多边形及其内角和讲义(学生用)
《多边形的内角和与外角和》课件
如果不知道多边形的边数,可以先列出多边形的一个顶点出发的对角线,这 样可以将多边形分成若干个三角形,然后利用三角形内角和求解。
例子解析
1 2 3
求四边形内角和
四边形可以分成两个三角形,每个三角形的内 角和为180°,因此四边形的内角和为2 × 180°=360°。
求五边形内角和
五边形可以分成三个三角形,每个三角形的内 角和为180°,因此五边形的内角和为3 × 180°=540°。
一个正六边形的外角和是多少度?
05
结论与总结
主要内容回顾
多边形的内角和公式:$180^{\circ} \times (n-2)$,其中n是多边形的边数
多边形的外角和恒等于360^{\circ}
外角和的推导过程:将多边形分成若干个三角形,每个三角形的外角和为 360^{\circ},因此多边形的外角和为360^{\circ}
以五边形为例,五边形有5个顶点,每个顶点对应 的外角为180度/5 = 36度,因此五边形的外角和 为36 × 5 = 180度。
以四边形为例,四边形有4个顶点,每个顶点对应 的外角为180度/4 = 45度,因此四边形的外角和 为45 × 4 = 180度。
以此类推,对于任意多边形,其外角和均为360度 。
课后作业
基础题
基础题1
求一个四边形的内角和。
基础题2
求一个五边形的内角和。
基础题3
求一个六边形的内角和。
提高题
提高题1
01
已知一个四边形其中三个角的度数之和,求第四个角的度数。
提高题2
02
已知一个五边形其中四个角的度数之和,求第五个角的度数。
提高题3
03
已知一个六边形其中五个角的度数之和,求第六个角的度数。
专题04 多边形及其多边形内角和(知识点串讲)(解析版)
专题04 多边形及其多边形内角和知识网络重难突破知识点一多边形相关知识多边形概念:在平面中,由一些线段首尾顺次相接组成的图形叫做多边形 内角:多边形中相邻两边组成的角叫做它的内角。
外角:多边形的边与它邻边的延长线组成的角叫做外角。
对角线:连接多边形不相邻的两个顶点的线段叫做多边形的对角线。
【对角线条数】一个n边形从一个顶点出发的对角线的条数为(n-3)条,其所有的对角线条数为2)3(nn(重点)凸多边形概念:画出多边形的任何一条边所在的直线,如果多边形的其它边都在这条直线的同侧,那么这个多边形就是凸多边形。
正多边形概念:各角相等,各边相等的多边形叫做正多边形。
(两个条件缺一不可,除了三角形以外,因为若三角形的三内角相等,则必有三边相等,反过来也成立)典例1 (2018春富顺县期末)将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形【答案】A【解析】试题解析:当截线为经过四边形对角2个顶点的直线时,剩余图形为三角形;当截线为经过四边形一组对边的直线时,剩余图形是四边形;当截线为只经过四边形一组邻边的一条直线时,剩余图形是五边形;∴剩余图形不可能是六边形,故选A.典例2 (2018秋桥北区期中)过多边形的一个顶点的所有对角线把多边形分成9个三角形,这个多边形的边数是( )A.10 B.11 C.12 D.13【答案】B【详解】设多边形有n条边,n-2=9,则n=11,故答案选B.典例3 (2018春道里区期末)如果一个多边形的内角和是720°,那么这个多边形的对角线的条数是( ) A.6 B.9 C.14 D.20【答案】B【详解】由题意可知n=6,所以对角线条数为9知识点二多边形的内角和外角(重点)n边形的内角和定理:n边形的内角和为(n−2)∙180°(重点)n边形的外角和定理:多边形的外角和等于360°,与多边形的形状和边数无关。
典例1 (2019春安庆市期中)若正多边形的一个外角是60︒,则该正多边形的内角和为A.360︒B.540︒C.720︒D.900︒【答案】C【详解】由题意,正多边形的边数为360660n︒==︒,其内角和为()2180720n-⋅︒=︒.故选C.典例2 (2019春南阳市期中)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.6【答案】B【详解】根据n边形的内角和公式,得:(n-2)•180=360,解得n=4.故选B典例3 (2018春菏泽市期末)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.11【解析】分析:根据多边形的内角和公式及外角的特征计算.详解:多边形的外角和是360°,根据题意得:180°•(n-2)=3×360°解得n=8.故选:A.巩固训练一、单选题(共10小题)1.(2018春龙安区期末)一个多边形切去一个角后,形成的另一个多边形的内角和为540 ,那么原多边形的边数为()A.4 B.4或5 C.5或6 D.4或5或6【答案】D【详解】设新多边形的边数为n,则(n−2)⋅180°=540°,解得n=5,如图所示,截去一个角后,多边形的边数可以增加1、不变、减少1,所以,5−1=4,5+1=6,所以原来多边形的边数为4或5或6.故选:D.此题考查多边形内角(和)与外角(和),解题关键在于掌握运算公式.2.(2019春闻喜县期末)下列正多边形中,不能够铺满地面的是()A.正六边形B.正五边形C.正方形D.正三角形【答案】B【详解】A. 正六边形的每个内角是120°,能整除360°,能密铺;B. 正五边形每个内角是180°−360°÷5=108°,不能整除360°,不能密铺;C. 正方形的每个内角是90°,能整除360°,能密铺;D. 正三角形的每个内角是60°,能整除360°,能密铺.故选B.【名师点睛】此题考查平面镶嵌(密铺),解题关键在于掌握计算法则.3.(2018春南昌县期末)已知一个多边形的内角和等于这个多边形外角和的2倍,则这个多边形的边数是A.4 B.5 C.6 D.8【答案】C【详解】设这个多边形是n边形,根据题意,得(n-2)×180°=2×360°,解得:n=6,即这个多边形为六边形,故选C.【名师点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.4.(2019春道外区期末)若正多边形的一个内角是150°,则该正多边形的边数是()A.6 B.12 C.16 D.18【答案】B【解析】设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12,故选B.5.(2018春东坡区期末)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.50°B.55°C.60°D.65°【答案】C【详解】∵在五边形ABCDE中,∠A+∠B+∠E=300°,∴∠EDC+∠BCD=240°,又∵DP、CP分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP中,∠P=180°-(∠PDC+∠PCD)=180°-120°=60°.故选:C.【名师点睛】主要考查了多边形的内角和以及角平分线的定义,解题时注意:多边形内角和=(n-2)•180 (n≥3且n为整数).6.(2018春金安区期中)如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A.100米B.110米C.120米D.200米【答案】A【详解】解:∵360÷36=10,∴他需要走10次才会回到原来的起点,即一共走了10×10=100米.故选A.【名师点睛】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360º.7.(2018春小店区期中)一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或9【答案】D【解析】试题分析:设内角和为1080°的多边形的边数是n,则(n﹣2)•180°=1080°,解得:n=8.则原多边形的边数为7或8或9.故选D.8.(2017秋民勤县期中)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°【答案】C【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:=72°.故选:C.【名师点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.9.(2016春荔湾区期中)若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7 B.10 C.35 D.70【答案】C【解析】∵一个正n边形的每个内角为144°,∴144n=180×(n﹣2),解得:n=10,这个正n边形的所有对角线的条数是:==35,故选C.10.(2018春德州市期末)一个正多边形的内角和为900°,那么从一点引对角线的条数是()A.3 B.4 C.5 D.6【答案】B【详解】设这个正多边形的边数是n,则(n-2)•180°=900°,解得:n=7.则这个正多边形是正七边形.所以,从一点引对角线的条数是:7-3=4.故选:B【名师点睛】本题考核知识点:多边形的内角和.解题关键点:熟记多边形内角和公式.二、填空题(共5小题)11.(2018春天水市期末)如图,五边形是正五边形,若,则__________.【答案】72【解析】分析:延长AB交于点F,根据得到∠2=∠3,根据五边形是正五边形得到∠FBC=72°,最后根据三角形的外角等于与它不相邻的两个内角的和即可求出.详解:延长AB交于点F,∵,∴∠2=∠3,∵五边形是正五边形,∴∠ABC=108°,∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72°故答案为:72°.[名师点睛]题主要考查了平行线的性质和正五边形的性质,正确把握五边形的性质是解题关键.12.(2019春海淀区期末)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是__________.【答案】180°或360°或540°【解析】分析: 剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,根据多边形的内角和定理即可求解.详解: n边形的内角和是(n-2)•180°,边数增加1,则新的多边形的内角和是(4+1-2)×180°=540°,所得新的多边形的角不变,则新的多边形的内角和是(4-2)×180°=360°,所得新的多边形的边数减少1,则新的多边形的内角和是(4-1-2)×180°=180°,因而所成的新多边形的内角和是540°或360°或180°.故答案为:540°或360°或180°.【名师点睛】本题主要考查了多边形的内角和的计算公式,理解:剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,是解决本题的关键.13.(2018春金东区期末)如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是_____.【答案】40°【详解】∵∠ADE=60°,∴∠ADC=120°,∵AD⊥AB,∴∠DAB=90°,∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,故答案为:40°.【名师点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.14.(2018春延边市期中)如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=_____.【答案】540°【详解】如下图,由三角形的外角性质可知∠6+∠7=∠8,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠3+∠4+∠5+∠8,又∵∠1+∠2+∠3+∠10=360°, ∠4+∠5+∠8+∠9=360°,∠10+∠9=180°,∴∠1+∠2+∠3+∠4+∠5+∠8=(∠1+∠2+∠3+∠10)+(∠4+∠5+∠8+∠9)-(∠10+∠9)=540°.【名师点睛】本题考查了三角形的外角和性质,四边形的内角,找到外角与邻补角是解题关键.15.(2019春东阳市期末)若一个多边形的内角和比外角和多900,则该多边形的边数是_____.【答案】9,【解析】分析:根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.详解:设这个多边形的边数是n,则 (n−2)⋅180°−360°=900°,解得n=9.故答案为: 9.【名师点睛】本题考查了多边形的内角和外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是360°是解题的关键.三、解答题(共2小题)16.(2018春云岩区期末)一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的一半.(1)求这个多边形是几边形;(2)求这个多边形的每一个内角的度数.【答案】(1)这个多边形是六边形;(2)这个多边形的每一个内角的度数是120°.【详解】(1)设内角为x,则外角为,由题意得,x+=180°,解得:x=120°,=60°,这个多边形的边数为:=6,答:这个多边形是六边形,(2)设内角为x,则外角为,由题意得: x+=180°,解得:x=120°,答:这个多边形的每一个内角的度数是120度.内角和=(6﹣2)×180°=720°.【名师点睛】本题主要考查多边形内角和外角,多边形内角和以及多边形的外角和,解决本题的关键是要熟练掌握多边形内角和外角的关系以及多边形内角和.17.(2017春黄岩区期中)如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.【答案】(1)∠1+∠2=90°;理由见解析;(2)(2)BE∥DF;理由见解析.【解析】试题分析:(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后,根据角平分线的性质,即可得出;(2)由互余可得∠1=∠DFC,根据平行线的判定,即可得出.试题解析:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.。
《多边形及其内角和》教案
《多边形及其内角和》教案《多边形及其内角和》教案1一、教学目标1、掌握多边形的内角和公式,并能熟练运用。
2、通过探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力,体会从特殊到一般的认识问题的方法。
3、通过探索多边形内角和公式,尝试从不同的角度寻求解决问题的方法,并能有效的解决问题。
4、通过猜想,推理等数学活动,感受数学活动充满探索以及数学结论的确定性,提高学生的学习热情。
二、教学重点、难点重点:探索多边形的内角和公式。
难点:探索多边形内角和时,如何把多边形转化成三角形,利用三角形内角和180度求出多边形内角和。
三、教学方法:学生自主探究、合作交流与教师启发引导相结合.四、教具准备①每个小组一张“探究实验报告单”(活动1)②每人一张“类比探索五边形、六边形、七边形的内角和的答题纸”(活动2)③多媒体课件五、教学过程(一)创设情境,引入新课问题1:把一个长方形纸片剪去一个角还剩几个角。
【学生给出的答案可能是---三个角、四个角、五个角,教师演示动画。
】问题2:你知道所得图形的内角和吗。
你知道102边形的内角和吗。
【根据学生的回答,教师指出本课内容,板书课题: 多边形的内角和。
】(二)合作交流,探索新知活动1:猜想验证四边形的内角和问题:(1)任意四边形的内角和等于多少度。
(2)你是怎样得到的。
你能找到几种方法。
【问题(1)学生很容易猜到360°,问题(2)组织学生四人一组拿出课前老师发给每个小组的探究实验报告,讨论并记录探究方法。
在讨论的过程中,教师给出合格、良好、优秀的“自我评价标准”,每个小组对照评价表给出自我评价,教师深入到学生讨论中,以“边听—边问—边导”的形式,适时对各小组进行点拨。
讨论结束后,小组学生代表用实物投影展示探究实验报告,说明求四边形内角和的方法,并讲述想法。
教师对学生找到的不同方法都给予肯定和评价,并加以总结,归纳学生提出的探究方法:度量、剪拼、分割。
多边形的内角和与外角和第一课时(公开课正式稿)
探究1
还有其他的分解方法吗? C
D
B E A 五边形内角和: 3×180°=540°
探索n边形内角和
还有其他的分解方法吗?
探究2
A
180°× 4=720°?
E
B
D
C
O
180°× 4 –180° =3×180°= 540°
探索n边形内角和
还有其他的分解方法吗?
A
O
180°× 5=900°?
探究3
E B
三角形
180°
四边形
360°?
五边形 六边形 ? ?
n边形 ?
探索n边形内角和
B
A
D
四边形的内角和为:2×180°=360°
C
定理:四边形内角和等于360°
从四边形的一个顶点引一条对角线,把四边形分成 两个三角形,四边形的内角和等于这两个三角形的内角 和之和。那么五边形呢?怎么求它的内角和?
探索n边形内角和
解 : 设这个多边形的边数为 n ,
(n-2)×180°= 900°
n- 2 = 900°÷180°
n-2
n
= 5
= 7
答:这个多边形是七边形。
多边形内角和公式的应用
1440° 1. 十边形的内角和为_______.
2. 已知多边形的内角和为1080 ° ,则这个多边形 8 的边数为_______.
从n边形的一个顶点可以引____对角线 n-3 把多边形分成____个三角形. n-2
n边形的内角和等于(n-2) · 180°
其中,n为大于或等于三的正整数
多边形内角和公式的应用
例1(1)六边形的内角和是多少度?
(2)正六边形的内角都相等,它的每个 内角是多少度?
七年级下册多边形内角和讲义
C7.5 多边形的内角和一、新知引入1、在△ABC 中,(1)∠C = 90º , ∠B = 30º, 则 ∠A = ; (2)∠A = 100º , ∠B = ∠C , 则 ∠B = ; (3)∠B = 30º , ∠C = 2∠A , 则 ∠C = ; (4)∠A : ∠B : ∠C = 2 : 3 : 4 ,则∠A = ; ∠B = ;∠C = 。
2、三角形的内角和是180°,多边形的内角和如何计算呢?你知道四边形的内角和吗?在小学计算不规则多边形的面积大多采用什么方法?(回忆小学所学内容,为学习新知识作铺垫。
)3,把四边形2个三角形,你能计算四边形ABCD 的内角和吗?四边形ABCD 的内角和是180°×2=360°。
4、如图,把五边形ABCDE 分成3个三角形,你能计算五边形ABCDE 的内角和吗?五边形ABCDE 的内角和是180°×3=540°。
5、仿照上面的方法,六边形ABCDEF 可以分成多少个三角形?n 边形可以分成多少个三角形? 填表:多边形边数456…n分成的三角形个数 2 3 4 …多边形的内角和 180°×2 180°×3 180°×4 …由此表格得到,n边形的内角和等与E DC B AB DA1、想一想:你还有不同于上述的分割方案吗? (分组讨论,学生从不同角度思考问题)(1)用如下所示的分法,将多边形分割成三角形,并完成表格:由此表格得到,n边形的内角和等与典型例题1、若一个多边形的对角线有14条,则这个多边形的边数是( ) A. 10 B. 7 C. 14 D. 62、一个多边形,除去一个内角外,其余各内角的和为2750°,求这个多边形的边数。
3、多边形的内角和可能是( )A .810°B .540°C .180°D .605°多边形的边数 3 4 5 6 7 … n分成的三角形的个数…多边形的内角和…_ C_A _ B _ P_E_ D_C_ A_ F _ E_ D_ B_ A_D_ A_ C_ P_F _E_C _B _A _GABC αβγ 1 23AB C α β γ 1 23B A CD 1 2 34 αβ γ δ4、一个多边形的每个内角是1440,求它的边数。
人教版 八年级数学 多边形及其内角和讲义 (含解析)
第2讲多边形及其内角和知识定位讲解用时:5分钟A、适用范围:人教版初二,基础一般;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习多边形及其内角和,首先要学会判断凸多边形和凹多边形,然后要学会计算多边形的内角和和外角和,能够处理多边形的一些基础题目。
知识梳理讲解用时:20分钟凸多边形、凹多边形1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
2、凸多边形:如果把一个多边形的所有边中,有一条边向两方无限延长成为一直线时,其他各边不都在此直线的同旁,那么这个多边形就叫做凹多边形,其内角中至少有一个钝角。
3、凹多边形:如果把一个多边形的所有边中,任意一条边向两方无限延长成为一直线时,其他各边都在此直线的同旁,那么这个多边形就叫做凸多边形,其内角应该全不是钝角,任意两个顶点间的线段位于多边形的内部或边上。
目前我们研究的都是凸多边形1、多边形的内角:多边形相邻两边组成的角叫做它的内角。
2、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
3、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
4、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
从同一个顶点引出对角线的条数:0 1 2 3 n-3 (n≥3)分割出三角形的个数:0 2 3 4 n-2 (n≥3)多边形内角和:180° 360° 540° 720° (n-2)·180°课堂精讲精练【例题1】设四边形内角和等于,五边形外角和等于,则与之间的关系是( ) A.B.C.D.【答案】B【解析】四边形的内角和是360°,多边形的内角和也是360°.解:多边形边数为,则内角和为,四边形内角和,多边形外角和为, 五边形外角和, 因此. 故正确答案为:.讲解用时:2分钟解题思路:此题比较简单,熟记多边形的内角和和外角和公式做题即可. 教学建议:掌握多边形的内角和和外角和公式,灵活做题.难度: 3 适应场景:当堂例题 例题来源:无 年份:2018【练习1.1】下列图形中,多边形有( )总结:1、多边形对角线的条数:(1)从n 边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
人教版八年级上册 11.3 多边形及其内角和 讲义
第三节多边形及其内角和(1 )三角形没有对角线(2 )正多边形必须满足定义中的两个条件:①各个角都相等;②各条边都相等 .二者缺一不可 ,如果一个多边形的各个角都相等或每条边都相等 ,那么这个多边形并不一定是正多边形 ,如:菱形和矩形 .2 、多边形的内角和1.多边形的内角和等于 (n -2 )×180° (n≥3 ,且n为整数 ).应用:⑴边数求内角和;⑵内角和求边数;⑶正n边形的每个内角的度数等于()nn︒⨯-18022.多边形的外角和是360°注:多边形的每个内角和与它相邻的外角是邻补角 ,所以n边形的内角和为n×180° ,所以外角和等于n×180° - (n -2 )×180° =360°.应用:⑴外角度数求正多边形的边数;⑵正多边形的边数求一个外角的度数 .3 、平面镶嵌 (密铺 )平面图形镶嵌的定义:用形状 ,大小完全相同的一种或几种平面图形进行拼接 .彼此之间不留空隙 ,不重叠地铺成一片 ,这就是平面图形的镶嵌 .注:正多边形镶嵌有三个条件限制:①边长相等;②顶点公共;③在一个顶点处各正多边形的内角之和为360°,假设能构成360° ,那么说明能够进行平面镶嵌 ,反之那么不能 .总结:①单一正多边形的镶嵌:正三角形 ,正四边形 ,正六边形 .②两种正多边形的镶嵌:3个正三角形和2个正方形、4个正三角形和1个正六边形、2个正三角形和2个正六边形、1个正三角形和2个正十二边形、1个正方形和2个正八边形等 .③用任意的同一种三角形或四边形能镶嵌成一个平面图形 . 例题1 -1.假设一个多边形的内角和小于其外角和 ,那么这个多边形的边数是 ( ) 例题1 -2.一个多边形截去一个角后 ,形成另一个多边形的内角和为2520° ,那么原多边形的边数是 ( )检测1 -1假设一个多边形的内角和与外角和相加是1800° ,那么此多边形是 ( ) 检测1 -2将一长方形纸片沿一条直线剪成两个多边形 ,那么这两个多边形的内角和之和不可能是 ( )A.360°B.540°C.720°D.900°检测1 -3如图 ,∠A +∠B +∠C +∠D +∠E +∠F 的大小为 ( )A.180°B.360°C.540°D.720°第四节 图形的面积高频核心考点 精题精讲精练 方法技巧提炼正方形面积 =边长×边长; 长方形 (矩形 )面积 =长×宽;平行四边形面积 =底×高; 三角形面积 =21×底×高; 梯形面积 =21× (上底 +下底 )×高.⑴和差法:把图形面积用常见图形的面积和或差表示 ,通过常规图形面积公式计算 .⑵割补法:有时直接求图形的面积有困难 ,我们可以通过分割或补形 ,把图形转化为容易观察或解决的图形的面积进行求解 .⑶等积变形法:对某些图形 ,找出与所求图形面积相等或有关联的特殊图形 ,通过代换为易求图形的面积 .⑷等比法:将面积比转化为线段的比 .同 (等 )高时 ,面积之比等于底之比;同 (等 )底时 ,面积之比等于高之比 .三角形一边中线平分三角形的面积 .例题 4 -1.将直角△ABC 绕顶点B 旋转至|如图位置 ,其中∠C =90º ,AB=4 ,BC =2 ,AC =23,︒=∠60ABC ,点C 、B 、A ′在同一直线上 ,那么阴影局部的面积是 ________ .例题4 -2.如下图 ,△ABC 中 ,点 D ,E ,F 分别是 BC ,AD ,CE 边上的中课后作业 出门考 点 ,且ABC S ∆ =4cm ²那么BEF S ∆的值为 ( )A.2cm ² B.1cm ² C.0.5cm ²D.0.25cm ²检测1 -1 .如图,在∆ABC 中,D 是BC 上任意一点,O 是AD 上任意一点,ABO S ∆ =3,A CO BO D S 2S ∆∆= =1,那么COD S ∆ =________ .检测1 -2.如图 ,AD 是△ABC 边BC 的中线 ,E 、F 分别是AD 、BE 的中点 ,假设△BFD 的面积为6 ,那么△ABC 的面积等于 ( )1.以下说法:①伸缩门的制作运用了四边形的不稳定性;②夹在两条平行线间的垂线段相等;③成中|心对称的两个图形不一定是全等形;④一组对角相等的四边形是平行四边形;⑤用反证法证明 "四边形中至|少有一个角是钝角或直角〞时 ,必先假设 "四边形中至|多有一个角是钝角或直角〞 ,其中正确的选项是 ( )A.①②B.③④C.①②④D.①②⑤2.平行四边形、矩形、菱形、正方形都具有的性质是 ( )A.对角线互相平分B.对角线互相垂直C.对角线相等D.轴对称图形3.假设一个多边形的每一个内角都是150° ,那么它是______边形;从它的一个顶点出发画对角线 ,可以把这个多边形分割______个三角形.4.如下图,AD,AE 分别是∆ADC 和∆ABC 的高和中线,AB =9cm,,AC =12cm,∠CAB =90º.试求:(1)AD 的长;(2)求∆ABE 的面积;(3)求∆ACE 和∆ABE 的周长的差.5.如图,在△ABC 中, BE ⊥AC ,BC =5cm, AC =8cm, BE=3cm ,(1 )求△ABC 的面积;(2 )画出△ABC 中的BC 边上的高AD,并求出AD 的值 .日期:_______ 姓名:1.以下说法中 ,你认为正确的选项是 ( )A.四边形具有稳定性B.等边三角形是中|心对称图形C.等腰梯形的对角线一定互相垂直D.任意多边形的外角和是360º2.以下各图中 ,是凸多边形的是 ( )A. B. C. D.3.把一个多边形纸片沿一条直线截下一个三角形后 ,变成一个18边形 ,那么原多边形纸片的边数不可能是 ( )A.16B.17C.18D.194.如果一个多边形的每个内角都是120º ,那么这个多边形的边数是________.5.从一个10边形的一个顶点出发 ,连接其余各顶点 ,可以将这个边形分割成______个三角形.。
(完整版)多边形及其内角和知识点
知识要点梳理边形的内角和等于180°(n-2)。
360°。
边形的对角线条数等于1/2·n (n-3)3、4、6/。
拼成360度的角3、4。
知识点一:多边形及有关概念 1、 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形. (1)多边形的一些要素: 边:组成多边形的各条线段叫做多边形的边. 顶点:每相邻两条边的公共端点叫做多边形的顶点. 内角:多边形相邻两边组成的角叫多边形的内角,一个n 边形有n 个内角。
外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
(2)在定义中应注意: ①一些线段(多边形的边数是大于等于3的正整数); ②首尾顺次相连,二者缺一不可; ③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间 多边形. 2、多边形的分类: (1)多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这 条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图1).本章所讲的多边形都是指凸 多边形. 凸多边形 凹多边形 图1 (2)多边形通常还以边数命名,多边形有n 条边就叫做n 边形.三角形、四边形都属于多边形,其中三角 形是边数最少的多边形.知识点二:正多边形 各个角都相等、各个边都相等的多边形叫做正多边形。
如正三角形、正方形、正五边形等。
正三角形 正方形 正五边形 正六边形 正十二边形要点诠释: 各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形知识点三:多边形的对角线 多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 如图2,BD 为四边形ABCD 的一条对角线。
要点诠释: (1)从n 边形一个顶点可以引(n -3)条对角线,将多边形分成(n -2)个三角形。
多边形及其内角和讲义(学生用)
多边形内角和第一部分知识点回顾边形的内角和等于180°(n-2)。
360°。
边形的对角线条数等于1/2·n(n-3)3、4、6/。
拼成360度的角:3、4。
1、多边形的定义:在同一平面内。
多边形的分类:不叫三边形2、镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌)。
这里的多边形可以形状相同,也可以形状不相同。
实现镶嵌的条件:拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边。
3、常见的一些正多边形的镶嵌问题:(1)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°。
(2)只用一种正多边形镶嵌地面:只有正三角形、正方形、正六边形的地砖可以用。
注意:任意四边形的内角和都等于360°。
所以用一批形状、大小完全相同但不规则的四边形地砖也可以铺成无空隙的地板,用任意相同的三角形也可以铺满地面。
(3)用两种或两种以上的正多边形镶嵌地面用两种或两种以上边长相等的正多边形组合成平面图形,关键是相关正多边形“交接处各角之和能否拼成一个周角”的问题。
例如,用正三角形与正方形、正三角形与正六边形、正三角形与正十二边形、正四边形与正八边形都可以作平面镶嵌。
第二部分经典习题类型一:多边形内角和及外角和定理应用1.一个多边形的内角和等于它的外角和的5倍,它是几边形?【变式1】若一个多边形的内角和与外角和的总度数为1800°,求这个多边形的边数.【变式2】一个多边形除了一个内角外,其余各内角和为2750°,求这个多边形的内角和是多少?.【变式3】个多边形的内角和与某一个外角的度数总和为1350°,求这个多边形的边数。
类型二:多边形对角线公式的运用2.某校七年级六班举行篮球比赛,比赛采用单循环积分制(即每两个班都进行一次比赛).你能算出一共需要进行多少场比赛吗?【变式1】一个多边形共有20条对角线,则多边形的边数是().A.6 B.7C.8 D.9【变式2】一个十二边形有几条对角线。
多边形及其内角和课件
多边形及其内角和
41
练一练: 已知在四边形ABCD中, ∠A= 90° ∠C= 90°,BE平分∠ABC,交CD于点E,DF 平分∠ADC,交AB于点F.求证:BE∥DF.
A
D E F
B
C
多边形及其内角和
42
4.若一个n边形的内角都相等,且内角的度数 与和它相邻的外角的度数比为3∶1,那么,这 个多边形的边数为________.
它们的各自相邻的内角,共有n个180°,
总和为n× 180° ,再用它减去n个内角的
和,剩下的就是多边形的外角和了!
n180 0(n2)1800
21800 3600
多边形的外角和等于
多边形及其内角和
33
例1. 已知一个多边形,它的内角和 等于外 角和的2倍,求这个多边形的边数。
解: 设多边形的边数为n ∵它的内角和等于 (n-2)•180°, 多边形外角和等于360º, ∴ (n-2)•180°=2× 360º。 解得: n=6 这个多边形的边数为6。
边形。
如果一个多边形由n条线段组
成,那么这个多边形就叫做n边
形。
n3
多边形及其内角和
3
可表示为:五边形ABCDE或五边形AEDCB
探究2:
A
内角
多
边
顶点
形
的 相B
E 外角
关
概
1
念边
D
C 对角线
对角线:连接多边形不相邻的两个顶点的线段。
多边形及其内角和
4
总结1
n边形有___n__个顶点, ___n__条边, ___n__个内角, ___2_n_个外角, _____条对角线。
19
探索过程一掠:
人教版八年级上册_多边形及其内角和(解析版)
多边形的内角和与外角和1. 多边形的相关概念(1)多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.(2)内角:多边形相邻两边组成的角叫做它的内角.(3)外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角(4)对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.(5)凸多边形:如果整个多边形都在其任何一边所在直线的同一侧的多边形.2. 内角和与外角和如下图,边形的内角和为,多边形的外角和都是.3. 正多边形正多边形:各个角相等,且各条边都相等的多边形叫做正多边形.考点:1. 对角线条数;2.内角和与外角和;3. 正多边形重难点:1. n边形形的对角线:一个顶点有条对角线,共有条对角线.2. 要计算正多边形的内角度数,除了可以拿内角和()除以边数(n)以外,还可以通过利用外角和()除以边数(n),得到一个顶点处外角的度数,再拿180减去它即可.易错点:每个多边形在其一个顶点处对应的外角也都只有一个,它们的和等于.题模一:对角线条数例1.1.1若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7B.10C.35D.70例1.1.2若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是__________边形例1.1.3从一个9边形的某个顶点出发,分别连接这个点与其他顶点可以把这个9边形分割成三角形的个数是____个.例1.1.4观察下面图形,并回答问题.(1)四边形有_______条对角线,五边形有_______条对角线,六边形有_______条对角线;(2)根据规律七边形有_______条对角线,n边形有___________条对角线.例1.1.5一个多边形的对角线的条数与它的边数相等,这个多边形是______边形题模二:内角和与外角和例1.2.1一个多边形从某一个顶点出发截去一个角后所形成的新的多边形的内角和是1980°,则原多边形的边数为()A.11或12B.12或13C.13或14D.12或13或14题模三:正多边形例1.3.1已知一个正多边形的每个外角等于60°,则这个正多边形是()A.正五边形B.正六边形C.正七边形D.正八边形例1.3.2已知正n边形的一个内角为135°,则边数n的值是()A.6B.7C.8D.10例1.3.3如图所示,小华从A点出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米随练1.1如果一个多边形的边数增加1倍后,它的内角和是2160︒,那么原来多边形的边数是______随练 1.2一个多边形的每一个内角都是140°,那么,从这个多边形的一个顶点出发的对角线的条数是_______随练1.3一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5 B.5或6 C.5或7 D.5或6或7∠3=32°,那么∠1+∠2=____度.随练1.5请总结规律,完成下表:拓展1下列说法中错误的有()①各边都相等的多边形是正多边形.②多边形的外角和是指多边形所有外角相加的和.③四个内角均为直角的四边形是正四边形.④多边形的内角和与外角和均与边数有关.⑤正多边形的内角度数与边数无关.⑥多边形的内角和与外角和加起来,应为边数与180°的乘积.A.2个B.3个C.4个D.5个拓展2一个多边形,把一个顶点与其它各顶点连接起来,把这个多边形分成了12个三角形,则这个多边形的边数__________拓展3一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或9拓展4如图,小明从点A出发,向前走2米,左拐20︒,再向前走2米,再左拐20︒,如此下去,小明能否回到出发点A ?如果能,第一次回到出发点共走了多少路程?拓展5 如图,∠1=m°,∠2+∠4+∠6+∠8=n°,则∠3+∠5+∠7的大小是__.A222220︒20︒20︒答案解析多边形的内角和与外角和题模一:对角线条数例1.1.1【答案】C【解析】∵一个正n边形的每个内角为144°,∵144n=180×(n﹣2),解得:n=10.这个正n边形的所有对角线的条数是:==35.例1.1.2【答案】13【解析】该题考查的是多边形对角线计算公式.从一个多边形的一个顶点出发,最多可以引()3n-条对角线,(n为多边形边数).本题中,设这个多边形是n边形.代入公式,得310n-=,∴13n=.例1.1.3【答案】7【解析】从一个9边形的某个顶点出发,分别连接这个点与其他顶点可以把这个9边形分割成三角形的个数是7个例1.1.4【答案】(1)2;5;9,(2)14;(3)2n n-【解析】(1)四边形有2条对角线;五边形有5条对角线;六边形有9条对角线;(2)七边形有14条对角线,n边形有(3)2n n-条对角线.例1.1.5【答案】5【解析】设多边形有n 条边,则根据题意可列:(3)2n nn -=,解得15n =,20n =(舍) 故多边形的边数为5题模二:内角和与外角和 例1.2.1 【答案】C【解析】该题考查的是多边形的角度计算.多边形内角和公式为()2180n -⨯︒,外角度数和为定值360︒, 本题中,()21801980n -⨯︒=︒,解得13n =而多边形从某一个顶点出发截去一个角,边数有两种可能,一种是边数不变,一种是边数减少1条,所以原来的多边形边数可能是13或14,故答案是C .题模三:正多边形 例1.3.1 【答案】B【解析】设所求正n 边形边数为n , 则60°•n=360°, 解得n=6.故正多边形的边数是6. 故选B . 例1.3.2 【答案】C【解析】本题考查了多边形的外角,利用多边形的边数等于外角和除以每一个外角的度数是常用的方法,求出多边形的每一个外角的度数是解题的关键.根据多边形的相邻的内角与外角互为邻补角求出每一个外角的度数,再根据多边形的边数等于外角和除以每一个外角的度数进行计算即可得解. ∠正n 边形的一个内角为135°,∠正n 边形的一个外角为180°-135°=45°, n=360°÷45°=8. 故选C . 例1.3.3 【答案】B【解析】∵多边形的外角和为360°,而每一个外角为24°, ∴多边形的边数为360°÷24°=15,∴小明一共走了:15×10=150米. 随练1.1【答案】7【解析】设原来多边形的边数是n ,则()221802160n -⨯︒=︒,解得7n = 随练1.2 【答案】6【解析】由于一个多边形的每一个内角都是140°,因此其外角都是40°,则这个多边形的边数为360940=,因此从九边形的每一个顶点出发的对角线的条数为936-= 随练1.3 【答案】D【解析】本题考查了多边形的内角和定理,理解分三种情况是关键. 首先求得内角和为720°的多边形的边数,即可确定原多边形的边数. 设内角和为720°的多边形的边数是n ,则(n -2)•180=720, 解得:n=6.则原多边形的边数为5或6或7. 故选:D . 随练1.4 【答案】70∠∠3=32°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°, ∠∠4=180°-60°-32°=88°, ∠∠5+∠6=180°-88°=92°, ∠∠5=180°-∠2-108° ∠, ∠6=180°-90°-∠1=90°-∠1 ∠,∠∠+∠得,180°-∠2-108°+90°-∠1=92°, 即∠1+∠2=70°. 故答案为:70°. 随练1.5【答案】见下表:【解析】n 边形过一个顶点可作()3n -条对角线,而n 边形共有n 个顶点,则共可作()3n n -条对角线,而这()3n n -条对角线中,有一半是重复计算的,抛去重复的这一半对角线,共有()32n n -条对角线.拓展1 【答案】D【解析】只有⑥是正确的,其余说法均错误 拓展2【答案】14【解析】从n 边形的一个顶点作对角线,把这个n 边形分成()2n -个三角形.根据题意可知,这个多边形的边数是12214+= 拓展3 【答案】D【解析】设内角和为1080°的多边形的边数是n ,则(n ﹣2)•180°=1080°,解得:n=8. 则原多边形的边数为7或8或9. 拓展4【答案】能回到出发点,第一次回到出发点共走了36m . 【解析】根据题意可知,小明所走的路线为一个正多边形,其边数为3601820=,即左拐18次后回到出发点.因此小明从点A 出发,第一次回到出发点共走了18236⨯=(m ). 拓展5【答案】m°+n°【解析】如图,连结AB 、BC 、CD .∵(∠3+∠9+∠10)+(∠5+∠11+∠12)+(∠7+∠13+∠14)=180°×3=540°,∴(∠3+∠5+∠7)+(∠9+∠10+∠11+∠12+∠13+∠14)=540°,∴∠3+∠5+∠7=540°﹣(∠9+∠10+∠11+∠12+∠13+∠14),∵五边形ABCDE的内角和为(5﹣2)×180°=540°,∴540°=∠1+∠2+∠9+∠10+∠4+∠11+∠12+∠6+∠13+∠14+∠8=(∠1+∠2+∠4+∠6+∠8)+(∠9+∠10+∠11+∠12+∠13+∠14)=(m°+n°)+(∠9+∠10+∠11+∠12+∠13+∠14),∴∠9+∠10+∠11+∠12+∠13+∠14=540°﹣(m°+n°).∴∠3+∠5+∠7=540°﹣[540°﹣(m°+n°)]=m°+n°.。
多边形和多边形内角和讲义人教版八年级数学上册
11.3 多边形和多边形内角和教学目标1.掌握多边形的定义及其有关概念,理解正多边形及其相关概念.(重点)2.理解多边形的对角线的概念,探索一个多边形能画几条对角线.(难点)3.理解多边形内角和公式的推导过程,并掌握多边形的内角和与外角和公式.(重点)教学过程一、情境导入问题:请观察图片,在图中能找出哪些多边形?长方形、正方形、平行四边形等都是四边形,还有边数很多的图形,它们在日常生活、工农业生产中都有应用。
二、知识梳理导学一:多边形的概念和性质1.请仿照三角形的定义给多边形定义三角形的定义:由不在同一条直线上的三条线段相接所组成的封闭图形叫做三角形多边形的定义:由不在同一条直线上的条线段相接所组成的封闭图形叫做多边形2.请仿照三角形的有关概念写出多边形的有关概念结论1:多边形段组成的角叫做它的内角.多边形的边与它的的组成的角叫做多边形的外角。
3.多边形的对角线探究小结:连接多边形的两个顶点的,叫做多边形的对角线【探究】从四边形的一个顶点出发没可以画出条对角线,四边形共有条对角线从五边形的一个顶点出发没可以画出条对角线,五边形共有条对角线从六边形的一个顶点出发没可以画出条对角线,六边形共有条对角线结论2:以此类推:从n边形的一个顶点出发没可以画出条对角线,n边形共有条对角线4.正多边形的性质【探究】图是正多边形的一些例子,请利用直尺、量角器等度量工具寻找正多边形的特征.小结:都相等,都相等的多边形叫做正多边形。
导学二:多边形的内角和和外角和【探究1】下列多边形的内角和结论3:多边形的内角和= (非常重要!)【探究1】根据下图,探究多边形的外角和请尝试写出推导过程:结论:多边形的内角和= (重要!)三、考点题型探究点一:多边形的概念【类型一】多边形及其概念例题1:下列图形不是凸多边形的是( )【类型二】确定多边形的边数例题2:若一个多边形截去一个角后,变成十五边形,则原来的多边形的边数可能为( ) A.14或15或16 B.15或16 C.14或16 D.15或16或17探究点二:多边形的对角线【类型一】确定多边形的对角线的条数例题3:从四边形的一个顶点出发可画________条对角线,从五边形的一个顶点出发可画________条对角线,从六边形的一个顶点出发可画________条对角线,请猜想从n边形的一个顶点出发有________条对角线,从而推导出n边形共有________条对角线.【类型二】根据对角线条数确定多边形的边数例题4:从一个多边形的任意一个顶点出发都只有5条对角线,则它的边数是( )A.6 B.7 C.8 D.9【类型三】根据分成三角形的个数,确定多边形的边数例题5:连接多边形的一个顶点与其他顶点的线段把这个多边形分成了6个三角形,则原多边形是( ) A.五边形B.六边形C.七边形D.八边形探究点三:正多边形的有关概念例题6:下列图形中,是正多边形的是( )A.等腰三角形B.长方形C.正方形D.五边都相等的五边形探究点四:多边形的内角和【类型一】利用内角和求边数例题7:一个多边形的内角和为540°,则它是( )A.四边形B.五边形C.六边形D.七边形【类型二】求多边形的内角和例题8:一个多边形的内角和为1800°,截去一个角后,得到的多边形的内角和为( )A.1620°B.1800°C.1980°D.以上答案都有可能【类型三】复杂图形中的角度计算例题9:如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( )A.450°B.540°C.630°D.720°【类型四】利用方程和不等式确定多边形的边数例题10:一个同学在进行多边形的内角和计算时,求得内角和为1125°,当他发现错了以后,重新检查,发现少算了一个内角,问这个内角是多少度?他求的是几边形的内角和?探究点五:多边形的外角和【类型一】已知各相等外角的度数,求多边形的边数例题11:正多边形的一个外角等于36°,则该多边形是正( ) A.八边形B.九边形C.十边形D.十一边形【类型二】多边形内角和与外角和的综合运用例题12:一个多边形的内角和与外角和的和为540°,则它是( ) A.五边形B.四边形C.三角形D.不能确定三、巩固练习题组一:多边形内角和的运用1.一个多边形的边数增加2 条,则它的内角和增加().A.180° B.90° C.360° D.540°2.如果一个正多边形的一个内角等于150°,则这个多边形的边数是().A.12 B.9 C.8 D.73.一个n边形除了一个内角之外,其余各内角之和是780°,则这个多边形的边数n的值是多少?题组二:多边形外角和的运用1.在△ABC 中,与∠A,∠B,∠C 相邻的外角度数比是5:4:3,则△ABC 的最大内角是.2.四边形的四个外角度数之比1:2:3:4,则相应各内角度数之比为.3.多边形的内角和与某一个外角的度数总和为1350°.(1)求多边形的边数.(2)此多边形必有一内角为多少度?。
北师版八年级下册6.4多边形及内角和(含答案详解)
北师版八年级下册6.4多边形及其内角和1基本概念⑴多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.⑵多边形的边:组成多边形的各条线段叫做多边形的边.⑶多边形的顶点:每相邻两边的公共端点叫做多边形的顶点.⑷多边形的对角线:在多边形中,连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.⑸多边形的内角:多边形相邻两边组成的角叫做它的内角.⑹多边形的外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角.⑺正多边形:各个角相等,且各条边都相等的多边形叫做正多边形.⑻凸多边形:如果多边形的任何一边所在直线都使余下的边都在这条直线的同一侧的多边形.2基本性质⑴稳定性.⑵内角和与外角和定理.如下图,n边形的内角和为(2)180n≥,多边形的外角和都是360︒.n-⨯︒(3)⑶ n 边形的对角线:一个顶点有(3)n -条对角线,共有(3)2n n-条对角线. ⑷ 不特别强调多边形都指凸多边形,凸多边形的每个内角都小于180︒.模块一 多边形的对角线【例1】 如果一个多边形共有27条对角线,则这个多边形的边数是 . 【解析】略 【答案】9.【巩固】已知从n 边形的一个顶点出发共有4条对角线,其周长为56,且各边长是连续的自然数,求这个多边形的各边之长.【解析】提示:根据对角线条数先判断边数,在设未知数列方程求解. 【答案】567891011,,,,,,.【巩固】已知一个多边形的对角线的条数为边数的2倍,求该多边形的边数. 【解析】提示:设边数为x ,则()322x xx -=.【答案】7【例2】 一个多边形的对角线的条数与它的边数相等,这个多边形是( )边形.分割成(n-2)个三角形求内角和n 个平角-内角和【解析】设多边形有n条边,则根据题意可列:(3)2n nn-=,解得n1=5,n2=0(舍去),故多边形的边数为5.【答案】C.【巩固】一个n边形的边数增加一条,那么它的对角线增加条.【解析】略【答案】1;【例3】从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()【解析】从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是(n-2).【答案】C【巩固】一个多边形,把一个顶点与其它各顶点连接起来,把这个多边形分成了12个三角形,则这个多边形的边数()【解析】通过分析可知,n-2=12,则n=14.【答案】A.模块二多边形的内角和与外角和内角和【例4】已知一个多边形的内角和是540︒,则这个多边形是( )A.四边形B.五边形C.六边形D.七边形【解析】略【答案】B.【巩固】一个多边形共有14条对角线,则它的内角和为___________.【解析】一个n 边形,从一个顶点出发,有()3n -条对角线,故共有()132n n -条对角线,于是有()13142n n -=,从而7n =,∴这个三角形的内角和为()72180900-⋅︒=︒【答案】900︒【例5】 在四边形ABCD 中,60D ∠=︒,B ∠比A ∠大20︒,C ∠是A ∠的2倍,求A ∠,B ∠,C ∠的大小. 【解析】设(度),则,.根据四边形内角和定理得,. 解得,,∴,,.【答案】,,【巩固】如图,已知在一次科技活动中,需要将一张面积为210cm 的四边形四角都剪去一个扇形的区域,扇形的半径均为1cm ,求剩余纸张的面积.【解析】四边形ABCD 的内角和为360︒,故四个扇形的面积和等于π,∴剩余纸张的面积为10π-. 【答案】10π-【例6】 一个凸多边形的内角中,最多有 个锐角.x A =∠20+=∠x B x C 2=∠360602)20(=++++x x x 70=x ︒=∠70A ︒=∠90B ︒=∠140C ︒=∠70A ︒=∠90B ︒=∠140C DCB A【答案】3【巩固】如果一个多边形的边数增加1倍后,它的内角和是2160︒,那么原来多边形的边数是 . 【解析】略 【答案】7【巩固】如下图中每个阴影部分是以多边形各顶点为圆心,1为半径的扇形,并且所有多边形的每条边长都大于2,则第n 个多边形中,所有扇形面积之和是 (结果保留π).【解析】略 【答案】π2n . 外角和【例7】 若一个正多边形的一个外角是40︒,则这个正多边形的边数是( )A .10B .9C .8D .6【解析】略 【答案】B【答案】已知一个五边形的外角度数之比为1:2:3:4:5,求它的内角大小.第3个第2个第1个【答案】60︒,84︒,108︒,132︒,156︒;【例8】 如右图,小明从点A 出发,向前走2米,左拐20︒,再向前走2米,再左拐20︒,如此下去,小明能否回到出发点A ?如果能,第一次回到出发点共走了多少路程?【解析】略【答案】能,36m .【例1】 如图,讲六边形ABCDEF 沿直线GH 折叠,使点A B ,落在六边形CDEFGH 内部,则下列结论正确的是( )A .()129002C D E F ∠+∠=︒-∠+∠+∠+∠B .()1210802CDEF ∠+∠=︒-∠+∠+∠+∠ C .()12720C D E F ∠+∠=︒-∠+∠+∠+∠ D .()1123602C D E F ∠+∠=︒-∠+∠+∠+∠ 【解析】如图,设FA 的延长线与CB 的延长线交于点P ,'GA 的延长线与'HB 的延长线交于点'P ,连接'PP ,由对称性知,12'22'APP BPP ∠=∠∠=∠,,A222220︒20︒20︒B'A'21FEDC BA∴122APB ∠+∠=∠, 又∵()540APB C D E F ∠=︒-∠+∠+∠+∠,∴()1210802C D E F ∠+∠=︒-∠+∠+∠+∠.【答案】B模块三 正多边形与镶嵌知识点播:几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【例9】 下列多边形中,不能够单独铺满地面的是( )A .正三角形B .正方形C .正五边形D .正六边形【解析】用一种正多边形镶嵌,只有正三角形,正方形,正六边形三种正多边形能镶嵌成一个平面图案.不能铺满地面的是正五边形.【答案】C .【巩固】若限于用同一种正多边形磁砖镶嵌(要求镶嵌的正多边形的边必须与另一正多边形的边重合),则不能镶嵌成一个平面的正多边形磁砖的形状是( ) A 、正三角形 B 、正方形 C 、正六边形 D 、正八边形【解析】A 、正三角形的每个内角是60°,能整除360°,能密铺;B 、正方形的每个内角是P'PB'A'21FEDCB A90°,4个能密铺;C、正六边形的每个内角是120°,能整除360°,能密铺;D、正八边形的每个内角为:180°-360°÷8=135°,不能整除360°,不能密铺.【答案】D.【例10】有下列五种正多边形地砖:①正三角形;②正方形;③正五边形;④正六边形;⑤正八边形,现要用同一种大小一样、形状相同的正多边形地砖铺设地面,其中能做到此之间不留空隙、不重叠地铺设的地砖有()A.4种B.3种C.2种D.1种【解析】①正三角形的每个内角是60°,能整除360°,能够铺满地面;②正方形的每个内角是90°,能整除360°,能够铺满地面;③正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能够铺满地面;④正六边形的每个内角是120°,能整除360°,能够铺满地面;⑤正八边形的每个内角为:180°-360°÷8=135°,不能整除360°,不能够铺满地面.【答案】B.【巩固】下列平面图形中,不能镶嵌平面的图形是()A.任意一种三角形B.任意一种正方形C.任意一种正五边形D.任意一种正六边形【解析】∵用一般凸多边形镶嵌,用任意的同一种三角形或四边形能镶嵌成一个平面图案,∴A、B能镶嵌平面的图形;C、任意一个正五边形的内角为108°,不能镶嵌平面的图形;∵用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图∴D能镶嵌平面的图形.【答案】C.【例11】下述美妙的图案中,是由正三角形、正方形、正六边形、正八边形中的三种镶嵌而成的为()A、B、C、D、【解析】A、从一个顶点处看,由正六边形和正三角形镶嵌而成的;B、从一个顶点处看,由正方形和正三角形镶嵌而成的;C、从一个顶点处看,由正六边形和正方形镶嵌而成的;D、从一个顶点处看,由正三角形、正方形、正六边形三种镶嵌而成的.【答案】D.【巩固】张明同学设计了四种正多边形的瓷砖图案,在这四种瓷砖图案中,不能铺满地面的是()A、B、C、D、【解析】∵能够铺满地面的图形是内角能凑成360°,∵正三角形一个内角60°,正方形一个内角90°,正五边形一个内角108°,正六边形一个内角120°,只有正五边形无法凑成360°.【答案】C.【巩固】小莹家的地面是由一个小正方形和四个等腰梯形这样的正方形地板砖镶嵌而成的,小莹发现地板上有正八边形图案,那么地板上的两个正八边形图案需要这样的地板砖至少()A.8B.9C.11D.12【解析】由于正方形的一个内角为90°,同一顶点处等腰梯形的一个内角为:(360-90)÷2=135°,而八边形的内角为:180-360÷8=135°,那么小正方形的边长即为八边形的边长,画图如下.【答案】A.【例12】黑色正三角形与白色正六边形的边长相等,用它们镶嵌图案,方法如下:白色正六边形分上下两行,上面一行的正六边形个数比下面一行少一个,正六边形之间的空隙用黑色的正三角形嵌满.按第1,2,3个图案(如图)所示规律依次下去,则第n个图案中,黑色正三角形和白色正六边形的个数分别是()A、n2+n+2,2n+1B、2n+2,2n+1C、4n,n2-n+3D、4n,2n+1【解析】第1个图案中,黑色正三角形和白色正六边形的个数分别是4,2×1+1=3;第2个图案中,黑色正三角形和白色正六边形的个数分别是2×4=8,2×2+1=5;第3个图案中,黑色正三角形和白色正六边形的个数分别是3×4=12,2×3+1=7;…第n个图案中,黑色正三角形和白色正六边形的个数分别是4n,3+(n-1)×2=2n+1.【答案】D.1. 请你分别在下列多边形的同一顶点出发画对角线:想一想:依此规律可以把10边形分成()个三角形.【解析】四边形可分割成4-2=2个三角形;五边形可分割成5-2=3个三角形;六边形可分割成6-2=4个三角形;七边形可分割成7-2=5个三角形,同理,10边形可分割成10-2=8个三角形【答案】82. 一凸n边形最小的内角为95︒,其它内角依次增加10︒,则n=_________.【解析】这个凸n边形的内角由小到大依次为95105115125︒︒︒︒⋅⋅⋅⋅⋅⋅,,,,它的外角依次为857565554535︒︒︒︒︒︒⋅⋅⋅⋅⋅⋅,,,,,而这六个外角之和为857565554535360︒+︒+︒+︒+︒+︒=︒∴6n=.【答案】63. 已知小娟家的地板全由同一形状且大小相同的地砖紧密地铺成.若此地砖的形状是一正多边形,则下列何者不可能是此地砖的形状()课后作业A.正三角形B.正方形C.正五边形D.正六边形【解析】A、正三角形的每个内角是60°,能整除360°,能密铺;B、正方形的每个内角是90°,4个能密铺;C、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能密铺;D、正六边形的每个内角是120°,能整除360°,能密铺.【答案】C.。
多边形及其内角和
,
得
.
所以五十三边形的边数与其对角线条 数的和是1325+53=1378. 答:该班每周师生之间至少要通1378次 电话.
变式练习: 1. 过m边形的一个顶点有7条对角线,n边形没有 对角线,k边形共有k条对角线,则 =
解析:由m-3=7,得m=10.由n边形没有对 角线,所以n=3.由 k(k-3)=k,得k=5.故 n 3 3 (m-k) =(10-5) =5 =125.
探究类型二
多边形的内角和与外角和
例2 已知一个多边形的外角和等于内角和的 求这个多边形的边数.
解:设这个多边形的边数为n,根据题意,得
,
解得 n=8. 答:这个多边形的边数是8.
拓展延伸:
现有四种地面砖,他们的形状分别是:正三角形、正方形、 正六边形,正八边形,且他们的边长相等,同时选择其 中两种地面砖密铺地面,选择的方式有( B ) A.2种 B.3种 C.4种 D. 5种
课堂总结:
n边形内角和等于 (n-2)·180°;
任意多边形外角和等于360°; 1 凸n边形共有 2 n(n 3)条对角线. 平面镶嵌:几个正多边形的同一个顶点的几个 角的和等于360°.
例3 如图,小陈从O点出发,前进5米后向右转20°, 再前进5米后又向右转20°,……这样一直走下去, 他第一次回到出发点O 时一共走了( )
C
A.60米
B.100米
C.90米
D.120米
类似性问题:
2. 一个多边形截取一个角后,形成的另一个多边形 的内角和是1620°,则原来多边形的边数是( )
4. 如图,四边形ABCD中,若去掉一个60°的角得到 一个五边形,则∠1+∠2= 240 度.
多边形讲义
多边形知识点一:多边形及其有关概念(1)多边形定义:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.多边形按组成它的线段的条数分为三角形、四边形、五边形、六边形、……由n条线段组成的多边形就叫做n边形.如图,是一个五边形,可表示为五边形ABCDE.三角形是最简单,边数最少的多边形.(2)多边形的边:组成多边形的线段叫做多边形的边.(3)多边形的内角、外角:多边形相邻两边组成的角叫做多边形的内角,也称为多边形的角;多边形的边与它的邻边的延长线组成的角叫做多边形的外角.如图,∠B,∠C,∠D,…是五边形的内角,∠1是五边形的外角.(4)多边形的对角线:①定义:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.如图,AC,AD 就是五边形ABCDE中的两条对角线.②拓展理解:一个n边形从一个顶点可以引(n-3)条对角线,把n边形分成(n-2)个三角形.一个n边形一共有n (n -3)2条对角线.(5)凸多边形和凹多边形:①在图(1)中,画出四边形ABCD 的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;②在图(2)中,画出DC (或BC )所在直线,整个四边形不都在这条直线的同一侧,我们称这个四边形为凹四边形,像这样的多边形称为凹多边形.【例1】 填空:(1)十边形有________个顶点,________个内角,________个外角,从一个顶点出发可画________条对角线,它共有________条对角线.(2)从多边形一个顶点出发画对角线将它分成了四个三角形,这个多边形是________边形.变式1:过n 边形的一个顶点的所有对角线,把多边形分成8个三角形,则这个多边形的边数是( ).A .8B .9C .10D .11变式3:一个多边形的对角线的条数等于它的边数的4倍,求这个多边形的内角和.知识点二:正多边形(1)定义:各个角都相等,各条边都相等的多边形叫做正多边形.如等边三角形、正方形等.(2)特点:不仅边都相等,角也都相等,两个条件必须同时具备才是正多边形.如长方形四个角都是直角,都相等,但边不等,所以不是正多边形.注:正多边形外角的特征 因为边数相同的正多边形各个内角都相等,同顶点的内角与外角互为邻补角,所以边数相同的正多边形的各个外角也相等.【例2】 下列说法正确的个数有( ).(1)由四条线段首尾顺次相接组成的图形是四边形; (2)各边都相等的多边形是正多边形; (3)各角都相等的多边形一定是正多边形;(4)正多边形的各个外角都相等.知识点三:多边形的内角和(1)公式:n边形内角和等于(n-2)×180°.(2)探究过程:如图,以五边形、六边形为例.①从五边形的一个顶点出发,可以画2条对角线,它们将五边形分成3个三角形,五边形的内角和等于180°×3=540°;②从六边形的一个顶点出发,可以画3条对角线,它们将六边形分成4个三角形,六边形的内角和等于180°×4=720°;③从n边形的一个顶点出发,可以画(n-3)条对角线,它们将n边形分成(n-2)个三角形,n边形的内角和等于180°×(n-2).所以多边形内角和等于(n-2)×180°.(3)应用:①运用多边形内角和公式可以求出任何边数的多边形的内角和;②由多边形内角和公式可知,边数相同的多边形内角和也相等,因此已知多边形内角和也能求出边数.【例3】选择:(1)十边形的内角和为( ).A.1 260° B.1 440°C.1 620° D.1 800°(2)一个多边形的内角和为720°,那么这个多边形的对角线共有( ).A.6条 B.7条C.8条 D.9条(3)多边形的每一个内角都是150°,则此多边形的一个顶点引出的对角线的条数是( ).A.7 B.8 C.9 D.10变式1:若一个四边形的四个内角度数的比为3∶4∶5∶6,则这个四边形的四个内角的度数分别为__________.变式2:一个多边形的内角和等于1 440°,则它的边数为__________.变式3:一个多边形的内角和不可能是( ).A.1 800° B.540°C.720° D.810°知识点四:多边形的外角和(1)公式:多边形的外角和等于360°.(2)探究过程:如图,以六边形为例.①外角和:在每个顶点处各取一个外角,即∠1,∠2,∠3,∠4,∠5,∠6,它们的和为外角和.②因为同顶点处的一个内角和外角互为邻补角,所以六边形内、外角和等于180°×6=1 080°,所以∠1+∠2+∠3+∠4+∠5+∠6=1 080°-180°×(6-2)=360°.③n边形外角和=n×180°-(n-2)×180°=360°.(3)拓展理解:①多边形的外角和是一个恒值,即任何多边形的外角和都是360°,与边数无关.②多边形的外角和与多边形所有外角的和不是一回事,多边形的外角和是每个顶点处取一个外角的和.【例4】填空:(1)一个多边形每个外角都是60°,这个多边形是__________边形,它的内角和是__________度,外角和是__________度;(2)多边形边数每增加一条,它的内角和会增加__________,外角和增加__________.变式1:如图所示,已知∠ABE=138°,∠BCF=98°,∠CDG=69°,则∠DAB=__________.变式2:如图,在四边形ABCD中,∠1,∠2分别是∠BCD和∠BAD的邻补角,且∠B+∠ADC=140°,则∠1+∠2等于( ).A.140° B.40°C.260° D.不能确定变式3:在多边形的内角中,锐角的个数不能多于( )A.2个B.3个C.4个D.5个知识点五:正多边形知识的应用正多边形是特殊的多边形,它特殊在每一个内角、外角、每一条边都相等,所以在正多边形中,只要知道一个角的度数,就能知道所有角的度数,包括每一个外角的度数.知道一边的长度,就能知道每一边的长度.因此它的应用主要包括两个方面:(1)已知内角(或外角)能求边数、内角和;已知边数能求每一个外角(或内角)的度数及内角和,即在内角和、边数、内角度数、外角度数四个量中知道一个量就能求出其他三个量.(2)因为正多边形每一条边都相等,所以知道周长能求边长,知道边长能求周长(因较简单所以考查较少).【例5】若八边形的每个内角都相等,则其每个内角的度数是__________.变式1:一个多边形的每一个外角都等于30°,这个多边形的边数是__________,它的内角和是__________.变式2:一个多边形的每一个内角都等于144°,求这个多边形的边数.知识点六:将多边形截去一个角问题的探讨在多边形问题中,有一类问题是将多边形截去一个角后,探讨多边形边数变化和内角和变化的问题.在这类问题中,因截法不同,会出现不同的变化,现以四边形为例加以说明.如图所示,将正方形的桌面截去一个角,那么余下的多边形的内角和度数将怎样变化?因截法有三种情况,所以内角和也就有三种情况:(1)当是图①所示情况时,不过任何一个顶点,四边形变为五边形,边数增加1,所以内角和为540°.(2)当是图②所示情况时,过一个顶点,四边形边数不变,所以内角和也不变,为360°.(3)当是图③所示情况时,过两个顶点,四边形变为三角形,边数减少1,所以内角和也变为180°.【例6】一个多边形截去一个角后,变为十六边形,则原来的多边形的边数为( ).A.15或17 B.16或17C.16或18 D.15或16或17变式1:一个多边形截去一个角(截线不过顶点)之后,所形成的一个多边形的内角和是2 520°,那么原多边形的边数是( ).A.13 B.15 C.17 D.19变式2:如果一个多边形的边数增加一倍,它的内角和是2 880°,那么原来的多边形的边数是( ).A.10 B.9 C.8 D.7知识点七:多边形内角和少算或多算一个角类型题目探索因为多边形的边数只能是整数,由多边形内角和公式(n-2)×180°可知,n-2是正整数,所以多边形的内角和必定是180°的整数倍,因此:①当所给内角和是多计算一个角的情况时,用所给内角和除以180°,因为多加的角大于0°小于180°,所以得到的余数部分就是多加角的度数,得到的整数部分加2就是边数;②当所给内角和是少计算一个角的情况时,因为少加了角,所以得到的整数部分加2比实际的角个数少1,所以用所给内角和除以180°,整数部分加3才是边数,180°减余数部分就是少加的角的度数.破疑点多边形内角和与边数的关系内角和除以180°所得到的整数并不是边数(或角的个数)n,而是n-2的值,所以得到的整数加2才是边数,这是易错点,要注意.【例7】一个多边形除了一个内角之外,其余内角之和为2 670°,求这个多边形的边数和少加的内角的大小.变式:若多边形所有内角与它的一个外角的和为600°,求这个多边形的边数及内角和.知识点八:平面镶嵌1.用形状、大小完全相同的一种或几种平面图形进行________,彼此之间不留空隙、不_______地铺成一片,这就是平面图形的密铺,又称做平面图形的镶嵌.2. 取一些形状、大小相同的多边形也可以作平面镶嵌,此时要求以其中一个顶点处的各个内角之和为__________.例8:(2009年广州市)只用下列正多边形地砖中的一种,能够铺满地面的是()(A)正十边形(B)正八边形(C)正六边形(D)正五边形注:只用同一种正多边形能够进行密铺的,只有三种正多边形,即正三角形、正方形、正六边形.变式1:如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指钝角)是___度.变式2:(1)如果用三种正多边形地砖镶嵌地面,一个顶点处已有一个正方形和一个正六边形地砖,则还需一个正__________边形地砖.(2)用正三角形与正方形两种图案作平面镶嵌,设在一个顶点周围有a个正三角形和b 个正方形,则a=__________,b=__________.【随堂检测】1.若多边形的边数由3增加到n(n是正整数,且大于3),则其外角和的度数( )(A)增加(B)减少(C)不变(D)不确定2.一个多边形共有5条对角线,这个多边形内角和等于( )(A)360°(B)540°(C)720°(D)900°3.已知一个多边形的内角和与外角和的比为9:2,则它的边数是_____.4.一个凸n边形除了一个内角外,其余各内角之和是2570°,则这个内角等于( ) A.90°B.15°C.120°D.130°5.不能够铺满地面的正多边形的组合是()A.正三角形与正方形B.正五边形与正十边形C.正六边形与正三角形D.正六边形与正八边形6、一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.【课后强化练习】一、选择题1. 一个多边形的每个内角都等于120°,这个多边形的边数为()条A. 5B. 6C. 7D. 82. 用正四边形一种图形进行平面镶嵌时,它在一个顶点周围的正四边形的个数为()A. 2个B. 3个C. 4个D. 5个3. 如果一个多边形的每个内角都相等,且内角和为1260°,那么它的一个外角为()A. 30°B. 36°C. 40°D. 45°4. 多边形的内角和不可能是()A. 810°B. 540°C. 1800°D. 180°5. 如果多边形的边数增加1,则多边形的内角和、外角和分别()A. 增加180°,增加180°B. 不变,增加180°C. 不变,不变D. 增加180°,不变6. 能够铺满地面的正多边形组合是()A. 正八边形和正方形B. 正五边形和正十边形C. 正四边形和正六边形D. 正四边形和正七边形*7. 在n边形一边上取一点与各顶点相连,可得三角形的个数为()A. n个B. (n-2)个C. (n-1)个D. (n+1)个*8. 过多边形的一个顶点的所有对角线把多边形分成9个三角形,这个多边形的边数为()条A. 9B. 10C. 11D. 12二、填空题9. 在正六边形ABCDEF中,∠A=120°,AB=2cm,则∠D=__________,DE=__________.10. 一个正多边形的每个外角都是72°,则这个多边形是__________边形.11. n(n为整数,且n≥3)边形的内角和比(n+1)边形的内角和小__________度.12. 从n边形的一个顶点出发共引出了5条对角线,则这个n边形是__________边形,这5条对角线把n边形分成了__________个三角形.*13. 如果用三种正多边形地砖镶嵌地面,一个顶点处已有一个正方形和一个正六边形地砖,则还需一个正__________边形地砖.**14. 用正三角形与正方形两种图案作平面镶嵌,设在一个顶点周围有a个正三角形和b 个正方形,则a=__________,b=__________.三、解答题15. 若一个多边形的各边都相等,周长为63,且内角和为900°,求它的边长.16. 如图所示,(1)四边形共有__________条对角线,五边形共有__________条对角线,六边形共有__________条对角线;(2)你能说出七边形共有多少条对角线吗?(3)由(1)、(2),请猜想n边形的对角线的总条数,说说你的理由.四边形五边形六边形*17. 将五边形截去一个角后所得的多边形有几条对角线?*18. 小军在进行多边形内角和计算时,求得的内角和为1125°,当发现错了之后,重新检查,发现是少加了一个内角,求:(1)这个多边形是几边形?(2)这个内角是多少度?四、拓广探索**19. (1)填表:正多边形3 4 5 6 … n 正多边形每个内角的度数…(2)如果限用一种正多边形进行平面镶嵌,哪几种正多边形能镶嵌成一个平面图形? (3)从正三角形、正四边(方)形、正六边形中选一种,再在其他正多边形中选一种,请画出这两种不同的正多边形进行平面镶嵌的草图,并探索这两种正多边形共能镶嵌成几种不同的平面图形,说明你的理由.参考答案一、选择题 1. B2. C二、填空题9. 120°,2cm 10. 正五11. 180三、解答题15. 解:设该多边形有n 条边,则(n -2)×180°=900°,解得n =7.因为63÷7=9,所以这个多边形的边长为9.16. 解:(1)2,5,9(2)14.因为过七边形的一个顶点可引4条对角线,故过7个顶点可引28条对角线,由于每条对角线均重复计算一次,所以七边形共有14条对角线(3)n 边形共有(n -3)×n2条对角线,理由与(2)类似.17. 解:因为将五边形截去一个角后可能得到四边形、五边形、六边形三种(如图所示)多边形.当得到四边形时,有12×4×(4-3)=2条对角线;当得到五边形时,有12×5×(5-3)=5条对角线;当得到六边形时,有12×6×(6-3)=9条对角线.18. 解:(1)设这是一个n边形,则(n-2)·180°=1125°,n=8.25,故这个多边形是九边形;(2)135°.设这个内角为x°,则(9-2)×180°=1125°+x°,解得x=135.。
多边形及其内角和ppt课件
五边形的外角和=5×180°-五边形内角和
探讨:多边形的外角和
1 5
五边形的外角和=5×180°-五边形内角和 =5×180°-(5-2)×180°
=2×180°
2
=360°
4
3
探讨:多边形的外角和
1 5
2
4
3
相邻的内角和外角是一对邻补角 ∠1=180°-∠N1 ∠2=180°-∠N2 …… ∠n=180°-∠Nn
A.5
B.6
C.7
D.8
答案:C
【例题】 正十二边形的外角和是________.
答案:360°
【例题】 正多边形的一个外角等于20°,则这个正多边形的边数是________.
答案:18
【例题】
已知一个多边形的各个内角都是150°,这个多边形的边数是________.
解析: 方法一:利用多边形的内角和 (n-2)×180°=n×150° 解得n=12
11.3多边形及其内角和
11.3.1 多边形 11 . 3 . 2 多 边 形 的 内 角 和
学习目标
1.多边形的定义及相关概念 2.正多边形的定义及判断 3.多边形的多角线的定义及特点 4.多边形的内角和 5.多边形的外角和
定义:多边形
在平面内,由一些线段(n≥3)首尾顺次相接组成的封闭图形叫 做多边形。
定义:正多边形
等边三角形
正方形
正五边形
正十二边形
各个角都相等,各条边都相等的多边形叫做正多边形
定义:多边形的对角线
思考:过一个顶点可以做出几 条对角线?
连接多边形不相邻的两个顶点的线段,叫做多边形的对角线
定义:多边形的对角线
过n边形一个顶点,可画(n-3)条对角线 思考:n边形一共有几条对角线?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多边形内角和
第一部分知识点回顾
定义:由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。
凸多边形
分类1:
凹多边形
正多边形:各边相等,各角也相等的多边形叫做正多边形。
分类2:
多边形非正多边形:
1、n边形的内角和等于180°(n-2)。
多边形的定理 2、任意凸形多边形的外角和等于360°。
3、n边形的对角线条数等于1/2·n(n-3)
只用一种正多边形:3、4、6/。
镶嵌拼成360度的角
只用一种非正多边形(全等):3、4。
知识点一:多边形及有关概念
1、多边形的定义:在同一平面内。
多边形的分类:不叫三边形
2、镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌)。
这里的多边形可以形状相同,也可以形状不相同。
实现镶嵌的条件:拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边。
3、常见的一些正多边形的镶嵌问题:
(1)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°。
(2)只用一种正多边形镶嵌地面:只有正三角形、正方形、正六边形的地砖可以用。
注意:任意四边形的内角和都等于360°。
所以用一批形状、大小完全相同但不规则的四边形地砖也可以铺成无空隙的地板,用任意相同的三角形也可以铺满地面。
(3)用两种或两种以上的正多边形镶嵌地面
用两种或两种以上边长相等的正多边形组合成平面图形,关键是相关正多边形“交接处各角之和能否拼成一个周角”的问题。
例如,用正三角形与正方形、正三角形与正六边形、正三角形与正十二边形、正四边形与正八边形都可以作平面镶嵌。
第二部分经典习题
类型一:多边形内角和及外角和定理应用
1.一个多边形的内角和等于它的外角和的5倍,它是几边形
【变式1】若一个多边形的内角和与外角和的总度数为1800°,求这个多边形的边数.
【变式2】一个多边形除了一个内角外,其余各内角和为2750°,求这个多边形的内角和是多少
.
【变式3】个多边形的内角和与某一个外角的度数总和为1350°,求这个多边形的边数。
类型二:多边形对角线公式的运用
2.某校七年级六班举行篮球比赛,比赛采用单循环积分制(即每两个班都进行一次比赛).你能算出一共需要进行多少场比赛吗
【变式1】一个多边形共有20条对角线,则多边形的边数是().
A.6 B.7 C.8 D.9
【变式2】一个十二边形有几条对角线。
类型三:可转化为多边形内角和问题
3.如图,求∠A+∠B+∠C+∠D+∠E+∠F的度数.
【变式1】如图所示,∠1+∠2+∠3+∠4+∠5+∠6=__________.
类型四:实际应用题
4.如图,一辆小汽车从P市出发,先到B市,再到C市,再到A市,最后返回P市,这辆小汽车共转了多少度角
【变式1】如图所示,小亮从A点出发前进10m,向右转15°,
再前进10m,又向右转15°,…,这样一直走下去,当他第一
次回到出发点时,一共走了__________m.
【变式2】小华从点A出发向前走10米,向右转36°,然后继续向前走10米,再向右转36°,他以同样的方法继续走下去,他能回到点A吗若能,当他走回点A时共走了多少米若不能,写出理由。
【变式3】如图所示是某厂生产的一块模板,已知该模板的边AB∥CF,CD∥AE. 按规定AB、CD的延长线相交成80°角,因交点不在模板上,不便测量. 这时师傅告诉徒弟只需测一个角,便知道AB、CD的延长线的夹角是否合乎规定,你知道需测哪一个角吗说明理由.
类型五:镶嵌问题
5.分别画出用相同边长的下列正多边形组合铺满地面的设计图。
(1)正方形和正八边形;
(2)正三角形和正十二边形;
(3)正三角形、正方形和正六边形。
【变式1】分别用形状、大小完全相同的①三角形木板;②四边形木板;③正
五边形木板;④正六边形木板作平面镶嵌,其中不能镶嵌成地板的是( )A、①
B、②
C、③
D、④
【变式2】用三块正多边形的木板铺地,拼在一起并相交于一点的各边完全吻合,其中两块木板的边数都是8,则第三块木板的边数应是( )
A、4
B、5
C、6
D、8
多边形及其内角和
(请在50分钟内完成,按考试要求自己)
一、选择题:(每小题3分,共24分)
1.一个多边形的外角中,钝角的个数不可能是( ) 个个个个
2.不能作为正多边形的内角的度数的是( ) B.(108)°°
3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是( )
:1 :1 C.5:2 :4
4.一个多边形的内角中,锐角的个数最多有( )个 个 个 个
5.四边形中,如果有一组对角都是直角,那么另一组对角可能( )
A.都是钝角;
B.都是锐角
C.是一个锐角、一个钝角
D.是一个锐角、一个直角
6.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是( )
A.十三边形
B.十二边形
C.十一边形
D.十边形
7.若一个多边形共有十四条对角线,则它是( )
A.六边形
B.七边形
C.八边形
D.九边形
8.若一个多边形除了一个内角外,其余各内角之和为2570°,则这个内角的度数为( ) ° ° ° °
二、填空题:(每小题3分,共15分)
1.多边形的内角中,最多有________个直角.
2.从n 边形的一个顶点出发,最多可以引______条对角线, 这些对角线可以将这个多边形分成________个三角形.
3.如果一个多边形的每一个内角都相等,且每一个内角都大于135°, 那么这个多边形的边数最少为________.
4.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为_________.
5.每个内角都为144°的多边形为_________边形.
三、基础训练:(每小题12分,共24分)
1.如图所示,用火柴杆摆出一系列
三角形图案,按这种方式摆下去,
当摆到20层(n=20)时,需要多少
根火柴
2.一个多边形的每一个外角都等于24°,求这个多边形的边数.
四、提高训练:(共15分)
一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n 是互质的正整数,求这个多边形的边数(用m,n 表示)及n 的值.
五、探索发现:(共18分)
从n 边形的一个顶点出发,最多可以引多少条条对角线请你总结一下n 边形共有多少条对角线.
六、中考题与竞赛题:(共4分)
(2002·湖南)若一个多边形的内角和等于1080°,则这个多边形的边数是( )
.8 C n=3n=2
n=1。