2018年人教版高中数学必修5全部说课稿(可编辑打印版)

合集下载

高中数学人教版必修5全套教案

高中数学人教版必修5全套教案

课题: §1.1.1正弦定理授课类型:新授课●教学目标知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

●教学重点正弦定理的探索和证明及其基本应用。

●教学难点已知两边和其中一边的对角解三角形时判断解的个数。

●教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。

A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。

能否用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。

如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin bB c=,又sin 1cC c ==, A则sin sin sin abcc ABC=== b c 从而在直角三角形ABC 中,sin sin sin abcABC==(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin abAB=sin cC=A c B(图1.1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

人教版高中数学必修五教案(全册)

人教版高中数学必修五教案(全册)

人教版高中数学必修五教案(全册)
本教案共包括必修五全部章节,共计 xx 课时,主要涵盖以下
内容:
第一章函数的概念
本章主要介绍函数的概念、性质、分类以及函数图像的绘制等
方面的知识点。

通过本章的研究,学生将能够掌握函数的基本概念,理解函数的重要性以及掌握函数图像的绘制方法。

第二章三角函数
本章主要介绍正弦函数、余弦函数、正切函数等三角函数的定义、图像及其性质等方面的知识点,并针对不同类型的三角函数进
行了详细的讲解。

通过本章的研究,学生将能够深入理解三角函数
的概念,掌握三角函数的性质,运用三角函数解决实际问题。

第三章数学归纳法与递推数列
本章主要介绍数学归纳法的基本原理及其在数学证明中的运用,同时通过递推数列的研究,进一步巩固对数学归纳法的理解和应用。

通过本章的研究,学生将能够掌握数学归纳法的基本原理及其在数
学证明中的应用,同时掌握递推数列的推导与实际应用技巧。

第四章极坐标系与参数方程
本章主要介绍极坐标系的定义、性质,以及参数方程的基本概
念与运用等方面的知识点。

通过本章的研究,学生将能够理解极坐
标系的概念与性质,掌握参数方程的推导与实际应用技巧。

第五章一元函数微积分学初步
本章主要介绍导数与微分、不定积分、定积分等知识点。

通过
本章的学习,学生将能够掌握导数与微分的基本概念与计算方法,
掌握不定积分与定积分的计算方法,以及这些知识在实际问题中的
应用。

说课标,说教材说课稿人教版高中数学必修5第三章《不等式》

说课标,说教材说课稿人教版高中数学必修5第三章《不等式》

说课标,说教材说课稿人教版高中数学必修5第三章《不等式》各位评委、各位老师,大家好:今天我“说课标、说教材”的内容是人教版高中数学必修5第三章《不等式》。

下面我将从说课标、说教材、说建议三大方面面进行研说。

其中说课标包括数学课程的总体目标、必修五《不等式》课程目标、必修五《不等式》内容标准。

说教材包括教材的编写特点、教材编写体例、目的、教材的内容结构及知识与技能的立体式整合一、说课标(一)、数学课程的总体目标高中数学课程的总目标是:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。

具体目标如下:1、获得数学基础知识、基本技能、基本方法、基本实践活动2、培养学生的空间想象、抽象概括、推理论证、运算求解、数据处理的能力;培养应用意识、创新意识3、提高兴趣、树立信心、树立辩证唯物主义世界观这三个目标分别体现了数学课程在知识与技能、过程与方法、情感态度与价值观上对学生提出的要求。

(二)、必修五《不等式》课程目标:1、知识与技能:了解不等式(组)的实际背景。

经历从实际情境中抽象出一元二次不等式二元一次不等式组模型的过程。

探索并了解基本不等式的证明过程。

会用基本不等式解决简单的最值问题。

2、过程与方法:通过本章学习培养和发展学生勇于自主探索,合作学习,勇于创新精神,体会事物之间普遍联系的思想。

3、情感态度与价值观:激发学生学习兴趣,拓展学生视野,培养良好的学习习惯。

(三)、必修五《不等式》内容标准:在本模块中,学生将通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用二元一次不等式组表示平面区域,并尝试解决一些简单的二元线性规划问题;认识基本不等式及其简单应用;体会不等式、方程及函数之间的联系。

二、说教材:(一)、教材的编写特点1、关注数学情境的建立,注重兴趣培养。

人教版高二数学必修5第二章第四节等比数列说课稿

人教版高二数学必修5第二章第四节等比数列说课稿

说课稿各位领导、老师们,你们好!今天我要进行说课的内容是人教A版必修5《§2.4等比数列》第1课时——等比数列的概念与通项公式首先,我对本节内容进行分析:一、说教学内容的地位和作用《等比数列》是普通高中课程标准试验教科书《数学》必修5第二章《数列》第四节,内容较多,设置了两个课时,第1课时为等比数列的概念及通项公式.等比数列在我们的学习和生活中有着广泛的实际应用,例如:物理、化学、生物等均有涉及,通过该内容的学习,能够培养学生的多种数学能力。

而且它在教材中起着承前启后的作用,一方面,等比数列是一种特殊的数列,与等差数列既有区别,也有联系,另一方面,它又对进一步学习数列及其应用等内容作准备,且等比数列又是高考的考点之一。

所以本节内容比较重要,地位较突出.二、说教学目标根据本教材的结构和内容分析,结合着高二年级学生的认知结构及其心理特征,我制定了以下的教学目标:1.知识与技能:①通过学习,能说出等比数列的概念,并会使用符号语言表示;②初步掌握等比数列的通项公式及其推导过程和方法;③运用等比数列的通项公式解决一些简单的有关问题.2.过程与方法:通过慨念、公式和例题的教学,渗透类比思想、方程思想、函数思想以及从特殊到—般等数学思想,培养学生观察、比较、概括、归纳等数学能力及思想方法,增强应用意识.3.情感、态度与价值观:通过对等比数列概念的归纳,培养学生科学严谨的思维习惯以及合作探究的精神,体会类比思想.三、说教学的重、难点1.重点:等比数列、等比中项的概念的形成,通项公式的推导及运用.2.难点:等比数列通项公式推导方法的获取.四、说教法与学法教法:1.直观演示法:利用多媒体课件直观的展示数列,便于学生观察,发现数列特征.2.活动探究法:引导学生通过创设生活情境获取知识,以学生为主体,使学生的独立探索性得到充分的发挥,培养学生的自学能力、思维能力、活动组织能力.3.集体讨论法:针对学生提出的问题,组织学生进行集体和分组讨论,促使学生在学习中解决问题,培养学生的团结协作的精神.学法:等差数列的概念及通项公式启发我们,使用类比的方法,学习等比数列的概念,通项公式的两种推导方法.最后我具体来谈谈这一堂课的教学过程:五、说教学过程在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。

高中数学人教版必修5全套教案

高中数学人教版必修5全套教案

1课题: §1.1.1正弦定理授课类型:新授课 ●教学目标知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

●教学重点正弦定理的探索和证明及其基本应用。

●教学难点已知两边和其中一边的对角解三角形时判断解的个数。

●教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。

A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。

能否用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。

如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin bB c=,又sin 1cC c==, A则sin sin sin abcc ABC=== b c 从而在直角三角形ABC 中,sin sin sin abcABC==C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin abAB=sin cC=A c B(图1.1-3)2思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

高中数学人教版必修5全套教案

高中数学人教版必修5全套教案

课题: §1.1.1正弦定理授课类型:新授课●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

●教学重点正弦定理的探索和证明及其基本应用。

●教学难点已知两边和其中一边的对角解三角形时判断解的个数。

●教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。

A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。

能否用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。

如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin aA c=,sin bB c=,又sin 1c C c==,A则sin sin sin abcc ABC=== b c 从而在直角三角形ABC 中,sin sin sin abcABC==C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin abAB=sin cC=A c B(图1.1-3) 思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

(完整版)高中数学优秀说课稿

(完整版)高中数学优秀说课稿

(完整版)⾼中数学优秀说课稿2.1数列的概念_说课稿1课题介绍课题《数列的概念与简单表⽰⽅法(⼀)》选⾃普通⾼中课程标准试验教科书⼈教版A版数学必修5第⼆章第⼀节的第⼀课时.我将从教材分析、学情分析、教学⽬标分析、教法分析、教学过程这五个⽅⾯来汇报我对这节课的教学设想。

⼀、教材分析1、教材的地位和作⽤数列是⾼中数学的重要内容之⼀,它的地位作⽤可以从三个⽅⾯来看:(1)数列有着⼴泛的实际应⽤.如堆放的物品的总数计算要⽤到数列的前n项和,⼜如分期储蓄、付款公式的有关计算也要⽤到数列的⼀些知识.(2)数列起着承前启后的作⽤.⼀⽅⾯,初中数学的许多内容在解决数列的某些问题中得到了充分运⽤,数列是前⾯函数知识的延伸及应⽤,可以使学⽣加深对函数概念的理解;另⼀⽅⾯,学习数列⼜为进⼀步学习数列的极限,等差数列、等⽐数列的前n项和以及通项公式打好了铺垫.因此就有必要讲好、学好数列.(3)数列是培养学⽣数学能⼒的良好题材.是进⾏计算,推理等基本训练,综合训练的重要教材.学习数列,要经常观察、分析、归纳、猜想,还要综合运⽤前⾯的知识解决数列中的⼀些问题,这些都有助于学⽣数学能⼒的提⾼.⼆、学情分析从学⽣知识层⾯看:学⽣对数列已有初步的认识,对⽅程、函数、数学公式的运⽤已有⼀定的基础,对⽅程、函数思想的体会也逐渐深刻。

从学⽣素质层⾯看:从⾼⼀新⽣⼊学开始,我就很注意学⽣⾃主探究习惯的养成。

现阶段我的学⽣思维活跃,课堂参与意识较强,⽽且已经具有⼀定的分析、推理能⼒。

三、教学⽬标分析根据上⾯的教材分析以及学情分析,确定了本节课的教学⽬标:(1) 知识⽬标:认识数列的特点,掌握数列的概念及表⽰⽅法,并明⽩数列与集合的不同点.了解数列通项公式的意义及数列分类.能由数列的通项公式求出数列的各项,反之,⼜能由数列的前⼏项写出数列的⼀个通项公式.(2) 能⼒⽬标:通过对数列概念以及通项公式的探究、推导、应⽤等过程,锻炼了学⽣的观察、归纳、类⽐等分析问题的能⼒.同时更深层次的理解了数学知识之间的相互渗透性思想.(3) 情感⽬标:在教学中使学⽣体会教学知识与现实世界的联系,并且利⽤各种有趣的,贴近学⽣⽣活的素材激发学⽣的学习兴趣,培养热爱⽣活的情感. .3、教学重点与难点根据教学⽬标以及学⽣的理解能⼒与认知⽔平,我确定了如下的教学重难点重点:理解数列的概念,能由函数的观点去认识数列,以及对通项公式的理解.难点:根据数列的前⼏项的特点,通过多⾓度、多层次的观察分析归纳出数列的⼀个通项公式.四、教法分析根据本节课的内容和学⽣的实际情况,结合波利亚的先猜后证理论,本节课主要以讲解法为主,引导发现为辅,由⽼师带领同学们发现问题,分析问题,并解决问题.考虑到学⽣的认知过程,本节课会采⽤由易到难的教学进程以及实例给出与练习设置,让学⽣们充分体会到事物的发展规律.同时为了增⼤课堂容量,提⾼教学效率,更吸引同学们的眼光,提⾼学习热情,本节课还会采⽤常规⼿段与现代⼿段相结合的办法,充分利⽤多媒体,将引例、例题具体呈现.五、教学过程分析为了突出重点,突破难点,探究新知,强化认识,激发兴趣,把本节课的教学流程分为了创设情境,引⼊课题;师⽣互动,形成概念;启发引导,演绎结论;实践应⽤,开放思考;归纳⼩结,提炼精华;课后作业运⽤巩固。

高中数学人教版必修5全套教案

高中数学人教版必修5全套教案

课题: §1.1.1正弦定理授课类型:新授课 ●教学目标知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

●教学重点正弦定理的探索和证明及其基本应用。

●教学难点已知两边和其中一边的对角解三角形时判断解的个数。

●教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。

A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。

能否用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。

如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin bB c=,又sin 1cC c==, A则sin sin sin abcc ABC=== b c 从而在直角三角形ABC 中,sin sin sin abcABC==C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin abAB=sin cC=A c B(图1.1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

高中数学人教版必修5全套教案

高中数学人教版必修5全套教案

课题: §1.1.1正弦定理授课类型:新授课●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

●教学重点正弦定理的探索和证明及其基本应用。

●教学难点已知两边和其中一边的对角解三角形时判断解的个数。

●教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。

A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。

能否用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。

如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin aA c=,sin bB c=,又sin 1c C c==,A则sin sin sin abcc ABC=== b c 从而在直角三角形ABC 中,sin sin sin abcABC==C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin abAB=sin cC=A c B(图1.1-3) 思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

人教A版必修5说课稿

人教A版必修5说课稿

人教A版高中数学必修五全册说课稿第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理说课稿教材地位与作用:本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。

因此,正弦定理的知识非常重要。

学情分析:作为高一学生,同学们已经掌握了基本的三角函数,特别是在一些特殊三角形中,而学生们在解决任意三角形的边与角问题,就比较困难。

教学重点:正弦定理的内容,正弦定理的证明及基本应用。

教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

(根据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标)教学目标分析:知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。

能力目标:探索正弦定理的证明过程,用归纳法得出结论。

情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。

教法学法分析:教法:采用探究式课堂教学模式,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。

学法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。

让学生在问题情景中学习,观察,类比,思考,探究,动手尝试相结合,增强学生由特殊到一般的数学思维能力,锲而不舍的求学精神。

教学过程(一)创设情境,布疑激趣“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB 长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

说课稿 人教版 数学 高中 必修5《等差数列》

说课稿 人教版 数学 高中 必修5《等差数列》

《等差数列》说课稿一、教学背景《等差数列》是人教版高中数学必修第五册第二章第二节中的内容。

本节课是在生活中具体例子的基础上引出的等差数列的概念,接着用不完全归纳法归纳出等差数列的通项公式,最后根据这个公式进行有关计算。

在本节课之前,学生已经学习了数列的有关概念,对数列的基本概念和性质有了一定的了解。

本节课教材的安排旨在培养学生的观察分析能力、归纳猜想能力以及实际应用能力。

高中学生的知识经验已经较为丰富,智力发展水平也己达到了形成运算阶段,具有一定的抽象思维能力和演绎推理能力。

根据学生的这一心理发展特点,应在教学过程中注意引导和启发,从而促进学生思维发展水平的提高。

根据新课标的要求,以及对教材和学情的分析,我确立了如下三维教学目标:1、知识与技能目标:正确理解等差数列概念,掌握等差数列通项公式,并能对等差数列的通项公式进行简单的运用。

2、过程与方法目标:通过对等差数列的概念和通项公式的探究,培养学生观察、归纳、类比、猜想、推理等发现规律的一般方法;通过阶梯性练习,提高学生分析问题和解决问题的能力。

3、情感与态度目标:通过对等差数列的概念和通项公式的探究,培养学生严谨求实的学习作风和锲而不舍的学习精神,养成细心观察、认真分析、善于总结的良好的学习习惯。

根据本节课的地位和作用以及新课程标准的具体要求,确定本节课的重点为:等差数列的概念,等差数列的通项公式,等差中项及性质,会用公式解决一些简单的问题。

根据本节课的内容,以及学生的心理特点和认知水平,确定本节课的教学难点为:概括通项公式推导过程中体现的数学思想方法,以及从函数、方程的观点看通项公式,并会解决一些相关的问题。

二、活动评价在课堂教学过程中,我将对学生的学习情况进行及时而有效的评价。

评价将贯彻于本次教学活动的始终,以形成性评价为主。

无论是在学生开始遇到问题、产生疑惑的时候,还是在我的引导下进行思考、交流、探索的教学过程中,我都会注重对学生的学习成果进行评价。

高中数学人教版必修5全套教案

高中数学人教版必修5全套教案

课题: §1.1.1正弦定理授课类型:新授课●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

●教学重点正弦定理的探索和证明及其基本应用。

●教学难点已知两边和其中一边的对角解三角形时判断解的个数。

●教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。

A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。

能否用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。

如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin aA c=,sin bB c=,又s i n 1cC c==, A则sin sin sin abcc ABC=== b c 从而在直角三角形ABC 中,sin sin sin abcABC==C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin abAB=sin cC=A c B(图1.1-3) 思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

【最新推荐】高中数学必修5说课稿-word范文模板 (18页)

【最新推荐】高中数学必修5说课稿-word范文模板 (18页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==高中数学必修5说课稿高中各科目的学习对同学们提高综合成绩非常重要,大家一定要认真掌握,接下来小编为你带来高中数学必修5说课稿,希望对你有帮助。

在立体几何的学习中,我们会遇到许多似是而非的结论.要证明它我们一时无法完成,这时我们可考虑通过构造一个特殊的图形来推翻结论,这样的图形就是反例图形.若我们的心中有这样的反例图形,那就可以帮助我们迅速作出判断.例3 判断下面的命题是否正确:底面是正三角形且相邻两侧面所成的二面角都相等的三棱椎是正三棱锥.分析:这是一个学生很容易判断错误的问题.大家认为该命题正确,其实是错误的,但大家一时举不出例子来加以说明.问题的关键是二面角相等很难处理.我们是否可以考虑用一个正三棱锥通过变形得到?如图4,设正三棱锥的侧面等腰三角形PAB的顶角是,底角是,作的平分线,交PA于E,连接EC.可以证明是等腰三角形,所以AB=BE.同理EC=AB.那么,△EBC是正三角形,从而就是满足题设的三棱锥,但不是正三棱锥.以上就是为大家整理的高中数学必修(用图),希望同学们阅读后会对自己有所帮助,祝大家阅读愉快。

高考数学最后冲刺六大注意事项一、重点、查缺补漏。

对前几次各区模拟分类梳理、整合,既可按分类,也可按思想分类。

强化联系、形成网络结构,以少胜多,以不变应万变。

二、查找错题,分析病因,对症下药。

查错题,分析病因,对症下药,这是重点。

三、阅读《说明》和《试题分析》,确保没有知识盲点。

四、注意基础复习。

回归课本、回归基础、回归近年数学试题,把握通性通法。

五、重视书写表达的规范性和简洁性。

重视书写表达的规范性和简洁性,掌握各类常见题型的表达模式,避免“会而不对、对而不全”现象的出现,力争既对又全。

六、不要做难题高中数学。

临考前应做一定量中、低档题,以达到熟练基本方法、典型问题的目的,一般不再做难题,要保持清醒的头脑和良好的解题状态。

必修五说课ppt

必修五说课ppt

一、教材分析
教材编写特点:
1.依据《标准》要求、语言简洁明了; 2.提供丰富素材、突出几何直观; 3.蕴含多种数学思想、强调数学本质; 4.开辟应用小节、重视数学应用; 5.倡导问题驱动、鼓励学生探究学习。
二、学生分析
对数列相关数学史非常感兴趣
学生的认知情况 问题驱动教学激发学生学习动机
数列公式、性质的灵活运用存在困惑、
二、学生分析
怎样选择用等差数列求和公式 怎样从数列实例中抽象出数学模型
学生的困惑
怎样灵活运用化归与方程的思想
怎样构建及运用等比数列模型
怎样求等比数列通向公式
三、教学目标
情感目标
培养创新意识、应用意识 激起学习兴趣、爱国情怀
能力目标
培养推理运算、 推理论证能力
培养计算能力、 解决实际问题能力
知识目标
一、教材分析
1 教材的地位和作用----理论模型本身
数列:可以看作一种特殊的函数,是反映自然规律的 基本数学模型。在数学史上,中国古代数学名著《周 髀算经》、《九章算术》、《孔子算经》。《张邱建 算经》等,对等差级数(数列 )中 和等比级数(数 列) 都列举出计算的例子。说明中国古代对数列的 研究曾作出一定的贡献。 在本单元中,学生将通过对日常生活中大量实际问题 的分析,建立等差数列和等比数列这两种数列模型。 探索并掌握他们一些基本数量关系,感受这两种数列 模型的广泛运用,并利用他们解决一些实际问题。
五、教学过程设计
4 总结反思、提高认识
本阶段通过学习小结进行课堂教学 的反馈,深化对数学思想方法的认识, 为后续学习打好基础。
五、教学过程设计-板书设计
cos sin tan
课题题目
公式(性质)公式(性质)例题讲解区 学生答题区

高中数学 数列说课稿最终 新人教版必修5

高中数学 数列说课稿最终 新人教版必修5

<<数列>> 说课稿各位专家、评委、老师们:大家好!我是肖妍,很高兴参加这次说课活动,这对我来说是一次难得的学习机会,深切的盼望专家和评委对我的说课内容提出宝贵意见。

我说课的内容是<<数列>>的教学,用的教材是人教版高级中学教科书(必修)《数学》第一册(上),教学内容为第106页至第108页,第三章第一节第一课时,适用于高中一年级上学期的学习。

下面我从教材分析、教学目标的确定、教学方法的选择、教学过程的设计及板书设计五个方面来汇报我对这节课的教学设想。

一、教材分析地位和作用“数列”这节课的教学内容是高一数学第三章《数列》的第一节,是开启课。

数列是高中数学的重要内容之一,它的地位作用可以从三个方面来看:(1)数列有着广泛的实际应用。

如堆放物品总数的计算要用到数列前n项和公式;又如产品规格设计的某些问题要用到等比数列的原理;再如储蓄、分期付款的有关计算也要用到数列的一些知识。

(2)数列起着承前启后的作用。

一方面,初中数学的许多内容在解决数列的某些问题中得到了充分运用,数列与前面学习的函数等知识有密切的联系;数列是刻画离散现象的函数,是一种重要的数学模型,人们往往通过离散现象认识连续现象.另一方面,学习数列又为进一步学习数列的极限等内容作好了准备。

因此就有必要研究数列。

(3)数列是培养学生数学能力的良好题材。

学习数列,要经常观察、分析、归纳、猜想,还要综合运用前面的知识解决数列中的一些问题,这些都有助于学生数学能力的提高。

数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生展示尝试观察、归纳、类比、联想等数学思想方法。

二、教学目标根据新课程标准对知识技能传授、过程与方法、情感教育三者统一的要求和教材的特点,结合学生的认知规律和实际情况,确定本节课的教学目标为:1、知识与技能:通过枚举归纳:①认识数列的特点,掌握数列的概念及表示方法。

人教高中数学 必修五第一章 解三角形说教材说课稿

人教高中数学 必修五第一章  解三角形说教材说课稿
三 说建议
(一)教学建议
1、学情分析:
知识与技能:学习三角函数、平面向量等基础知识,具有了一定的分析、判断、理解能力。.
过程与方法:对高中数学的学习有了初步认识,了解分类讨论,数形结合等数学方法.
情感态度价值观:有一定层次上的交流沟通能力,能体会数学探究的乐趣.
2、教学建议——落实课程性质
巩固基础:学生在初中已经学过三角形内角和180度,大边对大角,及求三角形面积等知识,解三角形知识既与初中这些知识有密切联系,同时,又与三角函数、平面向量等知识有密切关系,通过将新知识融入已有的知识体系,从而提高综合运用能力,形成新的知识体系,对学生形成理性思维,创新意识具有基础性的作用.为学生的终身发展,形成科学的世界观、价值观奠定基础.
(3)三角形解的个数判断建议.是教材课后材料提供的判断方法。学生不容易接受。高中课程理念中强调本质,注意适度形式化方法,结合本校实际情况采用如下方法。
(4)实习作业教学建议:实习前,教师要指导好学生作好前期准备,选择好素材.例如:测量综合楼的高度、测量海河对岸两建筑的距离等实习时,注意现场指导。对学生的实习过程给予必要的指导和帮助.有条件的情况下,可让学生自主选择素材在课后再完成几个实习报告.实习后,对学生的实习报告要予以讲评和规范,做出及时的评价和反馈.
4.重视数学文化:海伦公式作为习题的出现不是为了掌握名题本身;而是作为正余弦定理的一个直接应用;体验数学文化的同时关注数学历史.
(三)教材体例目的(以必修5第一章为例)
1、章首:本章的引言以“地月距离”的数学情境一个测量问题引入,这个问题是一个不可及物体的测量问题,而此问题则是人人都面临并会加以思考的,容易引起学生的兴趣和学习的愿望.
2、各节由正文和课后材料组成,正文中公式填空、疑问框、探究、观察、思考这些系列化、多样化的探究活动为学生提供思维发展空间.课后材料有探究与发现、阅读与思考、信息技术应用为学生学习提供更大的自主性,同时建立科学的学习观、价值观.

高中数学必修5说课稿

高中数学必修5说课稿

高中数学必修5说课稿1.1集合约4课时阅读与思考集合中元素的个数1.2函数及其表示约4课时阅读与思考函数概念的发展历程1.3函数的基本性质约3课时信息技术应用用计算机画函数图象实习作业约1课时小结约1课时本章知识结构如下:1.集合语言是现代数学的基本语言。

在高中数学课程中,它也是学习、掌握和使用数学语言的基础,因此把它安排在了高中数学的起始章.教科书从学生熟悉的集合(有理数的集合、直线或圆上的点集等)出发,结合学生身边的实例引出元素、集合的概念,介绍了表示集合的列举法和描述法及Veen图;类比实数间的相等、大小关系,通过对具体实例共性的分析、概括出了集合间的相等、包含关系;针对具体实例,通过类比实数间的加法运算引出了集合间“并”的运算,并在此基础上进一步扩展,介绍了“交”的运算和“补”的运算。

这里采用类比方式处理集合间的关系和运算的目的在于体现知识之间的联系,渗透数学学习的方法。

与以往相比,教科书对函数概念的处理方式发生了很大的变化。

改变了以往先映射后函数的顺序,直接通过三个背景实例,在问题的引导下分析概括出运用集合与对应语言描述的函数定义。

这样,既衔接了初中阶段将函数看成变量之间的依赖关系的认识,又进一步提升到用集合与对应的语言来刻画函数。

为了理解函数概念的本质,教科书从函数的三要素、函数的符号、函数表示法三个角度对函数概念进行细化,最后将函数概念推广到了映射。

这样处理的目的是将重点放在对函数概念本质的理解上。

教科书在不同的时机为学生提供了进行判断、练习、比较、讨论交流的机会,以便使学生通过主动思考与动手操作更好地理解函数概念。

在函数的表示法中,教科书选取了两个贴近学生生活的实例(高一学年三位同学的数学成绩问题,汽车票价问题),展示了如何在实际情境中根据不同的需要选择恰当的表示方法,并结合相关内容介绍了分段函数及其应用。

在讨论函数性质时,教科书通过问题,引导学生经历了“三步曲”:第一步,观察具体函数的图象,描述图象特征;第二步,结合相应的数值表,用日常描述性语言描述函数特征;第三步,引进数学符号,用形式化语言描述函数性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目 录§44 正弦定理 §45 余弦定理说课稿 §46 解三角形应用举例说课 §47 数列的概念_说课稿1 §48 数列的概念说课稿2 §49 《等差数列》说课稿§50 等差数列的前n 项和说课稿(1) §51 等比数列说课稿§52 《等比数列的前n 项和公式》说课稿 §53 《不等式与不等关系1》说课稿1§54 《一元二次不等式及其解法》教学设计说明 §55 二元一次不等式表示平面区域说课稿 §56 线性规划_说课稿 §57 基本不等式_说课稿§44 正弦定理一、 教材分析1、本节课的地位、作用和意义本节课内容选自普遍高中课程标准实验教科书(北京师范大学出版社出版) 必修5 4548P p ,第2章第1节内容。

在初中,学生已经学习了三角形的边和角的基本关系、全等三角形等与三角形有关的基础知识;同时在必修 4 ,学生也学习了三角函数、向量三角恒等变换等内容。

这些为学生学习正弦定理提供了坚实的基础。

正弦定理是初中解直角三角形的延伸,是揭示三角形边、角之间数量关系的重要公式,在物理学等其它学科、工业生产以及日常生活等常常涉及解三角形的问题。

2、课时安排:2课时,其中第1课时为正弦定理的推导、正弦定理以及利用正弦定理来解已知两角一边的三角形等;第2课时为利用正弦定理来解已知两边以及其中一边的对角的三角形和其它简单应用。

3、本节课的教学重点和难点我通过解读新课标和分析教材,认为:重点:通过新课程标准的解读,教材内容的解析,我认为正弦定理的推导有利于培养的学生发散思维,学生能体验数学的探索过程,能加深对数形结合解决数学问题的理解,所以正弦定理的证明是本节课的重点之一;同时,数学知识的学习最终是为了应用,所以正弦定理以及正弦定理的应用也是本节课的重点之一。

突出重点的方法:①用引导学生进行分类讨论、类比法、分组讨论法来突出正弦定理的推导;②用讲练结合,精选例题、练习和问题,归纳法来突出正弦定理的应用。

难点:新定理的发现需要一定得创新意识和发散思维,这正是多数学生所缺乏的,但是社会需要的是创新人才,因此,正弦定理的猜想发现是本节课的难点。

突破难点的方法:转化法(由特殊向一般转化)、鼓励和引导法。

二、教学目标分析1、知识与技能目标(1)能在2分钟内写出正弦定理的符号表达式,准确率为97%;(2)能利用正弦定理来解决已知两角一边的三角形以及相关简单的实际问题。

2、过程方法与能力目标(1)通过正弦定理的推导,逐步培养合情推理、探索数学规律的思维能力;(2)在利用正弦定理来解已知两角及一边的三角形的过程中,逐步培养应用数学知识来解决社会实际问题的能力。

3、情感、态度、价值观目标(1)通过参与、思考、交流,体验正弦定理的发现过程,逐步培养探索精神和创新意识。

(2)在运用正弦定理的过程,逐步培养实事求是、扎实严谨的科学态度。

三、学情分析学法:以讨论法(师生对话、生生讨论)为主,以发现法、类比法、接受法、练习法为辅。

理由:①学生的认知发展理论;②高中生已有的数学学习能力;③本节课的内容特点;④本班学生的实际情况四、教法分析教法:以引导—启发法为主,以讲授法、讨论法以及多媒体演示法。

理由:①学生的学习方法;②我个人的知识水平以及经验;③学校的条件图2CBAA在学生进行思考、讨论后, 根据同学的思路,我会引导 2 的数学模型,利用初中的解1,即1=AC cos(A -2π)=bsinA, 1=BC sinB=asinB 所以 bsinA= asinB即 , C=。

为了复玉佩两的长书教学重点放在黑板的正中间,为了能加深学生对正弦定理以及其应用的认识,把例题放在中间,以期全班同学都能看得到。

§45 余弦定理说课稿一.教材分析1.地位及作用“余弦定理”是人教A版数学必修5主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中“勾股定理”内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具具有广泛的应用价值,起到承上启下的作用。

2.课时安排说明参照教学大纲与课程标准,以及学生的现实情况,本节内容安排两课时,本次说课内容为第一课时。

3.教学重、难点重点:余弦定理的证明过程和定理的简单应用。

难点:利用向量的数量积证余弦定理的思路。

二.学情分析本课之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。

在此基础上利用向量方法探求余弦定理,学生已有一定的学习基础和学习兴趣。

总体上学生应用数学知识的意识不强,创造力较弱,看待与分析问题不深入,知识的系统性不完善,使得学生在余弦定理推导方法的探求上有一定的难度,在发掘出余弦定理的结构特征、表现形式的数学美时,能够激发学生热爱数学的思想感情;从具体问题中抽象出数学的本质,应用方程的思想去审视,解决问题是学生学习的一大难点。

三.目标分析根据新课程标准突出学生综合素质培养的特点,确定了本节课三位一体的教学目标:知识目标:能推导余弦定理及其推论,能运用余弦定理解已知“边,角,边”和“边,边,边”两类三角形。

能力目标:培养学生知识的迁移能力;归纳总结的能力;运用所学知识解决实际问题的能力。

情感目标:从实际问题出发运用数学知识解决问题这个过程体验数学在实际生活中的运用,让学生感受数学的美,激发学生学习数学的兴趣。

通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。

养成实事求是的科学态度和契而不舍的钻研精神,形成学习数学知识的积极态度。

四.教学方法1.教法分析:数学课堂上首先要重视知识的发生过程,既能展现知识的获取,又能暴露解决问题的思维。

在本节教学中,我将遵循“提出问题、分析问题、解决问题”的步骤逐步推进,以课堂教学的组织者、引导者、合作者的身份,组织学生探究、归纳、推导,引导学生逐个突破难点,师生共同解决问题,使学生在各种数学活动中掌握各种数学基本技能,初步学会从数学角度去观察事物和思考问题,产生学习数学的愿望和兴趣。

2.学法分析:教师的“教”不仅要让学生“学会知识”,更重要的是要让学生“会学知识”,而正确的学法指导是培养学生这种能力的关键。

本节教学中通过创设情境,充分调动学生已有的学习经验,让学生经历“现实问题转化为数学问题”的过程,发现新的知识,把学生的潜意识状态的好奇心变为自觉求知的创新意识。

又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质。

A∙cos400︒60cos学习的主体是学生,要因材施教对症下药,具体情况具体分析,不能照搬照抄。

教无定法,关键是学生能不能有所思,能不能有所得。

在本节课的教学中,我始终本着“教师是课堂教学的组织者、引导者、合作者”的原则,让学生通过分析、观察、归纳、推理等过程建构新知识,并初步学会从数学的角度去观察事物和思考问题,产生学习数学的浓厚兴趣。

同时,以学生作为教学主体,设计可操作的数学活动,使每个同学都参与其中,降低了学数学的门槛,从而带动和提高全体学生的学习积极性和主动性。

师生共同体验发现探索的快乐,感受合作交流的愉悦。

新课程的数学提倡学生动手实践,自主探索,合作交流,深刻地理解基本结论的本质,体验数学发现和创造的历程,力求对现实世界蕴涵的一些数学模式进行思考,作出判断;同时要求教师从知识的传授者向课堂的设计者、组织者、引导者、合作者转化,从课堂的执行者向实施者、探究开发者转化。

本课尽力追求新课程要求,利用师生的互动合作,提高学生的数学思维能力,发展学生的数学应用意识和创新意识,深刻地体会数学思想方法及数学的应用,激发学生探究数学、应用数学知识的潜能。

§46 解三角形应用举例说课各位评委各位同学,大家好!我说课的题目是“解三角形应用举例”,选自高中数学必修五第一章第二节。

我以新课标的理念为指导,时刻牢记教什么、怎样教,为什么这样教。

本次说课分为:教材与学情分析、教法与学法、教学过程、评价与反思四个方面。

一、教材与学情分析正弦定理和余弦定理是解决三角形的理论基础,让学生掌握建立“数学模型”的基本思想是本节课的重中之重。

通过对解斜三角形在实际中应用的讲解,让学生体会具体问题已可以转化为抽象的数学问题以及数学知识在生产,生活实际中所发挥的重要的作用。

同时培养学生数学符号表达题意和应用转化思想解决数学问题的能力,提高学生解决实际问题的能力。

激发学生学习数学的兴趣,并让学生体会数学的应用价值。

根据教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,我制定如下三个教学目标:知识与技能能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题。

思想与方法首先通过情境引入,顺利地导入新课,为以后的几节课做良好铺垫。

其次结合学生的实际情况,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体演示,帮助学生掌握解法,能够类比解决实际问题。

对于开放性题目鼓励学生讨论,开放多种思路,引导学生发现问题并进行适当的指点和矫正。

情感和态度价值观激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力。

教学重点:探索解三角形的条件,得到实际问题的解。

教学难点:根据题意建立数学模型,画出示意图。

二、教法与学法1、教法选择:根据本节课的教学目标、教材内容及学生的认知特点,我选择创设情境教学法、探究教学法和引导发现法相结合。

以学生自主探究、合作交流为主,教师启发引导为辅。

2、教学组织形式:师生互动、生生互动。

3、学法指导:巴甫洛夫曾指出:“方法是最主要和最基本的东西”,因此学之有法,才能学之有效,学之有趣。

根据本节课的特点,我在学法上指导学生:①如何探究问题②遇到新的问题时如何转化为熟悉的问题③做好评价与反思4、教学手段根据数学课的特点,我采用的教具是:多媒体和黑板相结合。

利用多媒体进行动态和直观的演示,辅助课堂教学,为学生提供感性材料,帮助学生探索并发现余弦定理。

对证明过程和知识体系板书演示,力争与学生的思维同步。

学具是:纸张、直尺、量角器、计算器。

三、教学过程为了实现本节课的教学目标,在教学中注意突出重点、突破难点,我首先从大家最熟悉的城市入手,由美丽的九曲河产生疑问,进而将同学的积极性调动起来。

再复习正弦定理和余弦定理后,先练习两个简单题,为后来的讲解做铺垫。

在例1中,让同学学到如何测河流两侧的点的距离,再让大家充分地讨论,如何测出同一测两点的距离。

一个练习题由两位同学到黑板上来书写,不但锻炼了学生的能力,更给学生了自信心,也加促了同学之间竞争的意识。

相关文档
最新文档