红外谱图解析基本知识

合集下载

红外光谱图解析方法大全

红外光谱图解析方法大全

红外光谱图解析大全一、预备知识(1)根据分子式计算不饱和度公式:不饱和度Ω=n4+1+(n3-n1)/2其中:n4:化合价为4价的原子个数(主要是C原子),n3:化合价为3价的原子个数(主要是N原子),n1:化合价为1价的原子个数(主要是H,X原子)(2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收;(3)若在稍高于3000cm-1有吸收,则应在2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔2200~2100 cm-1,烯1680~1640 cm-1 芳环1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对);(4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团;(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。

二、熟记健值1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1)一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。

2.烯烃:烯烃C-H伸缩(3100~3010cm-1),C=C伸缩(1675~1640 cm-1),烯烃C-H面外弯曲振动(1000~675cm-1)。

3.炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm-1)。

4.芳烃:芳环上C-H伸缩振动3100~3000cm-1, C=C 骨架振动1600~1450cm-1, C-H面外弯曲振动880~680cm-1。

红外光谱谱图解析完整版

红外光谱谱图解析完整版
双键伸缩振动区 (4)1500 670 cm-1
X—Y伸缩, X—H变形振动区
2020/4/1
2、确定分子官能团和基团的吸收峰
(1) X—H伸缩振动区(4000 2500 cm-1 ) ① —O—H 3650 3200 cm-1 确定 醇、酚、酸 在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐,强吸收;
中红外区: 远红外区:纯转动能 级跃迁,变角、骨架 振动;异构体、金属 有机物、氢键
2020/4/1
一、认识红外光谱图
2020/4/1
1、红外光谱图
峰强:Vs(Very strong): 很强;s(strong):强; m(medium):中强; w(weak):弱。 峰形:表示形状的为宽峰、尖峰 、肩峰、双峰等类型
变形振动 亚甲基
2020/4/1
甲基的振动形式
伸缩振动 甲基:
对称 υs(CH3) 2870 ㎝-1
变形振动 甲基
2020/4/1
对称δs(CH3)1380㎝-1
不对称 υas(CH3) 2960㎝-1
不对称δas(CH3)1460㎝-1
二、解析红外光谱图
2020/4/1
一个未知化合物仅用红外光谱解析结构是十分困难的。一般在光谱解析
前,要做未知物的初步分析 红外光谱谱图的解析更带有经验性、灵活性。 解析主要是在掌握影响振动频率的因素及各类化合物的红外特征吸收谱
带的基础上,按峰区分析,指认某谱带的可能归属,结合其他峰区的相关 峰,确定其归属。
在此基础上,再仔细归属指纹区的有关谱带,综合分析,提出化合物的 可能结构。
必要时查阅标图谱或与其他谱(1H NMR,13C NMR,MS)配合, 确证其结构。
2020/4/1

红外光谱图解析方法大全

红外光谱图解析方法大全

红外光谱图解析大全一、预备知识(1)根据分子式计算不饱和度公式:不饱和度Q = n4+1+(n3-n i)/2 其中:n4:化合价为4价的原子个数(主要是C原子),n3:化合价为3价的原子个数(主要是N原子),n i:化合价为1价的原子个数(主要是H,X原子)(2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1 为不饱和碳C-H 伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1 一般为饱和C-H 伸缩振动吸收;(3)若在稍高于3000cm-1有吸收,则应在2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔2200~2100 cm-1,烯1680~1640 cm-1 芳环1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对);( 4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团;( 5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820, 2720和1750~1700cm-1的三个峰,说明醛基的存在。

二、熟记健值1. 烷烃:C-H 伸缩振动( 3000-2850cm-1) C-H 弯曲振动( 1465-1340cm-1) 一般饱和烃C-H 伸缩均在3000cm-1 以下,接近3000cm-1 的频率吸收。

2. 烯烃:烯烃C-H 伸缩(3100~3010cm-1),C=C 伸缩(1675~1640 cm-1),烯烃C-H 面外弯曲振动( 1000~675cm-1)。

3. 炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm-1)。

4. 芳烃:芳环上C-H 伸缩振动3100~3000cm-1, C=C 骨架振动1600~1450cm-1, C-H 面外弯曲振动880~680cm-1。

手把手教你红外光谱谱图解析

手把手教你红外光谱谱图解析

手把手教你红外光谱谱图解析一、红外光谱的原理[1]1. 原理样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。

辐射→分子振动能级跃迁→红外光谱→官能团→分子结构2.红外光谱特点红外吸收只有振-转跃迁,能量低;除单原子分子及单核分子外,几乎所有有机物均有红外吸收;特征性强,可定性分析,红外光谱的波数位置、波峰数目及强度可以确定分子结构;定量分析;固、液、气态样均可,用量少,不破坏样品;分析速度快;与色谱联用定性功能强大。

3.分子中振动能级的基本振动形式红外光谱中存在两类基本振动形式:伸缩振动和弯曲振动。

图一伸缩振动图二弯曲振动二、解析红外光谱图1.振动自由度振动自由度是分子独立的振动数目。

N个原子组成分子,每个原子在空间上具有三个自由度,分子振动自由度F=3N-6(非线性分子);F=3N-5(线性分子)。

为什么计算振动自由度很重要,因为它反映了吸收峰的数量,谱带简并或发生红外非活性振动使吸收峰的数量会少于振动自由度。

U=0→无双键或环状结构U=1→一个双键或一个环状结构U=2→两个双键,两个换,双键+环,一个三键U=4→分子中可能含有苯环U=5→分子中可能含一个苯环+一个双键2.红外光谱峰的类型基频峰:分子吸收一定频率红外线,振动能级从基态跃迁至第一振动激发态产生的吸收峰,基频峰的峰位等于分子或者基团的振动频率,强度大,是红外的主要吸收峰。

泛频峰:分子的振动能级从基态跃迁至第二振动激发态、第三振动激发态等高能态时产生的吸收峰,此类峰强度弱,难辨认,却增加了光谱的特征性。

特征峰和指纹峰:特征峰是可用于鉴别官能团存在的吸收峰,对应于分子中某化学键或基团的振动形式,同一基团的振动频率总是出现在一定区域;而指纹区吸收峰特征性强,对分子结构的变化高度敏感,能够区分不同化合物结构上的微小差异。

红外光谱基本原理与谱图解析

红外光谱基本原理与谱图解析
对称性分子中,对于同核双原子分子而言,其振动中没有瞬时偶极矩的变化,因此,其不 具备红外活性,如 N2、O2 等;对于其他的对称性分子而言,有些振动会带来偶极矩的变化, 是具有红外活性的,如 HCl、CO2、CH4 等。
对于不对称分子而言,其分子振动必然能够带来偶极矩的变化,因此,其具有红外活性。
分子类型 同核双原子分子 非同核双原子对称性分子
O
C CH3
Q C=O
1663
O
C CH3
CH3 1693
(3) 偶极场效应 偶极场效应是互相靠近的基团之间通过空间起作用的,一般,基团之间的空间位置越靠 近,偶极场效应也越明显。
案例一
G-
G- O G-
Cl
Cl
C
H
H
HH
1755
G-
G- O
Cl
H
C
H
Cl
HH
1742
O
H
H
Байду номын сангаас
C
Cl
Cl
HH
1728
案例二
−CH3
−CH2
−CH = C − H Ph − H ≡ C − H
2960(νas);2870(νs) 2930(νas);2850(νs) 2850 3100 ∼ 3000 3030
3300
3.1.2 三键、累积三键伸缩振动区(2500 ∼ 1900 cm−1)
1、C ≡ C (1) RC ≡ CH : 2140 ∼ 2100 cm−1 (2) R1C ≡ CR2 : 2260 ∼ 2190 cm−1 R1 = R2 时,无红外活性。
通常,分子的跃迁方式和电磁波的能量相关,图 2所示的是分子在各光波区内的主要跃迁 方式:

红外谱图基础知识

红外谱图基础知识

第一节:概述1、红外吸收光谱与紫外吸收光谱一样是一种分子吸收光谱。

红外光的能量(△E=0.05-1.0ev)较紫外光(△E=1-20ev)低,当红外光照射分子时不足以引起分子中价电子能级的跃迁,而能引起分子振动能级和转动能级的跃迁,故红外吸收光谱又称为分子振动光谱或振转光谱。

2、红外光谱的特点:特征性强、适用范围广。

红外光谱对化合物的鉴定和有机物的结构分析具有鲜明的特征性,构成化合物的原子质量不同、化学键的性质不同、原子的连接次序和空间位置不同都会造成红外光谱的差别。

红外光谱对样品的适用性相当广泛,无论固态、液态或气态都可进行测定。

3、红外光谱波长覆盖区域:0.76 mm ~ 1000mm.红外光按其波长的不同又划分为三个区段。

(1)近红外:波长在0.76-2.5mm之间(波数12820-4000cm-1)(2)中红外:波长在2.5-25mm(在4000-400 cm-1)通常所用的红外光谱是在这一段的(2.5-15mm,即4000-660 cm-1)光谱范围,本章内容仅限于中红外光谱。

(3)远红外:波长在25~1000mm(在400-10 cm-1)转动光谱出现在远红外区。

4、红外光谱图:当物质分子中某个基团的振动频率和红外光的频率一样时,分子就要吸收能量,从原来的振动能级跃迁到能量较高的振动能级,将分子吸收红外光的情况用仪器记录,就得到红外光谱图。

5、红外光谱表示方法:(1)红外光谱图红外光谱图以透光率T %为纵坐标,表示吸收强度,以波长l ( mm) 或波数s (cm-1)为横坐标,表示吸收峰的位置,现主要以波数作横坐标。

波数是频率的一种表示方法(表示每厘米长的光波中波的数目)。

通过吸收峰的位置、相对强度及峰的形状提供化合物结构信息,其中以吸收峰的位置最为重要。

(2)将吸收峰以文字形式表示:如下图可表示为,3525cm-1(m),3097cm-1(m),1637cm-1(s)。

这种方法指出了吸收峰的归属,带有图谱解析的作用。

4-3红外光谱解析

4-3红外光谱解析

面外变形(=C-H) 1000-700 cm-1 (有价值)
(=C-H)
R1
H
CC
970 cm-1(强)
H
R2
R1
R3 CC
790-840 cm-1
R2
H (820 cm-1)
R1
R2 (=C-H)
H
CC H
800-650 cm-1 (690 cm-1)
R1 C C H 990 cm-1
H
H 910 cm-1 (强)
1195 cm-1
C H3 C C H3 CH
3
1405-1385cm-1 1372-1365cm-1
1:2 1250 cm-1
c) CH2面外变形振动—(CH2)n—,证明长碳链的存在。 n=1 770~785 cm-1 (中 ) n=2 740 ~ 750 cm-1 (中 )
n=3 730 ~740 cm-1 (中 ) n≥ 720 cm-1 (中强 )
1300cm-1 ~ 910 cm-1区域是C-O、C-N、C-F、C-P、C-S、 P-O、Si-O等单键的伸缩振动、C=S、S=O、P=O等双键 的伸缩振动、部分含氢基团的变形振动吸收。
910 ~ 650 cm-1区域是烯烃、芳烃的C-H的面外弯曲振动吸 收位置,对结构敏感,吸收峰可用来确认化合物的顺反构 型或苯环的取代类型。
第三节 红外光谱解析
一、官能团区和指纹区
红外光谱
官能团区:4000~1300cm-1(1350) 2.5~7.7μm
指纹区:1300~600cm-1(1350~650) 7.7~16.7μm
官能团区:X-H的伸缩振动以及各种双键、叁键的伸缩 振动吸收峰出现的区域,此区域内峰较稀疏,是鉴定 工作最有价值的区域。

红外光谱知识点

红外光谱知识点

红外光谱知识点一、红外光谱的基本原理。

1. 概念。

- 红外光谱(Infrared Spectroscopy,IR)是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。

2. 分子振动类型。

- 伸缩振动:原子沿键轴方向伸缩,键长发生变化而键角不变的振动,又分为对称伸缩振动(νs)和不对称伸缩振动(νas)。

例如,对于亚甲基(-CH₂ -),对称伸缩振动时两个C - H键同时伸长或缩短;不对称伸缩振动时一个C - H键伸长,另一个缩短。

- 弯曲振动:又称变形振动,是使键角发生周期性变化而键长不变的振动。

它包括面内弯曲振动(如剪式振动δ、面内摇摆振动ρ)和面外弯曲振动(如面外摇摆振动ω、扭曲振动τ)等。

以水分子为例,H - O - H的键角可以发生弯曲变化。

3. 红外吸收的条件。

- 分子振动必须伴随偶极矩的变化。

具有对称中心的分子,如二氧化碳(O = C = O),其对称伸缩振动不产生偶极矩变化,所以在红外光谱中没有该振动的吸收峰;而不对称伸缩振动产生偶极矩变化,有吸收峰。

- 辐射光子具有的能量与发生振动跃迁所需的能量相等。

根据E = hν(h为普朗克常量,ν为频率),只有当红外光的频率与分子振动频率相匹配时,才会发生吸收。

二、红外光谱仪及其工作原理。

1. 仪器类型。

- 色散型红外光谱仪:主要由光源、单色器、样品池、检测器和记录系统等部分组成。

光源产生的红外光经过单色器分光后,依次通过样品池和参比池,被样品吸收后的光强与参比光强比较,检测器检测光强的变化并转换为电信号,经记录系统得到红外光谱图。

- 傅里叶变换红外光谱仪(FT - IR):基于迈克尔逊干涉仪原理。

光源发出的光经过干涉仪后变成干涉光,再照射到样品上,样品对干涉光有选择地吸收,含有样品信息的干涉光被检测器检测,经计算机进行傅里叶变换处理后得到红外光谱图。

它具有分辨率高、扫描速度快、光通量高等优点。

红外光谱分析及FTIR基础知识

红外光谱分析及FTIR基础知识

红外光谱分析及FTIR基础知识红外光谱分析(Infrared Spectroscopy)是一种常用的分析技术,通过测量物质在红外区域的吸收和散射光谱来获取样品的结构和化学信息。

红外光谱分析广泛应用于有机化学、无机化学、生物化学和材料科学等领域。

红外光谱是指物质对入射的红外辐射吸收并发生能级跃迁的现象。

红外辐射的波长范围约为0.78-1000微米,对应频率范围为1.2×10^13-3×10^15Hz。

红外光谱中的吸收峰对应于分子中的振动和转动能级跃迁。

振动能级跃迁主要对应于分子中原子间的相对位移,而转动能级跃迁对应于分子的整体旋转。

红外光谱是通过红外光谱仪来获取的。

其中,常用的是傅里叶变换红外光谱仪(Fourier Transform Infrared Spectroscopy,FTIR)。

FTIR光谱仪使用了傅里叶变换技术,将样品中吸收红外辐射的能量转换为光强信号。

其优点是可以获得更高的分辨率和灵敏度,并且可以对样品进行快速的扫描和数据处理。

红外光谱的解析主要通过观察吸收峰的位置、强度和形状来进行。

红外吸收峰的位置可以提供有关基团的功能性和化学键的信息。

例如,羟基(OH)官能团通常在3000-3500 cm^-1范围内产生宽峰;碳氢键(CH)通常在3000-2800 cm^-1范围内产生尖峰;羰基(C=O)通常在1800-1650 cm^-1范围内产生尖峰。

吸收峰的强度与物质中含有的相关基团的浓度有关。

峰形可以提供关于物质结构的更详细的信息。

在红外光谱分析中,样品的制备非常重要。

样品通常以固体、液体或气体的形式进行测量。

固体样品通常会与适当的红外吸收剂混合,以增加吸收信号的强度。

液体样品通常以透明的纱布托盘容纳,并使用衬底进行测量。

气体样品通常通过红外天线测量,或者将其与其他气体混合后进行测量。

红外光谱分析在许多化学和生物学领域中得到了广泛的应用。

例如,在有机化学中,红外光谱可以用于确定分子结构和官能团的存在。

红外光谱(IR)的原理及其谱图的分析

红外光谱(IR)的原理及其谱图的分析

υC=O 1715 cm-1
υC=O 1780 cm-1 υC=O 1650 cm-1
吸电子效应:高波数移动精;选课推件 电子效应:低波数移动
2.峰强 峰的强度取决于分子振动时偶极矩的变化。 偶极矩的变化越小,谱带强度越弱。
• 极性大的基团,吸收强度大。 C=O 比 C=C 强, CN 比 C C 强 使基团极性降低的诱导效应,吸收强度减小, 使基团极性增大的诱导效应,吸收强度增加。
2、电子效应
a. 诱导效应
b. 诱导效应使基团电荷分布发生变化,从而改变
了键的力常数,使振动频率发生变化.
O 例: R C X
X= R/
H
1715 1730
OR/ 1740
Cl
F
1800 1850
精选课件
O
RCX
X= R/
H
1715 1730
OR/ 1740
Cl
F
1800 1850
• 推电子基,C=O电荷中心向O移动,C=O极性增强, 双键性降低,低频移动; • 吸电子基, C=O电荷中心向几何中心靠近, C=O极 性降低,双键性增强,高频移动。
精选课件
H2O有3种振动形式,相应的呈现3个吸收谱带。
精选课件
结论:
产生红外光谱的必要条件是:
1. 红外辐射光的频率与分子振动的频率相等,才 能发生振动能级跃迁,产生吸收吸收光谱。
2. 只有引起分子偶极矩发生变化的振动才能产生 红外吸收光谱。
精选课件
1.6 IR光谱得到的结构信息
1 峰位:吸收峰的位置(吸收频率) 2 峰强: 吸收峰的强度
化学 键
C―C
C=C
C≡C
键长 (nm)

红外(IR)谱图解析基础知识

红外(IR)谱图解析基础知识

红外谱图解析基础知识(一)、基团频率区和指纹区1、基团频率区中红外光谱区可分成4000 cm-1 ~1300(1800)cm-1和1800 (1300 )cm-1 ~ 600 cm-1两个区域。

最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。

区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。

在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。

这种振动基团频率和特征吸收峰与整个分子的结构有关。

当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。

这种情况就像人的指纹一样,因此称为指纹区。

指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。

基团频率区可分为三个区域:(1)4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、N、C或S等原子。

O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。

当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1 处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。

当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。

胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1 ,因此,可能会对O-H伸缩振动有干扰。

C-H的伸缩振动可分为饱和和不饱和的两种。

饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1 ,取代基对它们影响很小。

如-CH3 基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;R2CH2基的吸收在2930 cm-1 和2850 cm-1附近;R3CH基的吸收基出现在2890 cm-1 附近,但强度很弱。

红外谱图解析基本知识

红外谱图解析基本知识

红外谱图解析基本知识基团频率区中红外光谱区可分成4000 cm-1 ~1300(1800)cm-1和1800 (1300 )cm-1 ~ 600 cm-1两个区域。

最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。

区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。

在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。

这种振动基团频率和特征吸收峰与整个分子的结构有关。

当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。

这种情况就像人的指纹一样,因此称为指纹区。

指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。

基团频率区可分为三个区域(1) 4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、N、C或S等原子。

O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。

当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1 处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。

当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。

胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1 ,因此,可能会对O-H伸缩振动有干扰。

C-H的伸缩振动可分为饱和和不饱和的两种:饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1 ,取代基对它们影响很小。

如-CH3 基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;R2CH2基的吸收在2930 cm-1 和2850 cm-1附近;R3CH基的吸收基出现在2890 cm-1 附近,但强度很弱。

红外谱图详细解析

红外谱图详细解析

红外谱图解析各官能团的特征吸收是解析谱图的基础(1)首先依据谱图推出化合物碳架类型33002800C H (2)分析3300 ~ 2800 cm 1区域C-H 伸缩振动吸收以3000 cm-1为界:高于3000 cm为不饱和碳C H 伸缩振动吸收3000cm-1C-H可能为烯, 炔, 芳香化合物低于3000 cm-1 一般为饱和C-H 伸缩振动吸收(3) 若在稍高于3000 cm-1有吸收,则应在频区2250 ~ 1450 cm-1分析不饱和碳碳键的伸缩振动吸收特征峰炔2200 ~ 2100 cm-1烯1680 ~ 1640 cm-1芳环1600,1580,1500,1450 cm-1烯或芳香化合物则应解析指纹区1000 ~ 650 cm-1频区以确定取代基个数和位置(4) 碳骨架类型确定后, 再依据其他官能团,如C O, O H, C N 等特征吸收来判定C=O,O-H,C-N化合物的官能团(5) 解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在如2820,2720 和1750~1700 cm 1的三个峰说明醛基的存在例3 C7H8O1) 不饱和度:(7⨯2+2-8)÷2=4 可能含有苯环2) 3000 cm-1 以上,以及1600,1500 cm-1 表明含有苯环(-C6H5)770,700 cm-1 表明苯环取代为单取代3) 分子式为C7H8O,除去苯环(-C6H5),取代基为CH3O,(?)苯甲醚(?) 苯甲醇(?)3300 cm-1(⨯),1250,1040 cm-1(∨) 芳香脂肪醚C-O的吸收表明此化合物为苯甲醚例4:1)不:12)3000,O H;酸930,O H,O-H O-H,CH3CH2COOH3) 1700, C=O4) 1230,C-O。

红外光谱谱图解析

红外光谱谱图解析

• 倍频峰又分为一级倍频峰、二级倍频峰等 等。当非谐振子从n = 0向n = 2振动能级 跃迁时所吸收光的频率称为一级倍频峰, 从n = 0向n = 3振动能级跃迁时所吸收光 的频率称为二级倍频峰 • 一级倍频峰很弱,二级倍频峰更弱
• 一级倍频峰的波数并非正好等于基频峰波 数的两倍。一级倍频总是小于基频的两倍, 这是因为非谐振子振动能级是不等距的, 其能级间隔随着振动量子数n的增加而慢慢 减小
6
倍频峰 (Overtone)
• 根据谐振子选择定则,谐振子只能在相邻的 两个振动能级之间跃迁, 即Δn=±1。而且 各个振动能级之间的间隔都是相等的
• 实际分子不是谐振子。量子力学证明,非谐 振子的选择定则不再局限于Δn=±1。Δn可 以等于其它整数,即Δn=±1,±2, ±3,……。也就是说,对于非谐振子,可以 从振动能级n = 0向n = 2或n = 3,或向更高 的振动能级跃迁。非谐振子的这种振动跃迁 称为倍频振动。倍频振动频率称为倍频峰
苯的拉曼光谱
反对称伸缩振动
(Asymmetric Stretching Vibration)
直线形三原子基团反对称伸缩振动
弯曲形三原子基团反对称伸缩振动 H2O,-CH2-,-NH2,-NO2
CO2
平面形四原子基团反对称伸缩振动
四面体形五原子基团反对称伸缩振动
NO3-,BO3-,CO32-
NH4+,SO42+,PO43+ ,SiO42-
H N O O H
H
平面型 硝酸钠中的NO3- 的对称伸缩振动 1071cm-1(拉曼活性)
四面体型 甲基-CH3的对称伸缩振动 2872±5cm-1
O
S
O O
O

红外光谱谱图解析

红外光谱谱图解析
C H3
C H3 C C H3 C H3
03:44:07
CH3 δ s C—C骨架振动
1385-1380cm-1
1155cm-1
1:1
1372-1368cm-1
1170cm-1
1391-1381cm-1 1368-1366cm-1
1405-1385cm-1 1372-1365cm-1
4:5 1195 cm-1
双键伸缩振动区 (4)1500 670 cm-1
X—Y伸缩, X—H变形振动区
03:44:07
2、确定分子官能团和基团的吸收峰
(1) X—H伸缩振动区(4000 2500 cm-1 ) ① —O—H 3650 3200 cm-1 确定 醇、酚、酸 在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐,强吸收;
CH
03:44:07
υ (C-H)
3080 cm-1 3030 cm-1
3080 cm-1 3030 cm-1 3300 cm-1
03:44:07
(二)计算不饱和度
定义: 不饱和度是指分子结构中达到饱和所缺一价元素的“对”数。如: 乙烯变成饱和烷烃需要两个氢原子,不饱和度为1。 计算: 可按下式进行不饱和度的计算:
UN= (2 + 4n6 + 3n5 + 2n4 + n3 – n1 )/ 2 n6,n5, n4 , n3 , n1 分别为分子中六价,五价,……,一价元素数目。 作用: 由分子的不饱和度可以推断分子中含有双键,三键,环,芳环的 数目,验证谱图解析的正确性。 例: C9H8O2 UN = (2 +29 – 8 )/ 2 = 6
必要时查阅标图谱或与其他谱(1H NMR,13C NMR,MS)配合, 确证其结构。

(完整版)红外光谱知识讲解

(完整版)红外光谱知识讲解
正负电荷中心重合的分子如N2、O2不能 产生红外吸收。
17
问题
某物质能吸收红外光波, 产生红外吸收谱图, 其分子结构是
(1) 具有不饱和键
(2) 具有共轭体系
(3) 发生偶极矩的净变化 (4) 具有对称性
丁二烯分子中C=C键伸缩振动如下:
A. ← → ← →
CH2=CH-CH=CH2 B. ← → → ←
C)强、宽峰覆盖相近的弱、窄峰
D)吸收峰太弱,仪器不能分辨,或者超 过了仪器可以测定的波长范围。
32
3.2.3 红外光谱的分子振动形式与谱带 分子的振动方式分为两大类:
1.伸缩振动ν:原子沿键轴方向伸缩,键长变
化但键角不变的振动,亦称伸展振动。
对称伸缩振动(νs )
反对称伸缩振动(νas )
33
2.弯曲振动δ:沿键的垂直方向振动,基团 键角发生周期性变化,但键长不变的振动。 又称变形振动或变角振动。
(1) C-H (2) N-H (3) O-H (4) F-H
(1)
如果C-H键和C-D键的力常数相同, 则C-H键的振动频率
C-H与C-D健的振动频率 C-D相比是
(1) C-H> C-D
(2) C-H< C-D
(3) C-H= C-D
(4) 不一定谁大谁小
(1 )
36
已知下列单键伸缩振动中 C-C C-N C-O
9
(4) 红外光谱图的表示方法 横坐标为吸收波长(m),或吸收频率(波 数:cm-1),纵坐标常用百分透过率T%表示
10
从谱图可得信息: 1 吸收峰的位置(吸收频率:波数cm-1) 2 吸收峰的强度 ,常用:
vs (very strong), s (strong), m (medium), w (weak), vw (very weak),

红外光谱知识点总结

红外光谱知识点总结

红外光谱知识点总结一、红外光谱的基本原理1. 红外辐射红外光波长范围为0.78~1000微米,是可见光和微波之间的一部分光谱。

物质在光谱范围内会吸收、散射和发射红外光。

这些过程可以用来获取物质的结构信息。

2. 分子振动分子在吸收红外辐射时,分子内部的振动模式会发生变化,这些振动模式会导致物质对不同波长的红外光有不同的吸收峰。

根据分子结构、键的类型和位置不同,红外吸收峰会出现在不同的波数位置。

3. 红外吸收谱红外吸收谱是将物质对不同波数的红外光的吸收强度绘制成图谱。

在红外吸收谱中,不同的振动模式会对应不同的吸收峰,通过谱图的解析可以得到物质的结构信息。

4. 红外光谱仪红外光谱仪是用于测定物质的红外吸收光谱的仪器,它主要包括光源、分光器、样品室、检测器和数据处理系统等部分。

常见的红外光谱仪有光散射型、光路差型和干涉型等。

二、红外光谱的仪器分析技术1. 光散射型红外光谱仪光散射型红外光谱仪是通过散射光进行分析的,它适用于固态样品和粉末样品的分析。

该仪器操作简单,对样品的要求不高,但是分辨率较低。

2. 光路差型红外光谱仪光路差型红外光谱仪利用干涉光进行分析,可以获得高分辨率的红外光谱。

它适用于高精度的定量分析和结构鉴定,但是对样品的平整度和光路的稳定性要求较高。

3. 干涉型红外光谱仪干涉型红外光谱仪采用光源产生的连续光通过光栅或凸透镜分散成各个不同波数的光线,对于样品吸收光线的强度进行检测,然后通过计算机进行数据处理。

其优点是分辨率高、峰型窄、精确度高,适用于各种样品的定性、定量和成分分析。

4. 远红外光谱和近红外光谱远红外光谱仪可以用于检测液体样品和气态样品,其波数范围在4000~400 cm-1之间。

而近红外光谱则适用于固态和半固态样品的分析,波数范围在12500~4000 cm-1之间。

三、红外光谱的谱图解析1. 物质的结构信息根据红外光谱谱图的解析可以获得物质的结构信息,如键的种类、键的位置、分子的构型等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外谱图解析基本知识2009-11-1 来源:天津市金贝尔科技有限公司>>进入该公司展台1.红外光谱法的一般特点特征性强、测定快速、不破坏试样、试样用量少、操作简便、能分析各种状态的试样、分析灵敏度较低、定量分析误差较大2.对样品的要求①试样纯度应大于98%,或者符合商业规格Ø这样才便于与纯化合物的标准光谱或商业光谱进行对照Ø多组份试样应预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱互相重叠,难予解析②试样不应含水(结晶水或游离水)水有红外吸收,与羟基峰干扰,而且会侵蚀吸收池的盐窗。

所用试样应当经过干燥处理③试样浓度和厚度要适当使最强吸收透光度在5~20%之间3.定性分析和结构分析红外光谱具有鲜明的特征性,其谱带的数目、位置、形状和强度都随化合物不同而各不相同。

因此,红外光谱法是定性鉴定和结构分析的有力工具①已知物的鉴定将试样的谱图与标准品测得的谱图相对照,或者与文献上的标准谱图(例如《药品红外光谱图集》、Sadtler标准光谱、Sadtler商业光谱等)相对照,即可定性使用文献上的谱图应当注意:试样的物态、结晶形状、溶剂、测定条件以及所用仪器类型均应与标准谱图相同②未知物的鉴定未知物如果不是新化合物,标准光谱己有收载的,可有两种方法来查对标准光谱:A.利用标准光谱的谱带索引,寻找标准光谱中与试样光谱吸收带相同的谱图B.进行光谱解析,判断试样可能的结构。

然后由化学分类索引查找标准光谱对照核实解析光谱之前的准备:Ø了解试样的来源以估计其可能的范围Ø测定试样的物理常数如熔沸点、溶解度、折光率、旋光率等作为定性的旁证Ø根据元素分析及分子量的测定,求出分子式Ø计算化合物的不饱和度Ω,用以估计结构并验证光谱解析结果的合理性解析光谱的程序一般为:A.从特征区的最强谱带入手,推测未知物可能含有的基团,判断不可能含有的基团B.用指纹区的谱带验证,找出可能含有基团的相关峰,用一组相关峰来确认一个基团的存在C.对于简单化合物,确认几个基团之后,便可初步确定分子结构D.查对标准光谱核实③新化合物的结构分析红外光谱主要提供官能团的结构信息,对于复杂化合物,尤其是新化合物,单靠红外光谱不能解决问题,需要与紫外光谱、质谱和核磁共振等分析手段互相配合,进行综合光谱解析,才能确定分子结构。

④鉴定细菌,研究细胞和其它活组织的结构4.定量分析(资料来源:)Ø红外光谱有许多谱带可供选择,更有利于排除干扰。

红外光源发光能量较低,红外检测器的灵敏度也很低,ε<103Ø吸收池厚度小、单色器狭缝宽度大,测量误差也较大☆对于农药组份、土壤表面水份、田间二氧化碳含量的测定和谷物油料作物及肉类食品中蛋白质、脂肪和水份含量的测定,红外光谱法是较好的分析方法4 基团频率区中红外光谱区可分成4000 cm-1 ~1300(1800) cm-1和1800 (1300 ) cm-1 ~ 600 cm-1两个区域。

最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。

区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。

在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。

这种振动基团频率和特征吸收峰与整个分子的结构有关。

当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。

这种情况就像人的指纹一样,因此称为指纹区。

指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。

基团频率区可分为三个区域(1) 4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、N、C或S等原子。

O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。

当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1 处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。

当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。

胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1 ,因此,可能会对O-H伸缩振动有干扰。

C-H的伸缩振动可分为饱和和不饱和的两种:饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1 ,取代基对它们影响很小。

如-CH3 基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;R2CH2基的吸收在2930 cm-1 和2850 cm-1附近;R3CH基的吸收基出现在2890 cm-1 附近,但强度很弱。

不饱和的C-H伸缩振动出现在3000 cm-1以上,以此来判别化合物中是否含有不饱和的C-H键。

苯环的C-H键伸缩振动出现在3030 cm-1附近,它的特征是强度比饱和的C-H浆键稍弱,但谱带比较尖锐。

不饱和的双键=C-H的吸收出现在3010~3040 cm-1范围内,末端= CH2的吸收出现在3085 cm-1附近。

叁键ºCH上的C-H伸缩振动出现在更高的区域(3300 cm-1 )附近。

(2) 2500~1900 cm-1为叁键和累积双键区,主要包括-CºC、-CºN等叁键的伸缩振动,以及-C =C=C、-C=C=O等累积双键的不对称性伸缩振动。

对于炔烃类化合物,可以分成R-CºCH和R¢-C ºC-R两种类型:R-CºCH的伸缩振动出现在2100~2140 cm-1附近;R¢-C ºC-R出现在2190~2260 cm-1附近;R-C ºC-R分子是对称,则为非红外活性。

-C ºN 基的伸缩振动在非共轭的情况下出现2240~2260 cm-1附近。

当与不饱和键或芳香核共轭时,该峰位移到2220~2230 cm-1附近。

若分子中含有C、H、N原子,-C ºN基吸收比较强而尖锐。

若分子中含有O原子,且O原子离-C ºN基越近,-C ºN基的吸收越弱,甚至观察不到。

(3) 1900~1200 cm-1为双键伸缩振动区该区域重要包括三种伸缩振动:C=O伸缩振动出现在1900~1650 cm-1 ,是红外光谱中特征的且往往是最强的吸收,以此很容易判断酮类、醛类、酸类、酯类以及酸酐等有机化合物。

酸酐的羰基吸收带由于振动耦合而呈现双峰苯的衍生物的泛频谱带,出现在2000~1650 cm-1范围,是C-H面外和C=C面内变形振动的泛频吸收,虽然强度很弱,但它们的吸收面貌在表征芳核取代类型上有一定的作用。

指纹区(1) 1800(1300) cm-1 ~ 900 cm-1区域是C-O、C-N、C-F、C-P、C-S、P-O、Si-O等单键的伸缩振动和C=S、S=O、P=O等双键的伸缩振动吸收。

其中:1375 cm-1的谱带为甲基的dC-H对称弯曲振动,对识别甲基十分有用,C-O的伸缩振动在1300~1000 cm-1 ,是该区域最强的峰,也较易识别。

(2) 900 ~ 650 cm-1区域的某些吸收峰可用来确认化合物的顺反构型。

利用上区域中苯环的C-H面外变形振动吸收峰和2000~ 1667cm-1区域苯的倍频或组合频吸收峰,可以共同配合确定苯环的取代类型。

红外光谱红外光区划分:通常将红外波谱区分为近红外(near-infrared),中红外(middle-infrared)和远红外(far-infrared)。

区域波长范围(mm)波数范围(cm-1)频率(Hz)近红外0.78-2.512800-40003.8´1014-1.2´1014中红外2.5-504000-2001.2´1014-6.0´1012远红外50-1000200-106.0´1012-3.0´1011常用2.5-154000-6701.2´1014-2.0´1013当样品受到频率连续变化的红外光照射时,分子吸收某些频率的辐射,产生分子振动能级和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。

记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱。

物质的红外光谱是其分子结构的反映,谱图中的吸收峰与分子中各基团的振动形式相对应。

通过比较大量已知化合物的红外光谱,发现:组成分子的各种基团,如O-H、N-H、C-H、C=C、C=O和CºC等,都有自己的特定的红外吸收区域,分子的其它部分对其吸收位置影响较小。

通常把这种能代表基团存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。

分子吸收红外辐射后,由基态振动能级(n=0)跃迁至第一振动激发态(n=1)时,所产生的吸收峰称为基频峰。

因为(振动量子数的差值) △n=1时,nL=n,所以基频峰的位置(nL)等于分子的振动频率。

在红外吸收光谱上除基频峰外,还有振动能级由基态(n=0)跃迁至第二激发态(n=2)、第三激发态(n=3)¼,所产生的吸收峰称为倍频峰。

由n = 0跃迁至n = 2时,△n = 2,则nL = 2n,即吸收的红外线谱线(nL )是分子振动频率的二倍,产生的吸收峰称为二倍频峰。

下图是双原子分子的能级示意图,图中EA和EB表示不同能量的电子能级,在每个电子能级中因振动能量不同而分为若干个n = 0、1、2、3……的振动能级,在同一电子能级和同一振动能级中,还因转动能量不同而分为若干个J = 0、1、2、3……的转动能级。

由于分子非谐振性质,各倍频峰并非正好是基频峰的整数倍,而是略小一些。

以HCl为例:基频峰(n0→1) 2885.9 cm-1 最强二倍频峰(n0→2 ) 5668.0 cm-1 较弱三倍频峰(n0→3 ) 8346.9 cm-1 很弱四倍频峰(n0→4 ) 10923.1 cm-1 极弱五倍频峰(n0→5 ) 13396.5 cm-1 极弱除此之外,还有合频峰(n1+n2,2n1+n2,¼),差频峰(n1-n2,2n1-n2,¼)等,这些峰多数很弱,一般不容易辨认。

倍频峰、合频峰和差频峰统称为泛频峰。

红外光谱特点1)红外吸收只有振-转跃迁,能量低;2)应用范围广:除单原子分子及单核分子外,几乎所有有机物均有红外吸收;3)分子结构更为精细的表征:通过红外光谱的波数位置、波峰数目及强度确定分子基团、分子结构;4)定量分析;5)固、液、气态样均可用,且用量少、不破坏样品;6)分析速度快;7)与色谱等联用(GC-FTIR)具有强大的定性功能;文章链接:中国化工仪器网/tech_news/Detail/42089.html。

相关文档
最新文档