考研数学三04-12年试题

合集下载

2004年考研数学三真题及解析

2004年考研数学三真题及解析

2004年全国硕士研究生入学统一考试 数学三试题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若,则a =______,b =______.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则.(3) 设,则.(4) 二次型的秩为 . (5) 设随机变量服从参数为的指数分布, 则_______.(6) 设总体服从正态分布, 总体服从正态分布,和 分别是来自总体和的简单随机样本, 则.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7) 函数在下列哪个区间内有界. [ ] (A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3).(8) 设f (x )在(-∞ , +∞)内有定义,且, ,则 [ ](A) x = 0必是g (x )的第一类间断点.(B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关.(9) 设f (x ) = |x (1 - x )|,则 [ ](A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点. (D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点.(10) 设有下列命题:(1) 若收敛,则收敛.(2) 若收敛,则收敛.5)(cos sin lim0=--→b x ae xx x 2fu v∂=∂∂⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x 212(1)f x dx -=⎰213232221321)()()(),,(x x x x x x x x x f ++-++=X λ=>}{DX X P X ),(21σμN Y ),(22σμN 1,,21n X X X 2,,21n Y Y Y X Y 12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎢⎥⎣⎦∑∑2)2)(1()2sin(||)(---=x x x x x x f a x f x =∞→)(lim ⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ∑∞=-+1212)(n n n u u ∑∞=1n n u ∑∞=1n n u ∑∞=+11000n n u(3) 若,则发散.(4) 若收敛,则,都收敛.则以上命题中正确的是 [ ](A) (1) (2).(B) (2) (3).(C) (3) (4).(D) (1) (4).(11) 设在[a , b]上连续,且,则下列结论中错误的是[ ] (A) 至少存在一点,使得> f (a ). (B) 至少存在一点,使得> f (b ). (C) 至少存在一点,使得.(D) 至少存在一点,使得= 0.(12) 设阶矩阵与等价, 则必有 [ ](A) 当时, . (B) 当时, . (C) 当时, . (D) 当时, .(13) 设阶矩阵的伴随矩阵 若是非齐次线性方程组 的互不相等的解,则对应的齐次线性方程组的基础解系[ ] (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量.(14) 设随机变量服从正态分布, 对给定的, 数满足,若, 则等于[ ] (A) . (B) . (C) . (D) .三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求. (16) (本题满分8分)求,其中D 是由圆和(17) (本题满分8分)设f (x ) , g (x )在[a , b ]上连续,且满足,x ∈ [a , b ),.证明:.(18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量.(I) 求需求量对价格的弹性(> 0);1lim 1>+∞→n n n u u ∑∞=1n n u ∑∞=+1)(n n n v u ∑∞=1n n u ∑∞=1n n v )(x f '0)(,0)(<'>'b f a f ),(0b a x ∈)(0x f ),(0b a x ∈)(0x f ),(0b a x ∈0)(0='x f ),(0b a x ∈)(0x f n A B )0(||≠=a a A a B =||)0(||≠=a a A a B -=||0||≠A 0||=B 0||=A 0||=B n A ,0*≠A 4321,,,ξξξξb Ax =0=Ax X )1,0(N )1,0(∈ααu αu X P α=>}{αx X P =<}|{|x 2αu 21αu-21αu -αu -1)cos sin 1(lim 2220xxx x -→⎰⎰++Dd y y x σ)(22422=+y x )1(22++y x ⎰⎰≥x axadt t g dt t f )()(⎰⎰=bab adt t g dt t f )()(⎰⎰≤baba dx x xg dx x xf )()(d E d E(II) 推导(其中R 为收益),并用弹性说明价格在何范围内变化时, 降低价格反而使收益增加. (19) (本题满分9分)设级数 的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式.(20)(本题满分13分)设, , , , 试讨论当为何值时,(Ⅰ) 不能由线性表示;(Ⅱ) 可由唯一地线性表示, 并求出表示式;(Ⅲ) 可由线性表示, 但表示式不唯一, 并求出表示式. (21) (本题满分13分)设阶矩阵 . (Ⅰ) 求的特征值和特征向量;(Ⅱ) 求可逆矩阵, 使得为对角矩阵.(22) (本题满分13分)设,为两个随机事件,且, , , 令求 (Ⅰ) 二维随机变量的概率分布;(Ⅱ) 与的相关系数 ; (Ⅲ) 的概率分布. (23) (本题满分13分) 设随机变量的分布函数为其中参数. 设为来自总体的简单随机样本, (Ⅰ) 当时, 求未知参数的矩估计量; (Ⅱ) 当时, 求未知参数的最大似然估计量; (Ⅲ) 当时, 求未知参数的最大似然估计量.)1(d E Q dPdR-=d E )(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x T α)0,2,1(1=T ααα)3,2,1(2-+=T b αb α)2,2,1(3+---=T β)3,3,1(-=b a ,β321,,αααβ321,,αααβ321,,αααn ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111b b b b b b A A P AP P 1-A B 41)(=A P 31)|(=AB P 21)|(=B A P ⎩⎨⎧=不发生,,发生,A A X 0,1⎩⎨⎧=.0,1不发生,发生,B B Y ),(Y X X Y XY ρ22Y X Z +=X 1,0>>βαn X X X ,,,21 X 1=αβ1=αβ2=βα⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,(2004年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若,则a =,b =.【分析】本题属于已知极限求参数的反问题. 【详解】因为,且,所以 ,得a = 1. 极限化为 ,得b = -4.因此,a = 1,b = -4. 【评注】一般地,已知= A , (1) 若g (x ) → 0,则f (x ) → 0; (2) 若f (x ) → 0,且A ≠ 0,则g (x ) → 0.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则.【分析】令u = xg (y ),v = y ,可得到f (u , v )的表达式,再求偏导数即可. 【详解】令u = xg (y ),v = y ,则f (u , v ) =,所以,,. (3) 设,则.【分析】本题属于求分段函数的定积分,先换元:x - 1 = t ,再利用对称区间上奇偶函数的积分性质即可.【详解】令x - 1 = t ,=.【评注】一般地,对于分段函数的定积分,按分界点划分积分区间进行求解. (4) 二次型的秩为 2 .【分析】二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换或配方法均可得到答案.5)(cos sin lim0=--→b x ae xx x 14-5)(cos sin lim0=--→b x ae xx x 0)(cos sin lim 0=-⋅→b x x x 0)(lim 0=-→a e x x 51)(cos lim )(cos sin lim00=-=-=--→→b b x xxb x a e x x x x )()(limx g x f )()(22v g v g vu f '-=∂∂∂)()(v g v g u+)(1v g u f =∂∂)()(22v g v g v u f '-=∂∂∂⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x 21)1(221-=-⎰dx x f ⎰⎰⎰--==-121121221)()()1(dt x f dt t f dx x f 21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xe x 213232221321)()()(),,(x x x x x x x x x f ++-++=【详解一】因为于是二次型的矩阵为 ,由初等变换得 ,从而 , 即二次型的秩为2.【详解二】因为, 其中 . 所以二次型的秩为2.(5) 设随机变量服从参数为的指数分布, 则. 【分析】 根据指数分布的分布函数和方差立即得正确答案. 【详解】 由于, 的分布函数为故. 【评注】本题是对重要分布, 即指数分布的考查, 属基本题型.(6) 设总体服从正态分布, 总体服从正态分布,和 分别是来自总体和的简单随机样本, 则.【分析】利用正态总体下常用统计量的数字特征即可得答案.【详解】因为 , , 213232221321)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=⎪⎪⎪⎭⎫ ⎝⎛--=211121112A ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→000330211330330211A 2)(=A r 213232221321)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=2322321)(23)2121(2x x x x x -+++=2221232y y +=,21213211x x x y ++=322x x y -=X λ=>}{DX X P e121λDX =X ⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=X ),(21σμN Y ),(22σμN 1,,21n X X X 2,,21n Y Y Y X Y 22121212)()(21σn n Y Y X X E n j j n i i =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==2121])(11[1σX X n E n i i =--∑=2122])(11[2σY Y n E n j j =--∑=故应填 .【评注】本题是对常用统计量的数字特征的考查.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数在下列哪个区间内有界. (A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ A ]【分析】如f (x )在(a , b )内连续,且极限与存在,则函数f (x )在(a , b )内有界.【详解】当x ≠ 0 , 1 , 2时,f (x )连续,而,,,,,所以,函数f (x )在(-1 , 0)内有界,故选(A).【评注】一般地,如函数f (x )在闭区间[a , b ]上连续,则f (x )在闭区间[a , b ]上有界;如函数f (x )在开区间(a , b )内连续,且极限与存在,则函数f (x )在开区间(a , b )内有界.(8) 设f (x )在(-∞ , +∞)内有定义,且,,则 (A) x = 0必是g (x )的第一类间断点.(B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关.[ D ]【分析】考查极限是否存在,如存在,是否等于g (0)即可,通过换元, 可将极限转化为.【详解】因为= a (令),又g (0) = 0,所以,当a = 0时,,即g (x )在点x = 0处连续,当a ≠ 0时,,即x = 0是g (x )的第一类间断点,因此,g (x )在点x = 0处的连续性与a 的取值有关,故选(D).【评注】本题属于基本题型,主要考查分段函数在分界点处的连续性. (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.2σ2)2)(1()2sin(||)(---=x x x x x x f )(lim x f a x +→)(lim x f b x -→183sin )(lim 1-=+-→x f x 42sin )(lim 0-=-→x f x 42sin )(lim 0=+→x f x ∞=→)(lim 1x f x ∞=→)(lim 2x f x )(lim x f a x +→)(lim x f b x -→a x f x =∞→)(lim ⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg )(lim 0x g x →xu 1=)(lim 0x g x →)(lim x f x ∞→)(lim )1(lim )(lim 0u f x f x g u x x ∞→→→==xu 1=)0()(lim 0g x g x =→)0()(lim 0g x g x ≠→(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ C ]【分析】由于f (x )在x = 0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x )在x = 0的左、右两侧的二阶导数的符号,判断拐点情况.【详解】设0 < δ < 1,当x ∈ (-δ , 0) ⋃ (0 , δ)时,f (x ) > 0,而f (0) = 0,所以x = 0是f (x )的极小值点. 显然,x = 0是f (x )的不可导点. 当x ∈ (-δ , 0)时,f (x ) = -x (1 - x ),, 当x ∈ (0 , δ)时,f (x ) = x (1 - x ),,所以(0 , 0)是曲线y = f (x )的拐点.故选(C).【评注】对于极值情况,也可考查f (x )在x = 0的某空心邻域内的一阶导数的符号来判断. (10) 设有下列命题:(1) 若收敛,则收敛.(2) 若收敛,则收敛.(3) 若,则发散.(4) 若收敛,则,都收敛.则以上命题中正确的是 (A) (1) (2).(B) (2) (3).(C) (3) (4).(D) (1) (4).[ B ]【分析】可以通过举反例及级数的性质来说明4个命题的正确性. 【详解】(1)是错误的,如令,显然,分散,而收敛.(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性.(3)是正确的,因为由可得到不趋向于零(n → ∞),所以发散.(4)是错误的,如令,显然,,都发散,而收敛. 故选(B).【评注】本题主要考查级数的性质与收敛性的判别法,属于基本题型.(11) 设在[a , b]上连续,且,则下列结论中错误的是 (A) 至少存在一点,使得> f (a ). (B) 至少存在一点,使得> f (b ). (C) 至少存在一点,使得.(D) 至少存在一点,使得= 0.[ D ]02)(>=''x f 02)(<-=''x f ∑∞=-+1212)(n n n u u ∑∞=1n n u ∑∞=1n n u ∑∞=+11000n n u 1lim 1>+∞→n n n u u ∑∞=1n n u ∑∞=+1)(n n n v u ∑∞=1n n u ∑∞=1n n v nn u )1(-=∑∞=1n n u ∑∞=-+1212)(n n n u u 1lim 1>+∞→n n n u u n u ∑∞=1n n u n v n u n n 1,1-==∑∞=1n n u ∑∞=1n n v ∑∞=+1)(n n n v u )(x f '0)(,0)(<'>'b f a f ),(0b a x ∈)(0x f ),(0b a x ∈)(0x f ),(0b a x ∈0)(0='x f ),(0b a x ∈)(0x f【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项. 【详解】首先,由已知在[a , b]上连续,且,则由介值定理,至少存在一点,使得; 另外,,由极限的保号性,至少存在一点使得,即. 同理,至少存在一点使得. 所以,(A) (B) (C)都正确,故选(D).【评注】 本题综合考查了介值定理与极限的保号性,有一定的难度. (12) 设阶矩阵与等价, 则必有(A) 当时, . (B) 当时, . (C) 当时, . (D) 当时, . [ D ] 【分析】 利用矩阵与等价的充要条件: 立即可得.【详解】因为当时, , 又 与等价, 故, 即, 故选(D). 【评注】本题是对矩阵等价、行列式的考查, 属基本题型.(13) 设阶矩阵的伴随矩阵 若是非齐次线性方程组 的互不相等的解,则对应的齐次线性方程组的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量.[ B ]【分析】 要确定基础解系含向量的个数, 实际上只要确定未知数的个数和系数矩阵的秩. 【详解】 因为基础解系含向量的个数=, 而且根据已知条件 于是等于或. 又有互不相等的解, 即解不惟一, 故. 从而基础解系仅含一个解向量, 即选(B).【评注】本题是对矩阵与其伴随矩阵的秩之间的关系、线性方程组解的结构等多个知识点的综合考查. (14) 设随机变量服从正态分布, 对给定的, 数满足,若, 则等于 (A) . (B) . (C) . (D) . [ C ]【分析】 利用标准正态分布密度曲线的对称性和几何意义即得. 【详解】 由, 以及标准正态分布密度曲线的对称性可得. 故正确答案为(C). 【评注】本题是对标准正态分布的性质, 严格地说它的上分位数概念的考查.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.))(x f '0)(,0)(<'>'b f a f ),(0b a x ∈0)(0='x f 0)()(lim )(>--='+→ax a f x f a f a x ),(0b a x ∈0)()(00>--ax a f x f )()(0a f x f >),(0b a x ∈)()(0b f x f >n A B )0(||≠=a a A a B =||)0(||≠=a a A a B -=||0||≠A 0||=B 0||=A 0||=B A B )()(B r A r =0||=A n A r <)(A B n B r <)(0||=B n A ,0*≠A 4321,,,ξξξξb Ax =0=Ax )(A r n -⎪⎩⎪⎨⎧-<-===.1)(,0,1)(,1,)(,)(*n A r n A r n A r n A r ,0*≠A )(A r n 1-n b Ax =1)(-=n A r A *A X )1,0(N )1,0(∈ααu αu X P α=>}{αx X P =<}|{|x 2αu 21αu-21αu -αu -1αx X P =<}|{|21}{αx X P -=>(15) (本题满分8分)求. 【分析】先通分化为“”型极限,再利用等价无穷小与罗必达法则求解即可. 【详解】=.【评注】本题属于求未定式极限的基本题型,对于“”型极限,应充分利用等价无穷小替换来简化计算. (16) (本题满分8分)求,其中D 是由圆和所围成的平面区域(如图).【分析】首先,将积分区域D 分为大圆减去小圆,再利用对称性与极坐标计算即可.【详解】令,由对称性,..所以,. 【评注】本题属于在极坐标系下计算二重积分的基本题型,对于二重积分,经常利用对称性及将一个复杂区域划分为两个或三个简单区域来简化计算. (17) (本题满分8分)设f (x ) , g (x )在[a , b ]上连续,且满足,x ∈ [a , b ),.证明:.【分析】令F (x ) = f (x ) - g (x ),,将积分不等式转化为函数不等式即可.)cos sin 1(lim 2220xxx x -→0xx xx x x x x x x 2222202220sin cos sin lim )cos sin 1(lim -=-→→346)4(21lim 64cos 1lim 44sin 212lim 2sin 41lim 22020304220==-=-=-→→→→x x x x x x x x x x x x x x 0⎰⎰++Dd y y x σ)(22422=+y x 1)1(22=++y x }4|),{(221≤+=y x y x D }1)1(|),{(222≤++=y x y xD }1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D 0=⎰⎰Dyd σ⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr r d )23(916932316-=-=ππ)23(916)(22-=++⎰⎰πσDd y y x ⎰⎰≥x axadt t g dt t f )()(⎰⎰=bab adt t g dt t f )()(⎰⎰≤baba dx x xg dx x xf )()(⎰=xa dt t F x G )()(【详解】令F (x ) = f (x ) - g (x ),,由题设G (x ) ≥ 0,x ∈ [a , b ],G (a ) = G (b ) = 0,.从而,由于 G (x ) ≥ 0,x ∈ [a , b ],故有 ,即.因此.【评注】引入变限积分转化为函数等式或不等式是证明积分等式或不等式的常用的方法. (18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性(> 0);(II) 推导(其中R 为收益),并用弹性说明价格在何范围内变化时,降低价格反而使收益增加. 【分析】由于> 0,所以;由Q = PQ 及可推导 . 【详解】(I) . (II) 由R = PQ ,得. 又由,得P = 10.当10 < P < 20时,> 1,于是,故当10 < P < 20时,降低价格反而使收益增加.【评注】当> 0时,需求量对价格的弹性公式为. 利用需求弹性分析收益的变化情况有以下四个常用的公式:,,, (收益对价格的弹性). ⎰=xa dt t F x G )()()()(x F x G ='⎰⎰⎰⎰-=-==bab aba babadx x G dx x G x xG x xdG dx x xF )()()()()(0)(≤-⎰badx x G 0)(≤⎰ba dx x xF ⎰⎰≤babadx x xg dx x xf )()(d E d E )1(d E Q dPdR-=d E d E dP dQ Q P E d =dPdQQ P E d =)1(d E Q dPdR-=PPdP dQ Q P E d -==20)1()1(d E Q dPdQQ P Q dP dQ P Q dP dR -=+=+=120=-=PPE d d E 0<dPdRd E dPdQQ P dP dQ Q P E d -==Qdp E dR d )1(-=Q E dp dRd )1(-=p E dQ dR d)11(-=d E EpER-=1(19) (本题满分9分)设级数的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程;(II) S (x )的表达式.【分析】对S (x )进行求导,可得到S (x )所满足的一阶微分方程,解方程可得S (x )的表达式.【详解】(I) ,易见 S (0) = 0,.因此S (x )是初值问题的解. (II) 方程的通解为,由初始条件y(0) = 0,得C = 1. 故,因此和函数.【评注】本题综合了级数求和问题与微分方程问题,2002年考过类似的题.(20)(本题满分13分)设, , , ,试讨论当为何值时,(Ⅰ) 不能由线性表示;(Ⅱ) 可由唯一地线性表示, 并求出表示式;(Ⅲ) 可由线性表示, 但表示式不唯一, 并求出表示式.【分析】将可否由线性表示的问题转化为线性方程组是否有解的问题即易求解.)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x +⋅⋅⋅+⋅⋅+⋅=864264242)(864x x x x S +⋅⋅+⋅+='642422)(753x x x x S )642422(642 +⋅⋅+⋅+=x x x x )](2[2x S x x +=0)0(,23=+='y x xy y 23x xy y +=']2[3C dx e x e y xdx xdx +⎰⎰=⎰-22212x Ce x +--=12222-+-=x e x y 12)(222-+-=x e xx S T α)0,2,1(1=T ααα)3,2,1(2-+=T b αb α)2,2,1(3+---=T β)3,3,1(-=b a ,β321,,αααβ321,,αααβ321,,αααβ321,,αααβαk αk αk =++332211【详解】 设有数使得. (*)记. 对矩阵施以初等行变换, 有. (Ⅰ) 当时, 有. 可知. 故方程组(*)无解, 不能由线性表示.(Ⅱ) 当, 且时, 有, 方程组(*)有唯一解:, , . 此时可由唯一地线性表示, 其表示式为. (Ⅲ) 当时, 对矩阵施以初等行变换, 有, , 方程组(*)有无穷多解, 其全部解为, , , 其中为任意常数. 可由线性表示, 但表示式不唯一, 其表示式为. 【评注】本题属于常规题型, 曾考过两次(1991, 2000).(21) (本题满分13分)设阶矩阵,,,321k k k βαk αk αk =++332211),,(321αααA =),(βA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+-=323032221111),(b a a b a βA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111b a b a 0=a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→10001001111),(b βA ),()(βA r A r ≠β321,,ααα0≠a b a ≠⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→0100101011001a a 3),()(==βA r A r a k 111-=ak 12=03=k β321,,ααα211)11(αaαa β+-=0≠=b a ),(βA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→0000111011001a a 2),()(==βA r A r a k 111-=c ak +=12c k =3c β321,,ααα321)1()11(αc αc aαa β+++-=n. (Ⅰ) 求的特征值和特征向量;(Ⅱ) 求可逆矩阵, 使得为对角矩阵.【分析】这是具体矩阵的特征值和特征向量的计算问题, 通常可由求解特征方程和齐次线性方程组来解决.【详解】 (Ⅰ) 当时,= ,得的特征值为,.对,解得,所以的属于的全部特征向量为(为任意不为零的常数).对,得基础解系为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111 b b b b b b A A P AP P 1-0||=-A E λ0)(=-x A E λ 10≠b 111||---------=-λb b b λb b b λA E λ1)]1(][)1(1[------n b λb n λA b n λ)1(11-+=b λλn -===12 b n λ)1(11-+=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=-b n b b b b n b b b b n A E λ)1()1()1(1 →⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------)1(111)1(111)1(n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------0000111111111111 n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------0000111111111111 n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---000000001111 n n n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---0000110010101001 T ξ)1,,1,1,1(1 =A 1λT k ξk )1,,1,1,1(1 =k b λ-=12⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=-b b b b b b b b b A E λ 2→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛000000111,,.故的属于的全部特征向量为(是不全为零的常数).当时,, 特征值为,任意非零列向量均为特征向量.(Ⅱ) 当时,有个线性无关的特征向量,令,则当时,,对任意可逆矩阵, 均有.【评注】本题通过考查矩阵的特征值和特征向量而间接考查了行列式的计算, 齐次线性方程组的求解和矩阵的对角化等问题, 属于有一点综合性的试题. 另外,本题的解题思路是容易的, 只要注意矩阵中含有一个未知参数, 从而一般要讨论其不同取值情况.(22) (本题满分13分)设,为两个随机事件,且, , , 令 求(Ⅰ) 二维随机变量的概率分布;(Ⅱ) 与的相关系数 ;(Ⅲ) 的概率分布.【分析】本题的关键是求出的概率分布,于是只要将二维随机变量的各取值对转化为随机事件和表示即可.【详解】 (Ⅰ) 因为 , 于是 , 则有 , , , T ξ)0,,0,1,1(2 -=T ξ)0,,1,0,1(3 -=T n ξ)1,,0,0,1(,-= A 2λn n ξk ξk ξk +++ 3322n k k k ,,,32 20=b n λλλλA E λ)1(100010001||-=---=-11===n λλ 10≠b A n ),,,(21n ξξξP =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---+=-b b b n AP P 11)1(11 20=b E A =P E AP P =-1A B 41)(=A P 31)|(=A B P 21)|(=B A P ⎩⎨⎧=不发生,,发生,A A X 0,1⎩⎨⎧=.0,1不发生,发生,B B Y ),(Y X X Y XY ρ22Y X Z +=),(Y X ),(Y X A B 121)|()()(==A B P A P AB P 61)|()()(==B A P AB P B P 121)(}1,1{====AB P Y X P 61)()()(}0,1{=-====AB P A P B A P Y X P 121)()()(}1,0{=-====AB P B P B A P Y X P, ( 或 ), 即的概率分布为:(Ⅱ) 方法一:因为 ,,, ,, ,, , 所以与的相关系数 . 方法二: X, Y 的概率分布分别为X 0 1 Y 0 1PP 则,,DY=, E(XY)=, 故 ,从而 (Ⅲ) 的可能取值为:0,1,2 ., , , 即的概率分布为: 32)]()()([1)(1)(}0,0{=-+-=⋃-=⋅===AB P B P A P B A P B A P Y X P 32121611211}0,0{=---===Y X P ),(Y X 41)(==A P EX 61)(==B P EY 121)(=XY E 41)(2==A P EX 61)(2==B P EY 163)(22=-=EX EX DX 165)(22=-=EY EY DY 241)(),(=-=EXEY XY E Y X Cov X Y 1515151),(==⋅=DYDX Y X Cov ρXY 4341656161,41==EY EX 163=DX 365121241)(),(=⋅-=EY EX XY E Y X Cov .1515),(=⋅=DY DX Y X Cov XY ρZ 32}0,0{}0{=====Y X P Z P 41}1,0{}0,1{}1{===+====Y X P Y X P Z P 121}1,1{}2{=====Y X P Z P Z【评注合性题型(23) (本题满分13分)设随机变量的分布函数为其中参数. 设为来自总体的简单随机样本,(Ⅰ) 当时, 求未知参数的矩估计量; (Ⅱ) 当时, 求未知参数的最大似然估计量;(Ⅲ) 当时, 求未知参数的最大似然估计量.【分析】本题是一个常规题型, 只要注意求连续型总体未知参数的矩估计和最大似然估计都须已知密度函数, 从而先由分布函数求导得密度函数.【详解】 当时, 的概率密度为(Ⅰ) 由于令 , 解得 , 所以, 参数的矩估计量为 . (Ⅱ) 对于总体的样本值, 似然函数为当时, , 取对数得,对求导数,得, X ⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,(1,0>>βαn X X X ,,,21 X 1=αβ1=αβ2=βα1=αX ⎪⎩⎪⎨⎧≤>=+,,,101,),(1x x x ββx f β⎰⎰+∞++∞∞--=⋅==11,1);(ββdx x βx dx βx xf EX βX ββ=-11-=X X ββ1-=X X βX n x x x ,,,21 ∏=+⎪⎩⎪⎨⎧=>==ni i βn ni n i x x x x βαx f βL 1121.,0),,,2,1(1,)();()(其他 ),,2,1(1n i x i =>0)(>βL ∑=+-=n i i x ββn βL 1ln )1(ln )(ln β∑=-=n i i x βn βd βL d 1ln )]([ln令 , 解得 , 于是的最大似然估计量为. ( Ⅲ) 当时, 的概率密度为对于总体的样本值, 似然函数为 当时, 越大,越大, 即的最大似然估计值为, 于是的最大似然估计量为 .0ln )]([ln 1=-=∑=n i i x βn βd βL d ∑==n i ixn β1ln β∑==n i ixnβ1ln ˆ2=βX ⎪⎩⎪⎨⎧≤>=,,,αx αx x αβx f 0,2),(32X n x x x ,,,21 ∏=⎪⎩⎪⎨⎧=>==n i i n n n i n i αx x x x ααx f βL 13212.,0),,,2,1(,)(2);()(其他 ),,2,1(n i αx i =>α)(αL α},,,min{ˆ21n x x x α=α},,,min{ˆ21n X X X α=。

2004年全国硕士研究生入学统一考试数学(三)试题及答案

2004年全国硕士研究生入学统一考试数学(三)试题及答案

2004年全国硕士研究生入学统一考试数学(三)试题及答案一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim0=--→b x ae xx x ,则a =1,b =4-.【分析】本题属于已知极限求参数的反问题. 【详解】因为5)(cos sin lim0=--→b x a e xx x ,且0)(cos sin lim 0=-⋅→b x x x ,所以 0)(lim 0=-→a e x x ,得a = 1. 极限化为51)(cos lim )(cos sin lim00=-=-=--→→b b x x xb x a e x x x x ,得b =4.因此,a = 1,b = 4.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y )0,则)()(22v g v g vu f'-=∂∂∂.【分析】令u = xg (y ),v = y ,可得到f (u , v )的表达式,再求偏导数即可. 【详解】令u = xg (y ),v = y ,则f (u , v ) =)()(v g v g u+,所以,)(1v g u f =∂∂,)()(22v g v g v u f '-=∂∂∂. (3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则21)1(221-=-⎰dx x f .【分析】本题属于求分段函数的定积分,先换元:x1 = t ,再利用对称区间上奇偶函数的积分性质即可.【详解】令x1 = t ,⎰⎰⎰--==-121121221)()()1(dt x f dt t f dx x f=21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xe x .(4) 二次型2132********)()()(),,(x x x x x x x x x f ++-++=的秩为 2 .【分析】二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换或配方法均可得到答案.【详解一】因为2132********)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=于是二次型的矩阵为 ⎪⎪⎪⎭⎫ ⎝⎛--=211121112A ,由初等变换得 ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→000330211330330211A ,从而 2)(=A r , 即二次型的秩为2.【详解二】因为2132********)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++= 2322321)(23)2121(2x x x x x -+++= 2221232y y +=,其中 ,21213211x x x y ++= 322x x y -=.所以二次型的秩为2.(5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X Pe1. 【分析】 根据指数分布的分布函数和方差立即得正确答案. 【详解】 由于21λDX =, X 的分布函数为 ⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ故=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则22121212)()(21σn n Y Y X X En j jn i i =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==.【分析】利用正态总体下常用统计量的数字特征即可得答案.【详解】因为 2121])(11[1σX X n E n i i =--∑=, 2122])(11[2σY Y n E n j j =--∑=, 故应填 2σ.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界.(A) (1 , 0). (B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ A ]【分析】如f (x )在(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在(a , b )内有界. 【详解】当x0 , 1 , 2时,f (x )连续,而183sin )(lim1-=+-→x f x ,42sin )(lim 0-=-→x f x ,42sin )(lim 0=+→x f x ,∞=→)(lim 1x f x ,∞=→)(lim 2x f x , 所以,函数f (x )在( 1 , 0)内有界,故选(A).(8) 设f (x )在(, +)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则 (A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ D ] 【分析】考查极限)(lim 0x g x →是否存在,如存在,是否等于g (0)即可,通过换元xu 1=, 可将极限)(lim 0x g x →转化为)(lim x f x ∞→.【详解】因为)(lim )1(lim )(lim 0u f x f x g u x x ∞→→→=== a (令xu 1=),又g (0) = 0,所以,当a = 0时,)0()(lim 0g x g x =→,即g (x )在点x = 0处连续,当a0时,)0()(lim 0g x g x ≠→,即x = 0是g (x )的第一类间断点,因此,g (x )在点x = 0处的连续性与a 的取值有关,故选(D). (9) 设f (x ) = |x (1 x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ C ] 【分析】由于f (x )在x = 0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x )在x = 0的左、右两侧的二阶导数的符号,判断拐点情况. 【详解】设0 < < 1,当x ( , 0) (0 , )时,f (x ) > 0,而f (0) = 0,所以x = 0是f (x )的极小值点. 显然,x = 0是f (x )的不可导点. 当x ( , 0)时,f (x ) = x (1 x ),02)(>=''x f ,当x(0 ,)时,f (x ) = x (1x ),02)(<-=''x f ,所以(0 , 0)是曲线y = f (x )的拐点. 故选(C).(10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散. (4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是 (A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4). [ B ]【分析】可以通过举反例及级数的性质来说明4个命题的正确性. 【详解】(1)是错误的,如令nn u )1(-=,显然,∑∞=1n n u 分散,而∑∞=-+1212)(n n n u u 收敛.(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性.(3)是正确的,因为由1lim 1>+∞→nn n u u可得到n u 不趋向于零(n),所以∑∞=1n n u 发散.(4)是错误的,如令n v n u n n 1,1-==,显然,∑∞=1n n u ,∑∞=1n n v 都发散,而∑∞=+1)(n n n v u 收敛. 故选(B).(11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项. 【详解】首先,由已知)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ;另外,0)()(lim)(>--='+→ax a f x f a f a x ,由极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >. 同理,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以,(A) (B) (C)都正确,故选(D).(12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ D ] 【分析】 利用矩阵A 与B 等价的充要条件: )()(B r A r =立即可得.【详解】因为当0||=A 时, n A r <)(, 又 A 与B 等价, 故n B r <)(, 即0||=B , 故选(D). (13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的 互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系(A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量. [ B ] 【分析】 要确定基础解系含向量的个数, 实际上只要确定未知数的个数和系数矩阵的秩.【详解】 因为基础解系含向量的个数=)(A r n -, 而且⎪⎩⎪⎨⎧-<-===.1)(,0,1)(,1,)(,)(*n A r n A r n A r n A r根据已知条件,0*≠A 于是)(A r 等于n 或1-n . 又b Ax =有互不相等的解, 即解不惟一, 故1)(-=n A r . 从而基础解系仅含一个解向量, 即选(B).(14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ C ]【分析】 利用标准正态分布密度曲线的对称性和几何意义即得. 【详解】 由αx X P =<}|{|, 以及标准正态分布密度曲线的对称性可得21}{αx X P -=>. 故正确答案为(C).三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→. 【分析】先通分化为“”型极限,再利用等价无穷小与罗必达法则求解即可. 【详解】xx xx x x x x x x 2222202220sin cos sin lim )cos sin 1(lim -=-→→=346)4(21lim 64cos 1lim 44sin 212lim 2sin 41lim 22020304220==-=-=-→→→→xx x x x x x x x x x x x x . (16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域(如图).【分析】首先,将积分区域D 分为大圆}4|),{(221≤+=y x y x D 减去小圆}1)1(|),{(222≤++=y x y x D ,再利用对称性与极坐标计算即可.【详解】令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D ,由对称性,0=⎰⎰Dyd σ.⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr r d .)23(916932316-=-=ππ所以,)23(916)(22-=++⎰⎰πσDd y y x . (17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥xa x a dt t g dt t f )()(,x[a , b ),⎰⎰=ba b a dt t g dt t f )()(.证明:⎰⎰≤babadx x xg dx x xf )()(.【分析】令F (x ) = f (x ) - g (x ),⎰=xa dt t F x G )()(,将积分不等式转化为函数不等式即可. 【详解】令F (x ) = f (x ) - g (x ),⎰=xa dt t F x G )()(,由题设G (x ) 0,x[a , b ],G (a ) = G (b ) = 0,)()(x F x G ='.从而⎰⎰⎰⎰-=-==bab aba babadx x G dx x G x xG x xdG dx x xF )()()()()(,由于 G (x ) 0,x [a , b ],故有0)(≤-⎰b adx x G ,即0)(≤⎰ba dx x xF .因此⎰⎰≤babadx x xg dx x xf )()(.(18) (本题满分9分) 设某商品的需求函数为Q = 100 5P ,其中价格P (0 , 20),Q 为需求量.(I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加. 【分析】由于d E > 0,所以dP dQ Q P E d =;由Q = PQ 及dPdQQ P E d =可推导 )1(d E Q dPdR-=. 【详解】(I) PPdP dQ Q P E d -==20. (II) 由R = PQ ,得)1()1(d E Q dPdQ Q P Q dP dQ P Q dP dR -=+=+=. 又由120=-=PPE d ,得P = 10.当10 < P < 20时,d E > 1,于是0<dPdR,故当10 < P < 20时,降低价格反而使收益增加. (19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x 的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式.【分析】对S (x )进行求导,可得到S (x )所满足的一阶微分方程,解方程可得S (x )的表达式.【详解】(I) +⋅⋅⋅+⋅⋅+⋅=864264242)(864x x x x S , 易见 S (0) = 0,+⋅⋅+⋅+='642422)(753x x x x S)642422(642 +⋅⋅+⋅+=x x x x)](2[2x S x x +=.因此S (x )是初值问题0)0(,23=+='y x xy y 的解.(II) 方程23x xy y +='的通解为]2[3C dx e x ey xdx xdx+⎰⎰=⎰- 22212x Ce x +--=,由初始条件y(0) = 0,得C = 1.故12222-+-=x e x y ,因此和函数12)(222-+-=x e x x S .(20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, Tβ)3,3,1(-=,试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式.【分析】将β可否由321,,ααα线性表示的问题转化为线性方程组βαk αk αk =++332211是否有解的问题即易求解. 【详解】 设有数,,,321k k k 使得βαk αk αk =++332211. (*) 记),,(321αααA =. 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+-=323032221111),(b a a b a βA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111b a b a .(Ⅰ) 当0=a 时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→10001001111),(b βA . 可知),()(βA r A r ≠. 故方程组(*)无解, β不能由321,,ααα线性表示. (Ⅱ) 当0≠a , 且b a ≠时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→0100101011001a a 3),()(==βA r A r , 方程组(*)有唯一解:a k 111-=, ak 12=, 03=k . 此时可由321,,ααα唯一地线性表示, 其表示式为 211)11(αaαa β+-=. (Ⅲ) 当0≠=b a 时, 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→0000111011001a a , 2),()(==βA r A r , 方程组(*)有无穷多解, 其全部解为a k 111-=, c ak +=12, c k =3, 其中c 为任意常数.可由321,,ααα线性表示, 但表示式不唯一, 其表示式为321)1()11(αc αc aαa β+++-=. (21) (本题满分13分)设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111b b b b b b A .(Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵.【分析】这是具体矩阵的特征值和特征向量的计算问题, 通常可由求解特征方程0||=-A E λ和齐次线性方程组0)(=-x A E λ来解决.【详解】 (Ⅰ) 1当0≠b 时,111||---------=-λbbb λb b b λA E λ=1)]1(][)1(1[------n b λb n λ ,得A 的特征值为b n λ)1(11-+=,b λλn -===12 . 对b n λ)1(11-+=,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=-b n b b b b n b b b b n A E λ)1()1()1(1 →⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------)1(111)1(111)1(n n n→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------0000111111111111 n n n ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------0000111111111111 n n n ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---000000001111n n n n n ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---0000110010101001解得Tξ)1,,1,1,1(1 =,所以A 的属于1λ的全部特征向量为 Tk ξk )1,,1,1,1(1 = (k 为任意不为零的常数). 对b λ-=12,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=-b b b b b b b b b A E λ 2→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛000000111得基础解系为T ξ)0,,0,1,1(2 -=,T ξ)0,,1,0,1(3 -=,T n ξ)1,,0,0,1(,-= .故A 的属于2λ的全部特征向量为n n ξk ξk ξk +++ 3322 (n k k k ,,,32 是不全为零的常数).当0=b 时,n λλλλA E λ)1(1010001||-=---=-,特征值为11===n λλ ,任意非零列向量均为特征向量.(Ⅱ)1当0≠b 时,A 有n 个线性无关的特征向量,令),,,(21n ξξξP =,则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---+=-b b b n AP P 11)1(11当0=b 时,E A =,对任意可逆矩阵P , 均有E AP P =-1.(22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布.【分析】本题的关键是求出),(Y X 的概率分布,于是只要将二维随机变量),(Y X 的各取值对转化为随机事件A 和B 表示即可.【详解】 (Ⅰ) 因为 121)|()()(==A B P A P AB P , 于是 61)|()()(==B A P AB P B P , 则有 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , 121)()()(}1,0{=-====AB P B P B A P Y X P , 32)]()()([1)(1)(}0,0{=-+-=⋃-=⋅===AB P B P A P B A P B A P Y X P , ( 或 32121611211}0,0{=---===Y X P ), 即),(Y X 的概率分布为:(Ⅱ) 方法一:因为 41)(==A P EX ,61)(==B P EY ,121)(=XY E , 41)(2==A P EX ,61)(2==B P EY ,163)(22=-=EX EX DX ,165)(22=-=EY EY DY ,241)(),(=-=EXEY XY E Y X Cov ,所以X 与Y 的相关系数 1515151),(==⋅=DYDX Y X Cov ρXY . 方法二: X, Y 的概率分布分别为X 0 1 Y 0 1P43 41 P 65 61 则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ (Ⅲ) Z 的可能取值为:0,1,2 .32}0,0{}0{=====Y X P Z P , 41}1,0{}0,1{}1{===+====Y X P Y X P Z P , 121}1,1{}2{=====Y X P Z P , 即Z(23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.【分析】本题是一个常规题型, 只要注意求连续型总体未知参数的矩估计和最大似然估计都须已知密度函数, 从而先由分布函数求导得密度函数. 【详解】 当1=α时, X 的概率密度为⎪⎩⎪⎨⎧≤>=+,,,101,),(1x x x ββx f β(Ⅰ) 由于⎰⎰+∞++∞∞--=⋅==11,1);(ββdx x βx dx βx xf EX β 令X ββ=-1, 解得 1-=X X β,所以, 参数β的矩估计量为 1-=X Xβ. (Ⅱ) 对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=+⎪⎩⎪⎨⎧=>==ni i βnni n i x x x x βαx f βL 1121.,0),,,2,1(1,)();()(其他当),,2,1(1n i x i =>时, 0)(>βL , 取对数得 ∑=+-=ni ixββn βL 1ln )1(ln )(ln ,对β求导数,得∑=-=ni i x βn βd βL d 1ln )]([ln , 令0ln )]([ln 1=-=∑=ni i x βn βd βL d , 解得 ∑==ni ixnβ1ln ,于是β的最大似然估计量为∑==ni ixnβ1ln ˆ.( Ⅲ) 当2=β时, X 的概率密度为⎪⎩⎪⎨⎧≤>=,,,αx αx x αβx f 0,2),(32对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=⎪⎩⎪⎨⎧=>==ni i nnn i n i αx x x x ααx f βL 13212.,0),,,2,1(,)(2);()(其他当),,2,1(n i αx i =>时, α越大,)(αL 越大, 即α的最大似然估计值为},,,m in{ˆ21n x x x α=,于是α的最大似然估计量为},,,m in{ˆ21n X X X α.。

历年考研数学三真题及答案解析

历年考研数学三真题及答案解析

2012年全国硕士研究生入学统一考试数学三试题选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)曲线221x xyx+=-渐近线的条数为()(A)0 (B)1 (C)2 (D)3(2)设函数2()(1)(2)x x nxf x e e e n=--…(-),其中n为正整数,则(0)f'=()(A)1(1)(1)!n n---(B)(1)(1)!n n--(C)1(1)!n n--(D)(1)!n n-(3)设函数()f t连续,则二次积分22202cos()d f r rdrπθθ⎰⎰=()(A)222() dx x y dy+⎰(B)222() dx f x y dy+⎰(C)2221() dx x y dy+⎰⎰(D)2221() dx x y dy+⎰⎰(4)已知级数11(1)inα∞=-∑绝对收敛,21(1)ninα∞-=-∑条件收敛,则α范围为()(A)0<α12≤(B)12< α≤1(C)1<α≤32(D)32<α<2(5)设1234123400110,1,1,1c c c c αααα-⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪===-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭其中1234c c c c ,,,为任意常数,则下列向量组线性相关的是() (A )123ααα,, (B )124ααα,,(C )134ααα,,(D )234ααα,,(6)设A 为3阶矩阵,P 为3阶可逆矩阵,且P-1AP=112⎛⎫⎪ ⎪ ⎪⎝⎭, 123=P ααα(,,),1223=Q αααα(+,,)则1=Q AQ -()(A )121⎛⎫⎪ ⎪ ⎪⎝⎭(B )112⎛⎫⎪ ⎪ ⎪⎝⎭ (C )212⎛⎫ ⎪ ⎪ ⎪⎝⎭(D )221⎛⎫ ⎪ ⎪ ⎪⎝⎭ (7)设随机变量X 与Y 相互独立,且都服从区间(0,1)上的均匀分布,则+P X Y ≤22{1}( )(A )14(B )12(C )8π(D )4π(8)设1234X X X X ,,,为来自总体N σσ>2(1,)(0)的简单随机样本,则统计量1234|+-2|X X X X -的分布()(A )N (0,1)(B )(1)t(C )2(1)χ (D )(1,1)F二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)1cos sin 4lim(tan )x xx x π-→(10)设函数ln 1(),(()),21,1x dy x f x y f f x dx x x =⎧≥⎪=⎨-<⎪⎩求___________.(11)函数(,)z f x y =满足010,x y →→=则(0,1)dz =_______.(12)由曲线4y x =和直线y x =及4y x =在第一象限中所围图形的面积为_______.(13)设A 为3阶矩阵,|A|=3,A*为A 的伴随矩阵,若交换A 的第一行与第二行得到矩阵B ,则|BA*|=________.(14)设A,B,C 是随机事件,A,C 互不相容,11(),(),23P AB P C ==则C P AB ()=_________.解答题:15~23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)计算222cos 40lim x xx e e x -→-(16)(本题满分10分)计算二重积分xD e xydxdy⎰⎰,其中D为由曲线y y ==所围区域.(17)(本题满分10分)某企业为生产甲、乙两种型号的产品,投入的固定成本为10000(万元),设该企业生产甲、乙两种产品的产量分别为x(件)和y(件),且固定两种产品的边际成本分别为20+2x(万元/件)与6+y (万元/件).1)求生产甲乙两种产品的总成本函数(,)C x y (万元)2)当总产量为50件时,甲乙两种的产量各为多少时可以使总成本最小?求最小的成本. 3)求总产量为50件时且总成本最小时甲产品的边际成本,并解释其经济意义.(18)(本题满分10分)证明:21ln cos1,1 1.12x xx x xx++≥+-<< -(19)(本题满分10分)已知函数()f x满足方程()()2()0f x f x f x"'+-=及()()2x f x f x e '+=1)求表达式() f x2)求曲线的拐点22()()xy f x f t dt =-⎰(20)(本题满分10分)设1001010100100010aaA baa⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪==⎪ ⎪⎪ ⎪⎝⎭⎝⎭,(I)求|A|(II)已知线性方程组Ax b=有无穷多解,求a,并求Ax b=的通解.(21)(本题满分10分)已知1010111001Aaa⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎣⎦,二次型123(,,)()f x x x x xT T=A A的秩为2,求实数a的值;求正交变换x=Qy将f化为标准型.(22)(本题满分10分)已知随机变量X,Y 以及XY 的分布律如下表所示:求(1)P(X=2Y); (2)cov(,)XY X Y Y -ρ与.(23)(本题满分10分) 设随机变量X和Y相互独立,且均服从参数为1的指数分布,min(,),=max(,).V X Y U X Y =求(1)随机变量V 的概率密度; (2)()E U V +.2011年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分。

2004—数三真题、标准答案及解析

2004—数三真题、标准答案及解析

2004年考研数学(三)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim 0=--→b x ae xxx ,则a =______,b =______.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则2fu v∂=∂∂.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4) 二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为 . (5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P _______.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎢⎥⎣⎦∑∑.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0). (B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ ](8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim , ⎪⎩⎪⎨⎧=≠=0,00,1()(x x x f x g ,则(A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ ] (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ ] (10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim 1>+∞→n n n u u ,则∑∞=1n n u 发散.(4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是 (A) (1) (2). (B) (2) (3).(C) (3) (4). (D) (1) (4). [ ](11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ](12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ ] (13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量.[ ](14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ ]三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求)cos sin 1(lim 20xx xx -→.(16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 22122=所围成的 平面区域(如图).(17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤baba dx x xg dx x xf )()(.(18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加. (19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x 的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式. (20)(本题满分13分)设Tα)0,2,1(1=, Tααα)3,2,1(2-+=, Tb αb α)2,2,1(3+---=, Tβ)3,3,1(-=, 试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式. (21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111b b b b b b A . (Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵. (22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布. (23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.2004年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim 0=--→b x ae xxx ,则a =1,b =4-.【分析】本题属于已知极限求参数的反问题. 【详解】因为5)(cos sin lim 0=--→b x ae xxx ,且0)(cos sin lim 0=-⋅→b x x x ,所以0)(lim 0=-→a e x x ,得a = 1. 极限化为51)(cos lim)(cos sin lim00=-=-=--→→b b x xxb x ae x x xx ,得b = -4. 因此,a = 1,b = -4. 【评注】一般地,已知)()(limx g x f = A , (1) 若g (x ) → 0,则f (x ) → 0;(2) 若f (x ) → 0,且A ≠ 0,则g (x ) → 0.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则)()(22v g v g vu f'-=∂∂∂.【分析】令u = xg (y ),v = y ,可得到f (u , v )的表达式,再求偏导数即可. 【详解】令u = xg (y ),v = y ,则f (u , v ) =)()(v g v g u+,所以,)(1v g u f =∂∂,)()(22v g v g v u f '-=∂∂∂.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则21)1(221-=-⎰dx x f .【分析】本题属于求分段函数的定积分,先换元:x - 1 = t ,再利用对称区间上奇偶函数的积分性质即可.【详解】令x - 1 = t ,⎰⎰⎰--==-121121221)()()1(dt x f dt t f dx x f=21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xe x .【评注】一般地,对于分段函数的定积分,按分界点划分积分区间进行求解. (4) 二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为 2 .【分析】二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换或配方法均可得到答案. 【详解一】因为213232221321)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=于是二次型的矩阵为 ⎪⎪⎪⎭⎫ ⎝⎛--=211121112A ,由初等变换得 ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→000330211330330211A ,从而 2)(=A r , 即二次型的秩为2.【详解二】因为213232221321)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=2322321)(23)2121(2x x x x x -+++= 2221232y y +=,其中 ,21213211x x x y ++= 322x x y -=.所以二次型的秩为2.(5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X Pe1. 【分析】 根据指数分布的分布函数和方差立即得正确答案. 【详解】 由于21λDX =, X 的分布函数为 ⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ故=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=.【评注】本题是对重要分布, 即指数分布的考查, 属基本题型.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则22121212)()(21σn n Y Y X X En j j n i i =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==.【分析】利用正态总体下常用统计量的数字特征即可得答案.【详解】因为 2121])(11[1σX X n E n i i =--∑=, 2122])(11[2σY Y n E n j j =--∑=, 故应填 2σ.【评注】本题是对常用统计量的数字特征的考查.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0). (B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ A ]【分析】如f (x )在(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在(a , b )内有界.【详解】当x ≠ 0 , 1 , 2时,f (x )连续,而183sin )(lim1-=+-→x f x ,42sin )(lim 0-=-→x f x ,42sin )(lim 0=+→x f x ,∞=→)(lim 1x f x ,∞=→)(lim 2x f x , 所以,函数f (x )在(-1 , 0)内有界,故选(A).【评注】一般地,如函数f (x )在闭区间[a , b ]上连续,则f (x )在闭区间[a , b ]上有界;如函数f (x )在开区间(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在开区间(a , b )内有界.(8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则 (A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ D ] 【分析】考查极限)(lim 0x g x →是否存在,如存在,是否等于g (0)即可,通过换元xu 1=,可将极限)(lim 0x g x →转化为)(lim x f x ∞→.【详解】因为)(lim )1(lim )(lim 0u f x f x g u x x ∞→→→=== a (令xu 1=),又g (0) = 0,所以,当a = 0时,)0()(lim 0g x g x =→,即g (x )在点x = 0处连续,当a ≠ 0时,)0()(lim 0g x g x ≠→,即x = 0是g (x )的第一类间断点,因此,g (x )在点x = 0处的连续性与a 的取值有关,故选(D).【评注】本题属于基本题型,主要考查分段函数在分界点处的连续性. (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ C ] 【分析】由于f (x )在x = 0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x )在x = 0的左、右两侧的二阶导数的符号,判断拐点情况.【详解】设0 < δ < 1,当x ∈ (-δ , 0) ⋃ (0 , δ)时,f (x ) > 0,而f (0) = 0,所以x = 0是f (x )的极小值点. 显然,x = 0是f (x )的不可导点. 当x ∈ (-δ , 0)时,f (x ) = -x (1 - x ),02)(>=''x f ,当x ∈ (0 , δ)时,f (x ) = x (1 - x ),02)(<-=''x f ,所以(0 , 0)是曲线y = f (x )的拐点.故选(C).【评注】对于极值情况,也可考查f (x )在x = 0的某空心邻域内的一阶导数的符号来判断. (10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim1>+∞→n n n u u ,则∑∞=1n n u 发散. (4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是 (A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4). [ B ]【分析】可以通过举反例及级数的性质来说明4个命题的正确性. 【详解】(1)是错误的,如令nn u )1(-=,显然,∑∞=1n n u 分散,而∑∞=-+1212)(n n n u u 收敛.(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性.(3)是正确的,因为由1lim 1>+∞→n n n u u 可得到n u 不趋向于零(n → ∞),所以∑∞=1n n u 发散.(4)是错误的,如令n v n u n n 1,1-==,显然,∑∞=1n n u ,∑∞=1n n v 都发散,而∑∞=+1)(n n n v u 收敛. 故选(B).【评注】本题主要考查级数的性质与收敛性的判别法,属于基本题型.(11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项. 【详解】首先,由已知)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ;另外,0)()(lim)(>--='+→ax a f x f a f a x ,由极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >. 同理,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以,(A) (B) (C)都正确,故选(D).【评注】 本题综合考查了介值定理与极限的保号性,有一定的难度. (12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ D ] 【分析】 利用矩阵A 与B 等价的充要条件: )()(B r A r =立即可得.【详解】因为当0||=A 时, n A r <)(, 又 A 与B 等价, 故n B r <)(, 即0||=B , 故选(D).【评注】本题是对矩阵等价、行列式的考查, 属基本题型.(13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的 互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量. [ B ] 【分析】 要确定基础解系含向量的个数, 实际上只要确定未知数的个数和系数矩阵的秩. 【详解】 因为基础解系含向量的个数=)(A r n -, 而且⎪⎩⎪⎨⎧-<-===.1)(,0,1)(,1,)(,)(*n A r n A r n A r n A r根据已知条件,0*≠A 于是)(A r 等于n 或1-n . 又b Ax =有互不相等的解, 即解不惟一, 故1)(-=n A r . 从而基础解系仅含一个解向量, 即选(B).【评注】本题是对矩阵A 与其伴随矩阵*A 的秩之间的关系、线性方程组解的结构等多个知识点的综合考查. (14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ C ]【分析】 利用标准正态分布密度曲线的对称性和几何意义即得. 【详解】 由αx X P =<}|{|, 以及标准正态分布密度曲线的对称性可得21}{αx X P -=>. 故正确答案为(C). 【评注】本题是对标准正态分布的性质, 严格地说它的上分位数概念的考查.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分) 求cos sin 1(lim 222xx xx -→.【分析】先通分化为“00”型极限,再利用等价无穷小与罗必达法则求解即可. 【详解】xx xx x xx xx x 222220222sin cos sin lim)cos sin 1(lim -=-→→=346)4(21lim 64cos 1lim 44sin 212lim 2sin 41lim 22020304220==-=-=-→→→→xx x x x x x x x x x x x x .【评注】本题属于求未定式极限的基本题型,对于“0”型极限,应充分利用等价无穷小替换来简化计算. (16) (本题满分8分) 求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域(如图).【分析】首先,将积分区域D 分为大圆}4|),{(221≤+=y x y x D 减去小圆}1)1(|),{(222≤++=y x y x D ,再利用对称性与极坐标计算即可.【详解】令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D ,由对称性,0=⎰⎰Dyd σ.⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr r d .)23(916932316-=-=ππ所以,)23(916)(22-=++⎰⎰πσDd y y x . 【评注】本题属于在极坐标系下计算二重积分的基本题型,对于二重积分,经常利用对称性及将一个复杂区域划分为两个或三个简单区域来简化计算. (17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤baba dx x xg dx x xf )()(.【分析】令F (x ) = f (x ) - g (x ),⎰=xa dt t F x G )()(,将积分不等式转化为函数不等式即可. 【详解】令F (x ) = f (x ) - g (x ),⎰=xa dt t F x G )()(,由题设G (x ) ≥ 0,x ∈ [a , b ],G (a ) = G (b ) = 0,)()(x F x G ='.从而⎰⎰⎰⎰-=-==bab ababa b a dx x G dx x G x xG x xdG dx x xF )()()()()(,由于 G (x ) ≥ 0,x ∈ [a , b ],故有0)(≤-⎰badx x G ,即0)(≤⎰ba dx x xF .因此⎰⎰≤babadx x xg dx x xf )()(.【评注】引入变限积分转化为函数等式或不等式是证明积分等式或不等式的常用的方法. (18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加.【分析】由于d E > 0,所以dP dQ Q P E d =;由Q = PQ 及dPdQQ P E d =可推导 )1(d E Q dPdR-=. 【详解】(I) PPdP dQ Q P E d -==20.(II) 由R = PQ ,得)1(1(d E Q dPdQ Q P Q dP dQ P Q dP dR -=+=+=. 又由120=-=PPE d ,得P = 10.当10 < P < 20时,d E > 1,于是0<dPdR,故当10 < P < 20时,降低价格反而使收益增加.【评注】当d E > 0时,需求量对价格的弹性公式为dPdQQ P dP dQ Q P E d -==.利用需求弹性分析收益的变化情况有以下四个常用的公式:Qdp E dR d )1(-=,Q E dpdRd )1(-=,p E dQ dR d 11(-=, d E EpER-=1(收益对价格的弹性). (19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x 的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式.【分析】对S (x )进行求导,可得到S (x )所满足的一阶微分方程,解方程可得S (x )的表达式.【详解】(I) +⋅⋅⋅+⋅⋅+⋅=864264242)(864x x x x S , 易见 S (0) = 0,+⋅⋅+⋅+='642422)(753x x x x S)642422(642 +⋅⋅+⋅+=x x x x)](2[2x S x x +=.因此S (x )是初值问题0)0(,23=+='y x xy y 的解.(II) 方程23x xy y +='的通解为]2[3C dx e x e y xdx xdx +⎰⎰=⎰-22212x Ce x +--=,由初始条件y(0) = 0,得C = 1.故12222-+-=x e x y ,因此和函数12)(222-+-=x e x x S .【评注】本题综合了级数求和问题与微分方程问题,2002年考过类似的题. (20)(本题满分13分)设Tα)0,2,1(1=, Tααα)3,2,1(2-+=, Tb αb α)2,2,1(3+---=, Tβ)3,3,1(-=, 试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式.【分析】将β可否由321,,ααα线性表示的问题转化为线性方程组βαk αk αk =++332211是否有解的问题即易求解. 【详解】 设有数,,,321k k k 使得βαk αk αk =++332211. (*) 记),,(321αααA =. 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+-=323032221111),(b a a b a βA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111b a b a .(Ⅰ) 当0=a 时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→10001001111),(b βA . 可知),()(βA r A r ≠. 故方程组(*)无解, β不能由321,,ααα线性表示. (Ⅱ) 当0≠a , 且b a ≠时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→0100101011001a a 3),()(==βA r A r , 方程组(*)有唯一解:a k 111-=, ak 12=, 03=k . 此时β可由321,,ααα唯一地线性表示, 其表示式为 21111(αaαa β+-=. (Ⅲ) 当0≠=b a 时, 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→0000111011001a a , 2),()(==βA r A r , 方程组(*)有无穷多解, 其全部解为a k 111-=, c ak +=12, c k =3, 其中c 为任意常数. β 可由321,,ααα线性表示, 但表示式不唯一, 其表示式为321)1(11(αc αc aαa β+++-=. 【评注】本题属于常规题型, 曾考过两次(1991, 2000).(21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111 b b b b b b A .(Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵.【分析】这是具体矩阵的特征值和特征向量的计算问题, 通常可由求解特征方程0||=-A E λ和齐次线性方程组0)(=-x A E λ来解决.【详解】 (Ⅰ)1当0≠b 时,111||---------=-λbbb λb b b λA E λ=1)]1(][)1(1[------n b λb n λ ,得A 的特征值为b n λ)1(11-+=,b λλn -===12 . 对b n λ)1(11-+=,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=-b n b b b b n b b b b n A E λ)1()1()1(1 →⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------)1(111)1(111)1(n n n→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------0000111111111111 n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------0000111111111111 n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---000000001111n n n n n →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---0000110010101001解得Tξ)1,,1,1,1(1 =,所以A 的属于1λ的全部特征向量为 Tk ξk )1,,1,1,1(1 = (k 为任意不为零的常数). 对b λ-=12,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=-b b b b b b b b b A E λ 2→⎪⎪⎪⎪⎪⎭⎫⎝⎛000000111 得基础解系为T ξ)0,,0,1,1(2 -=,T ξ)0,,1,0,1(3 -=,T n ξ)1,,0,0,1(,-= .故A 的属于2λ的全部特征向量为n n ξk ξk ξk +++ 3322 (n k k k ,,,32 是不全为零的常数).2 当0=b 时,n λλλλA E λ)1(1010001||-=---=-,特征值为11===n λλ ,任意非零列向量均为特征向量.(Ⅱ) 1当0≠b 时,A 有n 个线性无关的特征向量,令),,,(21n ξξξP =,则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---+=-b b b n AP P 11)1(112 当0=b 时,E A =,对任意可逆矩阵P , 均有E AP P =-1.【评注】本题通过考查矩阵的特征值和特征向量而间接考查了行列式的计算, 齐次线性方程组的求解和矩阵的对角化等问题, 属于有一点综合性的试题. 另外,本题的解题思路是容易的, 只要注意矩阵中含有一个未知参数, 从而一般要讨论其不同取值情况. (22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布.【分析】本题的关键是求出),(Y X 的概率分布,于是只要将二维随机变量),(Y X 的各取值对转化为随机事件A 和B 表示即可.【详解】 (Ⅰ) 因为 121)|()()(==A B P A P AB P , 于是 61)|()()(==B A P AB P B P ,则有 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , 121)()()(}1,0{=-====AB P B P B A P Y X P , 32)]()()([1)(1)(}0,0{=-+-=⋃-=⋅===AB P B P A P B A P B A P Y X P , ( 或 32121611211}0,0{=---===Y X P ), 即),(Y X 的概率分布为:(Ⅱ) 方法一:因为 41)(==A P EX ,61)(==B P EY ,121)(=XY E , 41)(2==A P EX ,61)(2==B P EY ,163)(22=-=EX EX DX ,165)(22=-=EY EY DY , 241)(),(=-=EXEY XY E Y X Cov ,所以X 与Y 的相关系数 1515151),(==⋅=DYDX Y X Cov ρXY . 方法二: X, Y 的概率分布分别为X 0 1 Y 0 1P 43 41 P 65 61 则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ (Ⅲ) Z 的可能取值为:0,1,2 .32}0,0{}0{=====Y X P Z P , 41}1,0{}0,1{}1{===+====Y X P Y X P Z P , 121}1,1{}2{=====Y X P Z P , 即Z 的概率分布为:【评注题,属于综合性题型 (23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.【分析】本题是一个常规题型, 只要注意求连续型总体未知参数的矩估计和最大似然估计都须已知密度函数,从而先由分布函数求导得密度函数.【详解】 当1=α时, X 的概率密度为⎪⎩⎪⎨⎧≤>=+,,,101,),(1x x x ββx f β(Ⅰ) 由于⎰⎰+∞++∞∞--=⋅==11,1);(ββdx x βx dx βx xf EX β 令X ββ=-1, 解得 1-=X X β, 所以, 参数β的矩估计量为 1-=X Xβ. (Ⅱ) 对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=+⎪⎩⎪⎨⎧=>==ni i βn ni n i x x x x βαx f βL 1121.,0),,,2,1(1,)();()(其他当),,2,1(1n i x i =>时, 0)(>βL , 取对数得 ∑=+-=ni ixββn βL 1ln )1(ln )(ln ,对β求导数,得∑=-=ni i x βn βd βL d 1ln )]([ln ,令 0ln )]([ln 1=-=∑=ni i x βn βd βL d , 解得 ∑==ni ixnβ1ln ,于是β的最大似然估计量为∑==ni ixnβ1ln ˆ.( Ⅲ) 当2=β时, X 的概率密度为⎪⎩⎪⎨⎧≤>=,,,αx αx x αβx f 0,2),(32对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=⎪⎩⎪⎨⎧=>==ni i n nn i n i αx x x x ααx f βL 13212.,0),,,2,1(,)(2);()(其他当),,2,1(n i αx i =>时, α越大,)(αL 越大, 即α的最大似然估计值为},,,min{ˆ21n x x x α=, 于是α的最大似然估计量为},,,min{ˆ21n X X X α=.。

历年考研数学三真题及答案解析

历年考研数学三真题及答案解析

2012年全国硕士研究生入学统一考试数学三试题选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)曲线221x xyx+=-渐近线的条数为()(A)0 (B)1 (C)2 (D)3(2)设函数2()(1)(2)x x nxf x e e e n=--…(-),其中n为正整数,则(0)f'=()(A)1(1)(1)!n n---(B)(1)(1)!n n--(C)1(1)!n n--(D)(1)!n n-(3)设函数()f t连续,则二次积分22202cos()d f r rdrπθθ⎰⎰=()(A)222 0() dx x y dy+⎰(B)222 0() dx f x y dy+⎰(C)222 01() dx x y dy+⎰⎰(D)222 01() dx f x y dy++⎰⎰(4)已知级数11(1)ninα∞=-∑绝对收敛,21(1)ninα∞-=-∑条件收敛,则α范围为()(A)0<α12≤(B)12< α≤1(C)1<α≤32(D)32<α<2(5)设1234123400110,1,1,1c c c c αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪===-= ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭其中1234c c c c ,,,为任意常数,则下列向量组线性相关的是() (A )123ααα,, (B )124ααα,,(C )134ααα,,(D )234ααα,,(6)设A 为3阶矩阵,P 为3阶可逆矩阵,且P-1AP=112⎛⎫⎪ ⎪⎪⎝⎭,123=P ααα(,,),1223=Q αααα(+,,)则1=Q AQ -()(A )121⎛⎫ ⎪ ⎪ ⎪⎝⎭(B )112⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C )212⎛⎫ ⎪ ⎪ ⎪⎝⎭(D )221⎛⎫ ⎪ ⎪ ⎪⎝⎭(7)设随机变量X 与Y 相互独立,且都服从区间(0,1)上的均匀分布,则+PX Y ≤22{1}()(A )14(B )12(C )8π(D )4π(8)设1234X X X X ,,,为来自总体N σσ>2(1,)(0)的简单随机样本,则统计量1234|+-2|X X X X -的分布( ) (A )N (0,1)(B )(1)t(C )2(1)χ(D )(1,1)F二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)1cos sin 4lim (tan )x xx x π-→(10)设函数0ln1(),(()),21,1xdyxf x y f f xdxx x=⎧≥⎪=⎨-<⎪⎩求___________.(11)函数(,)z f x y=满足1(,)22lim0,xyf x y x y→→-+-=则(0,1)dz=_______.(12)由曲线4yx=和直线y x=及4y x=在第一象限中所围图形的面积为_______.(13)设A为3阶矩阵,|A|=3,A*为A的伴随矩阵,若交换A的第一行与第二行得到矩阵B,则|BA*|=________.(14)设A,B,C是随机事件,A,C互不相容,11 (),(),23P AB P C==则CP AB()=_________.解答题:15~23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)计算222cos4limx x xe ex-→-(16)(本题满分10分)计算二重积分xDe xydxdy⎰⎰,其中D为由曲线y y==所围区域.(17)(本题满分10分)某企业为生产甲、乙两种型号的产品,投入的固定成本为10000(万元),设该企业生产甲、乙两种产品的产量分别为x(件)和y(件),且固定两种产品的边际成本分别为20+2x(万元/件)与6+y(万元/件).1)求生产甲乙两种产品的总成本函数(,)C x y(万元)2)当总产量为50件时,甲乙两种的产量各为多少时可以使总成本最小?求最小的成本. 3)求总产量为50件时且总成本最小时甲产品的边际成本,并解释其经济意义.(18)(本题满分10分)证明:21ln cos1,1 1.12x xx x xx++≥+-<< -(19)(本题满分10分)已知函数()f x满足方程()()2()0f x f x f x"'+-=及()()2x f x f x e '+=1)求表达式() f x2)求曲线的拐点22()()xy f x f t dt =-⎰(20)(本题满分10分)设1001010100100010aaA baa⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪==⎪ ⎪⎪ ⎪⎝⎭⎝⎭,(I)求|A|(II)已知线性方程组Ax b=有无穷多解,求a,并求Ax b=的通解.(21)(本题满分10分)已知1010111001Aaa⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎣⎦,二次型123(,,)()f x x x x xT T=A A的秩为2,求实数a的值;求正交变换x=Qy将f化为标准型.(22)(本题满分10分)已知随机变量X,Y 以及XY 的分布律如下表所示:求(1)P(X=2Y); (2)cov(,)XYX Y Y -ρ与.(23)(本题满分10分) 设随机变量X和Y相互独立,且均服从参数为1的指数分布,m in(,),=m ax(,).V X Y U X Y =求(1)随机变量V 的概率密度; (2)()E U V +.2011年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分。

历年考研数学三真题及答案解析

历年考研数学三真题及答案解析

二、填空题: 9~14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上 .
1
lim (tan x ) cos x sin x
x
(9) 4
ln x , x 1
f (x)
,y
( 10 )设函数
2 x 1, x 1
dy f ( f ( x)), 求
dx x0
___________.
(11)函数 z
n
绝对收敛,
n
( 1)
2
n
条件收敛,则
1
1
(A) 0<
2
(B) 2 <
1
范围为( )
3
(C) 1<
2
3 (D) 2 < <2
0
0
1
1
1
0,2
1,3
(5 )设
c1
c2
任意常数,则下列向量组线性相关的是(

1, 4 c3
1 c 4 其中 c1, c2, c3, c4 为
(A) 1, 2, 3
(B) 1, 2, 4
设该企业生产甲、 乙两种产品的产量分别为 元/ 件)与 6+y(万元 / 件) .
x( 件 ) 和 y( 件) ,且固定两种产品的边际成本分别为
x 20+ 2 (万
1)求生产甲乙两种产品的总成本函数 C ( x , y ) (万元)
2)当总产量为 50 件时,甲乙两种的产量各为多少时可以使总成本最小?求最小的成本
|BA*|=________.
P ( AB )
( 14 ) 设 A,B,C 是 随 机 事 件 , A,C 互 不 相 容 ,
1 , P(C )

2004年考研数学三真题及解析

2004年考研数学三真题及解析

2004年考研数学(三)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim=--→b x ae x xx ,则a =______,b =______.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则2f u v∂=∂∂.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4) 二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为 . (5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P _______.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21nY Y Y 分别是来自总体X 和Y 的简单随机样本, 则12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎢⎥⎣⎦∑∑.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0). (B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ ](8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim , ⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ,则(A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ ] (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ ] (10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散.(4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是(A) (1) (2). (B) (2) (3).(C) (3) (4). (D) (1) (4). [ ](11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ](12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ ] (13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量.[ ](14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ ]三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求)cos sin1(lim 222xx xx -→.(16) (本题满分8分)求⎰⎰++Dd y yx σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域(如图).(17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥xaxadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=ba badt t g dt t f )()(.证明:⎰⎰≤ba ba dx x xg dx x xf )()(.(18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR -=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加. (19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x xxx的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式. (20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, Tb αb α)2,2,1(3+---=, Tβ)3,3,1(-=,试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式. (21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=111bb b bb b A . (Ⅰ) 求A 的特征值和特征向量; (Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵.(22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=A B P , 21)|(=B A P , 令⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y XZ +=的概率分布.(23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,(其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.2004年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim=--→b x ae x xx ,则a =1,b =4-.【分析】本题属于已知极限求参数的反问题. 【详解】因为5)(cos sin lim=--→b x ae x xx ,且0)(cos sin lim 0=-⋅→b x x x ,所以0)(lim 0=-→a e xx ,得a = 1. 极限化为51)(cos lim)(cos sin lim=-=-=--→→b b x xx b x ae x x xx ,得b = -4.因此,a = 1,b = -4. 【评注】一般地,已知)()(limx g x f = A ,(1) 若g (x ) → 0,则f (x ) → 0;(2) 若f (x ) → 0,且A ≠ 0,则g (x ) → 0.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则)()(22v g v g vu f '-=∂∂∂.【分析】令u = xg (y ),v = y ,可得到f (u , v )的表达式,再求偏导数即可. 【详解】令u = xg (y ),v = y ,则f (u , v ) =)()(v g v g u +,所以,)(1v g uf =∂∂,)()(22v g v g vu f '-=∂∂∂.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则21)1(221-=-⎰dx x f .【分析】本题属于求分段函数的定积分,先换元:x - 1 = t ,再利用对称区间上奇偶函数的积分性质即可.【详解】令x - 1 = t ,⎰⎰⎰--==-121121221)()()1(dt x f dt t f dx x f=21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xex.【评注】一般地,对于分段函数的定积分,按分界点划分积分区间进行求解. (4) 二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为 2 .【分析】二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换或配方法均可得到答案. 【详解一】因为213232221321)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=于是二次型的矩阵为 ⎪⎪⎪⎭⎫⎝⎛--=211121112A , 由初等变换得 ⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎭⎫⎝⎛---→000330211330330211A , 从而 2)(=A r , 即二次型的秩为2.【详解二】因为213232221321)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++= 2322321)(23)2121(2x x x x x -+++=2221232y y +=,其中 ,21213211x x x y ++= 322x x y -=.所以二次型的秩为2.(5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X Pe1.【分析】 根据指数分布的分布函数和方差立即得正确答案.【详解】 由于21λDX =, X 的分布函数为⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ故=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=. 【评注】本题是对重要分布, 即指数分布的考查, 属基本题型.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n XX X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则22121212)()(21σn n Y Y X X En j j n i i =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==.【分析】利用正态总体下常用统计量的数字特征即可得答案. 【详解】因为 2121])(11[1σX X n E n i i=--∑=, 2122])(11[2σY Y n E n j j=--∑=,故应填 2σ.【评注】本题是对常用统计量的数字特征的考查.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0). (B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ A ] 【分析】如f (x )在(a , b )内连续,且极限)(limx f ax +→与)(limx f bx -→存在,则函数f (x )在(a , b )内有界.【详解】当x ≠ 0 , 1 , 2时,f (x )连续,而183sin )(lim1-=+-→x f x ,42sin )(lim-=-→x f x ,42sin )(lim=+→x f x ,∞=→)(lim 1x f x ,∞=→)(lim 2x f x ,所以,函数f (x )在(-1 , 0)内有界,故选(A).【评注】一般地,如函数f (x )在闭区间[a , b ]上连续,则f (x )在闭区间[a , b ]上有界;如函数f (x )在开区间(a , b )内连续,且极限)(limx f ax +→与)(limx f bx -→存在,则函数f (x )在开区间(a , b )内有界.(8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则 (A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ D ] 【分析】考查极限)(lim 0x g x →是否存在,如存在,是否等于g (0)即可,通过换元xu 1=,可将极限)(lim 0x g x →转化为)(lim x f x ∞→.【详解】因为)(lim )1(lim )(lim 00u f xf xg u x x ∞→→→=== a (令x u 1=),又g (0) = 0,所以,当a = 0时,)0()(lim 0g x g x =→,即g (x )在点x = 0处连续,当a ≠ 0时,)0()(lim 0g x g x ≠→,即x = 0是g (x )的第一类间断点,因此,g (x )在点x = 0处的连续性与a 的取值有关,故选(D).【评注】本题属于基本题型,主要考查分段函数在分界点处的连续性. (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ C ] 【分析】由于f (x )在x = 0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x )在x = 0的左、右两侧的二阶导数的符号,判断拐点情况.【详解】设0 < δ < 1,当x ∈ (-δ , 0) ⋃ (0 , δ)时,f (x ) > 0,而f (0) = 0,所以x = 0是f (x )的极小值点. 显然,x = 0是f (x )的不可导点. 当x ∈ (-δ , 0)时,f (x ) = -x (1 - x ),02)(>=''x f ,当x ∈ (0 , δ)时,f (x ) = x (1 - x ),02)(<-=''x f ,所以(0 , 0)是曲线y = f (x )的拐点.故选(C).【评注】对于极值情况,也可考查f (x )在x = 0的某空心邻域内的一阶导数的符号来判断. (10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散.(4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是 (A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4). [ B ]【分析】可以通过举反例及级数的性质来说明4个命题的正确性.【详解】(1)是错误的,如令nn u )1(-=,显然,∑∞=1n n u 分散,而∑∞=-+1212)(n n n u u 收敛.(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性. (3)是正确的,因为由1lim1>+∞→nn n u u 可得到n u 不趋向于零(n → ∞),所以∑∞=1n n u 发散.(4)是错误的,如令nv nu n n 1,1-==,显然,∑∞=1n n u ,∑∞=1n n v 都发散,而∑∞=+1)(n n n v u 收敛. 故选(B).【评注】本题主要考查级数的性质与收敛性的判别法,属于基本题型.(11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项. 【详解】首先,由已知)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ;另外,0)()(lim)(>--='+→ax a f x f a f ax ,由极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >. 同理,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以,(A) (B) (C)都正确,故选(D).【评注】 本题综合考查了介值定理与极限的保号性,有一定的难度. (12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ D ] 【分析】 利用矩阵A 与B 等价的充要条件: )()(B r A r =立即可得.【详解】因为当0||=A 时, n A r <)(, 又 A 与B 等价, 故n B r <)(, 即0||=B , 故选(D).【评注】本题是对矩阵等价、行列式的考查, 属基本题型.(13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的 互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量. [ B ] 【分析】 要确定基础解系含向量的个数, 实际上只要确定未知数的个数和系数矩阵的秩. 【详解】 因为基础解系含向量的个数=)(A r n -, 而且⎪⎩⎪⎨⎧-<-===.1)(,0,1)(,1,)(,)(*n A r n A r n A r n A r 根据已知条件,0*≠A 于是)(A r 等于n 或1-n . 又b Ax =有互不相等的解, 即解不惟一, 故1)(-=n A r . 从而基础解系仅含一个解向量, 即选(B).【评注】本题是对矩阵A 与其伴随矩阵*A 的秩之间的关系、线性方程组解的结构等多个知识点的综合考查. (14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ C ]【分析】 利用标准正态分布密度曲线的对称性和几何意义即得. 【详解】 由αx X P =<}|{|, 以及标准正态分布密度曲线的对称性可得21}{αx X P -=>. 故正确答案为(C).【评注】本题是对标准正态分布的性质, 严格地说它的上分位数概念的考查.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分) 求)cos sin1(lim 222xx xx -→.【分析】先通分化为“0”型极限,再利用等价无穷小与罗必达法则求解即可.【详解】xx xx x xx xx x 222220222sincos sinlim)cos sin1(lim -=-→→=346)4(21lim 64cos 1lim44sin 212lim2sin 41lim22230422==-=-=-→→→→xx xx xxx xxx x x x x .【评注】本题属于求未定式极限的基本题型,对于“00”型极限,应充分利用等价无穷小替换来简化计算.(16) (本题满分8分) 求⎰⎰++Dd y yx σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域(如图).【分析】首先,将积分区域D 分为大圆}4|),{(221≤+=y x y x D 减去小圆}1)1(|),{(222≤++=y x y x D ,再利用对称性与极坐标计算即可.【详解】令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D ,由对称性,0=⎰⎰Dyd σ.⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr rd .)23(916932316-=-=ππ所以,)23(916)(22-=++⎰⎰πσDd y y x .【评注】本题属于在极坐标系下计算二重积分的基本题型,对于二重积分,经常利用对称性及将一个复杂区域划分为两个或三个简单区域来简化计算. (17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥xaxadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=ba badt t g dt t f )()(.证明:⎰⎰≤ba ba dx x xg dx x xf )()(.【分析】令F (x ) = f (x ) - g (x ),⎰=xa dt t F x G )()(,将积分不等式转化为函数不等式即可. 【详解】令F (x ) = f (x ) - g (x ),⎰=x a dtt F x G )()(,由题设G (x ) ≥ 0,x ∈ [a , b ],G (a ) = G (b ) = 0,)()(x F x G ='.从而⎰⎰⎰⎰-=-==babab ababadx x G dx x G x xG x xdG dx x xF )()()()()(,由于 G (x ) ≥ 0,x ∈ [a , b ],故有0)(≤-⎰ba dxx G ,即0)(≤⎰ba dx x xF .因此 ⎰⎰≤ba badx x xg dx x xf )()(.【评注】引入变限积分转化为函数等式或不等式是证明积分等式或不等式的常用的方法. (18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR -=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加.【分析】由于d E > 0,所以dPdQ Q P E d =;由Q = PQ 及dPdQ Q P E d =可推导)1(d E Q dPdR -=.【详解】(I) PP dPdQ Q P E d -==20.(II) 由R = PQ ,得)1()1(d E Q dPdQ Q P Q dPdQ PQ dPdR -=+=+=.又由120=-=PP E d ,得P = 10.当10 < P < 20时,d E > 1,于是0<dPdR ,故当10 < P < 20时,降低价格反而使收益增加.【评注】当d E > 0时,需求量对价格的弹性公式为dPdQ Q P dPdQ Q P E d -==.利用需求弹性分析收益的变化情况有以下四个常用的公式:Qdp E dR d )1(-=,Q E dpdR d )1(-=,p E dQdR d)11(-=,d E EpER -=1(收益对价格的弹性).(19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x xxx的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式.【分析】对S (x )进行求导,可得到S (x )所满足的一阶微分方程,解方程可得S (x )的表达式. 【详解】(I) +⋅⋅⋅+⋅⋅+⋅=864264242)(864xxxx S ,易见 S (0) = 0,+⋅⋅+⋅+='642422)(753xxxx S)642422(642+⋅⋅+⋅+=xxxx)](2[2x S xx +=.因此S (x )是初值问题0)0(,23=+='y xxy y 的解.(II) 方程23xxy y +='的通解为]2[3C dx e x e y xdx xdx+⎰⎰=⎰-22212xCex+--=,由初始条件y(0) = 0,得C = 1.故12222-+-=xexy ,因此和函数12)(222-+-=xexx S .【评注】本题综合了级数求和问题与微分方程问题,2002年考过类似的题. (20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, Tb αb α)2,2,1(3+---=, Tβ)3,3,1(-=,试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式.【分析】将β可否由321,,ααα线性表示的问题转化为线性方程组βαk αk αk =++332211是否有解的问题即易求解. 【详解】 设有数,,,321k k k 使得βαk αk αk =++332211. (*) 记),,(321αααA =. 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+-=323032221111),(ba ab a βA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→00101111ba b a . (Ⅰ) 当0=a 时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→101001111),(b βA . 可知),()(βA r A r ≠. 故方程组(*)无解, β不能由321,,ααα线性表示. (Ⅱ) 当0≠a , 且b a ≠时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→00101111),(ba b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→01101011001a a 3),()(==βA r A r , 方程组(*)有唯一解:ak 111-=, ak 12=, 03=k .此时β可由321,,ααα唯一地线性表示, 其表示式为 211)11(αa αa β+-=.(Ⅲ) 当0≠=b a 时, 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→00101111),(ba b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→00111011001a a , 2),()(==βA r A r , 方程组(*)有无穷多解, 其全部解为ak 111-=, c ak +=12, c k =3, 其中c 为任意常数.β 可由321,,ααα线性表示, 但表示式不唯一, 其表示式为321)1()11(αc αc aαaβ+++-=.【评注】本题属于常规题型, 曾考过两次(1991, 2000).(21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=111bb b bb b A . (Ⅰ) 求A 的特征值和特征向量; (Ⅱ) 求可逆矩阵P , 使得AP P1-为对角矩阵.【分析】这是具体矩阵的特征值和特征向量的计算问题, 通常可由求解特征方程0||=-A E λ和齐次线性方程组0)(=-x A E λ来解决.【详解】 (Ⅰ)1当0≠b 时,111||---------=-λbbb λb b b λA E λ=1)]1(][)1(1[------n b λb n λ ,得A 的特征值为b n λ)1(11-+=,b λλn -===12 . 对b n λ)1(11-+=,⎪⎪⎪⎪⎪⎭⎫⎝⎛---------=-b n bb b bn bbb b n A E λ)1()1()1(1→⎪⎪⎪⎪⎪⎭⎫⎝⎛---------)1(111)1(111)1(n n n→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------0000111111111111n n n →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---------0000111111111111n n n→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---0000001111n nn n n →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---000110010101001解得T ξ)1,,1,1,1(1 =,所以A 的属于1λ的全部特征向量为 T k ξk )1,,1,1,1(1 = (k 为任意不为零的常数). 对b λ-=12,⎪⎪⎪⎪⎪⎭⎫⎝⎛---------=-b bb b b bb b bA E λ2→⎪⎪⎪⎪⎪⎭⎫⎝⎛000000111得基础解系为Tξ)0,,0,1,1(2 -=,Tξ)0,,1,0,1(3 -=,Tn ξ)1,,0,0,1(,-= .故A 的属于2λ的全部特征向量为n n ξk ξk ξk +++ 3322 (n k k k ,,,32 是不全为零的常数).2 当0=b 时,nλλλλA E λ)1(1010001||-=---=-,特征值为11===n λλ ,任意非零列向量均为特征向量.(Ⅱ)1当0≠b 时,A 有n 个线性无关的特征向量,令),,,(21n ξξξP =,则⎪⎪⎪⎪⎪⎭⎫⎝⎛---+=-b bb n AP P 11)1(112 当0=b 时,E A =,对任意可逆矩阵P , 均有E AP P=-1.【评注】本题通过考查矩阵的特征值和特征向量而间接考查了行列式的计算, 齐次线性方程组的求解和矩阵的对角化等问题, 属于有一点综合性的试题. 另外,本题的解题思路是容易的, 只要注意矩阵中含有一个未知参数, 从而一般要讨论其不同取值情况. (22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=A B P , 21)|(=B A P , 令⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y XZ +=的概率分布.【分析】本题的关键是求出),(Y X 的概率分布,于是只要将二维随机变量),(Y X 的各取值对转化为随机事件A 和B 表示即可.【详解】 (Ⅰ) 因为 121)|()()(==A B P A P AB P , 于是 61)|()()(==B A P AB P B P ,则有 121)(}1,1{====AB P Y X P ,61)()()(}0,1{=-====AB P A P B A P Y X P , 121)()()(}1,0{=-====AB P B P B A P Y X P ,32)]()()([1)(1)(}0,0{=-+-=⋃-=⋅===AB P B P A P B A P B A P Y X P ,( 或 32121611211}0,0{=---===Y X P ),即),(Y X 的概率分布为:Y X0 1 0 132 12161121(Ⅱ) 方法一:因为 41)(==A P EX ,61)(==B P EY ,121)(=XY E ,41)(2==A P EX,61)(2==B P EY,163)(22=-=EX EX DX ,165)(22=-=EY EYDY ,241)(),(=-=EXEY XY E Y X Cov , 所以X 与Y 的相关系数 1515151),(==⋅=DYDX Y X Cov ρXY .方法二: X, Y 的概率分布分别为X 0 1 Y 0 1 P 4341 P 65 61则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ(Ⅲ) Z 的可能取值为:0,1,2 .32}0,0{}0{=====Y X P Z P ,41}1,0{}0,1{}1{===+====Y X P Y X P Z P ,121}1,1{}2{=====Y X P Z P ,即Z 的概率分布为:Z 0 1 2 P32 41121【评注】本题考查了二维离散随机变量联合概率分布,数字特征和二维离散随机变量函数的分布等计算问题,属于综合性题型 (23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,(其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.【分析】本题是一个常规题型, 只要注意求连续型总体未知参数的矩估计和最大似然估计都须已知密度函数, 从而先由分布函数求导得密度函数.【详解】 当1=α时, X 的概率密度为⎪⎩⎪⎨⎧≤>=+,,,101,),(1x x x ββx f β(Ⅰ) 由于⎰⎰+∞++∞∞--=⋅==11,1);(ββdx xβx dx βx xf EX β令X ββ=-1, 解得 1-=X X β,所以, 参数β的矩估计量为 1-=X X β.(Ⅱ) 对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=+⎪⎩⎪⎨⎧=>==ni i βn ni n i x x x x βαx f βL 1121.,0),,,2,1(1,)();()(其他当),,2,1(1n i x i =>时, 0)(>βL , 取对数得∑=+-=ni i x ββn βL 1ln )1(ln )(ln ,对β求导数,得∑=-=ni i x βn βd βL d 1ln)]([ln ,令0ln )]([ln 1=-=∑=ni i x βn βd βL d , 解得 ∑==ni ix nβ1ln, 于是β的最大似然估计量为 ∑==ni ix nβ1lnˆ. ( Ⅲ) 当2=β时, X 的概率密度为⎪⎩⎪⎨⎧≤>=,,,αx αx x αβx f 0,2),(32对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=⎪⎩⎪⎨⎧=>==ni i n nn i n i αx x x x ααx f βL 13212.,0),,,2,1(,)(2);()(其他当),,2,1(n i αx i =>时, α越大,)(αL 越大, 即α的最大似然估计值为 },,,min{ˆ21n x x x α=, 于是α的最大似然估计量为},,,min{ˆ21n X X X α=.。

2004年全国硕士研究生入学统一考试数学(三)试卷答案和评分参考

2004年全国硕士研究生入学统一考试数学(三)试卷答案和评分参考

2004年全国硕士研究生入学统一考试 数学(三)试卷答案和评分参考一、填空题(本题共6小题,每小题4分,满分24分.把答案填写在题中横线上.) (1)若0sin lim(cos )5x x xx b e a→-=-,则a = 1 ,b = -4 .(2)函数(,)f u v 由关系式[(),]()f xg y y x g y =+确定,其中函数()g y 可微,且()0g y ≠,则2f u v ∂=∂∂2()[()]g v g v '-. (3)设21,2,()21,2,x xe x f x x ⎧-≤<⎪=⎨⎪-≥⎩则212(1)f x dx -=⎰12-. (4)二次型222123122313(,,)()()()f x x x x x x x x x =++-++的秩为 2 . (5)设随机变量X 服从参数为λ的指数分布,则{P X >= 1e.(6)设总体X 服从正态分布21(,)N μσ,总体Y 从正态分布22(,)N μσ,112,,,n X X X 和212,,,n Y Y Y 分别是来自总体X 和Y 的简单随机样本,则12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥⎢⎥+-⎢⎥⎣⎦∑∑= 2σ . 二、选择题(本题共8小题,每小题4分,满分32分,在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后面的括号内.) (7)函数2sin(2)()(1)(2)x x f x x x x -=--在下列哪个区间内有界.(A)(1,0)-. (B)(0,1). (C)(1,2). (D)(2,3). 【 A 】 (8)设()f x 在(,)-∞+∞内有定义,且lim ()x f x a →+∞=,1(),0,()0,0,f x g x xx ⎧≠⎪=⎨⎪=⎩ 则(A)0x =必是()g x 的第一类间断点. (B )0x =必是()g x 的第二类间断点. (C )0x =必是()g x 的连续点.(D )()g x 在点0x =处的连续性与a 的取值有关. 【 D 】 (9)设()(1),f x x x =-则(A)0x =是()f x 的极值点,但(0,0)不是曲线()y f x =的拐点. (B)0x =不是()f x 的极值点,但(0,0)是曲线()y f x =的拐点. (C)0x =是()f x 的极值点,且(0,0)是曲线()y f x =的拐点.(D)0x =不是()f x 的极值点,(0,0)也不是曲线()y f x =的拐点. 【 C 】 (10)设有以下命题:①若()2121n n n uu ∞-=+∑收敛,则1n n u ∞=∑收敛.②若1nn u∞=∑收敛,则10001n n u∞+=∑收敛.③若1lim 1n n nu u +→+∞>收敛,则1n n u ∞=∑发散.④若()1nn n uv ∞=+∑收敛,则11,n n n n u v ∞∞==∑∑都收敛. 【 B 】(11)设()f x '在[,]a b 上连续,且()0,()0f a f b ''><,则下列结论中错误..的是 (A)至少存在一点0(,)x a b ∈,使得0()()f x f a >. (B)至少存在一点0(,)x a b ∈,使得0()()f x f b >. (C)至少存在一点0(,)x a b ∈,使得0()0f x '=.(D)至少存在一点0(,)x a b ∈,使得0()0f x = 【 D 】 (12)设n 阶矩阵A 与B 等价,则必有(A)当(0)A a a =≠时,B a =.(B)当(0)A a a =≠时,B a =-. (C)当0A ≠时,0B =.(D)当0A =时,0B =. 【 D 】 (13)设n 阶矩阵A 的伴随矩阵*0A ≠,若1234,,,ξξξξ是非齐次线性方程组Ax b =的互不相等的解,则对应的齐次线性方程0Ax =的基础解系(A)不存在. (B)仅含一个非零解向量.(C)含有两个线性无关的解向量. (D)含有三个线性无关的解向量. 【 B 】 (14)设随机变量X 服从正态分布(0,1)N ,对给定的(01)αα<<,数a u 满足{}a P X u α>=.若{}P X x α<=,则x 等于 (A )2a u . (B )12a u-. (C )12a u -. (D )1a u - 【 C 】三、解答题(本题共9小题,满分94分,解答题应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分)求 22201cos lim sin x x x x →⎛⎫- ⎪⎝⎭解 22201cos lim sin x x x x →⎛⎫- ⎪⎝⎭222220sin cos lim sin x x x xx x→-= 22401sin 24lim x x xx →-= ……2分 301sin 44lim 2x x x x →-= ……4分 201cos 4lim 6x x x→-= ……6分 0sin 4lim 3x x x →= 43= ……8分 (16)(本题满分8分)求)Dy d σ⎰⎰,其中D 是由圆224x y +=和22(1)1x y ++=所围成的平面区域(如图).解法1)))D D D y d y d y d σσσ=-⎰⎰⎰⎰⎰⎰大圆小圆……2分)D y d σ⎰⎰大圆D D yd σσ=+⎰⎰⎰⎰大大(根据对称性)22200d r dr πθ=+⎰⎰=163π ……4分)D y d σ⎰⎰小圆D D yd σσ=+⎰⎰小小32cos 2220d r dr πθπθ-=+⎰⎰329=, ……7分所以)16(32)9Dy d σπ=-⎰⎰ ……8分 解法 2 由积分区域对称性和被积函数的奇偶性0Dyd σ=⎰⎰ ……1分原式0Dσ=+12D D σσ⎡⎤⎢⎥=+⎢⎥⎣⎦⎰⎰⎰⎰上上2 ……2分22222002cos 22d r dr d r dr πππθθθ-⎡⎤=+⎢⎥⎣⎦⎰⎰⎰⎰ ……5分4462()339ππ⎡⎤=+-⎢⎥⎣⎦16(32)9π=- ……8分[注]:1D σ⎰⎰上 定限1分,计算1分.D σ⎰⎰上2定限1分,计算1分.(17)(本题满分8分)设(),()f x g x 在[,]a b 上连续,且满足()(),[,)xxa af t dtg t dt x a b ≥∈⎰⎰,()(),bbaaf t dtg t dt =⎰⎰证明:()().bbaaxf x dx xg x dx ≤⎰⎰证 令()()(),()(),xaF x f x g xG x F t dt =-=⎰由题设知()0,[,]G x x a b ≥∈()()0,()(),G a G b G x F x '=== ……2分从而()(),bbaa xF x dx xdG x =⎰⎰()(),b b a axG x G x dx =-⎰(),ba G x dx =-⎰ ……4分由于()0,[,]G x x a b ≥∈,故有()0,baG x dx -≤⎰ ……6分即()0ba xF x dx ≤⎰.因此()()bbaa xf x dx xg x dx ≤⎰⎰ ……8分(18)(本题满分9分)设某商品的需求函数为1005Q P =-,其中价格(0,20)P ∈,Q 为需求量. (I )求需求量对价格的弹性(0);d d E E > (II )推导(1)d dRQ E dP=-(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加.解 (I) 20d P PE Q Q P'==-. ……2分 (II )由,R PQ =得dRQ PQ dP'=+ (1)PQ Q Q'=+(1)d Q E =-. ……4分又由 120d PE P==-, 得10P =. ……5分当1020P <<时,1d E >,于是0dRdP<. ……7分 故当1020P <<时,降低价格反而使收益增加. ……9分(19)(本题满分9分)设级数468()242462468x x x x +++-∞<<+∞的和函数为()S x .求:(I )()S x 所满足的一阶微分方程; (II )()S x 的表达式.解 (I ) 468(),242462468x x x S x =+++易见 (0)0.S = ……1分357()224246x x x S x '=+++246224246x x x x ⎛⎫=+++⎪⎝⎭……2分 2().2x x S x ⎡⎤=+⎢⎥⎣⎦……4分因此()S x 是初值问题3,(0)02x y xy y '=+=的解. ……4分(II )方程32x y xy '=+的通解为32xdx xdx x y e e dx c -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰22212x xCe =--+, ……7分 由初始条件(0)0y =,求的1C =. ……8分故22212x x y e =-+-,因此和函数222()12xx S x e =-+- ……9分(20)(本题满分13分)设123(1,2,0),(1,2,3),(1,2,2),(1,3,3)T T T T a a b a b αααβ==+-=---+=-. 试讨论当,a b 为何值时,(I )β不能够由123,,ααα线性表示;(II )β可由123,,ααα惟一线性表示,并求出表示式;(III )β可由123,,ααα惟一线性表示,但表示式不惟一,并求出表达式. 解 设有数123,,k k k ,使得112233k k k αααβ++= (*) ……1分记123(,,)A ααα=.对矩阵()Aβ施以初等行变换,有111122230323A a b a a b β⎛-⎫⎪+-- ⎪ ⎪-+-⎝⎭()=010001a b ⎪→- ⎪ ⎪-⎝⎭……3分 (I )当0a b =,为任意常数时,有111101000A a b a b β⎛-⎫ ⎪→- ⎪ ⎪-⎝⎭()可知()()r A r Aβ≠,故方程组(*)无解,β不能由123,,ααα线性表示.……5分(II )当0,a ≠且a b ≠时,()()3r A r A β==,故方程组(*)有惟一解123111,,0k k k a a=-==,则β可由123,,ααα惟一地线性表示,其表示式为12111a aβαα⎛⎫=-+ ⎪⎝⎭……7分 (III )当0a b =≠时,对Aβ()施以初等行变换,有1100110110000a A a β⎛⎫- ⎪⎪ ⎪→- ⎪⎪ ⎪ ⎪⎝⎭() . ……9分 可知()()2r A r Aβ==,故方程组(*)有无穷多解,其全部解为123111,,k k c k c a a ⎛⎫=-=+= ⎪⎝⎭,其中c 为任意常数.β可由123,,ααα线性表示,但表示式不惟一,其表示式为 ……11分123111c c a aβααα⎛⎫⎛⎫=-+++ ⎪ ⎪⎝⎭⎝⎭. ……13分 (21)(本题满分13分)设n 阶矩阵11b b A b b⎪⎪= ⎪ ⎪ ⎪⎝⎭(I )求A 的特征值和特征向量;(II )求可逆矩阵P ,使得1P AP -为对角矩阵. 解 (I )1︒ 当0b ≠时,111b b b bE A bbλλλλ-------=---1[1(1)][(1)]n n b b λλ-=----- ……3分故A 的特征值为121(1),1.n n b b λλλ=+-===-对于11(1)n b λ=+-,设A 的属于特征值1λ的一个特征向量为1ξ,则1111[1(1)]1b b b b n b b b ξξ⎛⎫⎪ ⎪=+- ⎪ ⎪ ⎪⎝⎭解得1(1,1,,1)T ξ=,所以全部特征向量为1(1,1,,1)T k k ξ=(k 为任意非零常数) ……5分对于21n b λλ===-,解齐次线性方程组[(1)]0b E A x --=,由111000(1)000b b b b b b b E A b b b --⎛⎫⎛⎫⎪⎪--- ⎪ ⎪--=→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭, 解得基础解系2(1,1,0,,0)T ξ=-3(1,0,1,,0)T ξ=-2(1,0,0,,1)T ξ=-故全部特征向量为2233n n k k k ξξξ+++ (2,,n k k 是不全为零的常数). ……7分2︒当0b =时,特征11n λλ===,任意非零列向量均为特征向量. ……9分(II )1︒当0b ≠时,A 有n 个线性无关的特征向量,令12(,,,)n P ξξξ=,则{}11(1),1,,1.P AP diag n b b b -=+--- ……11分2︒当0b =时,A E =,对任意可逆矩阵P ,均有1P AP E -= ……13分[注]:1(1,1,,1)T ξ=也可由求解齐次线性方程组1()0E A x λ-=得出.(22)(本题满分13分)设A B 、为两个随机事件,且111432PP P (A)=,(B A)=,(A B)=,令 1,0,A X A ⎧=⎨⎩发生,不发生; 1,0,B Y B ⎧=⎨⎩,发生不发生. 求:(I )二维随机变量(,)X Y 的概率分布; (II )X 与Y 的相关系数XY ρ; (III )22Z X Y =+的概率分布.解 (I )()()()1,12P AB P A P B A ==()()()1,6P AB P B P B A == ……2分 则{}(){}()()(){}()()(){}()11,1,1211,0,610,1,120,0P X Y P AB P X Y P AB P A P AB P X Y P AB P B P AB P X Y P AB ========-=====-==== ()()()()211[]3P A B P A P B P AB =-=-+-=, (或{}11120,01126123P X Y ===---=), ……6分即 (,)X Y 的概率分布为(II )方法 1111(),(),(),4612EX P A EY P B E XY =====则1(,)()24Cov X Y E XY EX EY =-=22222211(),(),4635(),(),1636EX P A EY P B DX EX EX DY EY EY =====-==-=15XY ρ== ……9分方法 2 ,X Y 的概率分布分别为X 0 1 ,Y 0 1.P34 14 P56 16则 111,,(),4612E X E Y EX Y ===而 故 1(,)(),24Cov X Y E XY EX EY =-=22222211,,4635(),(),1636EX EY DX EX EX DY EY EY ===-==-=15XY ρ== ……9分(III )Z 的可能取值为012,,,{}{}{}{}{}200,0,3110,11,04P Z P X Y P Z P X Y P X Y =========+===,{}{}121,1,12P Z P X Y =====……13分 即Z 的概率分布为Z 012.P23 14 112(23)(本题满分13分)设总体X 的分布函数为1,(;;)0,x F x x x βαααβα⎧⎛⎫->⎪ ⎪=⎨⎝⎭⎪≤⎩其中参数0,1,αβ>>设12,,,n X X X 为来自总体X 的简单随机样本.(I )当1α=时,求未知参数β的矩估计量; (II )当1α=时,求未知参数β的最大似然估计量; (III )当2β=时,求未知参数α的最大似然估计量. 解 当1α=时,X 的概率密度为111,1,(;)0,1,x F x xx ββ+⎧->⎪=⎨⎪≤⎩ ……1分 (I )由于11(;),1EX xf x dx xdx xβββββ+∞+∞+-∞===-⎰⎰ ……2分令1X ββ=-,解得1XX β=-, 所以参数β的矩估计量为1XX β=- ……4分 (II )对于总体X 的样本值12,,,n x x x ,似然函数为1121,1(1,2,,)()(;)()0,nni n i x i n L f x x x x βββα+=⎧>=⎪==⎨⎪⎩∏其他 ……6分当1(1,2,,)i x i n >=时,()L β>0,取对数得1ln ()ln (1)ln ,ni i L n x βββ==-+∑两边对β求导,得1ln ()ln ,ni i d L n x d βββ==-∑1ln ()0,ln nii d L nd xβββ===∑令,解得故β的最大似然估计量为1.ln nii nXβ==∑ ……9分(III )当2β=时,X 的概率密度为232,(;)0,x f x x x αααα⎧>⎪=⎨⎪≤⎩对于总体X 的样本值12,,,n x x x ,似然函数为31212,(1,2,,)()(;)()0,n nni n i x i n L f x x x x αααα=⎧>=⎪==⎨⎪⎩∏,其他, ……11分当(1,2,,)i x i n α>=时,α越大,()L α越大,因而的最大似然估计值为{}12min ,,,n x x x α=则的最大似然估计量为{}12min ,,,n X X X α= ……13分。

2004年考研数学三真题与解析

2004年考研数学三真题与解析

2004 年考研数学(三)真题一、 填空题 (本题共 6 小题,每小题 4 分,满分 24 分 . 把答案填在题中横线上)(1) 若 limsin xb)5 ,则 a =______, b =______.(cos xx 0exa(2) 设函数 f (u , v)由关系式 f [xg(y) , y] = x + g(y)确定,其中函数g(y)可微,且 g(y) 0,则2 f.u vxe x21 1设 f (x),2x2,则 2 (3) 1 f (x 1)dx.1 , x122(4) 二次型 f ( x 1 , x 2 , x 3 )( x 1 x 2 )2 ( x 2 x 3 ) 2 (x 3 x 1 ) 2 的秩为.(5) 设随机变量 X 服从参数为λ的指数分布 ,则P{X DX } _______.(6) 设总体 X 服从正态分布 N ( μ, σ2), 总体 Y 服从正态分布 N ( μ , σ2),X , X 2, Xn 1 和 Y,Y,Y1211 2n 2分别是来自总体X 和 Y 的简单随机样本 , 则n 12n 22( X i X )(Y j Y)Ei 1n 1 n 2 j 1.2二、选择题 (本题共 6 小题,每小题 4 分,满分 24 分 . 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)函数 f (x)| x | sin( x 2)(7) x( x 1)( x2)2 在下列哪个区间内有界 .(A)( 1,0). (B) (0 , 1). (C) (1 , 2). (D) (2 , 3). [ ]1,则(8) 设 f (x)在 (, + )内有定义,且 lim f (x) a , g( x)f ( x ) , xx0 , x(A) x = 0 必是 g(x)的第一类间断点 . (B) x = 0 必是 g(x)的第二类间断点 .(C) x = 0 必是 g(x)的连续点 .(D) g(x)在点 x = 0 处的连续性与 a 的取值有关 .[](9) 设 f (x) = |x(1 x)|,则(A) x = 0 是 f (x)的极值点,但 (0 , 0) 不是曲线 y = f (x)的拐点 .(B) x = 0 不是 f (x)的极值点,但 (0 , 0)是曲线 y = f (x)的拐点 .(C) x = 0 是 f (x)的极值点,且 (0 , 0) 是曲线 y = f (x)的拐点 . (D) x = 0 不是 f (x)的极值点, (0 , 0) 也不是曲线 y = f (x)的拐点 .[ ](10) 设有下列命题:(1) 若(u 2n 1 u 2n ) 收敛,则u n 收敛 .(2) 若u n 收敛,则u n 1000收敛.n 1n 1(3) 若 lim u n 1 1,则u 发散 .nu nnn 1(4) 若(u n v n ) 收敛,则u n ,v n 都收敛 .n 1n 1n 1则以上命题中正确的是(A) (1) (2).(B) (2) (3). (C) (3) (4). (D) (1) (4). [](11) 设 f ( x) 在 [a , b] 上连续,且 f ( a) 0, f (b) 0 ,则下列结论中错误的是(A) 至少存在一点 x 0 ( a,b) ,使得 f ( x 0 ) > f (a).(B) 至少存在一点 x 0(a, b) ,使得 f (x 0 ) > f (b).(C) 至少存在一点 x 0 (a, b) ,使得 f ( x 0 ) 0.(D) 至少存在一点 x 0 ( a,b) ,使得 f ( x 0 ) = 0.[ D](12) 设 n 阶矩阵 A 与 B 等价 , 则必有(A) 当| A| a(a 0) 时, | B | a .(B) 当| A| a(a 0) 时, |B| a .(C) 当|A|0时, |B| 0.(D) 当|A| 0时 , | B | 0 .[](13) 设 n 阶矩阵 A 的伴随矩阵 A *0, 若 ξ1,ξ2, ξ3, ξ4 是非齐次线性方程组Ax b 的互不相等的解,则对应的齐次线性方程组Ax 0 的基础解系(A) 不存在 .(B) 仅含一个非零解向量 .(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量 .[ ](14) 设随机变量 X 服从正态分布N (0,1) , 对给定的 α (0,1) , 数 u α满足 P{ Xu α}α,若 P{| X | x} α, 则 x 等于(A)u α.(B) u α.(C)u 1 α.(D) u 1α.[]2122三、解答题 (本题共 9 小题,满分 94 分 . 解答应写出文字说明、证明过程或演算步骤 .)(15) (本题满分 8 分)求 lim (1 cos2 x ) .x 0sin 2xx 2(16) ( 本题满分 8 分 )求( x 2 y 2y)d ,其中 D 是由圆 x2y 2 4 和 (x 1)2 y21 所围成的D平面区域 (如图 ).(17) (本题满分 8 分)设 f (x) , g( x)在 [a , b] 上连续,且满足x xg(t) dt ,x b b af (t )dt[a , b),f (t) dtg(t) dt .aaab b证明:xf (x) dx xg(x)dx .aa(18) (本题满分 9 分)设某商品的需求函数为 Q = 100 5P ,其中价格 P (0 , 20) ,Q 为需求量 .(I) 求需求量对价格的弹性 E d ( E d > 0) ;(II)dR E d ) (其中 R 为收益 ),并用弹性 E d 说明价格在何范围内变化时,推导Q(1dP降低价格反而使收益增加 .(19) (本题满分 9 分)设级数x 4x6x 8(x)2 4 2 4 6 2 4 6 8的和函数为 S(x). 求:(I) S(x)所满足的一阶微分方程;(II) S(x)的表达式 .(20)( 本题满分 13 分 )α (1,2,0)Tα(1,α 2, 3α) Tα ( 1, b 2, α 2b) T,β (1,3, 3) T ,设 1, 2,3试讨论当 a,b 为何值时 ,(Ⅰ ) βα1, α2, α3线性表示 ;不能由(Ⅱ ) β可由 α1 ,α2 , α3 唯一地线性表示 , 并求出表示式 ;(Ⅲ ) β可由 α1 ,α2 , α3 线性表示 , 但表示式不唯一 , 并求出表示式 .(21) (本题满分 13 分)设 n 阶矩阵1bb Ab 1 b .bb1(Ⅰ ) 求 A 的特征值和特征向量 ;(Ⅱ ) 求可逆矩阵 P , 使得 P 1AP 为对角矩阵 .(22) ( 本题满分 13 分)设 A , B 为两个随机事件 ,且 P( A)1P(B | A)1P(A|B)1 ,,, 令4321, 发生,1, 发生,XAYB, 不发生, , 不发生 .0 A0 B 求(Ⅰ ) 二维随机变量 ( X ,Y) 的概率分布 ;(Ⅱ ) X与 Y的相关系数XYρ ;(Ⅲ )Z X 2 Y 2 的概率分布 .(23) (本题满分 13 分) 设随机变量X 的分布函数为α β1 , x ,F ( x, α,β)x αx, ,0 α其中参数 α 0, β 1. 设 X 1 , X 2 , , X n 为来自总体 X 的简单随机样本 , (Ⅰ) 当α 1时 , 求未知参数β的矩估计量 ;(Ⅱ ) 当 α 1 时 , 求未知参数 β的最大似然估计量 ;(Ⅲ ) 当 β 2 时 , 求未知参数α的最大似然估计量 .2004 年考研数学(三)真题解析一、 填空题 (本题共 6 小题,每小题 4 分,满分 24 分 . 把答案填在题中横线上)(1) sin x(cos x b) 5,则a =1 , b =4.若 limax 0ex【分析 】本题属于已知极限求参数的反问题.【详解 】因为 lim sin x (cos xb ) 5 ,且 lim sin x (cos x)0 ,所以abx 0exx0 lim (exa)0 ,得 a = 1. 极限化为x 0limsin x(cos x b) limx(cos xb) 1 b5,得 b =4.x 0exax0 x因此, a = 1, b = 4.【评注 】一般地,已知 limf (x)= A ,g(x)(1) 若 g(x) 0,则 f (x)0;(2) 若 f ( x)0,且 A 0,则 g(x) 0.(2) 设函数 f (u , v)由关系式 f [xg(y) , y] = x + g(y)确定,其中函数g(y)可微,且 g(y)0,2fg (v) .则g 2(v)u v【分析 】令 u = xg(y), v = y ,可得到 f (u , v)的表达式,再求偏导数即可 .【详解 】令 u = xg(y), v = y ,则 f (u , v) =ug(v) ,g(v)f 1,2fg (v)所以,u vg 2 .u g (v)(v)x 2,1x1xe 2 221(3) 设 f (x),则1 f ( x 1) dx. 1 , x 1222【分析 】本题属于求分段函数的定积分,先换元:x1 = t ,再利用对称区间上奇偶函数的积分性质即可 .2 1 1【详解 】令 x1 = t , 1 f ( x 1)dx1 f (t )dt 1 f ( x)dt2 2212111 = 21 xexdx 1 ( 1) dx 0 ( ).2222【评注 】一般地,对于分段函数的定积分,按分界点划分积分区间进行求解.(4) 二次型 f ( x , x, x ) ( x x 2) 2 (x2x ) 2( xx ) 2 的秩为 2 .1231331【分析 】二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换或配方法均可得到答案 .【详解一 】因为 f ( x 1 , x 2 , x 3 ) ( x 1x 2 ) 2(x 2 x 3 ) 2 ( x 3 x 1 ) 22x 2 2x 22x22x x 2 x x32 x x31 231 2122 1 1 于是二次型的矩阵为A1 2 1 , 1 1 21 12 1 1 2由初等变换得A0 3 3 0 3 3 ,33从而r ( A)2 , 即二次型的秩为 2.【详解二 】因为 f ( x 1 , x 2 , x 3 )( x 1 x 2 ) 2 (x 2 x 3 ) 2 ( x 3 x 1 ) 22 x 1 2 2x 2 2 2x3 22x 1 x 2 2x 1 x 3 2x 2 x 32( x 11x 21x 3 )23(x 2 x 3 ) 22222 y 1 23 y 2 2 ,2 1 1y 1x 1x 3 ,y 2x 2x 3 .其中x 222. 2所以二次型的秩为(5) 设随机变量X服从参数为λ则 P{ X DX }1 .的指数分布 ,e【分析 】 根据指数分布的分布函数和方差立即得正确答案.【详解 】 由于 DX1 X 的分布函数为2 ,λF ( x)1e λx , x0,0,x0.故P{ XDX} 1 P{XDX }1 P{X1} 1 F(1) 1 .λλ e【评注 】本题是对重要分布, 即指数分布的考查 , 属基本题型 .22X 1 , X 2 , X n 1 和 Y 1 ,Y 2 , Y n 2 分别是来自总体X 和 Y 的简单随机样本 , 则22n 1n 2( X i X )(Y j Y)i 1j 12Eσ .n 1 n 2 2【分析 】利用正态总体下常用统计量的数字特征即可得答案.1n 1221 n 22E[ ] E[2] 【详解 】因为1 i 1 ( X i X ) σ,n 2 1 j(Y j Y)σ,n 112故应填 σ .【评注 】本题是对常用统计量的数字特征的考查.二、选择题 (本题共 6 小题,每小题 4 分,满分 24 分 . 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7) 函数 f (x)| x | sin( x2)x( x 1)( x2)2 在下列哪个区间内有界 .(A)( 1,0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3).[ A ]【分析 】如 f (x)在 (a , b)内连续,且极限lim f ( x) 与 lim f ( x) 存在,则函数 f (x)x ax b在 (a , b)内有界 .【详解 】当 x0,1,2时, f (x)连续,而 lim f ( x)sin 3, lim f (x)sin 2 ,x118x 04lim f ( x)sin 2,lim f ( x),lim f (x),x 04x1x 2所以,函数 f (x)在 ( 1 , 0) 内有界,故选 (A).【评注 】一般地, 如函数 f (x)在闭区间 [ a , b]上连续, 则 f (x)在闭区间 [a , b]上有界; 如函数 f (x)在开区间 (a ,b)内连续,且极限lim f ( x) 与 lim f ( x) 存在,则函数f (x)在开区间 (a , b)内有界 .xax b(8) 设 f (x)在 (, + )内有定义,且lim f ( x) a ,x1g( x)f ( x ) , x,则0 , x(A) x = 0 必是 g(x)的第一类间断点 . (B) x = 0 必是 g(x)的第二类间断点 .(C) x = 0 必是 g(x)的连续点 .(D) g(x)在点 x = 0 处的连续性与a 的取值有关 . [D ]【分析 】考查极限 limg (x ) 是否存在,如存在,是否等于g(0) 即可,通过换元 1,ux 0x可将极限 lim g ( x) 转化为 lim f (x) .x 0x【详解 】因为 lim g( x) limf ( 1 ) lim f (u) = a(令 u1 ),又 g(0) = 0 ,所以,x 0xx u x当 a = 0 时, lim g ( x) g(0) ,即 g(x)在点 x = 0 处连续,当 a0 时,xlim g( x) g(0) ,即 x = 0是 g( x)的第一类间断点,因此,g(x)在点 x = 0 处的连续性x 0与 a 的取值有关,故选 (D).【评注 】本题属于基本题型,主要考查分段函数在分界点处的连续性.(9) 设 f (x) = |x(1x)|,则(A) x = 0 是 f (x)的极值点,但 (0 , 0) 不是曲线 y = f (x)的拐点 . (B) x = 0 不是 f (x)的极值点,但 (0 , 0)是曲线 y = f (x)的拐点 .(C) x = 0 是 f (x)的极值点,且 (0 , 0) 是曲线 y = f (x)的拐点 . (D) x = 0 不是 f (x)的极值点, (0 , 0) 也不是曲线y = f (x)的拐点 .[ C ]【分析 】由于 f (x)在 x = 0 处的一、二阶导数不存在,可利用定义判断极值情况,考查 f (x)在 x = 0 的左、右两侧的二阶导数的符号,判断拐点情况.【详解 】设 0 < < 1 ,当 x(, 0)(0 , )时, f (x) > 0 ,而 f (0) = 0 ,所以 x = 0 是 f (x)的极小值点 .显然, x = 0 是 f (x)的不可导点 . 当 x(, 0)时, f (x) = x(1x), f (x)2 0,当 x(0 , )时, f (x) = x(1x) , f ( x) 2 0 ,所以 (0 , 0) 是曲线 y = f (x)的拐点 .故选 (C).【评注 】对于极值情况,也可考查 f (x)在 x = 0 的某空心邻域内的一阶导数的符号来判断 .(10) 设有下列命题:(1) 若(u 2n 1 u 2n ) 收敛,则u n 收敛 .n 1n 1(2) 若u n 收敛,则u n 1000收敛.n 1n 1(3) 若 lim u n 1 1,则u 发散 .nu nnn 1(4) 若(u n v n ) 收敛,则u n ,v n 都收敛 .n 1n 1n 1则以上命题中正确的是(A) (1) (2).(B) (2) (3). (C) (3) (4). (D) (1) (4).[B ]【分析 】可以通过举反例及级数的性质来说明 4 个命题的正确性 .【详解 】 (1)是错误的,如令u(1)n ,显然,u 分散,而(uu )收敛.nn 2 n 12nn 1 n 1(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性.(3)是正确的,因为由lim un 11可得到 u不趋向于零 (n),所以u 发散.n u n n nn 1(4)是错误的,如令 un 1, vn1,显然,u ,v都发散,而n n n nn 1n 1(u n v n ) 收敛.故选(B).n 1【评注】本题主要考查级数的性质与收敛性的判别法,属于基本题型.(11) 设f ( x)在 [a , b] 上连续,且 f (a) 0, f (b)0 ,则下列结论中错误的是(A)至少存在一点 x0( a,b) ,使得 f ( x0 ) > f (a).(B)至少存在一点 x0(a, b) ,使得 f (x0 ) > f (b).(C)至少存在一点 x0 (a, b) ,使得 f ( x0 ) 0.(D) 至少存在一点x0( a,b) ,使得 f ( x0 ) = 0.[D]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项.【详解】首先,由已知f( x) 在[a , b]上连续,且 f (a) 0, f (b)0 ,则由介值定理,至少存在一点x(a,b) ,使得 f(x) 0;00另外, f (a)lim f ( x) f (a)0,由极限的保号性,至少存在一点x0(a,b) x ax a使得f ( x)f ( a)0,即 f ( x ) f ( a) .同理,至少存在一点x(a,b)x0a00使得 f ( x0 ) f (b) .所以,(A) (B) (C)都正确,故选 (D).【评注】本题综合考查了介值定理与极限的保号性,有一定的难度.(12)设 n 阶矩阵A与B等价,则必有(A)当| A |a(a 0) 时, | B | a .(B) 当| A |a(a 0) 时, | B | a .(C) 当|A|0时, |B| 0.(D) 当|A|0时, |B| 0.[ D]【分析】利用矩阵 A 与 B 等价的充要条件:r ( A)r ( B) 立即可得.【详解】因为当 | A | 0时, r ( A) n ,又 A 与 B 等价,故r (B)n ,即| B |0 ,故选(D).【评注 】本题是对矩阵等价、行列式的考查, 属基本题型 .(13) 设 n 阶矩阵 A 的伴随矩阵 A *0, 若 ξ,ξ, ξ, ξ 是非齐次线性方程组Axb 的12 34互不相等的解,则对应的齐次线性方程组Ax 0 的基础解系(A) 不存在 .(B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量 . [ B]【分析 】 要确定基础解系含向量的个数 , 实际上只要确定未知数的个数和系数矩阵的秩 .【详解 】 因为基础解系含向量的个数= nr ( A) , 而且n,r ( A) n,r ( A * )1, r ( A) n 1, 0, r ( A) n 1.根据已知条件 A *0, 于是 r ( A) 等于 n 或 n 1 . 又 Ax b 有互不相等的解 ,即解不惟一 , 故 r ( A)n 1. 从而基础解系仅含一个解向量, 即选 (B).【评注 】本题是对矩阵 A 与其伴随矩阵 A * 的秩之间的关系、 线性方程组解的结构等多个知识点的综合考查.(14) 设随机变量X 服从正态分布N (0,1), 对给定的α (0,1), 数u α满足P{ Xα,u }α若P{| X | x} α, 则 x 等于(A)u α.(B) uα.(C)u 1 α.(D) u 1α.[ C ]2122【分析 】 利用标准正态分布密度曲线的对称性和几何意义即得.【详解】由P{| X|x} α, 以及标准正态分布密度曲线的对称性可得P{ Xx}1 α2 . 故正确答案为 (C)., 严格地说它的上分位数概念的考查.【评注 】本题是对标准正态分布的性质三、解答题 (本题共 9 小题,满分 94 分. 解答应写出文字说明、证明过程或演算步骤 .)(15) (本题满分 8 分)求 lim (1cos 2x ) . x 0sin 2 x x 2【分析 】先通分化为“”型极限,再利用等价无穷小与罗必达法则求解即可.【详解 】 lim (1 cos 2xx 2 sin 2 xcos 2 xsin 2xx 2) limx 2 sin 2 xx 0xx21sin 22x2x1sin 4 x1 cos4x 1(4 x)2= lim4lim2lim lim242.432【评注 】本题属于求未定式极限的基本题型,对于“”型极限,应充分利用等价无穷小替换来简化计算.(16) ( 本题满分 8 分 )求 ( x2y 2y)d,其中 D 是由圆 x2y24和 (x 1) 2 y 2 1 所围成的平面区域 (如图 ).D【分析 】首先,将积分区域D 分为大圆 D 1{( x, y) | x2y24} 减去小圆D 2{( x, y) | (x1)2 y 2 1} ,再利用对称性与极坐标计算即可 .【详解 】令 D{( x, y) | x2y24}, D2{( x, y) | ( x 1)2y21} ,1由对称性,yd0 .Dx 2y 2 dx 2y 2 dx 2y 2 dDD 1D 222 r 2dr 32cos r 2dr .d2 d2 016 32 16 (3 2)39 9所以,( x2y2y)d16 (32) .D9【评注 】本题属于在极坐标系下计算二重积分的基本题型,对于二重积分,经常利用对称性及将一个复杂 区域划分为两个或三个简单区域来简化计算.(17) ( 本题满分 8 分)设 f (x) , g( x)在 [a , b] 上连续,且满足x xg(t) dt ,x[a , b),b b af (t )dtf (t) dtg(t) dt .aaab b 证明:xf (x) dx xg(x)dx .aa【分析 】令 F(x) = f (x)g(x), G(x) xF (t )dt ,将积分不等式转化为函数不等式即可.a 【详解 】令 F(x) = f (x)g(x), G(x)x F (t )dt ,a由题设 G(x) 0,x [a , b],G(a) = G(b) = 0 , G (x) F ( x) .b b xG(x)bbb 从而xF ( x)dxxdG( x)G(x)dxG( x)dx ,aaaaa由于 G(x) 0, x[a , b] ,故有b0,G( x) dxab0 .即xF( x)dxab b因此xf ( x)dx xg( x)dx .a a【评注】引入变限积分转化为函数等式或不等式是证明积分等式或不等式的常用的方法.(18)(本题满分 9 分)设某商品的需求函数为Q = 100 5P,其中价格 P (0 , 20) ,Q 为需求量 .(I)求需求量对价格的弹性 E d( E d>0) ;(II)dRQ(1E d ) (其中R为收益),并用弹性E d说明价格在何范围内变化时,推导降低价格反而使dP收益增加 .【分析】由于 E> 0,所以E P dQ;由 Q=PQ 及EP dQ可推导d d Q dP d Q dP dRQ(1 E d ) .dP【详解】 (I) E dP dQ PQ dP .20 P (II)由R = PQ,得dR Q P dQ Q (1P dQ) Q (1 E d ) .dP dP Q dP又由 EP1,得P=10. d20P当 10<P<20dR0 ,时, E d> 1,于是dP故当 10<P<20时,降低价格反而使收益增加 .【评注】当 E d> 0时,需求量对价格的弹性公式为 E dP dQ P dQQ dP .Q dP 利用需求弹性分析收益的变化情况有以下四个常用的公式:dR(1E d )Qdp ,dR(1E d )Q ,dR(11) p ,dp dQ E dEREp 1 E d(收益对价格的弹性).(19)(本题满分 9 分)设级数x 4x6x 8(x)2 4 2 4 6 2 4 6 8的和函数为 S(x). 求:(I) S(x)所满足的一阶微分方程; (II) S(x)的表达式 .【分析 】对 S(x)进行求导,可得到 S(x)所满足的一阶微分方程,解方程可得S(x)的表达式 .【详解 】 (I) S(x) x 4 x6x 8 ,2 42 46 246 8易见S(0) = 0,S (x)x 3 x 5 x 72 2 4 2 4 6x(x 2 x 4x 6)2 2 4 2 4 6x[ x 2 S( x)] .2因此 S(x)是初值问题yxyx 30的解.2 , y(0)(II) 方程 yxyx 3的通解为2y exdxx 3 xdxC ][ edx2x 2x 21 Ce2,2由初始条件 y(0) = 0 ,得 C = 1.x 2 x 2x 2x 2故 ye 21 ,因此和函数 S( x)e 21 . 22【评注 】本题综合了级数求和问题与微分方程问题, 2002 年考过类似的题 .(20)( 本题满分 13 分 )设α1 (1,2,0)T ,α2(1,α2, 3α)T ,α ( 1, b 2, α 2b) T,β (1,3, 3)T ,3试讨论当 a,b 为何值时 ,(Ⅰ )β不能由 α1, α2 , α3 线性表示 ;(Ⅱ )β可由α1,α2 , α3唯一地线性表示 , 并求出表示式 ;(Ⅲ )β可由α1,α2 , α3线性表示 , 但表示式不唯一 , 并求出表示式 .【分析】将可否由α1,α2,α3线性表示的问题转化为线性方程组k1α1 k2α2 k3α3ββ是否有解的问题即易求解.【详解】设有数 k1, k2 , k3 , 使得k1α kαk αβ(*)12 2 3 3.记 A(α1, α2 , α3 ) .对矩阵 ( A, β)施以初等行变换, 有1111( A, β)2a2b2303a a 2b3 (Ⅰ ) 当a0时,有1111(A, β)00b 1 .0001可知 r ( A)r ( A, β) .故方程组 (*) 无解 ,β不能由11110a b 1 .00 a b0α,α ,α 线性表示.123(Ⅱ ) 当a0 ,且 a b 时,有100111111a( A, β)0a b 10101 a00 a b00010 r ( A) r ( A, β) 3 ,方程组(*)有唯一解:k1 1 1,k 21, k30.a a此时β可由α1,α2,α3唯一地线性表示,其表示式为β(11 α1α2.a)1a(Ⅲ ) 当a b 0时 ,对矩阵 ( A, β) 施以初等行变换,有100111111a1( A, β)0a b 1011,a00 a b00000r ( A) r ( A, β) 2 ,方程组 (*) 有无穷多解,其全部解为k111,k21 c ,k3 c ,其中 c 为任意常数.a aβ 可由α1,α2,α3线性表示,但表示式不唯一 ,其表示式为β(11 α1c) α2cα3.a)1( a【评注】本题属于常规题型,曾考过两次 (1991, 2000).(21)(本题满分 13 分)设n 阶矩阵1b bA b1b.b b1(Ⅰ ) 求A的特征值和特征向量;(Ⅱ )求可逆矩阵 P ,使得 P 1 AP为对角矩阵.【分析】这是具体矩阵的特征值和特征向量的计算问题, 通常可由求解特征方程| λE A |0和齐次线性方程组(λE A)x0来解决.【详解】(Ⅰ ) 1 当 b 0 时,λ 1b b| λE A |bλ 1bb bλ1= [ λ 1(n1)b][ λ (1 b)] n 1,得 A 的特征值为λ1(n1)b ,λλ1 b .12n 对λ 1(n1)b ,1(n1)b b b( n1)11λ1E Ab(n1)b b1(n1)1b b(n1)b11(n 1)n11111111n1n 1111n 11111n1111n1100000000111 1 n10010n0n010100n n001100000000解得ξ (1,1,1,,1) T,所以A的属于λ的全部特征向量为11kξ1k (1,1,1,,1)T( k为任意不为零的常数) .对λ 1 b ,2b b b111λ2E Ab b b000b b b000得基础解系为ξ2(1,1,0,,0)T,ξ3(1,0,1,,0)T,, ξn(1,0,0,, 1)T.故 A 的属于λ的全部特征向量为2k 2ξ2k3ξ3k nξn( k2, k3,, k n是不全为零的常数).2 当 b0 时,λ 100| λE A |0λ10(λ 1)n,00λ 1特征值为λλ1,任意非零列向量均为特征向量.1n( Ⅱ ) 1 当 b 0 时,A 有 n 个线性无关的特征向量,令 Pξ ξ ξ ,则(1 ,2 , ,n )1(n 1)bP 1AP1 b1 b2当 b 0 时, AE ,对任意可逆矩阵 P , 均有P 1APE.【评注 】本题通过考查矩阵的特征值和特征向量而间接考查了行列式的计算, 齐次线性方程组的求解和矩阵的对角化等问题 ,属于有一点综合性的试题. 另外 ,本题的解题思路是容易的, 只要注意矩阵中含有一个未知参数 , 从而一般要讨论其不同取值情况 .(22) ( 本题满分 13 分 )设 A , B 为两个随机事件 ,且 P( A)1P(B | A) 11,, P(A|B), 令4321,发生,1,发生,XAYB, 不发生,, B 不发生 .0 A求(Ⅰ ) 二维随机变量 ( X ,Y) 的概率分布 ;(Ⅱ )X 与 Y 的相关系数 ρXY ;(Ⅲ ) Z X 2Y 2 的概率分布 .【分析 】本题的关键是求出 ( X ,Y) 的概率分布,于是只要将二维随机变量 ( X ,Y) 的各取值对转化为随机事件 A 和 B 表示即可.【详解】(Ⅰ ) 因为 P( AB)P( A)P( B | A)1 于是 P( B)P( AB) 1,P(A | B),126则有P{ X1,Y 1}1P( AB),12 1P{ X1,Y0} P( AB)P( A) P( AB),6P{ X 0,Y1} P( AB)P(B) P( AB) 1 ,122P{ X 0,Y0} P( A B) 1P(AB) 1 [P(A) P( B) P( AB)],1 112 3( 或P{ X0,Y 0}16 12),123即 ( X ,Y) 的概率分布为:YX01021 312111 612(Ⅱ )方法一:因为EX P( A)11, E( XY)1, EY P(B)6,412EX 2P( A)1,EY2P(B) 1 ,436(EY)25DX EX 2(EX )2, DY EY 2,16116Cov ( X ,Y)E( XY)EXEY,24所以 X 与 Y 的相关系数ρCov( X ,Y)1 1 5.XY DX DY 1 5 1 5方法二:X, Y的概率分布分别为X01Y01P 31P51 4466则 EX 1,EY1, DX3, DY=5, E(XY)=1, 461613612故 Cov ( X ,Y )E(XY)EX EY,从而24XY Cov( X ,Y )15 .DX DY15 (Ⅲ ) Z的可能取值为:0,1, 2.P{ Z0}P{ X0,Y0}2,31P{ Z1}P{ X1, Y0}P{ X0,Y1},41P{ Z2}P{ X1, Y1},12即 Z 的概率分布为:Z012P2113412【评注】本题考查了二维离散随机变量联合概率分布,数字特征和二维离散随机变量函数的分布等计算问题,属于综合性题型(23) ( 本题满分13 分 )设随机变量X 的分布函数为β1αx,F ( x, α,β)αxx,α,其中参数α 0, β1.设 X1,X2,, X n为来自总体X的简单随机样本,(Ⅰ )当α 1时 ,求未知参数β的矩估计量 ;(Ⅱ )当α 1时 ,求未知参数β的最大似然估计量 ;(Ⅲ )当β 2 时,求未知参数α的最大似然估计量 .【分析】本题是一个常规题型, 只要注意求连续型总体未知参数的矩估计和最大似然估计都须已知密度函数,从而先由分布函数求导得密度函数.【详解】当α 1 时, X 的概率密度为f(xβββ1 ,x1,,)xx1,0,(Ⅰ )由于ββEX xf ( x; β)dx1xx β 1dx,β 1令βX ,解得βX,β 1X1所以 , 参数β的矩估计量为βX. X1(Ⅱ )对于总体 X 的样本值x1, x2,, x n,似然函数为nnβL ( β) f (x i ;α)(x1x2x n)β 1,x i1(i 1,2, , n),i 10,其他.当 x i1(i1,2,, n) 时,L ( β)0,取对数得nln L( β)n ln β ( β 1)i 1ln x i,对β求导数,得d[ln L( β)]nnln x i ,d ββ i 1d[ln L ( β)]nn ln x i 0 ,n令解得 β n ,d ββ i 1ln xi i 1于是β的最大似然估计量为? βn n.ln x ii 1( Ⅲ ) 当 β2 时 , X 的概率密度为2α,f ( x, β)23 ,xxα, x,α对于总体 X 的样本值 x 1, x 2 ,, x n , 似然函数为n 2nn2 α, x i α(i 1,2, , n), L ( β)f (x i ; α)( x 1 x 2 x n ) 3 i 10, 其他 .当 x α(i1,2,, n)时 , ααi越大, L(α) 越大 , 即的最大似然估计值为α?m in{ x 1 , x 2 , , x n } ,于是 α的最大似然估计量为? , X 2 , , X n } . α min{ X 1。

2004-2012考研数学三答案含解析

2004-2012考研数学三答案含解析
【答】C) 【详解】设 0 < δ < 1,当 x ∈ (−δ , 0) ∪ (0 , δ)时,f (x) > 0,而 f (0) = 0,所以 x = 0 是 f (x)
的极小值点.
显然,x = 0 是 f (x)的不可导点. 当 x ∈ (−δ , 0)时,f (x) = −x(1 − x), f ′′(x) = 2 > 0 ,
(8) 设 f (x)在(−∞ , +∞)内有定义,且 lim f (x) = a ,
x→∞
g(
x)
=
⎪⎧ ⎨
f
(
1 x
)
,
x

0
,则
⎪⎩ 0 , x = 0
(A) x = 0 必是 g(x)的第一类间断点.
(B) x = 0 必是 g(x)的第二类间断点.
(C) x = 0 必是 g(x)的连续点.
互不相等的解,则对应的齐次线性方程组 Ax = 0 的基础解系
(A) 不存在.
(B) 仅含一个非零解向量.
(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量.
【答】 (B)
【】
【详解】 因为基础解系含向量的个数= n − r( A) , 而且
⎧n, r( A* ) = ⎪⎨1,
⎪⎩0,
x→0
1

cos 6x2
4x
.
=
lim
1 (4x)2 2
=
4
x→0 6x2
3
(16) (本题满分 8 分)
∫∫ 求 ( x2 + y2 + y)dσ ,其中 D 是由圆 x2 + y2 = 4 和 (x + 1)2 + y2 = 1 所围成的

2004年全国硕士研究生入学统一考试数学(三)试卷答案和评分参考

2004年全国硕士研究生入学统一考试数学(三)试卷答案和评分参考

2004年全国硕士研究生入学统一考试数学(三)试卷答案和评分参考2004年全国硕士研究生入学统一考试数学(三)试卷答案和评分参考一、填空题(本题共6小题,每小题4分,满分24分.把答案填写在题中横线上.)(1)若0sin lim(cos )5xx x x b e a→-=-,则a = 1 ,b = -4 .(2)函数(,)f u v 由关系式[(),]()f xg y y x g y =+确定,其中函数()g y 可微,且()0g y ≠,则2f u v=??2()[()]g v g v '-.(3)设21,2,()21,2,x xe x f x x ?-≤-≥?则212(1)f x dx -=?12-.(4)二次型222123122313(,,)()()()f x x x x x x x x x =++-++的秩为 2 . (5)设随机变量X 服从参数为λ的指数分布,则{P X >=1e.(6)设总体X 服从正态分布21(,)N μσ,总体Y 从正态分布2 2(,)N μσ,112,,,n X X X 和212,,,n Y Y Y 分别是来自总体X 和Y 的简单随机样本,则12221112()()2n n i j i j X X Y Y E n n ==??-+-??+-∑∑= 2σ . 二、选择题(本题共8小题,每小题4分,满分32分,在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后面的括号内.)(7)函数2sin(2)()(1)(2)x x f x x x x -=--在下列哪个区间内有界.(A)(1,0)-. (B)(0,1). (C)(1,2). (D)(2,3). 【 A 】(8)设()f x 在(,)-∞+∞内有定义,且lim ()x f x a →+∞=,1(),0,()0,0,f xg x xx ?≠?=??=?则(A)0x =必是()g x 的第一类间断点. (B )0x =必是()g x 的第二类间断点. (C )0x =必是()g x 的连续点.(D )()g x 在点0x =处的连续性与a 的取值有关. 【 D 】(9)设()(1),f x x x =-则(A)0x =是()f x 的极值点,但(0,0)不是曲线()y f x =的拐点. (B)0x =不是()f x 的极值点,但(0,0)是曲线()y f x =的拐点. (C)0x =是()f x 的极值点,且(0,0)是曲线()y f x =的拐点.(D)0x =不是()f x 的极值点,(0,0)也不是曲线()y f x =的拐点. 【 C 】(10)设有以下命题:①若()2121n n n u u ∞-=+∑收敛,则1n n u ∞=∑收敛.②若1n n u ∞=∑收敛,则10001n n u ∞+=∑收敛.③若1lim1n n nu u +→+∞>收敛,则1n n u ∞=∑发散.④若()1n n n u v ∞=+∑收敛,则11,n n n n u v ∞∞==∑∑都收敛. 【 B 】(11)设()f x '在[,]a b 上连续,且()0,()0f a f b ''><,则下列结论中错误..的是 (A)至少存在一点0(,)x a b ∈,使得0()()f x f a >. (B)至少存在一点0(,)x a b ∈,使得0()()f x f b >. (C)至少存在一点0(,)x a b ∈,使得0()0f x '=.(D)至少存在一点0(,)x a b ∈,使得0()0f x = 【 D 】(12)设n 阶矩阵A 与B 等价,则必有(A)当(0)A a a =≠时,B a =.(B)当(0)A a a =≠时,B a =-. (C)当0A ≠时,0B =.(D)当0A =时,0B =. 【 D 】 (13)设n 阶矩阵A 的伴随矩阵*0A ≠,若1234,,,ξξξξ是非齐次线性方程组Ax b =的互不相等的解,则对应的齐次线性方程0Ax =的基础解系(A)不存在. (B)仅含一个非零解向量.(C)含有两个线性无关的解向量. (D)含有三个线性无关的解向量. 【 B 】 (14)设随机变量X 服从正态分布(0,1)N ,对给定的(01)αα<<,数a u 满足{}a P X u α>=.若{}P X x α<=,则x 等于(A )2a u . (B )12-. (C )12a u -. (D )1a u - 【 C 】三、解答题(本题共9小题,满分94分,解答题应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分)求 22201cos lim sin x x x x →??-解 22201cos lim sin x x x x →??-22222sin cos limsin x x x xx x→-=22401sin 24limx x xx→-= ……2分01sin 44lim2x x xx→-= ……4分 201cos 4lim 6x x x→-= ……6分0sin 4lim 3x x x →= 4 3= ……8分 (16)(本题满分8分) 求)Dy d σ??,其中D 是由圆224x y +=和22 (1)1x y ++=所围成的平面区域(如图).解法1)))DD D y d y d y d σσσ=-大圆小圆……2分)D y d σ+??大圆D D yd σσ=+大大(根据对称性)2220d r dr πθ=+?=163π ……4分)D y d σ+??小圆D D yd σσ=+小小32cos 2220d r dr πθπθ-=+??329=,……7分所以)16(32)9Dy d σπ=-??……8分解法 2 由积分区域对称性和被积函数的奇偶性0Dyd σ=?? ……1分原式0Dσ=+??12D D σσ??=+上上2……2分22222002cos 22d r dr d r dr πππθθθ-??=+……5分4462()339ππ??=+- 16(32)9π=- ……8分[注]:1D σ??上定限1分,计算1分.D σ??上2定限1分,计算1分.(17)(本题满分8分)设(),()f x g x 在[,]a b 上连续,且满足()(),[,)x x a a f t dt g t dt x a b ≥∈??, ()(),b b a af t dtg t dt =证明:()().bb a axf x dx xg x dx ≤证令()()(),()(),x aF x f x g xG x F t dt =-=?由题设知()0,[,]G x x a b ≥∈()()0,()(),G a G b G x F x '=== ……2分从而()(),b b aaxF x dx xdG x =()(),b baaxG x G x dx =-(),baG x dx =-? ……4分由于()0,[,]G x x a b ≥∈,故有()0,ba G x dx -≤? ……6分即 ()0baxF x dx ≤?.因此 ()()bb aaxf x dx xg x dx ≤……8分(18)(本题满分9分)设某商品的需求函数为1005Q P =-,其中价格(0,20)P ∈,Q 为需求量. (I )求需求量对价格的弹性(0);d d E E > (II )推导(1)d dR Q E dP=-(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加.解 (I) 20d P P E Q Q P'==-. ……2分(II )由,R PQ =得dR Q P Q dP'=+(1)P Q Q Q'=+(1)d Q E =-. ……4分又由 120d P E P==-,得10P =. ……5分当1020P <<时,1d E >,于是0dR dP<. ……7分故当1020P <<时,降低价格反而使收益增加. ……9分(19)(本题满分9分)设级数468()242462468xxxx +++-∞<<+∞的和函数为()S x .求:(I )()S x 所满足的一阶微分方程;(II )()S x 的表达式. 解(I ) 468(),242462468xxxS x =+++易见(0)0.S = ……1分357()224246xxS x '=+++246224246x x xx ??=+++……2分 2().2x x S x ??=+……4分因此()S x 是初值问题3,(0)02xy xy y '=+=的解. ……4分(II )方程32xy xy '=+的通解为32xdx xdx x y e e dx c -=+222xxC e=--+, ……7分由初始条件(0)0y =,求的1C =. ……8分故22212xxy e=-+-,因此和函数222()12xxS x e=-+- ……9分(20)(本题满分13分)设123(1,2,0),(1,2,3),(1,2,2),(1,3,3)TTTTa ab a b αααβ==+-=---+=-. 试讨论当,a b 为何值时,(I )β不能够由123,,ααα线性表示;(II )β可由123,,ααα惟一线性表示,并求出表示式;(III )β可由123,,ααα惟一线性表示,但表示式不惟一,并求出表达式. 解设有数123,,k k k ,使得112233k k k αααβ++= (*)……1分记123(,,)A ααα=.对矩阵()A β施以初等行变换,有111122230323A a b aa b β?-?+-- ? ?-+-?()=010001a b ?→- ? ?-?……3分(I )当0a b =,为任意常数时,有111101000A a b a b β?-?→- ? ?-?()可知()()r A r A β≠,故方程组(*)无解,β不能由123,,ααα线性表示.……5分(II )当0,a ≠且a b ≠时,()()3r A r A β==,故方程组(*)有惟一解123111,,0k k k a a=-==,则β可由123,,ααα惟一地线性表示,其表示式为12111a aβαα?=-+ ……7分(III )当0a b =≠时,对A β()施以初等行变换,有110011011000a A a β??-→- ?(). ……9分可知()()2r A r A β==,故方程组(*)有无穷多解,其全部解为123111,,k k c k c a a ??=-=+=,其中c 为任意常数. β可由123,,ααα线性表示,但表示式不惟一,其表示式为……11分123111c c a a βααα?=-+++ ? ??. ……13分(21)(本题满分13分)设n 阶矩阵11b b A b b= ? ? ??(I )求A 的特征值和特征向量;(II )求可逆矩阵P ,使得1P AP -为对角矩阵. 解(I )1? 当0b ≠时,111bb b b E A bbλλλλ-------=---1[1(1)][(1)]n n b b λλ-=----- ……3分故A 的特征值为121(1),1.n n b b λλλ=+-===-对于11(1)n b λ=+-,设A 的属于特征值1λ的一个特征向量为1ξ,则1111[1(1)]1b b b bn b b bξξ?? ? ?=+- ? ? ??解得 1(1,1,,1)Tξ= ,所以全部特征向量为1(1,1,,1)Tk k ξ= (k 为任意非零常数)……5分对于21n b λλ===- ,解齐次线性方程组[(1)]0b E A x --=,由111000(1)000b b b b b b b E A b bb ----- ?--=→ ? ? ? ? ? ?---?,解得基础解系2(1,1,0,,0)Tξ=-3(1,0,1,,0)Tξ=-2(1,0,0,,1)Tξ=-故全部特征向量为2233n n k k k ξξξ+++ (2,,n k k 是不全为零的常数). ......7分2?当0b =时,特征11n λλ=== ,任意非零列向量均为特征向量. (9)分(II )1?当0b ≠时,A 有n 个线性无关的特征向量,令12(,,,)n P ξξξ= ,则{}11(1),1,,1.P AP diag n b b b -=+--- ……11分2?当0b =时,A E =,对任意可逆矩阵P ,均有1P AP E -= ……13分[注]: 1(1,1,,1)Tξ= 也可由求解齐次线性方程组1()0E A x λ-=得出.(22)(本题满分13分)设A B 、为两个随机事件,且111432PP P (A)=,(B A)=,(A B)=,令1,0,A X A ?=?发生,不发生; 1,0,B Y B ?=??,发生不发生. 求:(I )二维随机变量(,)X Y 的概率分布;(II )X 与Y 的相关系数X Y ρ;(III )22Z X Y =+的概率分布.解(I )()()()1,12P A B P A P B A ==()()()1,6P A B P B P B A == ……2分则{}(){}()()(){}()()(){}()11,1,1211,0,610,1,120,0P X Y P A B P X Y P A B P A P A B P X Y P AB P B P A B P X Y P A B========-=====-====()()()()211[]3P A B P A P B P AB =-=-+-= ,(或{}11120,01126123P X Y ===---=),……6分即 (,)X Y 的概率分布为(II )方法 1111(),(),(),4612EX P A EY P B E XY =====则1(,)()24C ov X Y E X Y E X E Y =-= 22222211(),4635(),(),1636E X P A E YP B D X E X E X D Y E Y E Y == ===-==-=(,)1XY C ov X Y ρ==……9分方法 2 ,X Y 的概率分布分别为X 01,Y 01.P3414P 5616则 111,,(),4612E X E Y E X Y ==而故 1(,)(),24C ov X Y E XY EX EY =-= 22222211,,4635(),(),1636E XE YD XE X E X D Y E Y E Y ===-==-=XY ρ==……9分(III )Z 的可能取值为012,,,{}{}{}{}{}200,0,3110,11,04P Z P X Y P Z P X Y P X Y =========+===,{}{}121,1,12P Z P X Y =====……13分即Z 的概率分布为Z 012.P2314112(23)(本题满分13分)设总体X 的分布函数为1,(;;)0,x F x x x βαααβα->? ?=≤?其中参数0,1,αβ>>设12,,,n X X X 为来自总体X 的简单随机样本.(I )当1α=时,求未知参数β的矩估计量;(II )当1α=时,求未知参数β的最大似然估计量;(III )当2β=时,求未知参数α的最大似然估计量. 解当1α=时,X 的概率密度为111,1,(;)0,1,x F x xx ββ+?->?=??≤?……1分(I )由于11(;),1EX xf x dx x dx xβββββ+∞+∞+-∞===-?……2分令1X ββ=-,解得1X X β=-,所以参数β的矩估计量为1X X β=- ……4分(II )对于总体X 的样本值12,,,n x x x ,似然函数为1121,1(1,2,,)()(;)()0,nni n i x i n L f x x x x βββα+=?>=?==??∏其他……6分当1(1,2,,)i x i n >= 时,()L β>0,取对数得1ln ()ln (1)ln ,ni i L n x βββ==-+∑两边对β求导,得1ln ()ln ,nii d L nx d βββ==-∑1ln ()0,ln nid xβββ===∑令,解得故β的最大似然估计量为1.ln nii nXβ==∑ ……9分(III )当2β=时,X 的概率密度为232,(;)0,x f x x x αααα>?=??≤?对于总体X 的样本值12,,,n x x x ,似然函数为31212,(1,2,,)()(;)()0,n nni n i x i n L f x x x x αααα=?>=?==??∏,……11分当(1,2,,)i x i n α>= 时,α越大,()L α越大,因而的最大似然估计值为{}12m in ,,,n x x x α= 则的最大似然估计量为{}12m in ,,,n X X X α= ……13分。

【数学三】2004年全国硕士研究生入学统一考试真题

【数学三】2004年全国硕士研究生入学统一考试真题

2004年考研数学(三)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若5)(cos sin lim 0=--→b x ae x x x ,则a =______,b =______. (2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则2f u v∂=∂∂. (3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4) 二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为 .(5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P _______.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎢⎥⎣⎦∑∑.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0).(B) (0 , 1). (C) (1 , 2). (D) (2 , 3). [ ] (8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim , ⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ,则 (A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ ](9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点.(B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点.(C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ ](10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim 1>+∞→n n n u u ,则∑∞=1n n u 发散.(4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是(A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4). [ ](11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是(A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ).(B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ).(C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0. [ D ](12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||.(C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ ](13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系(A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量. [ ](14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于(A) 2αu . (B) 21αu -. (C) 21αu -.(D) αu -1. [ ]三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.)(15) (本题满分8分)求)cos sin 1(lim 2220x xx x -→.(16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 22122=所围成的平面区域(如图).(17) (本题满分8分)设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥xa x a dt t g dt t f )()(,x ∈ [a ,b ),⎰⎰=ba b a dt t g dt t f )()(.证明:⎰⎰≤ba ba dx x xg dx x xf )()(.(18) (本题满分9分)设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量.(I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dP dR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加.(19) (本题满分9分)设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程;(II) S (x )的表达式.(20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, Tβ)3,3,1(-=, 试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式.(21) (本题满分13分)设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111 b b bb b b A .(Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵.(22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=A B P , 21)|(=B A P , 令⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y求(Ⅰ) 二维随机变量),(Y X 的概率分布;(Ⅱ) X 与Y 的相关系数 XY ρ;(Ⅲ) 22Y X Z +=的概率分布.(23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫⎝⎛-=,,,αx αx x αβαx F β0,1),,(其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量;(Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.。

2012年考研数学三真题及答案

2012年考研数学三真题及答案

2012年考研数学三真题一、选择题(18小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项是符合题目要求的。

)(1)曲线渐近线的条数为(A)0 (B)1(C)2 (D)3【答案】C。

【解析】由,得是曲线的一条水平渐近线且曲线没有斜渐近线;由得是曲线的一条垂直渐近线;由得不是曲线的渐近线;综上所述,本题正确答案是C【考点】高等数学—一元函数微分学—函数图形的凹凸、拐点及渐近线(2)设函数,其中为正整数,则(A)(B)(C)(D)【答案】A【解析】【方法1】令,则故应选A.【方法2】由于,由导数定义知.【方法3】排除法,令,则则(B)(C)(D)均不正确综上所述,本题正确答案是(A)【考点】高等数学—一元函数微分学—导数和微分的概念(3)设函数连续,则二次积分(A)(B)(C)(D)【答案】B。

【解析】令,则所对应的直角坐标方程为,所对应的直角坐标方程为。

由的积分区域得在直角坐标下的表示为所以综上所述,本题正确答案是(B)。

【考点】高等数学—多元函数微积分学—二重积分的概念、基本性质和计算(4)已知级数绝对收敛,级数条件收敛,则(A)(B)(C)(D)【答案】D。

【解析】由级数绝对收敛,且当时,故,即由级数条件收敛,知综上所述,本题正确答案是(D)【考点】高等数学—无穷级数—数项级数敛散性的判定(5)设,其中为任意常数,则下列向量组线性相关的为(A)(B)(C)(D)【答案】C。

【解析】个维向量相关显然所以必线性相关综上所述,本题正确答案是(C)。

【考点】线性代数—向量—向量组的线性相关和线性无关(6)设为3阶矩阵,为3阶可逆矩阵,且.若,则(A)(B)(C)(D)【答案】B。

【解析】由于经列变换(把第2列加至第1列)为,有那么=综上所述,本题正确答案是(B)。

【考点】线性代数—矩阵—矩阵运算、初等变换(7)设随机变量相互独立,且都服从区间上的均匀分布,则(A)(B)(C)(D)【答案】D。

2004年考研数学三真题及全面解析

2004年考研数学三真题及全面解析

2004年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若5)(cos sin lim 0=--→b x ae xx x ,则a =1,b =4-.【分析】本题属于已知极限求参数的反问题. 【详解】因为5)(cos sin lim0=--→b x a e xx x ,且0)(cos sin lim 0=-⋅→b x x x ,所以 0)(lim 0=-→a e x x ,得a = 1. 极限化为51)(cos lim )(cos sin lim00=-=-=--→→b b x xxb x a e x x x x ,得b = -4.因此,a = 1,b = -4. 【评注】一般地,已知)()(limx g x f = A , (1) 若g (x ) → 0,则f (x ) → 0;(2) 若f (x ) → 0,且A ≠ 0,则g (x ) → 0.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则)()(22v g v g vu f'-=∂∂∂.【分析】令u = xg (y ),v = y ,可得到f (u , v )的表达式,再求偏导数即可. 【详解】令u = xg (y ),v = y ,则f (u , v ) =)()(v g v g u+,所以,)(1v g u f =∂∂,)()(22v g v g v u f '-=∂∂∂.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则21)1(221-=-⎰dx x f .【分析】本题属于求分段函数的定积分,先换元:x - 1 = t ,再利用对称区间上奇偶函数的积分性质即可.【详解】令x - 1 = t ,⎰⎰⎰--==-121121221)()()1(dt x f dt t f dx x f=21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xe x .【评注】一般地,对于分段函数的定积分,按分界点划分积分区间进行求解. (4) 二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为 2 .【分析】二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换或配方法均可得到答案. 【详解一】因为213232221321)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=于是二次型的矩阵为 ⎪⎪⎪⎭⎫ ⎝⎛--=211121112A ,由初等变换得 ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→000330211330330211A ,从而 2)(=A r , 即二次型的秩为2.【详解二】因为213232221321)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=2322321)(23)2121(2x x x x x -+++= 2221232y y +=,其中 ,21213211x x x y ++= 322x x y -=.所以二次型的秩为2. (5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P e1.【分析】 根据指数分布的分布函数和方差立即得正确答案.【详解】 由于21λDX =, X 的分布函数为⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ 故=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=.【评注】本题是对重要分布, 即指数分布的考查, 属基本题型.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则22121212)()(21σn n Y Y X X E n j j n i i =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==. 【分析】利用正态总体下常用统计量的数字特征即可得答案.【详解】因为 2121])(11[1σX X n E n i i =--∑=, 2122])(11[2σY Y n E n j j=--∑=, 故应填 2σ.【评注】本题是对常用统计量的数字特征的考查.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0). (B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ A ]【分析】如f (x )在(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在(a , b )内有界.【详解】当x ≠ 0 , 1 , 2时,f (x )连续,而183sin )(lim 1-=+-→x f x ,42sin )(lim 0-=-→x f x ,42sin )(lim 0=+→x f x ,∞=→)(lim 1x f x ,∞=→)(lim 2x f x , 所以,函数f (x )在(-1 , 0)内有界,故选(A).【评注】一般地,如函数f (x )在闭区间[a , b ]上连续,则f (x )在闭区间[a , b ]上有界;如函数f (x )在开区间(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在开区间(a , b )内有界.(8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则(A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点. (C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ D ]【分析】考查极限)(lim 0x g x →是否存在,如存在,是否等于g (0)即可,通过换元x u 1=,可将极限)(lim 0x g x →转化为)(lim x f x ∞→.【详解】因为)(lim )1(lim )(lim 00u f x f x g u x x ∞→→→=== a (令x u 1=),又g (0) = 0,所以,当a = 0时,)0()(lim 0g x g x =→,即g (x )在点x = 0处连续,当a ≠ 0时,)0()(lim 0g x g x ≠→,即x = 0是g (x )的第一类间断点,因此,g (x )在点x = 0处的连续性与a 的取值有关,故选(D).【评注】本题属于基本题型,主要考查分段函数在分界点处的连续性. (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ C ]【分析】由于f (x )在x = 0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x )在x = 0的左、右两侧的二阶导数的符号,判断拐点情况.【详解】设0 < δ < 1,当x ∈ (-δ , 0) ⋃ (0 , δ)时,f (x ) > 0,而f (0) = 0,所以x = 0是f (x )的极小值点. 显然,x = 0是f (x )的不可导点. 当x ∈ (-δ , 0)时,f (x ) = -x (1 - x ),02)(>=''x f ,当x ∈ (0 , δ)时,f (x ) = x (1 - x ),02)(<-=''x f ,所以(0 , 0)是曲线y = f (x )的拐点.故选(C).【评注】对于极值情况,也可考查f (x )在x = 0的某空心邻域内的一阶导数的符号来判断. (10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim 1>+∞→nn n u u ,则∑∞=1n n u 发散.(4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是(A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4). [ B ]【分析】可以通过举反例及级数的性质来说明4个命题的正确性.【详解】(1)是错误的,如令nn u )1(-=,显然,∑∞=1n n u 分散,而∑∞=-+1212)(n n n u u 收敛.(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性.(3)是正确的,因为由1lim 1>+∞→nn n u u 可得到n u 不趋向于零(n → ∞),所以∑∞=1n n u 发散.(4)是错误的,如令n v n u n n 1,1-==,显然,∑∞=1n n u ,∑∞=1n n v 都发散,而∑∞=+1)(n n n v u 收敛. 故选(B).【评注】本题主要考查级数的性质与收敛性的判别法,属于基本题型.(11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项. 【详解】首先,由已知)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ;另外,0)()(lim)(>--='+→ax a f x f a f a x ,由极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >. 同理,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以,(A) (B) (C)都正确,故选(D).【评注】 本题综合考查了介值定理与极限的保号性,有一定的难度.(12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||.(C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ D ] 【分析】 利用矩阵A 与B 等价的充要条件: )()(B r A r =立即可得.【详解】因为当0||=A 时, n A r <)(, 又 A 与B 等价, 故n B r <)(, 即0||=B , 故选(D). 【评注】本题是对矩阵等价、行列式的考查, 属基本题型.(13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的 互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量. [ B ] 【分析】 要确定基础解系含向量的个数, 实际上只要确定未知数的个数和系数矩阵的秩. 【详解】 因为基础解系含向量的个数=)(A r n -, 而且⎪⎩⎪⎨⎧-<-===.1)(,0,1)(,1,)(,)(*n A r n A r n A r n A r根据已知条件,0*≠A 于是)(A r 等于n 或1-n . 又b Ax =有互不相等的解, 即解不惟一, 故1)(-=n A r . 从而基础解系仅含一个解向量, 即选(B).【评注】本题是对矩阵A 与其伴随矩阵*A 的秩之间的关系、线性方程组解的结构等多个知识点的综合考查.(14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ C ]【分析】 利用标准正态分布密度曲线的对称性和几何意义即得. 【详解】 由αx X P =<}|{|, 以及标准正态分布密度曲线的对称性可得21}{αx X P -=>. 故正确答案为(C). 【评注】本题是对标准正态分布的性质, 严格地说它的上分位数概念的考查.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→. 【分析】先通分化为“0”型极限,再利用等价无穷小与罗必达法则求解即可.【详解】xx xx x x x x x x 2222202220sin cos sin lim )cos sin 1(lim -=-→→ =346)4(21lim 64cos 1lim 44sin 212lim 2sin 41lim 22020304220==-=-=-→→→→xx x x x x x x x x x x x x . 【评注】本题属于求未定式极限的基本题型,对于“0”型极限,应充分利用等价无穷小替换来简化计算.(16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域(如图).【分析】首先,将积分区域D 分为大圆}4|),{(221≤+=y x y x D 减去小圆}1)1(|),{(222≤++=y x y x D ,再利用对称性与极坐标计算即可.【详解】令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D ,由对称性,0=⎰⎰Dyd σ.⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr r d . )23(916932316-=-=ππ所以,)23(916)(22-=++⎰⎰πσDd y y x . 【评注】本题属于在极坐标系下计算二重积分的基本题型,对于二重积分,经常利用对称性及将一个复杂区域划分为两个或三个简单区域来简化计算. (17) (本题满分8分)设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤bab adx x xg dx x xf )()(.【分析】令F (x ) = f (x ) - g (x ),⎰=x a dt t F x G )()(,将积分不等式转化为函数不等式即可.【详解】令F (x ) = f (x ) - g (x ),⎰=xadt t F x G )()(, 由题设G (x ) ≥ 0,x ∈ [a , b ],G (a ) = G (b ) = 0,)()(x F x G ='.从而 ⎰⎰⎰⎰-=-==bababa babadx x G dx x G x xG x xdG dx x xF )()()()()(, 由于 G (x ) ≥ 0,x ∈ [a , b ],故有0)(≤-⎰ba dx x G ,即 0)(≤⎰b adx x xF .因此 ⎰⎰≤babadx x xg dx x xf )()(.【评注】引入变限积分转化为函数等式或不等式是证明积分等式或不等式的常用的方法. (18) (本题满分9分)设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加.【分析】由于d E > 0,所以dP dQ Q P E d =;由Q = PQ 及dPdQQ P E d =可推导 )1(d E Q dPdR-=. 【详解】(I) PPdP dQ Q P E d -==20. (II) 由R = PQ ,得)1()1(d E Q dP dQ Q P Q dP dQ P Q dP dR -=+=+=. 又由120=-=PPE d ,得P = 10. 当10 < P < 20时,d E > 1,于是0<dPdR,故当10 < P < 20时,降低价格反而使收益增加.【评注】当d E > 0时,需求量对价格的弹性公式为dPdQQ P dP dQ Q P E d -==. 利用需求弹性分析收益的变化情况有以下四个常用的公式:Qdp E dR d )1(-=,Q E dp dR d )1(-=,p E dQ dR d)11(-=, d E EpER-=1(收益对价格的弹性). (19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x 的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式.【分析】对S (x )进行求导,可得到S (x )所满足的一阶微分方程,解方程可得S (x )的表达式.【详解】(I) +⋅⋅⋅+⋅⋅+⋅=864264242)(864x x x x S ,易见 S (0) = 0,+⋅⋅+⋅+='642422)(753x x x x S)642422(642 +⋅⋅+⋅+=x x x x)](2[2x S x x +=.因此S (x )是初值问题0)0(,23=+='y x xy y 的解.(II) 方程23x xy y +='的通解为]2[3C dx e x ey xdx xdx+⎰⎰=⎰-22212x Ce x +--=,由初始条件y(0) = 0,得C = 1.故12222-+-=x e x y ,因此和函数12)(222-+-=x e x x S .【评注】本题综合了级数求和问题与微分方程问题,2002年考过类似的题. (20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, T β)3,3,1(-=, 试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式.【分析】将β可否由321,,ααα线性表示的问题转化为线性方程组βαk αk αk =++332211是否有解的问题即易求解. 【详解】 设有数,,,321k k k 使得βαk αk αk =++332211. (*) 记),,(321αααA =. 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+-=323032221111),(b a a b a βA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111b a b a . (Ⅰ) 当0=a 时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→10001001111),(b βA . 可知),()(βA r A r ≠. 故方程组(*)无解, β不能由321,,ααα线性表示. (Ⅱ) 当0≠a , 且b a ≠时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→0100101011001a a 3),()(==βA r A r , 方程组(*)有唯一解: ak 111-=, a k 12=, 03=k .此时β可由321,,ααα唯一地线性表示, 其表示式为211)11(αaαa β+-=.(Ⅲ) 当0≠=b a 时, 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→0000111011001a a , 2),()(==βA r A r , 方程组(*)有无穷多解, 其全部解为a k 111-=, c ak +=12, c k =3, 其中c 为任意常数. β 可由321,,ααα线性表示, 但表示式不唯一, 其表示式为 321)1()11(αc αc aαa β+++-=.【评注】本题属于常规题型, 曾考过两次(1991, 2000). (21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=111 b b b bb b A . (Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵.【分析】这是具体矩阵的特征值和特征向量的计算问题, 通常可由求解特征方程0||=-A E λ和齐次线性方程组0)(=-x A E λ来解决.【详解】 (Ⅰ) 1当0≠b 时,111||---------=-λb b bλb b b λA E λ =1)]1(][)1(1[------n b λb n λ ,得A 的特征值为b n λ)1(11-+=,b λλn -===12 . 对b n λ)1(11-+=,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=-b n b b b b n b b b b n A E λ)1()1()1(1→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------)1(111)1(111)1(n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------0000111111111111n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------0000111111111111n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---000000001111n n n n n →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---0000110010101001解得T ξ)1,,1,1,1(1 =,所以A 的属于1λ的全部特征向量为 T k ξk )1,,1,1,1(1 = (k 为任意不为零的常数). 对b λ-=12,⎪⎪⎪⎪⎪⎭⎫⎝⎛---------=-b b b b b b b b b A E λ 2→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛000000111 得基础解系为T ξ)0,,0,1,1(2 -=,T ξ)0,,1,0,1(3 -=,T n ξ)1,,0,0,1(,-= .故A 的属于2λ的全部特征向量为n n ξk ξk ξk +++ 3322 (n k k k ,,,32 是不全为零的常数).2 当0=b 时,n λλλλA E λ)1(100010001||-=---=- ,特征值为11===n λλ ,任意非零列向量均为特征向量.(Ⅱ) 1当0≠b 时,A 有n 个线性无关的特征向量,令),,,(21n ξξξP =,则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---+=-b b b n AP P 11)1(112 当0=b 时,E A =,对任意可逆矩阵P , 均有E AP P =-1.【评注】本题通过考查矩阵的特征值和特征向量而间接考查了行列式的计算, 齐次线性方程组的求解和矩阵的对角化等问题, 属于有一点综合性的试题. 另外,本题的解题思路是容易的, 只要注意矩阵中含有一个未知参数, 从而一般要讨论其不同取值情况. (22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=A B P , 21)|(=B A P , 令⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布.【分析】本题的关键是求出),(Y X 的概率分布,于是只要将二维随机变量),(Y X 的各取值对转化为随机事件A 和B 表示即可.【详解】 (Ⅰ) 因为 121)|()()(==A B P A P AB P , 于是 61)|()()(==B A P AB P B P , 则有 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , 121)()()(}1,0{=-====AB P B P B A P Y X P ,32)]()()([1)(1)(}0,0{=-+-=⋃-=⋅===AB P B P A P B A P B A P Y X P , ( 或 32121611211}0,0{=---===Y X P ), 即),(Y X 的概率分布为:YX0 1 0 132 12161 121(Ⅱ) 方法一:因为 41)(==A P EX ,61)(==B P EY ,121)(=XY E , 41)(2==A P EX ,61)(2==B P EY ,163)(22=-=EX EX DX ,165)(22=-=EY EY DY ,241)(),(=-=EXEY XY E Y X Cov ,所以X 与Y 的相关系数 1515151),(==⋅=DYDX Y X Cov ρXY . 方法二: X, Y 的概率分布分别为X 0 1 Y 0 1P 43 41 P 65 61则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ(Ⅲ) Z 的可能取值为:0,1,2 .32}0,0{}0{=====Y X P Z P ,41}1,0{}0,1{}1{===+====Y X P Y X P Z P , 121}1,1{}2{=====Y X P Z P , 即Z 的概率分布为:Z0 1 2P3241 121 【评注】本题考查了二维离散随机变量联合概率分布,数字特征和二维离散随机变量函数的分布等计算问题,属于综合性题型 (23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.【分析】本题是一个常规题型, 只要注意求连续型总体未知参数的矩估计和最大似然估计都须已知密度函数, 从而先由分布函数求导得密度函数. 【详解】 当1=α时, X 的概率密度为⎪⎩⎪⎨⎧≤>=+,,,101,),(1x x x ββx f β(Ⅰ) 由于⎰⎰+∞++∞∞--=⋅==11,1);(ββdx x βx dx βx xf EX β 令X ββ=-1, 解得 1-=X Xβ,所以, 参数β的矩估计量为 1-=X Xβ. (Ⅱ) 对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=+⎪⎩⎪⎨⎧=>==ni i βn ni n i x x x x βαx f βL 1121.,0),,,2,1(1,)();()(其他当),,2,1(1n i x i =>时, 0)(>βL , 取对数得 ∑=+-=ni i x ββn βL 1ln )1(ln )(ln ,对β求导数,得∑=-=ni i x βn βd βL d 1ln )]([ln ,令 0ln )]([ln 1=-=∑=ni i x βn βd βL d , 解得 ∑==ni ixnβ1ln ,于是β的最大似然估计量为∑==ni ixnβ1ln ˆ.( Ⅲ) 当2=β时, X 的概率密度为⎪⎩⎪⎨⎧≤>=,,,αx αx x αβx f 0,2),(32对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=⎪⎩⎪⎨⎧=>==ni i n nn i n i αx x x x ααx f βL 13212.,0),,,2,1(,)(2);()(其他当),,2,1(n i αx i =>时, α越大,)(αL 越大, 即α的最大似然估计值为},,,m i n {ˆ21n x x x α =, 于是α的最大似然估计量为},,,min{ˆ21n X X X α=.。

2004年考研数学三真题及答案解析

2004年考研数学三真题及答案解析

dR
(II) 推导
dP
Q(1 Ed ) (其中 R 为收益 ),并用弹性 Ed 说明价格在何范围内变化时,
降低价格反而使收益增加 .
(19) ( 本题满分 9 分 ) 设级数 的和函数为 S(x). 求:
(I) S(x)所满足的一阶微分方程; (II) S(x)的表达式 . (20)( 本题满分 13 分 )
n1
2
n2
2
(Xi X)
(Yj Y)
i1
j1
E
n1 n2 2
σ2 .
【分析 】利用正态总体下常用统计量的数字特征即可得答案
.
1 n1
【详解 】因为
E[ n1
1 i 1 (Xi
X ) 2]
σ2 ,
1 n2
E[ n2
1
j
(Yj
1
Y) 2]
σ2 ,
故应填 σ2 .
【评注 】本题是对常用统计量的数字特征的考查 . 二、选择题 (本题共 6 小题,每小题 4 分,满分 24 分 . 每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内)
(Ⅲ ) β可由 α1 ,α2 , α3 线性表示 , 但表示式不唯一 , 并求出表示式 .
(21) ( 本题满分 13 分 )
设 n 阶矩阵
A
1b b1
b
b
.
bb
1
(Ⅰ ) 求 A 的特征值和特征向量 ;
(Ⅱ ) 求可逆矩阵 P , 使得 P 1 AP为对角矩阵 .
(22) ( 本题满分 13 分 )
(A) 至少存在一点 x0 ( a,b) ,使得 f ( x0 ) > f (a).

2004考研数学三真题及答案

2004考研数学三真题及答案

2004考研数学三真题及答案一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim0=--→b x ae xx x ,则a =______,b =______.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ? 0,则2fu v∂=∂∂.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4) 二次型2132********)()()(),,(x x x x x x x x x f ++-++=的秩为 .(5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P _______.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎢⎥⎣⎦∑∑.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (?1 , 0). (B) (0 , 1).(C) (1 , 2).(D) (2 , 3).[ ](8) 设f (x )在(?? , +?)内有定义,且a x f x =∞→)(lim , ⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ,则(A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ ] (9) 设f (x ) = |x (1 ? x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点.[ ] (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点.(C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点.(10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散. (4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是(A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4).[ ](11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ](12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ ] (13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量.[ ](14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于(A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1.[ ]三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→. (16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的 平面区域(如图).(17) (本题满分8分)设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ? [a , b ),⎰⎰=bab at g dt t f ()(证明:⎰⎰≤baba dx x xg dx x xf )()(.(18) (本题满分9分)设某商品的需求函数为Q = 100 ? 5P ,其中价格P ? (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加. (19) (本题满分9分) 设级数的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式. (20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, Tβ)3,3,1(-=,试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式. (21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111b b b b b b A . (Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵. (22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=A B P , 21)|(=B A P , 令 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布. (23) (本题满分13分)设随机变量X 的分布函数为其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.参考答案一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim0=--→b x ae xx x ,则a =1,b =4-.【分析】本题属于已知极限求参数的反问题. 【详解】因为5)(cos sin lim0=--→b x a e xx x ,且0)(cos sin lim 0=-⋅→b x x x ,所以0)(lim 0=-→a e x x ,得a = 1. 极限化为51)(cos lim )(cos sin lim00=-=-=--→→b b x x xb x a e x x x x ,得b = ?4.因此,a = 1,b = ?4. 【评注】一般地,已知)()(limx g x f = A , (1) 若g (x ) ? 0,则f (x ) ? 0;(2) 若f (x ) ? 0,且A ? 0,则g (x ) ? 0.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ? 0,则)()(22v g v g vu f'-=∂∂∂.【分析】令u = xg (y ),v = y ,可得到f (u , v )的表达式,再求偏导数即可. 【详解】令u = xg (y ),v = y ,则f (u , v ) =)()(v g v g u+,所以,)(1v g u f =∂∂,)()(22v g v g v u f '-=∂∂∂. (3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则21)1(221-=-⎰dx x f .【分析】本题属于求分段函数的定积分,先换元:x ? 1 = t ,再利用对称区间上奇偶函数的积分性质即可. 【详解】令x ? 1 = t ,⎰⎰⎰--==-121121221)()()1(dt x f dt t f dx x f=21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xe x .【评注】一般地,对于分段函数的定积分,按分界点划分积分区间进行求解.(4) 二次型2132********)()()(),,(x x x x x x x x x f ++-++=的秩为 2 .【分析】二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换或配方法均可得到答案.【详解一】因为2132********)()()(),,(x x x x x x x x x f ++-++=于是二次型的矩阵为 ⎪⎪⎪⎭⎫ ⎝⎛--=211121112A ,由初等变换得 ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→000330211330330211A ,从而 2)(=A r , 即二次型的秩为2.【详解二】因为2132********)()()(),,(x x x x x x x x x f ++-++=2221232y y +=, 其中 ,21213211x x x y ++= 322x x y -=. 所以二次型的秩为2.(5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P e1.【分析】 根据指数分布的分布函数和方差立即得正确答案. 【详解】 由于21λDX =, X 的分布函数为 故=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=.【评注】本题是对重要分布, 即指数分布的考查, 属基本题型.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则22121212)()(21σn n Y Y X X E n j j n i i =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==.【分析】利用正态总体下常用统计量的数字特征即可得答案.【详解】因为 2121])(11[1σX X n E n i i =--∑=, 2122])(11[2σY Y n E n j j =--∑=, 故应填 2σ.【评注】本题是对常用统计量的数字特征的考查.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (?1 , 0). (B) (0 , 1).(C) (1 , 2).(D) (2 , 3).[ A ]【分析】如f (x )在(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在(a , b )内有界.【详解】当x ? 0 , 1 , 2时,f (x )连续,而183sin )(lim1-=+-→x f x ,42sin )(lim 0-=-→x f x ,42sin )(lim 0=+→x f x ,∞=→)(lim 1x f x ,∞=→)(lim 2x f x , 所以,函数f (x )在(?1 , 0)内有界,故选(A).【评注】一般地,如函数f (x )在闭区间[a , b ]上连续,则f (x )在闭区间[a , b ]上有界;如函数f (x )在开区间(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在开区间(a , b )内有界.(8) 设f (x )在(?? , +?)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则 (A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ D ] 【分析】考查极限)(lim 0x g x →是否存在,如存在,是否等于g (0)即可,通过换元xu 1=, 可将极限)(lim 0x g x →转化为)(lim x f x ∞→.【详解】因为)(lim )1(lim )(lim 0u f x f x g u x x ∞→→→=== a (令xu 1=),又g (0) = 0,所以,当a = 0时,)0()(lim 0g x g x =→,即g (x )在点x = 0处连续,当a ? 0时,)0()(lim 0g x g x ≠→,即x = 0是g (x )的第一类间断点,因此,g (x )在点x = 0处的连续性与a 的取值有关,故选(D).【评注】本题属于基本题型,主要考查分段函数在分界点处的连续性. (9) 设f (x ) = |x (1 ? x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ C ]【分析】由于f (x )在x = 0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x )在x = 0的左、右两侧的二阶导数的符号,判断拐点情况.【详解】设0 < ? < 1,当x ? (?? , 0) ? (0 , ?)时,f (x ) > 0,而f (0) = 0,所以x = 0是f (x )的极小值点. 显然,x = 0是f (x )的不可导点. 当x ? (?? , 0)时,f (x ) = ?x (1 ? x ),02)(>=''x f ,当x ? (0 , ?)时,f (x ) = x (1 ? x ),02)(<-=''x f ,所以(0 , 0)是曲线y = f (x )的拐点.故选(C).【评注】对于极值情况,也可考查f (x )在x = 0的某空心邻域内的一阶导数的符号来判断. (10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散. (4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是(A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4).[ B ]【分析】可以通过举反例及级数的性质来说明4个命题的正确性. 【详解】(1)是错误的,如令nn u )1(-=,显然,∑∞=1n n u 分散,而∑∞=-+1212)(n n n u u 收敛.(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性.(3)是正确的,因为由1lim1>+∞→nn n u u 可得到n u 不趋向于零(n ? ?),所以∑∞=1n n u 发散. (4)是错误的,如令n v n u n n 1,1-==,显然,∑∞=1n n u ,∑∞=1n n v 都发散,而∑∞=+1)(n n n v u 收敛. 故选(B).【评注】本题主要考查级数的性质与收敛性的判别法,属于基本题型.(11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项. 【详解】首先,由已知)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ;另外,0)()(lim)(>--='+→ax a f x f a f a x ,由极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >. 同理,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以,(A) (B) (C)都正确,故选(D).【评注】 本题综合考查了介值定理与极限的保号性,有一定的难度. (12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ D ] 【分析】 利用矩阵A 与B 等价的充要条件: )()(B r A r =立即可得.【详解】因为当0||=A 时, n A r <)(, 又 A 与B 等价, 故n B r <)(, 即0||=B , 故选(D).【评注】本题是对矩阵等价、行列式的考查, 属基本题型.(13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的 互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量. [ B ]【分析】 要确定基础解系含向量的个数, 实际上只要确定未知数的个数和系数矩阵的秩. 【详解】 因为基础解系含向量的个数=)(A r n -, 而且根据已知条件,0*≠A 于是)(A r 等于n 或1-n . 又b Ax =有互不相等的解, 即解不惟一, 故1)(-=n A r . 从而基础解系仅含一个解向量, 即选(B).【评注】本题是对矩阵A 与其伴随矩阵*A 的秩之间的关系、线性方程组解的结构等多个知识点的综合考查.(14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1.[ C ]【分析】 利用标准正态分布密度曲线的对称性和几何意义即得. 【详解】 由αx X P =<}|{|, 以及标准正态分布密度曲线的对称性可得21}{αx X P -=>. 故正确答案为(C). 【评注】本题是对标准正态分布的性质, 严格地说它的上分位数概念的考查.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→. 【分析】先通分化为“”型极限,再利用等价无穷小与罗必达法则求解即可. 【详解】xx xx x x x x x x 2222202220sin cos sin lim )cos sin 1(lim -=-→→=346)4(21lim 64cos 1lim 44sin 212lim 2sin 41lim 22020304220==-=-=-→→→→x x x x x x x x x x x x x x . 【评注】本题属于求未定式极限的基本题型,对于“0”型极限,应充分利用等价无穷小替换来简化计算. (16) (本题满分8分) 求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域(如图).【分析】首先,将积分区域D 分为大圆}4|),{(221≤+=y x y x D 减去小圆}1)1(|),{(222≤++=y x y x D ,再利用对称性与极坐标计算即可.【详解】令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D ,由对称性,0=⎰⎰Dyd σ.⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr r d .所以,)23(916)(22-=++⎰⎰πσDd y y x . 【评注】本题属于在极坐标系下计算二重积分的基本题型,对于二重积分,经常利用对称性及将一个复杂区域划分为两个或三个简单区域来简化计算. (17) (本题满分8分)设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ? [a , b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤baba dx x xg dx x xf )()(.【分析】令F (x ) = f (x ) ? g (x ),⎰=xa dt t F x G )()(,将积分不等式转化为函数不等式即可.【详解】令F (x ) = f (x ) ? g (x ),⎰=xa dt t F x G )()(,由题设G (x ) ? 0,x ? [a , b ],G (a ) = G (b ) = 0,)()(x F x G ='.从而⎰⎰⎰⎰-=-==bab aba babadx x G dx x G x xG x xdG dx x xF )()()()()(,由于 G (x ) ? 0,x ? [a , b ],故有 0)(≤-⎰badx x G ,即0)(≤⎰ba dx x xF .因此⎰⎰≤babadx x xg dx x xf )()(.【评注】引入变限积分转化为函数等式或不等式是证明积分等式或不等式的常用的方法. (18) (本题满分9分)设某商品的需求函数为Q = 100 ? 5P ,其中价格P ? (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加. 【分析】由于d E > 0,所以dP dQ Q P E d =;由Q = PQ 及dPdQQ P E d =可推导 )1(d E Q dPdR-=. 【详解】(I) PPdP dQ Q P E d -==20. (II) 由R = PQ ,得)1()1(d E Q dPdQ Q P Q dP dQ P Q dP dR -=+=+=. 又由120=-=PPE d ,得P = 10.当10 < P < 20时,d E > 1,于是0<dPdR,故当10 < P < 20时,降低价格反而使收益增加.【评注】当d E > 0时,需求量对价格的弹性公式为dPdQQ P dP dQ Q P E d -==. 利用需求弹性分析收益的变化情况有以下四个常用的公式:Qdp E dR d )1(-=,Q E dpdRd )1(-=,p E dQ dR d )11(-=, d E EpER-=1(收益对价格的弹性). (19) (本题满分9分) 设级数的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式. 【分析】对S (x )进行求导,可得到S (x )所满足的一阶微分方程,解方程可得S (x )的表达式.【详解】(I) +⋅⋅⋅+⋅⋅+⋅=864264242)(864x x x x S , 易见 S (0) = 0,)](2[2x S x x +=.因此S (x )是初值问题0)0(,23=+='y x xy y 的解.(II) 方程23x xy y +='的通解为22212x Ce x +--=,由初始条件y(0) = 0,得C = 1.故12222-+-=x e x y ,因此和函数12)(222-+-=x e x x S .【评注】本题综合了级数求和问题与微分方程问题,2002年考过类似的题. (20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, Tβ)3,3,1(-=,试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式.【分析】将β可否由321,,ααα线性表示的问题转化为线性方程组βαk αk αk =++332211是否有解的问题即易求解. 【详解】 设有数,,,321k k k 使得βαk αk αk =++332211. (*) 记),,(321αααA =. 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+-=323032221111),(b a a b a βA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111b a b a .(Ⅰ) 当0=a 时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→10001001111),(b βA . 可知),()(βA r A r ≠. 故方程组(*)无解, β不能由321,,ααα线性表示. (Ⅱ) 当0≠a , 且b a ≠时, 有3),()(==βA r A r , 方程组(*)有唯一解:ak 111-=, a k 12=, 03=k .此时β可由321,,ααα唯一地线性表示, 其表示式为 211)11(αaαa β+-=. (Ⅲ) 当0≠=b a 时, 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→0000111011001a a , 2),()(==βA r A r , 方程组(*)有无穷多解, 其全部解为a k 111-=, c ak +=12, c k =3, 其中c 为任意常数. β 可由321,,ααα线性表示, 但表示式不唯一, 其表示式为321)1()11(αc αc aαa β+++-=. 【评注】本题属于常规题型, 曾考过两次(1991, 2000).(21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111 b b b b b b A .(Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵.【分析】这是具体矩阵的特征值和特征向量的计算问题, 通常可由求解特征方程0||=-A E λ和齐次线性方程组0)(=-x A E λ来解决.【详解】 (Ⅰ)1当0≠b 时,=1)]1(][)1(1[------n b λb n λ ,得A 的特征值为b n λ)1(11-+=,b λλn -===12 . 对b n λ)1(11-+=,解得Tξ)1,,1,1,1(1 =,所以A 的属于1λ的全部特征向量为 Tk ξk )1,,1,1,1(1 = (k 为任意不为零的常数). 对b λ-=12, 得基础解系为T ξ)0,,0,1,1(2 -=,T ξ)0,,1,0,1(3 -=,T n ξ)1,,0,0,1(,-= .故A 的属于2λ的全部特征向量为n n ξk ξk ξk +++ 3322 (n k k k ,,,32 是不全为零的常数).2 当0=b 时,n λλλλA E λ)1(1010001||-=---=-,特征值为11===n λλ ,任意非零列向量均为特征向量.(Ⅱ)1当0≠b 时,A 有n 个线性无关的特征向量,令),,,(21n ξξξP =,则2 当0=b 时,E A =,对任意可逆矩阵P , 均有E AP P =-1.【评注】本题通过考查矩阵的特征值和特征向量而间接考查了行列式的计算, 齐次线性方程组的求解和矩阵的对角化等问题, 属于有一点综合性的试题. 另外,本题的解题思路是容易的, 只要注意矩阵中含有一个未知参数, 从而一般要讨论其不同取值情况. (22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=A B P , 21)|(=B A P , 令 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布.【分析】本题的关键是求出),(Y X 的概率分布,于是只要将二维随机变量),(Y X 的各取值对转化为随机事件A 和B 表示即可.【详解】 (Ⅰ) 因为 121)|()()(==A B P A P AB P , 于是 61)|()()(==B A P AB P B P , 则有 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , 121)()()(}1,0{=-====AB P B P B A P Y X P , 32)]()()([1)(1)(}0,0{=-+-=⋃-=⋅===AB P B P A P B A P B A P Y X P , ( 或 32121611211}0,0{=---===Y X P ), 即),(Y X 的概率分布为:(Ⅱ) 方法一:因为 4)(==A P EX ,6)(==B P EY ,12)(=XY E , 41)(2==A P EX ,61)(2==B P EY ,163)(22=-=EX EX DX ,165)(22=-=EY EY DY ,241)(),(=-=EXEY XY E Y X Cov ,所以X 与Y 的相关系数 1515151),(==⋅=DYDX Y X Cov ρXY . 方法二: X, Y 的概率分布分别为X 0 1 Y 0 1P43 41 P 65 61 则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而(Ⅲ) Z 的可能取值为:0,1,2 .32}0,0{}0{=====Y X P Z P ,41}1,0{}0,1{}1{===+====Y X P Y X P Z P , 121}1,1{}2{=====Y X P Z P , 即Z 的概率分布为:【评注分布等计算问题,属于综合性题型 (23) (本题满分13分)设随机变量X 的分布函数为其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.【分析】本题是一个常规题型, 只要注意求连续型总体未知参数的矩估计和最大似然估计都须已知密度函数, 从而先由分布函数求导得密度函数. 【详解】 当1=α时, X 的概率密度为 (Ⅰ) 由于 令X ββ=-1, 解得 1-=X X β, 所以, 参数β的矩估计量为 1-=X Xβ. (Ⅱ) 对于总体X 的样本值n x x x ,,,21 , 似然函数为 当),,2,1(1n i x i =>时, 0)(>βL , 取对数得 ∑=+-=ni ixββn βL 1ln )1(ln )(ln ,对β求导数,得∑=-=ni i x βn βd βL d 1ln )]([ln ,令0ln )]([ln 1=-=∑=ni i x βn βd βL d , 解得 ∑==ni ixnβ1ln ,于是β的最大似然估计量为∑==ni ixnβ1ln ˆ.( Ⅲ) 当2=β时, X 的概率密度为对于总体X 的样本值n x x x ,,,21 , 似然函数为当),,2,1(n i αx i =>时, α越大,)(αL 越大, 即α的最大似然估计值为},,,m in{ˆ21n x x x α=, 于是α的最大似然估计量为},,,m in{ˆ21n X X X α=.。

2004全国硕士研究生入学统一考试数学三试题及答案详解

2004全国硕士研究生入学统一考试数学三试题及答案详解

2004年数学三试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim=--→b x ae x xx ,则a =1,b =4-.【分析】本题属于已知极限求参数的反问题. 【详解】因为5)(cos sin lim=--→b x ae x xx ,且0)(cos sin lim 0=-⋅→b x x x ,所以0)(lim 0=-→a e xx ,得a = 1. 极限化为51)(cos lim)(cos sin lim=-=-=--→→b b x xx b x ae x x xx ,得b = -4.因此,a = 1,b = -4. 【评注】一般地,已知)()(limx g x f = A ,(1) 若g (x ) → 0,则f (x ) → 0;(2) 若f (x ) → 0,且A ≠ 0,则g (x ) → 0.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则)()(22v g v g vu f '-=∂∂∂.【分析】令u = xg (y ),v = y ,可得到f (u , v )的表达式,再求偏导数即可. 【详解】令u = xg (y ),v = y ,则f (u , v ) =)()(v g v g u +,所以,)(1v g uf =∂∂,)()(22v g v g vu f '-=∂∂∂.【评注】 本题属基本题型.类似例题在一般教科书上均可找到.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则21)1(221-=-⎰dx x f .【分析】本题属于求分段函数的定积分,先换元:x - 1 = t ,再利用对称区间上奇偶函数的积分性质即可.【详解】令x - 1 = t ,⎰⎰⎰--==-121121221)()()1(dt x f dt t f dx x f=21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xex.【评注】一般地,对于分段函数的定积分,按分界点划分积分区间进行求解.(4) 二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为 2 .【分析】二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换或配方法均可得到答案. 【详解一】因为213232221321)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=于是二次型的矩阵为 ⎪⎪⎪⎭⎫⎝⎛--=211121112A , 由初等变换得 ⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎭⎫⎝⎛---→000330211330330211A , 从而 2)(=A r , 即二次型的秩为2.【详解二】因为213232221321)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++= 2322321)(23)2121(2x x x x x -+++=2221232y y +=,其中 ,21213211x x x y ++= 322x x y -=.所以二次型的秩为2.(5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X Pe1.【分析】 根据指数分布的分布函数和方差立即得正确答案.【详解】 由于21λDX =, X 的分布函数为⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ故=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=. 【评注】本题是对重要分布, 即指数分布的考查, 属基本题型.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n XX X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则22121212)()(21σn n Y Y X X En j j n i i =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==.【分析】利用正态总体下常用统计量的数字特征即可得答案. 【详解】因为 2121])(11[1σX Xn E n i i=--∑=, 2122])(11[2σY Y n E n j j=--∑=,故应填 2σ.【评注】本题是对常用统计量的数字特征的考查.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0). (B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ A ] 【分析】如f (x )在(a , b )内连续,且极限)(limx f ax +→与)(limx f bx -→存在,则函数f (x )在(a , b )内有界.【详解】当x ≠ 0 , 1 , 2时,f (x )连续,而183sin )(lim1-=+-→x f x ,42sin )(lim-=-→x f x ,42sin )(lim=+→x f x ,∞=→)(lim 1x f x ,∞=→)(lim 2x f x ,所以,函数f (x )在(-1 , 0)内有界,故选(A).【评注】一般地,如函数f (x )在闭区间[a , b ]上连续,则f (x )在闭区间[a , b ]上有界; 如函数f (x )在开区间(a , b )内连续,且极限)(limx f ax +→与)(limx f bx -→存在,则函数f (x )在开区间(a , b )内有界.(8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则 (A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ D ]【分析】考查极限)(lim 0x g x →是否存在,如存在,是否等于g (0)即可,通过换元x u 1=,可将极限)(lim 0x g x →转化为)(lim x f x ∞→.【详解】因为)(lim )1(lim )(lim 00u f x f x g u x x ∞→→→=== a (令xu 1=),又g (0) = 0,所以,当a = 0时,)0()(lim 0g x g x =→,即g (x )在点x = 0处连续,当a ≠ 0时,)0()(lim 0g x g x ≠→,即x = 0是g (x )的第一类间断点,因此,g (x )在点x = 0处的连续性与a 的取值有关,故选(D).【评注】本题属于基本题型,主要考查分段函数在分界点处的连续性.(9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ C ] 【分析】由于f (x )在x = 0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x )在x = 0的左、右两侧的二阶导数的符号,判断拐点情况.【详解】设0 < δ < 1,当x ∈ (-δ , 0) ⋃ (0 , δ)时,f (x ) > 0,而f (0) = 0,所以x = 0是f (x )的极小值点. 显然,x = 0是f (x )的不可导点. 当x ∈ (-δ , 0)时,f (x ) = -x (1 - x ),02)(>=''x f ,当x ∈ (0 , δ)时,f (x ) = x (1 - x ),02)(<-=''x f ,所以(0 , 0)是曲线y = f (x )的拐点.故选(C).【评注】对于极值情况,也可考查f (x )在x = 0的某空心邻域内的一阶导数的符号来判断.(10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散.(4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是 (A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4). [ B ]【分析】可以通过举反例及级数的性质来说明4个命题的正确性.【详解】(1)是错误的,如令nn u )1(-=,显然,∑∞=1n n u 分散,而∑∞=-+1212)(n n n u u 收敛.(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性. (3)是正确的,因为由1lim1>+∞→nn n u u 可得到n u 不趋向于零(n → ∞),所以∑∞=1n n u 发散.(4)是错误的,如令nv nu n n 1,1-==,显然,∑∞=1n n u ,∑∞=1n n v 都发散,而∑∞=+1)(n n n v u 收敛. 故选(B).【评注】本题主要考查级数的性质与收敛性的判别法,属于基本题型. 类似的命题在一般教科书上均可找到.(11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项. 【详解】首先,由已知)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ;另外,0)()(lim)(>--='+→ax a f x f a f ax ,由极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >. 同理,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以,(A) (B) (C)都正确,故选(D).【评注】 本题综合考查了介值定理与极限的保号性,有一定的难度.(12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ D ] 【分析】 利用矩阵A 与B 等价的充要条件: )()(B r A r =立即可得.【详解】因为当0||=A 时, n A r <)(, 又 A 与B 等价, 故n B r <)(, 即0||=B , 故选(D). 【评注】本题是对矩阵等价、行列式的考查, 属基本题型. 相关知识要点见《数学复习指南》P.284-286. (13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的 互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量. [ B ] 【分析】 要确定基础解系含向量的个数, 实际上只要确定未知数的个数和系数矩阵的秩. 【详解】 因为基础解系含向量的个数=)(A r n -, 而且⎪⎩⎪⎨⎧-<-===.1)(,0,1)(,1,)(,)(*n A r n A r n A r n A r 根据已知条件,0*≠A 于是)(A r 等于n 或1-n . 又b Ax =有互不相等的解, 即解不惟一, 故1)(-=n A r . 从而基础解系仅含一个解向量, 即选(B).【评注】本题是对矩阵A 与其伴随矩阵*A 的秩之间的关系、线性方程组解的结构等多个知识点的综合考查.(14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ C ]【分析】 利用标准正态分布密度曲线的对称性和几何意义即得. 【详解】 由αx X P =<}|{|, 以及标准正态分布密度曲线的对称性可得21}{αx X P -=>. 故正确答案为(C).【评注】本题是对标准正态分布的性质, 严格地说它的上分位数概念的考查.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求)cos sin1(lim 222xx xx -→.【分析】先通分化为“0”型极限,再利用等价无穷小与罗必达法则求解即可.【详解】xx xx x xx xx x 222220222sincos sinlim)cos sin1(lim -=-→→=346)4(21lim 64cos 1lim44sin 212lim2sin 41lim22230422==-=-=-→→→→xx xx xxx xxx x x x x .【评注】本题属于求未定式极限的基本题型,对于“00”型极限,应充分利用等价无穷小替换来简化计算.(16) (本题满分8分)求⎰⎰++Dd y yx σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域(如图).【分析】首先,将积分区域D 分为大圆}4|),{(221≤+=y x y x D 减去小圆}1)1(|),{(222≤++=y x y x D ,再利用对称性与极坐标计算即可.【详解】令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D ,由对称性,0=⎰⎰Dyd σ.⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 2022322220dr r d dr r d .)23(916932316-=-=ππ所以,)23(916)(22-=++⎰⎰πσDd y y x .【评注】本题属于在极坐标系下计算二重积分的基本题型,对于二重积分,经常利用对称性及将一个复杂区域划分为两个或三个简单区域来简化计算.(17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥x a xadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=ba badt t g dt t f )()(.证明:⎰⎰≤ba badx x xg dx x xf )()(.【分析】令F (x ) = f (x ) - g (x ),⎰=xa dt t F x G )()(,将积分不等式转化为函数不等式即可. 【详解】令F (x ) = f (x ) - g (x ),⎰=xa dtt F x G )()(,由题设G (x ) ≥ 0,x ∈ [a , b ],G (a ) = G (b ) = 0,)()(x F x G ='.从而⎰⎰⎰⎰-=-==babab ababadx x G dx x G x xG x xdG dx x xF )()()()()(,由于 G (x ) ≥ 0,x ∈ [a , b ],故有 0)(≤-⎰ba dxx G ,即0)(≤⎰ba dx x xF .因此 ⎰⎰≤ba badx x xg dx x xf )()(.【评注】引入变限积分转化为函数等式或不等式是证明积分等式或不等式的常用的方法.(18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR -=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加. 【分析】由于d E > 0,所以dPdQ Q P E d =;由Q = PQ 及dPdQ Q P E d =可推导)1(d E Q dPdR -=.【详解】(I) PP dPdQ Q P E d -==20.(II) 由R = PQ ,得)1()1(d E Q dPdQ Q P Q dPdQ PQ dPdR -=+=+=.又由120=-=PP E d ,得P = 10.当10 < P < 20时,d E > 1,于是0<dPdR ,故当10 < P < 20时,降低价格反而使收益增加.【评注】当d E > 0时,需求量对价格的弹性公式为dPdQ Q P dPdQ Q P E d -==.利用需求弹性分析收益的变化情况有以下四个常用的公式:Qdp E dR d )1(-=,Q E dpdR d )1(-=,p E dQdR d)11(-=,d E EpER -=1(收益对价格的弹性).(19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x xxx的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式.【分析】对S (x )进行求导,可得到S (x )所满足的一阶微分方程,解方程可得S (x )的表达式. 【详解】(I) +⋅⋅⋅+⋅⋅+⋅=864264242)(864xxxx S ,易见 S (0) = 0,+⋅⋅+⋅+='642422)(753xxxx S)642422(642+⋅⋅+⋅+=xxxx)](2[2x S xx +=.因此S (x )是初值问题0)0(,23=+='y xxy y 的解.(II) 方程23xxy y +='的通解为]2[3C dx e x e y xdx xdx+⎰⎰=⎰-22212xCex+--=,由初始条件y(0) = 0,得C = 1.故12222-+-=xexy ,因此和函数12)(222-+-=xexx S .【评注】本题综合了级数求和问题与微分方程问题,2002年考过类似的题.(20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, Tb αb α)2,2,1(3+---=, Tβ)3,3,1(-=,试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式.【分析】将β可否由321,,ααα线性表示的问题转化为线性方程组βαk αk αk =++332211是否有解的问题即易求解. 【详解】 设有数,,,321k k k 使得βαk αk αk =++332211. (*) 记),,(321αααA =. 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+-=323032221111),(ba ab a βA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→00101111ba b a . (Ⅰ) 当0=a 时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→101001111),(b βA . 可知),()(βA r A r ≠. 故方程组(*)无解, β不能由321,,ααα线性表示. (Ⅱ) 当0≠a , 且b a ≠时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→00101111),(ba b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→01101011001a a 3),()(==βA r A r , 方程组(*)有唯一解:ak 111-=, ak 12=, 03=k .此时β可由321,,ααα唯一地线性表示, 其表示式为 211)11(αa αa β+-=.(Ⅲ) 当0≠=b a 时, 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→00101111),(ba b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→00111011001a a , 2),()(==βA r A r , 方程组(*)有无穷多解, 其全部解为ak 111-=, c ak +=12, c k =3, 其中c 为任意常数.β 可由321,,ααα线性表示, 但表示式不唯一, 其表示式为321)1()11(αc αc aαaβ+++-=.【评注】本题属于常规题型, 曾考过两次(1991, 2000).(21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=111bb b bb b A . (Ⅰ) 求A 的特征值和特征向量; (Ⅱ) 求可逆矩阵P , 使得AP P1-为对角矩阵.【分析】这是具体矩阵的特征值和特征向量的计算问题, 通常可由求解特征方程0||=-A E λ和齐次线性方程组0)(=-x A E λ来解决.【详解】 (Ⅰ)1当0≠b 时,111||---------=-λbbb λb b b λA E λ=1)]1(][)1(1[------n b λb n λ ,得A 的特征值为b n λ)1(11-+=,b λλn -===12 . 对b n λ)1(11-+=,⎪⎪⎪⎪⎪⎭⎫⎝⎛---------=-b n bb b bn bbb bn A E λ)1()1()1(1→⎪⎪⎪⎪⎪⎭⎫⎝⎛---------)1(111)1(111)1(n n n→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------0000111111111111n n n →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---------0000111111111111n n n→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---0000001111n nn n n →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---000110010101001解得T ξ)1,,1,1,1(1 =,所以A 的属于1λ的全部特征向量为 T k ξk )1,,1,1,1(1 = (k 为任意不为零的常数). 对b λ-=12,⎪⎪⎪⎪⎪⎭⎫⎝⎛---------=-b bb b b bb b b A E λ2→⎪⎪⎪⎪⎪⎭⎫⎝⎛000000111得基础解系为Tξ)0,,0,1,1(2 -=,Tξ)0,,1,0,1(3 -=,Tn ξ)1,,0,0,1(,-= .故A 的属于2λ的全部特征向量为n n ξk ξk ξk +++ 3322 (n k k k ,,,32 是不全为零的常数).2 当0=b 时,nλλλλA E λ)1(1010001||-=---=-,特征值为11===n λλ ,任意非零列向量均为特征向量.(Ⅱ)1当0≠b 时,A 有n 个线性无关的特征向量,令),,,(21n ξξξP =,则⎪⎪⎪⎪⎪⎭⎫⎝⎛---+=-b bbn AP P 11)1(112 当0=b 时,E A =,对任意可逆矩阵P , 均有E AP P=-1.【评注】本题通过考查矩阵的特征值和特征向量而间接考查了行列式的计算, 齐次线性方程组的求解和矩阵的对角化等问题, 属于有一点综合性的试题. 另外,本题的解题思路是容易的, 只要注意矩阵中含有一个未知参数, 从而一般要讨论其不同取值情况.(22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=A B P , 21)|(=B A P , 令⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y XZ +=的概率分布.【分析】本题的关键是求出),(Y X 的概率分布,于是只要将二维随机变量),(Y X 的各取值对转化为随机事件A 和B 表示即可.【详解】 (Ⅰ) 因为 121)|()()(==A B P A P AB P , 于是 61)|()()(==B A P AB P B P ,则有 121)(}1,1{====AB P Y X P ,61)()()(}0,1{=-====AB P A P B A P Y X P , 121)()()(}1,0{=-====AB P B P B A P Y X P ,32)]()()([1)(1)(}0,0{=-+-=⋃-=⋅===AB P B P A P B A P B A P Y X P ,( 或 32121611211}0,0{=---===Y X P ),即),(Y X 的概率分布为:(Ⅱ) 方法一:因为 41)(==A P EX ,61)(==B P EY ,121)(=XY E ,41)(2==A P EX,61)(2==B P EY,163)(22=-=EX EX DX ,165)(22=-=EY EY DY ,241)(),(=-=EXEY XY E Y X Cov , 所以X 与Y 的相关系数 1515151),(==⋅=DYDX Y X Cov ρXY .方法二: X, Y 的概率分布分别为X 0 1 Y 0 1P 43 41 P 65 61则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ(Ⅲ) Z 的可能取值为:0,1,2 .32}0,0{}0{=====Y X P Z P ,41}1,0{}0,1{}1{===+====Y X P Y X P Z P ,121}1,1{}2{=====Y X P Z P ,即Z 【评注】本题考查了二维离散随机变量联合概率分布,数字特征和二维离散随机变量函数的分布等计算问题,属于综合性题型(23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,(其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量;(Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.【分析】本题是一个常规题型, 只要注意求连续型总体未知参数的矩估计和最大似然估计都须已知密度函数, 从而先由分布函数求导得密度函数. 【详解】 当1=α时, X 的概率密度为⎪⎩⎪⎨⎧≤>=+,,,101,),(1x x x ββx f β(Ⅰ) 由于⎰⎰+∞++∞∞--=⋅==11,1);(ββdx xβx dx βx xf EX β令X ββ=-1, 解得 1-=X X β,所以, 参数β的矩估计量为 1-=X X β.(Ⅱ) 对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=+⎪⎩⎪⎨⎧=>==ni i βn ni n i x x x x βαx f βL 1121.,0),,,2,1(1,)();()(其他当),,2,1(1n i x i =>时, 0)(>βL , 取对数得∑=+-=ni i x ββn βL 1ln )1(ln )(ln ,对β求导数,得∑=-=ni i x βn βd βL d 1ln)]([ln ,令0ln )]([ln 1=-=∑=ni i x βn βd βL d , 解得 ∑==ni ix nβ1ln, 于是β的最大似然估计量为 ∑==ni ix nβ1lnˆ.( Ⅲ) 当2=β时, X 的概率密度为⎪⎩⎪⎨⎧≤>=,,,αx αx x αβx f 0,2),(32对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=⎪⎩⎪⎨⎧=>==ni i n nn i n i αx x x x ααx f βL 13212.,0),,,2,1(,)(2);()(其他当),,2,1(n i αx i =>时, α越大,)(αL 越大, 即α的最大似然估计值为 },,,min{ˆ21n x x x α=, 于是α的最大似然估计量为},,,min{ˆ21n X X X α=. 【评注】本题属于常规题型, 往年曾经考过多次.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年全国硕士研究生入学统一考试数学三试题选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)曲线221x xyx+=-渐近线的条数为()(A)0 (B)1 (C)2 (D)3(2)设函数2()(1)(2)x x nxf x e e e n=--…(-),其中n为正整数,则(0)f'=()(A)1(1)(1)!n n---(B)(1)(1)!n n--(C)1(1)!n n--(D)(1)!n n-(3)设函数()f t连续,则二次积分22202cos()d f r rdrπθθ⎰⎰=()(A)222 0() dx x y dy+⎰(B)222 0()dx f x y dy+⎰(C)222 01() dx x y dy+⎰⎰(D)222 01() dx f x y dy++⎰⎰(4)已知级数11(1)ninα∞=-∑绝对收敛,21(1)ninα∞-=-∑条件收敛,则α范围为()(A)0<α12≤(B)12< α≤1(C )1<α≤32(D )32<α<2(5)设1234123400110,1,1,1c c c c αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪===-= ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭其中1234c c c c ,,,为任意常数,则下列向量组线性相关的是()(A )123ααα,, (B )124ααα,,(C )134ααα,,(D )234ααα,,(6)设A 为3阶矩阵,P 为3阶可逆矩阵,且P-1AP=112⎛⎫⎪ ⎪⎪⎝⎭,123=P ααα(,,),1223=Q αααα(+,,)则1=Q AQ -()(A )121⎛⎫ ⎪ ⎪ ⎪⎝⎭(B )112⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C )212⎛⎫ ⎪ ⎪ ⎪⎝⎭(D )221⎛⎫ ⎪ ⎪ ⎪⎝⎭(7)设随机变量X 与Y 相互独立,且都服从区间(0,1)上的均匀分布,则+P X Y≤22{1}()(A )14(B )12(C )8π(D )4π(8)设1234X X X X ,,,为来自总体N σσ>2(1,)(0)的简单随机样本,则统计量1234|+-2|X X X X -的分布() (A )N(0,1) (B )(1)t(C )2(1)χ(D )(1,1)F二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)1cos sin 4lim (tan )x xx x π-→(10)设函数ln 1(),(()),21,1x dy x f x y f f x dx x x =⎧≥⎪=⎨-<⎪⎩求___________.(11)函数(,)z f x y =满足1(,)22lim0,x y f x y x y →→-+-=则(0,1)dz=_______.(12)由曲线4y x =和直线y x =及4y x =在第一象限中所围图形的面积为_______.(13)设A 为3阶矩阵,|A|=3,A*为A 的伴随矩阵,若交换A 的第一行与第二行得到矩阵B ,则|BA*|=________.(14)设A,B,C 是随机事件,A,C 互不相容,11(),(),23P AB P C ==则C P AB ()=_________.解答题:15~23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)计算222cos 4limxxx ee x-→-(16)(本题满分10分)计算二重积分xDe xydxdy⎰⎰,其中D为由曲线1y y ==所围区域.(17)(本题满分10分)某企业为生产甲、乙两种型号的产品,投入的固定成本为10000(万元),设该企业生产甲、乙两种产品的产量分别为x(件)和y(件),且固定两种产品的边际成本分别为20+2x(万元/件)与6+y (万元/件).1)求生产甲乙两种产品的总成本函数(,)C x y (万元)2)当总产量为50件时,甲乙两种的产量各为多少时可以使总成本最小?求最小的成本.3)求总产量为50件时且总成本最小时甲产品的边际成本,并解释其经济意义.(18)(本题满分10分)证明:21ln cos1,1 1.12x xx x xx++≥+-<< -(19)(本题满分10分)已知函数()f x满足方程()()2()0f x f x f x"'+-=及()()2xf x f x e'+=1)求表达式()f x2)求曲线的拐点22()()xy f x f t dt=-⎰(20)(本题满分10分)设100101010010010a a A b a a ⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭,(I )求|A|(II )已知线性方程组Ax b =有无穷多解,求a ,并求Ax b =的通解.(21)(本题满分10分)已知1010111001Aaa⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎣⎦,二次型123(,,)()f x x x x xT T=A A的秩为2,求实数a的值;求正交变换x=Qy将f化为标准型.(22)(本题满分10分)已知随机变量X,Y以及XY的分布律如下表所示:求(1)P(X=2Y); (2)cov(,)XY X Y Y -ρ与.(23)(本题满分10分)设随机变量X 和Y 相互独立,且均服从参数为1的指数分布,m in(,),=m ax(,).V X Y U X Y =求(1)随机变量V 的概率密度; (2)()E U V +.2011年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项是符合题目要求的。

请将所选项前的字母填在答题纸指定位置上。

(1) 已知当0x →时,函数()3sin sin 3f x x x =-与是kcx 等价无穷小,则(A) 1,4k c == (B) 1,4k c ==- (C) 3,4k c == (D) 3,4k c ==-(2) 已知()f x 在0x =处可导,且(0)0f =,则233()2()limx x f x f x x→-=(A) '2(0)f - (B) '(0)f - (C) '(0)f (D) 0 (3) 设{}n u 是数列,则下列命题正确的是(A) 若1n n u ∞=∑收敛,则2121()n n n u u ∞-=+∑收敛(B) 若2121()n n n u u ∞-=+∑收敛,则1n n u ∞=∑收敛(C) 若1n n u ∞=∑收敛,则2121()n n n u u ∞-=-∑收敛(D) 若2121()n n n u u ∞-=-∑收敛,则1n n u ∞=∑收敛(4) 设40ln(sin )I x dx π=⎰,40ln(cot )J x dx π=⎰,40ln(cos )K x dx π=⎰则I ,J ,K 的大小关系是(A) I J K << (B) I K J << (C) J I K << (D) K J I << (5) 设A 为3阶矩阵,将A 的第2列加到第1列得矩阵B ,再交换B 的第2行与第3行得单位矩阵记为1100110001P ⎛⎫⎪= ⎪ ⎪⎝⎭,2100001010P ⎛⎫⎪= ⎪ ⎪⎝⎭,则A =(A)12P P (B)112P P - (C)21P P (D) 121P P -(6) 设A 为43⨯矩阵,1η, 2η , 3η 是非齐次线性方程组Ax β=的3个线性无关的解,1k ,2k 为任意常数,则Ax β=的通解为(A) 23121()2k ηηηη++- (B) 23221()2k ηηηη-+-(C) 23131221()()2k k ηηηηηη++-+- (D)23221331()()2k k ηηηηηη-+-+-(7) 设1()F x ,2()F x 为两个分布函数,其相应的概率密度1()f x , 1()f x 是连续函数,则必为概率密度的是(A) 12()()f x f x (B)212()()f x F x(C) 12()()f x F x (D) 1221()()()()f x F x f x F x +(8) 设总体X 服从参数λ(0)λ>的泊松分布,11,,(2)n X X X n ≥ 为来自总体的简单随即样本,则对应的统计量111nii T X n==∑,121111n in i T X X n n-==+-∑(A)1212,ET ET D T D T >> (B)1212,ET ET D T D T ><(C)1212,ET ET D T D T <> (D) 1212,ET ET D T D T <<二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9) 设0()lim (13)xt t f x x t →=+,则'()f x =______.(10) 设函数(1)xyx z y=+,则(1,1)|dz =______.(11) 曲线tan()4yx y e π++=在点(0,0)处的切线方程为______.(12)曲线y =2x =及x 轴所围成的平面图形绕x 轴旋转所成的旋转体的体积______.(13) 设二次型123(,,)Tf X X X x Ax =的秩为1,A 中行元素之和为3,则f 在正交变换下x Qy =的标准型为______.(14) 设二维随机变量(,)X Y 服从22(,;,;0)N μμσσ,则2()E XY =______. 三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15) (本题满分10分)求极限0limln(1)x x x →+.(16) (本题满分10分)已知函数(,)f u v 具有连续的二阶偏导数,(1,1)2f =是(,)f u v 的极值,[](),(,)z f x y f x y =+。

求2(1,1)|z x y∂∂∂.(17) (本题满分10分)求⎰(18) (本题满分10分)证明44arctan 03x x π-+-=恰有2实根。

(19) (本题满分10分)()f x 在[]0,1有连续的导数,(0)1f =,且'()()ttD D f x y dxdy f t dxdy +=⎰⎰⎰⎰,{(,)|0,0,0}(01)tDx y x t y t x y t t =≤≤≤≤≤+≤<≤,求()f x 的表达式。

相关文档
最新文档