案】证明:∵,∴,∵,∴,∴,在和中,∴,∴.∠DEB =∠DFC =∠DFO =90∘OA ∠MON DE =DF ∵P BC PD ⊥BC ∴BD =CD Rt △DEB ≅Rt △DFC HL ∠BDE =∠CDF ∠BDC =α∴∠BDF +∠CDF =∠BDF +∠BDE ∠EDF =α∴∠MON =(180−α)∘∴∠BOD =[(180−α)=−12]∘90∘α2−90∘α2=1+2×−(−1)+13–√23–√=1+−+1+13–√3–√3=1+2×−(−1)+13–√23–√=1+−+1+13–√3–√3AB =AE ∠B =∠E AC =AD ∠ACD =∠ADC ∠BAC =∠EAD △ABC △AED AB =AE,∠BAC =∠EAD,AC =AD,△ABC ≅△AED(SAS)BC =DE全等三角形的性质与判定【解析】根据等腰三角形的性质可得到两组相等的角,再根据判定,由全等三角形的性质即可求得结论.【解答】证明:∵,∴,∵,∴,∴,在和中,∴,∴.21.【答案】解:抽取的学生数为(人),∴,类人数为(人),∴类人数为(人).补全条形统计图如图所示.由题意,画树状图如图,共有种等可能的结果,其中恰好选中里的种情况,则恰好选中甲的概率为.【考点】条形统计图频数(率)分布表用样本估计总体列表法与树状图法【解析】SAS △ABC ≅△AED AB =AE ∠B =∠E AC =AD ∠ACD =∠ADC ∠BAC =∠EAD △ABC △AED AB =AE,∠BAC =∠EAD,AC =AD,△ABC ≅△AED(SAS)BC =DE (1)18÷0.15=120x =30÷120=0.25C 120×0.40=48D 120−30−18−48=24450(3)64=4623解:抽取的学生数为(人),∴,类人数为(人),∴类人数为(人).补全条形统计图如图所示.报的有(人).故答案为:.由题意,画树状图如图,共有种等可能的结果,其中恰好选中里的种情况,则恰好选中甲的概率为.22.【答案】解:设的高度为米.在中,由,得 ,易证四边形为矩形,∴,,在中,由,得,由,得,解得 .答:塔帽与地面的距离约为米.【考点】解直角三角形的应用-仰角俯角问题【解析】此题暂无解析【解答】解:设的高度为米.在中,由,得 ,易证四边形为矩形,∴,,在中,由,得,由,得,解得 .答:塔帽与地面的距离约为米.23.【答案】解:∵点的横坐标和点的纵坐标都是,(1)18÷0.15=120x =30÷120=0.25C 120×0.40=48D 120−30−18−48=24(2)STEAM 1800×0.25=450450(3)64=4623AC x Rt △ACD AC =CD ⋅tan53∘CD =x 34BCDE BE =CD =x 34BC =DE =23Rt △ABE AB =BE ⋅tan30∘AB ≈0.433x BC =AC −AB x−0.433x =23x ≈40.6AC 40.6AC x Rt △ACD AC =CD ⋅tan53∘CD =x 34BCDE BE =CD =x 34BC =DE =23Rt △ABE AB =BE ⋅tan30∘AB ≈0.433x BC =AC −AB x−0.433x =23x ≈40.6AC 40.6(1)A B −2=−=48=−28∴,,解得,∴,.把点的坐标代入函数解析式,得解得∴一次函数的解析式为.一次函数图象与轴的交点坐标为,∴.根据图象,当或时,.【考点】待定系数法求一次函数解析式反比例函数与一次函数的综合三角形的面积【解析】(1)先利用反比例函数求出点、的坐标,再利用待定系数法求一次函数的解析式;(2)求出一次函数图象与轴的交点坐标,然后求出与的面积,则;(3)可根据图象直接写出答案.【解答】解:∵点的横坐标和点的纵坐标都是,∴,,解得,∴,.把点的坐标代入函数解析式,得解得∴一次函数的解析式为.一次函数图象与轴的交点坐标为,∴.根据图象,当或时,.24.y =−=48−2−=−28x x =4A(−2,4)B(4,−2)A ,B {−2k +b =4,4k +b =−2,{k =−1,b =2,y =−x+2(2)y C(0,2)=+S △AOB S △AOC S △BOC =×2×|−2|+×2×41212=2+4=6(3)x <−20<x <4>y 1y 2A B y △AOC △BOC =+S △AOB S △AOC S △BOC (1)A B −2y =−=48−2−=−28x x =4A(−2,4)B(4,−2)A ,B {−2k +b =4,4k +b =−2,{k =−1,b =2,y =−x+2(2)y C(0,2)=+S △AOB S △AOC S △BOC =×2×|−2|+×2×41212=2+4=6(3)x <−20<x <4>y 1y 2【答案】∵=,∴==,∴==,∴==;作于,如图=,在中,==,即点到的距离为.【考点】圆心角、弧、弦的关系垂径定理圆周角定理【解析】此题暂无解析【解答】此题暂无解答25.【答案】解:当 时, ,,当 时, ,化简,得 ,解得,,∵点在点的右侧,∴;连接,交对称轴于点,连接∵点和点关于抛物线的对称轴对称,.要使 的值最小,则应使 的值最小,所以与对称轴的交点使得 的值最小.设所在直线的解析式为 ,∠ABC ∠ACB 80∘∠A −−180∘80∘80∘20∘∠BOC 2∠A 40∘OH ⊥BC H BC 5Rt △OBH OH O BC 12(1)x =0y =52∴C(0,)52y =0−+2x+=012x 252x 2−4x −5=0x 1=5=−1x 2B A A(−1,0),B(5,0)(2)BC P AP.A B ∴AP =PB PA+PC PB+PC BC P PA+PC BC y =kx+b (5,0),C(0,)5将 代入,可得解得 故所在直线的解析式为.抛物线的对称轴为直线,当时, ,的坐标为.如图,①当在轴上方,此时 ,且,则 ,四边形 是平行四边形.②当在轴下方:作,交 于点如果四边形 是平行四边形.,,又∵,,.当时, ,,, ,.综上所述,点的坐标为 ,或.【考点】二次函数综合题【解析】此题暂无解析【解答】解:当 时, ,,当 时, ,化简,得 ,解得,,∵点在点的右侧,∴;B(5,0),C(0,)52b =,525k +b =0, k =−,12b =,52BC y =−x+1252x =2x =2y =−×2+=125232∴P (2,)32(3)N x A =C M 1N 1A //C M 1N 1(4,)N 152∴ACN 1M 1N x D ⊥A N 2M 2AM 2 D.ACM 2N 2∴AC//,AC =M 2N 2M 2N 2∴∠CAO =∠D N2M 2∠AOC =∠D M2N 2∴△AOC ≅△D (AAS)M 2N 2∴D =OC =N 252y =−52−+2x+=−12x 25252∴=2−,=2+x 114−−√x 214−−√∴(2+N 214−−√−)52(2−,−)N 314−−√52N (4,),(2+5214−−√−)52(2−,−)14−−√52(1)x =0y =52∴C(0,)52y =0−+2x+=012x 252x 2−4x −5=0x 1=5=−1x 2B A A(−1,0),B(5,0)连接,交对称轴于点,连接∵点和点关于抛物线的对称轴对称, . 要使 的值最小,则应使 的值最小,所以与对称轴的交点使得 的值最小.设所在直线的解析式为 ,将 代入,可得 解得 故所在直线的解析式为.抛物线的对称轴为直线,当时, ,的坐标为.如图,①当在轴上方,此时 ,且,则 ,四边形 是平行四边形.②当在轴下方:作,交 于点如果四边形 是平行四边形.,,又∵,,.当时, ,,, ,.综上所述,点的坐标为 ,或.(2)BC P AP.A B ∴AP =PB PA+PC PB+PC BC P PA+PC BC y =kx+b B(5,0),C(0,)52 b =,525k +b =0, k =−,12b =,52BC y =−x+1252x =2x =2y =−×2+=125232∴P (2,)32(3)N x A =C M 1N 1A //C M 1N 1(4,)N 152∴ACN 1M 1N x D ⊥A N 2M 2AM 2 D.ACM 2N 2∴AC//,AC =M2N 2M 2N 2∴∠CAO =∠D N2M 2∠AOC =∠D M 2N 2∴△AOC ≅△D (AAS)M 2N 2∴D =OC =N 252y =−52−+2x+=−12x 25252∴=2−,=2+x 114−−√x 214−−√∴(2+N 214−−√−)52(2−,−)N 314−−√52N (4,),(2+5214−−√−)52(2−,−)14−−√52。
2023年四川省宜宾中考数学真题(含解析)
2023年四川省宜宾中考数学真题学校:___________姓名:___________班级:___________考号:___________..C...为积极践行节能减排的发展理念,宜宾大力推进“电动宜宾8500个.将8500用科学记数法表示为( ).2⨯8510A.40︒B6.“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何中著名数学问题.意思是:鸡兔同笼,从上面数,有腿.问鸡兔各有多少只?若设鸡有A .140︒B 8.分式方程223x x x -=--A .2B 9.《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度的A .1123-B 10.如图,边长为6的正方形CD 于点P .若PM PC =A .()331-B 11.如图,在平面直角坐标系分别在线段BC 、AC 上,M 、N 两点,P 为x 正半轴上一点,且二、填空题18.如图,抛物线y =的交点B 在()02-,和①当31x -≤≤时,1y ≤;②当ABM 的面积为332时,③当ABM 为直角三角形时,在最小值的平方为1893+.其中正确的结论是___________三、解答题21.某校举办“我劳动,我快乐,我光荣情况,随机调查了九年级1班的所有学生在家劳动时间(单位:小时)和整理绘制如图所示的不完整统计图.根据图表信息回答以下问题:班的学生共有___________人,补全条形统计图;(2)若九年级学生共有800人,请估计周末在家劳动时间在3小时及以上的学生人数;(3)已知E 类学生中恰好有2名女生3名男生,现从中抽取两名学生做劳动交流,请用列表或画树状图的方法,求所抽的两名学生恰好是一男一女的概率.22.渝昆高速铁路的建成,将会显著提升宜宾的交通地位.渝昆高速铁路宜宾临港长江公铁两用大桥(如图1),桥面采用国内首创的公铁平层设计.距离CD ,如图2.在桥面上点A 处,测得A 到左桥墩23.如图,在平面直角坐标系xOy 中,等腰直角三角形ABC A 、()6B m ,恰好落在反比例函数ky x=第一象限的图象上.(1)分别求反比例函数的表达式和直线(2)在x 轴上是否存在一点请说明理由.24.如图,以AB 为直径的AF 的延长线于点D ,交(1)求证:CD 是O 的切线;(2)求证:EM EN =;(3)如果N 是CM 的中点,且AB 25.如图,抛物线2y ax bx =+参考答案:【点睛】本题考查科学记数法,按照定义,确定a 与n 的值是解决问题的关键.5.D【分析】可求40ACD ∠=︒,再由ACD D E ∠=∠+∠,即可求解.【详解】解:AB CD ∥ ,40ACD A ∴∠=∠=︒,ACD D E ∠=∠+∠ ,2440E ∴︒+∠=︒,16E ∴∠=︒.故选:D .【点睛】本题考查了平行线的性质,三角形外角性质,掌握三角形外角的性质是解题的关键.6.B【分析】根据题意,由设鸡有x 只,兔有y 只,则由等量关系有35个头和有94条腿列出方程组即可得到答案.【详解】解:设鸡有x 只,兔有y 只,则由题意可得352494x y x y +=⎧⎨+=⎩,故选:B .【点睛】本题考查列二元一次方程组解决古代数学问题,读懂题意,找准等量关系列方程组是解决问题的关键.7.A【分析】连接OC ,如图所示,根据圆周角定理,找到各个角之间的关系即可得到答案.【详解】解:连接OC ,如图所示:点A B C 、、在O 上,C 为 AB 的中点,⊥,得ON AB设点A 的坐标为()()0,0A a a >,点()(),0,0N m n m n >>,则(5,2C b :1:4OP BP = ,,4OP b BP b ∴==,∵90BMC ∠=︒,∴当CE 在A 的下方与A 相切时,∴四边形AEMD 是矩形,又AE AD =,∴四边形AEMD 是正方形,∴1MD AE ==,P 的运动轨迹是以M 为圆心,1为半径的半圆,∴Q 的运动轨迹是以E 为圆心,1为半径的半圆,如图,当M 、Q 、E 三点共线时,MQ 的值最小, 四边形ABCD 是正方形,4CD AB BC ∴===,90C ∠=︒,∴12ABM AMF BMF S S S MF =+=⨯V V V 设直线AB 的解析式为'y k x =+把()0,3B a -,()30A -,代入得:解得:3k a b a=-⎧⎨=-''⎩,则'AOA ,'POP 为等边三角形,∴'OP PP =,'AP AP =,∴''+PA PO PB P A PP PB ++=+∵'AOA 为等边三角形,(3A -∴'32A x -=,'3tan 602A y ⨯︒==∴'333,22A -æöç÷ç÷ç÷ç÷èø,(2)由题意得,8580020850+⨯=(人),即估计周末在家劳动时间在3小时及以上的学生人数为(3)列表如下:女1女2男1男2女1女1,女2女1,男1女1,男∴EAC ECA =∠∠,∵15CAD ∠=︒∴230CED EAC ∠=∠=︒,∵点()30C ,,()6B m ,,∴3,6,OC OD ==BD m =,∴3CD OD OC =-=,∵ABC 是等腰直角三角形,∴90,ACB AC BC ∠=︒=,∴点A 与点A '关于x 轴对称,∴AP A P '=,()2,3A '-,∵AP PB A P PB A B ''+=+=∴AP PB +的最小值是A B '∵()()222631AB =-+-=∵=,BE EF∴12∠=∠,=∵OA OE∠=∠,∴13∵CM 平分ACD ∠∴1562DCA ∠=∠=∠又∵1122DAC ∠=∠=∠,AD 则90ADC ∠=︒,∵CD 是O 的切线,∴90CEB OEB ∠+∠=︒,∵90AEB AEO OEB ∠=∠+∠=设233,642N m m m ⎛⎫--+ ⎪⎝⎭,(91,4P m ⎛--- ⎝∴()()992724442PQ m m '=--++=,∴127813224APQ S '=⨯⨯= .综上所述,814APQ S '=.解决问题是解本题的关键.。
2022年四川省宜宾市中考数学试卷(解析版)
2022年四川省宜宾市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上.1.(4分)4的平方根是()A .2B .2-C .2±D .16【分析】根据平方根的定义,求数a 的平方根,也就是求一个数x ,使得2x a =,则x 就是a 的平方根,由此即可解决问题.【解答】解:2(2)4±= ,4∴的平方根是2±.故选:C .2.(4分)如图是由5个相同的正方体搭成的几何体,从正面看,所看到的图形是()A .B .C .D .【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看,底层是三个相邻的小正方形,上层的右边是一个小正方形.故选:D .3.(4分)下列计算不正确的是()A .3362a a a +=B .326()a a -=C .32a a a ÷=D .235a a a ⋅=【分析】利用合并同类项法则、幂的乘方法则、同底数幂的乘除法则逐个计算,根据计算结果得结论.【解答】解:A .333622a a a a +=≠,故选项A 计算不正确;B .326()a a -=,故选项B 计算正确;C .32a a a ÷=,故选项C 计算正确;D .235a a a ⋅=,故选项D 计算正确.故选:A .4.(4分)某校在中国共产主义青年团成立100周年之际,举行了歌咏比赛,七位评委对某个选手的打分分别为:91,88,95,93,97,95,94.这组数据的众数和中位数分别是()A .94,94B .95,95C .94,95D .95,94【分析】先将这组数据从小到大重新排列,再根据众数和中位数的概念求解可得.【解答】解:将这组数据从小到大排列为88,91,93,94,95,95,97,所以这组数据的众数是95,中位数是94.故选:D .5.(4分)如图,在ABC ∆中,5AB AC ==,D 是BC 上的点,//DE AB 交AC 于点E ,//DF AC 交AB 于点F ,那么四边形AEDF 的周长是()A .5B .10C .15D .20【分析】由于//DE AB ,//DF AC ,则可以推出四边形AFDE 是平行四边形,然后利用平行四边形的性质可以证明AFDE 的周长等于AB AC +.【解答】解://DE AB ,//DF AC ,∴四边形AFDE 是平行四边形,B EDC ∠=∠,FDB C∠=∠AB AC = ,B C ∴∠=∠,B FDB ∴∠=∠,C EDF ∠=∠,BF FD ∴=,DE EC =,AFDE ∴ 的周长5510AB AC =+=+=.故选:B .6.(4分)2020年12月17日,我国嫦娥五号返回器携带着月球样本玄武岩成功着陆地球.2021年10月19日,中国科学院发布了一项研究成果:中国科学家测定,嫦娥五号带回的玄武岩形成的年龄为20.300.04±亿年.用科学记数法表示此玄武岩形成的年龄最小的为(单位:年)()A .82.03410⨯B .92.03410⨯C .82.02610⨯D .92.02610⨯【分析】先求出此玄武岩形成的年龄最小值,再运用科学记数法进行表示.【解答】解:20.300.0420.26-= (亿),且20.26亿92026000000 2.02610==⨯,故选:D .7.(4分)某家具厂要在开学前赶制540套桌凳,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的桌凳比原计划多2套,结果提前3天完成任务.问原计划每天完成多少套桌凳?设原计划每天完成x 套桌凳,则所列方程正确的是()A .54054032x x -=-B .54054032x x -=+C .54054032x x -=+D .54054032x x -=-【分析】设原计划每天完成x 套桌凳,则实际每天完成(2)x +套,根据原计划完成的时间-实际完成的时间3=天列出方程即可.【解答】解:设原计划每天完成x 套桌凳,则实际每天完成(2)x +套,根据原计划完成的时间-实际完成的时间3=天得:54054032x x -=+,故选:C .8.(4分)若关于x 的一元二次方程2210ax x +-=有两个不相等的实数根,则a 的取值范围是()A .0a ≠B .1a >-且0a ≠C .1a -且0a ≠D .1a >-【分析】根据根的判别式即可列不等式,计算即可得答案,注意0a ≠.【解答】解:由题意可得:20240a a ≠⎧⎨+>⎩,1a ∴>-且0a ≠,故选:B .9.(4分)如图,在矩形纸片ABCD 中,5AB =,3BC =,将BCD ∆沿BD 折叠到BED ∆位置,DE 交AB 于点F ,则cos ADF ∠的值为()A .817B .715C .1517D .815【分析】利用矩形和折叠的性质可得BF DF =,设BF x =,则DF x =,5AF x =-,在Rt ADF ∆中利用勾股定理列方程,即可求出x 的值,进而可得cos ADF ∠.【解答】解: 四边形ABCD 是矩形,90A ∴∠=︒,//AB CD ,3AD BC ==,5AB CD ==,BDC DBF ∴∠=∠,由折叠的性质可得BDC BDF ∠=∠,BDF DBF ∴∠=∠,BF DF ∴=,设BF x =,则DF x =,5AF x =-,在Rt ADF ∆中,2223(5)x x +-=,175x ∴=,315cos 17175ADF ∴∠==,故选:C .10.(4分)已知m 、n 是一元二次方程2250x x +-=的两个根,则22m mn m ++的值为()A .0B .10-C .3D .10【分析】由于m 、n 是一元二次方程2250x x +-=的两个根,根据根与系数的关系可得2m n +=-,5mn =-,而m 是方程的一个根,可得2250m m +-=,即225m m +=,那么2222m mn m m m mn ++=++,再把22m m +、m n +的值整体代入计算即可.【解答】解:m 、n 是一元二次方程2250x x +-=的两个根,2m n ∴+=-,5mn =-,m 是2250x x +-=的一个根,2250m m ∴+-=,225m m ∴+=,2222550m mn m m m mn ∴++=++=-=.故选:A .11.(4分)已知抛物线2y ax bx c =++的图象与x 轴交于点(2,0)A -、(4,0)B ,若以AB 为直径的圆与在x 轴下方的抛物线有交点,则a 的取值范围是()A .13aB .13a >C .103a <<D .103a<【分析】把A 、B 两点坐标代入二次函数解析式,用a 表示b 、c ,进而把抛物线的解析式用a 表示,设抛物线的顶点为点P ,AB 的中点为点C ,求得抛物线的对称轴与顶点坐标,根据抛物线与以AB 为直径的圆在x 轴下方的抛物线有交点得0a >,且12CP AB 求得a 的取值范围便可.【解答】解:把(2,0)A -、(4,0)B 代入2y ax bx c =++得,4201640a b c a b c -+=⎧⎨++=⎩,解得28b a c a=-⎧⎨=-⎩,∴抛物线的解析式为:2228(1)9y ax ax a a x a =--=--,设抛物线的顶点为点P ,∴抛物线的顶点(1,9)P a -,对称轴为1x =,设C 为AB 的中点,则(1,0)C ,|9|9CP a a∴=-= 以AB 为直径的圆与在x 轴下方的抛物线有交点,0a ∴>,12CP AB 即93a ,13a∴.故选:A .12.(4分)如图,ABC ∆和ADE ∆都是等腰直角三角形,90BAC DAE ∠=∠=︒,点D 是BC边上的动点(不与点B 、C 重合),DE 与AC 交于点F ,连结CE .下列结论:①BD CE =;②DAC CED ∠=∠;③若2BD CD =,则45CF AF =;④在ABC ∆内存在唯一一点P ,使得PA PB PC ++的值最小,若点D 在AP 的延长线上,且AP 的长为2,则2CE =+含所有正确结论的选项是()A .①②④B .①②③C .①③④D .①②③④【分析】①正确.证明()BAD DAE SAS ∆≅∆,可得结论;②正确.证明A ,D ,C ,E 四点共圆,利用圆周角定理证明;③正确.设CD m =,则2BD CE m ==.DE =,OA =,过点C 作CJ DF ⊥于点J ,求出AO ,CJ ,可得结论;④错误.将BPC ∆绕点B 顺时针旋转60︒得到BNM ∆,连接PN ,当点A ,点P ,点N ,点M 共线时,PA PB PC ++值最小,此时120APB APC BPC ∠=∠=∠=︒,PB PC =,AD BC ⊥,设PD t =,则BD AD ==,构建方程求出t ,可得结论.【解答】解:如图1中,90BAC DAE ∠=∠=︒ ,BAD CAE ∴∠=∠,AB AC = ,AD AE =,()BAD DAE SAS ∴∆≅∆,BD EC ∴=,ADB AEC ∠=∠,故①正确,180ADB ADC ∠+∠=︒ ,180AEC ADC ∴∠+∠=︒,180DAE DCE ∴∠+∠=︒,90DAE DCE ∴∠=∠=︒,取DE 的中点O ,连接OA ,OA ,OC ,则OA OD OE OC ===,A ∴,D ,C ,E 四点共圆,DAC CED ∴∠=∠,故②正确,设CD m =,则2BD CE m ==.DE =,2OA =,过点C 作CJ DF ⊥于点J ,tan 2CJ CECDF DJ CD∠===,CJ ∴=,AO DE ⊥ ,CJ DE ⊥,//AO CJ ∴,∴25455CF CJ AF AO ==,故③正确.如图2中,将BPC ∆绕点B 顺时针旋转60︒得到BNM ∆,连接PN,BP BN ∴=,PC NM =,60PBN ∠=︒,BPN ∴∆是等边三角形,BP PN ∴=,PA PB PC AP PN MN ∴++=++,∴当点A ,点P ,点N ,点M 共线时,PA PB PC ++值最小,此时120APB APC BPC ∠=∠=∠=︒,PB PC =,AD BC ⊥,60BPD CPD ∴∠=∠=︒,设PD t =,则BD AD ==,2t ∴+=,1t ∴=+,3CE BD ∴===+,故④错误.故选:B .二、填空题:本大题共6个小题,每小题4分,共24分.请把答案直接填在答题卡对应题中横线上.13.(4分)分解因式:34x x -=(2)(2)x x x +-.【分析】应先提取公因式x ,再对余下的多项式利用平方差公式继续分解.【解答】解:34x x -,2(4)x x =-,(2)(2)x x x =+-.故答案为:(2)(2)x x x +-.14.(4分)不等式组325,212x x -⎧⎪⎨+>-⎪⎩的解集为41x -<-.【分析】先解出每个不等式的解集,即可得到不等式组的解集.【解答】解:325212x x -⎧⎪⎨+>-⎪⎩①②,解不等式①,得:1x -,解不等式②,得:4x >-,故原不等式组的解集为41x -<-,故答案为:41x -<-.15.(4分)如图,ABC ∆中,点E 、F 分别在边AB 、AC 上,12∠=∠.若4BC =,2AF =,3CF =,则EF =85.【分析】由12∠=∠,A A ∠=∠,得出AEF ABC ∆∆∽,再由相似三角形的性质即可得出EF 的长度.【解答】解:12∠=∠ ,A A ∠=∠,AEF ABC ∴∆∆∽,∴EF AFBC AC =,4BC = ,2AF =,3CF =,∴2423EF =+,85EF ∴=,故答案为:85.16.(4分)《数书九章》是中国南宋时期杰出数学家秦九韶的著作,书中提出了已知三角形三边a 、b 、c 求面积的公式,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即为S =.现有周长为18的三角形的三边满足::4:3:2a b c =,则用以上给出的公式求得这个三角形的面积为【分析】根据题意先求出a 、b 、c ,再代入公式进行计算即可.【解答】解:根据::4:3:2a b c =,设4a k =,3b k =,2c k =,则43218k k k ++=,解得:2k =,4428a k ∴==⨯=,3326b k ==⨯=,2224c k ==⨯=,S ∴=,故答案为:.17.(4分)我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为289.【分析】如图,设内切圆的圆心为O ,连接OE 、OD ,则四边形EODC 为正方形,然后利用内切圆和直角三角形的性质得到6AC BC AB +=+,2()49BC AC -=,接着利用完全平方公式进行代数变形,最后解关于AB 的一元二次方程解决问题.【解答】解:如图,设内切圆的圆心为O ,连接OE 、OD ,则四边形EODC 为正方形,32AC BC BAOE OD +-∴===,6AC BC AB ∴+-=,6AC BC AB ∴+=+,22()(6)AC BC AB ∴+=+,22221236BC AC BC AC AB AB ∴++⨯=++,而222BC AC AB +=,21236BC AC AB ∴⨯=+①, 小正方形的面积为49,2()49BC AC ∴-=,22249BC AC BC AC ∴+-⨯=②,把①代入②中得212850AB AB --=,(17)(5)0AB AB ∴-+=,17AB ∴=(负值舍去),∴大正方形的面积为289.故答案为:289.18.(4分)如图,OMN ∆是边长为10的等边三角形,反比例函数(0)k y x x=>的图象与边MN 、OM 分别交于点A 、B (点B 不与点M 重合).若AB OM ⊥于点B ,则k 的值为【分析】过点B 作BC x ⊥轴于点C ,过点A 作AD x ⊥轴于点D ,设OC b =,通过解直角三角形和等边三角形的性质用b 表示出A 、B 两点的坐标,进而代入反比例函数的解析式列出b 的方程求得b ,便可求得k 的值.【解答】解:过点B 作BC x ⊥轴于点C ,过点A 作AD x ⊥轴于点D ,如图,OMN ∆ 是边长为10的等边三角形,10OM ON MN ∴===,60MON M MNO ∠=∠=∠=︒,设OC b =,则BC =,2OB b =,102BM OM OB b ∴=-=-,()B b ,60M ∠=︒ ,AB OM ⊥,2202AM BM b ∴==-,10(202)210AN MN AM b b ∴=-=--=-,60AND ∠=︒ ,152DN AN b ∴==-,32AD AN ==-,15OD ON DN b ∴=-=-,(15A b ∴--,A 、B 两点都在反比例函数数(0)k y x x=>的图象上,(15k b b ∴=--=⋅,解得3b =或5,当5b =时,210OB b ==,此时B 与M 重合,不符题意,舍去,3b ∴=,k b ∴==故答案为:三、解答题:本大题共7个小题,共78分.解答应写出文字说明、证明过程或演算步骤.19.(10分)计算:(14sin 30|2|-︒+;(2)21(1)11a a a -÷+-.【分析】(1)先计算二次根式、特殊角的三角函数值和绝对值,再计算乘法,最后计算加减;(2)先计算括号里面的,再变除法为乘法进行分式的乘法运算.【解答】解:(1)4sin 30|2|-︒+1422=-⨯+22=-+-=;(2)21(1)11a a a -÷+-11()11a a a +=-++.(1)(1)a a a +-⋅(1)(1)1a a a a a+-=⋅+1a =-.20.(10分)已知:如图,点A 、D 、C 、F 在同一直线上,//AB DE ,B E ∠=∠,BC EF =.求证:AD CF =.【分析】利用平行线的性质和全等三角形的判定与性质解答即可.【解答】证明://AB DE ,A EDF ∴∠=∠.在ABC ∆和DEF ∆中,A EDFB E BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABC DEF AAS ∴∆≅∆.AC DF ∴=,AC DC DF DC ∴-=-,即:AD CF =.21.(10分)在4月23日世界读书日来临之际,为了解某校九年级(1)班同学们的阅读爱好,要求所有同学从4类书籍中(A :文学类;B :科幻类;C :军事类;:D 其他类),选择一类自己最喜欢的书籍进行统计.根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息回答问题:(1)求九年级(1)班的人数并补全条形统计图;(2)在扇形统计图中,求m 的值;(3)如果选择C 类书籍的同学中有2名女同学,其余为男同学,现要在选择C 类书籍的同学中选取两名同学去参加读书交流活动,请你用画树状图或列表的方法求出恰好是一男一女同学去参加读书交流活动的概率.【分析】(1)根据选择A类书籍的同学的人数和百分比计算,求出九年级(1)班的人数,求出选择C类书籍的人数,补全条形统计图;(2)求出选择B类书籍的人数,求出m;(3)根据题意画出画树状图,求出恰好是一男一女同学去参加读书交流活动的概率.【解答】解:(1)九年级(1)班的人数为:1230%40÷=(人),选择C类书籍的人数为:40121684---=(人),补全条形统计图如图所示;(2)16%100%40%40m=⨯=,则40m=;(3) 选择C类书籍的同学共4人,有2名女同学,∴有2名男同学,画树状图如图所示:则P(一男一女)82 123 ==.22.(10分)宜宾东楼始建于唐代,重建于宜宾建城2200周年之际的2018年,新建成的东楼(如图1)成为长江首城会客厅、旅游休闲目的地、文化地标打卡地.某数学小组为测量东楼的高度,在梯步A处(如图2)测得楼顶D的仰角为45︒,沿坡比为7:24的斜坡AB前行25米到达平台B处,测得楼顶D的仰角为60︒,求东楼的高度DE.(结果精确到1米.参考数据: 1.7≈ 1.4)≈【分析】根据锐角三角函数和勾股定理,可以得到AF 和BF 的值,然后根据题目中的数据,可以计算出DE 的值.【解答】解:由已知可得,7tan 24BF BAF AF ∠==,25AB =米,60DBE ∠=︒,45DAC ∠=︒,90C ∠=︒,设7BF a =米,24AF a =米,222(7)(24)25a a ∴+=,解得1a =,24AF ∴=米,7BF =米,45DAC ∠=︒ ,90C ∠=︒,45DAC ADC ∴∠=∠=︒,AC DC ∴=,设DE x =米,则(7)DC x =+米,724(17)BE CF x x ==+-=-米,tan 17DE x DBE BE x ∠==- ,tan 6017x x ∴︒=-,解得40x ≈,答:东楼的高度DE 约为40米.23.(12分)如图,一次函数y ax b =+的图象与x 轴交于点(4,0)A ,与y 轴交于点B ,与反比例函数(0)k y x x=>的图象交于点C 、D .若tan 2BAO ∠=,3BC AC =.(1)求一次函数和反比例函数的表达式;(2)求OCD ∆的面积.【分析】(1)求出A ,B 两点坐标,代入直线的解析式求出a ,b ,再求出点C 的坐标,求出k 即可;(2)构建方程组求出点D 的坐标,再利用割补法求出三角形面积.【解答】解:(1)在Rt AOB ∆中,tan 2OB BAO OA∠==,(4,0)A ,4OA ∴=,8OB =,(0,8)B ∴,A ,B 两点在直线y ax b =+上,∴840b a b =⎧⎨+=⎩,∴28a b =-⎧⎨=⎩,∴直线AB 的解析式为28y x =-+,过点C 作CE OA ⊥于点E ,3BC AC = ,4AB AC ∴=,//CE OB ∴,∴14CE AC OB AB ==,2CE ∴=,(3,2)C ∴,326k ∴=⨯=,∴反比例函数的解析式为6y x=;(2)由286y x y x =-+⎧⎪⎨=⎪⎩,解得16x y =⎧⎨=⎩或23x y =⎧⎨=⎩,(1,6)D ∴,过点D 作DF y ⊥轴于点F ,OCD AOB BOD COAS S S S ∆∆∆∆∴=--111222OA OB OB DF OA CE =⋅⋅-⋅⋅-⋅⋅111488142222=⨯⨯-⨯⨯-⨯⨯8=24.(12分)如图,点C 是以AB 为直径的O 上一点,点D 是AB 的延长线上一点,在OA 上取一点F ,过点F 作AB 的垂线交AC 于点G ,交DC 的延长线于点E ,且EG EC =.(1)求证:DE 是O 的切线;(2)若点F 是OA 的中点,4BD =,1sin 3D ∠=,求EC的长.【分析】(1)要证明DE 是O 的切线,只要证明OC CD ⊥即可,根据题目中的条件和等腰三角形的性质、直角三角形的性质,可以得到90OCD ∠=︒,从而可以证明结论成立;(2)根据相似三角形的判定与性质和题目中的数据,可以求得DE 和CD 的长,从而可以得到EC 的长.【解答】(1)证明:连接OC ,如图所示,EF AB ⊥ ,AB 为O 的切线,90GFA ∴∠=︒,90ACB ∠=︒,90A AGF ∴∠+∠=︒,90A ABC ∠+∠=︒,AGF ABC ∴∠=∠,EG EC = ,OC OB =,EGC ECG ∴∠=∠,ABC BCO ∠=∠,又AGF EGC ∠=∠ ,ECG BCO ∴∠=∠,90BCO ACO ∠+∠=︒ ,90ECG ACO ∴∠+∠=︒,90ECO ∴∠=︒,DE ∴是O 的切线;(2)解:由(1)知,DE 是O 的切线,90OCD ∴∠=︒,4BD = ,1sin 3D ∠=,OC OB =,∴13OC OB BD =+,即143OC OC =+,解得2OC =,6OD ∴=,DC ∴=点E 为OA 的中点,OA OC =,1OF ∴=,7DF ∴=,EFD OCD ∠=∠ ,EDF ODC ∠=∠,EFD OCD ∴∆∆∽,∴DF DE DC DO=,6DE =,解得2124DE =,44EC ED DC ∴=-=-,即EC 的长是.25.(14分)如图,抛物线2y ax bx c =++与x 轴交于(3,0)A 、(1,0)B -两点,与y 轴交于点(0,3)C ,其顶点为点D ,连结AC .(1)求这条抛物线所对应的二次函数的表达式及顶点D 的坐标;(2)在抛物线的对称轴上取一点E ,点F 为抛物线上一动点,使得以点A 、C 、E 、F 为顶点、AC 为边的四边形为平行四边形,求点F 的坐标;(3)在(2)的条件下,将点D 向下平移5个单位得到点M ,点P 为抛物线的对称轴上一动点,求35PF PM +的最小值.【分析】(1)利用待定系数法,把问题转化为解方程组即可;(2)过点F 作FG DE ⊥于点G ,证明()OAC GFE AAS ∆≅∆,推出3OA FG ==,设2(,23)F m m m -++,则2(1,23)G m m -++,可得|1|3FG m =-=,推出2m =-或4m =,即可解决问题;(3)由题意,(1,1)M -,1(4,5)F -,2(2,5)F --关于对称轴直线1x =对称,连接12F F 交对称轴于点H ,连接1F M ,2F M ,过点2F 作21F N F M ⊥于点N ,交对称轴于点P ,连接1PF .则4MH =,13HF =,15MF =,证明35PN PM =,由21PF PF =,推出1235PF PM PF PN FN +=+=为最小值.【解答】解:(1) 抛物线2y ax bx c =++经过(3,0)A 、(1,0)B -,(0,3)C ,∴93003a b c a b c c ++=⎧⎪-+=⎨⎪=⎩,解得123a b c =-⎧⎪=⎨⎪=⎩,∴抛物线的解析式为223y x x =-++,2(1)4y x =--+ ,∴顶点D 的坐标为(1,4);(2)设直线AC 是解析式为y kx b =+,把(3,0)A ,(0,3)C 代入,得303k b b +=⎧⎨=⎩,∴13k b =-⎧⎨=⎩,∴直线AC 的解析式为3y x =-+,过点F 作FG DE ⊥于点G , 以A ,C ,E ,F 为顶点的四边形是以AC 为边的平行四边形,AC EF ∴=,//AC EF ,//OA FG ,OAC GFE ∴∠=∠,()OAC GFE AAS ∴∆≅∆,3OA FG ∴==,设2(,23)F m m m -++,则2(1,23)G m m -++,|1|3FG m ∴=-=,2m ∴=-或4m =,当2m =-时,2235m m -++=-,1(2,5)F ∴--,当m =时,2235m m -++=-,2(4,5)F ∴-综上所述,满足条件点F 的坐标为(2,5)--或(4,5)-;(3)由题意,(1,1)M -,1(4,5)F -,2(2,5)F --关于对称轴直线1x =对称,连接12F F 交对称轴于点H ,连接1F M ,2F M ,过点2F 作21F N F M ⊥于点N ,交对称轴于点P ,连接1PF .则4MH =,13HF =,15MF =,在1Rt MHF ∆中,1113sin 5F H HMF MF ∠==,则在RtMPN 中,3sin 5PN PMN PM ∠==,35PN PM ∴=,21PF PF = ,1235PF PM PF PN FN ∴+=+=为最小值, 1221164522MF F S F N =⨯⨯=⨯⨯ ,2245F N ∴=,35PF PM ∴+的最小值为245.第21页,共21页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年四川省宜宾市中考数学试卷一、选择题(每小题3分,共24分)1.﹣5的绝对值是()A.B.5 C.﹣D.﹣52.科学家在实验中检测出某微生物约为0.0000035米,将0.0000035用科学记数法表示为()A.3.5×10﹣6B.3.5×106C.3.5×10﹣5D.35×10﹣53.如图,立体图形的俯视图是()A.B.C.D.4.半径为6,圆心角为120°的扇形的面积是()A.3π B.6π C.9π D.12π5.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A.B.2C.3 D.26.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8 B.5 C.6 D.7.27.宜宾市某化工厂,现有A种原料52千克,B种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,则生产方案的种数为()A.4 B.5 C.6 D.78.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度二、填空题(每小题3分,共24分)9.分解因式:ab4﹣4ab3+4ab2=.10.如图,直线a∥b,∠1=45°,∠2=30°,则∠P=°.11.已知一组数据:3,3,4,7,8,则它的方差为.12.今年“五一”节,A、B两人到商场购物,A购3件甲商品和2件乙商品共支付16元,B购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组.13.在平面直角坐标系内,以点P(1,1)为圆心、为半径作圆,则该圆与y轴的交点坐标是.14.已知一元二次方程x2+3x﹣4=0的两根为x1、x2,则x12+x1x2+x22=.15.规定:log a b(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:log n a n=n.log N M=(a>0,a≠1,N>0,N≠1,M>0).例如:log223=3,log25=,则log1001000=.16.如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C 两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有(写出所有正确结论的序号)①△CMP∽△BPA;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为2;⑤当△ABP≌△ADN时,BP=4﹣4.三、解答题(本大题共8小题,共72分)17.(1)计算;()﹣2﹣(﹣1)2016﹣+(π﹣1)0(2)化简:÷(1﹣)18.如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.19.某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:(1)a=,b=;(2)该校八年级学生共有600人,则该年级参加足球活动的人数约人;(3)该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.20.2016年“母亲节”前夕,宜宾某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?21.如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角β=60°,求树高AB(结果保留根号)22.如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于A(2,﹣1),B(,n)两点,直线y=2与y轴交于点C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积.23.如图1,在△APE中,∠PAE=90°,PO是△APE的角平分线,以O为圆心,OA为半径作圆交AE于点G.(1)求证:直线PE是⊙O的切线;(2)在图2中,设PE与⊙O相切于点H,连结AH,点D是⊙O的劣弧上一点,过点D作⊙O的切线,交PA于点B,交PE于点C,已知△PBC的周长为4,tan∠EAH=,求EH的长.24.如图,已知二次函数y1=ax2+bx过(﹣2,4),(﹣4,4)两点.(1)求二次函数y1的解析式;(2)将y1沿x轴翻折,再向右平移2个单位,得到抛物线y2,直线y=m(m >0)交y2于M、N两点,求线段MN的长度(用含m的代数式表示);(3)在(2)的条件下,y1、y2交于A、B两点,如果直线y=m与y1、y2的图象形成的封闭曲线交于C、D两点(C在左侧),直线y=﹣m与y1、y2的图象形成的封闭曲线交于E、F两点(E在左侧),求证:四边形CEFD是平行四边形.2016年四川省宜宾市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.﹣5的绝对值是()A.B.5 C.﹣D.﹣5【考点】绝对值.【分析】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:根据负数的绝对值是它的相反数,得|﹣5|=5.故选:B.2.科学家在实验中检测出某微生物约为0.0000035米,将0.0000035用科学记数法表示为()A.3.5×10﹣6B.3.5×106C.3.5×10﹣5D.35×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000035=3.5×10﹣6,故选:A.3.如图,立体图形的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据几何体的三视图,即可解答.【解答】解:立体图形的俯视图是C.故选:C.4.半径为6,圆心角为120°的扇形的面积是()A.3π B.6π C.9π D.12π【考点】扇形面积的计算.【分析】根据扇形的面积公式S=计算即可.【解答】解:S==12π,故选:D.5.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A.B.2C.3 D.2【考点】旋转的性质.【分析】通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用勾股定理求出B、D两点间的距离.【解答】解:∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD==.故选:A.6.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8 B.5 C.6 D.7.2【考点】矩形的性质.【分析】首先连接OP,由矩形的两条边AB、BC的长分别为3和4,可求得OA=OD=5,△AOD的面积,然后由S△AOD=S△AOP+S△DOP=OA•PE+OD•PF求得答案.【解答】解:连接OP,∵矩形的两条边AB、BC的长分别为6和8,=AB•BC=48,OA=OC,OB=OD,AC=BD=10,∴S矩形AB C D∴OA=OD=5,=24,∴S△AC D=S矩形AB C D∴S△AOD=S△AC D=12,∵S△AOD=S△AOP+S△D OP=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,解得:PE+PF=4.8.故选:A.7.宜宾市某化工厂,现有A种原料52千克,B种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,则生产方案的种数为()A.4 B.5 C.6 D.7【考点】二元一次方程组的应用.【分析】设生产甲产品x件,则乙产品(20﹣x)件,根据生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,列出不等式组,求出不等式组的解,再根据x为整数,得出有5种生产方案.【解答】解:设生产甲产品x件,则乙产品(20﹣x)件,根据题意得:,解得:8≤x≤12,∵x为整数,∴x=8,9,10,11,12,∴有5种生产方案:方案1,A产品8件,B产品12件;方案2,A产品9件,B产品11件;方案3,A产品10件,B产品10件;方案4,A产品11件,B产品9件;方案5,A产品12件,B产品8件;故选B.8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度【考点】函数的图象.【分析】根据函数图象和速度、时间、路程之间的关系,分别对每一项进行分析即可得出答案.【解答】解:A、根据图象可得,乙前4秒行驶的路程为12×4=48米,正确;B、根据图象得:在0到8秒内甲的速度每秒增加4米秒/,正确;C、根据图象可得两车到第3秒时行驶的路程不相等,故本选项错误;D、在4至8秒内甲的速度都大于乙的速度,正确;故选C.二、填空题(每小题3分,共24分)9.分解因式:ab4﹣4ab3+4ab2=ab2(b﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.【解答】解:ab4﹣4ab3+4ab2=ab2(b2﹣4b+4)=ab2(b﹣2)2.故答案为:ab2(b﹣2)2.10.如图,直线a∥b,∠1=45°,∠2=30°,则∠P=75°.【考点】平行线的性质.【分析】过P作PM∥直线a,求出直线a∥b∥PM,根据平行线的性质得出∠EPM=∠2=30°,∠FPM=∠1=45°,即可求出答案.【解答】解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠1=45°,∠2=30°,∴∠EPM=∠2=30°,∠FPM=∠1=45°,∴∠EPF=∠EPM+∠FPM=30°+45°=75°,故答案为:75.11.已知一组数据:3,3,4,7,8,则它的方差为 4.4.【考点】方差.【分析】根据平均数的计算公式先算出这组数据的平均数,再根据方差公式进行计算即可.【解答】解:这组数据的平均数是:(3+3+4+7+8)÷5=5,则这组数据的方差为:[(3﹣5)2+(3﹣5)2+(4﹣5)2+(7﹣5)2+(8﹣5)2]=4.4.故答案为:4.4.12.今年“五一”节,A、B两人到商场购物,A购3件甲商品和2件乙商品共支付16元,B购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组.【考点】由实际问题抽象出二元一次方程组.【分析】分别利用“A购3件甲商品和2件乙商品共支付16元,B购5件甲商品和3件乙商品共支付25元”得出等式求出答案.【解答】解:设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组:.故答案为:.13.在平面直角坐标系内,以点P(1,1)为圆心、为半径作圆,则该圆与y轴的交点坐标是(0,3),(0,﹣1).【考点】坐标与图形性质.【分析】在平面直角坐标系中,根据勾股定理先求出直角三角形的另外一个直角边,再根据点P的坐标即可得出答案.【解答】解:以(1,1)为圆心,为半径画圆,与y轴相交,构成直角三角形,用勾股定理计算得另一直角边的长为2,则与y轴交点坐标为(0,3)或(0,﹣1).故答案为:(0,3),(0,﹣1).14.已知一元二次方程x2+3x﹣4=0的两根为x1、x2,则x12+x1x2+x22=13.【考点】根与系数的关系.【分析】根据根与系数的关系得到x1+x2=﹣3,x1x2=﹣4,再利用完全平方公式变形得到x12+x1x2+x22=(x1+x2)2﹣x1x2,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=﹣3,x1x2=﹣4,所以x12+x1x2+x22=(x1+x2)2﹣x1x2=(﹣3)2﹣(﹣4)=13.故答案为13.15.规定:log a b(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:log n a n=n.log N M=(a>0,a≠1,N>0,N≠1,M>0).例如:log223=3,log25=,则log1001000=.【考点】实数的运算.【分析】先根据log N M=(a>0,a≠1,N>0,N≠1,M>0)将所求式子化成以10为底的对数形式,再利用公式进行计算.【解答】解:log1001000===.故答案为:.16.如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C 两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有①②⑤(写出所有正确结论的序号)①△CMP∽△BPA;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为2;⑤当△ABP≌△ADN时,BP=4﹣4.【考点】相似形综合题.【分析】①正确,只要证明∠APM=90°即可解决问题.②正确,设PB=x,构建二次函数,利用二次函数性质解决问题即可.③错误,设ND=NE=y,在RT△PCN中,利用勾股定理求出y即可解决问题.④错误,作MG⊥AB于G,因为AM==,所以AG最小时AM最小,构建二次函数,求得AG的最小值为3,AM的最小值为5.⑤正确,在AB上取一点K使得AK=PK,设PB=z,列出方程即可解决问题.【解答】解:∵∠APB=∠APE,∠MPC=∠MPN,∵∠CPN+∠NPB=180°,∴2∠NPM+2∠APE=180°,∴∠MPN+∠APE=90°,∴∠APM=90°,∵∠CPM+∠APB=90°,∠APB+∠PAB=90°,∴∠CPM=∠PAB,∵四边形ABCD是正方形,∴AB=CB=DC=AD=4,∠C=∠B=90°,∴△CMP∽△BPA.故①正确,设PB=x,则CP=4﹣x,∵△CMP∽△BPA,∴=,∴CM=x(4﹣x),=[4+x(4﹣x)]×4=﹣x2+2x+8=﹣(x﹣2)2+10,∴S四边形AM C B∴x=2时,四边形AMCB面积最大值为10,故②正确,当PB=PC=PE=2时,设ND=NE=y,在RT△PCN中,(y+2)2=(4﹣y)2+22解得y=,∴NE≠EP,故③错误,作MG⊥AB于G,∵AM==,∴AG最小时AM最小,∵AG=AB﹣BG=AB﹣CM=4﹣x(4﹣x)=(x﹣1)2+3,∴x=1时,AG最小值=3,∴AM的最小值==5,故④错误.∵△ABP≌△ADN时,∴∠PAB=∠DAN=22.5°,在AB上取一点K使得AK=PK,设PB=z,∴∠KPA=∠KAP=22.5°∵∠PKB=∠KPA+∠KAP=45°,∴∠BPK=∠BKP=45°,∴PB=BK=z,AK=PK=z,∴z+z=4,∴z=4﹣4,∴PB=4﹣4故⑤正确.故答案为①②⑤.三、解答题(本大题共8小题,共72分)17.(1)计算;()﹣2﹣(﹣1)2016﹣+(π﹣1)0(2)化简:÷(1﹣)【考点】实数的运算;分式的混合运算;零指数幂;负整数指数幂.【分析】(1)原式利用零指数幂、负整数指数幂法则,乘方的意义,以及算术平方根定义计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=9﹣1﹣5+1=4;(2)原式=÷=•=.18.如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.【考点】全等三角形的判定与性质.【分析】先根据题意得出∠DAB=∠CBA,再由ASA定理可得出△ADB≌△BCA,由此可得出结论.【解答】解:∵∠CAB=∠DBA,∠CBD=∠DAC,∴∠DAB=∠CBA.在△ADB与△BCA中,,∴△ADB≌△BCA(ASA),∴BC=AD.19.某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:(1)a=16,b=17.5;(2)该校八年级学生共有600人,则该年级参加足球活动的人数约90人;(3)该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.【考点】列表法与树状图法;用样本估计总体;扇形统计图.【分析】(1)首先求得总人数,然后根据百分比的定义求解;(2)利用总数乘以对应的百分比即可求解;(3)利用列举法,根据概率公式即可求解.【解答】解:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案为:16,17.5;(2)600×[6÷(5÷12.5%)]=90(人),故答案为:90;(3)如图,∵共有20种等可能的结果,两名主持人恰为一男一女的有12种情况,∴则P(恰好选到一男一女)==.20.2016年“母亲节”前夕,宜宾某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?【考点】分式方程的应用.【分析】设第一批花每束的进价是x元/束,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×1.5可得方程.【解答】解:设第一批花每束的进价是x元/束,依题意得:×1.5=,解得x=20.经检验x=20是原方程的解,且符合题意.答:第一批花每束的进价是20元/束.21.如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角β=60°,求树高AB(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】作CF⊥AB于点F,设AF=x米,在直角△ACF中利用三角函数用x 表示出CF的长,在直角△ABE中表示出BE的长,然后根据CF﹣BE=DE即可列方程求得x的值,进而求得AB的长.【解答】解:作CF⊥AB于点F,设AF=x米,在Rt△ACF中,tan∠ACF=,则CF====x,在直角△ABE中,AB=x+BF=4+x(米),在直角△ABF中,tan∠AEB=,则BE===(x+4)米.∵CF﹣BE=DE,即x﹣(x+4)=3.解得:x=,则AB=+4=(米).答:树高AB是米.22.如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于A(2,﹣1),B(,n)两点,直线y=2与y轴交于点C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)把A坐标代入反比例解析式求出m的值,确定出反比例解析式,再将B坐标代入求出n的值,确定出B坐标,将A与B坐标代入一次函数解析式求出k与b的值,即可确定出一次函数解析式;(2)利用两点间的距离公式求出AB的长,利用点到直线的距离公式求出点C到直线AB的距离,即可确定出三角形ABC面积.【解答】解:(1)把A(2,﹣1)代入反比例解析式得:﹣1=,即m=﹣2,∴反比例解析式为y=﹣,把B(,n)代入反比例解析式得:n=﹣4,即B(,﹣4),把A与B坐标代入y=kx+b中得:,解得:k=2,b=﹣5,则一次函数解析式为y=2x﹣5;(2)∵A(2,﹣1),B(,﹣4),直线AB解析式为y=2x﹣5,∴AB==,原点(0,0)到直线y=2x﹣5的距离d==,则S△AB C=AB•d=.23.如图1,在△APE中,∠PAE=90°,PO是△APE的角平分线,以O为圆心,OA为半径作圆交AE于点G.(1)求证:直线PE是⊙O的切线;(2)在图2中,设PE与⊙O相切于点H,连结AH,点D是⊙O的劣弧上一点,过点D作⊙O的切线,交PA于点B,交PE于点C,已知△PBC的周长为4,tan∠EAH=,求EH的长.【考点】切线的判定与性质.【分析】(1)作OH⊥PE,由PO是∠APE的角平分线,得到∠APO=∠EPO,判断出△PAO≌△PHO,得到OH=OA,用“圆心到直线的距离等于半径”来得出直线PE是⊙O的切线;(2)先利用切线的性质和△PBC的周长为4求出PA=2,再用三角函数求出OA,AG,然后用三角形相似,得到EH=2EG,AE=2EH,用勾股定理求出EG,最后用切割线定理即可.【解答】证明:(1)如图1,作OH⊥PE,∴∠OHP=90°,∵∠PAE=90,∴∠OHP=∠OAP,∵PO是∠APE的角平分线,∴∠APO=∠EPO,在△PAO和△PHO中,∴△PAO≌△PHO,∴OH=OA,∵OA是⊙O的半径,∴OH是⊙O的半径,∵OH⊥PE,∴直线PE是⊙O的切线.(2)如图2,连接GH,∵BC,PA,PB是⊙O的切线,∴DB=DA,DC=CH,∵△PBC的周长为4,∴PB+PC+BC=4,∴PB+PC+DB+DC=4,∴PB+AB+PC+CH=4,∴PA+PH=4,∵PA,PH是⊙O的切线,∴PA=PH,∴PA=2,由(1)得,△PAO≌△PHO,∴∠OFA=90°,∴∠EAH+∠AOP=90°,∵∠OAP=90°,∴∠AOP+∠APO=90°,∴∠APO=∠EAH,∵tan∠EAH=,∴tan∠APO==,∴OA=PA=1,∴AG=2,∵∠AHG=90°,∵tan∠EAH==,∵△EGH∽△EHA,∴===,∴EH=2EG,AE=2EH,∴AE=4EG,∵AE=EG+AG,∴EG+AG=4EG,∴EG=AG=,∵EH是⊙O的切线,EGA是⊙O的割线,∴EH2=EG×EA=EG×(EG+AG)=×(+2)=,∴EH=.24.如图,已知二次函数y1=ax2+bx过(﹣2,4),(﹣4,4)两点.(1)求二次函数y1的解析式;(2)将y1沿x轴翻折,再向右平移2个单位,得到抛物线y2,直线y=m(m >0)交y2于M、N两点,求线段MN的长度(用含m的代数式表示);(3)在(2)的条件下,y1、y2交于A、B两点,如果直线y=m与y1、y2的图象形成的封闭曲线交于C、D两点(C在左侧),直线y=﹣m与y1、y2的图象形成的封闭曲线交于E、F两点(E在左侧),求证:四边形CEFD是平行四边形.【考点】二次函数综合题.【分析】(1)根据待定系数法即可解决问题.(2)先求出抛物线y2的顶点坐标,再求出其解析式,利用方程组以及根与系数关系即可求出MN.(3)用类似(2)的方法,分别求出CD、EF即可解决问题.【解答】解:(1)∵二次函数y1=ax2+bx过(﹣2,4),(﹣4,4)两点,∴解得,∴二次函数y1的解析式y1=﹣x2﹣3x.(2)∵y1=﹣(x+3)2+,∴顶点坐标(﹣3,),∵将y1沿x轴翻折,再向右平移2个单位,得到抛物线y2,∴抛物线y2的顶点坐标(﹣1,﹣),∴抛物线y2为y=(x+1)2﹣,由消去y整理得到x2+2x﹣8﹣2m=0,设x1,x2是它的两个根,则MN=|x1﹣x2|==,(3)由消去y整理得到x2+6x+2m=0,设两个根为x1,x2,则CD=|x1﹣x2|==,由消去y得到x2+2x﹣8+2m=0,设两个根为x1,x2,则EF=|x1﹣x2|==,∴EF=CD,EF∥CD,∴四边形CEFD是平行四边形.。