最新上海高中数学三角函数大题压轴题练习

合集下载

上海高考数学函数压轴题解析详解

上海高考数学函数压轴题解析详解
代入③,得

化简得 .
当 时,上式恒成立.
因此,在 轴上存在定点 ,使 .(12分)
9.(本小题满分14分)
已知数列 各项均不为0,其前 项和为 ,且对任意 都有 ( 为大于1的常数),记 .
(1)求 ;
(2)试比较 与 的大小( );
(3)求证: ,( ).
解:(1)∵ ,①
∴ .②
②-①,得

即 .(3分)
∴ .(当且仅当 时取等号).
综上所述, ,( ).(14分)
在①中令 ,可得 .
∴ 是首项为 ,公比为 的等比数列, .(4分)
(2)由(1)可得 .

∴ ,(5分)

而 ,且 ,
∴ , .
∴ ,( ).(8分)
(3)由(2)知 , ,( ).
∴当 时, .

,(10分)
(当且仅当 时取等号).
另一方面,当 , 时,

∵ ,∴ .
∴ ,(当且仅当 时取等号).(13分)
又MN⊥MQ, 所以
直线QN的方程为 ,又直线PT的方程为 ……10分
从而得 所以
代入(1)可得 此即为所求的轨迹方程.………………13分
6.(本小题满分12分)
过抛物线 上不同两点A、B分别作抛物线的切线相交于P点,
(1)求点P的轨迹方程;
(2)已知点F(0,1),是否存在实数 使得 若存在,求出 的值,若不存在,请说明理由.
40若u[0,1],v[–1,0],同理可证满足题设条件.
综合上述得g(x)满足条件.
3. (本小题满分14分)
已知点P( t , y )在函数f ( x ) = (x –1)的图象上,且有t2– c2at + 4c2= 0 ( c 0 ).

完整)上海高中数学三角函数大题压轴题练习

完整)上海高中数学三角函数大题压轴题练习

完整)上海高中数学三角函数大题压轴题练习三角函数大题压轴题练1.已知函数$f(x)=\cos(2x-\frac{\pi}{3})+2\sin(x-\frac{\pi}{4})\sin(x+\frac{\pi}{4})$。

Ⅰ)求函数$f(x)$的最小正周期和图象的对称轴方程。

解:(1)$f(x)=\cos(2x-\frac{\pi}{3})+2\sin(x-\frac{\pi}{4})\sin(x+\frac{\pi}{4})$frac{1}{3}\cos(2x-\frac{\pi}{3})+\frac{4}{3}\sin x\cos x$frac{1}{3}(\cos^2x-\sin^2x-\frac{1}{2})+\frac{4}{3}\sin x\cos x$frac{1}{6}(3\cos2x-1)+\frac{4}{3}\sin x\cos x$frac{1}{6}(3\cos2x+2\sin x\cos x-\frac{2}{3})$frac{1}{6}(3\cos2x+\sin(2x-\frac{\pi}{3})-\frac{2}{3})$frac{1}{6}(3\cos2x+\sin2x\cos\frac{\pi}{3}-\cos2x\sin\frac{\pi}{3}-\frac{2}{3})$frac{1}{6}(2\cos2x+\sqrt{3}\sin2x-\frac{2}{3})$frac{1}{3}(\cos2x+\frac{\sqrt{3}}{2}\sin2x)-\frac{1}{3}$frac{2}{3}\sin(2x+\frac{\pi}{3})-\frac{1}{3}$所以,函数$f(x)$的最小正周期为$\pi$,图象的对称轴方程为$x=k\pi+\frac{\pi}{3}$($k\in Z$)。

2)在区间$[-\frac{5\pi}{6},\frac{\pi}{2}]$上,$f(x)$单调递增,而在区间$[\frac{\pi}{2},\frac{7\pi}{6}]$上单调递减。

沪教版数学高一第二学期三角部分(三角比、三角函数)练习题卷(二)

沪教版数学高一第二学期三角部分(三角比、三角函数)练习题卷(二)

高一第二学期三角部分练习卷(二)一.填空题(本大题每题5分,共40分)1. 半径为1的圆上长度为2的弧所对的圆心角的弧度是____________.2. 设角α的终边过点()3,4P -,则()()()()cos 5tan 3sin cot 2απαππαπα--=+-_________.3. 若3cos 5α=,且0,2απ⎛⎫∈ ⎪⎝⎭,则cot 2α=________. 4. 函数cos 12y x π⎛⎫=- ⎪⎝⎭的单调递增区间为_______________.5. 已知1cos ,03x x π=-<<,则角x 的值为___________. 6. 给出下列命题:○1 sin y x =在第一象限是增函数;○2 α是锐角,则sin 4y πα⎛⎫=+ ⎪⎝⎭的值域是[]1,1-; ○3 22sin cos y x x =-的最小值是1-;○4 方程2cos xx =只有1个实数根. 其中正确命题的序号是______________.7. 把sin 24y x π⎛⎫=+ ⎪⎝⎭的图像向左平移8π个单位,再把所得图像上各点的横坐标压缩成原来的12,所得图像的函数解析式为()f x ,则()f x 的奇偶性为______________. 8. 如图,一艘轮船在海中A 处遇难,当时航向为北偏东30°,航速为每小时60海里,后因故于某未知地点B 改向朝正东方向行驶,航速不变,直至在另一未知地点C 失去联系,从A 至C 共行驶了半个小时,则A 、C 两地距离的最小值是__________海里.二.解答题(本大题共60分)本大题共5题,解答下列各题必须写出必要的步骤. 9. (本题满分10分)在等腰直角三角形ABC 中,∠C = 90°,点D 、 E 分别是BC 的三等分点. (1) 求tan α、()tan αβ+的值; (2) 求tan β、tan γ的值.10. (本题满分10分)(1) 已知,34x ππ⎡⎤∈-⎢⎥⎣⎦,求tan x 的取值范围;(2) 在(1)的条件下,求函数212tan 1cos y x x=++的最小值及相应的x 的值.11. (本题满分12分)在△ABC 中,已知22sin cos 212A BC ++=,外接圆半径2R =. (1) 求角C 的大小; (2) 若角6A π=,求△ABC 的面积.12. (本题满分14分)若函数()()sin cos 0f x A x B x ωωω=+>的最小正周期为2,并当13x =时,()f x 取得最大值2. (1) 求函数()f x 的表达式;(2) 在闭区间2123,44⎡⎤⎢⎥⎣⎦上是否存在()f x 的对称轴?如果存在,求出其对称轴方程;若不存在,说明理由.13. (本题满分14分)已知函数4sin cos ,2sin 2c 0,2os 1x x y x x x π⎛⎫∈ ⎪⎝++⎭=,(1) 令sin cos t x x =+,可将已知三角函数关系()y f x =转换成代数函数关系()y g t =,试写出函数()y g t =的表达式及定义域;(2) 求函数()y f x =的最大值;(3) 函数()y f x =在区间0,2π⎛⎫⎪⎝⎭内是单调函数吗?请说明理由.参考答案:一.填空题(本大题每题5分,共40分)1. 半径为1的圆上长度为2的弧所对的圆心角的弧度是____________. 22. 设角α的终边过点()3,4P -,则()()()()cos 5tan 3sin cot 2απαππαπα--=+-_________.433. 若3cos 5α=,且0,2απ⎛⎫∈ ⎪⎝⎭,则cot 2α=________. 2 4. 函数cos 12y x π⎛⎫=- ⎪⎝⎭的单调递增区间为_______________.()112,21212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z 5. 已知1cos ,03x x π=-<<,则角x 的值为___________. 1arccos 3- 6. 给出下列命题:○1 sin y x =在第一象限是增函数;○2 α是锐角,则sin 4y πα⎛⎫=+ ⎪⎝⎭的值域是[]1,1-; ○3 22sin cos y x x =-的最小值是1-;○4 方程2cos xx =只有1个实数根. 其中正确命题的序号是______________. ○3○4 7. 把sin 24y x π⎛⎫=+ ⎪⎝⎭的图像向左平移8π个单位,再把所得图像上各点的横坐标压缩成原来的12,所得图像的函数解析式为()f x ,则()f x 的奇偶性为______________.偶函数 8. 如图,一艘轮船在海中A 处遇难,当时航向为北偏东30°,航速为每小时60海里,后因故于某未知地点B 改向朝正东方向行驶,航速不变,直至在另一未知地点C 失去联系,从A 至C 共行驶了半个小时,则A 、C 两地距离的最小值是__________海里. 153二.解答题(本大题共60分)本大题共5题,解答下列各题必须写出必要的步骤. 9. (本题满分10分)在等腰直角三角形ABC 中,∠C = 90°,点D 、 E 分别是BC 的三等分点. (1) 求tan α、()tan αβ+的值; (2) 求tan β、tan γ的值.10. (本题满分10分)(1) 已知,34x ππ⎡⎤∈-⎢⎥⎣⎦,求tan x 的取值范围;(2) 在(1)的条件下,求函数212tan 1cos y x x=++的最小值及相应的x 的值. 2tan 2tan 2,tan 3,1y x x x ⎡⎤=++∈-⎣⎦,当4x π=-时,min 1y = 11. (本题满分12分)在△ABC 中,已知22sin cos 212A BC ++=,外接圆半径2R =. (1) 求角C 的大小;3C π= (2) 若角6A π=,求△ABC 的面积. 23S = 12. (本题满分14分)若函数()()sin cos 0f x A x B x ωωω=+>的最小正周期为2,并当13x =时,()f x 取得最大值2. (1) 求函数()f x 的表达式;(2) 在闭区间2123,44⎡⎤⎢⎥⎣⎦上是否存在()f x 的对称轴?如果存在,求出其对称轴方程;若不存在,说明理由.13. (本题满分14分)已知函数4sin cos ,2sin 2c 0,2os 1x x y x x x π⎛⎫∈ ⎪⎝++⎭=,(1) 令sin cos t x x =+,可将已知三角函数关系()y f x =转换成代数函数关系()y g t =,试写出函数()y g t =的表达式及定义域;(2) 求函数()y f x =的最大值;(3) 函数()y f x =在区间0,2π⎛⎫⎪⎝⎭内是单调函数吗?请说明理由.。

高考数学压轴专题(易错题)备战高考《三角函数与解三角形》经典测试题附答案

高考数学压轴专题(易错题)备战高考《三角函数与解三角形》经典测试题附答案

【高中数学】数学《三角函数与解三角形》高考知识点(1)一、选择题1.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+若2sin sin sin B C A ⋅=,则ABC ∆的形状是()A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形【答案】C 【解析】 【分析】直接利用余弦定理的应用求出A 的值,进一步利用正弦定理得到:b =c ,最后判断出三角形的形状. 【详解】在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c , 且b 2+c 2=a 2+bc .则:2221222b c a bc cosA bc bc +-===,由于:0<A <π,故:A 3π=.由于:sin B sin C =sin 2A , 利用正弦定理得:bc =a 2, 所以:b 2+c 2﹣2bc =0, 故:b =c ,所以:△ABC 为等边三角形. 故选C . 【点睛】本题考查了正弦定理和余弦定理及三角形面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.2.已知函数()sin f x a x x =的一条对称轴为56x π=,函数()f x 在区间()12,x x 上具有单调性,且()()12f x f x =-,则下述四个结论:①实数a 的值为1;②()()1,x f x 和()()22,x f x 两点关于函数()f x 图象的一条对称轴对称; ③21x x -的最大值为π, ④12x x +的最小值为23π. 其中所有正确结论的编号是( )A .①②③B .①③④C .①④D .③④【答案】B 【解析】 【分析】 根据56x π=是函数()f x 的一条对称轴,确定函数()f x ,再根据函数()f x 在区间()12,x x 上具有单调性,得到21x x -的最大值为2Tπ=,然后由()()12f x f x =-,得到()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称求解验证.【详解】 ∵56x π=是函数()f x 的一条对称轴,∴()53f x f x π⎛⎫=-⎪⎝⎭, 令0x =,得()503f f π⎛⎫=⎪⎝⎭,即-1a =,①正确; ∴()sin 2sin 3π⎛⎫=-=- ⎪⎝⎭f x x x x .又因为函数()f x 在区间()12,x x 上具有单调性, ∴21x x -的最大值为2Tπ=,且()()12f x f x =-, ∴()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称,∴121233223x x x x k ππ⎛⎫⎛⎫-+- ⎪ ⎪+π⎝⎭⎝⎭=-=π,k Z ∈, ∴12223x x k ππ+=+,k Z ∈,当0k =时,12x x +取最小值23π,所以①③④正确,②错误. 故选:B 【点睛】本题主要考查三角函数的图象和性质,还考查了推理论证,运算求解的能力,属于中档题.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a ﹣c cos B )sin A =c cos A sin B ,则△ABC 的形状一定是( ) A .钝角三角形 B .直角三角形C .等腰三角形D .锐角三角形【答案】C 【解析】 【分析】根据题意,由(cos )sin cos sin a c B A c A B -=变形可得sin sin a A c C =,进而由正弦定理可得22a c =,即a c =,即可得答案. 【详解】根据题意,在ABC ∆中,(cos )sin cos sin a c B A c A B -=, 变形可得:sin cos sin cos sin (cos sin cos sin )sin()sin a A c B A c A B c B A A B c A B c C =+=+=+=,即有sin sin a A c C =,又由正弦定理可得22a c =,即a c =. 故选:C . 【点睛】本题主要考查三角形的形状判断,考查正弦定理的应用,意在考查学生对这些知识点的理解掌握水平,属于基础题.4.在ABC ∆中,角,,A B C 所对的边分别为,,a b c 满足,222b c a bc +-=,0AB BC ⋅>u ur u u r u u,2a =,则bc +的取值范围是( ) A .31,2⎛⎫ ⎪⎝⎭B.32⎫⎪⎪⎝⎭C .13,22⎛⎫⎪⎝⎭D .31,2⎛⎤ ⎥⎝⎦【答案】B 【解析】 【分析】利用余弦定理222cos 2b c a A bc+-=,可得3A π=,由|||cos()|0AB BC AB BC B π⋅=⋅->u u u u u u u u r u ur u r u r,可得B为钝角,由正弦定理可得sin sin(120)30)o o b c B B B ∴+=+-=+,结合B 的范围,可得解【详解】由余弦定理有:222cos 2b c a A bc+-=,又222b c a bc +-=故2221cos 222b c a bc A bc bc +-===又A 为三角形的内角,故3A π=又2a=sin sin sin(120)ob c c B C B ==- 又|||cos()|0AB BC AB BC B π⋅=⋅->u u u u u u u u r u ur u r u r故cos 0B B <∴为钝角3sin sin(120)sin 30)22o o b c B B B B B ∴+=+-=+=+(90,120)o o B ∈Q ,可得130(120150)sin(30)(,22o o o o B B +∈∴+∈,330))22o b c B ∴+=+∈ 故选:B 【点睛】本题考查了正弦定理、余弦定理和向量的综合应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题5.函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象的交点横坐标的和为( ) A .53π B .2πC .76π D .π【答案】B 【解析】 【分析】根据两个函数相等,求出所有交点的横坐标,然后求和即可. 【详解】令sin cos2x x =,有2sin 12sin x x =-,所以sin 1x =-或1sin 2x =.又[],2x ππ∈-,所以2x π=-或32x π=或6x π=或56x π=,所以函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象交点的横坐标的和3522266s πππππ=-+++=,故选B. 【点睛】本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.6.在ABC ∆中,若sin :sin :sin 2:3:4A B C =,则ABC ∆是( ) A .直角三角形 B .钝角三角形C .锐角三角形D .等腰直角三角形【答案】B 【解析】 【分析】由题意利用正弦定理,推出a ,b ,c 的关系,然后利用余弦定理求出cosC 的值,即可得解. 【详解】∵sinA :sinB :sinC=2:3:4∴由正弦定理可得:a :b :c=2:3:4, ∴不妨令a=2x ,b=3x ,c=4x ,∴由余弦定理:c 2=a 2+b 2﹣2abcosC ,所以cosC=2222a b cab+-=2224916223x x x x x +-⨯⨯=﹣14, ∵0<C <π, ∴C 为钝角. 故选B . 【点睛】本题是基础题,考查正弦定理,余弦定理的应用,考查计算能力,常考题型.7.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=()A .5-B .CD 【答案】B 【解析】 【分析】由辅助角公式可确定()max f x =sin 2cos θθ-=平方关系可构造出方程组求得结果. 【详解】()()sin 2cos f x x x x ϕ=-=+Q ,其中tan 2ϕ=- ()max f x ∴sin 2cos θθ-=又22sin cos 1θθ+= cos θ∴=【点睛】本题考查根据三角函数的最值求解三角函数值的问题,关键是能够确定三角函数的最值,从而得到关于所求三角函数值的方程,结合同角三角函数关系构造方程求得结果.8.△ABC 中,已知tanA =13,tanB =12,则∠C 等于( )A .30°B .45°C .60°D .135°【答案】D 【解析】 【分析】利用三角形内角和为180o ,可得:tan tan()tan(+)C A B A B π=--=-,利用两角和公式和已知条件,即可得解. 【详解】在△ABC 中,11tan tan 32tan tan()tan(+)=-1111tan tan 132A BC A B A B A B π++=--=-=-=---⋅,所以135C ?o .故选:D. 【点睛】本题考查了正切的两角和公式,考查了三角形内角和,考查了转化思想和计算能力,属于中档题.9.在△ABC 中,7b =,5c =,3B π∠=,则a 的值为 A .3 B .4C .7D .8【答案】D 【解析】 【分析】根据题中所给的条件两边一角,由余弦定理可得2222cos b a c ac B =+-,代入计算即可得到所求的值. 【详解】因为7,5,3b c B π==∠=,由余弦定理可得2222cos b a c ac B =+-,即214925252a a =+-⨯⨯,整理得25240a a --=, 解得8a =或5a =-(舍去),故选D. 【点睛】该题考查的是有关解三角形的问题,在解题的过程中,涉及到的知识点有余弦定理,解三角形所用的就是正弦定理和余弦定理,结合题中的条件,选择适当的方法求得结果.10.在∆ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .则“sin >sin A B ”是“a b >”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】由正弦定理得sin sin 22a b A B a b R R>⇔>⇔> ,所以“sin sin A B >”是“a b >”的充要条件,选C.11.函数y=ππππcos sin cos -sin 4444x x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图象是( ) A .B .C .D .【答案】B 【解析】 【分析】首先根据二倍角余弦公式化简得到函数的解析式,再由函数表达式得到函数的单调性和周期,进而得到选项. 【详解】根据两角和差公式展开得到: y=ππππcos sin cos -sin 4444x x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦22πππcos sin cos 2424x x x ⎛⎫⎛⎫⎛⎫+-+=+ ⎪ ⎪ ⎪⎝⎭⎝=⎝⎭⎭=-sin2x ,函数在0的右侧是单调递减的,且周期为π,故选B. 故答案选B . 【点睛】这个题目考查了三角函数的恒等变换,题型为已知函数表达式选择函数的图像,这种题目,一般是先根据函数的表达式得到函数的定义域,或者值域,进行排除;也可以根据函数的表达式判断函数的单调性,周期性等,之后结合选项选择.12.已知函数f (x )=sin 2x +sin 2(x 3π+),则f (x )的最小值为( ) A .12B .14C 3D .22【答案】A 【解析】 【分析】先通过降幂公式和辅助角法将函数转化为()11cos 223f x x π⎛⎫=-+ ⎪⎝⎭,再求最值. 【详解】已知函数f (x )=sin 2x +sin 2(x 3π+), =21cos 21cos 2322x x π⎛⎫-+⎪-⎝⎭+,=1cos 22111cos 222223x x x π⎛⎫⎛⎫--=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 因为[]cos 21,13x π⎛⎫+∈- ⎪⎝⎭, 所以f (x )的最小值为12. 故选:A 【点睛】本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题.13.在OAB ∆中,已知OB =u u u v 1AB u u u v=,45AOB ∠=︒,点P 满足(),OP OA OB λμλμ=+∈R u u u v u u u v u u u v ,其中λ,μ满足23λμ+=,则OP u u u v的最小值为( )ABCD【答案】A 【解析】 【分析】根据OB =u u u r,1AB =uu u r ,45AOB ∠=︒,由正弦定理可得OAB ∆为等腰直角三角形,进而求得点A 坐标.结合平面向量的数乘运算与坐标加法运算,用λ,μ表示出OP u u u r.再由23λμ+=,将OP u u u r 化为关于λ的二次表达式,由二次函数性质即可求得OP u u u r的最小值.【详解】在OAB ∆中,已知OB =u u u r,1AB =uu u r ,45AOB ∠=︒由正弦定理可得sin sin AB OBAOB OAB=∠∠u u u r u u u rsin 2OAB =∠,解得sin 1OAB ∠=即2OAB π∠=所以OAB ∆为等腰直角三角形以O 为原点,OB 所在直线为x 轴,以OB 的垂线为y 轴建立平面直角坐标系如下图所示:则点A 坐标为22⎝⎭所以2222OA ⎛= ⎝⎭u u u r ,)2,0OB =u u u r因为(),OP OA OB λμλμ=+∈R u u u r u u u r u u u r则)222,022OP λμ⎛ =+ ⎝⎭u u u r 222,22λμλ⎛⎫⎪ ⎪⎝⎭=则2222222OP λμλ⎛⎫=++⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u r2222λλμμ=++因为23λμ+=,则32μλ=- 代入上式可得()()22322232λλλλ+-+-218518λλ-=+299555λ⎛⎫=-+ ⎪⎝⎭所以当95λ=时, min 93555OP ==u u u r 故选:A 【点睛】本题考查了平面向量基本定理的应用,正弦定理判断三角形形状,平面向量的坐标运算,属于中档题.14.若函数tan 23y x k π⎛⎫=-+ ⎪⎝⎭,0,6x π⎛⎫∈ ⎪⎝⎭的图象都在x 轴上方,则实数k 的取值范围为( )A .)+∞ B .)+∞C .()+∞D .()【答案】A 【解析】 【分析】计算tan 203x π⎛⎫<-< ⎪⎝⎭,tan 23x k π⎛⎫->- ⎪⎝⎭恒成立,得到答案. 【详解】∵0,6x π⎛⎫∈ ⎪⎝⎭,∴2033x ππ-<-<,∴tan 203x π⎛⎫-< ⎪⎝⎭,函数tan 23y x k π⎛⎫=-+ ⎪⎝⎭,0,6x π⎛⎫∈ ⎪⎝⎭的图象都在x 轴上方, 即对任意的0,6x π⎛⎫∈ ⎪⎝⎭,都有tan 203x k π⎛⎫-+> ⎪⎝⎭,即tan 23x k π⎛⎫->- ⎪⎝⎭,∵tan 23x π⎛⎫-> ⎪⎝⎭k -≤,k ≥ 故选:A . 【点睛】本题考查了三角函数恒成立问题,转化为三角函数值域是解题的关键.15.函数()22sin 3cos 2f x x x =+-,2,36x ππ⎡⎤∈-⎢⎥⎣⎦的值域为( ) A .40,3⎡⎤⎢⎥⎣⎦B .41,3⎡⎤⎢⎥⎣⎦C .51,4⎡⎤⎢⎥⎣⎦D .50,4⎡⎤⎢⎥⎣⎦【答案】A 【解析】 【分析】化简得到()23sin 2sin 1f x x x =-++,设sin t x =,利用二次函数性质得到答案. 【详解】根据22sin cos 1x x +=,得()23sin 2sin 1f x x x =-++,2,36x ππ⎡⎤∈-⎢⎥⎣⎦, 令sin t x =,由2,36x ππ⎡⎤∈-⎢⎥⎣⎦,得1sin 1,2x ⎡⎤∈-⎢⎥⎣⎦, 故[]0,1t ∈,有2321y t t =-++,[]0,1t ∈,二次函数对称轴为13t =, 当13t =时,最大值43y =;当1t =时,最小值0y =,综上,函数()f x 的值域为40,3⎡⎤⎢⎥⎣⎦.故选:A . 【点睛】本题考查了三角函数值域,换元可以简化运算,是解题的关键.16.某船开始看见灯塔A 时,灯塔A 在船南偏东30o 方向,后来船沿南偏东60︒的方向航行45km 后,看见灯塔A 在船正西方向,则这时船与灯塔A 的距离是( ) A .152km B .30kmC .15kmD .153km【答案】D 【解析】 【分析】如图所示,设灯塔位于A 处,船开始的位置为B ,船行45km 后处于C ,根据题意求出BAC ∠与BAC ∠的大小,在三角形ABC 中,利用正弦定理算出AC 的长,可得该时刻船与灯塔的距离. 【详解】设灯塔位于A 处,船开始的位置为B ,船行45km 后处于C ,如图所示,可得60DBC ∠=︒,30ABD ∠=︒,45BC =30ABC ∴∠=︒,120BAC ∠=︒在三角形ABC 中,利用正弦定理可得:sin sin AC BCABC BAC=∠∠,可得sin 1153sin 23BC ABC AC km BAC ∠===∠ 故选D 【点睛】本题主要考查的是正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解决本题的关键,属于基础题.17.已知函数()3)(0f x x ωϕω=+>,)22ππ-<ϕ<,1(3A ,0)为()f x 图象的对称中心,B ,C 是该图象上相邻的最高点和最低点,若4BC =,则()f x 的单调递增区间是()A .2(23k -,42)3k +,k Z ∈ B .2(23k ππ-,42)3k ππ+,k Z ∈C .2(43k -,44)3k +,k Z ∈ D .2(43k ππ-,44)3k ππ+,k Z ∈【答案】C 【解析】 【分析】由三角函数图像的性质可求得:2πω=,6πϕ=-,即()sin()26f x x ππ=-,再令222262k x k ππππππ--+剟,求出函数的单调增区间即可.【详解】解:函数())(0f x x ωϕω=+>,)22ππ-<ϕ<, 因为1(3A ,0)为()f x 图象的对称中心,B ,C 是该图象上相邻的最高点和最低点,又4BC =,∴222()42T +=,即221216πω+=,求得2πω=.再根据123k πϕπ+=g ,k Z ∈,可得6πϕ=-,()3sin()26f x x ππ∴=-,令222262k x k ππππππ--+剟,求得244433k x k -+剟, 故()f x 的单调递增区间为2(43k -,44)3k +,k Z ∈, 故选:C . 【点睛】本题考查了三角函数图像的性质及单调性,属中档题.18.4cos2d cos sin xx x xπ=+⎰( )A .1)B 1C 1D .2【答案】C 【解析】 【分析】利用三角恒等变换中的倍角公式,对被积函数进行化简,再求积分. 【详解】因为22cos2cos sin cos sin cos sin cos sin x x xx x x x x x-==-++,∴4400cos 2d (cos sin )d (sin cos )14cos sin 0xx x x x x x x x πππ=-=+=+⎰⎰,故选C . 【点睛】本题考查三角恒等变换知与微积分基本定理的交汇.19.设函数()()sin f x x x x R =∈,则下列结论中错误的是( ) A .()f x 的一个周期为2π B .()f x 的最大值为2 C .()f x 在区间2,63ππ⎛⎫⎪⎝⎭上单调递减 D .3f x π⎛⎫+⎪⎝⎭的一个零点为6x π=【答案】D 【解析】 【分析】先利用两角和的正弦公式化简函数()f x ,再由奇偶性的定义判断A ;由三角函数的有界性判断B ;利用正弦函数的单调性判断C ;将6x π=代入 3f x π⎛⎫+ ⎪⎝⎭判断D .【详解】()sin f x x x = 23sin x π⎛⎫=+ ⎪⎝⎭,()f x 周期22,1T A ππ==正确; ()f x 的最大值为2,B 正确,25,,,63326x x πππππ⎛⎫⎛⎫∈∴+∈ ⎪⎪⎝⎭⎝⎭Q , ()f x ∴在2,63ππ⎛⎫⎪⎝⎭上递减,C 正确; 6x π=时,1032f x f ππ⎛⎫⎛⎫+==≠ ⎪ ⎪⎝⎭⎝⎭,6x π=不是3f x π⎛⎫+⎪⎝⎭的零点,D 不正确. 故选D. 【点睛】本题通过对多个命题真假的判断,综合考查两角和的正弦公式以及三角函数的单调性、三角函数的周期性、三角函数的最值与零点,意在考查对基础知识掌握的熟练程度,属于中档题.20.关于函数()()()sin tan cos tan f x x x =-有下述四个结论: ①()f x 是奇函数; ②()f x 在区间0,4π⎛⎫⎪⎝⎭单调递增; ③π是()f x 的周期; ④()f x 的最大值为2.其中所有正确结论的个数是( ) A .4 B .3C .2D .1【答案】C 【解析】 【分析】计算()()()sin tan cos tan f x x x -=--得到①错误,根据复合函数单调性判断法则判断②正确,()()f x f x π+=③正确,假设()f x 的最大值为2,取()2f a =,得到矛盾,④错误,得到答案. 【详解】()()()sin tan cos tan f x x x =-,()()()sin tan cos tan f x x x -=---⎡⎤⎡⎤⎣⎦⎣⎦()()sin tan cos tan x x =--,所以()f x 为非奇非偶函数,①错误;当0,4x π⎛⎫∈ ⎪⎝⎭时,令tan t x =,()0,1t ∈, 又()0,1t ∈时sin y t =单调递增,cos y t =单调递减,根据复合函数单调性判断法则, 当0,4x π⎛⎫∈ ⎪⎝⎭时,()sin tan y x =,()cos tan y x =-均为增函数, 所以()f x 在区间0,4π⎛⎫⎪⎝⎭单调递增,所以②正确; ()()()sin tan cos tan f x x x πππ+=+-+⎡⎤⎡⎤⎣⎦⎣⎦()()()sin tan cos tan x x f x =-=,所以π是()f x 的周期,所以③正确;假设()f x 的最大值为2,取()2f a =,必然()sin tan 1a =,()cos tan 1a =-, 则tan 22a k ππ=+,k Z ∈与tan 2a k ππ=+,k Z ∈矛盾,所以()f x 的最大值小于2,所以④错误. 故选:C . 【点睛】本题考查了三角函数奇偶性,单调性,周期,最值,意在考查学生对于三角函数知识的综合应用.。

高考数学复习:三角函数选择题压轴题

高考数学复习:三角函数选择题压轴题

高考数学复习:三角函数选择题压轴题一、单选题1.设函数()()()2sin 10f x x ωϕω=+->,若对于任意实数ϕ,()f x 在区间3,44ππ⎡⎤⎢⎥⎣⎦上至少有2个零点,至多有3个零点,则ω的取值范围是( ) A .816,33⎡⎫⎪⎢⎣⎭B .164,3⎡⎫⎪⎢⎣⎭C .204,3⎡⎫⎪⎢⎣⎭D .820,33⎡⎫⎪⎢⎣⎭2.函数()2sin cos 24f x x x π⎛⎫=++ ⎪⎝⎭的最大值为( )A.1BC.D .33.将函数()cos f x x =的图象先向右平移56π个单位长度,再把所得函数图象的横坐标变为原来的1(0)ωω>倍,纵坐标不变,得到函数()g x 的图象,若函数()g x 在3,22ππ⎛⎫⎪⎝⎭上没有零点,则ω的取值范围是( ) A .2280,,939⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦B .80,9⎛⎤ ⎥⎝⎦C .280,,199⎛⎫⎡⎤⋃ ⎪⎢⎥⎝⎭⎣⎦D .(]0,1 4.已知函数()()cos 1,0,2log ,0,a x x f x x x π⎧⎛⎫-≥⎪ ⎪=⎝⎭⎨⎪--<⎩(0a >且1a ≠),若函数图象上关于原点对称的点至少有3对,则实数a 的取值范围是( ).A.⎛ ⎝⎭B.⎫⎪⎪⎝⎭C.⎛ ⎝⎭D.⎫⎪⎪⎝⎭5.已知函数()f x 在()0,1恒有()()2xf x f x '>,其中()f x '为函数()f x 的导数,若α,β为锐角三角形两个内角,则( )A .22sin (sin )sin (sin )f f βααβ>B .22cos (sin )sin (cos )f f βααβ>C .22cos (cos )cos (cos )f f βααβ>D .22sin (cos )sin (cos )f f βααβ>6.已知函数()sin (0,)=->∈f x x x x ωωωR 的图象与x 轴交点的横坐标构成一个公差为2π的等差数列,把函数()f x 的图象沿x 轴向左平移3π个单位,横坐标伸长到原来的2倍得到函数()g x 的图象,则下列关于函数()g x 的结论,其中所有正确结论的序号是( ) ①函数()g x 是奇函数 ②()g x 的图象关于直线6x π=对称③()g x 在,33ππ⎡⎤-⎢⎥⎣⎦上是增函数 ④当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()g x 的值域是[]0,2 A .①③B .③④C .②D .②③④7.若1tan 23=α,则()5πsin 12sin 3παα⎛⎫+- ⎪⎝⎭=-( ) A .13-B .3-C .13D .38.已知函数1()sin (sin cos )2f x x x x ωωω=+-()0ω>在区间(0,)π上恰有1个最大值点和1个最小值点,则ω的取值范围是( ) A .711,88⎛⎫⎪⎝⎭B .711,88⎛⎤⎥⎝⎦C .79,88⎛⎤⎥⎝⎦D .79,88⎛⎫⎪⎝⎭9.已知函数()sin()(0,)2f x A x A πωϕϕ=+><的图像如图所示,且()f x 的图像关于点()0,0x 对称,则0x 的最小值为( )A .23π B .6π C .3π D .56π 10.函数①()sin cos f x x x =+,②()sin cos f x x x =,③21()cos 42f x x π⎛⎫=+- ⎪⎝⎭中,周期是π且为奇函数的所有函数的序号是( ) A .①② B .②C .③D .②③11.已知()22ππα∈-,,1cos()65πα+=,则sin(2)3πα+=( )A B C D .25-12.已知函数()()cos 03f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 在区间(),2ππ上不存在零点,则ω的取值范围是( )A .70,12⎛⎤ ⎥⎝⎦B .1170,,12612⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦C .117,,112612⎛⎫⎛⎤ ⎪ ⎥⎝⎭⎝⎦D .17,1212⎡⎤⎢⎥⎣⎦13.函数()1cos 2f x x x x π⎛⎫⎛⎫=-⎪ ⎪⎝⎭⎝⎭的图象可能为( ) A . B .C .D .14.若函数()()sin 03f x x πωω⎛⎫=+> ⎪⎝⎭在,2ππ⎛⎫⎪⎝⎭上单调,且在0,3π⎛⎫⎪⎝⎭上存在极值点,则ω的取值范围是( ) A .1,23⎛⎤ ⎥⎝⎦B .1,22⎛⎤⎥⎝⎦C .17,26⎛⎤⎥⎝⎦D .70,6⎛⎤ ⎥⎝⎦15.在ABC 中,3AB =,5BC =,D 为BC 边上一点,且满足32BD DC =,此时23ADC ∠=π,则AC 边长等于( )AB .72C .4D 16.已知函数()cos f x x ω=(0>ω),将()f x 的图像向右平移3ωπ个单位得到函数()g x 的图像,点A ,B ,C 是()f x 与()g x 图像的连续相邻三个交点,若ABC 是钝角三角形,则ω的取值范围为( )A .⎛⎫ ⎪ ⎪⎝⎭B .⎛⎫⎪ ⎪⎝⎭C .,⎫+∞⎪⎪⎝⎭D .,⎫+∞⎪⎪⎝⎭17.已知函数()()cos 0f x x x ωωω=->满足()()124f x f x -=,且12x x -的最小值为2π,则8f π⎛⎫⎪⎝⎭的值为( )A .2B .1CD .218.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若角A 、C 、B 成等差数列,角C 的角平分线交AB 于点D ,且CD =3a b =,则c 的值为( )A .3B .72C .3D .19.已知ABC 中,D 、E 分别是线段BC 、AC 的中点,AD 与BE 交于点O ,且90BOC ∠=°,若2BC =,则ABC 周长的最大值为( )A .2+B .2C .2+D .2+20.若0.212021a =,2021sin 5b π=,2021log 0.21c =,则( ) A .c a b << B .b a c << C .b c a <<D .c b a <<21.如图,已知A ,B 分别是半径为2的圆C 上的两点,且45ACB ∠=︒,P 为劣弧AB 上一个异于A ,B 的一点,过点P 分别作PM CA ⊥,PN CB ⊥,垂足分别为M ,N ,则MN 的长为( )A BC .2D .3222.如图,D 是ABC 外一点,若90ABC ∠=︒,tan DAB ∠=,5AB =,7AD =,105CDB ∠=°,则CD =( )A .B .4C .D .823.已知()()()2sin 0f x x ωϕω+>=同时满足以下条件: ①当()()124f x f x -=时,12x x -最小值为2π; ②71212f x f x ππ⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭; ③()04f f π⎛⎫>⎪⎝⎭. 若()f x a =在[]0,π有2个不同实根m ,n ,且3m n π-≥,则实数a 的取值范围为( )A .⎡⎣B .[)0,1 C .(D .[)1,1-24.已知函数π()sin()(0,0,||)2f x A x A ωϕωϕ=+>><的图象如图所示,且()f x 的图象关于点0(,0)x对称,则0x 的最小值为( ) A .23π B .56π C .3π D .6π25.设函数()sin()1,0,0,2f x A x A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的最大值为2,其图象相邻两个对称中心之间的距离为2π,且()f x 的图象关于直线12x π=对称,则下列判断正确的是( ) A .函数()y f x =在,63ππ⎡⎤-⎢⎥⎣⎦上单调递减 B .函数()y f x =的图象关于点,06π⎛⎫- ⎪⎝⎭对称C .函数()y f x =的图象关于直线512x π=-对称 D .要得到sin 21y x =+的图象,只需将()f x 图象向右平移3π个单位26.若sin170tan10λ︒+︒=λ的值为( )AB .2 C D 27.在ABC 中,角,,A B C 所对的边分别为,,a b c ,下列条件使得ABC 无法唯一确定的是( ) A .3,15,25a B C ==︒=︒ B .3,4,40a b C ===︒ C .3,4,40a b A ===︒ D .3,4,40a b B ===︒28.已知,42ππθ⎛⎫∈⎪⎝⎭,且4sin 45πθ⎛⎫+= ⎪⎝⎭,则tan θ=( )A .7B .43C .17D .12529.已知1x ,2x ,是函数()()()tan 0,0f x x ωϕωϕπ=-><<的两个零点,且12x x -的最小值为3π,若将函数()f x 的图象向左平移12π个单位长度后得到的图象关于原点对称,则ϕ的最大值为( ) A .34πB .4π C .78π D .8π 30.在ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且cos 2cos()a b A c c A C =++,则B 的大小为( ) A .6π B .3πC .23π D .56π 31.函数0,0()sin ,0ln x f x x x x x=⎧⎪=-⎨≠⎪⎩的部分图像大致为( )A .B .C .D .二、多选题:32.知函数()()sin 04f x x πωω⎛⎫=+> ⎪⎝⎭,则下述结论中正确的是( )A .若()f x 在[]0,2π有且仅有4个零点,则()f x 在[]0,2π有且仅有2个极小值点 B .若()f x 在[]0,2π有且仅有4个零点,则()f x 在20,15π⎛⎫⎪⎝⎭上单调递增 C .若()f x 在[]0,2π有且仅有4个零点,则ω的范是1519,88⎡⎫⎪⎢⎣⎭D .若()f x 的图象关于4x π=对称,且在5,1836ππ⎛⎫⎪⎝⎭单调,则ω的最大值为933.已知函数()2sin sin 2f x x x =+-,则下列结论正确的有( ) A .函数()f x 的最小正周期为π B .函数()f x 在[],ππ-上有2个零点C .函数()f x 的图象关于(π对称D .函数()f x 的最小值为34.将函数()()πcos 02f x x ωω⎛⎫=-> ⎪⎝⎭的图象向右平移π2个单位长度后得到函数()g x 的图象,且()01g =-,则下列说法正确的是( )A .()g x 为奇函数B .π02g ⎛⎫-= ⎪⎝⎭C .当5ω=时,()g x 在()0,π上有4个极值点D .若()g x 在π0,5⎡⎤⎢⎥⎣⎦上单调递增,则ω的最大值为535.已知函数()2sin cos 1f x x x +=-,则( ) A .()f x 在0,2π⎡⎤⎢⎥⎣⎦上单调递增 B .直线2x π=是()f x 图象的一条对称轴C .方程()1f x =在[]0,π上有三个实根D .()f x 的最小值为1-36.函数()sin 24f x x π⎛⎫=+⎪⎝⎭,则( ) A .函数()y f x =的图象可由函数sin 2y x =的图象向右平移4π个单位得到B .函数()y f x =的图象关于直线8x π=轴对称C .函数()y f x =的图象关于点,08π⎛⎫- ⎪⎝⎭中心对称D .函数2()y x f x =+在08π⎛⎫⎪⎝⎭,上为增函数37.已知函数()()()sin 0,0,0πf x A x B A ωϕωϕ=++>><<的部分自变量、函数值如下表所示,下列结论正确的是( ).A .函数解析式为()5π3sin 226f x x ⎛⎫ ⎝=⎪⎭++ B .函数()f x 图象的一条对称轴为2π3x =- C .5π,012⎛⎫-⎪⎝⎭是函数()f x 图象的一个对称中心 D .函数()f x 的图象左平移π12个单位,再向下移2个单位所得的函数为奇函数 38.如图,某校测绘兴趣小组为测量河对岸直塔AB (A 为塔顶,B 为塔底)的高度,选取与B 在同一水平面内的两点C 与D (B ,C ,D 不在同一直线上),测得CD s =.测绘兴趣小组利用测角仪可测得的角有:,,,,,ACB ACD BCD ADB ADC BDC ∠∠∠∠∠∠,则根据下列各组中的测量数据可计算出塔AB 的高度的是( )A .,,,s ACB BCD BDC ∠∠∠ B .,,,s ACB BCD ACD ∠∠∠ C .,,,s ACB ACD ADC ∠∠∠D .,,,s ACB BCD ADC ∠∠∠39.已知定义在R 上的奇函数,满足(2)()0f x f x -+=,当(0,1]x ∈时,2()log f x x =-,若函数()()tan()F x f x x π=-,在区间[1,]m -上有10个零点,则m 的取值可以是( )A .3.8B .3.9C .4D .4.140.已知函数()()()sin 0,0,πf x A x A ωϕωϕ=+>><的部分图像如图所示,将函数()f x 的图像上所有点的横坐标变为原来的23,纵坐标不变,再将所得函数图像向右平移π6个单位长度,得到函数()g x 的图像,则下列关于函数()g x 的说法正确的是( ).A .()g x 的最小正周期为2π3B .()g x 在区间ππ,93⎡⎤⎢⎥⎣⎦上单调递增C .()g x 的图像关于直线4π9x =对称 D .()g x 的图像关于点π,09⎛⎫⎪⎝⎭成中心对称 41.将函数()2πsin 23f x x ⎛⎫=- ⎪⎝⎭的图象向左平移π6个单位长度后得到函数()g x 的图象,则下列说法正确的是( )A .π4g ⎛⎫⎪⎝⎭B .π,06⎛⎫⎪⎝⎭是函数()g x 图象的一个对称中心 C .函数()g x 在π0,4⎡⎤⎢⎥⎣⎦上单调递增D .函数()g x 在ππ,63⎡⎤-⎢⎥⎣⎦上的值域是,22⎡-⎢⎣⎦42.如图是函数()cos y x ωϕ=+的部分图象,则()cos x ωϕ+=( )A .sin 26xB .cos 23x π⎛⎫-+⎪⎝⎭ C .cos 26x π⎛⎫+⎪⎝⎭D .2sin 23x π⎛⎫+⎪⎝⎭43.如图,函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象经过点,012π⎛⎫-⎪⎝⎭和5,012π⎛⎫⎪⎝⎭,则( ) A .1ω= B .6π=ϕ C .函数()f x 的图象关于直线23x π=对称 D .若6,65f πα⎛⎫-= ⎪⎝⎭则223sin cos 5αα-=44.已知函数()22sin cos f x x x x =+,则下列结论中正确的是( )A .()f x 的图象是由y= 2sin2x 的图象向左移3π个单位得到的 B .()f x 在,03π⎡⎤-⎢⎥⎣⎦上单调递增 C .()f x 的对称中心的坐标是(),026k k Z ππ⎛⎫-∈ ⎪⎝⎭D .函数()()g x f x =[]0,10内共有8个零点 45.已知函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭在[0,2]π有且仅有4个零点,则( ). A .()f x 在0,5π⎛⎫⎪⎝⎭单调递增B .ω的取值范围是1912,105⎡⎫⎪⎢⎣⎭C .()f x 在(0,2)π有2个极小值点D .()f x 在(0,2)π有3个极大值点46.已知函数()|sin 2|cos2f x x x =+,则( )A .()()f x f x π=+B .()f x 的最小值为C .()f x 的图象关于8x π=对称D .()f x 在,82ππ⎛⎫⎪⎝⎭上单调递减47.已知函数()()sin 22sin cos 644f x x x x x πππ⎛⎫⎛⎫⎛⎫=--++∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭R ,现给出下列四个命题,其中正确的是( )A .函数()f x 的最小正周期为2πB .函数()f xC .函数()f x 在,44ππ⎡⎤-⎢⎥⎣⎦上单调递增D .将函数()f x 的图象向左平移512π个单位长度,得到的函数解析式为()()2g x x = 48.已知函数22()(sin cos )2cos f x x x x =++,则( ) A .()f x 的最小正周期是πB .()f x 的图像可由函数()22g x x =+的图像向左平移8π个单位而得到 C .4x π=是()f x 的一条对称轴D .()f x 的一个对称中心是,08π⎛⎫- ⎪⎝⎭三角函数选择压轴题答案一、单选题1.设函数()()()2sin 10f x x ωϕω=+->,若对于任意实数ϕ,()f x 在区间3,44ππ⎡⎤⎢⎥⎣⎦上至少有2个零点,至多有3个零点,则ω的取值范围是( ) A .816,33⎡⎫⎪⎢⎣⎭B .164,3⎡⎫⎪⎢⎣⎭C .204,3⎡⎫⎪⎢⎣⎭D .820,33⎡⎫⎪⎢⎣⎭【答案】B【分析】t x ωϕ=+,只需要研究1sin 2t 的根的情况,借助于sin y t =和12y =的图像,根据交点情况,列不等式组,解出ω的取值范围. 【解析】令()0f x =,则()1sin 2x ωϕ+=,令t x ωϕ=+,则1sin 2t ,则问题转化为sin y t =在区间3,44ππωϕωϕ⎡⎤++⎢⎥⎣⎦上至少有两个,至少有三个t ,使得1sin 2t ,求ω的取值范围. 作出sin y t =和12y =的图像,观察交点个数,可知使得1sin 2t的最短区间长度为2π,最长长度为223ππ+,由题意列不等式的:3222443πππωϕωϕππ⎛⎫⎛⎫≤+-+<+ ⎪ ⎪⎝⎭⎝⎭,解得:1643ω≤<.故选B .【点睛】研究y =Asin (ωx +φ)+B 的性质通常用换元法(令t x ωϕ=+),转化为研究sin y t =的图像和性质较为方便.2.函数()2sin cos 24f x x x π⎛⎫=++ ⎪⎝⎭的最大值为( )A .1BC .D .3【答案】B【分析】利用诱导公式及二倍角公式可得()2sin sin 244f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,令4x πθ=+,将函数转化为()2sin sin 2fθθθ=+,利用导数研究函数的单调性,即可求出函数的最值,即可得解;【解析】∵()2sin cos 24f x x x π⎛⎫=++ ⎪⎝⎭, ∴()2sin sin 22sin 2sin cos 44444f x x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++=++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,令4x πθ=+, 则()2sin 2sin cos 2sin sin 2fθθθθθθ=+=+,则()()222cos 2cos 222cos 12cos 4cos 2cos 2f θθθθθθθ'=+=-+=+-,令()0f θ'=,得cos 1θ=-或1cos 2θ=, 当11cos 2θ-<<时,()0f θ'<;1cos 12θ<<时()0f θ'>,∴当1cos 2θ=时,()f θ取得最大值,此时sin 2θ=,∴()max 1222222f x =⨯+⨯=,故选B .【点睛】本题考查三角恒等变换及三角函数的性质的应用,解答的关键是利用导数研究函数的单调性从而求出函数的最值.3.将函数()cos f x x =的图象先向右平移56π个单位长度,再把所得函数图象的横坐标变为原来的1(0)ωω>倍,纵坐标不变,得到函数()g x 的图象,若函数()g x 在3,22ππ⎛⎫⎪⎝⎭上没有零点,则ω的取值范围是( ) A .2280,,939⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦B .80,9⎛⎤ ⎥⎝⎦C .280,,199⎛⎫⎡⎤⋃ ⎪⎢⎥⎝⎭⎣⎦D .(]0,1【答案】A【分析】根据图象变换求出()g x 的解析式,利用周期缩小ω的范围,再从反面求解可得结果. 【解析】将函数()cos f x x =的图象先向右平移56π个单位长度,得到5cos()6y x π=-的图象, 再把所得函数图象的横坐标变为原来的1(0)ωω>倍,纵坐标不变,得到函数5()cos 6g x x πω⎛⎫=- ⎪⎝⎭(0)>ω,周期2T πω=,∵函数()g x 在3,22ππ⎛⎫⎪⎝⎭上没有零点,∴3222T ππ-≤,得2T π≥,得22ππω≥,得01ω<≤, 假设函数()g x 在3,22ππ⎛⎫⎪⎝⎭上有零点, 令()0g x =,得562x k ππωπ-=+,k Z ∈,得43k x ππωω=+,k Z ∈, 则43232k ππππωω<+<,得8282933k k ω+<<+,k Z ∈, 又01ω<≤,∴2293ω<<或819ω<≤,又函数()g x 在3,22ππ⎛⎫⎪⎝⎭上有零点,且01ω<≤,∴209ω<≤或2839ω≤≤,故选A . 【点睛】关键点点睛:求出函数()g x 的解析式,利用间接法求解是解决本题的关键.4.已知函数()()cos 1,0,2log ,0,a x x f x x x π⎧⎛⎫-≥⎪ ⎪=⎝⎭⎨⎪--<⎩(0a >且1a ≠),若函数图象上关于原点对称的点至少有3对,则实数a 的取值范围是( ).A.⎛ ⎝⎭B.⎫⎪⎪⎝⎭C.⎛ ⎝⎭D.⎫⎪⎪⎝⎭【答案】A【分析】由于log )(0)(-=-<a y x x 关于原点对称得函数为log (0)a y x x =>,由题意可得,cos 12y x π⎛⎫=-⎪⎝⎭与log a y x =的图像在0x >的交点至少有3对,结合函数图象,列出满足要求的不等式,即可得出结果.【解析】log )(0)(-=-<a y x x 关于原点对称得函数为log (0)a y x x =>. ∴cos 12y x π⎛⎫=-⎪⎝⎭与log a y x =的图像在0x >的交点至少有3对,可知()0,1a ∈,如图所示,当6x =时,log 62a >-,则0a <<,故实数a 的取值范围为0,6⎛ ⎝⎭,故选A . 【点睛】本题考查函数的对称性,难点在于将问题转换为cos 12y x π⎛⎫=-⎪⎝⎭与log a y x =的图像在0x >的交点至少有3对,考查了运算求解能力和逻辑推理能力,属于难题.5.已知函数()f x 在()0,1恒有()()2xf x f x '>,其中()f x '为函数()f x 的导数,若α,β为锐角三角形两个内角,则( )A .22sin (sin )sin (sin )f f βααβ>B .22cos (sin )sin (cos )f f βααβ>C .22cos (cos )cos (cos )f f βααβ>D .22sin (cos )sin (cos )f f βααβ>【答案】B【分析】构造函数()()2()01f x g x x x =<<,求导可知函数()g x 在()0,1 上为增函数,由已知条件可知022ππβα<-<<,即0cos sin 1βα<<<,再根据函数()g x 在()0,1上的单调性即可得解.【解析】设()()2()01f x g x x x =<<,则()()()()()243220x f x x f x x f x f x g x x x''⋅-⋅⋅-⋅'==>∴函数()g x 在()0,1上单调递增.α, β为锐角三角形两个内角,则2παβ+>∴022ππβα<-<<,由正弦函数sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增. 则0cos sin sin 12πββα⎛⎫<=-<<⎪⎝⎭∴()()cos sin g g βα<,即()()22cos sin cos sin f f βαβα<∴()()22sincos cos sin f f αββα⋅<⋅,故选B .【点睛】本题考查利用导数研究函数的单调性,同时也涉及了三角函数的变换及其性质,考查构造思想及转化思想,考查化简变形能力及逻辑推理能力,属于中档题.6.已知函数()sin (0,)=->∈f x x x x ωωωR 的图象与x 轴交点的横坐标构成一个公差为2π的等差数列,把函数()f x 的图象沿x 轴向左平移3π个单位,横坐标伸长到原来的2倍得到函数()g x 的图象,则下列关于函数()g x 的结论,其中所有正确结论的序号是( ) ①函数()g x 是奇函数 ②()g x 的图象关于直线6x π=对称③()g x 在,33ππ⎡⎤-⎢⎥⎣⎦上是增函数 ④当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()g x 的值域是[]0,2 A .①③ B .③④C .②D .②③④【答案】C【分析】先根据辅助角公式化简()f x ,然后利用已知条件求解出ω的值,再根据图象的变换求解出()g x 的解析式;①根据()g x 解析式判断奇偶性;②根据6g π⎛⎫⎪⎝⎭的值判断对称性;③采用整体替换的方法判断单调性;④利用换元法的思想求解出值域.【解析】∵()sin 2sin 3f x x x x πωωω⎛⎫=-=-⎪⎝⎭,又()y f x =的图象与x 轴交点的横坐标构成一个公差为2π的等差数列,∴2222T ππω==,∴2ω=,∴()2sin 23f x x π⎛⎫=- ⎪⎝⎭,∴()f x 向左平移3π个单位得到2sin 23y x π⎛⎫=+ ⎪⎝⎭,2sin 23y x π⎛⎫=+ ⎪⎝⎭横坐标伸长到原来2倍得到()2sin 3g x x π⎛⎫=+ ⎪⎝⎭,①()2sin 3g x x π⎛⎫=+⎪⎝⎭为非奇非偶函数,故错误; ②()max 2sin 2663g g x πππ⎛⎫⎛⎫=+==⎪ ⎪⎝⎭⎝⎭,∴6x π=是()g x 的一条对称轴,故正确; ③∵,33x ππ⎡⎤∈-⎢⎥⎣⎦,∴20,33x ππ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,又∵2sin y t =在20,3π⎡⎤⎢⎥⎣⎦上先增后减,∴()g x 在,33ππ⎡⎤-⎢⎥⎣⎦上不是增函数,故错误; ④当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,,362x πππ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦, ∴()max 2sin22g x π==,此时6x π=;()min 2sin16g x π==,此时6x π=-,∴()g x 的值域为[]1,2,故错误;故选C .【点睛】思路点睛:求解形如()sin y A ωx φ=+的函数在指定区间上的值域或最值的一般步骤如下: (1)先确定t x ωϕ=+这个整体的范围;(2)分析sin y A t =在(1)中范围下的取值情况;(3)根据取值情况确定出值域或最值,并分析对应的x 的取值.7.若1tan 23=α,则()5πsin 12sin 3παα⎛⎫+- ⎪⎝⎭=-( ) A .13-B .3-C .13D .3【答案】A【分析】先根据诱导公式化简得()5πsin 1cos 12sin 3πsin αααα⎛⎫+- ⎪-⎝⎭=-,再结合半角公式整理得()5πsin 1cos 112tan sin 3πsin 23ααααα⎛⎫+- ⎪-⎝⎭==-=--. 【解析】由诱导公式化简整理得:()5πsin 1cos 12sin 3πsin αααα⎛⎫+- ⎪-⎝⎭=-, 由于2cos 12sin,sin 2sincos222ααααα=-=,∴()25πsin 12sin cos 1122tan sin 3πsin 232sin cos 22αααααααα⎛⎫+-- ⎪-⎝⎭===-=--⋅,故选A . 【点睛】题考查诱导公式化简,半角公式,同角三角函数关系,考查运算求解能力,本题解题的关键在于寻找α与2α之间的关系,从半角公式入手化简整理.考生需要对恒等变换的相关公式熟记. 8.已知函数1()sin (sin cos )2f x x x x ωωω=+-()0ω>在区间(0,)π上恰有1个最大值点和1个最小值点,则ω的取值范围是( ) A .711,88⎛⎫⎪⎝⎭B .711,88⎛⎤⎥⎝⎦C .79,88⎛⎤⎥⎝⎦D .79,88⎛⎫⎪⎝⎭【答案】B【分析】化简得到()224f x x πω⎛⎫=- ⎪⎝⎭,根据最值点,得352242πππωπ<-≤,解得答案.【解析】11cos 2sin 21()sin (sin cos )2222224x x f x x x x x ωωπωωωω-⎛⎫=+-=+-=- ⎪⎝⎭, ()0,x π∈,()20,2x ωωπ∴∈,2,2444x πππωωπ⎛⎫∴-∈-- ⎪⎝⎭()f x 在 (0,)π上恰有1个最大值点和1个最小值点,352242πππωπ∴<-≤,解得71188ω<≤.故选B .【点睛】方法点睛:本题考查了根据三角函数的最值求参数,研究三角函数的性质基本思想是将函数转化为()sin (0,0)y A x B A ωϕω=++>>的形式,热后应用整体思想来研究其相关性质,考查学生的逻辑推理与运算能力,属于一般题.9.已知函数()sin()(0,)2f x A x A πωϕϕ=+><的图像如图所示,且()f x 的图像关于点()0,0x 对称,则0x 的最小值为( )A .23π B .6π C .3π D .56π 【答案】B【分析】先由函数图像求出函数()2sin 6f x x π⎛⎫=+ ⎪⎝⎭,再根据函数关于()0,0x 对称求出06x k ππ=-,从而当0k =时,0x 取得最小值为6π. 【解析】由题可知4112,2363A T πππ⎛⎫==⨯-= ⎪⎝⎭,21Tπω∴==, 则()()2sin ,2sin 233f x x f ππϕϕ⎛⎫⎛⎫=+=+=⎪ ⎪⎝⎭⎝⎭,232k ππϕπ∴+=+, 又2πϕ<,6πϕ∴=,()2sin 6f x x π⎛⎫∴=+⎪⎝⎭,由()f x 的图像关于点()0,0x 对称,可得0066x k x k ππππ+=∴=-,,∴当0k =时,0x 取得最小值为6π,故选B . 【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法: (1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求. 10.函数①()sin cos f x x x =+,②()sin cos f x x x =,③21()cos 42f x x π⎛⎫=+- ⎪⎝⎭中,周期是π且为奇函数的所有函数的序号是( ) A .①② B .②C .③D .②③【答案】D【解析】对于①()sin cos f x x x =+,()4f x x π⎛⎫=+ ⎪⎝⎭,周期为π,但不是奇函数;对于②()sin cos f x x x =,1()sin 22f x x =,周期为22T ππ==; 又()()11()sin 2=sin 222f x x x f x =-=---,故()sin cos f x x x =符合题意; 对于③21()cos 42f x x π⎛⎫=+- ⎪⎝⎭,211()cos cos 2sin 24222f x x =x =x ππ⎛⎫⎛⎫=+-+- ⎪ ⎪⎝⎭⎝⎭, 由②推导过程可知:21()cos 42f x x π⎛⎫=+- ⎪⎝⎭周期是π且为奇函数,符合题意,故选D .【点睛】三角函数问题通常需要把它化为“一角一名一次”的结构,借助于sin y x =或cos y x =的性质解题:(1) 求周期用2T πω=;(2)判断奇偶性,一般用()()f x f x =-或()()f x f x =-.11.已知()22ππα∈-,,1cos()65πα+=,则sin(2)3πα+=( )A B C D .25-【答案】C 【解析】由,22ππα⎛⎫∈-⎪⎝⎭,可得2,633πππα⎛⎫+∈- ⎪⎝⎭,又11cos cos 6523ππα⎛⎫+=<= ⎪⎝⎭,2,633πππα⎛⎫∴+∈ ⎪⎝⎭,sin 6πα⎛⎫∴+== ⎪⎝⎭,sin 22sin cos 36625πππααα⎛⎫⎛⎫⎛⎫∴+=++=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C . 【点睛】利用三角公式求三角函数值的关键:(1)角的范围的判断;(2)根据条件选择合适的公式进行计算. 12.已知函数()()cos 03f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 在区间(),2ππ上不存在零点,则ω的取值范围是( ) A .70,12⎛⎤⎥⎝⎦B .1170,,12612⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦C .117,,112612⎛⎫⎛⎤⎪ ⎥⎝⎭⎝⎦ D .17,1212⎡⎤⎢⎥⎣⎦ 【答案】B【分析】由()f x 在区间(),2ππ上不存在零点,计算出01ω<≤,再计算出函数()f x 的零点为()6k x k Z ππωω=+∈,根据零点所在的范围,判断出ω的取值范围. 【解析】函数()f x 的最小正周期为2T πω=,由函数()cos 3f x x πω⎛⎫=+⎪⎝⎭在(),2ππ上不存在零点,可得22T ππ≥-,∴01ω<≤,函数()f x 的零点为()32x k k Z ππωπ+=+∈,即()6k x k Z ππωω=+∈,若()26k k Z ππππωω<+<∈,则()126k k Z ωω<+<∈,∴()6161126k k k Z ω++<<∈,∵01ω<≤,∴0,1k =,当0k =时,得11126ω<<,当1k =时,得77126ω<<, 又01ω<≤,∴7112ω<≤. ∵函数()f x 在(),2ππ上不存在零点,∴在(]0,1内去掉上述范围,得符合条件的ω取值范围为1170,,12612⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦,故选B . 【点睛】三角函数求ω的范围:①利用周期求ω的范围:利用周期公式,借助于平移或诱导公式即可解决;②已知值域求ω的范围:运用整体思想,将值域问题转化为基本函数sin y x =上结合推行即可解决;③已知零点情况求ω的范围.13.函数()1cos 2f x x x x π⎛⎫⎛⎫=-⎪ ⎪⎝⎭⎝⎭的图象可能为( ) A . B .C .D .【答案】A【分析】求出函数()f x 的定义域,分析函数()f x 的奇偶性及其在()0,1上的函数值符号,结合排除法可得出合适的选项. 【解析】函数()1cos 2f x x x x π⎛⎫⎛⎫=-⎪ ⎪⎝⎭⎝⎭的定义域为{}0x x ≠, ()()11cos cos 22x x f x x x f x x x ππ⎛⎫⎛⎫⎛⎫⎛⎫-=---=--=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭,函数()f x 为奇函数,排除BC 选项;当01x <<时,2110x x x x--=<,022x ππ<<,则cos 02x π⎛⎫> ⎪⎝⎭,∴()0f x <,排除D 选项.故选A .【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象. 14.若函数()()sin 03f x x πωω⎛⎫=+> ⎪⎝⎭在,2ππ⎛⎫⎪⎝⎭上单调,且在0,3π⎛⎫⎪⎝⎭上存在极值点,则ω的取值范围是( )A .1,23⎛⎤ ⎥⎝⎦B .1,22⎛⎤⎥⎝⎦C .17,26⎛⎤⎥⎝⎦D .70,6⎛⎤ ⎥⎝⎦【答案】C【分析】依据函数在,2ππ⎛⎫⎪⎝⎭上单调,可知2ω≤,计算出函数的对称轴,然后根据函数在所给区间存在极值点可知76ππω≥,最后计算可知结果. 【解析】∵()f x 在,2ππ⎛⎫⎪⎝⎭上单调,∴T π≥,则2ππω≥,由此可得2ω≤. ∵当32x k ππωπ+=+,即()6k x k Z ππω+=∈时,函数取得极值,欲满足在0,3π⎛⎫ ⎪⎝⎭上存在极值点,∵周期T π≥,故在0,3π⎛⎫⎪⎝⎭上有且只有一个极值,故第一个极值点63x ππω=<,得12ω>.又第二个极值点776122x πππω=≥>, 要使()f x 在,2ππ⎛⎫⎪⎝⎭上单调,必须76ππω≥,得76ω≤.综上可得,ω的取值范围是17,26⎛⎤ ⎥⎝⎦.故选C .【点睛】思路点点睛:第一步:先根据函数在所给区间单调判断ω;第二步:计算对称轴;第三步:依据函数在所给区间存在极值点可得63ππω<,76ππω≥即可. 15.在ABC 中,3AB =,5BC =,D 为BC 边上一点,且满足32BD DC =,此时23ADC ∠=π,则AC 边长等于( )AB .72C .4D【答案】D【分析】本题首先可以结合题意绘出图像,然后根据32BD DC =求出BD 、DC 长,再然后在ABD △中通过余弦定理求出AD ,最后在ADC 中通过余弦定理即可求出AC 长. 【解析】如图,结合题意绘出图像,∵5BC =,32BD DC =,∴3BD =,2DC =,∵23ADC ∠=π,∴3ADB π∠=,在ABD △中,2222cos AD BD AB AD BD ADB ,即222133232ADAD ,解得3AD =或0(舍去),3AD =, 在ADC 中,2222cos AD DC AC AD DC ADC ,即2221322322AC ,解得AC =D .【点睛】关键点点睛:本题考查解三角形相关问题的求解,主要考查余弦定理解三角形,考查的公式为2222cos a b c ab C +-=,考查计算能力,是中档题.16.已知函数()cos f x x ω=(0>ω),将()f x 的图像向右平移3ωπ个单位得到函数()g x 的图像,点A ,B ,C 是()f x 与()g x 图像的连续相邻三个交点,若ABC 是钝角三角形,则ω的取值范围为( )A .0,2⎛⎫⎪ ⎪⎝⎭B .0,3⎛⎫⎪ ⎪⎝⎭C .,3⎛⎫+∞ ⎪⎪⎝⎭D .,2⎛⎫+∞ ⎪⎪⎝⎭【答案】B【分析】先由平移变换得到()cos 3g x x πω⎛⎫=-⎪⎝⎭,在同一坐标系中作出两个函数图像,设D 为AC 的中点,由cos cos 3x x πωω⎛⎫=-⎪⎝⎭,cos x ω=,然后根据ABC 为钝角三角形,只须4ACB π∠<,由tan 1BDACB DC∠=<求解. 【解析】由题意得,()cos 3g x x πω⎛⎫=-⎪⎝⎭,作出两个函数图像,如图:A ,B ,C 为连续三交点,(不妨设B 在x 轴下方),D 为AC 的中点, 由对称性,则ABC 是以B 为顶角的等腰三角形,2AC T πω==,由cos cos 3x x πωω⎛⎫=-⎪⎝⎭,整理得cos x x ωω=,解得tan x ω=,则cos 2x ω=±,即2C B y y =-=,∴2B BD y ==ABC 为钝角三角形,则4ACB π∠<,∴tan 1BD ACB DC ∠==<,解得0ω<<,故选B . 【点睛】关键点点睛:本题关键是将ABC 为钝角三角形,转化为4ACB π∠<,利用tan 1BDACB DC∠=<而得解.17.已知函数()()cos 0f x x x ωωω=->满足()()124f x f x -=,且12x x -的最小值为2π,则8f π⎛⎫⎪⎝⎭的值为( )A B .1 C D .2【答案】A【分析】化简函数()f x 的解析式,由题意可知,12x x -的最小值为2T,可求得ω的值,进而可计算出8f π⎛⎫⎪⎝⎭的值.【解析】()()cos 2sin 06f x x x x πωωωω⎛⎫=-=-> ⎪⎝⎭,则()max 2f x =,()min 2f x =-,且()()()()12max min 4f x f x f x f x -==-, 设函数()f x 的最小正周期为T ,则1222T x x π-==,2T ππω∴==,可得2ω=, ()2cos2f x x x ∴=-,因此,cos 844f πππ⎛⎫=-= ⎪⎝⎭.故选A .【点睛】方法点睛:求三角函数周期的方法: (1)定义法:利用周期函数的定义求解;(2)公式法:对形如()sin y A ωx φ=+或()cos y A x ωϕ=+(A 、ω、ϕ为常数,0A ≠,0ω≠)的函数,周期2T ωπ=;(3)图象法:通过观察函数的图象求其周期.18.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若角A 、C 、B 成等差数列,角C 的角平分线交AB 于点D,且CD =3a b =,则c 的值为( )A .3B .72C.3D.【答案】C【解析】∵CD 是ACB ∠平分线,∴3BD BC a DA AC b ===,34BD c =,14AD c =, 角A 、C 、B 成等差数列,∴2A B C +=,而A B C π++=,∴3C π=,在BCD △中.2222cos BD BC CD BC CD BCD =+-⋅∠,即22293233166c a a a a π=+-=+-, DCA △中中,2222cos DA CD CA CD CA DCA =+-⋅∠,即22213cos 33166c b b b π=+-=+-,由222293316133163a a c b b c a b ⎧-+=⎪⎪⎪-+=⎨⎪=⎪⎪⎩,解得443a b c ⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩.故选C .【点睛】方法点睛:本题考查余弦定理解三角形,解题方法是由等差数列得出6C π=,由角平分线得6ACD BCD π∠=∠=,同时由解平分线定理得3BDAD=,然后在两个三角形中应用余弦定理求解. 19.已知ABC 中,D 、E 分别是线段BC 、AC 的中点,AD 与BE 交于点O ,且90BOC ∠=°,若2BC =,则ABC 周长的最大值为( )A .2+B .2C .2+D .2+【答案】A【分析】推导出O 为ABC 的重心,可得出3AD =,利用平面向量加法的平行四边形法则可得出2AD AB AC =+,利用平面向量数量积的运算性质结合余弦定理可得出224022AB AC =+,利用基本不等式可求得+AB AC 的最大值,即可得解.【解析】在ABC 中,D 、E 分别是线段BC 、AC 的中点,AD 与BE 交于点O ,则O 为ABC 的重心,∵90BOC ∠=°,故112OD BC ==,则33AD OD ==. ()()111222AD AB BD AB BC AB AC AB AB AC =+=+=+-=+,2AD AB AC ∴=+,∴()222242AD AB ACAB AC AB AC =+=++⋅,即2222222242cos 22AB AC BC AD AB AC AB AC BAC AB AC AB AC AB AC +-=++⋅⋅∠=++⋅⋅⋅ 2222222224AB AC BC AB AC =+-=+-,∴()()22222222240222AB AC AB AC AB ACABAC AB AC AB AC =+=+++≥++⋅=+,AB AC ∴+≤,当且仅当AB AC ==因此,ABC 周长的最大值为2.故选A .【点睛】方法点睛:求三角形周长的最值是一种常见的类型,主要方法有两类: (1)找到边与边之间的关系,利用基本不等式来求解;(2)利用正弦定理,转化为关于某个角的三角函数,利用函数思想求解. 20.若0.212021a =,2021sin 5b π=,2021log 0.21c =,则( ) A .c a b << B .b a c << C .b c a <<D .c b a <<【答案】D【解析】由题得20212021log 0.21log 10c =<=,0.210202120211a =>=,2021sinsin(404)sin (0,1)555b ππππ==+=∈,∴a b c >>.故选D . 21.如图,已知A ,B 分别是半径为2的圆C 上的两点,且45ACB ∠=︒,P 为劣弧AB 上一个异于A ,B 的一点,过点P 分别作PM CA ⊥,PN CB ⊥,垂足分别为M ,N ,则MN 的长为( )A .2BC .2D .32【答案】B【分析】∵PM CA ⊥,PN CB ⊥可知,MN 为四边形PMCN 的外接圆的一条弦,且外接圆直径为PC =2,故联想到正弦定理来解题.【解析】∵PM CA ⊥,PN CB ⊥,∴P ,N ,M ,C 四点在以PC 为直径的圆上.由题意可知2PC =,∴MNC 外接圆的直径为2,则由正弦定理可得2sin 45MN=°.故选B .22.如图,D 是ABC 外一点,若90ABC ∠=︒,tan DAB ∠=,5AB =,7AD =,105CDB ∠=°,则CD =( )A .B .4C .D .8【答案】C【分析】由tan DAB ∠=得1cos 7BAD ∠=,在ABD △中结合正余弦定理求解即可.【解析】由tan DAB ∠=得1cos 7BAD ∠=.在ABD △中,由余弦定理得8BD ===, ∴2222225871cos 22582AB BD AD ABD AB BD +-+-∠===⋅⨯⨯,则60ABD ∠=︒.∵90ABC ∠=︒,∴30CBD ∠=︒.在BCD △中,1803010545BCD ∠=--=°°°°,∴由正弦定理得sin 8sin 30sin sin 45BD CBD CD BCD ∠===∠°°,故选C .【点睛】方法点睛:用正、余弦定理解决平面多边形问题时,应把多边形分割为多个三角形,通过各个三角形之间的关系解决问题.23.已知()()()2sin 0f x x ωϕω+>=同时满足以下条件: ①当()()124f x f x -=时,12x x -最小值为2π; ②71212f x f x ππ⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭; ③()04f f π⎛⎫>⎪⎝⎭. 若()f x a =在[]0,π有2个不同实根m ,n ,且3m n π-≥,则实数a 的取值范围为( )A .⎡⎣B .[)0,1 C .(D .[)1,1-【答案】D【解析】函数()()2sin f x x ωϕ=+满足,当()()124f x f x -=时,12x x -最小值为1222ππω⨯=, ∴2ω=,函数()()2sin 2f x x ϕ=+. ∵71212f x f x ππ⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭,故()f x 的图象关于直线3x π=对称,故有232k ππϕπ⨯+=+,即6k ϕπ=π-,k Z ∈. 又()04f f π⎛⎫>⎪⎝⎭,即2sin 2sin 2cos 2πϕϕϕ⎛⎫>+= ⎪⎝⎭,即sin cos ϕϕ>,故56πϕ=, 函数()52sin 26x x f π⎛⎫+⎝=⎪⎭. ()f x a =在[] 0,π有2个不同实根m ,n ,且3m n π-≥,根据5552,2666x ππππ⎡⎤+∈+⎢⎥⎣⎦, 7112sin2sin 166ππ==-,552sin 2sin 22sin 21666πππππ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭,∴11a -≤<,故选D . 【点睛】思路点睛:该题考查的是有关三角函数的问题,解题思路如下: (1)由条件①确定ω的值;(2)由条件②确定出函数图象的一条对称轴,结合条件③求得ϕ的值;(3)得到函数的解析式之后利用函数值相等的条件,结合自变量的范围和限制条件,求得参数a 的取值范围.24.已知函数π()sin()(0,0,||)2f x A x A ωϕωϕ=+>><的图象如图所示,且()f x 的图象关于点0(,0)x 对称,则0x 的最小值为( )A .23π B .56π C .3π D .6π 【答案】D【解析】由图可知2A =,又函数()sin()f x A x ωϕ=+过点(0,1)和,23π⎛⎫⎪⎝⎭,2sin 12sin 23ϕπωϕ=⎧⎪∴⎨⎛⎫+= ⎪⎪⎝⎭⎩, 又0,||2πωϕ><,6πϕ∴=,16,k k Z ω=+∈,结合图像可知31134632T πππ=-=,则2T π=,故21T πω==,()2sin 6f x x π⎛⎫∴=+ ⎪⎝⎭,令,6x k k Z ππ+=∈,解得,6x k k Z ππ=-+∈,即函数()f x 的对称中心为,06k ππ⎛⎫-+ ⎪⎝⎭k Z ∈,令0k =时,6x π=-,故0x 的最小值为6π.故选D . 【点睛】思路点睛:求()0,0()y Asin x B A ωϕω+=+>>解析式的步骤 (1)求A ,B ,确定函数的最大值M 和最小值m ,则2M mA ,2M mB +=. (2)求ω,确定函数的周期T ,则2Tπω=. (3)求φ,常用方法如下:代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入.25.设函数()sin()1,0,0,2f x A x A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的最大值为2,其图象相邻两个对称中心之间的距离为2π,且()f x 的图象关于直线12x π=对称,则下列判断正确的是()A .函数()y f x =在,63ππ⎡⎤-⎢⎥⎣⎦上单调递减 B .函数()y f x =的图象关于点,06π⎛⎫-⎪⎝⎭对称 C .函数()y f x =的图象关于直线512x π=-对称 D .要得到sin 21y x =+的图象,只需将()f x 图象向右平移3π个单位 【答案】C【分析】依题意可求得A ,ω,ϕ,从而可求得()f x 的解析式,从而可以对函数的单调区间、对称中心、对称轴、平移一一判断. 【解析】由已知:3A =,2ω=,3πϕ=,∴()3sin(2)13f x x π=++,令3222232k x k πππππ+++,得7()1212k x k k Z ππππ++∈,故选项A 错误; 根据函数()f x 的解析式可知对称中心的纵坐标一定是1,故选项B 错误; 令2()32x k k Z πππ+=+∈,解得()122k x k Z ππ=+∈,当1k =-时,符合题意,故选项C 正确; 对于选项D ,需将()f x 图象向右平移6π个单位才能得到sin 21y x =+,故选项D 错误.故选C . 【点睛】解决本题的关键是要求出()sin()1f x A x ωϕ=++的解析式,然后要对单调性、对称性以及平移很熟悉.26.若sin170tan10λ︒+︒=λ的值为( )A B .2 C .3D .3【答案】D【解析】依题意,sin10sin10cos10λ︒︒+=︒sin10cos10cos10︒︒+︒=︒,sin10︒cos10cos10︒︒=︒,()202cos10sin 30sin10cos302sin 20︒︒︒=︒︒=-︒2=,则λ=D . 27.在ABC 中,角,,A B C 所对的边分别为,,a b c ,下列条件使得ABC 无法唯一确定的是( )A .3,15,25aBC ==︒=︒ B .3,4,40a b C ===︒ C .3,4,40a b A ===︒D .3,4,40a b B ===︒【答案】C【分析】对于A :用正弦定理判断;对于B :先由余弦定理,再用正弦定理可以求出角A 、B ,进行判断; 对于C :由正弦定理4sin 40sin =3B ⨯,根据大边对大角,这样的角B 有2个,进行判断;. 对于D :由正弦定理计算3sin 40sin =4A ⨯,由大边对大角,这样的角A 有1个,进行判断. 【解析】对于A :∵3,15,25aBC ==︒=︒,∴A =140°,由正弦定理得:sin sin sin a b cA B C==, ∴33sin sin15,sin =sin 25sin sin140sin sin140a ab Bc C A A =⨯=⨯=⨯⨯, ∴ABC 唯一确定;故A 正确. 对于B :∵3,4,40a b C ===︒,由余弦定理,可得:222cos40=2524cos40c a b ab =+--,由正弦定理:sin sin sin a b c A B C ==,有:3424cos 40sin sin sin 40A B==,可以求出角A 、B ,∴ABC 唯一确定;故B 正确. 对于C :∵3,4,40a b A ===︒,由正弦定理:sin sin sin a b cA B C ==,有:34sin 40sin B=, ∴4sin 40sin =3B ⨯, ∵3,4,a b ==∴a b <∴40A B =<,这样的角B 有2个,∴ABC 不唯一,故C 错误. 对于D :∵3,4,40a b B ===︒,由正弦定理:sin sin sin a b cA B C ==,有:34sin sin 40A =, ∴3sin 40sin =4A ⨯,∵3,4,a b ==∴a b <∴40AB <=,这样的角A 有唯一一个,∴角C 唯一,∴ABC 唯一,故D 正确,故选C .【点睛】判断三角形解的个数的方法:(1)画图法:以已知角的对边为半径画弧,通过与邻边的交点个数判断解的个数:。

上海高中数学三角函数大题压轴题练习

上海高中数学三角函数大题压轴题练习

三角函数大题压轴题练习1.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ-上的值域 解:(1)()cos(2)2sin()sin()344f x x x x πππ=-+-+1cos 22(sin cos )(sin cos )22x x x x x x =++-+221cos 22sin cos 22x x x x =++-1cos 22cos 22x x x =- sin(2)6x π=-2T 2ππ==周期∴ 由2(),()6223k x k k Z x k Z πππππ-=+∈=+∈得 ∴函数图象的对称轴方程为 ()3x k k Z ππ=+∈(2)5[,],2[,]122636x x πππππ∈-∴-∈- 因为()sin(2)6f x x π=-在区间[,]123ππ-上单调递增,在区间[,]32ππ上单调递减,所以 当3x π=时,()f x 取最大值 1又1()()1222f f ππ-=<=,当12x π=-时,()f x 取最小值-所以 函数 ()f x 在区间[,]122ππ-上的值域为[2.已知函数2π()sin sin 2f x x x x ωωω⎛⎫=+ ⎪⎝⎭(0ω>)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.解:(Ⅰ)1cos 2()222x f x x ωω-=+112cos 2222x x ωω=-+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭.因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤, 所以ππ7π2666x --≤≤,所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤, 因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤,即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,.3. 已知向量m =(sin A ,cos A ),n =1)-,m ·n =1,且A 为锐角.(Ⅰ)求角A 的大小;(Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域.解:(Ⅰ) 由题意得3sin cos 1,m n A A =-= 12sin()1,sin().662A A ππ-=-= 由A 为锐角得 ,663A A πππ-==(Ⅱ) 由(Ⅰ)知1cos ,2A =所以2213()cos 22sin 12sin 2sin 2(sin ).22f x x x x s x =+=-+=--+因为x ∈R ,所以[]sin 1,1x ∈-,因此,当1sin 2x =时,f (x )有最大值32.当sin 1x =-时,()f x 有最小值-3,所以所求函数()f x 的值域是332⎡⎤-⎢⎥⎣⎦,4.已知函数()sin()(00π)f x A x A ϕϕ=+><<,,x ∈R 的最大值是1,其图像经过点π132M ⎛⎫ ⎪⎝⎭,.(1)求()f x 的解析式;(2)已知π02αβ⎛⎫∈ ⎪⎝⎭,,,且3()5f α=,12()13f β=,求()f αβ-的值.【解析】(1)依题意有1A =,则()s i n ()f x x ϕ=+,将点1(,)32M π代入得1sin()32πϕ+=,而0ϕπ<<,536πϕπ∴+=,2πϕ∴=,故()sin()cos 2f x x x π=+=; (2)依题意有312cos ,cos 513αβ==,而,(0,)2παβ∈,45sin ,sin 513αβ∴====,3124556()cos()cos cos sin sin 51351365f αβαβαβαβ-=-=+=⨯+⨯=。

第7章 三角函数(章节压轴题专练)高一数学(沪教版2020必修第二册)

第7章 三角函数(章节压轴题专练)高一数学(沪教版2020必修第二册)

第7章 三角函数章节压轴题专练一、单选题 1.(2020·上海市青浦高级中学高一期末)设函数()cos()cos()f x m x n x αβ=+++,其中m 、n 、α、β为已知实常数,x ∈R ,有下列四个命题:(1)若(0)02f f ⎛⎫== ⎪⎝⎭π,则()0f x =对任意实数x 恒成立;(2)若(0)0f =,则函数()f x 为奇函数;(3)若02f ⎛⎫=⎪⎝⎭π,则函数()f x 为偶函数;(4)当22(0)02f f ⎛⎫=≠⎪⎝⎭π时,若12()()0f x f x ==,则122x x k π-=(k Z ∈);则上述命题中,正确的个数是( ) A .1个 B .2个C .3个D .4个【答案】C【分析】利用两角和的余弦公式化简()f x 表达式. 对于命题(1),将(0)0,02f f π⎛⎫== ⎪⎝⎭化简得到的表达式代入上述()f x 表达式,可判断出(1)选项的真假;对于命题(2)选项,将(0)0f =化简得到的表达式代入上述()f x 表达式,可判断出()f x 为奇函数,由此判断出(2)选项的真假;对于命题(3)选项,将()02f π=化简得到的表达式代入上述()f x 表达式,可判断出()f x 为偶函数,由此判断出(3)选项的真假;对于命题(4)选项,根据22(0)02f f π⎛⎫+≠⎪⎝⎭、()()120f x f x ==,求得()f x 的零点的表达式,进而判断出(4)选项的真假.【详解】()(cos cos sin sin )(cos cos sin sin )f x m x x n x x ααββ=-+-(cos cos )cos (sin sin )sin m n x m n x αβαβ=+-+不妨设 ()()11221122()cos cos cos sin sin sin f x k k x k k x αααα=+-+.1212,,,k k αα为已知实常数.若(0)0f =,则得 1122cos cos 0k k αα+=;若()02f π=,则得1122sin sin 0k k αα+=.于是当(0)02f f ⎛⎫== ⎪⎝⎭π时,()0f x =对任意实数x 恒成立,即命题(1)是真命题;当(0)0f =时,()1122()sin sin sin f x k k x αα=-+,它为奇函数,即命题(2)是真命题;当()02f π=时,()1122()cos cos cos f x k k x αα=+,它为偶函数,即命题(3)是真命题;当22(0)02f f π⎛⎫+≠ ⎪⎝⎭时,令()0f x =,则()()11221122cos cos cos sin sin sin 0k k x k k x αααα+-+=,上述方程中,若cos 0x =,则sin 0x =,这与22cos sin 1x x +=矛盾,所以cos 0x ≠. 将该方程的两边同除以cos x 得11221122cos cos tan sin sin k k x k k αααα+=+,令11221122cos cos sin sin k k t k k αααα+=+ (0t ≠), 则 tan x t =,解得 arctan x k t π=+ (k Z ∈).不妨取 11arctan x k t π=+,22arctan x k t π=+ (1k Z ∈且2k Z ∈), 则()1212x x k k π-=-,即12x x k π-= (k Z ∈),所以命题(4)是假命题. 故选:C【点睛】本题考查两角和差公式,三角函数零点,三角函数性质,重点考查读题,理解题和推理变形的能力,属于中档题型.2.(2017·上海嘉定区·高一期末)设函数()cos()cos()f x m x n x αβ=+++,其中,,,m n αβ为已知实常数,x ∈R ,则下列命题中错误的是( ) A .若(0)()02f f π==,则()0f x =对任意实数x 恒成立;B .若(0)0f =,则函数()f x 为奇函数;C .若()02f π=,则函数()f x 为偶函数;D .当22(0)()02f f π+≠时,若12()()0f x f x ==,则122x x k π-= (k ∈Z ).【答案】D【分析】利用两角和的余弦公式化简()f x 表达式.对于A 选项,将(0)0,()02f f π==化简得到的表达式代入上述()f x 表达式,可判断出A 选项为真命题.对于B 选项,将(0)0f =化简得到的表达式代入上述()f x 表达式,可判断出()f x 为奇函数,由此判断出B 选项为真命题.对于C 选项,将()02f π=化简得到的表达式代入上述()f x 表达式,可判断出()f x 为偶函数,由此判断出C 选项为真命题.对于D 选项,根据22(0)()02f f π+≠、12()()0f x f x ==,求得()f x 的零点的表达式,由此求得12x x k π-= (k Z ∈),进而判断出D 选项为假命题. 【详解】()()()cos cos sin sin cos cos sin sin f x m x x n x x ααββ=-+-()()cos cos cos sin sin sin m n x m n x αβαβ=+-+.不妨设 11221122()(cos cos )cos (sin sin )sin f x k k x k k x αααα=+-+.1212,,,k k αα为已知实常数.若(0)0f =,则得 1122cos cos 0k k αα+=;若()02f π=,则得1122sin sin 0k k αα+=.于是当(0)()02f f π==时,()0f x =对任意实数x 恒成立,即命题A 是真命题;当(0)0f =时,1122()(sin sin )sin f x k k x αα=-+,它为奇函数,即命题B 是真命题;当()02f π=时,1122()(cos cos )cos f x k k x αα=+,它为偶函数,即命题C 是真命题;当22(0)()02f f π+≠时,令()0f x =,则11221122(cos cos )cos (sin sin )sin 0k k x k k x αααα+-+=,上述方程中,若cos 0x =,则sin 0x =,这与22cos sin 1x x +=矛盾,所以cos 0x ≠. 将该方程的两边同除以cos x 得11221122cos cos tan sin sin k k x k k αααα+=+,令11221122cos cos sin sin k k t k k αααα+=+ (0t ≠), 则 tan x t =,解得 arctan x k t π=+ (k Z ∈).不妨取 11arctan x k t π=+,22arctan x k t π=+ (1k Z ∈且2k Z ∈), 则1212()x x k k π-=-,即12x x k π-= (k Z ∈),所以命题D 是假命题. 故选:D【点睛】本小题主要考查两角和的余弦公式,考查三角函数的奇偶性,考查三角函数零点有关问题的求解,考查同角三角函数的基本关系式,属于中档题.3.(2019·上海复旦附中高一期中)若函数()()2221sin 1x xf x x ++=+的最大值和最小值分别为M 、m ,则函数()()()sin 3g x M m x M m x π⎡⎤=+++-⎢⎥⎣⎦图像的对称中心不可能是_______A .4,33ππ⎛⎫⎪⎝⎭B .,123ππ⎛⎫⎪⎝⎭C .28,33ππ⎛⎫⎪⎝⎭D .416,33ππ⎛⎫⎪⎝⎭【答案】C【分析】设()()2h x f x =-,可得()h x 为奇函数,进而得到4M m +=,从而得到()g x 解析式;根据()4sin 4s x x x =+的对称中心,平移可得()g x 对称中心的坐标;再分别对应四个选项,当k 不是整数时,则不可能为对称中心,由此可得选项. 【详解】设()()24sin 21x x h x f x x +=-=+,则()()24sin 1x xh x h x x ---==-+ 即()h x 为奇函数 ()()224M m h x h x ∴+=++-+=()4sin 44sin 43333g x x x x x ππππ⎛⎫⎛⎫⎛⎫∴=+-=-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭令()4sin 4s x x x =+ 则()()4sin 44sin 24222k k s x s x x x x k x k ππππ⎛⎫⎛⎫+-=++-+-=⎪ ⎪⎝⎭⎝⎭,k Z ∈ 可知()4sin 4s x x x =+的对称中心为(),4k k k Z ππ⎛⎫∈ ⎪⎝⎭将()4sin 4s x x x =+的图象向右平移12π个单位,再向上平移3π个单位得()g x 的图象 ()g x ∴的对称中心为(),4123k k k Z ππππ⎛⎫++∈⎪⎝⎭ 当24123k πππ+=时,73k =,不合题意,可知不可能为C又当1,0,5k =时分别对应选项,,A B D ,可知,,A B D 均为()g x 的对称中心 本题正确选项:C【点睛】本题考查函数性质的综合应用问题,涉及到利用奇偶性求解最值、与三角函数有关的对称中心的求解、函数图象平移变换问题,对于学生函数性质的掌握要求较高,属于偏难题. 二、填空题4.(2017·上海市七宝中学高一期中)已知02πθ<<,若2cos 2sin 220m m θθ+--<对任意实数θ恒成立,则实数m 应满足的条件是__________. 【答案】12m ≥-【分析】不等式2cos 2sin 220m m θθ+--<变形为2sin 2sin 210m m θθ-+--<令()sin 01x x θ=<<,即上式变形为关于x 的一元二次不等式22210x mx m -+--<,对应的二次函数为2()21f x x m =-+-,根据题意,若满足02πθ<<时不等式2cos 2sin 220m m θθ+--<恒成立,则需01x <<时,()0f x <恒成立,分类讨论,当0x m =≤或01x m <=<或1x m =≥时,判断函数单调性,解不等式,求解即可.【详解】2cos 2sin 220m m θθ+--<221sin 2sin 22sin 2sin 210m m m m θθθθ∴-+--=-+--<.设()sin 01x x θ=<<,2()221f x x mx m =-+--. 由题意可知,01x <<时,()0f x <恒成立. 当对称轴0x m =≤时()f x 在(0,1)x ∈上单调递减, 则()(0)210f x f m <=--≤,即102m -≤≤ 当对称轴01x m <=<时,222()()221210f x f m m m m m m ≤=-+--=--<解得11m <<01m <<当对称轴1x m =≥时()f x 在(0,1)x ∈上单调递增, 则()(1)122120f x f m m <=-+--=-<,即m 1≥ 综上所述:12m ≥- 故答案为:12m ≥-【点睛】本题考查一元二次不等式恒成立问题,同时也考查同角三角函数基本关系,属于难题.5.(2018·宝山区·上海交大附中高一期中)设函数f(x)=a 1⋅sin (x +α1)+a 2⋅sin (x +α2)+⋯+a n ⋅sin (x +αn ),其中a i 、αi (i =1,2,⋯,n,n ∈N ∗,n ≥2)为已知实常数,x ∈R . 下列所有正确命题的序号是____________.①若f(0)=f(π2)=0,则f(x)=0对任意实数x 恒成立;②若f(0)=0,则函数f(x)为奇函数;③若f(π2)=0,则函数f(x)为偶函数;④当f2(0)+f2(π2)≠0时,若f(x1)=f(x2)=0,则x1−x2=kπ(k∈Z).【答案】①②③④.【分析】对于①,由f(0)=f(π2)=0,证明函数f(x)既是奇函数又是偶函数即可得出f(0)=0;对于②,根据奇函数的定义可得出结论;对于③,根据偶函数的定义进行判断即可得出结论;对于④,根据f(x1)=f(x2)=0得(sin x1−sin x2)(a1cosα1+a2cosα2+⋯+a n cosαn)+(cos x1−cos x2)(a1sinα1+a2sinα2+⋯+a n sinαn)=0,于此得出结论.【详解】对于命题①,若f(0)=0,则f(0)=a1sinα1+a2sinα2+⋯+a n sinαn=0,则f(−x)+f(x)=a1sin(−x+α1)+a2sin(−x+α2)+⋯+a n sin(−x+αn)+a1sin(x+α1)+a2sin(x+α2)+⋯+a n sin(x+αn)=cos x⋅(a1sinα1+a2sinα2+a n sinαn)=0,∴函数f(x)为奇函数,若f(π2)=0,则f(π2)=a1sin(π2+α1)+a2sin(π2+α2)+⋯+a n sin(π2+αn)=−a1cosα1−a2cosα2−⋯−a n cosαn=0,∴f(−x)−f(x)=a1sin(−x+α1)+a2sin(−x+α2)+⋯+a n sin(−x+αn)−a1sin(x+α1)−a2sin(x+α2)−⋯−a n sin(x+αn)=sin x⋅(a1cosα1+a2cosα2+⋯+a n cosαn)=0,∴函数f(x)为偶函数,若f(0)=f(π2)=0,则函数f(x)既是奇函数,又是偶函数,即f(x)=0,命题①正确;对于命题②,由①的证明过程可知,当f(0)=0时,函数f(x)为奇函数,命题①正确;对于命题③,由①的证明过程可知,当f(π2)=0时,函数f(x)为偶函数,命题②正确;对于命题④,当f2(0)+f2(π2)≠0时,∵f(x)=a1⋅sin(x+α1)+a2⋅sin(x+α2)+⋯+a n⋅sin(x+αn)=(a1cosα1+a2cosα2+⋯+a n cosαn)sin x+(a1sinα1+a2sinα2+a n sinαn)cos x,令a=a1cosα1+a2cosα2+⋯+a n cosαn=f(π2),b =a 1sin α1+a 2sin α2+a n sin αn =f(0),则a 2+b 2=f 2(0)+f 2(π2)≠0, 由辅助角公式得f (x )=a sin x +b cos x =√a 2+b 2sin (x +φ), 其中cos φ=√,sin φ=,∵f (x 1)=f (x 2)=0,则(x 1,0)、(x 2,0)是函数y =f (x )的两个对称中心点,函数y =f (x )的最小正周期为2π,该函数的两个相邻对称中心之间的距离为周期的一半, 因此,x 1−x 2=kπ (k ∈Z ),命题④正确. 故答案为①②③④.【点睛】本题的考点是三角形与数列的综合,主要考查三角函数的化简,考查新定义与三角函数性质的判断,解题的关键就是利用三角函数基本性质的定义来进行计算,从而判断结论的正误,运算量较大,综合性较强,属于难题.三、解答题6.(2020·徐汇区·上海中学高一期中)某公司要在一条笔直的道路边安装路灯,要求灯柱AB 与底面垂直,灯杆BC 与灯柱AB 所在的平面与道路走向垂直,路灯C 采用锥形灯罩,射出的管线与平面ABC 部分截面如图中阴影所示,2,,33ABC ACD ππ∠=∠=路宽AD =24米,设.126BAC ππθθ⎛⎫∠=≤≤ ⎪⎝⎭(1)求灯柱AB 的高h (用θ表示);(2)此公司应该如何设置θ的值才能使制作路灯灯柱AB 和灯杆BC 所用材料的总长度最小?最小值为多少?【答案】(1)32sin θsin θ36h ππ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭126ππθ⎛⎫≤≤ ⎪⎝⎭;(2) 12πθ=时,所用材料的总长度最小,最小值为8+【分析】(1)分别在△ABC 和△ACD 中,利用正弦定理即可解出答案;(2)在△ABC 中,利用正弦定理求出BC ,再利用(1)的结果和三角函数的和差公式即可求得答案. 【详解】(1)由题意可得∠ADC=π-∠CAD -∠ACD =(θ)θ236ππππ---=+,∠BCA=θ3π-,在△ACD 中,由正弦定理可得:AD ACsin ACD sin ADC∠∠=,则AC=AD sin ADC θsin ACD 6π∠∠⎛⎫⨯=+ ⎪⎝⎭,在△ABC 中,由正弦定理可得:AB ACsin BCA sin ABC∠∠=,则AB=AC sin BCA sin BCA sin ABC 3∠∠∠⨯=⨯32sin θsin θ36ππ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭126ππθ⎛⎫≤≤ ⎪⎝⎭.即得32sin θsin θ36h ππ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭126ππθ⎛⎫≤≤⎪⎝⎭.(2)由(1)得AC=θ6π⎛⎫+⎪⎝⎭,AB=32sin θsin θ36ππ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭, 在△ABC 中,由正弦定理可得:AC BCsin ABC sin BAC∠∠=,则AC BC sin BAC 32sin θsin θsin ABC 6π∠∠⎛⎫=⨯=+ ⎪⎝⎭,所以AB BC 32sin θsin θ32sin θsin θ16sin 2366πππθ⎛⎫⎛⎫⎛⎫+=-+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由126ππθ≤≤可得263ππθ≤≤,可得当26πθ=,即12πθ=时()AB BC 8min +=+即当公司设置θ的值为12π时,灯柱AB 和灯杆BC 所用材料的总长度最小,最小值为8+【点睛】本题借助实际应用考查了利用正弦定理解三角形,考查了三角函数的和差公式及其应用,属于中档题.7.(2018·上海长宁区·高一期末)已知函数()()()1122()sin sin sin (0)n n n f x a x a x a x ωϕωϕωϕω=++++++>,其中数列{}n a 是公比为2的等比数列,数列{}n ϕ是公差为2π的等差数列. (1)若11a =,12ϕπ=,分别写出数列{}n a 和数列{}n ϕ的通项公式; (2)若2()f x 是奇函数,且1(0,)ϕ∈π,求1ϕ;(3)若函数()n f x 的图像关于点(,0)2π对称,且当x π=时,函数()n f x 取得最小值,求ω的最小值. 【答案】(1)12n na ,2n n ϕπ=;(2)1arctan 2ϕ=π-;(3)1 【分析】(1)根据等差数列、等比数列的通项公式111,(1)n n n a a q b b n d -==+-即可求解;(2)根据奇函数的定义得出22()()0f x f x -+=,化简得1111sin 2cos 0a a ϕϕ+=,解方程可得1arctan 2ϕ=π-(3)将()n f x 化成()sin cos )n m x n x f x x ωωωϕ=+=+的形式,依题意有()02n f π=,从而得到11,2k k ωϕπ+=π∈Z ,因为当x π=时,函数()n f x 取得最小值,所以222,2k k ωϕ3ππ+=π+∈Z ,两式相减即可求解. 【详解】(1)由等差数列、等比数列的通项公式111,(1)n n n a a q b b n d -==+-可得12n n a ,2n n ϕπ=; (2)()()211221122()cos cos sin sin sin cos f x a a x a a x ϕϕωϕϕω=+++ 因为22()()0f x f x -+=,所以1122sin sin 0a a ϕϕ+= 即1111sin 2cos 0a a ϕϕ+=,所以1tan 2ϕ=- 又由1(0,)ϕ∈π,得1arctan 2ϕ=π-(3)()()()1122()sin sin sin n n n f x a x a x a x ωϕωϕωϕ=++++⋅⋅⋅++()()11221122cos cos cos sin sin sin sin cos n n n n a a a x a a a x ϕϕϕωϕϕϕω=++⋅⋅⋅++++⋅⋅⋅+记1122cos cos cos n n a a a m ϕϕϕ++⋅⋅⋅+=,1122sin sin sin n n a a a n ϕϕϕ++⋅⋅⋅+=则()sin cos )n m x n x f x x ωωωϕ=+=+,其中220m n +≠;因为()n f x 的图像关于点(,0)2π对称,所以11,2k k ωϕπ+=π∈Z ①因为当x π=时,函数()n f x 取得最小值,所以222,2k k ωϕ3ππ+=π+∈Z ② ②-①得21423k k ω=-+,因为12,k k Z ∈,0>ω 当20k =,11k =时,ω取得最小值为10【点睛】本题主要考查了等差数列、等比数列的通项公式的求法、三角函数的化简以及正弦型函数图像的性质,考查较全面,属于难题.8.(2019·上海市向明中学高一期中)如图,点A ,B 单位圆O 上的两点,点C 是圆O 与x 轴正半轴的交点,将锐角α的终边OA 按逆时针方向旋转3π到OB .(1)若点A 的坐标为34,55⎛⎫ ⎪⎝⎭,求1sin 21cos 2αα++的值;(2)若ABC ∆α的大小; (3)用锐角α表示BC ,并求BC 的取值范围. 【答案】(1)4918;(2)3π;(3)⎛ ⎝⎭. 【分析】(1)由三角函数的定义,得sin cos αα,的值,再对原式化简计算即可; (2)考虑将ABC ∆进行分割,再用三角形面积公式in 12s S ab C =求解; (3)先用余弦定理写出BC 关于α的表达式,再求BC 的取值范围. 【详解】(1)因为锐角α的终边OA ,点A 的坐标为34,55⎛⎫ ⎪⎝⎭,所以434355sin cos 1515αα====,, 所以224324347sin 22cos 255255525αα⎛⎫⎛⎫=⋅⋅==-=- ⎪ ⎪⎝⎭⎝⎭,,所以2411sin 2492571cos 218125αα++==+-. (2)所以11sin sin 22344παα⎛⎫++=- ⎪⎝⎭,所以sin sin 3παα⎛⎫=+ ⎪⎝⎭,因为α是锐角,所以3πααπ⎛⎫++= ⎪⎝⎭, 所以3πα=.(3)在OBC ∆中,222=2cos BC OB OC OB OC BOC +-⋅⋅∠,所以222=11211cos 22cos 33BC ππαα⎛⎫⎛⎫+-⋅⋅⋅+=-+ ⎪ ⎪⎝⎭⎝⎭, 因为α是锐角,所以02πα<<,所以5336πππα, 所以1cos 32πα⎛⎫<+< ⎪⎝⎭, 所以212BC <<+,所以BC ⎛∈ ⎝⎭. 【点睛】本题考查三角函数的定义、三角形的面积公式、求三角函数值域,将三角函数的性质与解三角形结合,综合性较强,同时考查学生的推理和计算能力,属于难题. 9.(2018·上海普陀区·曹杨二中高一期中)已知函数()cos sin .333x x x f x ⎛⎫=⋅+ ⎪⎝⎭(1)将()f x 化为()sin 0022A x H A ππωφωφ⎛⎫⎛⎫++∈-⎪ ⎪⎝⎭⎝⎭>,>,,的形式,并写出其最小正周期和图象对称轴方程,并判断函数的奇偶性(不需证明); (2)若三角形三边a b c 、、满足2b ac b =,所对为B ,求B 的范围; (3)在(2)的条件下,求()f B 的取值范围. 【答案】(1)()23332f x sin x T ππ⎛⎫=++=⎪⎝⎭,对称轴方程为()342x k k Z ππ=+∈,非奇非偶;(2)(0,]3π;(3)12⎤+⎥⎦. 【分析】(1)根据三角恒等变换化简,由正弦型函数的图象与性质求解(2)利用余弦定理及均值不等式求解(3)由(1)(2)及正弦函数的性质可求出.【详解】(1)()212cos sin sin 333233x x x x f x x ⎛⎫=⋅+= ⎪⎝⎭1222sin (1cos )sin()2323332x x x π=+=+++, 所以2323T ππ==,由2,332x k k Z πππ+=+∈, 知对称轴方程为()342x k k Z ππ=+∈, 函数是非奇非偶函数.(2)由余弦定理得222221211cos 222222a cb ac ac B ac ac ac +-+==-≥-=,当且仅当a c =时取等号,因为0B π<<, 所以03B π<≤.(3)由()23,332f x sin x π⎛⎫=++ ⎪⎝⎭03B π<≤,所以()233f B sin B π⎛⎫=+ ⎪⎝⎭03B π<≤,因为253339B πππ<+≤,2133sin B π⎛⎫<+≤ ⎪⎝⎭()1f B <≤+,所以()f B 的取值范围为12⎤+⎥⎦. 【点睛】本题主要考查了三角恒等变换,正弦型函数的图象与性质,余弦定理,均值不等式,由角的范围求函数值域,属于中档题.10.(2018·上海普陀区·曹杨二中高一期中)已知函数()sin 210.3f x x πωω⎛⎫=+- ⎪⎝⎭,> (1)当12ω=时,求函数()f x 的单调递减区间; (2)对于(]x a a a π∈+,,为任意实数,关于x 的方程()1f x =-恰好有两个不等实根,求实数ω的值;(3)在(2)的条件下,若不等式()1f x t +<在03x π⎡⎤∈⎢⎥⎣⎦,内恒成立,求实数t 的取值范围.【答案】(1)72,2()66k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)1;(3) (0,1). 【分析】(1)当12ω=时,写出函数解析式,由正弦型函数性质可求解(2)由题意可知sin 203x πω⎛⎫+= ⎪⎝⎭在(]x a a a π∈+,,为任意实数,有两不等实根,知其周期为π,即可求解(3)求出()f x 的值域,原不等式可转化为1()1t f x t --<<-恒成立,()f x 的值域是(1,1)t t ---的子集即可.【详解】(1)当12ω=时,()sin 13f x x π⎛⎫=+- ⎪⎝⎭,令322232k x k πππππ+≤+≤+,k Z ∈, 解得722,66k x k k Z ππππ+≤≤+∈, 所以函数()f x 的单调递减区间为72,2()66k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦.(2)因为对于(]x a a a π∈+,,为任意实数,关于x 的方程()1f x =-恰好有两个不等实根, 所以sin 203x πω⎛⎫+= ⎪⎝⎭在(]x a a a π∈+,,为任意实数,有两不等实根, 所以22T ππω==,即1ω=. (3)因为()sin 213f x x π⎛⎫=+- ⎪⎝⎭,03x π⎡⎤∈⎢⎥⎣⎦,, 所以233x πππ≤+≤,0sin 213x π⎛⎫≤+≤ ⎪⎝⎭, 故1()0f x -≤≤,又因为()1f x t +<恒成立, 所以1()1t f x t --<<-恒成立,所以1110t t --<-⎧⎨->⎩,解得01t <<.【点睛】本题主要考查了正弦型函数的单调性,周期,值域,绝对值不等式恒成立,属于难题.11.(2019·上海杨浦区·复旦附中高一期末)设函数()5sin()f x x ωϕ=+,其中0>ω,(0,)2πϕ∈.(1)设2ω=,若函数()f x 的图象的一条对称轴为直线35x π=,求ϕ的值; (2)若将()f x 的图象向左平移2π个单位,或者向右平移π个单位得到的图象都过坐标原点,求所有满足条件的ω和ϕ的值; (3)设4ω=,6π=ϕ,已知函数()()3F x f x =-在区间[0,6]π上的所有零点依次为123,,,,n x x x x ,且1231n n x x x x x -<<<<<,*n N ∈,求123212222n n n x x x x x x --+++++的值.【答案】(1)310π;(2)643n ω+=,13ϕπ=;(3)3913π 【分析】(1)根据对称轴对应三角函数最值以及(0,)2πϕ∈计算ϕ的值;(2)根据条件列出等式求解ω和ϕ的值;(3)根据图象利用对称性分析待求式子的特点,然后求值. 【详解】(1)()5sin(2)f x x ϕ=+,因为35x π=是一条对称轴,36()2sin()55f ππϕ=+对应()f x 最值;又因为(0,)2πϕ∈,所以6617()(,)5510πππϕ+∈,所以63()52πϕπ+=,则310πϕ=;(2)由条件知:5sin((0))025sin((0))0πωϕωπϕ⎧++=⎪⎨⎪-+=⎩ ,可得1122,2,k k Z k k Zπωϕππωϕπ⎧+=∈⎪⎨⎪-+=∈⎩,则1212(2)(,)3k k k k Z πϕ+=∈,又因为(0,)2πϕ∈,所以3πϕ=,则1122,23,3k k Z k k Zππωπππωπ⎧+=∈⎪⎪⎨⎪-+=∈⎪⎩,故有:112262,313,3k k Z k k Z ωω-⎧=∈⎪⎪⎨-⎪=∈⎪⎩,当2k 为奇数时,令221()k m m Z =-∈,所以 13(21)46,33m mm Z ω---==∈,当2k 为偶数时,令22()k m m Z =∈,所以13(2)16,33m m m Z ω--==∈,当11k m +=-时,1116(1)26446(,)333k k m m k Z +-+-==∈,又因为0>ω,所以64()3n n N ω+=∈;(3)分别作出()f x (部分图像)与35y =图象如下:因为242T ππ==,故[0,6]π共有12个T ;记()f x 对称轴为(1,2,3...,23)i x a i ==,据图有:1212x x a +=,2322x x a +=,3432x x a +=,......,232423x x a +=,则12321122322222(...)n n n x x x x x x a a a --+++++=+++,令4,62x k k Z πππ+=+∈,则,412k x k Z ππ=+∈,又因为[0,6]x π∈,所以[0,23]k ∈,由于()f x 与35y =仅在前半个周期内有交点,所以max 22k =, 则1232101221139122222(...)223444123n n n x x x x x x πππ--+++++=++++⋅⋅=.【点睛】本题考查三角函数图象与性质的综合运用,难度较难.对于三角函数零点个数问题,可将其转化为函数图象的交点个数问题,通过数形结合去解决问题会更方便.12.(2019·上海中学高一期中)已知函数()()()sin 20f x x φφπ=+<<,其图像的一个对称中心是012π⎛⎫- ⎪⎝⎭,,将()f x 的图像向左平移3π个单位长度后得到函数()g x 的图像.(1)求函数()g x 的解析式;(2)若对任意[]120x x t ∈,,,当12x x <时,都有()()()()1212f x f x g x g x --<,求实数t 的最大值;(3)若对任意实数()()0a y g x ωω=,>在4a a π⎡⎤+⎢⎥⎣⎦,上与直线12y 的交点个数不少于6个且不多于10个,求正实数ω的取值范围.【答案】(1)()5sin 26g x x π⎛⎫=+⎪⎝⎭; (2)4π; (3)[)12,20. 【分析】(1)由图像的一个对称中心是012π⎛⎫- ⎪⎝⎭,列方程012f π⎛⎫-= ⎪⎝⎭即可求得6π=ϕ,即可求得()sin 26f x x π⎛⎫=+⎪⎝⎭,利用平移规律得()3g x f x π⎛⎫=+⎪⎝⎭,问题得解. (2)由题可得()()f x g x -在[]0,t 上单调递增,求得()()f x g x -的增区间为(),44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,利用[]()0,,44t k k k Z ππππ⎡⎤⊆-+∈⎢⎥⎣⎦即可求得0,4t π⎛⎤∈ ⎥⎝⎦,问题得解.(3)()y g x ω=的最小正周期为T πω=,由题可得:4a a π⎡⎤+⎢⎥⎣⎦,的区间长度满足3454T T ππ⎧≤⎪⎪⎨⎪>⎪⎩,解不等式即可.【详解】(1)由题意,得sin 0126f ππϕ⎛⎫⎛⎫-=-+= ⎪ ⎪⎝⎭⎝⎭, 解得()6k k Z πϕπ=+∈,又0ϕπ<<,∴6π=ϕ, ∴()sin 26f x x π⎛⎫=+⎪⎝⎭, 从而()3g x f x π⎛⎫=+ ⎪⎝⎭5sin 2sin 2366x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦; (2)对任意[]12,0,x x t ∈,且12x x <,()()()()()()()()12121122f x f x g x g x f x g x f x g x -<-⇒-<-,即()()f x g x -在[]0,t 上单调递增,()()5sin 2sin 266f x g x x x x ππ⎛⎫⎛⎫-=+-+= ⎪ ⎪⎝⎭⎝⎭, 易得其单调增区间为(),44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,由于[]()0,,44t k k k Z ππππ⎡⎤⊆-+∈⎢⎥⎣⎦,∴当0k =时,[]0,,44t ππ⎡⎤⊆-⎢⎥⎣⎦,从而0,4t π⎛⎤∈ ⎥⎝⎦,∴实数t 的最大值为4π;(3)()5sin 26y g x x πωω⎛⎫==+⎪⎝⎭,其最小正周期为22T ππωω==,而区间,4a a π⎡⎤+⎢⎥⎣⎦的长度为4π, 要满足题意,则3454T T ππ⎧≤⎪⎪⎨⎪>⎪⎩,∴2012T πππω<=≤,解得[)12,20ω∈. 【点睛】本题主要考查了三角函数的图象特点及函数图象平移规律,还考查了函数单调性概念及求三角函数的增区间知识,考查复合函数的单调性规律,属于难题. 13.(2017·上海松江区·高一期末)若函数()f x 满足()32f x f x π⎛⎫=+⎪⎝⎭且()44f x f x x R ππ⎛⎫⎛⎫+=-∈ ⎪ ⎪⎝⎭⎝⎭,则称函数()f x 为“M 函数”. (1)试判断()4sin3f x x =是否为“M 函数”,并说明理由; (2)函数()f x 为“M 函数”,且当,4x ππ⎡⎤∈⎢⎥⎣⎦时,()sin f x x =,求()y f x =的解析式,并写出在30,2π⎡⎤⎢⎥⎣⎦上的单调递增区间; (3)在(2)的条件下,当()3,22k x k N πππ⎡⎤∈-+∈⎢⎥⎣⎦时,关于x 的方程()(f x a a =为常数)有解,记该方程所有解的和为()S k ,求()S k . 【答案】(1)不是“M 函数”;(2),42ππ⎡⎤⎢⎥⎣⎦,3,2ππ⎡⎤⎢⎥⎣⎦;(3)()()()()222341,(01)223341,423411k k a a S k k k a k k a πππ⎧++≤<=⎪⎪⎪⎪=++=⎨⎪⎪++<<⎪⎪⎩.【分析】()1由不满足()44f x f x x R ππ⎛⎫⎛⎫+≠-∈ ⎪ ⎪⎝⎭⎝⎭,得()4sin 3f x x =不是“M 函数”,()2可得函数()f x 的周期32T π=,()()2f x f x x R π⎛⎫=-∈ ⎪⎝⎭, ①当33,242x k k ππππ⎡⎤∈++⎢⎥⎣⎦时,()33sin 22f x f x k x k ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ②当33,2224x k k ππππ⎡⎤∈-+⎢⎥⎣⎦时,()33cos 222f x f x k x k πππ⎡⎤⎛⎫⎛⎫=--=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦在30,2π⎡⎤⎢⎥⎣⎦上的单调递增区间:,42ππ⎡⎤⎢⎥⎣⎦,3,2ππ⎡⎤⎢⎥⎣⎦()3由()2可得函数()f x 在,2ππ⎡⎤-⎢⎥⎣⎦上的图象,根据图象可得:①当02a ≤<或1时,()(f x a a =为常数)有2个解,其和为2π②当2a =时,()(f x a a =为常数)有3个解,其和为34π.③1a <<时,()(f x a a =为常数)有4个解,其和为π 即可得当()3,22k x k N πππ⎡⎤∈-+∈⎢⎥⎣⎦时,记关于x 的方程()(f x a a =为常数)所有解的和为()S k ,【详解】()()41sin3f x x =不是“M 函数”. 44sin sin 43433f x x x πππ⎛⎫⎛⎫⎛⎫+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,44sin sin 43433f x x x πππ⎛⎫⎛⎫⎛⎫-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()44f x f x x R ππ⎛⎫⎛⎫∴+≠-∈ ⎪ ⎪⎝⎭⎝⎭,()4sin3f x x ∴=不是“M 函数”. ()2函数()f x 满足()32f x f x π⎛⎫=+ ⎪⎝⎭,∴函数()f x 的周期32T π=()44f x f x x R ππ⎛⎫⎛⎫+=-∈ ⎪ ⎪⎝⎭⎝⎭,()()2f x f x x R π⎛⎫∴=-∈ ⎪⎝⎭, ①当33,242x k k ππππ⎡⎤∈++⎢⎥⎣⎦时,()33sin 22f x f x k x k ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭②当33,2224x k k ππππ⎡⎤∈-+⎢⎥⎣⎦时,()33cos 222f x f x k x k πππ⎡⎤⎛⎫⎛⎫=--=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()333,22224333,2242cos x k k x k f x sin x k k x k ππππππππππ⎧⎛⎫⎛⎫--≤≤+ ⎪ ⎪⎪⎪⎝⎭⎝⎭∴=⎨⎛⎫⎛⎫⎪-+≤≤+ ⎪ ⎪⎪⎝⎭⎝⎭⎩,在30,2π⎡⎤⎢⎥⎣⎦上的单调递增区间:,42ππ⎡⎤⎢⎥⎣⎦,3,2ππ⎡⎤⎢⎥⎣⎦; ()3由()2可得函数()f x 在,2ππ⎡⎤-⎢⎥⎣⎦上的图象为:①当0a ≤<或1时,()(f x a a =为常数)有2个解,其和为2π.②当2a =时,()(f x a a =为常数)有3个解,其和为34π.③当12a <<时,()(f x a a =为常数)有4个解,其和为π ∴当()3,22k x k N πππ⎡⎤∈-+∈⎢⎥⎣⎦时,记关于x 的方程()(f x a a =为常数)所有解的和为()S k ,则()()()()222341,(01)223341,43411k k a a S k k k a k k a πππ⎧++≤<=⎪⎪⎪⎪=++=⎨⎪⎪++<<⎪⎪⎩. 【点睛】本题考查了三角函数的图象、性质,考查了三角恒等变形,及三角函数型方程问题,属于难题.14.(2015·上海金山区·高一期中)某种波的传播是由曲线()sin()(0)f x A x A ωϕ=+>来实现的,我们把函数解析式()sin()f x A x ωϕ=+称为“波”,把振幅都是A 的波称为“ A 类波”,把两个解析式相加称为波的叠加.(1)已知“1 类波”中的两个波11()sin()f x x ϕ=+与22()sin()f x x ϕ=+叠加后仍是“1类波”,求12ϕϕ-的值;(2)在“A 类波“中有一个波是,从A 类波中再找出两个不同的波(每两个波的初相ϕ都不同),使得这三个不同的波叠加之后是平波,即叠加后是0y =,并说明理由. 【答案】(1)1222,3k k Z πϕϕπ-=±∈(2)2324()sin(),()sin(),33f x A x f x A x ππ=+=+ 试题分析:(1)将两函数式相加化简找到最大值为1,建立关于12,ϕϕ的关系式,进而求得角12ϕϕ-的大小;(2)中首先设出所找的波,采用待定系数法,将三个不同的波叠加化简后与0y =对比,找到满足的条件,求出对应的ϕ值,从而确定所求的波试题解析:(1)1212()()sin()sin()f x f x x x ϕϕ+=+++1212(cos cos )sin (sin sin )cos x x ϕϕϕϕ=+++=1=,即121cos(),2ϕϕ-=-所以1222,3k k Z πϕϕπ-=±∈ (2)设2132()sin(),()sin(),f x A x f x A x ϕϕ=+=+则12312()()()sin sin()sin()f x f x f x A x A x A x ϕϕ++=++++ =1212sin (1cos cos )cos (sin sin )0A x A x ϕϕϕϕ++++=恒成立则12121cos cos 0{sin sin 0ϕϕϕϕ++=+=,消去2ϕ可得11cos 2ϕ=-若取12,3πϕ=可取243πϕ=(或223πϕ=-等) 此时12312()()()sin sin()sin()0f x f x f x A x A x A x ϕϕ++=++++=是平波 考点:1.三角函数式的化简;2.三角函数求最值15.(2019·上海市实验学校高一期末)已知对任意x R ∈,cos cos210a x b x ++≥恒成立(其中0b >),求的最大值.【答案】+a b 的最大值为2.试题分析:利用二倍角公式2cos 22cos 1x x =-,利用换元法()cos 11t x t =-≤≤,将原不等式转化为二次不等式2210bt at b ++-≥在区间[]1,1-上恒成立,利用二次函数的零点分布进行讨论,从而得出+a b 的最大值,但是在对01b <≤时的情况下,主要对二次函数的对称轴4at b=-是否在区间[]1,1-进行分类讨论,再将问题转化为2288a b b ≤-的条件下,求+a b 的最大值,试题解析:由题意知,令cos x t =,[]1,1t ∈-,则当()2210f t bt at b =++-≥,[]1,1t ∈-恒成立,开口向上,①当1b >时,()010f b =-<,不满足()2210f t bt at b =++-≥,[]1,1t ∈-恒成立,②当01b <≤时,则必有()()()1101{{11101f a b a b a b f b a a b =++≥≥-+⇒⇒≤+-=-+≥≤+(1) 当对称轴[]1,14at b=-∉-时,即14a b ≥,也即4a b ≥时,有41b a b ≤≤+, 则13b ≤,413a b ≤+≤,则53a b +≤,当43a =,13b =时,()max 53a b +=. 当对称轴[]1,14at b=-∈-时,即14a b ≤,也即4a b ≤时, 则必有()2810a b b ∆=--≤,即()228188a b b b b ≤-=-,又由(1)知()221a b ≤+,则由于()()()2222188961310b b b b b b +--=-+=-≥,故只需2288a b b ≤-成立即可,问题转化为2288a b b ≤-的条件下,求+a b 的最大值,然后利用代数式的结构特点或从题干中的式子出发,分别利用三角换元法、导数法以及柯西不等式法来求+a b 的最大值.法一:(三角换元)把条件配方得:2214122a b ⎛⎫+-≤ ⎪⎝⎭,()cos {011sin 2a r r b θθ=≤≤+=,所以()sin 13131cos sin 2222222r a b r r θθθϕ+=++=++≤+≤, ()max 2a b ∴+=;法二:(导数)令则即求函数的导数,椭圆的上半部分;法三:(柯西不等式)由柯西不等式可知:,当且仅当,即及时等号成立.即当时,+a b 最大值为2.综上可知.考点:1.二倍角;2.换元法;3.二次不等式的恒成立问题;4.导数;5.柯西不等式 16.(2020·上海浦东新区·华师大二附中高一月考)已知函数()()()sin 0,0f x x ωϕωϕπ=+><<的最小正周期为π,且直线2x π=-是其图象的一条对称轴.(1)求函数()f x 的解析式;(2)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且A B C <<,cos a B =,若C 角满足()1f C =-,求a b c ++的取值范围;(3)将函数()y f x =的图象向右平移4π个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数记作()y g x =,已知常数R λ∈,*n N ∈,且函数()()()F x f x g x λ=+在(0,)n π内恰有2021个零点,求常数λ与n 的值.【答案】(1)()cos2f x x =;(2)()1;(3)1λ=-,1347n =. 【分析】(1)由函数的周期公式可求出ω的值,求出函数()y f x =的对称轴方程,结合直线2x π=-为一条对称轴结合ϕ的范围可得出ϕ的值,于此得出函数()y f x =的解析式; (2)由()1f C =-得出2C π=,再由cos a B =结合锐角三角函数得出1c =,利用正弦定理以及内角和定理得出14a b c A π⎛⎫++=++ ⎪⎝⎭,由条件得出04A π<<,于此可计算出a b c ++的取值范围;(3)令()0F x =,得22sin sin 10x x λ--=,换元得出[]sin 1,1t x =∈-,得出方程2210t t λ--=,设该方程的两根为1t 、2t ,由韦达定理得出1212t t =-,分(ii )101t <<、202t <<;(ii )11t =,2102t -<<;(iii )11t =-,2102t <<三种情况讨论,计算出关于x 的方程22sin sin 10x x λ--=在一个周期区间()0,2π上的实根个数,结合已知条件得出λ与n 的值. 【详解】(1)由三角函数的周期公式可得22πωπ==,()()sin 2f x x ϕ∴=+, 令()22x k k Z πϕπ+=+∈,得()422k x k Z πϕπ=-+∈, 由于直线2x π=-为函数()y f x =的一条对称轴,所以,()2422k k Z ππϕπ-=-+∈, 得()32k k Z πϕπ=+∈,由于0ϕπ<<,1k ∴=-,则2ϕπ=, 因此,()sin 2cos 22f x x x π⎛⎫=+= ⎪⎝⎭; (2)A B C <<,由三角形的内角和定理得3A B C C π=++<,3C ππ∴<<.()cos21f C C ==-,且2223C ππ<<,2C π∴=,2C π∴=. cos cos sin 2B A A π⎛⎫∴=-= ⎪⎝⎭,由cos a B =,得sin a A =,由锐角三角函数的定义得sin a A c =,1sin ac A∴==,由正弦定理得1sin sin b a B A ==,sin sin cos 2b B A A π⎛⎫∴==-= ⎪⎝⎭,sin cos 114a b c A A A π⎛⎫∴++=++=++ ⎪⎝⎭,2C π=,且22A B A π+=>,04A π∴<<,442A πππ∴<+<,sin 124A π⎛⎫∴<+< ⎪⎝⎭.21a b c ∴<++<,因此,a b c ++的取值范围是()1;(3)将函数()y f x =的图象向右平移4π个单位, 得到函数cos 2cos 2sin 242y x x x ππ⎡⎤⎛⎫⎛⎫=-=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数为()sin g x x =,()()()2cos2sin 2sin sin 1F x f x g x x x x x λλλ=+=+=-++,令()0F x =,可得22sin sin 10x x λ--=,令[]sin 1,1t x =∈-,得2210t t λ--=,280λ∆=+>,则关于t 的二次方程2210t t λ--=必有两不等实根1t 、2t ,则1212t t =-,则1t 、2t 异号, (i )当101t <<且201t <<时,则方程1sin x t =和2sin x t =在区间()()0,n n N π*∈均有偶数个根,从而方程22sin sin 10x x λ--=在()()0,n n N π*∈也有偶数个根,不合乎题意;(ii )当11t =,则2102t -<<,当()0,2x π∈时,1sin x t =只有一根,2sin x t =有两根,所以,关于x 的方程22sin sin 10x x λ--=在()0,2π上有三个根,由于202136732=⨯+,则方程22sin sin 10x x λ--=在()0,1346π上有36732019⨯=个根,由于方程1sin x t =在区间()1346,1367ππ上只有一个根,在区间()1367,1368ππ上无实解,方程2sin x t =在区间()1346,1367ππ上无实数解,在区间()1367,1368ππ上有两个根,因此,关于x 的方程22sin sin 10x x λ--=在区间()0,1347π上有2020个根,在区间()0,1348π上有2022个根,不合乎题意;(iii )当11t =-时,则2102t <<,当()0,2x π∈时,1sin x t =只有一根,2sin x t =有两根, 所以,关于x 的方程22sin sin 10x x λ--=在()0,2π上有三个根,由于202136732=⨯+,则方程22sin sin 10x x λ--=在()0,1346π上有36732019⨯=个根,由于方程1sin x t =在区间()1346,1367ππ上无实数根,在区间()1367,1368ππ上只有一个实数根,方程2sin x t =在区间()1346,1367ππ上有两个实数解,在区间()1367,1368ππ上无实数解, 因此,关于x 的方程22sin sin 10x x λ--=在区间()0,1347π上有2021个根,在区间()0,1348π上有2022个根,此时,()()2211110λλ⨯--⨯--=+=,得1λ=-.综上所述:1λ=-,1347n =.【点睛】本题考查利用三角函数的性质求三角函数的解析式,以及三角形中的取值范围问题,以及三角函数零点个数问题,同时也涉及了复合函数方程解的个数问题,考查分类讨论思想的应用,综合性较强,属于难题.17.(2017·上海市实验学校高一期中)已知函数()()sin2R x x f xπ=∈,任取t R ∈,若函数()f x 在区间[],1t t +上的最大值为()M t ,最小值为()m t ,记()()()g t M t m t =-. (1)求函数()f x 的最小正周期及对称轴方程; (2)当[]2,0t ∈-时,求函数()g t 的解析式; (3)设函数()2x kh x -=,()28H x x x k k =-+-,其中k 为参数,且满足关于t的不等式()40g t -≤有解,若对任意[)14,x ∈+∞,存在(]2,4x ∈-∞,使得()()21h x H x =成立,求实数k 的取值范围.【答案】(1)4T =,21x k =+(k Z ∈); (2)()[]3sin 1,2,223cos 1,,122cos sin ,1,022t t g t t t t t t ππππ⎧⎡⎫+∈--⎪⎪⎢⎣⎭⎪⎪⎡⎫=+∈--⎨⎪⎢⎣⎭⎪⎪-∈-⎪⎩. (3)7,2k ⎛⎤∈-∞ ⎥⎝⎦.【分析】(1)根据正弦型函数()f x 的解析式求出它的最小正周期和对称轴方程;(2)分类讨论32,2t ⎡⎫∈--⎪⎢⎣⎭、3,12t ⎡⎫∈--⎪⎢⎣⎭、[]1,0t ∈-时,求出对应函数()g t 的解析式;(3)根据()f x 的最小正周期求出函数()g t 的最小正周期,研究函数()g t 在一个周期内的性质,求出()g t 的解析式,画出()g t()40g t -≤求出k 的取值范围,再把“若对任意[)14,x ∈+∞,存在(]2,4x ∈-∞,使得()()21h x H x =成立”转化为“()H x 在[)4,+∞上的值域是()h x 在(],4-∞上的值域的子集”,从而求出k 的取值范围. 【详解】(1)函数()f x 的最小正周期为242T ππ==,令()22x k k Z πππ=+∈,解得对称轴为21()x k k Z =+∈;(2)①当3[2,)2t ∈--时,在区间[],1t t +上,()()sin2M t f t t π==,()(1)1m t f =-=-,所以()()()1sin2g t M t m t t π=-=+②当3[,1)2t ∈--时,在区间[],1t t +上,()(1)sin[(1)]cos22M t f t t t ππ=+=+=,()(1)1m t f =-=-,所以()()()1cos2g t M t m t t π=-=+,③当[1,0]t ∈-时,在区间[],1t t +上,()(1)sin[(1)]cos22M t f t t t ππ=+=+=,()()sin2m t f t t π==,所以()()()cossin22g t M t m t t t ππ=-=-,所以当[]2,0t ∈-时,()[]3sin 1,2,223cos 1,,122cos sin ,1,022t t g t t t t t t ππππ⎧⎡⎫+∈--⎪⎪⎢⎣⎭⎪⎪⎡⎫=+∈--⎨⎪⎢⎣⎭⎪⎪-∈-⎪⎩;(3)因为函数()f x 的最小正周期为4,所以()4(),(4)()M t M t m t m t +=+=,所以(4)(4)(4)()()()g t M t m t M t m t g t +=+-+=-=即函数()g t 的周期为4,由(2)可得3sin1,2,223cos1,,122cos sin,[1,0)22()11sin,[0,)2211cos,[,1)22sin cos,[1,2]22t tt tt t tg tt tt tt t tππππππππ⎧⎡⎫+∈--⎪⎪⎢⎣⎭⎪⎪⎡⎫+∈--⎪⎪⎢⎣⎭⎪⎪-∈-⎪=⎨⎪-∈⎪⎪⎪-∈⎪⎪⎪-∈⎩,画出函数()g t的部分图像如图所示,函数()g t的值域为[12-,()40g t-≤max4()g t≤=,则4k≤,若对任意[)14,x∈+∞,存在(]2,4x∈-∞,使得()()21h x H x=成立,则()H x在[)4,+∞上的值域是()h x在(],4-∞上的值域的子集,()2,22,x kx kk xx kh xx k---⎧≥==⎨<⎩,当4k≤时,()h x在(,)k-∞上单调递减,在(,4]k上单调递增,所以min()()1h x h k==,因为()28H x x x k k=-+-在[)4,+∞上单调递增,所以min()(4)82H x H k==-,所以821k-≥,即72k≤.【点睛】本题考查正弦型函数的图像与性质,涉及周期性、对称性与单调性,考查不等式恒成立问题,分段函数的单调性与值域,属于难题.。

压轴题03 三角函数压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题03 三角函数压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题03三角函数压轴题题型/考向一:三角函数的图像与性质题型/考向二:三角恒等变换题型/考向三:三角函数综合应用一、三角函数的图像与性质热点一三角函数图象的变换1.沿x轴平移:由y=f(x)变为y=f(x+φ)时,“左加右减”,即φ>0,左移;φ<0,右移.沿y轴平移:由y=f(x)变为y=f(x)+k时,“上加下减”,即k>0,上移;k<0,下移.2.沿x轴伸缩:若ω>0,A>0,由y=f(x)变为y=f(ωx)时,点的纵坐标不变,横坐标变为原来的1ω倍.沿y轴伸缩:由y=f(x)变为y=Af(x)时,点的横坐标不变,纵坐标变为原来的A 倍.热点二三角函数的图象与解析式已知图象求函数y =A sin(ωx +φ)+B (A >0,ω>0)的解析式时,常用的方法是待定系数法.由图中的最高点、最低点或特殊点求A ,B ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.热点三三角函数的性质1.单调性:由-π2+2k π≤ωx +φ≤π2+2k π(k ∈Z )可得单调递增区间;由π2+2k π≤ωx+φ≤3π2+2k π(k ∈Z )可得单调递减区间.2.对称性:由ωx +φ=k π(k ∈Z )可得对称中心;由ωx +φ=k π+π2(k ∈Z )可得对称轴.3.奇偶性:φ=k π(k ∈Z )时,函数y =A sin(ωx +φ)为奇函数;φ=k π+π2(k ∈Z )时,函数y =A sin(ωx +φ)为偶函数.二、三角恒等变换热点一化简与求值(角)1.同角三角函数的基本关系:sin 2α+cos 2α=1,sin αcos α=tan ≠π2+k π,k ∈2.诱导公式的记忆口诀:在k π2+α,k ∈Z 的诱导公式中“奇变偶不变,符号看象限”.3.熟记三角函数公式的两类变形:(1)和差角公式的变形;(2)倍角公式的变形.热点二三角函数恒等式的证明三角恒等式常从复杂一边向简单的一边转化,或者两边同时推出一个相同式子,有时要证等式先进行等价交换,进而证明其等价命题.○热○点○题○型一三角函数的图像与性质一、单选题1.将函数()sin cos f x x x =-的图象向左平移7π12个单位长度,得到函数()y g x =的图象,关于函数()y g x =的下列说法中错误的是()A .周期是2πB .非奇非偶函数C .图象关于点5π,03⎛⎫⎪⎝⎭中心对称D .在π0,2⎛⎫⎪⎝⎭内单调递增【答案】D【详解】()πsin cos 2sin 4f x x x x ⎛⎫=-=-⎪⎝⎭,则()7πππ2sin 2sin 1243g x x x ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭,则2πT =,故A 正确;因为()π2sin 3g x x ⎛⎫-=-+ ⎪⎝⎭,则()()()(),g x g x g x g x -≠-≠-,故函数()g x 是非奇非偶函数,故B 正确;2.数学与音乐有着紧密的关联,我们平时听到的乐音一般来说并不是纯音,而是由多种波叠加而成的复合音.如图为某段乐音的图象,则该段乐音对应的函数解析式可以为()A .11sin sin 2sin 323=++y x x xB .11sin 2sin 323y x x x=--C .11sin cos 2cos323y x x x=++D .11cos cos 2cos323y x x x=++3移()0ϕϕ>个单位长度,再向下平移1个单位长度得到函数()g x 的图象.若对于任意的1π0,4x ⎡⎤∈⎢⎥⎣⎦,总存在2π,04x ⎡⎤∈-⎢⎥⎣⎦,使得()()12f x g x =,则ϕ的值可能是()A .π6B .5π24C .π4D .2π3A.B.C .D .5.已知函数()()2sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则满足()()5π605π12f x f f x f ⎛⎫- ⎪⎝⎭>⎛⎫- ⎪⎝⎭的正整数x 的最小值为()A .1B .2C .3D .4二、多选题6.已知函数2π()cos (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在ππ,2⎡⎤-⎢⎥⎣⎦上单调,且曲线()y f x =关于点π,03⎛⎫- ⎪⎝⎭对称,则()A .()f x 以2π为周期B .()f x 的图象关于直线2π3x =对称C .将()f x 的图象向右平移π3个单位长度后对应的函数为偶函数D .函数9()10y f x =+在[0,π]上有两个零点故选:BD.7.已知函数()()()sin 0,0π,f x A x b A b ωϕϕ=++><<∈R 的部分图像如图,则()A .5πb ωϕ=B .π23f ⎛⎫= ⎪⎝⎭C .将曲线()y f x =向右平移π9个单位长度得到曲线4cos 32y x =-+D .点11π,218⎛⎫-⎪⎝⎭为曲线()y f x =的一个对称中心8.已知函数()f x 的定义域为()1,1-,对任意的(),1,1x y ∈-,都有()()1f x f y f xy ⎛⎫--= ⎪-⎝⎭,且112f ⎛⎫= ⎪⎝⎭,当()0,1x ∈时,()0f x >,则()A .()f x 是偶函数B .()00f =C .当A ,B 是锐角ABC 的内角时,()()cos sin f B f A <D .当0n x >,且21112n n n x x x ++=,112x =时,()12n n f x -=【答案】BCD【详解】令0x y ==,得()00f =,故B 正确;9.已知某游乐场循环观光车路线近似为一个半径为1km 的圆,观光车从起始站点P 出发,沿图中顺时针方向行驶,记观光者从某次出发开始,行驶的时间为t 小时.A ,B 是沿途两个站点,C 是终点站,D 是该游乐场的观景点之一.已知该观光车绕行一圈的时间是固定的,且π,,6BOA OA OC OA OD ∠=⊥⊥.若要求起始站点P 无论位于站台B ,C 之间的任何位置(异于B ,C ),观光车在ππ,124t ⎛⎫∈ ⎪⎝⎭的时间内,都要至少经过两次终点站C ,则下列说法正确的是()A .该观光车绕行一周的时间小于π6B .该观光车在π0,12t ⎛⎫∈ ⎪⎝⎭内不一定会经过终点站C C .该观光车的行驶速度一定大于52km /h3D .该观光车在π0,12t ⎛⎫∈ ⎪⎝⎭内一定会经过一次观景点Ds t 于平衡位置的高度()cm h 可以田ππ2sin 24h t ⎛⎫=+ ⎪⎝⎭确定,则下列说法正确的是()A .小球运动的最高点与最低点的距离为2cmB .小球经过4s 往复运动一次C .()3,5t ∈时小球是自下往上运动D .当 6.5t =时,小球到达最低点【答案】BD【详解】小球运动的最高点与最低点的距离为()224cm --=,所以选项A 错误;因为2π4π2=,所以小球经过4s 往复运动一次,因此选项B 正确;当()3,5t ∈时,ππ7π11π,2444t ⎛⎫+∈ ⎪⎝⎭,所以是自下往上到最高点,再往下运动,因此选项C 错误;当 6.5t =时,ππ2sin 6.5224h ⎛⎫=⨯+=- ⎪⎝⎭,所以选项D 正确,故选:BD○热○点○题○型二三角恒等变换一、单选题1.已知π0,2α⎛⎫∈ ⎪⎝⎭,cos 22sin 21αα+=,则sin α=()A .15B 5C .45D 25【答案】D【详解】π0,2α⎛⎫∈ ⎪⎝⎭,cos 0,sin 0αα∴>>22cos 22sin 2cos sin 4sin cos 1αααααα+=-+= ①,又22sin cos 1αα+=②,由①②得25sin 5α=.故选:D.23,5,…,记BAC α∠=,DAC β∠=,则()cos αβ+=()A 24-B 36C 36D 24+【答案】B⎝⎭A.-B.C.9D.9 94.人脸识别技术应用在各行各业,改变着人类的生活,而所谓人脸识别,就是利用计算机分析人脸视频或者图像,并从中提取出有效的识别信息,最终判别人脸对象的身份.在人脸识别中为了检测样本之间的相似度主要应用距离的测试,常用的测量距离的方式有曼哈顿距离和余弦距离.假设二维空间中有两个点()()1122,,,A x y B x y ,O 为坐标原点,余弦相似度similarity 为向量,OA OB夹角的余弦值,记作()cos ,A B ,余弦距离为()1cos ,A B -.已知()sin ,cos P αα,()sin ,cos Q ββ,()sin ,cos R αα-,若P ,Q 的余弦距离为13,Q ,R 的余弦距离为12,则tan tan αβ⋅=()A .7B .17C .4D .145.已知函数()()*sin cos n n n f x x x n =+∈N ,函数()4324y f x =-在3π0,8⎡⎤⎢⎥⎣⎦上的零点的个数为()A .2B .3C .4D .56.已知函数())2sin 02f x x x ωω⎛⎫=-> ⎪⎝⎭的图像如图所示,则ω的值为()A .13B .43C .16D .76二、多选题7.已知函数2()sin cos f x x x x =-+,则下列说法正确的是()A .π()sin(2)3f x x =-B .函数()f x 的最小正周期为πC .函数()f x 的对称轴方程为()5ππZ 12x k k =+∈D .函数()f x 的图象可由sin 2y x =的图象向右平移π6个单位长度得到【答案】ABD中所示的建筑对应的黄金三角形,它的底角正好是顶角的两倍,且它的底与腰之比为黄金分割比(黄金分割比=).在顶角为BAC ∠的黄金ABC 中,D 为BC 边上的中点,则()A .cos 342AD AC︒=B .cos 27sin 27cos 27sin 27AD CD ︒+︒=︒-︒C .AB在ACACD .cos BAC ∠是方程324231x x x +-=的一个实根则AB在AC 上的投影向量为设cos x θ=,则()()222212121x x x x x -=--+-,整理得324231x x x +-=,D 正确.故选:ABD9.已知()cos 4cos 3f θθθ=+,且1θ,2θ,3θ是()f θ在()0,π内的三个不同零点,则()A .{}123π,,7∈θθθB .123π++=θθθC .1231cos cos cos 8θθθ=-D .1231cos cos cos 2θθθ++=民喜爱.古人曾有诗赞曰:“开合清风纸半张,随机舒卷岂寻常;金环并束龙腰细,玉栅齐编凤翅长”.荣昌折扇平面图为下图的扇形COD ,其中2π3COD ∠=,33OC OA ==,动点P 在 CD 上(含端点),连结OP 交扇形OAB 的弧 AB 于点Q ,且OQ xOC yOD =+,则下列说法正确的是()A .若y x =,则23x y +=B .若2y x =,则0OA OP ⋅=C .2AB PQ ⋅≥-D .112PA PB ⋅≥则13(1,0),(3,0),(,),(22A C B D --设()2πcos ,sin ,0,3Q θθθ⎡⎤∈⎢⎥⎣⎦,则由OQ xOC yOD =+ 可得cos θ=○热○点○题○型三三角函数综合应用1.已知函数2()cos 2cos 1f x x x x =-+.(1)求函数()f x 的最小正周期及单调递增区间;(2)求函数()f x 在区间5ππ[,]126-的值域;2.已知2,1,cos ,cos 2m x n x x ⎛⎫=-=+ ⎪⎝⎭,设函数()f x m n =⋅.(1)当π5π,1212x ⎡⎤∈-⎢⎥⎣⎦时,分别求函数()f x 取得最大值和最小值时x 的值;(2)设ABC 的内角,,A B C 的对应边分别是,,,a b c 且a =,6,12A b f ⎛⎫==- ⎪⎝⎭,求c 的值.3.已知函数()()21cos cos 02f x x x x ωωωω=+->.(1)若1ω=,求函数()f x 的最小正周期;(2)若()y f x =图象在0,4π⎛⎫ ⎪⎝⎭内有且仅有一条对称轴,求8f π⎛⎫⎪⎝⎭的取值范围.4.已知函数()()2sin f x x ωϕ=+(0ω>,2ϕ<)的部分图象如图所示.(1)求()f x 的解析式,并求()f x 的单调递增区间;(2)若对任意π,3x t ⎡⎤∈⎢⎥⎣⎦,都有()π116f x f x ⎛⎫--≤ ⎪⎝⎭,求实数t 的取值范围.结合图像可知:5ππ7π4666t ≤-<,解得所以实数t 的取值范围为ππ,43⎡⎫⎪⎢⎣⎭.5.若实数,,且满足,则称、是“余弦相关”的.(1)若2x π=,求出所有与之“余弦相关”的实数y ;(2)若实数x 、y 是“余弦相关”的,求x 的取值范围;(3)若不相等的两个实数x 、y 是“余弦相关”的,求证:存在实数z ,使得x 、z 为“余弦相关”的,y 、z 也为“余弦相关”的.【答案】(2)由()cos cos cos x y x y +=+得cos cos sin sin cos cos x y x y x y -=+,()1sin sin cos cos cos x y x y x +-=-,()cos y x ϕ+=-,故cos x -≤,222cos cos x x ≤-,11cos x -≤≤,))121arccos ,arccos x π⎡⎤∈-⎣⎦(3)证明:先证明3x y ππ≤+≤,反证法,假设x y π+<,则由余弦函数的单调性可知()cos cos x y x +≤,()0cos cos cos y x y x ∴=+-≤,2y π∴≥,同理2x π≥,相加得x y π+≥,与假设矛盾,故x y π+≥.[]2202,,x y πππ--∈Q ,且()()()()()2222cos cos cos cos cos cos x y x y x y x y ππππ⎡⎤-+-=+=+=-+-⎣⎦故22,x y ππ--也是余弦相关的,()()22x y πππ∴-+-≥,即3x y π+≤.记()3,z x y π=-+则[]02,z π∈.()()3cos cos cos x z y y π+=-=-,()()()3cos cos cos cos cos cos cos cos cos cos x z x x y x x y x x y y π+=+--=-+=-+=-()cos cos cos x z x z ∴+=+,故x 、z 为“余弦相关”的;同理y 、z 也为“余弦相关”的。

专题12 三角函数(全题型压轴题)-2024年高考数学压轴专题复习(学生版)

专题12 三角函数(全题型压轴题)-2024年高考数学压轴专题复习(学生版)

.
6.(2023 春·上海普陀·高一上海市宜川中学校考期中)将函数 y 3sin 2x+ 0 π 的图像向左平移 π 个
6
单位后得到函数 y g x ,若函数 y g x 是 R 上的偶函数,则

③三角函数零点问题(解答题)
1.(2023 春·四川绵阳·高一绵阳南山中学实验学校校考阶段练习)已知函数
4.(2023 春·四川成都·高一统考期末)已知函数 f x 3 sin x cos x 1 sin 4 x cos4 x 1 x R ,函数 2
y f x 的图象向左平移 π 个单位,再向上平移 1 个单位得到 y g x 的图象,
6
h x cos x cos x 3m mmR .
3
sin
x
π 6
0
的图象上相邻两个最高点
的距离为 π .
(1)求函数 f x 的图象的对称轴;
(2)若函数
y
f
x
m

0,
π 2
内有两个零点
x1
,
x2
,求
m
的取值范围及 cos x1
x2
的值.
7.(2023
春·江西·高一统考期末)已知函数
f
x 2cos2xcos cos
2sinxcosxsin
B.
π 2
,
17π 24
C.
7π 24
,
19π 24
D.
7π 24
,
17π 24
5.(2023·海南海口·校考模拟预测)已知定义在
R
上的奇函数
f
(x)
与偶函数
g(x)
满足
f
(x)

2024年高一数学真题分类汇编(沪教版2020必修第二册,上海专用)三角函数(解析版)

2024年高一数学真题分类汇编(沪教版2020必修第二册,上海专用)三角函数(解析版)

专题02三角函数一、填空题高三校考期中)函数的最小正周期为【答案】由题意可得:函数的最小正周期.故答案为:.高三同济大学第一附属中学校考期中)已知函数,则函数的【答案】因为,所以的最小正周期为.故答案为:.高三上海市回民中学校考期中)函数的定义域为【答案】【分析】定义域满足.【解析】的定义域满足,即.故答案为:.高一校考期中)是由解析式得的定义域为,关于原点对称,且,故为奇函数,高一格致中学校考期中)函数的一个对称中心是(....【分析】求解出对称中心为,对赋值则可判断令,解得,所以函数图象的对称中心是,令,得函数图像的一个对称中心是,高一闵行中学校考期中)函数的值域是【答案】【解析】,因为所以函数的值域为.故答案为:.若,则的取值范围是【答案】【分析】通过讨论的取值范围,即可得出,进而求出的取值范围由题意,,而,则,当时,解得或;当时,解得,综上:.故答案为:.高一上海市进才中学校考期中)函数的严格增区间是【答案】【分析】根据正切型函数的图象与性质,得到,即可求解由题意,函数,令,解得,即函数的递增区间为.故答案为:.高一上海市大同中学校考期中)函数(,)的,最小正周期是,初相是【答案】【分析】根据函数的性质求出,即得函数的解析式因为函数(,)的振幅是因为函数的最小正周期是,所以.,所以.所以函数的解析式为.故答案为高一华东政法大学附属中学校考期中)函数,的最小正周期为,则实数【答案】/0.5【分析】由周期公式求出的值由题可知,,∴.故答案为:.高一上海市青浦高级中学校考期中)已知函数是偶函数,则的取值是【答案】【分析】根据余弦函数的性质求得的值令,则,所以的值为.故答案为:.高一上海市嘉定区第一中学校考期中)已知函数的最,则正整数的取值是解:因为函数的最小正周期不小于所以(),得,所以正整数的取值为高一上海市进才中学校考期中)若函数的图像关于直线对称,则【分析】根据三角函数的对称性,得到,即可求出结果因为函数的图像关于直线对称,所以,即.故答案为:.高一校考期中)若函数的最小正周期是,则【答案】【分析】根据三角函数的最小正周期公式列方程,解方程求得的值由于,依题意可知.故答案为:高一校考期中)若函数的最大值为,则的值为【答案】【分析】由三角函数辅助角公式可得,由三角函数的有界性可得函数的最大值为,再结合已知条件运算即可得解解:因为,即函数的最大值为,由已知有,即,故答案为.高一校考期中)函数(其中)为奇函数,则【答案】/函数是奇函数,则,而,所以.故答案为:高三校考期中)若将函数向右平移个单位后其图像关于轴对称,则【答案】易知函数向右平移个单位后得函数,此时函数关于轴对称,则,又,所以时,.故答案为:.函数图像上一个最高点为,相邻的一个最低点为,则【答案】【分析】由题知,,即,从而利用周期公式求出.由三角函数的图象与性质可知,,则,又,所以,.故答案为:.高三上海市建平中学校考期中)关于的不等式对任意恒成立,则实数的最大值为【答案】/令,,将不等式转化成关于的一元二次不等式,因为,所以,即,令,,有令,,要使不等式对于任意恒成立,只需满足,,函数在上单调递减,在上单调递增,所以时,即,得或,有最小值,,得,所以实数的最大值为.故答案为:.高一校考期中)若、是函数两个不同的零点,则的最【答案】【解析】、是函数的零点满足,所以,由于所以的最小值为.故答案为:.的部分图像,【答案】【分析】由图象,首先得出的值,然后根据的值运用周期公式求出值,再将最高点的坐标代入函数式中求解的值即可得出表达式【解析】由图象可知,,,,,将,又故答案为:.图像如图,则函数的解析式为【答案】【分析】根据函数图象得到,根据周期求出,再根据函数过点,代入求出,即可得解;【解析】解:由图可知,,所以,解得,所以,又函数过点,所以,所以,,解得,,又,所以,所以;故答案为:23.(2023下·上海长宁·高一上海市第三女子中学校考期中)函数的部分图像如图所示,则的单调减区间为(A.B.【答案】B【分析】由图象得出函数的周期,从而可得减区间.【解析】由题意周期是,,,所以减区间是,故选:B.24.(2023下·上海黄浦·高一上海市大同中学校考期中)设是某地区平均气温(摄氏度)关于时间(月份)的函数.下图显示的是该地区1月份至12月份的平均气温数据,函数近似满足.下列函数中,最能近似表示图中曲线的函数是()A.B.【答案】A【分析】结合题意和函数图象,结合三角函数的性质求解即可.【解析】由题意,,即.由图可知,,解得,,此时,将点代入解析式,可得,即,所以,,即,取,,所以.故选:A.25.(2021下·上海浦东新·高一华师大二附中校考期中)函数的部分图象如图,轴,当时,若不等式恒成立,则m的取值范围是()A.B.C.D.【答案】A【分析】利用函数的图象,求出对称轴方程,从而求出函数的周期,由此求得的值,再利用特殊点求出的值,得到函数的解析式,然后利用参变量分离以及正弦函数的性质,即可求出的取值范围.因为轴,所以图象的一条对称轴方程为,所以,则,所以,又,,且,所以,故,因为当时,不等式恒成立,所以,令,因为,则,所以所以的最小值为,所以,即.故选:.把函数按进行平移,得到函数,且满足,则使得最小时,【答案】【分析】根据三角函数的变换规则得到的解析式,依题意为奇函数,解得的取值,再求出的最小值,即可得解;解:把函数按进行平移得到,即,又,即为奇函数,所以,解得,又,要使最小,即取得最小,所以;故答案为:高一上海市南洋模范中学校考期中)函数的最小,则实数的最小值为【答案】由题意利用正弦函数的周期性,结合题意即可求得实数的最小值.解:函数的最小正周期不大于所有,,则实数的最小值为,故答案为:.高三校考期中)若函数在上单调递增,则的最大值【答案】【分析】由正弦函数的性质,令可得函数的单调增区间,结合题设给定递增区间求由正弦函数的性质知:在上递增,在上递减,对于,有,可得;有,可得,所以题设函数在上递增,在上递减,要使其在上单调递增,则,故的最大值为.故答案为:.已知函数,,则的最小值是【答案】的最小值等于,进而可以求出结果因为,所以,,所以,故答案为:.高三上海市七宝中学校考期中)已知函数(其中为常数,且)有且仅有个零点,则的最小值为【解析】由得,,设,则作出与的图象如图则,得,即的最小值是,故答案为:.高三校考期中)记函数的最小正周期,若,为的零点,则的最小值为【答案】【分析】首先表示出,根据求出,再根据为函数的零点,即可求出的取值,从而因为,(,)所以最小正周期,因为,又,所以,即,又为的零点,所以,解得,因为,所以当时;故答案为:高一上海市七宝中学校考期中)对于函数,有以下函数的图象是中心对称图形;任取,恒成立;函数的图象与轴有无穷多个交点,且任意两相邻交点的距离相等;函数与直线的图象有无穷多个交点,且任意两相邻交点间的距离相等:因为,:因为,所以,因此不成立,所以本结论不正确;:令,即,或,当,显然成立,当时,,显然函数的图象与轴有无穷多个交点,且任意两相邻交点④:,或,当,显然成立,当时,,,,显然任意两相邻交点间的距离相等不正确,因此本结论不正确;故答案为:①③二、解答题已知向量,,函数.求函数的单调递增区间;若,求函数的值域(1);(2).)由向量数量积的坐标表示及倍角正余弦公式、辅助角公式得,)由题设,令,则,所以函数的单调递增区间为.)由,则,故,可得,所以的值域为.34.(2023上·上海静安·高三上海市回民中学校考期中)已知函数.(1)求函数的最小正周期及最大值;(2)令,①判断函数的奇偶性,并说明理由;②若,求函数的严格增区间.【答案】(1),最大值为(2)①偶函数,理由见解析;②【分析】(1)根据二倍角公式化简的表达式,即可根据三角函数的性质求解,(2)利用奇偶性的定义即可判定奇偶性,根据整体法即可求解单调区间.【解析】(1),,当时,即时,(2),是偶函数,理由如下:由于的定义域为,关于原点对称,且,所以是偶函数;令,所以,取,则单调递增区间为,当,则单调递增区间为,由于,所以单调递增区间为的严格增区间为35.(2023上·上海黄浦·高三上海市向明中学校考期中)已知函数.(1)求函数的最小正周期和单调区间;(2)若关于的方程在上有两个不同的实数解,求实数的取值范围.【答案】(1)最小正周期;单调递增区间为;单调递减区间为.(2)【分析】(1)利用降幂公式和辅助角公式化简函数解析式,用周期公式求周期,整体代入法求函数单调区间;(2)由区间内函数的单调性和函数值的变化范围求解实数的取值范围.【解析】(1),则函数的最小正周期;令,解得,可得函数的单调递增区间为·令,解得,可得因数的单调递减区间为;(2)由(1)可知,时,在上单调递增,在上单调递减,当,,由增大到1,当,,由1减小到,若关于的方程在上有两个不同的实数解,则实数的取值范围为36.(2023下·上海青浦·高一上海市青浦高级中学校考期中)已知函数.(1)求的单调递增区间;(2)若对任意都有,求实数t的取值范围.【答案】(1)单增区间为(2)【分析】(1)利用倍角正余弦公式、辅助角公式化简函数式,由整体法求增区间;(2)由题设知,结合给定闭区间列不等式求参数范围.【解析】(1)由,令,则,所以的单调递增区间为.(2)由,则,故,又,则,所以,即.37.(2023下·上海闵行·高一校考期中)已知函数(1)当时,求函数的最大值,并求出取得最大值时所有的值;(2)若为偶函数,设,若不等式在上恒成立,求实数m 的取值范围;(3)若过点,设,若对任意的,,都有,求实数a 的取值范围.【答案】(1)1,(2)(3)【分析】(1)由题意可得,由正弦函数的性质求解即可;(2)由题意可得,,将问题转化为,且在上恒成立,结合正弦函数的性质即可求解;(3)由题意可得将问题转化为结合正弦函数的性质及二次函数性质求解.【解析】(1)当时,,所以当,即时,所以,此时;(2)因为为偶函数,所以,所以,所以,又因为在上恒成立,即在上恒成立,所以在上恒成立,所以,且在上恒成立,因为,所以,所以,解得所以m的取值范围为;(3)因为过点,所以所以,又因为,所以,所以,又因为对任意的,,都有成立,所以,因为,所以,设,则有图像是开口向下,对称轴为的抛物线,当时,在上单调递增,所以,所以,解得所以;当时,在上单调递减,所以,所以,解得所以;当时,,所以,解得所以,综上所述:所以实数a 的取值范围为【点睛】关键点点睛:关键点是把恒成立转化为结合正弦函数的性质及二次函数性质求解即可.一、填空题由上图可知:两个图象交点个数为4个,即函数()()lg 1,1sin ,0x x f x x x ⎧->⎪=⎨≤⎪⎩,则y =故答案为:4.2.(2023上·上海浦东新·高三上海市洋泾中学校考期中)已知关于6.(2023下·上海闵行·高一上海市文来中学校考期中)已知()[)[)π4sin ,0,4428,4,8x x f x x x ⎧∈⎪=⎨⎪-∈⎩,若函数(g 实数a 的取值范围为.因为[2()()()1g x f x af x a =+--=故()0g x =时,即()1f x =或()f x 则()g x 在[8,8]x ∈-上恰有八个不同的零点,即等价于同的交点,由图象可知,1y =和()f x 的图象有则(1)y a =-+和()f x 的图象需有2故95a -<<-,则实数a 的取值范围为(9,5)--,故答案为:(9,5)--【点睛】方法点睛:根据函数的周期以及解析式,可作出函数的图象,将零点问题转化为函数图象的交点问题,数形结合,列出不等式,即可求解二、单选题7.(2023上·上海松江·高三校考期中)已知函数的是()A .()f x 的最大值为2B .()f x 在[]0,π上有4个零点。

上海高中数学三角函数大题压轴题练习

上海高中数学三角函数大题压轴题练习

三角函数大题压轴题练习1.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ-上的值域 解:(1)()cos(2)2sin()sin()344f x x x x πππ=-+-+1cos 22(sin cos )(sin cos )2x x x x x x =++-+221cos 22sin cos 22x x x x =++-1cos 22cos 222x x x =+- sin(2)6x π=-2T 2ππ==周期∴ 由2(),()6223k x k k Z x k Z πππππ-=+∈=+∈得 ∴函数图象的对称轴方程为 ()3x k k Z ππ=+∈(2)5[,],2[,]122636x x πππππ∈-∴-∈- 因为()sin(2)6f x x π=-在区间[,]123ππ-上单调递增,在区间[,]32ππ上单调递减,所以 当3x π=时,()f x 取最大值 1又1()()12222f f ππ-=-<=,当12x π=-时,()f x 取最小值2-所以 函数 ()f x 在区间[,]122ππ-上的值域为[2.已知函数2π()sin sin 2f x x x x ωωω⎛⎫=++ ⎪⎝⎭(0ω>)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.解:(Ⅰ)1cos 2()sin 222x f x x ωω-=+11sin 2cos 2222x x ωω=-+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭.因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤, 所以ππ7π2666x --≤≤,所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤, 因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤,即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,.3. 已知向量m =(sin A ,cos A ),n =1)-,m ·n =1,且A 为锐角.(Ⅰ)求角A 的大小;(Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域. 解:(Ⅰ) 由题意得3sin cos 1,m n A A =-= 12sin()1,sin().662A A ππ-=-=由A 为锐角得 ,663A A πππ-==(Ⅱ) 由(Ⅰ)知1cos ,2A =所以2213()cos 22sin 12sin 2sin 2(sin ).22f x x x x s x =+=-+=--+因为x ∈R ,所以[]sin 1,1x ∈-,因此,当1sin 2x =时,f (x )有最大值32.当sin 1x =-时,()f x 有最小值-3,所以所求函数()f x 的值域是332⎡⎤-⎢⎥⎣⎦,4.已知函数()sin()(00π)f x A x A ϕϕ=+><<,,x ∈R 的最大值是1,其图像经过点π132M ⎛⎫ ⎪⎝⎭,.(1)求()f x 的解析式;(2)已知π02αβ⎛⎫∈ ⎪⎝⎭,,,且3()5f α=,12()13f β=,求()f αβ-的值.【解析】(1)依题意有1A =,则()s i n ()f x x ϕ=+,将点1(,)32M π代入得1sin()32πϕ+=,而0ϕπ<<,536πϕπ∴+=,2πϕ∴=,故()sin()cos 2f x x x π=+=; (2)依题意有312cos ,cos 513αβ==,而,(0,)2παβ∈,45sin ,sin 513αβ∴====,3124556()cos()cos cos sin sin 51351365f αβαβαβαβ-=-=+=⨯+⨯=。

上海市2024年高考二模分类汇编:三角函数

上海市2024年高考二模分类汇编:三角函数

三角函数汇编一、题型一:三角函数1.(2024·上海徐汇·二模)已知函数()y f x =,其中()π2sin 6f x x ω⎛⎫=+ ⎪⎝⎭,实数0ω>,下列选项中正确的是()A .若2ω=,函数()y f x =关于直线5π12x =对称B .若12ω=,函数()y f x =在[]0,π上是增函数C .若函数()y f x =在[]π,0-上最大值为1,则43ω≤D .若1ω=,则函数()y f x =的最小正周期是2π2.(2024·上海奉贤·二模)已知函数()y f x =,其中21y x =+,()y g x =,其中()4sin g x x =,则图象如图所示的函数可能是().A .()()g x y f x =B .()()f x yg x =C .()()1y f x g x =+-D .()()1y f x g x =--3.(2024·上海闵行·二模)已知()sin f x x =,集合[,]22D ππ=-,()()()Γ{,|20,,}x y f x f y x y D =+=∈,()()()Ω{,|20,,}x y f x f y x y D =+≥∈.关于下列两个命题的判断,说法正确的是()命题①:集合Γ表示的平面图形是中心对称图形;命题②:集合Ω表示的平面图形的面积不大于2512π.A .①真命题;②假命题B .①假命题;②真命题C .①真命题;②真命题D .①假命题;②假命题4.(2024·上海嘉定·二模)已知函数()()y f x x =∈R 的最小正周期是1T ,函数()()y g x x =∈R 的最小正周期是2T ,且()121T kT k =>,对于命题甲:函数()()()y f x g x x =+∈R 可能不是周期函数;命题乙:若函数()()()y f x g x x =+∈R 的最小正周期是3T ,则31T T ≥.下列选项正确的是()A .甲和乙均为真命题B .甲和乙均为假命题C .甲为真命题且乙为假命题D .甲为假命题且乙为真命题5.(2024·上海松江·二模)已知点A 的坐标为12⎛ ⎝⎭,将OA 绕坐标原点O 逆时针旋转π2至OP ,则点P 的坐标为.6.(2024·上海崇明·二模)已知实数1212,,,x x y y 满足:2222112212121,1,1x y x y x y y x +=+=-=,则112222x y x y +-++-的最大值是.7.(2024·上海奉贤·二模)函数sin()y wx ϕ=+π0,2w ϕ⎛⎫>< ⎪⎝⎭的图像记为曲线F ,如图所示.A ,B ,C 是曲线F 与坐标轴相交的三个点,直线BC 与曲线F 的图像交于点M ,若直线AM 的斜率为1k ,直线BM 的斜率为2k ,212k k ≠,则直线AB 的斜率为.(用1k ,2k 表示)8.(2024·上海黄浦·二模)如图是某公园局部的平面示意图,图中的实线部分(它由线段,CE DF 与分别以,OC OD 为直径的半圆弧组成)表示一条步道.其中的点,C D 是线段AB 上的动点,点O 为线段,AB CD 的中点,点,E F 在以AB 为直径的半圆弧上,且,OCE ∠ODF ∠均为直角.若1AB =百米,则此步道的最大长度为百米.9.(2024·上海闵行·二模)始边与x 轴的正半轴重合的角α的终边过点(3,4)-,则sin(π)α+=.10.(2024·上海虹口·二模)已知集合{}2|tan 0,0x A x x B x x ⎧⎫-=<=≤⎨⎬⎩⎭,则A B = .11.(2024·上海黄浦·二模)若(3cos ,sin )a θθ= ,(cos ,3sin )b θθ= ,其中R θ∈,则a b ⋅=.12.(2024·上海青浦·二模)已知向量()1,1a =- ,()3,4b = ,则,a b <>=.13.(2024·上海闵行·二模)已知定义在0+∞(,)上的函数()y f x =的表达式为()sin cos f x x x x =-,其所有的零点按从小到大的顺序组成数列{}n x (1,N n n ≥∈).(1)求函数()y f x =在区间()0,π上的值域;(2)求证:函数()y f x =在区间()()π,1πn n +(1,N n n ≥∈)上有且仅有一个零点;(3)求证:()11ππn n n x x n++<-<.14.(2024·上海金山·二模)已知函数()y f x =,记()()sin f x x ωϕ=+,0ω>,0πϕ<<,x ∈R .(1)若函数()y f x =的最小正周期为π,当(1π6f =时,求ω和ϕ的值;(2)若1ω=,π6ϕ=,函数2()2()y f x f x a =--有零点,求实数a 的取值范围.15.(2024·上海青浦·二模)若无穷数列{}n a 满足:存在正整数T ,使得n T n a a +=对一切正整数n 成立,则称{}n a 是周期为T 的周期数列.(1)若ππsin 3n n a m ⎛⎫=+ ⎪⎝⎭(其中正整数m 为常数,N,1n n ∈≥),判断数列{}n a 是否为周期数列,并说明理由;(2)若1sin (N,1)n n n a a a n n +=+∈≥,判断数列{}n a 是否为周期数列,并说明理由;(3)设{}n b 是无穷数列,已知1sin (N,1)n n n a b a n n +=+∈≥.求证:“存在1a ,使得{}n a 是周期数列”的充要条件是“{}n b 是周期数列”.二、题型二:三角恒等变换16.(2024·上海虹口·二模)设()sin23cos2f x x x =,将函数()y f x =的图像沿x 轴向右平移π6个单位,得到函数()y g x =的图像,则()A .函数()y g x =是偶函数B .函数()y g x =的图像关于直线π2x =对称C .函数()y g x =在ππ,42⎡⎤⎢⎥⎣⎦上是严格增函数D .函数()y g x =在π2,6π3⎡⎤⎢⎥⎣⎦上的值域为3,2⎡⎤-⎣⎦17.(2024·上海静安·二模)函数2sin cos (R)y x x x =-∈的最小正周期为()A .2πB .πC .3π2D .π218.(2024·上海长宁·二模)直线230x y --=与直线350x y --=的夹角大小为.19.(2024·上海嘉定·二模)已知()22sin cos f x x x =+,π0,2x ⎛⎫∈ ⎪⎝⎭,则函数()y f x =的最小值为.20.(2024·上海崇明·二模)已知A 、B 、C 是半径为1的圆上的三个不同的点,且AB = ,则AB AC ⋅的最小值是.21.(2024·上海奉贤·二模)已知[]0,πα∈,且2cos 23cos 5αα-=,则α=.22.(2024·上海杨浦·二模)已知实数a 满足:①[0,2π)a ∈;②存在实数,(2π)b c a b c <<<,使得a ,b ,c 是等差数列,cos b ,cos a ,cos c 也是等差数列.则实数a 的取值范围是.23.(2024·上海·二模)固定项链的两端,在重力的作用下项链所形成的曲线是悬链线.1691年,莱布尼茨等得出“悬链线”方程(e e )2xx ccc y -+=,其中c 为参数.当1c =时,就是双曲余弦函数()e e ch 2x xx -+=,悬链线的原理运用于悬索桥、架空电缆、双曲拱桥、拱坝等工程.类比三角函数的三种性质:①平方关系:22sin cos 1x x +=;②两角和公式:()cos cos cos sin sin x y x y x y +=-,③导数:(sin )cos ,(cos )sin ,x x x x =⎧⎨=-''⎩定义双曲正弦函数()e e sh 2x xx --=.(1)直接写出()sh x ,()ch x 具有的类似①、②、③的三种性质(不需要证明);(2)当0x >时,双曲正弦函数()y x =sh 的图像总在直线y kx =的上方,求直线斜率k 的取值范围;(3)无穷数列{}n a 满足1a a =,2121n n a a +=-,是否存在实数a ,使得202454a =?若存在,求出a 的值,若不存在,说明理由.24.(2024·上海长宁·二模)某同学用“五点法”画函数()()sin (0)f x x ωϕω=+>在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+0π2π3π22πx∆π65π122π311π12()sin x ωϕ+01∆1-0(1)请在答题卷上将上表Δ处的数据补充完整,并直接写出函数()y f x =的解析式;(2)设()()()2ππ1,0,0,22g x f x f x f x x ωϕ⎛⎫⎛⎫⎡⎤===+-∈ ⎪⎪⎢⎥⎝⎭⎣⎦⎝⎭,求函数()y g x =的值域;25.(2024·上海青浦·二模)对于函数()y f x =,其中()22sin cos f x x x x =+-x ∈R .(1)求函数()y f x =的单调增区间;(2)在锐角三角形ABC 中,若()1f A =,2AB AC ⋅=,求ABC 的面积.26.(2024·上海嘉定·二模)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,221cos sin 2B B -=-.(1)求角B ,并计算πsin 6B ⎛⎫+ ⎪⎝⎭的值;(2)若3b =ABC 是锐角三角形,求2a c +的最大值.27.(2024·上海静安·二模)在 ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知3a =,5b =,7c =.(1)求角C 的大小;(2)求sin()A C +的值.28.(2024·上海闵行·二模)在锐角ABC 中,角、、A B C 所对边的边长分别为a b c 、、,且2sin 30b A a =.(1)求角B ;(2)求sin sin A C +的取值范围.29.(2024·上海松江·二模)设2()sin3sin(0)222f x x x x ωωωω=>,函数()y f x =图象的两条相邻对称轴之间的距离为π.(1)求函数()y f x =的解析式;(2)在ABC 中,设角A 、B 及C 所对边的边长分别为a 、b 及c ,若3a =2b =,3()2f A =,求角C .三、题型三:解三角形30.(2024·上海嘉定·二模)嘉定某学习小组开展测量太阳高度角的数学活动.太阳高度角是指某时刻太阳光线和地平面所成的角.测量时,假设太阳光线均为平行的直线,地面为水平平面.如图,两竖直墙面所成的二面角为120°,墙的高度均为3米.在时刻t ,实地测量得在太阳光线照射下的两面墙在地面的阴影宽度分别为1米、1.5米.在线查阅嘉定的天文资料,当天的太阳高度角和对应时间的部分数据如表所示,则时刻t 最可能为()太阳高度角时间太阳高度角时间43.13°08:3068.53°10:3049.53°09:0074.49°11:0055.93°09:3079.60°11:3062.29°10:0082.00°12:00A .09:00B .10:00C .11:00D .12:0031.(2024·上海嘉定·二模)已知()11,OA x y =,()22,OB x y =,且OA 、OB 不共线,则OAB 的面积为()A .121212x x y y -B .122112x y x y -C .121212x x y y +D .122112x y x y +32.(2024·上海虹口·二模)已知一个三角形的三边长分别为2,3,4,则这个三角形外接圆的直径为.33.(2024·上海徐汇·二模)如图所示,已知ABC 满足8,3BC AC AB ==,P 为ABC 所在平面内一点.定义点集13,3D P AP AB λλλ⎧⎫-==+∈⎨⎬⎩⎭R .若存在点0P D ∈,使得对任意P D ∈,满足0||||AP AP ≥ 恒成立,则0||AP的最大值为.34.(2024·上海徐汇·二模)如图,两条足够长且互相垂直的轨道12,l l 相交于点O ,一根长度为8的直杆AB 的两端点,A B 分别在12,l l 上滑动(,A B 两点不与O 点重合,轨道与直杆的宽度等因素均可忽略不计),直杆上的点P 满足OP AB ⊥,则OAP △面积的取值范围是.35.(2024·上海徐汇·二模)在ABC 中,1AC =,2π3C ∠=,π6A ∠=,则ABC 的外接圆半径为.36.(2024·上海闵行·二模)双曲线22:16y x Γ-=的左右焦点分别为12F F 、,过坐标原点的直线与Γ相交于A B 、两点,若112F B F A =,则22F A F B ⋅=.37.(2024·上海虹口·二模)如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,且60BAD ∠= .若12AB AA ==,点M 为棱1CC 的中点,点P 在1A B 上,则线段,PA PM 的长度和的最小值为.38.(2024·上海黄浦·二模)在ABC 中,3cos 5A =-,1AB =,5AC =,则BC =.39.(2024·上海金山·二模)某临海地区为保障游客安全修建了海上救生栈道,如图,线段BC 、CD 是救生栈道的一部分,其中300BC m =,800CD m =,B 在A 的北偏东30︒方向,C 在A 的正北方向,D 在A 的北偏西80︒方向,且90B Ð=°.若救生艇在A 处载上遇险游客需要尽快抵达救生栈道B C D --,则最短距离为m .(结果精确到1m)40.(23-24高三下·上海浦东新·期中)已知双曲线()222210,0x y a b a b-=>>的焦点分别为1F 、2F ,M 为双曲线上一点,若122π3F MF ∠=,213OM =,则双曲线的离心率为.41.(2024·上海普陀·二模)设函数()sin()f x x ωϕ=+,0ω>,0πϕ<<,它的最小正周期为π.(1)若函数π12y f x ⎛⎫=- ⎪⎝⎭是偶函数,求ϕ的值;(2)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若2a =,π6A =,324B f c ϕ-⎛⎫= ⎪⎝⎭,求b 的值.42.(2024·上海杨浦·二模)已知()sin (0)f x x ωω=>.(1)若()y f x =的最小正周期为2π,判断函数)()()π(2F x f x f x =++的奇偶性,并说明理由;(2)已知2ω=,ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若π()03f A +=,2a =,3b =,求c 的值.参考答案一、题型一:三角函数1.(2024·上海徐汇·二模)已知函数()y f x =,其中()π2sin 6f x x ω⎛⎫=+ ⎪⎝⎭,实数0ω>,下列选项中正确的是()A .若2ω=,函数()y f x =关于直线5π12x =对称B .若12ω=,函数()y f x =在[]0,π上是增函数C .若函数()y f x =在[]π,0-上最大值为1,则43ω≤D .若1ω=,则函数()y f x =的最小正周期是2π2.(2024·上海奉贤·二模)已知函数()y f x =,其中21y x =+,()y g x =,其中()4sin g x x =,则图象如图所示的函数可能是().A .()()g x y f x =B .()()f x yg x =C .()()1y f x g x =+-D .()()1y f x g x =--【答案】A【分析】根据函数图象和()(),f x g x 的奇偶性判断.【详解】易知()21f x x =+是偶函数,()4sin g x x =是奇函数,给出的函数图象对应的是奇函数,A.()()()24sin 1g x xy h x f x x ==+=,定义域为R ,又()()()()224si 11n 4sin x xh x h x x x =+--+-=-=-,所以()h x 是奇函数,符合题意,故正确;B.()()24n 1si f x y g x x x+==,π,Z x k k ≠∈,不符合图象,故错误;C.()()()2214sin 14si1n y h x f x g x x x x x ++==+-=-=+,定义域为R ,但()()()(),h x h x h x h x -≠-≠-,故函数是非奇非偶函数,故错误;D.()()()2214sin 14si 1n y h x f x g x x xx x +-==--=-=-,定义域为R ,但()()()(),h x h x h x h x -≠-≠-,故函数是非奇非偶函数,故错误,故选:A3.(2024·上海闵行·二模)已知()sin f x x =,集合[,]22D =-,()()()Γ{,|20,,}x y f x f y x y D =+=∈,()()()Ω{,|20,,}x y f x f y x y D =+≥∈.关于下列两个命题的判断,说法正确的是()命题①:集合Γ表示的平面图形是中心对称图形;命题②:集合Ω表示的平面图形的面积不大于2512π.A .①真命题;②假命题B .①假命题;②真命题C .①真命题;②真命题D .①假命题;②假命题代入点,22ππ⎛⎫⎪⎝⎭可得2sin sin 2π+面积为正方形面积的一半,即集合故选:A.【点睛】方法点睛:确定不等式表示的区域范围第一步:得到等式对应的曲线;第二步:任选一个不在曲线上的点,若原点不在曲线上,一般选择原点,检验它的坐标是否符合不等式;第三步:如果符合,则该点所在的一侧区域即为不等式所表示的区域;若不符合,则另一侧区域为不等式所表示的区域.4.(2024·上海嘉定·二模)已知函数()()y f x x =∈R 的最小正周期是1T ,函数()()y g x x =∈R 的最小正周期是2T ,且()121T kT k =>,对于命题甲:函数()()()y f x g x x =+∈R 可能不是周期函数;命题乙:若函数()()()y f x g x x =+∈R 的最小正周期是3T ,则31T T ≥.下列选项正确的是()A .甲和乙均为真命题B .甲和乙均为假命题C .甲为真命题且乙为假命题D .甲为假命题且乙为真命题【答案】C【分析】利用三角函数的周期性,选用特殊函数验证两个命题.【详解】函数()()y f x x =∈R 的最小正周期是1T ,函数()()y g x x =∈R 的最小正周期是2T ,且()121T kT k =>当()sin f x x =时,12πT =,()sin πg x x =时,22T =,满足条件,但函数()()sin sin πy f x g x x x =+=+就不是周期函数,命题甲正确;当()cos 2cos3f x x x =+时,12πT =,()cos 2g x x =-时,2πT =,满足条件,函数()()cos3y f x g x x =+=,32π3T =,有31T T <,命题乙错误.故选:C5.(2024·上海松江·二模)已知点A 的坐标为1322⎛⎫ ⎪ ⎪⎝⎭,将OA 绕坐标原点O 逆时针旋转π2至OP ,则点P 的坐标为.【答案】3,221⎛⎫- ⎪ ⎪⎝⎭【分析】由题意可求π3xOA ∠=,5π326ππxOP ∠=+=,利用任意角的三角函数的定义即可求解.【详解】因为点A 的坐标为13,22⎛⎫ ⎪⎪⎝⎭,可得π3xOA ∠=,6.(2024·上海崇明·二模)已知实数1212,,,x x y y 满足:2222112212121,1,1x y x y x y y x +=+=-=,则112222x y x y +-++-的最大值是.【答案】6【分析】根据已知条件及三角换元,利用三角方程的解法及三角函数的性质即可求解7.(2024·上海奉贤·二模)函数sin()y wx ϕ=+π0,2w ϕ⎛⎫>< ⎪⎝⎭的图像记为曲线F ,如图所示.A ,B ,C 是曲线F 与坐标轴相交的三个点,直线BC 与曲线F 的图像交于点M ,若直线AM 的斜率为1k ,直线BM 的斜率为2k ,212k k ≠,则直线AB 的斜率为.(用1k ,2k 表示)【答案】12122k k k k -【分析】根据正弦函数的图象与性质写出,,,A B C M 的坐标,求出12,,k k k ,然后确定它们的关系.【详解】由题意2π,Z C wx k k ϕ+=∈,2πC k x w ϕ-=,则2ππ,Z A wx k k ϕ+=+∈,2ππA k x wϕ+-=,(0,sin )B ϕ,由π2ϕ<得π02ϕ<<,则2(2π)(,sin )k M wϕϕ--,1sin 2ππw k k ϕϕ=-+,2sin 2πw k k ϕϕ=-,sin 2ππAB w k k ϕϕ=--,所以21211AB k k k -=,又212k k ≠,所以12122AB k k k k k =-,故答案为:12122k k k k -.8.(2024·上海黄浦·二模)如图是某公园局部的平面示意图,图中的实线部分(它由线段,CE DF 与分别以,OC OD 为直径的半圆弧组成)表示一条步道.其中的点,C D 是线段AB 上的动点,点O 为线段,AB CD 的中点,点,E F 在以AB 为直径的半圆弧上,且,OCE ∠ODF ∠均为直角.若1AB =百米,则此步道的最大长度为百米.【答案】2π42+【分析】设半圆步道直径为x 百米,连接,AE BE ,借助相似三角形性质用x 表示CE ,结合对称性求出步道长度关于x 的函数关系,利用导数求出最大值即得.【详解】设半圆步道直径为x 百米,连接,AE BE ,显然90AEB ∠= ,由点O 为线段,AB CD 的中点,得两个半圆步道及直道,CE DF 都关于过点O 垂直于AB 的直线对称,则11,22AC x BC x =-=+,又CE AB ⊥,则Rt ACE ∽Rt ECB V ,有2CE AC BC =⋅,即有214DF CE x ==-,因此步道长221()2π14π4f x x x x x =-+=-+,102x <<,求导得24()π14x f x x '=-+-,由()0f x '=,得2π2π4x =+,29.(2024·上海闵行·二模)始边与x 轴的正半轴重合的角α的终边过点(3,4)-,则sin(π)α+=.【答案】45/0.8【分析】结合三角函数的诱导公式,以及任意角的三角函数的定义,即可求解.10.(2024·上海虹口·二模)已知集合{}2|tan 0,0x A x x B x x ⎧⎫-=<=≤⎨⎬⎩⎭,则A B = .故答案为:π22x x ⎧⎫<≤⎨⎬⎩⎭.11.(2024·上海黄浦·二模)若(3cos ,sin )a θθ=,(cos ,3sin )b θθ=,其中R θ∈,则a b ⋅=.【答案】3【分析】利用平面向量数量积的坐标表示公式,结合同角的三角函数关系式进行求解即可.【详解】223cos 3sin 3a b θθ⋅=+=,故答案为:312.(2024·上海青浦·二模)已知向量()1,1a =-,()3,4b = ,则,a b <>=.【答案】2arccos10【分析】由向量的数量积公式求两个向量的夹角即可.【详解】由向量的夹角公式得342cos ,1025a b a b a b⋅-+<>===⨯ ,又因为[],0,πa b <>∈ ,所以2,arccos 10a b <>= .故答案为:2arccos10.13.(2024·上海闵行·二模)已知定义在0+∞(,)上的函数()y f x =的表达式为()sin cos f x x x x =-,其所有的零点按从小到大的顺序组成数列{}n x (1,N n n ≥∈).(1)求函数()y f x =在区间()0,π上的值域;(2)求证:函数()y f x =在区间()()π,1πn n +(1,N n n ≥∈)上有且仅有一个零点;(3)求证:()11ππn n n x x n++<-<.【答案】(1)()0,π(2)证明见解析(3)证明见解析【分析】(1)求得()f x 的导数,判断()f x 的单调性,可得所求值域;(2)讨论n 为奇数,或偶数时,()f x 的单调性,结合函数零点存在定理,可得证明;(3)由(2)可知函数()f x 在()()π,1πn n +(1,N n n ≥∈)上且仅有一个零点n x ,再由零点存在定理、以②因为()()112222133ππ3π22tan π1π2πn n n n n n n x x x x x x x n n n +++--+=<<=<+⋅由(1)可知,当π0,2x ⎛⎫∈ ⎪⎝⎭时,有tan x x<故()()()11ππtan πn n n n x x x x n ++-+<-+<,所以1ππn n x x n+-<+;由①②可知()11ππn n n x x n++<-<.【点睛】关键点点睛:本题第三问,借助()f x 在()()π,1πn n +(1,N n n ≥∈)上且仅有一个零点n x ,利用正切函数的性质和不等式的性质求解.14.(2024·上海金山·二模)已知函数()y f x =,记()()sin f x x ωϕ=+,0ω>,0πϕ<<,x ∈R .(1)若函数()y f x =的最小正周期为π,当(1π6f =时,求ω和ϕ的值;(2)若1ω=,π6ϕ=,函数2()2()y f x f x a =--有零点,求实数a 的取值范围.【答案】(1)2ω=,π6ϕ=(2)[1,3]a ∈-【分析】(1)利用三角函数的周期公式求得ω,再利用三角函数的值域与周期性求得ϕ,从而得解;(2)根据题意,利用换元法将问题转化为220t t a --=在[1,1]x ∈-有解,从而利用参变分离法或二次函数根的布分即可得解.【详解】(1)因为函数()y f x =的最小正周期2ππω=,所以2ω=,则当π6x =时,sin 13πϕ⎫⎛+= ⎪⎝⎭,所以ππ2π(Z)32k k ϕ+=+∈,得π2π(Z)6k k ϕ=+∈,因为0πϕ<<,所以取0k =得π6ϕ=,(2)解法一:当1ω=,π6ϕ=时,()πsin 6f x x ⎛⎫=+ ⎪⎝⎭,x ∈R ,设()πsin [1,1]6t f x x ⎛⎫==+∈- ⎪⎝⎭,由题意得,220t t a --=在[1,1]x ∈-有解,化简得22a t t =-,又()22()211g t t t t =-=--在[1,1]t ∈-上单调递减,15.(2024·上海青浦·二模)若无穷数列{}n a 满足:存在正整数T ,使得n T n a a +=对一切正整数n 成立,则称{}n a 是周期为T 的周期数列.(1)若ππsin 3n n a m ⎛⎫=+ ⎪⎝⎭(其中正整数m 为常数,N,1n n ∈≥),判断数列{}n a 是否为周期数列,并说明理由;(2)若1sin (N,1)n n n a a a n n +=+∈≥,判断数列{}n a 是否为周期数列,并说明理由;(3)设{}n b 是无穷数列,已知1sin (N,1)n n n a b a n n +=+∈≥.求证:“存在1a ,使得{}n a 是周期数列”的充要条件是“{}n b 是周期数列”.所以当()1πZ a k k =∈时,{}n a 是周期为1的周期数列,②当()1πZ a k k ≠∈时,记()sin f x x x =+,则1()n n a f a +=,()1cos 0f x x '=+≥,当且仅当()()1121πZ x k k =+∈时等号成立,即()1cos 0f x x =+>',所以()f x 在R 上严格增,若12a a <,则12()()f a f a <,即23a a <,进而可得1234a a a a <<<< ,即{}n a 是严格增数列,不是周期数列;同理,若12a a >,可得{}n a 是严格减数列,不是周期数列.综上,当1π()a k k =∈Z 时,{}n a 是周期为1的周期数列;当1π()a k k ≠∈Z 时,{}n a 不是周期数列.(3)必要性:若存在1a ,使得{}n a 是周期数列,设{}n a 的周期为0T ,则00011sin sin n T n T n T n n n b a a a a b +++++=-=-=,所以{}n b 是周期为0T 的周期数列,充分性:若{}n b 是周期数列,设它的周期为T ,记1a x =,则10()a f x x==211()sin a f x b x ==+,是关于x 的连续函数;3221()sin ()a f x b f x ==+,是关于x 的连续函数;…1()T T a f x -=,是关于x 的连续函数;11sin ()T T T a b f x +-=+,令1()sin ()T T g x x b f x -=--,则()g x 是连续函数,且1(2)2sin ()0T T g b f x -+=->,1(2)2sin ()0T T g b f x --=--<,所以()g x 存在零点c ,于是1sin ()0T T c b f c ---=,取1a c =,则111sin ()T T T a b f c c a +-=+==,从而211112sin sin T T T a b a b a a +++=+=+=,322223sin sin T T T a b a b a a +++=+=+=,……一般地,n T n a a +=对任何正整数n 都成立,即{}n a 是周期为T 的周期数列.(说明:关于函数连续性的说明不作要求)【点睛】方法点晴:对于数列的新定义问题,解决问题的关键在于准确理解定义,并结合定义进行判断或转化条件.二、题型二:三角恒等变换16.(2024·上海虹口·二模)设()sin2f x x x =,将函数()y f x =的图像沿x 轴向右平移π6个单位,得到函数()y g x =的图像,则()A .函数()y g x =是偶函数B .函数()y g x =的图像关于直线π2x =对称C .函数()y g x =在ππ,42⎡⎤⎢⎥⎣⎦上是严格增函数D .函数()y g x =在π2,6π3⎡⎤⎢⎥上的值域为⎡⎤⎣⎦则()3,2g x ⎡⎤∈-⎣⎦,即函数()y g x =在π2,6π3⎡⎤⎢⎥⎣⎦上的值域为3,2⎡⎤-⎣⎦,故D 正确.故选:D17.(2024·上海静安·二模)函数2sin cos (R)y x x x =-∈的最小正周期为()A .2πB .πC .3π2D .π2【答案】A【分析】利用辅助角公式将函数化成()sin y A ωx φ=+的形式,代入周期公式可得结论.【详解】易知()2sin cos 5sin y x x x ϕ=-=+,其中1tan 2ϕ=-,由周期公式可得其最小正周期为2π2πT ω==.故选:A18.(2024·上海长宁·二模)直线230x y --=与直线350x y --=的夹角大小为.【答案】4π/45︒【分析】先由斜率的定义求出两直线的倾斜角,然后再利用两角差的正切展开式计算出夹角的正切值,最后求出结果.【详解】设直线230x y --=与直线350x y --=的倾斜角分别为,αβ,则1tan 2,tan 3αβ==,且[),0,παβ∈,所以αβ>,因为()12tan tan 3tan 121tan tan 13αβαβαβ---===++,所以π4αβ-=,即两条直线的夹角为π4,故答案为:π4.19.(2024·上海嘉定·二模)已知()sin cos f x x x =+,π0,2x ⎛⎫∈ ⎪,则函数()y f x =的最小值为.【答案】42【分析】令πsin cos 2sin()4t x x x =+=+,可求t 的范围,利用同角的基本关系对已知函数化简计算,结合函数的单调性即可求解.【详解】由题意知,222(sin cos )()sin cos sin cos x x f x x x x x+=+=,20.(2024·上海崇明·二模)已知A、B、C是半径为1的圆上的三个不同的点,且AB=,则AB AC⋅的最小值是.所以πcos 32sin cos 3AB AC bc A A A⎛⎫⋅==⨯-⨯ ⎪⎝⎭3123cos sin cos 22A A A ⎛⎫=⨯- ⎪ ⎪⎝⎭23cos 3sin cos A A A=-()31cos 23sin 222A A+=-π33sin 232A ⎛⎫=--+ ⎪⎝⎭,π0,3A ⎛⎫∈ ⎪⎝⎭,则πππ2,333A ⎛⎫-∈- ⎪⎝⎭,则AB AC ⋅无最值;综上所述,AB AC ⋅ 的最小值是332-故答案为:332-21.(2024·上海奉贤·二模)已知[]0,πα∈,且2cos 23cos 5αα-=,则α=.【答案】π【分析】由倍角公式化简方程,解出cos α,得α的值.【详解】已知2cos 23cos 5αα-=,由倍角公式得()()24cos 3cos 74cos 7cos 10αααα--=-+=,由[]0,πα∈,[]cos 1,1α∈-,解得cos 1α=-,则πα=.故答案为:π.22.(2024·上海杨浦·二模)已知实数a 满足:①[0,2π)a ∈;②存在实数,(2π)b c a b c <<<,使得a ,b ,c 是等差数列,cos b ,cos a ,cos c 也是等差数列.则实数a 的取值范围是.【答案】1(arccos ,π)8【分析】设等差数列,,a b c 的公差为m ,根据给定条件,结合三角恒等变换化简得tan 3tan 2mb =,由正切函数性质可得m 随b 增大而增大,再由c 的临界值点得π2ab =+,代入利用二倍角的余弦求解即得.【详解】设等差数列,,a b c 的公差为m ,,a b m c b m =-=+,依题意,cos cos cos cos a b c a -=-,于是cos()cos cos()cos()b m b b m b m --=+--,整理得22sin sin 2sin sin 22b m mb m ---=-,即sin()sin sin sin 2sin sin cos 2222m m m m b b m b -==,因此sin cos cos sin 2sin cos 222m m mb b b -=,即有tan3tan 2mb =,则m 随b 增大而增大,而0m >当(0,π)a ∈,3(π,π)2b ∈时,c 到达2π时是临界值点,此时π2ab =+,23.(2024·上海·二模)固定项链的两端,在重力的作用下项链所形成的曲线是悬链线.1691年,莱布尼茨等得出“悬链线”方程(e e )2xx ccc y -+=,其中c 为参数.当1c =时,就是双曲余弦函数()e e ch 2x xx -+=,悬链线的原理运用于悬索桥、架空电缆、双曲拱桥、拱坝等工程.类比三角函数的三种性质:①平方关系:22sin cos 1x x +=;②两角和公式:()cos cos cos sin sin x y x y x y +=-,③导数:(sin )cos ,(cos )sin ,x x x x =⎧⎨=-''⎩定义双曲正弦函数()e e sh 2x xx --=.(1)直接写出()sh x ,()ch x 具有的类似①、②、③的三种性质(不需要证明);(2)当0x >时,双曲正弦函数()y x =sh 的图像总在直线y kx =的上方,求直线斜率k 的取值范围;(3)无穷数列{}n a 满足1a a =,2121n n a a +=-,是否存在实数a ,使得202454a =?若存在,求出a 的值,若不存在,说明理由.【详解】(1)平方关系:()()22chsh 1x x -=;和角公式:()()()()()ch ch ch sh sh x y x y x y +=+;导数:()()sh()ch()ch()sh()x x x x ''⎧=⎪⎨=⎪⎩.理由如下:平方关系,()()2222e e e e ch sh 22x x x x x x --⎛⎫⎛⎫+--=- ⎪ ⎪⎝⎭⎝⎭2222e e e e 12244x x x x --++=--=+;和角公式:()e e ch 2x y x yx y +--++=,()()()()e e e e e e e e ch ch sh sh 2222x x y y x yy x x y x y ----++--+=⋅+⋅e e e e e e e e 44x y x y x y x y x y x y x y x y+--+--+--+--+++--+=+e e 2x y x y+--+=故()()()()()ch ch ch sh sh x y x y x y +=+;导数:()()e e ee sh()ch 22x xxx x x ----+'===,()e e ch()sh 2x x x x --'==;(2)构造函数()()sh F x x kx =-,[)0,x ∈+∞,由(1)可知()()ch F x x k '=-,①当1k ≤时,由e e ch()e e 12x xx x x --+=≥⋅=,又因为0x >,故e e x x -≠,等号不成立,所以()()ch 0F x x k '=->,故()F x 为严格增函数,此时()(0)0F x F >=,故对任意0x >,()x kx >sh 恒成立,满足题意;②当1k >时,令()()(),0,G x F x x '=∈+∞,则()()sh 0G x x =>',可知()G x 是严格增函数,由(0)10G k =-<与1(ln 2)04G k k=>可知,存在唯一0(0,ln 2)x k ∈,使得0()0G x =,故当0(0,)x x ∈时,0()()()0F x G x G x =<=',则()F x 在0(0,)x 上为严格减函数,故对任意0(0,)x x ∈,()()00F F x <=,即()x kx >sh ,矛盾;(2)利用好定义所给的表达式以及相关的条件(3)含有参数是要注意分类讨论的思想.24.(2024·上海长宁·二模)某同学用“五点法”画函数()()sin (0)f x x ωϕω=+>在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+0π2π3π22πx∆π65π122π311π12()sin x ωϕ+01∆1-0(1)请在答题卷上将上表Δ处的数据补充完整,并直接写出函数()y f x =的解析式;(2)设()()()2ππ1,0,0,22g x f x f x f x x ωϕ⎛⎫⎛⎫⎡⎤===+-∈ ⎪⎪⎢⎥⎝⎭⎣⎦⎝⎭,求函数()y g x =的值域;【答案】(1)补充表格见解析,()πsin 26f x x ⎛⎫=+ ⎪⎝⎭(2)210,2⎡⎤+⎢⎥⎢⎥⎣⎦【分析】(1)由表得ππ622π3π32ωϕωϕ⎧⋅+=⎪⎪⎨⎪⋅+=⎪⎩,解方程组即可得,ωϕ,进一步可据此完成表格;(2)由题意结合二倍角公式、诱导公式以及辅助角公式先化简()g x 的表达式,进一步通过整体换元法即可求解.【详解】(1)由题意ππ622π3π32ωϕωϕ⎧⋅+=⎪⎪⎨⎪⋅+=⎪⎩,解得π2,6ωϕ==,所以函数()y f x =的解析式为()πsin 26f x x ⎛⎫=+ ⎪⎝⎭,令π206x +=时,解得π12x =-,当5π12x =时,ππ2π,sin 2066x x ⎛⎫+=+= ⎪⎝⎭,将表中Δ处的数据补充完整如下表:x ωϕ+0π2π3π22πxπ12-π65π122π311π12()sin x ωϕ+011-025.(2024·上海青浦·二模)对于函数()y f x =,其中()22sin cos f x x x x =+-x ∈R .(1)求函数()y f x =的单调增区间;(2)在锐角三角形ABC 中,若()1f A =,AB AC ⋅=,求ABC 的面积.所以函数()f x 的单调增区间是()5πππ,π+,Z 1212k k k ⎡⎤-∈⎢⎥⎣⎦.(2)(2)由已知π()2sin 213f A A ⎛⎫=+= ⎪⎝⎭,所以π1sin 232A ⎛⎫+= ⎪⎝⎭,因为π02A <<,所以ππ4π2333A <+<,即π5π236A +=,所以π4A =,又cos 2AB AC AB AC A ⋅=⋅=,所以2AB AC ⋅=,所以ABC 的面积1122sin 22222S AB AC A =⋅=⨯⨯=.26.(2024·上海嘉定·二模)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,221cos sin 2B B -=-.(1)求角B ,并计算πsin 6B ⎛⎫+ ⎪⎝⎭的值;(2)若3b =ABC 是锐角三角形,求2a c +的最大值.【答案】(1)π3或2π3;当π3B =时,πsin 16B ⎛⎫+= ⎪⎝⎭;当2π3B =时,π1sin 62B ⎛⎫+= ⎪⎝⎭(2)27【分析】(1)由题意,根据同角的平方关系可得cos 21B =±,求出B ,进而求出πsin()6B +即可;(2)由题意可得π3B =,求出C 的范围,根据正弦定理可得2sin ,2sin a A c C ==,利用三角恒等变换化简计算得227sin()a c C ϕ+=+(3tan 5ϕ=),结合ϕ的范围和正弦函数的性质即可求解.【详解】(1)由2222cos sin 11cos sin 2B B B B ⎧+=⎪⎨-=-⎪⎩,得21cos 4B =,则cos 21B =±,又0πB <<,所以π3B =或2π3.当π3B =时,ππsin()sin 162B +==;当2π3B =时,π5π1sin()sin 662B +==.(2)若ABC 为锐角三角形,则π3B =,有π022ππ032C A C ⎧<<⎪⎪⎨⎪<=-<⎪⎩,解得ππ62C <<.由正弦定理,得32sin sin sin 32a c bA C B====,则2sin ,2sin a A c C ==,27.(2024·上海静安·二模)在 ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知3a =,5b =,7c =.(1)求角C 的大小;(2)求sin()A C +的值.28.(2024·上海闵行·二模)在锐角ABC 中,角、、A B C 所对边的边长分别为a b c 、、,且2sin 0b A =.(1)求角B ;(2)求sin sin A C +的取值范围.【答案】(1)π3(2)3(,3]2.【分析】(1)由已知结合正弦定理可得结果;(2)根据ABC 为锐角三角形求出ππ(,)62A ∈,利用两角差的正弦公式及辅助角公式化简2πsin sin sin sin()3A C A A +=+-,根据正弦函数性质可得结果.【详解】(1)2sin 30b A a -= ,2sin sin 3sin 0A B A ∴-=,又 π0,,sin 02A A ⎛⎫∈∴≠ ⎪⎝⎭,3πsin ,0,22B B ⎛⎫∴=∈ ⎪⎝⎭,∴π3B =.(2)由(1)可知,π3B =,且ABC 为锐角三角形,所以π022ππ032A C A ⎧<<⎪⎪⎨⎪<=-<⎪⎩,A ∴ππ(,)62∈,则2πsin sin sin sin()3A C A A +=+-33sin cos 22A A =+π3sin()6A =+,因为ππ2π363A <+<,sin sin A C ∴+3(,3]2∈.29.(2024·上海松江·二模)设2()sin 3sin (0)222f x x x x ωωωω=>,函数()y f x =图象的两条相邻对称轴之间的距离为π.(1)求函数()y f x =的解析式;(2)在ABC 中,设角A 、B 及C 所对边的边长分别为a 、b 及c ,若3a =2b =,3()2f A =,求角C .【答案】(1)π1()sin()62f x x =-+(2)π12【分析】(1)根据降幂公式,二倍角公式及辅助角公式化简()f x ,再根据()y f x =图象的两条相邻对称轴三、题型三:解三角形30.(2024·上海嘉定·二模)嘉定某学习小组开展测量太阳高度角的数学活动.太阳高度角是指某时刻太阳光线和地平面所成的角.测量时,假设太阳光线均为平行的直线,地面为水平平面.如图,两竖直墙面所成的二面角为120°,墙的高度均为3米.在时刻t,实地测量得在太阳光线照射下的两面墙在地面的阴影宽度分别为1米、1.5米.在线查阅嘉定的天文资料,当天的太阳高度角和对应时间的部分数据如表所示,则时刻t最可能为()太阳高度角时间太阳高度角时间43.13°08:3068.53°10:3049.53°09:0074.49°11:0055.93°09:3079.60°11:3062.29°10:0082.00°12:00A .09:00B .10:00C .11:00D .12:00【答案】B【分析】作出示意图形,在四边形ABCD 中利用正弦定理与余弦定理,算出四边形ABCD 的外接圆直径大小,然后在Rt BDE △中利用锐角三角函数定义,算出DBE ∠的大小,即可得到本题的答案.【详解】如图所示,设两竖直墙面的交线为DE ,点E 被太阳光照射在地面上的影子为点B ,点,A C 分别是点B 在两条墙脚线上的射影,连接AC ,BD ,BE ,由题意可知DBE ∠就是太阳高度角.∵四边形ABCD 中,90BAD BCD ∠=∠=o ,120ADC ∠= ,∴()36060ABC BAD BCD ADC ∠=-∠+∠+∠= ,∴ABC 中,2222212cos60 1.5121.51 1.752AC AB BC AB BC =+-⋅=+-⨯⨯⨯= ,可得 1.75 1.32AC =≈,∵四边形ABCD 是圆内接四边形,BD 是其外接圆直径,31.(2024·上海嘉定·二模)已知()11,OA x y =,()22,OB x y =,且OA 、OB 不共线,则OAB 的面积为()A .121212x x y y -B .122112x y x y -C .121212x x y y +D .122112x y x y +32.(2024·上海虹口·二模)已知一个三角形的三边长分别为2,3,4,则这个三角形外接圆的直径为.即这个三角形外接圆的直径为161515.故答案为:16151533.(2024·上海徐汇·二模)如图所示,已知ABC 满足8,3BC AC AB ==,P 为ABC 所在平面内一点.定义点集13,3D P AP AB λλλ⎧⎫-==+∈⎨⎬⎩⎭R .若存在点0P D ∈,使得对任意P D ∈,满足0||||AP AP ≥ 恒成立,则0||AP 的最大值为.【答案】3【分析】延长AB 到M 满足3AM AB = ,取AC 的靠近A 的三等分点N ,连接MN ,由向量共线定理得,,P M N 三点共线,从而0AP 表示AMN 的边MN 上的高,利用正弦定理求得AMN 的面积的最大值,从而可得结论.【详解】延长AB 到M 满足3AM AB = ,取AC 的靠近A 的三等分点N ,连接MN ,如图,3(1)133(1)3AC AP AB AC AB AM AN λλλλλλ=⋅+-++--== ,所以,,P M N 三点共线,又存在点0P D ∈,使得对任意P D ∈,满足0||||AP AP ≥ 恒成立,则0AP 的长表示A 到直线MN 的距离,即AMN 的边MN 上的高,设0AP h =,由3AC AB =得AC AM =,AB AN =,A ∠公用,因此ABC ANM ≅ ,所以8MN BC ==,AMN 中,设ANM θ∠=,由正弦定理得sin sin sin AM AN MN M Aθ==,MAN ∠记为角A ,所以sin 3sin M θ=,8sin sin AM A θ=,8sin sin M AN A =,所以2132sin sin 96sin sin 2sin sin()ABC AMN M M S S AM AN A A M θθ====+ 2296sin 96sin sin cos cos sin sin cos 3cos sin M M M M M M M θθθ==++96sin cos 3cos M Mθ=+,若θ不是钝角,则222296sin 96sin 1sin 31sin 19sin 99sin ABC MMS M M M θ==-+--+-!,【点睛】方法点睛:本题考查向量的线性运算,考查三角形的面积,解题方法其一是根据向量共线定理得出P点在一条直线,问题转化为求三角形高的最大值,从而求三角形面积的最大值,解题方法其二是利用正弦定理求三角形的面积,本题中注意在用平方关系转化时,34.(2024·上海徐汇·二模)如图,两条足够长且互相垂直的轨道12,l l相交于点O,一根长度为8的直杆AB的两端点,A B 分别在12,l l 上滑动(,A B 两点不与O 点重合,轨道与直杆的宽度等因素均可忽略不计),直杆上的点P 满足OP AB ⊥,则OAP △面积的取值范围是.【答案】(0,63]【分析】令π(0)2OAB x x ∠=<<,利用直角三角形边角关系及三角形面积公式求出OAP △的面积函数,再利用导数求出值域即得.【详解】依题意,设π(0)2OAB x x ∠=<<,则2cos 8cos ,cos 8cos OA AB x x AP OA x x ====,因此OAP △的面积31()sin 32sin cos 2f x OA AP x x x =⋅=,π02x <<,求导得42242()32(cos 3sin cos )32cos (13tan )f x x x x x x '=-=-,当π06x <<时,()0f x '>,当ππ62x <<时,()0f x '<,即函数()f x 在(0,)6π上递增,在ππ(,)62上递减,因此3max π31()()32()63622f x f ==⨯⨯=,而π(0)()02f f ==,则0()63f x <≤,所以OAP △面积的取值范围是(0,63].故答案为:(0,63]35.(2024·上海徐汇·二模)在ABC 中,1AC =,2π3C ∠=,π6A ∠=,则ABC 的外接圆半径为.【答案】1【分析】由正弦定理求解.【详解】由已知π6B ∠=,设三角形外接圆半径为R ,则122πsin sin 6AC R B ===,所以1R =.故答案为:1.36.(2024·上海闵行·二模)双曲线2:16x Γ-=的左右焦点分别为12F F 、,过坐标原点的直线与Γ相交于A B 、两点,若112F B F A =,则22F A F B ⋅= .【答案】4。

2024年高一数学真题分类汇编(沪教版2020必修第二册,上海专用)三角(解析版)

2024年高一数学真题分类汇编(沪教版2020必修第二册,上海专用)三角(解析版)

专题01三角的顶点为坐标原点,始边与,则tansin2所以此时B 有两解.故答案为:2.35.(2023下·上海奉贤·高一校考期中)题正确的序号是.①.若2a b c +>,则π3C <②.若222a b c +>,则ABC 是锐角三角形③.若2cos 22A b c c+=,则ABC 是直角三角形④.若cos cos a b B A=,则ABC 为等腰三角形⑤.若锐角ABC 中,则sin sin A +【答案】①③【分析】根据正弦定理,余弦定理,三角函数恒等变换的应用逐一判断各个选项即可.经测量知(1)霍尔顿发现无论BD 多长,(2)霍尔顿发现小麦的生长和发育与分割土地面积的平方和呈正相关关系分别为1S 和2S ,为了更好地规划麦田,请你帮助霍尔顿求出【答案】(1)证明见解析,(2)3132【分析】(1)利用余弦定理,整理等式,可得答案;(2)利用三角形面积公式,结合三角函数恒等式,可得答案【解析】(1)在ABD △中,在BCD △中,2BD CD =4cos 32cos A C ∴-=,则2cos (2)2221214S S AB AD +=⋅(2211sin cos 1A C =+-=一、填空题cos【点睛】本题考查解三角形中的正弦定理的应用,关键在于由反射的条件得出边、角之间的关系,再由302,AP <≤建立不等式,求得范围,属于难度题二、单选题7.(2023上·上海杨浦·高三上海市控江中学校考期中)设集合2π4πsin sin sin 20232023A x x ⎧==++⎨⎩|A .1011B .1012【答案】B的取值会随着三、解答题ABC方案一:在墙壁OB 上取两点P 、Q ,用长度为20m 的移动围挡围成一个以(只有MP ,MQ 两边为移动围挡);方案二:在墙壁OA 、OB 上分别取点E 、F 用长度为20m 别求出两个方案下展台面积的最大值;若现有材料下所围成展台的面积越大方案越好,请问选择哪个方案?【答案】MPQ 的面积的最大值为250m ,EOF 的面积的最大值为【分析】设m,m MP x MQ y ==,表示出MPQ 的面积,利用基本不等式可求出其最大值,设从而可求出,比较可知存在。

上海各高中历年学校学生练习卷及期中期末试卷三角函数题目汇总

上海各高中历年学校学生练习卷及期中期末试卷三角函数题目汇总

【题目】若 sin

2

5 12 , cos ,则角 的终边在__________________ 13 2 13
A. 第一象限 C. 第三象限
B. 第二象限 D. 第四象限
【题目】已知扇形半径为 2,圆心角为
,则扇形的面积为_____________ 3
返回首页
2、诱导公式
1 【题目】若 sin ,则 cos _________________ 2 4
5 / 28
【题目】已知 ,2 ,则
A. sin
1 1 cos ______________________ 2 2

2
B. sin

2
C. cos

2
D. cos

2
3 5 【题目】 ABC 中, cos A ,cos B 则 sin C ______________ 5 13
4 【题目】已知 sin , 是第三象限角,则 sin 2 __________ 5
【题目】若 cos
1 2 3 则 sin __________________ 3 2【题目】若 sin 2
4 ,则 cos4 ______________________ 5
三角函数题目汇总 知识点分布: 1、角度制与弧度制 3、同角的三角变换 5、正余弦定理与解三角形 6、三角函数 6.0 定义域与值域 6.2 解析式 6.4 奇偶性 6.6 周期性 6.8 凹凸性 6.10 三角不等式 6.12 函数性质综合题目 文档结尾 题目分类汇编: 返回首页 1、角度制与弧度制 【题目】一个扇形的半径是 1,圆心角为 4 弧度,则此扇形的面积为_______________ 6.1 图像 6.3 单调性 6.5 对称性 6.7 有界性 6.9 三角方程 6.11 反三角函数 2、诱导公式 4、三角变换

2023-2024学年上海市高一上学期数学人教A版-三角函数-强化训练-1-含解析

2023-2024学年上海市高一上学期数学人教A版-三角函数-强化训练-1-含解析

1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年上海市高一上学期数学人教A 版-三角函数-强化训练(1)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)y=sinx y=sin (4x+)y=sin (4x ﹣)y=sin (x+)1. 将函数f (x )=sin (2x﹣)的图象左移 , 再将图象上各点横坐标压缩到原来的 , 则所得到的图象的解析式为( )A. B. C. D. 2. 已知扇形的周长为 , 该扇形的圆心角是1弧度,则该扇形的面积()A. B. C.D.向左平移 个单位长度向右平移 个单位长度向左平移个单位长度向右平移 个单位长度3. 为了得到函数y=cos (2x- )的图象,只需将函数y=cos2x 的图象( )A. B. C. D. 4. 如果 的终边过点 ,那么 ( )A. B. C. D.15. 若点在角的终边上,则的值为( )A. B. C. D.6. 设角 的终边经过点 ,那么 ( )A. B. C. D.7. 已知角的终边过点 , 则的值为( )A. B. C. D.141或42或48. 已知扇形的周长为6cm ,面积为2cm 2 , 则扇形的圆心角的弧度数为 ( )A. B. C. D. 或9. 已知 均为锐角, ,则 ( )A. B. C. D.向左平移 个单位长度向左平移 个单位长度向右平移 个单位长度向右平移 个单位长度10. 为了得到函数 的图象,可以将函数y=cos2x 的图象( )A. B. C. D. 11. 使成立的 的一个变化区间是( )A. B. C. D.12. 已知扇形的半径为 , 面积为 , 则这个扇形的圆心角的弧度数为( )A. B. C. D.13..14. 写出一个最小正周期为的奇函数: .15. 将函数 的图象向右平移 个单位长度得到函数 的图象,若函数 在区间 上是单调递增函数,则实数 的取值范围是 .16. 已知 , 则 .17. 已知,求的值.18. 函数的部分图象如图所示.(1) 求函数f(x)的解析式;(2) 当x∈[-2,2]时,求f(x)的值域.19. 已知函数 .(1) 求的最小正周期;(2) 当时,(ⅰ)求函数的单调递减区间;(ⅱ)求函数的最大值、最小值,并分别求出使该函数取得最大值、最小值时的自变量的值.20. 已知函数的两个相邻零点之间的距离为.已知下列条件:①函数的图象关于直线对称②函数为奇函数.请从条件①,条件②中选择一个作为已知条件作答.(1) 求函数的解析式;(2) 将函数的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),得到函数的图象,当,,且,恒有,求实数的取值范围.(注:如果选择条件①,条件②分别解答,则按第一个解答计分)21. 已知,(1) 求的值;(2) 若是第三象限角,求的值.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.(1)(2)19.(1)(2)20.(1)(2)(1)(2)。

三角函数高考选择填空压轴题专练

三角函数高考选择填空压轴题专练

三角函数高考选择填空压轴题专练A 组一、选择题1.已知奇函数()()cos (0,0,0)f x A x A ωϕωϕπ=+>><<的导函数的部分图象如图所示, E 是最高点,且MNE ∆是边长为1的正三角形,那么13f ⎛⎫= ⎪⎝⎭( )A. 3-B. 12-C. 14D. 34π- 【答案】D【解析】由奇函数()002f πϕ=⇒=, MNE ∆是边长为1的正三角形,可得122TT ωπ=⇒=⇒=,E 是最高点且32E y =, ()'cos f x A x ωω=-得A=32π,所以()313cos 2234f x x f ππππ⎛⎫⎛⎫=+⇒=- ⎪ ⎪⎝⎭⎝⎭2.设函数())cos 3sin cos f x x x x ωωω=+(其中02ω<<),若函数()f x 图象的一条对称轴为3x π=,那么ω=( )A.12 B. 13 C. 14 D. 16【答案】A 【解析】()231113sin cos cos cos2sin 22262f x x x x x x x πωωωωωω⎛⎫=+=+-=+- ⎪⎝⎭, 3x π=是对称轴,则2362k πππωπ⨯+=+, k Z ∈,又02ω<<,则12ω=,故选A .3.在ABC ∆中,角,A B C ,所对的边分别为,a b c ,,若1,2cos 0bc b c A =+= ,则当角B 取得最大值时, ABC ∆的周长为( ) A. 3 B. 22 C. 23 D. 32 【答案】C【解析】由题意可得:()20,20,3,3.0,0.2sinB sinCcosA sin A C sinCcosA sinAcosC cosAsinC tanA tanC b cosA tanC c+=++==-=--=∴据此可得:()2tan tan 2tan 2tan tan 11tan tan 13tan 3tan tan A C CB AC A C CC C+=-+=-==-++,由均值不等式的结论:22313233tan tan C C≤=+, 当且仅当3tan 3C =时等号成立,此时角B 取得最大值. 据此可知: 33tan ,tan 3,tan 33B AC ==-=, 即△ABC 时顶角为120°的等腰三角形, 结合余弦定理可得ABC ∆的周长为23+. 本题选择C 选项.4.已知ABC ∆中, ,,A B C 的对边长度分别为,,a b c ,已知点O 为该三角形的外接圆圆心,点,,D E F 分别为边,,BC AC AB 的中点,则::OD OE OF =( ) A. ::a b c B. 111::a b cC. sin :sin :sin A B CD. cos :cos :cos A B C 【答案】D【解析】如图:在三角形AOD 中1122tan tan c c OD AOB C ==∠,同理1122,tan tan a b OE OF A B==,所以 OD:OE:OF =12tan c C : 12tan a A : 12tan b B,由正弦定理,可得OD:OE:OF = cosA:cosB:cosC ,选D.5.在ABC ∆中, ()2,?cos 1AB AC BC A π==-=,则cos A 的值所在区间为( ) A. ()0.4,0.3-- B. ()0.2,0.1-- C. ()0.3,0.2-- D. ()0.4,0.5 【答案】A【解析】设BC a = , ()1·cos 1,cos 0,BC A A aπ-=∴=-< ,中ABC ∆ 中, 22222228182,cos ,22288a a a AB AC A a +---====∴-=⨯⨯,化为32118810a a ⎛⎫⎛⎫---+= ⎪ ⎪⎝⎭⎝⎭,令1x a -= ,则()328810f x x x =-+= ,()2'2416,f x x x =- 可得()f x 在(),0-∞ 上递增,()()0.4 1.4 1.2810,0.30.0640f f -=-⨯+-= , ()cos 0.4,0.3A ∴∈-- ,故选A.6.在ABC ∆中, 5AC =,1150tantantan222AC B +-=,则BC AB += ( )A. 6B. 7C. 8D. 9 【答案】B【解析】因为1150tan tan tan 222A C B +-=,所以coscos 5cos222sin sin sin222A C BA CB +=,则cos sin sin cos 5cos 22222sin sin sin 222AC A C B A C B +=,即sin()5cos222sin sin sin222A CB AC B +=,即5sinsin sin cos 22222A C B A C ⎛⎫==+ ⎪⎝⎭,即6sin sin cos cos 2222A C A C =; 由正弦定理,得5sin sin sin BC AB A C B==,则()5sin(+)sin()5sin()5sin sin 222222sin sin cos cos 222A C A C A C A C BC AB B B B B --++===5cos cos sin sin 35sin sin 2222227cos cos sin sin 5sin sin222222A C A C A CA C A C A C ⎛⎫+ ⎪⎝⎭===-;故选B. 7.在ABC ∆中,内角,,A B C 的对边分别为,,,a b c O 是ABC ∆外接圆的圆心,若cos B b =-,且cos cos sin sin B CAB AC mAO C B+=,则m 的值是( )A.4B. 2C.D. 【答案】C【解析】cos B b =-,2222a c b b ac +-⋅=-,整理得222b c a +-=,所以222cos 2b c a A bc +-==,即4A π=,因为O 是ABC∆的外心,则对于平面内任意点P ,均有:cos cos cos 2sin sin 2sin sin 2sin sin A B C PO PA PB PC B C A C A B =++,令P 与A 重合,及4A π=得2cos cos 2sin sin B C AO AB AC AB AC C B ⎛⎫=+=+ ⎪⎝⎭,∵cos cos sin sin B CAB AC mAO C B+=,∴m =.故选C . 记忆:三角形的四心与向量关系:(1)O 是ABC ∆重心0OA OB OC ⇔++=,P 是平面ABC 内任一点, ()12PG PA PB PC G =++⇔是ABC ∆重心. (2)O 是ABC ∆垂心OA OB OB OC OC OA ⇔⋅+⋅+⋅, 若O 是ABC ∆垂心,则tan tan tan 0AOA BOB COC ++=. (3)O 是ABC ∆外心OA OB OC ⇔==,若O 是ABC ∆外心,则sin2sin2sin20AOA BOB COC ++=.若O 是ABC ∆外心,则对于平面内任意点P ,均有:cos cos cos 2sin sin 2sin sin 2sin sin A B CPO PA PB PC B C A C A B=++.(4)O 是ABC∆内心0AB AC BA BC CA CB OA OB OC AB AC BA BC CA CB ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⇔⋅-=⋅-=⋅-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭O 是ABC ∆内心0aOA bOB cOC ⇔++=,O 是ABC ∆内心sin sin sin 0AOA BOB COC ⇔++=.二、填空题8.(2017年全国2卷理)函数()23sin 4f x x x =-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 . 【答案】1【解析】()22311cos cos 44f x x x x x =--=-+ 2cos 12x ⎛=--+ ⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦,那么[]cos 0,1x ∈,当cos 2x =时,函数取得最大值1.9.已知33sin2,sin2x x m y y m +=+=-,且,,44x y ππ⎛⎫∈-⎪⎝⎭, m R ∈,则tan 3x y π⎛⎫++= ⎪⎝⎭____.【解析】令f(x)=x 3+sinx,则f(−x)=−x 3−sinx , ∴f(x)为奇函数,且f(x)在,44ππ⎛⎫- ⎪⎝⎭为单调函数, ∵f(x)=m,f(y)=−m ,∴x+y=0,∴tan tan 33x y ππ⎛⎫++== ⎪⎝⎭故答案为:.10.已知函数()sin f x x =,若存在12,,,m x x x 满足1206m x x x π≤<<<≤,且()()()()()()()*12231122,m m f x f x f x f x f x f x m m N --+-++-=≥∈,则m 的最小值为__________.【答案】8【解析】y sinx = 对任意(),,1,2,3,...,i j x x i j m = ,都有()()()()max min 2i j f x f x f x f x -≤-= ,要使m 取得最小值,尽可能多让()1,2,3,...,i x i m = 取得最高点,考虑120...6m x x x π≤<<<≤ ,()()()()()()12231...12m m f x f x f x f x f x f x --+-++-= ,按下图取值可满足条件, m ∴ 最小值为8 ,故答案为8 .11.在ABC ∆中,角,,A B C 的对边分别为,,a b c , 222a c b ac +-=, 3b =2a c +的取值范围是__________.【答案】3,27【解析】由题意得2221cos 22a c b B ac +-==,又因为()0,B π∈,可知3B π=。

(压轴题)高中数学必修四第一章《三角函数》测试(含答案解析)

(压轴题)高中数学必修四第一章《三角函数》测试(含答案解析)

一、选择题1.将函数()sin 2f x x =的图象向右平移ϕ(02πϕ<≤)个单位,得到函数()g x 的图象.在同一坐标系中,这两个函数的部分图象如图所示,则ϕ=( )A .6π B .4π C .3π D .2π 2.函数()()12cos 20211f x x x π=++⎡⎤⎣⎦-在区间[]3,5-上所有零点的和等于( ) A .2B .4C .6D .83.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用.假设在水流量稳定的情况下,简车上的每一个盛水筒都做逆时针匀速圆周运动.现将筒车抽象为一个几何图形,如图所示,圆O 的半径为4米,盛水筒M 从点0P 处开始运动,0OP 与水平面的所成角为30,且每分钟恰好转动1圈,则盛水筒M 距离水面的高度H (单位;m )与时间t (单位:s )之间的函数关系式的图象可能是( )A .B .C .D .4.下列结论正确的是( ) A .sin1cos1< B .2317cos cos 54ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭C .()()tan 52tan 47->-D .sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭5.平面直角坐标系xOy 中,点()00,P x y 在单位圆O 上,设xOP α∠=,若5,36ππα⎛⎫∈ ⎪⎝⎭,且3sin 65πα⎛⎫+= ⎪⎝⎭,则0x 的值为A .3310- B .3310+ C .3310D .43310- 6.已知曲线1C :sin y x =,2C :cos 23y x π⎛⎫=-⎪⎝⎭,则下面结论正确的是( ) A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移23π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12π个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移12π个单位长度,得到曲线2C7.已知函数y =f (x )的部分图象如图所示,则其解析式可能是( )A .()sin 2f x x x =B .()||sin 2f x x x =C .()cos 2f x x x =D .()||cos2f x x x =8.《九章算术》中《方田》章有弧田面积计算问题,术日:以弦乘矢,矢又自乘,并之,二而一.其大意是弧田面积计算公式为:弧田面积12=(弦×矢+矢×矢).弧田是由圆弧(弧田弧)及圆弧两端点的弦(弧田弦)围成的平面图形,公式中的“弦”指的是弧田弦的长,“矢”指的是弧田所在圆的半径与圆心到孤田弦的距离之差,现有一弧田,其矢长等于8米,若用上述弧田面积计算公式算得该弧田的面积为128平方米,则其弧田弧所对圆心角的正弦值为( ) A .60169B .120169C .119169D .591699.设函数()()sin 16f x x N πωω*⎛⎫=-+∈ ⎪⎝⎭在55,126ππ⎡⎤⎢⎥⎣⎦上单调递减,则下述结论: ①()f x 关于,012π⎛⎫⎪⎝⎭中心对称;②()f x 关于直线23x π=轴对称;③()f x 在,2ππ⎡⎤⎢⎥⎣⎦上的值域为30,2⎡⎤⎢⎥⎣⎦;④方程()1f x =在[]0,2π有4个不相同的根. 其中正确结论的编号是( ) A .①②B .②③C .②④D .③④10.设函数()tan 3f x x π=-,()sin 3g x x π⎛⎫=-⎪⎝⎭,则函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是( ) A .4B .5C .12D .1311.已知函数11()sin sin sin sin f x x x x x ⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭,现有命题:①()f x 的最大值为0; ②()f x 是偶函数; ③()f x 的周期为π; ④()f x 的图象关于直线2x π=对称.其中真命题的个数是( ) A .4B .3C .2D .112.若函数()22()sin 23cos sin f x x x x =+-的图像为E ,则下列结论正确的是( ) A .()f x 的最小正周期为2π B .对任意的x ∈R ,都有()()3f x f x π=-C .()f x 在7(,)1212ππ上是减函数 D .由2sin 2y x =的图像向左平移3π个单位长度可以得到图像E 二、填空题13.“一湾如月弦初上,半壁澄波镜比明”描述的是敦煌八景之一的月牙泉.如图所示,月牙泉由两段在同一平面内的圆弧形岸连接围成.两岸连接点间距离为603米.其中外岸为半圆形,内岸圆弧所在圆的半径为60米.某游客绕着月牙泉的岸边步行一周,则该游客步行的路程为_______米.14.设函数()3sin 23f x x π⎛⎫=-⎪⎝⎭的图象为C ,给出下列命题:①图象C 关于直线1112π=x 对称;②函数()f x 在区间5,1212ππ⎛⎫- ⎪⎝⎭内是减函数;③函数()f x 是奇函数;④图象C 关于点,03π⎛⎫⎪⎝⎭对称.其中,错误命题的是______.15.已知函数()()2sin 0f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是-2,则ω的最小值等于__________.16.已知M 是函数()()238sin f x x x x R π=--∈的所有零点之和.则M 的值为_____. 17.给出下列4个命题:①函数2cos 32y x π⎛⎫=+ ⎪⎝⎭是奇函数;②函数y =sin (2x +3π)的图象关于点(12π,0)成中心对称; ③x =8π是函数y =sin (2x +54π)的一条对称轴方程;④存在实数α,使得32sin 42πα⎛⎫+= ⎪⎝⎭.把你认为正确命题的序号都填在横线上____. 18.关于函数()4sin(2)(),3f x x x R π=+∈有下列命题:①由12()()0f x f x ==可得12x x -必是π的整数倍;②()y f x =的图象关于点(,0)6π-对称;③()y f x =的表达式可改写为4cos(2);6y x π=-④()y f x =的图象关于直线6x π=-对称.其中正确命题的序号是_________.19.已知将函数()sin()(06,)22f x x ππωθωθ=+<<-<<的图象向右平移3π个单位长度得到画()g x 的图象,若()f x 和()g x 的图象都关于4x π=对称,则ωθ⋅=________.20.函数()()0,0,2(f x Asin x A πωϕωϕ=+>><)的部分图像如图所示.则()f x 的解析式是_____.三、解答题21.已知函数()()2sin 0,22x f x ωϕωπϕ=≥<⎛⎫+ ⎪⎝⎭的图像向右平移6π个单位长度得到()g x 的图像, ()g x 图像关于原点对称,()f x 的相邻两条对称轴的距离是2π. (1)求()f x 在[]0,π上的增区间; (2)若()230f x m -=+在0,2x π⎡⎤∈⎢⎥⎣⎦上有两解,求实数m 的取值范围.22.已知函数2()3sin cos cos (0)f x x x x ωωωω=->周期是2π. (1)求()f x 的解析式,并求()f x 的单调递增区间;(2)将()f x 图像上所有点的横坐标扩大到原来的2倍,再向左平移6π个单位,最后将整个函数图像向上平移32个单位后得到函数()g x 的图像,若263x ππ≤≤时,()2g x m -<恒成立,求m 得取值范围.23.如图所示,摩天轮的半径为50m ,最高点距离地面高度为110m ,摩天轮的圆周上均匀地安装着24个座舱,并且运行时按逆时针匀速旋转,转一周大约需要12min .甲,乙两游客分别坐在P ,Q 两个座舱里,且他们之间间隔2个座舱(本题中将座舱视为圆周上的点).(1)求劣弧PQ 的弧长l (单位:m );(2)设游客丙从最低点M 处进舱,开始转动min t 后距离地面的高度为m H ,求在转动一周的过程中,H 关于时间t 的函数解析式;(3)若游客在距离地面至少85m 的高度能够获得最佳视觉效果,请问摩天轮转动一周能有多长时间使甲,乙两位游客都有最佳视觉效果.24.游客乘坐位于长沙贺龙体育场的摩天轮可近观长沙中心城区城市美景,远眺岳麓山,俯瞰橘子洲,饱览湘江风光.据工作人员介绍,该摩天轮直径约100米,摩天轮的最低处P 与地面的距离为20米,设有60个座舱,游客先乘坐直升电梯到入口(人口在摩天轮距地面的最低处)处等待,当座舱到达最低处P 时有序进入座舱,摩天轮逆时针方向匀速运行一周约需20分钟.以摩天轮的圆心为坐标原点,水平线为x 轴建立如图所示的平面直角坐标系.(1)试将游客甲离地面的距离()h t (单位:米)表示为其坐上摩天轮的时间t (单位:分钟)的函数;(2)若游客乙在甲后的5分钟也在点P 处坐上摩天轮,求在乙坐上摩天轮后的多少分钟时甲乙的离地面距离之差首次达到最大.25.已知函数()()()2cos 0,0f x x ωϕωϕπ=+><<的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()f x 图象上每个点的横坐标变为原来的2倍(纵坐标不变),再将得到的图象向右平移4个单位长度,所得图象的函数为()g x ,若不等式()0g x m -≤在[]0,6x ∈恒成立,求实数m 的取值范围.26.己知函数()sin 3cos (0, 0 )f x A x A x A ωωω=+>>,其部分图象如图所示.(1)求A 和ω的值;(2)求函数()y f x =在[]0,π的单调增区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由图可知,172482g f ππ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,根据函数图象的平移变化法则可知()()sin 2x g x ϕ=-,于是推出1717sin 224242g ππϕ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,即1722124k ππϕπ-=+或324k ππ+,k Z ∈,再结合02πϕ<≤,解之即可得ϕ的值.【详解】由图可知,17sin 224882g f πππ⎛⎫⎛⎫⎛⎫==⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为()f x 的图象向右平移ϕ个单位,得到函数()g x 的图象,所以()()sin 2x g x ϕ=-,所以171717sin 2sin 22424122g πππϕϕ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以1722124k ππϕπ-=+或17322124k ππϕπ-=+,k Z ∈, 解得712k πϕπ=-或3k πϕπ=-,k Z ∈, 因为02πϕ<≤,所以3πϕ=.故选:C 【点睛】本小题主要考查三角函数图象变换,属于中档题.2.D解析:D 【分析】由图可得函数的零点就是11y x =-和2cos y x π=交点的横坐标,画出函数图象,可得出()f x 在[]3,5-有8个零点,且关于1x =对称,即可求出.【详解】()()112cos 20212cos 11f x x x x x ππ=++=-⎡⎤⎣⎦--, 令()0f x =,则12cos 1x x π=-, 则函数的零点就是11y x =-和2cos y x π=交点的横坐标,可得11y x =-和2cos y x π=的函数图象都关于1x =对称,则交点也关于1x =对称, 画出两个函数的图象,观察图象可知,11y x =-和2cos y x π=在[]3,5-有8个交点, 即()f x 有8个零点,且关于1x =对称,故所有零点的和为428⨯=. 故选:D. 【点睛】本题考查求函数的零点之和,解题的关键是将题目化为找11y x =-和2cos y x π=交点的横坐标,从而通过函数图象求解.3.D解析:D 【分析】先根据题意建立坐标系,写出盛水筒M 距离水面的高度H 与时间t 之间的函数关系式,再根据关系式即可判断. 【详解】解:以O 为圆心,过点O 的水平直线为x 轴,建立如图所示的平面直角坐标系:0306xOP π∠==,OP ∴在()t s 内转过的角为:26030t t ππ=, ∴以x 轴正半轴为始边,以OP 为终边的角为:306t ππ-,P ∴点的纵坐标为:4sin 306t ππ⎛⎫-⎪⎝⎭, H ∴与t 之间的函数关系式为:4sin 2306H t ππ⎛⎫=-+⎪⎝⎭, 当sin 1306t ππ⎛⎫-= ⎪⎝⎭时,max 426H =+=, 当sin 1306t ππ⎛⎫-=-⎪⎝⎭时,max 422H =-+=-, 对A ,B ,由图像易知max min H H =-,故A ,B 错误; 对C ,max min H H <-,故C 错误; 对D ,max min H H >-,故D 正确. 故选:D. 【点睛】关键点点睛:本题解题的关键是理解题意,根据题意写出H 与t 之间的函数关系式.4.D解析:D 【分析】利用正弦函数的单调性可判断AD 选项的正误;利用正切函数的单调性可判断C 选项的正误;利用余弦函数的单调性可判断B 选项的正误. 【详解】对于A 选项,因为正弦函数sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增, 且01122ππ<-<<,则sin1sin 1cos12π⎛⎫>-=⎪⎝⎭,A 选项错误; 对于B 选项,因为余弦函数cos y x =在()0,π上为减函数,23233cos cos cos 555πππ⎛⎫-== ⎪⎝⎭,1717cos cos cos 444πππ⎛⎫-== ⎪⎝⎭, 3045πππ<<<,则3cos cos 54ππ<,即2317cos cos 54ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,B 选项错误; 对于C 选项,当900x -<<时,正切函数tan y x =单调递增,因为9052470-<-<-<,所以,()()tan 52tan 47-<-,C 选项错误;对于D 选项,因为正弦函数sin y x =在,02π⎛⎫- ⎪⎝⎭上单调递增,因为021018πππ-<-<-<,所以,sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,D 选项正确. 故选:D. 【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.5.A解析:A 【分析】由题意根据三角函数定义可知0x cos α=,先根据角α的取值范围求出6πα⎛⎫+⎪⎝⎭的取值范围继而求出4cos 65πα⎛⎫+=- ⎪⎝⎭,再通过凑角求cos α. 【详解】5,36ππα⎛⎫∈ ⎪⎝⎭,则26ππαπ<+<,则由3sin 65πα⎛⎫+= ⎪⎝⎭,得4cos 65πα⎛⎫+=- ⎪⎝⎭.由点()00,P x y 在单位圆O 上,设xOP α∠=,则0x cos α=. 又cos αcos 66ππα⎡⎤⎛⎫=+-⎪⎢⎥⎝⎭⎣⎦cos sin 6666cos sin ππππαα⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭431552=-+⨯310-=故0x =.选A. 【点睛】本题考查三角函数定义及三角恒等变换的简单应用.解题中注意所求角的取值范围.由配凑法根据已知角构造所求角进行求解是三角恒等变换中常用的解题技巧.6.C解析:C 【分析】由题意利用诱导公式得1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,根据函数()cos y A x ωϕ=+的图象变换规律,得出结论. 【详解】已知曲线1sin cos :2C y x x π⎛⎫==-⎪⎝⎭,2cos 23:C y x π⎛⎫=-⎪⎝⎭, ∴把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,可得cos 22y x π⎛⎫=- ⎪⎝⎭的图象,再把得到的曲线向左平移 12π个单位长度,得到曲线2cos 2cos 263:2C x x πππ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭的图象,故选C .【点睛】本题主要考查函数()cos y A x ωϕ=+的图象变换规律,属于基础题.7.B解析:B 【分析】利用函数()0f π=排除两个选项,再由奇偶性排除一个后可得正确选项. 【详解】由图象知()0f π=,经验证只有AB 满足,C 中()cos 2f ππππ==,D 中()f ππ=,排除CD ,A 中函数满足()sin(2)sin 2()f x x x x x f x -=--==为偶函数,B 中函数满足()sin(2)sin 2()f x x x x x f x -=--=-=-为奇函数,而图象关于原点对称,函数为奇函数,排除A ,选B . 故选:B . 【点睛】思路点睛:由函数图象选择解析式可从以下方面入手:(1)从图象的左右位置,观察函数的定义域;从图象的上下位置,观察函数的值域; (2)从图象的变化趋势观察函数的单调性; (3)从图象的对称性观察函数的奇偶性; (4)从图象的特殊点,排除不合要求的解析式..8.B解析:B 【分析】求出弦长,再求出圆的半径,然后利用三角形面积求解. 【详解】如图,由题意8CD =,弓琖ACB 的面积为128,1(8)81282AB ⨯+⨯=,24AB =, 设所在圆半径为R ,即OA OB R ==,则22224(8)2R R ⎛⎫=-+ ⎪⎝⎭,解得13R =, 5OD =,由211sin 22AB OD OA AOB ⨯=∠得 2245120sin 13169AOB ⨯∠==. 故选:B .【点睛】关键点点睛:本题考查扇形与弓形的的有关计算问题,解题关键是读懂题意,在读懂题意基础上求出弦长AB ,然后求得半径R ,从而可解决扇形中的所有问题.9.D解析:D 【分析】利用题干中的已知条件求得2ω=,可得出()sin 216f x x π⎛⎫=-+ ⎪⎝⎭,利用正弦型函数的对称性可判断①②的正误,利用正弦型函数的值域可判断③的正误,求出方程()1f x =在[]0,2π上的解,可判断④的正误. 【详解】N ω*∈,由55,126x ππ⎡⎤∈⎢⎥⎣⎦可得55126666x πωπππωπω-≤-≤-, 由于函数()()sin 16f x x N πωω*⎛⎫=-+∈ ⎪⎝⎭在55,126ππ⎡⎤⎢⎥⎣⎦上单调递减, 所以,()553,2,21266622k k k Z πωππωπππππ⎡⎤⎡⎤--⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,所以,521262532662k k ωππππωππππ⎧-≥+⎪⎪⎨⎪-≤+⎪⎩,解得()248121055k k k Z ω++≤≤∈,由248121055k k ++≤,解得16k ≤,N ω*∈且k Z ∈,0k ∴=,可得825ω≤≤,2ω∴=,则()sin 216f x x π⎛⎫=-+ ⎪⎝⎭.对于①,sin 2sin 00126ππ⎛⎫⨯-==⎪⎝⎭,所以,112f π⎛⎫= ⎪⎝⎭, 所以,函数()f x 的图象关于点,112π⎛⎫⎪⎝⎭成中心对称,①错误; 对于②,271sin 2sin 13662πππ⎛⎫⨯-==-≠± ⎪⎝⎭,②错误;对于③,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,5112,666x πππ⎡⎤-∈⎢⎥⎣⎦,则11sin 262x π⎛⎫-≤-≤ ⎪⎝⎭, 所以,()302f x ≤≤,即()f x 在,2ππ⎡⎤⎢⎥⎣⎦上的值域为30,2⎡⎤⎢⎥⎣⎦,③正确; 对于④,当[]0,2x π∈时,232,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 令()1f x =,可得sin 206x π⎛⎫-= ⎪⎝⎭,206x π∴-=或26x ππ-=或226x ππ-=或236x ππ-=.所以,方程()1f x =在[]0,2π有4个不相同的根,④正确. 故选:D. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).10.A解析:A 【分析】由题意知函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象在区间[]2,2ππ-上交点的个数,作出两个函数图象,数形结合即可求解. 【详解】令()()()0h x f x g x =-=可得()()f x g x =,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于 函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象在区间[]2,2ππ-上交点的个数. 分别作出()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象,由图知两个函数图象在区间[]2,2ππ-上有4个交点,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是4, 故选:A 【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点; (2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()()()0f x h x g x =⇔=,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.11.A解析:A 【分析】先求函数的定义域,再根据函数奇偶性定义,周期函数的定义可判断②③的正误,再根据函数解析的特征可判断④的正误,最后利用换元法可求判断①的正误. 【详解】22111()sin sin sin sin sin sin f x x x x x x x ⎛⎫⎛⎫=+-=- ⎪⎪⎝⎭⎝⎭, 由sin 0x ≠可得,x k k Z π≠∈,故函数的定义域为{}|,x x k k Z π≠∈, 所以函数的定义域关于原点对称.又()()()222211()sin sin sin sin f x x x f x x x-=--=-=-,故()f x 为偶函数, 故②正确.又()()()221()sin sin f x x f x x πππ+=+-=+,故()f x 是周期函数且周期为π,故③正确. 又()()()221()sin sin f x x f x x πππ-=--=-,故()f x 的图象关于直线2x π=对称,故④正确.令2sin t x =,则(]0,1t ∈且()1f x t t=-,因为1y t t=-为(]0,1上的增函数,故()max 0f x =,故①正确. 故选:A. 【点睛】思路点睛:对于复杂函数的性质的研究,注意先研究函数的定义域,再研究函数的奇偶性或周期性,最后再研究函数的单调性,讨论函数图象的对称性,注意根据()()f a x f x -=来讨论. 12.C解析:C 【分析】利用二倍角和辅助角公式化简函数为()2sin(2+)3f x x π=;根据正弦型函数的性质验证选项得解 【详解】()sin 222sin(2+)3f x x x x π==()f x 最小正周期22T ππ==,A 错误; ()2sin[2()+]2sin(2)2sin 2333f x x x x ππππ-=-=-=,B 错误; 当7(,)1212x ππ∈时,32(,)322x πππ+∈ ()f x ∴在7(,)1212ππ上是减函数,C 正确; 将2sin 2y x =向左平移3π个单位长度得到22sin[2()]2sin(2)33y x x ππ=-=-,D 错误. 故选:C 【点睛】本题考查正弦型函数性质的相关命题的辨析,涉及到二倍角和辅助角公式化简三角函数、正弦型函数的周期性、对称性和单调区间的求解、三角函数平移变换的应用等知识;关键是能够熟练掌握整体对应的方法,通过代入检验,结合正弦函数图象可确定正弦型函数的性质.二、填空题13.【分析】如图作出月牙湖的示意图由题意可得可求的值进而由图利用扇形的弧长公式可计算得解【详解】如图是月牙湖的示意图是的中点连结可得由条件可知所以所以所以月牙泉的周长故答案为:【点睛】关键点点睛:本题的 解析:(40303)π+【分析】如图,作出月牙湖的示意图,由题意可得3sin QPO ∠=,可求,QPO QPT ∠∠的值,进而由图利用扇形的弧长公式可计算得解. 【详解】如图,是月牙湖的示意图,O 是QT 的中点,连结PO ,可得PO QT ⊥,由条件可知603QT =,60PQ = 所以3sin 2QPO ∠=,所以3QPO π∠=,23QPT π∠=,所以月牙泉的周长(260303403033l πππ=⨯+⨯=+.故答案为:(40π+ 【点睛】关键点点睛:本题的关键是根据实际问题抽象出图象,再根据数形结合分析问题.14.②③④【分析】根据函数的图象与性质分析函数的对称性奇偶性与单调性即可得出结论【详解】解:①由得令直线为函数图象的对称轴故图象C 关于直线对称故①正确;由得令得函数在区间内是增函数故②错误;故函数不是奇解析:②③④ 【分析】根据函数()3sin 23f x x π⎛⎫=- ⎪⎝⎭的图象与性质,分析函数的对称性,奇偶性与单调性,即可得出结论. 【详解】 解:①由232x k πππ-=+,Z k ∈,得25121x k ππ=+,Z k ∈, 令1k =,直线1112π=x 为函数图象的对称轴, 故图象C 关于直线1112π=x 对称,故①正确; 由222232k x k πππππ-+≤-≤+,k Z ∈,得5,1212x k k ππππ⎡⎤∈-++⎢⎥⎣⎦,k Z ∈, 令0k =,得函数()f x 在区间5,1212ππ⎛⎫-⎪⎝⎭内是增函数,故②错误; ()00f ≠,故函数()f x 不是奇函数,故③错误;由23x k ππ-=,k Z ∈,得612x k ππ=+,k Z ∈,图象C 不关于点,03π⎛⎫ ⎪⎝⎭对称,故④错误.故答案为:②③④. 【点睛】本题考查正弦函数的图象与性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.15.【分析】先根据函数在区间上的最小值是确定的取值范围进而可得到或求出的范围得到答案【详解】函数在区间上的最小值是则的取值范围是当时函数有最小值或或的最小值等于故答案为:【点睛】本题主要考查正弦函数的最解析:32【分析】先根据函数在区间[,]34ππ-上的最小值是2-确定x ω的取值范围,进而可得到32ωππ--或342ωππ,求出ω的范围得到答案. 【详解】函数()2sin (0)f x x ωω=>在区间[,]34ππ-上的最小值是2-, 则x ω的取值范围是[,]34ωπωπ-,当22x k πωπ=-+,k Z ∈时,函数有最小值2-,32ωππ∴--,或342ωππ,k Z ∈, ∴32ω≥,或6ω,k Z ∈, 0ω>,ω∴的最小值等于32.故答案为:32. 【点睛】本题主要考查正弦函数的最值的应用.考查基础知识的运用能力.三角函数式高考的重要考点,一定要强化复习.16.【分析】根据和的函数图像的对称点和交点个数得出答案【详解】令可得作出和的函数图像如图所示:由图像可知两函数图像有个交点又两函数图像均关于直线对称的个零点之和为故答案为:【点睛】本题考查了函数零点之和 解析:12【分析】根据8sin y x π=和23y x =-的函数图像的对称点和交点个数得出答案. 【详解】令()0f x =可得8sin 23x x π=-,作出8sin y x π=和23y x =-的函数图像如图所示:由图像可知两函数图像有8个交点, 又两函数图像均关于直线32x =对称, ∴()f x 的8个零点之和为324122⨯⨯=.故答案为:12 【点睛】本题考查了函数零点之和,考查了转化与化归、数形结合的思想,属于基础题.17.①③【分析】根据三角函数的奇偶性对称中心对称轴和最值对四个命题逐一分析由此确定正确命题的序号【详解】①为奇函数所以①正确②由于所以②错误③由于所以③正确④由于的最大值为所以④错误故答案为:①③【点睛解析:①③ 【分析】根据三角函数的奇偶性、对称中心、对称轴和最值对四个命题逐一分析,由此确定正确命题的序号. 【详解】①,22cos sin 323y x x π⎛⎫=+=- ⎪⎝⎭为奇函数,所以①正确.②,由于sin 2sin 11232πππ⎛⎫⨯+== ⎪⎝⎭,所以②错误. ③,由于53sin 2sin 1842πππ⎛⎫⨯+==- ⎪⎝⎭,所以③正确. ④24πα⎛⎫+ ⎪⎝⎭2322<,所以④错误.故答案为:①③ 【点睛】本小题主要考查三角函数的奇偶性、对称性、最值以及诱导公式,属于中档题.18.②③【分析】根据三角函数的零点性质三角函数对称和三角函数诱导公式依次判断每个选项得到答案【详解】①中是的两个零点即是的整数倍①错误;②中②正确;故④错误;③中③正确;所以正确命题序号是②③故答案为:解析:②③ 【分析】根据三角函数的零点性质,三角函数对称和三角函数诱导公式依次判断每个选项得到答案. 【详解】①中12,x x 是()f x 的两个零点,即12x x -是2π的整数倍,①错误; ②中06f π⎛⎫-= ⎪⎝⎭,②正确;故④错误; ③中4sin 24cos 2cos 23236y x x x ππππ⎛⎫⎛⎫⎛⎫=+=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,③正确; 所以正确命题序号是②③. 故答案为:②③. 【点睛】本题考查了三角函数的对称,零点,诱导公式,意在考查学生对于三角函数知识的综合应用.19.【分析】和的图象都关于对称所以①②由①②结合即可得到答案【详解】由题意因为和的图象都关于对称所以①②由①②得又所以将代入①得注意到所以所以故答案为:【点睛】本题考查正弦型函数的性质涉及到函数图象的平解析:34π-【分析】()f x 和()g x 的图象都关于4x π=对称,所以11,42k k Z ππωθπ+=+∈①,22,432k k Z πππωωθπ-+=+∈②,由①②结合06,22ππωθ<<-<<即可得到答案.【详解】由题意,()()sin()33g x f x x ππωωθ=-=-+,因为()f x 和()g x 的图象都关于4x π=对 称,所以11,42k k Z ππωθπ+=+∈①,22,432k k Z πππωωθπ-+=+∈②,由①②,得12123(),,k k k k Z ω=-∈,又06ω<<,所以3ω=,将3ω=代入①,得11,4k k Z πθπ=-∈,注意到22ππθ-<<,所以4πθ=-,所以34ωθπ⋅=-.故答案为:34π- 【点睛】本题考查正弦型函数的性质,涉及到函数图象的平移、函数的对称性,考查学生的运算求解能力,是一道中档题.20.【分析】由图像对应横坐标可求再将代入可进一步求解由图像过点可求进而求解【详解】由解得又函数过所以解得又图像过可得解得故故答案为:【点睛】本题考查由三角函数图像求解析式属于中档题解析:()2sin 26f x πx ⎛⎫+ ⎝=⎪⎭【分析】由34T 图像对应横坐标可求ω,再将6x π=代入可进一步求解ϕ,由图像过()0,1点可求A ,进而求解 【详解】由1132312644T πππω-==⋅,解得2ω=,又函数过()max ,6f x π⎛⎫⎪⎝⎭, 所以63A f Asin ππϕ⎛⎫⎛⎫=⎪ ⎪⎝⎝⎭+⎭=,解得6π=ϕ,又图像过()0,1可得()106f Asin π==,解得2A =,故()2sin 26f x πx ⎛⎫+ ⎝=⎪⎭故答案为:()2sin 26f x πx ⎛⎫+ ⎝=⎪⎭【点睛】本题考查由三角函数图像求解析式,属于中档题三、解答题21.(1)70,,,1212ππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦;(2)12⎛ ⎝⎦. 【分析】(1)由()f x 的相邻两条对称轴的距离是2π,可得函数的周期,从而得出ω的值,由平移得出()g x 的解析式,根据()g x 图像关于原点对称,可求出ϕ的值,从而可求()f x 单调增区间,得出答案.(2)令23t x π=+则4,33t ππ⎡⎤∈⎢⎥⎣⎦,则[2s n 2]i t ∈,根据()230f x m -=+有两解,即2sin 32t m =-有两解,从而可得答案. 【详解】解:由()f x 的相邻两条对称轴的距离是2π,则22T ππω==,1,ω∴= ()()2sin 2f x x ϕ∴=+()2sin 2sin 2326x g x x ππϕϕ⎡⎤⎛⎫-+ ⎪⎢⎛⎫==-+ ⎪⎝⎥⎝⎣⎦⎭⎭函数()g x 的图像关于原点对称,3k πϕπ-+=,,2πϕ<所以3πϕ=()2sin 23f x x π⎛⎫∴=+ ⎪⎝⎭(1)由222232k x k πππππ-≤+≤+,k Z ∈得51212k x k ππππ-≤≤+,k Z ∈ 令0k =得51212x ππ-≤≤ 1k =得7131212x ππ≤≤ ()f x ∴在[]0,π增区间是70,,,1212ππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦()2令23t x π=+,0,,2x π⎡⎤∈⎢⎥⎣⎦则4,33t ππ⎡⎤∴∈⎢⎥⎣⎦所以[2s n 2]i t ∈若()230f x m -=+有两解,即2sin 32t m =-在4,33t ππ⎡⎤∈⎢⎥⎣⎦上有两解,由2sin y t =322m -<,即123m <≤12m ∴<≤m ∴的取值范围是12⎛ ⎝⎦【点睛】关键点睛:本题考查求正弦型函数的单调增区间和根据方程的解个数求参数的范围问题,解答本题的关键是设23t x π=+,由0,,2x π⎡⎤∈⎢⎥⎣⎦则4,33t ππ⎡⎤∈⎢⎥⎣⎦所以[2s n ,2]i 3t ∈-若()230f x m -=+有两解,即2sin 32t m =-在4,33t ππ⎡⎤∈⎢⎥⎣⎦上有两解,然后数形结合求解,属于中档题.22.(1)1()sin 462f x x π⎛⎫=-- ⎪⎝⎭,单调递增区间为,21226k k ππππ-+⎡⎤⎢⎥⎣⎦,k Z ∈;(2)()0,2. 【分析】(1)根据正弦和余弦的二倍角公式化简可得1()sin 262f x x πω⎛⎫=-- ⎪⎝⎭,由222T ππω==,解得2ω=,带入正弦函数的递增区间242262k x k πππππ-≤-≤+,化简即可得解; (2)根据三角函数的平移和伸缩变换可得()sin 216g x x π⎛⎫=++ ⎪⎝⎭,根据题意只需要max min [()2][()2]g x m g x -<<+,分别在263x ππ≤≤范围内求出()g x 的最值即可得解. 【详解】(1)2()3cos cos f x x x x ωωω=-312(cos 21)22x x ωω=-+ 1sin 262x πω⎛⎫=-- ⎪⎝⎭由222T ππω==,解得2ω=所以,1()sin 462f x x π⎛⎫=-- ⎪⎝⎭ ∵242262k x k πππππ-≤-≤+∴224233k x k ππππ-≤≤+∴21226k k x ππππ-≤≤+ ∴()f x 的单调递增区间为,21226k k ππππ-+⎡⎤⎢⎥⎣⎦,k Z ∈ (2)依题意得()sin 216g x x π⎛⎫=++ ⎪⎝⎭因为|()|2g x m -<,所以()2()2g x m g x -<<+因为当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,()2()2g x m g x -<<+恒成立所以只需max min [()2][()2]g x m g x -<<+转化为求()g x 的最大值与最小值当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,()y g x =为单调减函数所以max ()1126g x g π⎛⎫==+= ⎪⎝⎭,()min21103g x g π⎛⎫==-+= ⎪⎝⎭, 从而max [()2]0g x -=,min [()2]2g x +=,即02m <<所以m 的取值范围是()0,2. 【点睛】本题考查了三角函数的单调性和最值,考查了三角函数的辅助角公式和平移伸缩变换,有一定的计算量,属于中档题.本题关键点有: (1)三角函数基本量的理解应用; (2)三角函数图像平移伸缩变换的方法; (3)恒成立思想的理解及转化. 23.(1)252m π;(2)50sin()6062H x ππ=-+,其中012t ≤≤;(3)5min 2. 【分析】(1)根据弧长的计算公式可求PQ 的长度.(2)建立如图所示的平面直角坐标系,利用三角函数的定义可求H 关于时间t 的函数解析式.(3)利用(2)中所得的解析式并令85H ≥,求出不等式的解后可得甲,乙两位游客都有最佳视觉效果的时间长度. 【详解】(1)因为摩天轮的圆周上均匀地安装着24个座舱,故每个座舱与中心连线所成的扇形的圆心角为22412ππ=, 故25350122lm ππ. (2)建立如图所示的平面直角坐标系,设sin()H A wx B ϕ=++, 由题意知,12T =,所以26w T ππ==, 又由50,1105060A r B ===-=,所以50sin()606H x πϕ=++,当0x =时,可得sin 1ϕ=-,所以2πϕ=-,故H 关于时间t 的函数解析式为50sin()6062H x ππ=-+,其中012t ≤≤.(3)令50sin()608562H x ππ=-+≥,即1sin()622x ππ-≥, 令522,6626k x k k Z ππππππ+≤-≤+∈,解得412812,k x k k Z +≤≤+∈, 因为甲乙两人相差3312min 242⨯=, 又由354min 22-=,所以有5min 2甲乙都有最佳视觉效果. 【点睛】三角函数实际应用问题的处理策略: 1、已知函数模型求解数学问题;2、把实际问题抽象转化成数学问题,利用三角函数的有关知识解决问题;3、根据实际问题转化为已知条件转化为三角函数的解析式和图象,然后在根据数形结合思想研究三角函数的性质,进而加深理解函数的性质. 24.(1)()50sin 707050cos ,010210h t t t t πππ⎛⎫=-+=-≥ ⎪⎝⎭;(2)52分钟. 【分析】(1)根据题意分析游客甲绕原点作匀速圆周运动,根据三角函数定义可把他离地面的距离()h t 表示出来;(2)先求出游客乙离地面距离的函数()g t ,则()()h h t g t =-△即为甲乙的离地面距离之差,利用函数求最值. 【详解】(1)法1:据题意,游客甲绕原点按逆时针方向作角速度为22010ππ=弧度/分钟的匀速圆周运动,设经过t 分钟后甲到达Q ,则以OP 为始边,OQ 为终边的角的大小是10t π, 因为圆的半径为50r =米,由三角函数定义知点Q 的纵坐标为50sin 102y t ππ⎛⎫=-⎪⎝⎭, 则其离地面的距离为:()()205050sin 7050cos 010210h t t t t πππ⎛⎫=++-=-≥⎪⎝⎭. 法2:因为摩天轮是作匀速圆周运动,故可设()()()sin 0,0h t A t b A ωϕω=++>>,据题意有12050,2070,A b A A b b ⎧+==⎧⇒⎨⎨-+==⎩⎩又周期20T =,所以10πω=,由在最低点入舱得01022πππϕϕ⋅+=-⇒=-,故得()50sin 707050cos ,010210h t t t t πππ⎛⎫=-+=-≥ ⎪⎝⎭. (2)由(1)可知游客乙离地面的距离:()()7050cos 57050sin 1010g t t t ππ⎡⎤=--=-⎢⎥⎣⎦,其中时间t 表示游客甲坐上摩天轮的时间,则甲乙的离地面距离之差为:()()50sin cos 1010104h h t g t t t t ππππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭△,当()21042t k k ππππ-=+∈Z ,即()15202t k k =+∈Z 时,甲乙离地面距离之差达到最大,所以152t =,即游客乙坐上摩天轮552t -=分钟后,甲乙的离地面距离之差首次达到最大. 【点睛】数学建模是高中数学六大核心素养之一,在高中数学中,应用题是常见考查形式:(1)求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型;。

2021年沪教版必修二数学期末复习-第7章 三角函数章节压轴题专练(学生版)

2021年沪教版必修二数学期末复习-第7章 三角函数章节压轴题专练(学生版)

章节压轴题专练一、单选题 1.(2020·上海市青浦高级中学高一期末)设函数()cos()cos()f x m x n x αβ=+++,其中m 、n 、α、β为已知实常数,x ∈R ,有下列四个命题:(1)若(0)02f f ⎛⎫== ⎪⎝⎭π,则()0f x =对任意实数x 恒成立;(2)若(0)0f =,则函数()f x 为奇函数;(3)若02f ⎛⎫=⎪⎝⎭π,则函数()f x 为偶函数;(4)当22(0)02f f ⎛⎫=≠ ⎪⎝⎭π时,若12()()0f x f x ==,则122x x k π-=(k Z ∈);则上述命题中,正确的个数是( ) A .1个B .2个C .3个D .4个2.(2017·上海嘉定区·高一期末)设函数()cos()cos()f x m x n x αβ=+++,其中,,,m n αβ为已知实常数,x ∈R ,则下列命题中错误的是( ) A .若(0)()02f f π==,则()0f x =对任意实数x 恒成立;B .若(0)0f =,则函数()f x 为奇函数;C .若()02f π=,则函数()f x 为偶函数;D .当22(0)()02f f π+≠时,若12()()0f x f x ==,则122x x k π-= (k ∈Z ).3.(2019·上海复旦附中高一期中)若函数()()2221sin 1x xf x x ++=+的最大值和最小值分别为M 、m ,则函数()()()sin 3g x M m x M m x π⎡⎤=+++-⎢⎥⎣⎦图像的对称中心不可能是_______A .4,33ππ⎛⎫⎪⎝⎭B .,123ππ⎛⎫ ⎪⎝⎭C .28,33ππ⎛⎫⎪⎝⎭ D .416,33ππ⎛⎫⎪⎝⎭二、填空题4.(2017·上海市七宝中学高一期中)已知02πθ<<,若2cos 2sin 220m m θθ+--<对⋯+a n ⋅sin (x +αn ),其中a i 、αi (i =1,2,⋯,n,n ∈N ∗,n ≥2)为已知实常数,x ∈R . 下列所有正确命题的序号是____________.①若f(0)=f(π2)=0,则f(x)=0对任意实数x 恒成立; ②若f(0)=0,则函数f(x)为奇函数; ③若f(π2)=0,则函数f(x)为偶函数;④当f 2(0)+f 2(π2)≠0时,若f(x 1)=f(x 2)=0,则x 1−x 2=kπ(k ∈Z).三、解答题6.(2020·徐汇区·上海中学高一期中)某公司要在一条笔直的道路边安装路灯,要求灯柱AB 与底面垂直,灯杆BC 与灯柱AB 所在的平面与道路走向垂直,路灯C 采用锥形灯罩,射出的管线与平面ABC 部分截面如图中阴影所示,2,,33ABC ACD ππ∠=∠=路宽AD =24米,设.126BAC ππθθ⎛⎫∠=≤≤ ⎪⎝⎭(1)求灯柱AB 的高h (用θ表示);(2)此公司应该如何设置θ的值才能使制作路灯灯柱AB 和灯杆BC 所用材料的总长度最小?最小值为多少?7.(2018·上海长宁区·高一期末)已知函数()()()(1)若11a =,12ϕπ=,分别写出数列{}n a 和数列{}n ϕ的通项公式; (2)若2()f x 是奇函数,且1(0,)ϕ∈π,求1ϕ; (3)若函数()n f x 的图像关于点(,0)2π对称,且当x π=时,函数()n f x 取得最小值,求ω的最小值.8.(2019·上海市向明中学高一期中)如图,点A ,B 单位圆O 上的两点,点C 是圆O 与x 轴正半轴的交点,将锐角α的终边OA 按逆时针方向旋转3π到OB .(1)若点A 的坐标为34,55⎛⎫⎪⎝⎭,求1sin 21cos 2αα++的值;(2)若ABC ∆α的大小; (3)用锐角α表示BC ,并求BC 的取值范围.9.(2018·上海普陀区·曹杨二中高一期中)已知函数()cos sin .333x x x f x ⎛⎫=⋅ ⎪⎝⎭(1)将()f x 化为()sin 0022A x H A ππωφωφ⎛⎫⎛⎫++∈-⎪ ⎪⎝⎭⎝⎭>,>,,的形式,并写出其最小正周期和图象对称轴方程,并判断函数的奇偶性(不需证明);10.(2018·上海普陀区·曹杨二中高一期中)已知函数()sin 210.3f x x πωω⎛⎫=+- ⎪⎝⎭,> (1)当12ω=时,求函数()f x 的单调递减区间; (2)对于(]x a a a π∈+,,为任意实数,关于x 的方程()1f x =-恰好有两个不等实根,求实数ω的值;(3)在(2)的条件下,若不等式()1f x t +<在03x π⎡⎤∈⎢⎥⎣⎦,内恒成立,求实数t 的取值范围.11.(2019·上海杨浦区·复旦附中高一期末)设函数()5sin()f x x ωϕ=+,其中0>ω,(0,)2πϕ∈.(1)设2ω=,若函数()f x 的图象的一条对称轴为直线35x π=,求ϕ的值; (2)若将()f x 的图象向左平移2π个单位,或者向右平移π个单位得到的图象都过坐标原点,求所有满足条件的ω和ϕ的值;123212222n n n x x x x x x --+++++的值.12.(2019·上海中学高一期中)已知函数()()()sin 20f x x φφπ=+<<,其图像的一个对称中心是012π⎛⎫-⎪⎝⎭,,将()f x 的图像向左平移3π个单位长度后得到函数()g x 的图像.(1)求函数()g x 的解析式;(2)若对任意[]120x x t ∈,,,当12x x <时,都有()()()()1212f x f x g x g x --<,求实数t 的最大值;(3)若对任意实数()()0a y g x ωω=,>在4a a π⎡⎤+⎢⎥⎣⎦,上与直线12y 的交点个数不少于6个且不多于10个,求正实数ω的取值范围.13.(2017·上海松江区·高一期末)若函数()f x 满足()32f x f x π⎛⎫=+⎪⎝⎭且()44f x f x x R ππ⎛⎫⎛⎫+=-∈ ⎪ ⎪⎝⎭⎝⎭,则称函数()f x 为“M 函数”. (1)试判断()4sin3f x x =是否为“M 函数”,并说明理由; (2)函数()f x 为“M 函数”,且当,4x ππ⎡⎤∈⎢⎥⎣⎦时,()sin f x x =,求()y f x =的解析式,并写出在30,2π⎡⎤⎢⎥⎣⎦上的单调递增区间; (3)在(2)的条件下,当()3,22k x k N πππ⎡⎤∈-+∈⎢⎥⎣⎦时,关于x 的方程()(f x a a =为常数)有解,记该方程所有解的和为()S k ,求()S k .14.(2015·上海金山区·高一期中)某种波的传播是由曲线()sin()(0)f x A x A ωϕ=+>来实现的,我们把函数解析式()sin()f x A x ωϕ=+称为“波”,把振幅都是A 的波称为“ A 类波”,把两个解析式相加称为波的叠加.(1)已知“1 类波”中的两个波11()sin()f x x ϕ=+与22()sin()f x x ϕ=+叠加后仍是“1类波”,求12ϕϕ-的值;(2)在“A 类波“中有一个波是,从A 类波中再找出两个不同的波(每两个波的初相ϕ都不同),使得这三个不同的波叠加之后是平波,即叠加后是0y =,并说明理由.15.(2019·上海市实验学校高一期末)已知对任意x R ∈,cos cos 210a x b x ++≥恒成立(其中0b >),求的最大值.16.(2020·上海浦东新区·华师大二附中高一月考)已知函数()()()sin 0,0f x x ωϕωϕπ=+><<的最小正周期为π,且直线2x π=-是其图象的一条对称轴.(1)求函数()f x 的解析式;(2)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且A B C <<,cos a B =,若C 角满足()1f C =-,求a b c ++的取值范围;(3)将函数()y f x =的图象向右平移4π个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数记作()y g x =,已知常数R λ∈,*n N ∈,且函数()()()F x f x g x λ=+在(0,)n π内恰有2021个零点,求常数λ与n 的值.17.(2017·上海市实验学校高一期中)已知函数()()sin2R x x f xπ=∈,任取t R ∈,若函数()f x 在区间[],1t t +上的最大值为()M t ,最小值为()m t ,记()()()g t M t m t =-. (1)求函数()f x 的最小正周期及对称轴方程; (2)当[]2,0t ∈-时,求函数()g t 的解析式; (3)设函数()2x kh x -=,()28H x x x k k =-+-,其中k 为参数,且满足关于t 的不等式()40g t -≤有解,若对任意[)14,x ∈+∞,存在(]2,4x ∈-∞,使得()()21h x H x =成立,求实数k 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数大题压轴题练习1.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ-上的值域 解:(1)()cos(2)2sin()sin()344f x x x x πππ=-+-+1cos 22(sin cos )(sin cos )2x x x x x x =++-+221cos 22sin cos 2x x x x =++-1cos 22cos 222x x x =+- s i n (2)6x π=- 2T 2ππ==周期∴ 由2(),()6223k x k k Z x k Z πππππ-=+∈=+∈得 ∴函数图象的对称轴方程为 ()3x k k Z ππ=+∈(2)5[,],2[,]122636x x πππππ∈-∴-∈- 因为()sin(2)6f x x π=-在区间[,]123ππ-上单调递增,在区间[,]32ππ上单调递减,所以 当3x π=时,()f x 取最大值 1又1()()12222f f ππ-=-<=,当12x π=-时,()f x 取最小值2-所以 函数 ()f x 在区间[,]122ππ-上的值域为[2.已知函数2π()sin sin 2f x x x x ωωω⎛⎫=+ ⎪⎝⎭(0ω>)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.解:(Ⅰ)1cos 2()22x f x x ωω-=+112cos 222x x ωω=-+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭.因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤, 所以ππ7π2666x --≤≤,所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤, 因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤,即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,.3. 已知向量m =(sin A ,cos A ),n =1)-,m ·n =1,且A 为锐角.(Ⅰ)求角A 的大小;(Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域. 解:(Ⅰ) 由题意得3sin cos 1,m n A A =-= 12sin()1,sin().662A A ππ-=-=由A 为锐角得 ,663A A πππ-==(Ⅱ) 由(Ⅰ)知1cos ,2A =所以2213()cos 22sin 12sin 2sin 2(sin ).22f x x x x s x =+=-+=--+因为x ∈R ,所以[]sin 1,1x ∈-,因此,当1sin 2x =时,f (x )有最大值32.当sin 1x =-时,()f x 有最小值-3,所以所求函数()f x 的值域是332⎡⎤-⎢⎥⎣⎦,4.已知函数()sin()(00π)f x A x A ϕϕ=+><<,,x ∈R 的最大值是1,其图像经过点π132M ⎛⎫ ⎪⎝⎭,.(1)求()f x 的解析式;(2)已知π02αβ⎛⎫∈ ⎪⎝⎭,,,且3()5f α=,12()13f β=,求()f αβ-的值.【解析】(1)依题意有1A =,则()s i n ()f x x ϕ=+,将点1(,)32M π代入得1sin()32πϕ+=,而0ϕπ<<,536πϕπ∴+=,2πϕ∴=,故()sin()cos 2f x x x π=+=; (2)依题意有312cos ,cos 513αβ==,而,(0,)2παβ∈,45sin ,sin 513αβ∴====,3124556()cos()cos cos sin sin 51351365f αβαβαβαβ-=-=+=⨯+⨯=。

5.已知函数17()()cos (sin )sin (cos ),(,).12f tg x x f x x f x x ππ==⋅+⋅∈ (Ⅰ)将函数()g x 化简成sin()A x B ωϕ++(0A >,0ω>,[0,2)ϕπ∈)的形式; (Ⅱ)求函数()g x 的值域.解.本小题主要考查函数的定义域、值域和三角函数的性质等基本知识,考查三角恒等变换、代数式的化简变形和运算能力.(满分12分) 解:(Ⅰ)1sin 1cos ()cos sin 1sin 1cos xxg x xxx x--=+++2222(1sin )(1cos )cos sin cos sin x x xxx x--=+1sin 1cos cos sin .cos sin x xxx x x--=+17,,cos cos ,sin sin ,12x x x x x π⎛⎤∈π∴=-=- ⎥⎝⎦1sin 1cos ()cos sin cos sin x xg x xx x x--∴=+--sin cos 2x x =+-2.4x π⎛⎫+- ⎪⎝⎭(Ⅱ)由1712x ππ≤<,得55.443x πππ+≤< sin t 在53,42ππ⎛⎤ ⎥⎝⎦上为减函数,在35,23ππ⎛⎤⎥⎝⎦上为增函数,又5535sinsin ,sin sin()sin 34244x πππππ∴≤+<<(当17,2x π⎛⎤∈π ⎥⎝⎦),即1sin()2)23424x x ππ-≤+-≤+--<,<, 故g (x )的值域为)2,3.⎡-⎣6.(本小题满分12分)在ABC ∆中,角,,A B C 所对应的边分别为,,a b c,a =tantan 4,22A B C++= 2sin cos sin B C A =,求,A B 及,b c解:由tantan 422A B C ++=得cot tan 422C C+= ∴cos sin224sin cos22C C C C+= ∴14sin cos 22C C = ∴1sin 2C =,又(0,)C π∈∴566C C ππ==,或由2sin cos sin B C A =得 2sin cos sin()B B B C =+ 即sin()0B C -= ∴B C =6B C π==2()3A B C ππ=-+=由正弦定理sin sin sin a b cA B C ==得1sin 2sin Bb c a A ====7.在ABC △中,内角,,A B C 对边的边长分别是,,a b c .已知2,3c C π==.⑴若ABC △求,a b ;⑵若sin sin()2sin 2C B A A +-=,求ABC △的面积.说明:本小题主要考查三角形的边角关系,三角函数公式等基础知识,考查综合应用三角函数有关知识的能力.满分12分.解析:(Ⅰ)由余弦定理及已知条件得,224a b ab +-=, 又因为ABC △1sin 2ab C =4ab =. ························ 4分 联立方程组2244a b ab ab ⎧+-=⎨=⎩,,解得2a =,2b =. ·············································· 6分(Ⅱ)由题意得sin()sin()4sin cos B A B A A A ++-=,即sin cos 2sin cos B A A A =, ········································································· 8分 当cos 0A =时,2A π=,6B π=,a =b =,当cos 0A ≠时,得sin 2sin B A =,由正弦定理得2b a =,联立方程组2242a b ab b a ⎧+-=⎨=⎩,,解得3a =3b =.所以ABC △的面积1sin 23S ab C ==. ····················································· 12分 1.已知函数()sin()sin()cos (,)66f x x x x a a R a ππ=++-++∈为常数. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)若函数()f x 在[-2π,2π]上的最大值与最小值之和为3,求实数a 的值. 解:(Ⅰ)∵()2sin cos cos 6f x x x a π=++cos x x a =++2sin 6x a π⎛⎫=++ ⎪⎝⎭……………………5分∴函数()f x 的最小正周期2T π=………………………7分(Ⅱ)∵,22x ππ⎡⎤∈-⎢⎥⎣⎦,∴2363x πππ-≤+≤()min 2f x f a π⎛⎫=-= ⎪⎝⎭……9分()max 23f x f a π⎛⎫==+ ⎪⎝⎭……11分由题意,有()(2)a a ++=∴1a =……12分2.(本小题12分)已知函数.21)4(,23)0(,23cos sin cos 2)(2==-+=πf f x x b x a x f 且 (1)求)(x f 的最小正周期;(2)求)(x f 的单调增区间;解:(1)由⎪⎪⎩⎪⎪⎨⎧==21)4(23)0(πf f 得⎪⎩⎪⎨⎧==123b a …………3分)32sin(2sin 212cos 2323cos sin cos 3)(2π+=+=-+=x x x x x x x f ……6分 故最小正周期π=T (2)由)(223222Z k k x k ∈+≤+≤-πππππ得 )(12125Z k k x k ∈+≤≤-ππππ 故)(x f 的单调增区间为)](12,125[Z k k k ∈+-ππππ …………12分3.已知x x a x x f cos sin 34cos 4)(2+-=,将)(x f 的图象按向量)2,4(π-=→b 平移后,图象关于直线12π=x 对称.(Ⅰ)求实数a 的值,并求)(x f 取得最大值时x 的集合; (Ⅱ)求)(x f 的单调递增区间.解:(Ⅰ)22cos 22sin 32)(--=x x a x f ,将)(x f 的图象按向量)2,4(π-=→b 平移后的解析式为2)4()(++=πx f x g x a x 2cos 322sin 2+=.……………………………3分)(x g 的图象关于直线12π=x 对称,∴有)6()0(πg g =,即a a 3332+=,解得1=a . ……………………………5分则2)62sin(422cos 22sin 32)(--=--=πx x x x f .……………………………6分 当2262πππ+=-k x ,即3ππ+=k x 时,)(x f 取得最大值2.………………………7分因此,)(x f 取得最大值时x 的集合是},3{Z k k x x ∈+=ππ.…………………………8分(Ⅱ)由226222πππππ+≤-≤-k x k ,解得36ππππ+≤≤-k x k .因此,)(x f 的单调递增区间是]3,6[ππππ+-k k )(Z k ∈.……………………………12分4.已知向量= (θθsin ,cos ) 和=(θθcos ,sin 2-),θ∈[π,2π].(1) 求||+的最大值;(2)当||+=528时,求cos 28θπ⎛⎫+ ⎪⎝⎭的值.4.解:(1) ()cos sin sin m n θθθθ+=-++ (2分)(cos m n +=(4分)∵θ∈[π,2π],∴49445ππθπ≤+≤,∴)4cos(πθ+≤1 ||n m +max =22. (6分)(2) 由已知825m n +=,得7cos 425πθ⎛⎫+= ⎪⎝⎭ (8分) 又2cos 2cos ()1428πθπθ⎛⎫+=+- ⎪⎝⎭ ∴216cos ()2825θπ+= (10分) ∵θ∈[π,2π]∴898285ππθπ≤+≤,∴4cos 285θπ⎛⎫+=- ⎪⎝⎭. (12分) 。

相关文档
最新文档