组合图形的面积
组合图形的面积教案(精选3篇)
组合图形的面积教案组合图形的面积教案(精选3篇)作为一名教职工,可能需要进行教案编写工作,教案有利于教学水平的提高,有助于教研活动的开展。
教案应该怎么写呢?下面是小编整理的组合图形的面积教案(精选3篇),希望对大家有所帮助。
组合图形的面积教案1设计理念:本节课的中心与着力点是“方法”的体会与感悟,计算面积不是刚学,不是重点,但不能忽视,可以加大力度;还要指导学生能根据各种组合图形的条件,有效地选择方法。
在整个探索过程中,相信学生,鼓励学生,给予学生充足的独立思考、交流讨论的时间。
本节课还得预设学生在学习过程中可能出现哪些问题,做好提前准备,这样到课堂上才能真正做到“以不变应万变”。
教学目标:知识目标:1、在自主探索的活动中,理解组合图形面积的计算方法。
2、能根据各种组合图形的条件,灵活有效的选择计算方法并进行正确的解答。
能力目标:1、能运用所学的知识,解决生活中组合图形的实际问题。
2、通过图形的组合和分解培养分析问题、解决问题的能力及动手创新的意识学会把复杂问题转化为简单问题,渗透转化思想。
情感与价值观目标:1、通过动手操作,给学生以美的享受,并能展示自我,张扬个性。
2、让孩子体验到成功的喜悦,培养了学生战胜困难的决心和勇气,团结友爱的美好情感。
教学重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个简单图形所需的条件。
教学难点:选择有效的计算方法解决实际问题。
教学过程:一、复习旧知,引入新课1、师:我们会求哪些平面图形的面积了?请回忆下面积计算公式。
2、看黑板上一些正六边形(六边相等、六角相等),你有它们的面积计算公式吗?那要求它的面积,怎么办呢?(转化成我们学过的图形)[设计意图:让学生初步体会到学过的面积计算方法应用的广泛性,渗透转化思想,培养空间观念。
]二、探索组合图形面积计算方法1、割那你能想办法用学过的方法来求正六边形的面积吗?请上来画一画说一说。
这些同学的方法可以归结为一个字:割。
五年级《组合图形的面积》教学设计4篇
五年级《组合图形的面积》教学设计4篇五年级《组合图形的面积》教学设计1【教学内容】人教版五年级上册第六单元《组合图形的面积》【教材分析】本课是五年级上册第六单元内容,是在学生学习了长方形与正方形.平行四边形.三角形与梯形的面积计算的基础上学习的,一方面可以巩固已经学过的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生的综合能力。
【设计理念】儿童思维发展的一般规律是从具体操作开始的,再逐步形成抽象的思维。
教学设计时,充分考虑学生原有认知水平及儿童心理发展水平,从描述组合图形入手,让学生自主探究,注重让学生在观察、操作、合作交流、比较等数学活动中,找出计算组合图形面积的多种方法,并进行优化选择。
学生在解决问题的过程中,获得数学学习方法。
在对学习过程与结果的反思中,提高解决问题的能力。
【教学目标】1.能结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积2.能运用所学知识解决生活中组合图形的实际问题。
3.自主探索,合作交流。
养成认真思考,团结协作的能力。
4.通过找一找.分一分.拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”.“补”等方法来计算组合图形的面积。
【教学重点】探索并掌握组合图形的面积计算方法【教学难点】理解并掌握组合图形的组合及分解方法。
【数学思想】分类、化归【教学过程】一.创设情境,引出问题教师活动学生活动及达成目标1.说一说:(1)让学生快速说出老师出示的平面图形的名字(正方形.长方形.平行四边形.三角形.梯形)。
(2)说出上面各种图形的面积计算公式及字母表达式(并适时出示多媒体)。
2.看一看:老师出示一些组合图形,让学生仔细观察,思考:这些图形跟我们刚才复习的基本图形有什么不同?(这些图形都是由几个基本图形组合而成的。
)出示生活中常见的组合图形(如房子的侧面.风筝.七巧板拼图.中队旗等),问:要想知道做一面中队旗用多少布就是求什么?3.揭示课题并板书:组合图形的'面积学生观察回答让学生在说一说,看一看的过程中充分调动多种感官参与到学习中来,在浓厚的学习氛围中感受到知识于生活,而又服务于生活,明确生活中的很多问题都和组合图形的面积有关。
组合图形的面积__小学奥数专题
组合图形的面积(一)例1一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?练习一1、求四边形ABCD的面积。
(单位:厘米)2、已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。
3、有一个梯形,它的上底是5厘米,下底7厘米。
如果只把上底增加3厘米,那么面积就增加4.5平方厘米。
求原来梯形的面积。
例2正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。
求中间长方形的面积。
练习二1、已知大正方形的边长是12厘米,求中间最小正方形的面积。
2、如下图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点,求三角形AEF的面积。
3、求下图长方形ABCD的面积(单位:厘米)。
例3四边形ABCD和四边形DEFG都是正方形,已知三角形AFH 的面积是7平方厘米。
三角形CDH的面积是多少平方厘米?练习三1、图中两个正方形的边长分别是6厘米和4厘米,求阴影部分面积。
2、下图中两个完全一样的三角形重叠在一起,求阴影部分的面积。
3、下图中,甲三角形的面积比乙三角形的面积大多少平方厘米?例4下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米?练习四1、如下图,正方形ABCD中,AB=4厘米,EC=10厘米,求阴影部分的面积。
2、在一个直角三角形铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形的面积是多少?(单位:厘米)3、图中BC=10厘米,EC=8厘米,且阴影部分面积比三角形EFG 的面积大10平方厘米。
求平行四边形的面积。
例5图中ABCD是长方形,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED的长。
练习五1、如图,平行四边形BCEF中,BC=8厘米,直角三角形中,AC=10厘米,阴影部分面积比三角形ADH的面积大8平方厘米。
求AH长多少厘米?2,图中三个正方形的边长分别是1厘米、2厘米和3厘米,求图中阴影部分的面积。
组合图形的面积公式
组合图形的面积公式许多天文学家和数学家经常发现,天文和数学形状的总体面积可以通过不同的图形组合而成。
经常的形状可以是三角形、正方形、圆形、多边形和椭圆形等。
为了计算组合图形的总体面积,我们需要知道每个组件面积的公式,以及它们如何组合在一起。
下面,我将介绍组合图形的常用面积公式。
1、三角形面积公式三角形的面积可以通过三角形的底边长与其高的乘积来确定。
如果三角形的底边长是a,其高为h,则可以通过以下公式确定三角形的面积:S = 1/2 a h2、正方形面积公式正方形的面积可以通过其边长乘积来确定。
如果正方形的边长是a,则可以通过以下公式确定正方形的面积:S = a a3、圆形面积公式圆形的面积可以通过圆形的半径乘以π来确定。
如果圆形的半径是r,则可以通过以下公式确定圆形的面积:S = r r4、多边形面积公式多边形的面积可以通过多边形的顶点与其中心的距离乘积来确定。
如果多边形的顶点是A,它的中心距离为d,则可以通过以下公式确定多边形的面积:S=1/2 A d5、椭圆形面积公式椭圆形的面积可以通过椭圆形的长轴与短轴的乘积来确定。
如果椭圆形的长轴是a,它的短轴是b,则可以通过以下公式确定椭圆形的面积:S = a b以上就是组合图形的常用面积公式。
当在计算更复杂的组合形状时,可以使用多边形分解法来计算总面积。
这种方法可以将复杂的多边形分解为若干较小的多边形,然后在每个小多边形上应用前面提到的面积公式,最后将每个小多边形的面积相加,从而获得总面积。
总之,组合图形的面积计算可以通过不同图形的面积公式进行计算,也可以通过多边形分解方法来计算总面积。
不同结构的图形可以有不同的面积计算方法,但基本思路都是将复杂的形状分成若干个简单的形状,以最简单的形状的面积公式为基础,求出复杂形状的面积值。
通过学习和研究以上计算面积的方法,可以帮助我们更好地解决天文学和数学中的组合图形的面积计算问题。
《组合图形的面积》教学设计优秀4篇
《组合图形的面积》教学设计优秀4篇《组合图形的面积》数学教案篇一教材分析:《组合图形面积》是义务教育课程标准实验教科书(北师大版)五年级数学上册第五单元中的一节内容(北师大版义务教育课程标准实验教科书五年级数学上册第7576页的内容),这一内容是在学生已经学习了长方形与正方形,平行四边形、三角形与梯形的面积计算的基础上,学习组合图形面积,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生的综合能力,发展学生的空间观念,为以后立体图形的学习做好铺垫。
教学目标:知识目标1、在自主探索的活动中,理解计算组合图形面积的多种方法。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中有关组合图形的实际问题。
过程和方法让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。
情感、态度与价值观1、结合具体的题例,感受计算组合图形面积的必要性,产生积极的数学学习情感。
2、渗透转化的数学思想和方法。
教学重点:学生能够通过自己的动手操作,掌握用分割法和添补法求组合图形面积的计算方法。
教学难点:理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的条件,分成已学过的图形,选择有效的方法求组合图形的面积。
教学准备:多媒体课件和组合图形图片。
教学过程:一、激趣导入、复习铺垫、认识组合图形1、介绍笑笑和她家的新房子师:同学们,请看大屏幕,你们还记得她是谁吗?欢迎她今天和我们一起来学习吗?她还想把她家那漂亮的房子介绍给同学们呢!我们先听听她怎么说,好吗?(课件出示笑笑和她家的新房子,笑笑说:欢迎!欢迎!同学们,这是我家的新房子,漂亮吧?)2、引导学生观察,复习有关平面图形面积的计算公式师:从这座房子中可以找到哪些平面图形?会求它们的。
面积吗?3、欣赏图片(课件出示一组图片)师:请观察这几个图形,它们有什么共同的特征呢?(指名回答)4、教师总结,揭示课题并板书师:说得真好!像这样由两个或两个以上的简单的图形组合而成的一种图形我们把它称为组合图形(板书:组合图形),今天我们就一起来探究组合图形面积的计算(板书:面积)二、创设情境、探究新知笑笑家的新房正在装修,但却遇到了几个难题,需要同学们帮帮忙,你们愿意吗?那我们就一起来看看吧。
组合图形面积计算技巧十法
组合图形面积计算技巧“十法"一、相加相减法【点拨】:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,相加求出整个图形的面积.或者将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.【例题1】:求组合图形的面积。
(单位:厘米)【分析与解答】:上图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.4÷2=2(米)4×4+2×2×÷2=(平方厘米)【例题2】:长方形长6厘米,宽4厘米,求阴影部分的面积。
【分析与解答】:上图中,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.4÷2=2(米)6×4-2×2×÷(平方厘米)二、用比例知识求面积【点拨】:利用图形之间的比例关系解题。
【例题3】一块长方形耕地,它由四个小长方形拼合而成,其中三个小长方形的面积分别为15、18、30公顷,图中阴影部分的面积是多少?【分析与解答】:因为阴影部分也是一长方形,所以只要求出它的长、宽是多少就行,为此设它的长、宽分别为a、b,面积为18公顷的长方形的长、宽分别为c、d.直接按比例关系来理解。
因为(a×c):(d×c)=(a×b):(d×b),a:d=15:18=阴影面积:30,阴影面积为15×30÷18=25(公顷)。
三、等分法【点拨】:根据所求图形的对称性,将所求图形面积平均分成若干份,先求出其中的一份面积,然后求总面积。
【例题4】:求阴影部分的面积(单位:厘米)【分析与解答】:把原图平均分成八分,就得到下图,先求出每个小扇形面积中的阴影部分:×22÷4-2×2÷2=(平方厘米)阴影部分总面积为:×8=(平方厘米)四、等积变形【点拨】:将题中的条件或问题替换成面积相等的另外的条件或问题,使原来复杂的图形变为简单明了的图形。
组合图形面积6种办法
组合图形面积6种办法组合图形面积是数学中一个重要的概念,它可以帮助我们计算复杂图形的面积。
组合图形面积的计算有很多种方法,下面我们就来介绍一下这六种计算组合图形面积的方法。
首先,我们可以使用分割法来计算组合图形的面积。
这种方法是将复杂图形分割成若干个简单图形,然后分别计算每个简单图形的面积,最后将这些简单图形的面积相加,就可以得到复杂图形的面积。
其次,我们可以使用三角形面积公式来计算组合图形的面积。
这种方法是将复杂图形分割成若干个三角形,然后分别计算每个三角形的面积,最后将这些三角形的面积相加,就可以得到复杂图形的面积。
第三,我们可以使用积分法来计算组合图形的面积。
这种方法是将复杂图形的面积看作一个函数,然后使用积分法来计算这个函数的积分,最后得到复杂图形的面积。
第四,我们可以使用梯形面积公式来计算组合图形的面积。
这种方法是将复杂图形分割成若干个梯形,然后分别计算每个梯形的面积,最后将这些梯形的面积相加,就可以得到复杂图形的面积。
第五,我们可以使用平行四边形面积公式来计算组合图形的面积。
这种方法是将复杂图形分割成若干个平行四边形,然后分别计算每个平行四边形的面积,最后将这些平行四边形的面积相加,就可以得到复杂图形的面积。
最后,我们可以使用椭圆面积公式来计算组合图形的面积。
这种方法是将复杂图形分割成若干个椭圆,然后分别计算每个椭圆的面积,最后将这些椭圆的面积相加,就可以得到复杂图形的面积。
以上就是六种计算组合图形面积的方法,它们都可以帮助我们计算复杂图形的面积,但是要根据实际情况选择合适的方法。
只有掌握了这些方法,才能更好地计算组合图形的面积。
计算组合图形面积的几种方法
计算组合图形面积的几种方法
一、分解法。
把一个组合图形根据它的特征和已知条件分割成几个简单的规则图形,分别算出各个图形的面积,最后求出它们的面积的和。
如下图就可以分割成一个梯形和一个平行四边形。
二、割补法。
就是把图形的某一部分割下来补到另一部分上,使它变成一个我们学过的某一个图形,然后进行计算。
如下图:
三、填补法。
就是把一个多边形先看成一个完整的规则图形,计算出它的面积以后,再减去空缺部分的面积。
如下图就可以看成一个长方形,求出它的面积以后,再减去空缺处的梯形的面积。
四、折叠法。
就是把组合图形折叠成几个完全相同的图形,然后先求出其中一个图形的面积,再求出几个图形的面积的和。
如下图就可以折叠成两个完全相同的梯形。
五、旋转法。
就是把原来图形进行一次或几次旋转以后,使它变成我们熟悉的新图形,然后进行计算。
如下图就可以利用旋转法,使阴影部分变成一个三角形。
计算一个组合图形的面积,有时可以有多种方法,我们要根据图形的特征和已知条件以及整体与部分的关系,选择最佳的方法。
五年级-组合图形的面积
组合图形的面积知识集结知识元组合图形的面积知识讲解1.1、各图形面积公式:2、组合图形:有几个简单的图形拼出来的图形,我们把它们叫做组合图形。
3、计算组合图形的面积:(1)分割法,即将这个图形分割成几个基本的图形。
分割图形越简洁,其解题的方法也将越简单,同时又要考虑分割的图形与所给条件的关系。
(2)添补法,即通过补上一个简单的图形,使整个图形变成一个大的规则图形。
5.计算组合图形阴影部分的面积:等于组合图形的面积减去空白部分的面积。
例题精讲组合图形的面积例1.'求下图中涂色部分的面积。
(单位:cm)求阴影部分面积。
如图,小正方形ABCD的边长是5cm,大正方形CEFG的边长是10cm,求图中阴影部分面积。
'例3.'在一块梯形菜地里,有一条宽约1m的小路(如图),每平方米产菜4.5kg,这块菜地共产菜多少千克?'例4.'如图是某工艺品的展开图。
它的面积是多少?(单位:cm)'例5.'图4由3个边长是6的正方形组成,则图中阴影部分的面积是________。
计算如图阴影部分的面积.(单位:厘米)'例7.'如图,2个大正方形、2个中正方形和1个小正方形紧挨着排在一起,其中大中小正方形的边长分别为3、2、1,那么阴影部分的面积是多少?'例8.'如图,三角形ABC的面积为10,AD与BF交于点E,且AE=ED,BD=CB,求图中阴影部分的面积和.'例9.'求图形中阴影部分的面积.(单位:dm)例10.'如图中,ADEF是一个长8CM,宽5CM的长方形,ABCD为直角梯形,BEF为直角三角形,图中阴影部分的面积是多少?'探索活动:成长的脚印知识讲解计算不规则图形的面积:估计、计算不规则图形面积的内容主要是以方格图作为背景进行估计与计算的,所以借助方格图能帮助建立估计与计算不规则图形面积的方法。
《组合图形的面积》数学教案
《组合图形的面积》数学教案《组合图形的面积》数学教案3篇《组合图形的面积》数学教案1教学目标知识与技能:明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。
过程与方法:能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
情感态度与价值观:渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。
教学重难点教学重点:在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。
教学难点:根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。
教学工具多媒体设备教学过程教学过程设计1、创设情境,引导探索师:生活中有许多图形,老师今天准备了4幅,大家观察一下,这些图形是由哪些简单图形组成的?如果求它们的面积可以怎样求?图一图二图三图四课件逐一出示图一、图二、图三,图四让学生发表意见。
生1:小房子的表面是由一个三角形和一个正方形组成的。
生2:风筝的面是由四个小三角形组成的。
生3:队旗的面是由一个梯形和一个三角形组成的。
生4:七巧板是由三角形,长方形,正方形和平行四边形组成的。
师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形?生1:由两个或两个以上的图形组成的是组合图形。
生2:有几个平面图形组成的图形是组合图形。
师小结:组合图形是由几个简单的图形组合而成的。
图一:是由三角形、长方形、加上长方形中间的正方形组成的,面积=三角形面积+长方形面积―正方形面积。
图二:作辅助线使它分成一个大梯形和一个三角形。
方法一:分割法:将整体分成几个基本图形,求出它们的面积和。
是由两个梯形组成的。
师:为什么要分成两个梯形?怎样分成两个梯形?引导学生说出将它转化成以学过的简单图形以及在图中作辅助线。
师:是的,可以用作辅助线的方法将它转化成以前学过的简单图形来计算。
(板书:转化)大家想想,用辅助线的方法还有不同的作法吗?方法二:添补法:用一个大图形减去一个小图形求出组合图形的面积。
求组合图形面积的十种解法
求组合图形面积的十种解法
求组合图形面积是一个典型的几何问题,为了解决这一问题,可以使用以下十种解法:
1、分法法:将复杂图形分解成若干简单图形,然后求其各自的面积,最后求总和即可。
2、叠加法:如果复杂图形与某一简单图形有公共部分,那么就可以把复杂图形和简单图
形叠加在一起,求出叠加图形的面积,然后用叠加图形的面积减去简单图形的面积即可求
得复杂图形的面积。
3、分数解法:如果复杂图形的面积太难求,可以采用分数解法,先把复杂图形分成若干
等份,每份更容易求面积,最后把求的的结果加起来即可。
4、数学公式法:如果复杂图形有相应的数学公式,可以利用这个公式来求复杂图形的面积。
5、经验法:一些规则复杂图形,有时候还可以借助经验法,比如正多边形,多个等腰三
角形等组合,通过一定的经验公式即可求得面积。
6、极限法:如果复杂图形不是太复杂,可以采用极限法,采用适当的空间坐标,把图形
分解成若干若干子图形,然后求得每个子图形的面积,把这些子图形的面积累加,最后就
可以求得复杂图形的面积。
7、计算机图形学法:使用计算机图形学的方法可以更准确快速地求组合图形面积。
利用
图形赋值法,先将要求面积的图形表示成点阵图,此时此刻,图形上面每个点对应着某个面积的的面积,然后将每个点的面积相加,就可以求出总的面积了。
8、三角函数法:如果所求复杂图形是圆形,那么可以采用三角函数法,根据圆心角的计
算公式,计算复杂图形的圆形面积。
9、渐近法:渐近法可以用来求一类复杂图形的面积,它将复杂图形分割为若干小正方形,再根据小正方形和图形的相似度,算出复杂图形面积接近的结果。
10、变换法:变换法是将复杂图形变换为简单图。
数学 - 组合图形面积的计算
数学 - 组合图形面积的计算引言在数学中,组合图形是指由多个基本图形组合而成的复合图形。
而要计算组合图形的面积,需要先计算组合图形中各个基本图形的面积,然后将这些面积相加。
本文将介绍如何计算常见的组合图形的面积。
一、矩形和正方形的面积计算矩形和正方形是最简单的组合图形,其面积的计算公式分别为:•矩形的面积:$S = l \\times w$,其中l为矩形的长,w为矩形的宽。
•正方形的面积:$S = a \\times a$,其中a为正方形的边长。
示例:假设有一个矩形,长为 5,宽为 3,那么它的面积可以通过以下计算得到:S = 5 * 3 = 15因此,该矩形的面积为 15。
二、三角形的面积计算三角形是另一个常见的组合图形,其面积的计算公式为:$S = \\frac{1}{2} \\times b \\times h$,其中b为三角形的底边长,ℎ为三角形的高。
示例:假设有一个底边长为 4,高为 6 的三角形,那么它的面积可以通过以下计算得到:S = 0.5 * 4 * 6 = 12因此,该三角形的面积为 12。
三、圆的面积计算圆是另一种常见的组合图形,其面积的计算公式为:$S = \\pi \\times r^2$,其中r为圆的半径。
需要注意的是,计算圆的面积时,需要使用 $\\pi$(圆周率)的近似值,通常取 3.14 或更精确的值。
示例:假设有一个半径为 5 的圆,那么它的面积可以通过以下计算得到:S = 3.14 * (5^2) = 78.5因此,该圆的面积为 78.5。
四、组合图形的面积计算当组合图形由多个基本图形组合而成时,其面积的计算可以通过计算各个基本图形的面积,然后将这些面积相加得到。
示例:假设有一个由一个矩形和一个三角形组成的图形,如下图所示:---------------| ▲ || ╱╲ || ╱╲ || ╱╲ || ╱______╲ || ▔ |--------------矩形的长和宽分别为 6 和 4,三角形的底边长为 4,高为 3。
五年级上册数学《组合图形的面积》教案
五年级上册数学《组合图形的面积》教案五年级上册数学《组合图形的面积》教案(7篇)作为一名辛苦耕耘的教育工作者,时常会需要准备好教案,借助教案可以有效提升自己的教学能力。
那么写教案需要注意哪些问题呢?以下是小编精心整理的五年级上册数学《组合图形的面积》教案,欢迎阅读,希望大家能够喜欢。
五年级上册数学《组合图形的面积》教案1教学目标:知识与能力1、结合生活实际认识组合图形,初步掌握用分解发和割补法计算组合图形的面积。
2、能综合运用平面图性积计算的知识,培养分析。
综合的能力,发展学生的空间观念。
过程与方法1、通过拼一拼。
找一找的过程,体会各种图案之间的内在联系,知道生活中各种物体的组合规律。
2、培养动手操作能力,合作交流能力和空间想象能力。
情感态度与价值观通过学习,体验生活中美丽图案的组合规律,激发主动学习的兴趣,培养审美观念和热爱学习数学的思想情。
教学重难点:初步掌握组合图形面积的计算方法。
正确、灵活地把组合图形转化为所学过的基本图形,并能根据各种组合图形的条件,有效地选择计算方法。
教学准备:多媒体课件、练习题卡片。
教学过程:一、复习导入,巩固基础1、我们已经学习了哪些基本的平面图形?2、他们的面积计算公式分别是什么?(请学生说一说)3、计算下面各图形的面积。
(出示所学过的图形)师:这些单个的图形称之为简单的基本图形。
师:在我门的生活中,有许多物体的表面是由这些简单的图形组合而成的,我们称之为组合图形。
同学们,仔细观擦一下我们的教室,看一看哪些地方有组合图形。
二、阅读质疑,自主探究师:同学们,我们刚才观察了教室内的组合图形,在我们的课本上也有几副美丽的图案,我们一起来看一看。
1、同学们阅读课本。
2、同桌交流图案的组成。
3、小组和作,拼一拼,讲一讲所拼图形的组成。
4、用自己的话说一说什么是组和图形?三、合作探究1、出示例题4的图。
师:这是一间房子侧面墙的形状,它是什么图形?怎样求它的面积?先独立想一想再小组交流。
《组合图形的面积》教学设计
《组合图形的面积》教学设计《组合图形的面积》教案篇一教学内容:92和93页练习十八教学目标:明确组合图形的意义;知道求组合图形的面积就是求几个图形面积的和(或差);能正确地进行组合图形面积计算,并能灵活思考解决实际问题。
教学过程:一、复习。
“第一个图形是什么形?它的面积怎样计算?”学生口答,教师在长方形图的下面板书:S=ab“第二个图形呢?”......学生分别口答后,教师在每个图的下面写出相应的计算面积的公式.教师:计算这些图形的面积我们已经学会了,可是在实际生活中,有些图形是由几个简单的图形组合而成的,这就是我们今天要学习的内容,板书:组合图形面积的。
计算。
二、认识组合图形1、让学生指出92页页的四幅图有哪些图形?2、引导学生把下面的图形,组合成多边形(展示台上拼)对学生的拼出的图形,有选择地出示其中的几个。
(如下所示)分别说出这些图形是由哪几个简单的图形组合而成。
师:怎样计算这些组合图形的面积呢?(板题)二、组合图形面积的计算。
1.讨论计算上面拼成的组合图形的面积。
(生板演其余每组完成一图)订正,讨论第一图的两种方法。
5×5+5×6÷2[5+(5+6)]×5÷2=25+15=16×5÷2=40(平方厘米)=40(平方厘米)2.在实际生活中,有些图形也是由几个简单的图形组合而成的(出示例1题目及图)。
图表示的是一间房子侧面墙的形状。
它的面积是多少平方米?如果不分割能直接算出这个图形的面积吗?(引讨横虚线的作用)怎样计算这个组合图形的面积呢?(讨论方法后,再打开书计算,同时指名板演)5×5+5×2÷2还能用其他的划分方法求出它的面积吗?(分组讨论)汇报讨论结果。
可能有下面情况。
[5+(2+5)]×(5÷2)÷2×2小结:一个组合图形,可以用多种方法划分成几个已经学过的简单图形,再分别计算出这些图形的面积,求出组合图形的面积,但要注意分割图形时,应当考虑计算的方便,特别要有计算面积所必需的数据。
苏教版第十册组合图形的面积
答:这条小路的面积是36 π平方米。
1、周长相等的平面图形中,圆的面积最大; 面积相等的平面图形中,圆的周长最短。
2、求圆环的面积一般是用外圆的面积减去
内圆的面积,还可以利用乘法分配律进行简
= π ×25÷2 =25 π÷2 =12.25 π (平方毫米)
(200 + 12.25 π) 平方毫米
10
涂色部分的面积=半圆的面积-三角形的面积
半圆的面积:π ×102÷2 = 100 π ÷2 =50 π (平方毫米)
三角形的面积:
20×10÷2 =100 (平方毫米)
(5 0 π - 100) 平方毫米
20×10÷2 =100 (平方毫米) =16π÷2
个正方形和一个半圆形 = π ×(100-64)
=0.
组合而成(如右图)。这 π ×(10÷2)2÷2
一扇窗户的形状由一个正方形和一个半圆形组合而成(如右图)。
=4.
扇窗户的面积是多少平 它的外圆半径是10厘米,内圆半径是6厘米。
一扇窗户的形状由一个正方形和一个半圆形组合而成(如右图)。
例10:下图一个圆环形铁片。它的外圆半径 是10厘米,内圆半径是6厘米。你会求这个铁片 的面积吗?
6cm
大圆的面积-小圆的面积=铁片的面积
大圆的面积-小圆的面积=铁片的面积 大圆面积:π×10 2=100π(平方厘米) 小圆面积:π×6 2=36π (平方厘米)
圆环形铁片的面积: 100π-36π=64π(平方厘米)
正方形的面积+半圆的面积=窗户的面积 =4.
《组合图形的面积》(教学设计)北师大版数学五年级上册
《组合图形的面积》教学设计【教学内容】北师大版小学数学五年级上册第六单元《组合图形的面积》第88-89页。
【教材分析】《组合图形的面积》是北师大版五年级上册第六单元的第一课,学生在三年级已经学习了长方形与正方形的面积计算,在本册的第四单元又学习了平行四边形、三角形与梯形的面积计算,在此基础上学习组合图形,一方面可以巩固已经学过的基本图形,另一方面则能将所学的知识进行整合,注重将“转化”的思考策略渗透其中,提高学生的综合能力。
【学情分析】本节课的主要内容是探究解决“组合图形的面积”的策略。
学生已经学习了长方形、正方形、平行四边形、三角形与梯形的面积计算方法,在此基础上探索组合图形面积的计算方法,能通过自主探索、合作交流,达到方法的多样化。
但是对于方法的交流、借鉴、反思及优化上需要教师的引导,所以,要重视让每个学生都积极地参与到活动中来,让活动有实效,真正让学生在数学方法、数学思想方面有所发展。
【教学目标】1.在探索组合图形面积计算的方法中,体会割补法的应用。
2.能根据组合图形的条件,灵活运用割补法正确计算其面积。
3.能解决生活中与组合图形有关的实际问题,认识数学的价值。
【教学重点】在探索活动中,理解组合图形面积计算的多种方法。
【教学难点】理解计算组合图形面积的多种计算方法,并选择优化方法。
【教学准备】课件,学习单【教学过程】一、复习旧知,引入课题1.回忆平面图形,复习长方形、正方形、平行四边形、三角形、梯形的面积公式。
2.观看组合图形,在图中,你能找到我们学过的图形吗?3.出示组合图形,你知道这幅图是由什么图形组成的吗?4.明确概念,揭示课题:组合图形的面积。
二、自主探究,尝试多种算法解决问题(一)估算组合图形的面积1.播放老爷爷打算在客厅铺地板的视频。
2.这是一个什么图形呢?你能估一估,客厅地板的面积大约有多大吗?3.学生估算,并说说依据。
(二)自主探索,合作交流1.学生独立思考,在学习单上画一画、算一算它的面积是多少。
《组合图形的面积》数学教案优秀8篇
《组合图形的面积》数学教案优秀8篇《组合图形的面积》数学教案篇一教材分析1.课标中对本节内容的要求是:在探索活动中认识组合图形,归纳并运用不同的方法计算组合图形的面积,从而解决相应的实际问题。
教材把这一内容安排在平行四边形、三角形和梯形面积计算之后学习,让学生知道在进行组合图形面积计算中,要把一个组合图形分解成已学过的平面图形并进行计算,这样可以巩固对各种平面图形特征的认识和面积公式的运用,又有利于发展学生的空间观念。
因此本课在本单元中起着承上启下的作用,从简单的图形向不规则图形和组合图形的知识转化。
2.本节课的核心内容的功能和价值主要体现在两个方面:一是感受计算组合图形面积的必要性,也是日常生活中经常需要解决的问题。
二是针对组合图形的特点强调学生学习的自主探索性,每个学生可以根据自己的经验思考与解决习惯去思考如何解决相应的实际问题,从而培养学生个性化解决问题的能力。
学情分析1.本班共41名学生,从过去的学习情况来看,整体基础比较扎实,学习能力较强。
最为关键的是:本班学生有85%的学生都酷爱数学这门课程(具体调查统计过)。
只有部分学生对数学喜欢程度一般。
总体上学生思维活跃,好动、好学已经具备了一定的自学能力。
且通过之前的作业反馈、师生交流及我班特色“每天三问”的反馈对本班教学也有一定的指导意义。
2.本课的授课对象是五年级的学生,学生通过之前的学习,对于平面图形直观感知和认识上已有了一定的基础,也掌握了一些基本图形面积的计算方法。
作为五年级的学生,应进一步提高知识的综合运用能力,在学习中去探索掌握解决问题的思考策略。
3.学生认知障碍点:拓展学生采用不同的方法来解决问题的能力方面是本节课最主要的障碍点。
教学目标1、知识目标(1)认识简单的组合图形,会把组合图形分解成已学过的平面图形并计算出它的面积。
(2)能运用所学的知识,解决生活中有关组合图形面积的实际问题。
2、技能目标(1)在观察、列举中认识简单的组合图形,在尝试、交流中探索组合图形面积的计算方法。
《组合图形的面积》教学设计优秀5篇
《组合图形的面积》教学设计优秀5篇作为一名为他人授业解惑的教育工作者,可能需要进行教案编写工作,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
那要怎么写好教案呢?以下是小编帮大家收集整理的《组合图形的面积》教学设计优秀5篇,仅供借鉴。
组合图形的面积教学设计篇一学习目标:1.知识目标:通过动手操作使学生理解组合图形的含义,理解并掌握组合图形的多种计算方法,并正确地计算组合图形的面积。
2.能力目标:通过学生自主探索,合作交流,激发学生的积极性和主动性。
从而归纳组合图形面积的方法。
3.情感目标:在探索,实践活动中使学生获得成功的体验,感受数学知识的广泛应用。
渗透转化的数学思想和方法。
教学重点:能根据条件求组合图形的面积。
教学难点:理解分解图形时简单图形的差。
教具准备:图形卡片教学过程:一、联系学生生活,引入新课。
数学教学,要紧密联系学生的生活实际。
新课开始之前,我由猜图形引出:1.实物投影:同学们,你们说说这些图形像什么?师:今天老师先和大家玩一个猜图形的小游戏。
出示图形:猜猜它们像什么?师:很简单,很容易吧!但是在这个简单的游戏中却蕴含着丰富的数学知识。
今天就让我们一起去探索、去研究。
2.出示基本图形,从而复习已学过的基本知识。
师:在这两个拼成的图形中,有哪些是你认识的图形?梯形是哪里来的?还有一个学过的图形这里没有出现,它是什么呢?(贴出图形:正方形、长方形、三角形、梯形、平行四边形)二、教学新课。
学生亲身体验和感知易于获得感性经验,提高实际操作能力。
而观察、操作、讨论等都是数学活动中较常用的方法。
因此,在教学过程中我尽量给学生创设更多的动手操作机会,提供丰富的材料,使他们可以亲自进行较广泛意义的实验、操作及通过观察结果、提出问题、讨论并自己寻找答案。
教学新课时,我首先让学生说一说、拼一拼、分一分。
根据学生前面猜的结果,提出:自己用这些基本图形拼出自己喜欢的图案?1.在拼图活动中认识组合图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《组合图形的面积》教学设计
——五年级数学
教学目标:
1、在自主探索的活动中,理解计算组合图形面积的多种方法,并渗透转化的数学思想。
2、根据各种组合图形的条件,通过找一找,分一分,有效的选择分割和添补的方法,解决生活中的实际问题。
3、培养学生的观察能力和动手操作的技能,发展空间观念,提高思维的灵活性,激发学生学习的兴趣和主动性。
教学重点:
在探索活动中,理解组合图形面积计算的多样方法,会找出计算每个小图形所需要的条件。
教学难点:理解并掌握组合图形的组合及分解方法。
教具准备:多媒体课件和组合图形图片。
教学过程:
一、创设情境,导入新知。
师:同学们,我听说神奇的图形王国里建起了一座新房子,老师带着你们一起去看看吧。
(课件出示:房子图片)
师:你们看这座房子漂亮么?那你能从图上找到哪些我们学过的基本图形啊?(课件出示:基本图形)
那你会计算他们的面积么?(生答)
(课件出示:一座基本图形拼成的房子)
问:你们再看看这个图片,你发现他有什么特征?都是由我们刚才提到的基本图形组合而成的,那你知道像这样的图形叫什么么? 引出课题:组合图形。
(板书)
师;那什么样的图形是组合图形?你在生活中见到过这样的图形么?
(课件出示:生活中的组合图形)找2名同学说说那个小房子和风筝图片都是由哪些基本图形组成的呢?
导入语:平面图形的面积我们会计算了,那组合图形的面积怎么计算呢?想知道么?这节课,我们就来研究组合图形的面积(补全课题)
二、探究思考,解决问题。
(一)探究计算方法
导入:老师最近买了一套住房,正准备装修呢?我打算先在客厅里铺上地板,你们来看,这是客厅的平面图。
(出示课件)哪位同学愿意帮助老师先来估计一下大约需要多少平方米的地板?(学生估算)
师:那老师要买地板,到底应该买多少呢?我们该怎么办啊?能只估计估计么?怎么办?对,得要计算一下才行。
你有什么好办法帮助老师。
师:老师给你们准备了客厅的图片,请你把你的想法在这个图片上表示出来,先不用计算,我要看看谁的想法最好,听明白了么?好开始吧。
(学生自主探索)
师:谁想到好办法了?说说看,你是怎么想的? (学生汇报)
师:为什么分成2个长方形呢?引导学生初步认识数学思想:转化。
(学生汇报,教师把有关图片粘贴到黑板上)
4m
6m
3m
7m
分割法
4m
6m
3m
7m
4m
6m
3m
7m
4m
6m
3m
7m
添补法
师:我们来看黑板,请你认真观察前三种方法,你发现他们有什么共同的特征呢?(分成之后都变成了什么?)
小结;像这样把一个组合图形分成我们学过的基本图形,这样的方法,叫什么呢?引出分割法,板书。
师;那这种呢?引导出添补法。
这两种方法都是计算组合图形面积常用的方法。
师:你选择了什么方法?如果选择了分割法,应该注意什么?如果选怎了添补法,也应该注意什么呢?
小结:其实不管是分割法,还是添补法,我们都是为了一个共同的目的,那就是把这个图形转化成我们学过的基本图形。
(二)计算组合图形的面积
师:这回我们来计算一下这个组合图形的面积,好不好? (学生自己计算,可以和小组的同学交流一下)
师:你是怎么计算这个图形的面积的?(学生汇报)教师适时引导:为什么要把分的两个图形加起来?为什么把两个图形的面积相减。
(三)总结算法
刚才我们计算出了客厅的面积,也就是组合图形的面积。
先在,我们来总结一下,怎么计算组合图形的面积呢?(生答)
小结出:先观察,选择合适的方法,再找出计算的条件,最后计算。
四、解决问题
师:同学们,看你们那么聪明,老师想考考你们,敢接受挑战么? 1、下面这些组合图形能分割成哪些基本图形?
4m
6m
3m
7m
2、看看这些图形能添补成哪些基本图形?
3、这是客厅的一面墙,老师想把它贴上漂亮的壁纸,谁能帮助老师算一算,到底需要多少平方米的壁纸?
1.8m
1.5m
0.2m
4、我们来看下一道,这儿是我们小区的一块草坪,工作人员想知道这块草坪有多大面积你能帮帮他么?
5、老师还想在客厅里按上一块玻璃屏风,你们看这是屏风的平面图,老师想知道要买这样一块玻璃需要多少钱?(每平方米玻璃10元)
五、结束语
同学们,这节课可我们合作的挺愉快,不仅学会了计算组合图形的面积的方法,还帮助老师解决了难题,你们可真了不起,谢谢同学们。
6m
10m
6m
1m
10dm
6dm
12dm
12dm
15dm。