高考数学经典题型归纳
高中数学经典高考难题集锦
《高中数学经典高考难题集锦》一、集合问题1. 已知集合A={x|x^25x+6=0},求集合A的元素。
解答思路:我们需要解方程x^25x+6=0,找出满足条件的x的值。
然后,将这些值组成集合A。
2. 已知集合A={x|x^25x+6=0},集合B={x|x^24x+3=0},求集合A∩B。
解答思路:我们需要解方程x^25x+6=0和x^24x+3=0,找出满足条件的x的值。
然后,找出同时属于集合A和集合B的元素,即求出集合A∩B。
3. 已知集合A={x|x^25x+6=0},集合B={x|x^24x+3=0},求集合A∪B。
解答思路:我们需要解方程x^25x+6=0和x^24x+3=0,找出满足条件的x的值。
然后,找出属于集合A或集合B的元素,即求出集合A∪B。
二、函数问题1. 已知函数f(x)=x^25x+6,求函数f(x)的零点。
解答思路:函数的零点即函数图像与x轴的交点,也就是使函数值为0的x的值。
因此,我们需要解方程x^25x+6=0,找出满足条件的x的值,这些值即为函数f(x)的零点。
2. 已知函数f(x)=x^25x+6,求函数f(x)的单调区间。
解答思路:函数的单调性是指函数在其定义域内是否单调递增或单调递减。
我们可以通过求函数的一阶导数f'(x),然后判断f'(x)的符号来确定函数的单调性。
当f'(x)>0时,函数单调递增;当f'(x)<0时,函数单调递减。
3. 已知函数f(x)=x^25x+6,求函数f(x)的极值。
解答思路:函数的极值是指函数在其定义域内的最大值或最小值。
我们可以通过求函数的一阶导数f'(x)和二阶导数f''(x),然后判断f'(x)和f''(x)的符号来确定函数的极值。
当f'(x)=0且f''(x)>0时,函数在该点取得极小值;当f'(x)=0且f''(x)<0时,函数在该点取得极大值。
高考数学总结归纳知识点加题型
高考数学总结归纳知识点加题型高考数学是每个学生都要面对的一门重要科目,它占据了高考综合素质评价的一定比重。
为了帮助同学们更好地备考高考数学,下面将对常见的知识点进行归纳总结,并附上相应的题型练习。
一、函数与方程1. 一次函数知识点:函数的概念、斜率和截距的含义、函数图像与性质等。
题型练习:已知一次函数y=2x-3,请确定函数的斜率和截距,并绘制函数图像。
2. 二次函数知识点:二次函数的概念、顶点坐标、对称轴、单调性等。
题型练习:已知二次函数y=x^2-4x+3,请确定函数的顶点坐标、对称轴,并描述函数的单调性。
3. 指数函数与对数函数知识点:指数函数与对数函数的性质、图像、定义域与值域等。
题型练习:已知指数函数y=3^x,请确定函数的定义域、值域,并绘制函数图像。
二、几何与三角函数1. 三角函数知识点:正弦函数、余弦函数、正切函数的定义、性质、图像等。
题型练习:已知直角三角形中一角的正弦值为0.6,请确定该角的度数,并计算其余弦和正切值。
2. 平面几何知识点:平面图形的面积、周长、相似性、圆的性质等。
题型练习:已知正方形的边长为3 cm,请计算其面积和周长。
3. 空间几何知识点:立体图形的体积、表面积、相似性、平行性等。
题型练习:已知长方体的长、宽、高分别为3 cm、4 cm、5 cm,请计算其体积和表面积。
三、概率与统计1. 概率知识点:概率的基本概念、概率的计算、事件间的关系等。
题型练习:有一枚均匀的骰子,抛掷一次,求出出现奇数点数的概率。
2. 统计知识点:统计数据的收集、整理、分析和展示等。
题型练习:某班级的学生身高数据为:160 cm、165 cm、170 cm、175 cm、180 cm,请计算平均身高和中位数。
以上仅为部分高考数学的知识点总结和相应题型练习,希望对同学们备考高考数学有所帮助。
在备考过程中,同学们要注重理论与实践相结合,多进行题型练习和模拟考试,熟悉考题的出题规律和解题技巧。
高考数学题型归纳
高考数学题型归纳高考数学是所有高中生必须面对的一门科目,也是重要的一门考试科目之一。
在高考数学中,各种不同的题型涵盖了数学的各个方面。
为了更好地应对高考数学考试,我们有必要对高考数学题型进行归纳和总结。
本文将详细介绍高考数学常见的题型,帮助学生们更好地准备高考数学考试。
一、选择题选择题是高考数学中最常见的题型之一。
通常这类题目的答案在选项中给出,考生只需从选项中选择一个正确答案即可。
选择题分为单项选择和多项选择两种。
1. 单项选择单项选择题是指给出一个问题,然后给出四个选项,考生需要从中选择一个正确答案。
这种题型一般考察考生对知识点的掌握和理解能力。
例如:已知正数a、b满足a+b=2,则a²+b²的最小值是A. 1B. 1/2C. 2D. 42. 多项选择多项选择题是指给出一个问题,然后给出五个选项,其中可能有多个选项是正确的。
考生需要从中选择一个或多个正确答案。
这种题型考察的是考生对知识点的掌握和分析能力。
例如:若数列{a_n}为等比数列,且a_1=3,a_2=6,a_3=12,则下列表述中正确的是A. a_4=24,a_5=48B. a_4=27,a_5=54C. a_4=12,a_5=24D. a_4=36,a_5=72E. a_4=9,a_5=18二、填空题填空题也是高考数学中常见的题型之一。
这种题型要求考生根据所给出的条件,计算出题目中的空格处应该填入的值。
填空题考察的是考生对知识点的运用能力和分析能力。
例如:设函数f(x)=2x³-3x²-12x+2,则f(1) = ________。
三、解答题解答题是高考数学中相对较难的题型。
这种题型要求考生通过自己的思考和分析,从无到有地推导出答案。
解答题考察的是考生的分析能力、推理能力和创新能力。
1. 解方程题解方程题是解答题中最常见的题型之一。
这类题目要求考生找到方程的解,并给出详细的解题过程。
例如:求解方程x²+5x+6=0。
高考数学题型全归纳
高考数学题型全归纳1高考数学必考七个题型第一,函数与导数主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。
是高考的重点和难点。
第五,概率和统计这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析主要是证明平行或垂直,求角和距离。
主要考察对定理的熟悉程度、运用程度。
第七,解析几何高考的难点,运算量大,一般含参数。
高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。
针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。
以不变应万变。
2高考数学题型全归纳题型1、集合的基本概念题型2、集合间的基本关系题型3、集合的运算题型4、四种命题及关系题型5、充分条件、必要条件、充要条件的判断与证明题型6、求解充分条件、必要条件、充要条件中的参数范围题型7、判断命题的真假题型8、含有一个量词的命题的否定题型9、结合命题真假求参数的范围题型10、映射与函数的概念题型11、同一函数的判断题型12、函数解析式的求法题型13、函数定义域的求解题型14、函数定义域的应用题型15、函数值域的求解题型16、函数的奇偶性题型17、函数的单调性(区间)题型18、函数的周期性题型19、函数性质的综合题型20、二次函数、一元二次方程、二次不等式的关系题型21、二次方程ax2+bx+c=0(a≠0)的实根分布及条件题型22、二次函数"动轴定区间"、"定轴动区间"问题题型23、指数运算及指数方程、指数不等式题型24、指数函数的图像及性质题型25、指数函数中的恒成立的问题题型26、对数运算及对数方程、对数不等式题型27、对数函数的图像与性质题型28、对数函数中的恒成立问题题型29、幂函数的定义及基本性质题型30、幂函数性质的综合应用题型31、判断函数的图像题型32、函数图像的应用题型33、求函数的零点或零点所在区间题型34、利用函数的零点确定参数的取值范围题型35、方程根的个数与函数零点的存在性问题题型36、函数与数列的综合题型37、函数与不等式的综合题型38、函数中的创新题题型39、导数的定义题型40、求函数的导数题型41、导数的几何意义题型42、利用原函数与导函数的关系判断图像题型43、利用导数求函数的单调区间题型44、含参函数的单调性(区间)题型45、已知含参函数在区间上单调或不单调或存在单调区间,求参数范围题型46、函数的极值与最值的求解题型47、方程解(函数零点)的个数问题题型48、不等式恒成立与存在性问题题型49、利用导数证明不等式题型50、导数在实际问题中的应用题型51、终边相同的角的集合的表示与识别题型52、等分角的象限问题题型53、弧长与扇形面积公式的计算题型54、三角函数定义题题型55、三角函数线及其应用题型56、象限符号与坐标轴角的三角函数值题型57、同角求值---条件中出现的角和结论中出现的角是相同的题型58、诱导求值与变形题型59、已知解析式确定函数性质题型60、根据条件确定解析式题型61、三角函数图像变换题型62、两角和与差公式的证明题型63、化简求值题型64、正弦定理的应用题型65、余弦定理的应用题型66、判断三角形的形状题型67、正余弦定理与向量的综合题型68、解三角形的实际应用题型69、共线向量的基本概念题型70、共线向量基本定理及应用题型71、平面向量的线性表示题型72、平面向量基本定理及应用题型73、向量与三角形的四心题型74、利用向量法解平面几何题型75、向量的坐标运算题型76、向量平行(共线)、垂直充要条件的坐标表示题型77、平面向量的数量积题型78、平面向量的应用题型79、等差、等比数列的通项及基本量的求解题型80、等差、等比数列的求和题型81、等差、等比数列的性质应用题型82、判断和证明数列是等差、等比数列题型83、等差数列与等比数列的综合题型84、数列通项公式的求解题型85、数列的求和题型86、数列与不等式的综合题型87、不等式的性质题型88、比较数(式)的大小与比较法证明不等式题型89、求取值范围题型90、均值不等式及其应用题型91、利用均值不等式求函数最值题型92、利用均值不等式证明不等式题型93、不等式的证明题型94、有理不等式的解法题型95、绝对值不等式的解法题型96、二元一次不等式组表示的平面区域题型97、平面区域的面积题型98、求解目标函数的最值题型99、求解目标函数中参数的取值范围题型100、简单线性规划问题的实际运用题型101、不等式恒成立问题中求参数的取值范围题型102、函数与不等式综合题型103、几何体的表面积与体积题型104、球的表面积、体积与球面距离题型105、几何体的外接球与内切球题型106、直观图与斜二测画法题型107、直观图/三视图题型108、三视图/直观图---简单几何体的基本量的计算题型109、三视图/直观图---简单组合体的基本量的计算题型110、部分三视图/其余三视图题型111、证明"点共面"、"线共面"或"点共线"及"线共点"题型112、异面直线的判定题型113、证明空间中直线、平面的平行关系题型114、证明空间中直线、平面的垂直关系题型115、倾斜角与斜率的计算题型116、直线的方程题型117、两直线位置关系的判定题型118、有关距离的计算题型119、对称问题题型120、求圆的方程题型121、直线系方程和圆系方程题型122、与圆有关的轨迹问题题型123、圆的一般方程的充要条件题型124、点与圆的位置关系判断题型125、与圆有关的最值问题题型126、数形结合思想的应用题型127、直线与圆的相交关系题型128、直线与圆的相切关系题型129、直线与圆的相离关系题型130、圆与圆的位置关系题型131、椭圆的定义与标准方程题型132、离心率的值及取值范围题型133、焦点三角形题型134、双曲线的定义与标准方程题型135、双曲线的渐近线题型136、离心率的值及取值范围题型137、焦点三角形题型138、抛物线的定义与方程题型139、与抛物线有关的距离和最值问题题型140、抛物线中三角形、四边形的面积问题题型141、直线与圆锥曲线的位置关系题型142、中点弦问题题型143、弦长与面积问题题型144、平面向量在解析几何中的应用题型145、定点问题题型146、定值问题题型147、最值问题题型148、已知流程框图,求输出结果题型149、根据条件,填充不完整的流程图题型150、求输入参量题型151、算法综合应用题型152、算法案例题型153、古典概型题型154、几何概型的计算题型155、抽样方式题型156、茎叶图与数字特征题型157、直方图与数字特征题型158、频(数)率表与数字特征题型159、统计图表与概率综合题型160、线性回归方程题型161、独立性检验题型162、归纳推理题型163、类比推理题型164、综合法与分析法证明题型165、反证法证明题型166、复数的分类、代数运算和两个复数相等的条件题型167、复数的几何意义题型168、相似三角形题型169、相交弦定理、切割线定理及其应用题型170、四点共圆题型171、空间图形问题转化为平面问题题型172、参数方程化普通方程题型173、普通方程化参数方程题型174、极坐标方程化直角坐标方程题型175、含绝对值的不等式题型176、不等式的证明。
高考数学常考题型和答题技巧
高考数学常考题型和答题技巧(大全)高考数学常考题型和答题技巧(大全)高考数学常考题型和答题技巧1.解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
2.因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3.配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
4.换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元一换兀一解兀一还元5.待定系数法待定系数法是在已知对象形式式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写6.复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(__)(__)=0两种情况为或型②配成平方型:(__)2+(__)2=0两种情况为且型数学中两个最伟大的解题思路求值的思路列欲求值字母的方程或方程组2)求取值范围的思路列欲求范围字母的不等式或不等式组数学解题小技巧1、精神要放松,情绪要自控最易导致紧张、焦虑和恐惧心理的是入场后与答卷前的“临战”阶段,此时保持心态平衡的方法有三种:①转移注意法:避开临考者的目光,把注意力转移到某一次你印象较深的数学模拟考试的评讲课上,或转移到对往日有趣、滑稽事情的回忆中。
②自我安慰法:如“我经过的考试多了,没什么了不起”,“考试,老师监督下的独立作业,无非是换一换环境”等。
③抑制思维法:闭目而坐,气贯丹田,四肢放松,深呼吸,慢吐气,(最好默念几遍:“阿弥陀佛或祖先保佑”呵呵,还真的管用)如此进行到发卷时。
高考数学复习题型及答案
高考数学复习题型及答案一、选择题1. 函数f(x)=x^2+2x+1的图像是:A. 一条直线B. 一个开口向上的抛物线C. 一个开口向下的抛物线D. 一个圆答案:B2. 已知等差数列{an}的首项a1=2,公差d=3,则其第10项a10的值为:A. 29B. 32C. 35D. 41答案:A二、填空题3. 若复数z=1+i,则|z|=________。
答案:√24. 已知函数f(x)=x^3-3x^2+2,求f'(x)=________。
答案:3x^2-6x三、解答题5. 求证:对于任意实数x,不等式x^2+x+1>0恒成立。
证明:要证明x^2+x+1>0恒成立,只需证明其判别式Δ<0。
计算判别式Δ=1^2-4×1×1=-3<0,因此原不等式恒成立。
6. 已知数列{an}满足a1=1,an+1=2an+1,求数列{an}的通项公式。
解:由递推关系an+1=2an+1,可得an+1+1=2(an+1),即数列{an+1}是首项为2,公比为2的等比数列。
因此,an+1=2^n,进而得到an=2^(n-1)-1。
四、计算题7. 计算定积分∫₀^₁x^2dx。
解:∫₀^₁x^2dx=(1/3)x^3|₀^₁=1/3。
8. 计算二重积分∬D(x^2+y^2)dσ,其中D是由x^2+y^2≤1所围成的圆盘。
解:∬D(x^2+y^2)dσ=∫₀^π∫₀^1(r^2cos^2θ+r^2sin^2θ)rdrdθ=∫₀^π∫₀^1r^3 dθ dr=(π/2)∫₀^1r^3dr=(π/2)(1/4)=π/8。
以上题型涵盖了高考数学中常见的选择题、填空题、解答题和计算题,通过这些题型的练习,可以有效地复习和巩固数学知识,为高考做好充分的准备。
高中数学题型归纳及方法
高中数学题型归纳及方法一、函数题型。
1. 求函数定义域题型。
题目:求函数y = (1)/(√(x 1))+ln(x + 2)的定义域。
解析:对于(1)/(√(x 1)),要使根式有意义,则根号下的数大于0,即x 1>0,解得x>1。
对于ln(x + 2),对数函数中真数大于0,即x+2>0,解得x > 2。
综合起来,函数的定义域为x>1。
2. 函数单调性判断题型。
题目:判断函数y = x^2-2x + 3在(-∞,1)上的单调性。
解析:对于二次函数y = ax^2+bx + c(a≠0),其对称轴为x =-(b)/(2a)。
在函数y = x^2-2x + 3中,a = 1,b=-2,对称轴x = 1。
因为a = 1>0,二次函数开口向上,所以在对称轴左侧(-∞,1)上函数单调递减。
二、三角函数题型。
3. 三角函数化简求值题型。
题目:化简sin(α+β)cosβ-cos(α +β)sinβ并求值(已知α=(π)/(3))。
解析:根据两角差的正弦公式sin(A B)=sin Acos B-cos Asin B,这里A=α+β,B = β,所以sin(α+β)cosβ-cos(α+β)sinβ=sin(α+β-β)=sinα。
当α=(π)/(3)时,sinα=(√(3))/(2)。
4. 三角函数图象平移题型。
题目:将函数y=sin x的图象向左平移(π)/(3)个单位,再将所得图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),求得到的函数解析式。
解析:将y = sin x的图象向左平移(π)/(3)个单位,根据“左加右减”原则,得到y=sin(x+(π)/(3))的图象。
再将所得图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则x的系数变为原来的(1)/(2),得到y=sin((1)/(2)x+(π)/(3))。
三、数列题型。
5. 等差数列通项公式求题型。
题目:已知等差数列{a_n}中,a_1=2,公差d = 3,求其通项公式a_n。
高考数学核心考点
高考数学核心考点一、选择、填空题1、解不等式:一元二次不等式;分式不等式;指数不等式、对数不等式(化为同底). 2、集合的交;并;补运算. 3、充分必要条件的判断(确定互推关系). 4、 四种命题的表达;全称命题、特称命题的否定表达(一改换、二否定);及其真假性判断;或、且、非命题的真假判断。
5、复数的加、减、乘、除运算;模的计算. 6、 向量的加、减、数乘、数量积的坐标运算;模的计算;定义运算;平行、垂直的关系式运用;几何意义的运算(三角形法则,平行四边形法则)。
7、线性规划:求目标函数的最大最小值. 8、古典概型、几何概型的计算. 9、 编读程序框图.10、 求分段函数值. (综合指数式、对数式运算).11、 求定义域(分母0≠、真数0>、偶数根式的被开方数0≥).12、 函数单调性、奇偶性的判断(特殊值法、定义法).13、 函数图像的判断: ①利用变换作图,②性质法(利用定义域、值域、单调性、奇偶性、周期性,过定点)14、 利用零点存在性定理判断零点(即方程的根)所在区间.15、 利用导数求切线方程;求单调区间;求极值;求最值.16、 同角三角函数关系公式;诱导公式;两角和与差公式;二倍角公式的综合运算.17、 三角函数sin()y A x ωϕ=+图像的伸缩、平移的变换,及其性质(周期,对称轴、对称中心、单调区间、最值)18、 等差、等比数列常规量的计算(列方程组求首项和公差或公比;利用性质求解).19、 根据三视图求体积、表面积、侧面积;多面体的外接球与内切球的问题.20、 空间点、线、面位置关系的判断(借助正方体或长方体找反例排除).21、 求直线与圆的方程;直线被圆截得的弦长;及其位置关系(两点间距离、点到线距离公式、两平行线距离公式).22、 求圆锥曲线的方程;及其几何性质(离心率、渐近线等).二、解答题23、 数列:(1) 求通项公式(公式法、累加法、累乘法、构造法).(2) 求前n 项和(公式法、分组求和法、错位相减法、裂项相消法).(3) 证明等差、等比数列(定义法).24、 三角函数与解三角形:(1) 利用正弦定理、余弦定理、勾股定理、内角和定理解三角形,求面积.(2) 化归sin()y A x ωϕ=+形式.(3) 求T A ωϕ、、、值.(4) 给值求值(同角三角函数关系公式、诱导公式、两角和与差公式、二倍角的运用).(5) 求最大最小值(或给定x 的范围),及其对应的x 的集合.(6)求单调区间(当0,0A ω>>时,求增代增,求减代减)25、 统计与概率:(1) 抽样方法:系统抽样(等间距抽样);分层抽样(等比例抽样).(2) 数字特征:众数、中位数、平均数、方差、标准差、极差.(3) 数据分析:茎叶图、频率直方图;回归分析;独立性检验.(4) 从频率直方图估计:众数、中位数、平均数、方差.26、 空间立体几何:(1) 线面平行、面面平行的证明.(2) 线线垂直、线面垂直、面面垂直的证明.(3) 求体积(先证明高、后计算高及底面积、代公式求得体积).(4) 翻折问题.27、 平面解析几何:直线、圆、圆锥曲线的综合运用.28、 用导数研究函数.(恒成立问题,存在性问题)29、 极坐标与参数方程(转化法、数形结合法).。
高考数学必考题型整理
高考数学必考题型整理高考数学必考题型整理一1、三角函数、向量、解三角形(1)三角函数画图、性质、三角恒等变换、和与差公式。
(2)向量的工具性(平面向量背景)。
(3)正弦定理、余弦定理、解三角形背景。
(4)综合题、三角题一般用平面向量进行“包装”,讲究知识的交汇性,或将三角函数与解三角形有机融合,重视三角恒等变换下的性质探究,重视考查图形图像的变换。
2、概率与统计(1)古典概型。
(2)茎叶图。
(3)直方图。
(4)回归方程(2x2列联表)。
(5)(理)概率分布、期望、方差、排列组合。
概率题贴近生活、贴近实际,考查等可能性事件、互斥事件、独立事件的概率计算公式,难度不算很大3、立体几何(1)平行。
(2)垂直。
(3)角a:异面直线角 b:(理)二面角、线面角。
(4)利用三视图计算面积与体积。
(5)文理有一定的差别,理科相关题目既可以用传统的几何法,也可以建立空间直角坐标系,利用法向量等。
文科对立体几何的考查主要是空间中平行、垂直关系的判断与证明,表面积体积的计算,直线与平面所成角的计算。
理科对立体几何的考查主要是空间中平行、垂直关系的判断与证明,表面积体积的计算, 各类角的计算。
4、数列(1)等差数列、等比数列、递推数列是考查的热点,数列通项、数列前n项的和以及二者之间的关系。
(2)文理科的区别较大,理科多出现在压轴题位置的卷型,理科注重数学归纳法。
(3)错位相减法、裂项求和法。
(4)应用题。
5、圆锥曲线(椭圆)与圆(1)椭圆为主线,强调圆锥曲线与直线的位置关系,突出韦达定理或差值法。
(2)圆的方程,圆与直线的位置关系。
(3)注重椭圆与圆、椭圆与抛物线等的组合题。
6、函数、导数与不等式(1)函数是该题型的主体:三次函数,指数函数,对数函数及其复合函数。
(2)函数是考查的核心内容,与导数结合,基本题型是判断函数的单调性,求函数的最值(极值),求曲线的切线方程,对参数取值范围、根的分布的探求,对参数的分类讨论以及代数推理等等。
高考数学必考题型
高考数学必考题型
高考数学必考题型有:
1. 二次函数与图像:考查二次函数的性质、图像的变化规律和相关的解题方法。
2. 平面向量:考查平面向量的表示、运算和相关的几何问题。
3. 空间向量与立体几何:考查空间向量的表示、运算以及与立体几何相关的问题。
4. 三角函数与图像:考查三角函数的性质、变化规律以及相关的解题方法。
5. 函数与极限:考查函数的性质、图像的变化规律以及与极限相关的问题。
6. 概率与统计:考查概率与统计的基本概念、计算方法以及与实际问题的应用。
7. 数列与数列极限:考查数列的性质、定理以及与数列极限相关的问题。
8. 导数与函数的应用:考查导数的基本概念、运算规则以及与函数的应用相关的问题。
9. 不等式与方程:考查不等式与方程的性质、解法以及应用。
10. 三角变换与解三角形:考查三角变换的基本概念、运算法则以及应用解三角形的问题。
注意:以上只是基本题型的概括,实际考试中可能会结合不同的知识点组合出具体的题目。
2024年高考数学大题题型总结及技巧
2024年高考数学大题题型总结及技巧一、选择题1. 勾股定理题目:会给出两个直角三角形边长的关系,让你求解其中一个边长。
一般使用勾股定理或者特殊三角函数来解题。
解题技巧:通过观察哪个角是直角,使用特殊三角函数求解。
2. 向量运算题目:会给出两个向量的关系或者向量的模长,让你计算向量的运算。
解题技巧:首先根据题目给出的向量关系写出方程,然后利用向量的基本运算规则解方程得出结果。
3. 数列问题:会给出数列的前几项或者数列的通项公式,让你计算数列的和或者通项。
解题技巧:根据题目给出的数列关系,使用求和公式或者递推公式求解。
4. 几何证明题目:会给出几何图形或者条件,让你证明某个结论。
解题技巧:根据题目给出的几何图形,观察几何性质,使用几何定理进行证明。
5. 函数题目:会给出函数的定义或者函数的性质,让你计算函数的值或者求函数的极值。
解题技巧:根据题目给出的函数关系,使用函数的性质进行计算。
6. 应用题:会给出一个实际问题,让你运用数学知识解决问题。
解题技巧:首先理清问题,找出与题目相关的数学知识点,然后运用数学知识解决问题。
二、解答题1. 平面向量题目:会给出一些平面向量的条件,让你证明某个结论或者进行计算。
解题技巧:根据平面向量的性质,进行条件的推导或者使用向量的运算进行计算。
2. 集合论题目:会给出一些集合的条件,让你证明某个结论或者进行计算。
解题技巧:根据集合的性质和运算规则进行条件的推导或者使用集合的运算进行计算。
3. 函数题目:会给出一些函数的条件,让你证明某个结论或者进行计算。
解题技巧:根据函数的性质和函数的运算规则进行条件的推导或者使用函数的运算进行计算。
4. 几何问题:会给出几何图形的条件,让你证明某个结论或者进行计算。
解题技巧:利用几何图形的性质和几何定理进行条件的推导或者使用几何的运算进行计算。
5. 解析几何问题:会给出解析几何的条件,让你证明某个结论或者进行计算。
解题技巧:根据解析几何的性质和定理进行条件的推导或者利用解析几何的运算进行计算。
数学高考数学的常见题型及解题方法归纳
数学高考数学的常见题型及解题方法归纳数学是高考的一门重要科目,也是令许多考生头疼的科目之一。
针对数学高考的题型,掌握常见的题型以及解题方法是非常重要的。
本文将对数学高考中的常见题型进行归纳,并探讨解题方法。
一、选择题选择题是高考中常见的题型之一。
选择题根据题面给出的信息,考查考生的理解和运算能力。
常见的选择题题型有线段的比例、函数的图像、平面几何等。
对于选择题,考生应注意审题,理清思路。
其中一些题目可以通过画图辅助解题。
对于数学题目,画图能够直观地展示出题目中的关系,帮助考生分析解题思路。
二、填空题填空题是考察考生对数学知识掌握程度的题型。
在填空题解答中,考生需要根据已有的信息,填写适当的数值或符号。
在解答填空题时,考生要注意运用已有的公式、性质和规律进行推导。
如果题目中给出一些条件,可以先将这些条件进行整理和推导,然后根据所得结论填写空缺。
三、解答题解答题是高考数学中较为复杂的题型,要求考生综合运用所学知识进行推理、分析和解答。
解答题的解答过程应该展现出完整的逻辑思维和严密的推理。
对于解答题,考生要注意以下几点。
首先,认真审题。
解答题通常会给出一些条件、要求和问题,考生需要根据这些信息来进行解答。
其次,构建解决问题的思路和步骤。
对于一些较为复杂的解答题,可以先进行分析,并构建一个步骤清晰的解题思路。
最后,解答时要注重思路的连贯性和准确性。
解答每一个小问时,要逐步推导、阐述,尽量避免跳跃性和模糊性。
四、应用题应用题是数学高考中的重点和难点之一,涉及到数学知识和解决实际问题的能力。
在解答应用题时,考生需要进行实际情境的理解和分析。
首先,理清题目中给出的条件和要求,并根据情境进行合理的假设和推理。
其次,建立数学模型。
应用题的解答通常需要建立一个数学模型,将实际问题转化为数学问题,然后根据模型进行求解。
最后,对解答的结果进行解读。
应用题通常会要求对所求解的结果进行解释或判断,考生应将解答结果与实际情况进行对比和解读。
高考数学题型归纳完整版
第一章集合与常用逻辑用语第一节集合题型1-1 集合的基本概念题型1-2 集合间的基本关系题型1-3 集合的运算其次节命题与其关系、充分条件与必要条件题型1-4 四种命题与关系题型1-5 充分条件、必要条件、充要条件的推断与证明题型1-6 求解充分条件、必要条件、充要条件中的参数取值范围第三节简洁的逻辑联结词、全称量词与存在量词题型1-7 推断命题的真假题型1-8 含有一个量词的命题的否定题型1-9 结合命题真假求参数的取值范围其次章函数第一节映射与函数题型2-1 映射与函数的概念题型2-2 同一函数的推断题型2-3 函数解析式的求法其次节函数的定义域与值域(最值)题型2-4 函数定义域的求解题型2-5 函数定义域的应用题型2-6 函数值域的求解第三节函数的性质——奇偶性、单调性、周期性题型2-7 函数奇偶性的推断题型2-8 函数单调性(区间)的推断题型2-9 函数周期性的推断题型2-10 函数性质的综合应用第四节二次函数题型2-11 二次函数、一元二次方程、二次不等式的关系题型2-12 二次方程的实根分布与条件题型2-13 二次函数“动轴定区间”“定轴动区间”问题第五节指数与指数函数题型2-14 指数运算与指数方程、指数不等式题型2-15 指数函数的图象与性质题型2-16 指数函数中恒成立问题第六节对数与对数函数题型2-17 对数运算与对数方程、对数不等式题型2-18 对数函数的图象与性质题型2-19 对数函数中恒成立问题第七节幂函数题型2-20 求幂函数的定义域题型2-21 幂函数性质的综合应用第八节函数的图象题型2-22 推断函数的图象题型2-23 函数图象的应用第九节函数与方程题型2-24 求函数的零点或零点所在区间题型2-25 利用函数的零点确定参数的取值范围题型2-26 方程根的个数与函数零点的存在性问题第十节函数综合题型2-27 函数与数列的综合题型2-28 函数与不等式的综合题型2-29 函数中的信息题第三章导数与定积分第一节导数的概念与运算题型3-1 导数的定义题型3-2 求函数的导数其次节导数的应用题型3-3 利用原函数与导函数的关系推断图像题型3-4 利用导数求函数的单调性和单调区间题型3-5 函数的极值与最值的求解题型3-6 已知函数在区间上单调或不单调,求参数的取值范围题型3-7 探讨含参函数的单调区间题型3-8 利用导数探讨函数图象的交点和函数零点个数问题题型3-9 不等式恒成立与存在性问题题型3-10 利用导数证明不等式题型3-11 导数在实际问题中的应用第三节定积分和微积分基本定理题型3-12 定积分的计算题型3-13 求曲边梯形的面积第四章三角函数第一节三角函数概念、同角三角函数关系式和诱导公式题型4-1 终边相同角的集合的表示与识别题型4-2 α2是第几象限角题型4-3 弧长与扇形面积公式的计算题型4-4 三角函数定义题型4-5 三角函数线与其应用题型4-6 象限符号与坐标轴角的三角函数值题型4-7 同角求值——条件中出现的角和结论中出现的角是相同的题型4-8 诱导求值与变形其次节三角函数的图象与性质题型4-9 已知解析式确定函数性质题型4-10 依据条件确定解析式题型4-11 三角函数图象变换第三节三角恒等变换题型4-12 两角和与差公式的证明题型4-13 化简求值第四节解三角形题型4-14 正弦定理的应用题型4-15 余弦定理的应用题型4-16 推断三角形的形态题型4-17 正余弦定理与向量的综合题型4-18 解三角形的实际应用第五章平面对量第一节向量的线性运算题型5-1 平面对量的基本概念题型5-2 共线向量基本定理与应用题型5-3 平面对量的线性运算题型5-4 平面对量基本定理与应用题型5-5 向量与三角形的四心题型5-6 利用向量法解平面几何问题其次节向量的坐标运算与数量积题型5-7 向量的坐标运算题型5-8 向量平行(共线)、垂直充要条件的坐标表示题型5-9 平面对量的数量积题型5-10 平面对量的应用第六章数列第一节等差数列与等比数列题型6-1 等差、等比数列的通项与基本量的求解题型6-2 等差、等比数列的求和题型6-3 等差、等比数列的性质应用题型6-4 推断和证明数列是等差、等比数列题型6-5 等差数列与等比数列的综合其次节数列的通项公式与求和题型6-6 数列的通项公式的求解题型6-7 数列的求和第三节数列的综合题型6-8 数列与函数的综合题型6-9 数列与不等式综合第七章不等式第一节不等式的概念和性质题型7-1 不等式的性质题型7-2 比较数(式)的大小与比较法证明不等式其次节均值不等式和不等式的应用题型7-3 均值不等式与其应用题型7-4 利用均值不等式求函数最值题型7-5 利用均值不等式证明不等式题型7-6 不等式的证明第三节不等式的解法题型7-7 有理不等式的解法题型7-8 肯定值不等式的解法第四节二元一次不等式(组)与简洁的线性规划问题题型7-9 二元一次不等式组表示的平面区域题型7-10 平面区域的面积题型7-11 求解目标函数中参数的取值范围题型7-12 简洁线性规划问题的实际运用第五节不等式综合题型7-13 不等式恒成立问题中求参数的取值范围题型7-14 函数与不等式综合第八章立体几何第一节空间几何体的表面积与体积题型8-1 几何体的表面积与体积题型8-2 球的表面积、体积与球面距离题型8-3 几何体的外接球与内切球其次节空间几何体的直观图与三视图题型8-4 直观图与斜二测画法题型8-5 直观图、三视图题型8-6 三视图⟹直观图——简洁几何体基本量的计算题型8-7三视图⟹直观图——简洁组合体基本量的计算题型8-8 部分三视图⟹其余三视图第三节空间点、直线、平面之间的关系题型8-9 证明“线共面”、“点共面”或“点共线”题型8-10 异面直线的判定第四节直线、平面平行的判定与性质题型8-11 证明空间中直线、平面的平行关系第五节直线、平面垂直的判定与性质题型8-12证明空间中直线、平面的垂直关系第六节空间向量与其应用题型8-13 空间向量与其运算题型8-14 空间向量的立体几何中的应用第七节空间角与距离题型8-15 空间角的计算题型8-16 点到平面距离的计算第九章直线与圆的方程第一节直线的方程题型9-1 倾斜角与斜率的计算题型9-2 直线的方程其次节两条直线的位置关系题型9-3 两直线位置关系的判定题型9-4 有关距离的计算题型9-5 对称问题第三节圆的方程题型9-6 求圆的方程题型9-7 与圆有关的轨迹问题题型9-8 点与圆位置关系的推断题型9-9 圆的一般方程的充要条件题型9-10 与圆有关的最值问题题型9-11 数形结合思想的应用第四节直线与圆、圆与圆的位置关系题型9-12 直线与圆的位置关系的推断题型9-13 直线与圆的相交关系题型9-14 直线与圆的相切关系题型9-15 直线与圆的相离关系题型9-16 圆与圆的位置关系第十章圆锥曲线方程第一节椭圆题型10-1 椭圆的定义与标准方程题型10-2 离心率的值与取值范围题型10-3 焦点三角形其次节双曲线题型10-4 双曲线的标准方程题型10-5 双曲线离心率的求解与其取值范围问题题型10-6 双曲线的渐近线题型10-7 焦点三角形第三节抛物线题型10-8 抛物线方程的求解题型10-9 与抛物线有关的距离和最值问题题型10-10 抛物线中三角形、四边形的面积问题第四节曲线与方程题型10-11 求动点的轨迹方程第五节直线与圆锥曲线位置关系题型10-12 直线与圆锥曲线的位置关系题型10-13 中点弦问题题型10-14 弦长问题第六节圆锥曲线综合题型10-15 平面对量在解析几何中的应用题型10-16 定点问题题型10-17 定值问题题型10-18 最值问题第十一章算法初步题型11-1 已知流程图,求输出结果题型11-2 依据条件,填充不完整的流程图题型11-3 求输入参数题型11-4 算法综合第十二章计数原理第一节计数原理与简洁排列组合问题题型12-1 分类计数原理与分步计数原理题型12-2 排列数与组合数的推导、化简和计算题型12-3 基本计数原理和简洁排列组合问题的结合其次节排列问题题型12-4 特别元素或特别位置的排列问题题型12-5 元素相邻排列问题题型12-6 元素不相邻排列问题题型12-7 元素定序问题题型12-8 其他排列:双排列、同元素的排列第三节组合问题题型12-9 单纯组合应用问题题型12-10 分选问题和选排问题题型12-11 平均分组问题和安排问题第四节二项式定理题型12-12 证明二项式定理题型12-13 T r+1的系数与x幂指数的确定题型12-14 二项式定理中的系数和题型12-15 二项式绽开式的二项式系数与系数的最值题型12-16 二项式定理的综合应用第十三章排列与统计第一节概率与其计算题型13-1 古典概型题型13-2 几何概型的计算其次节概率与概率分布题型13-3 概率的计算题型13-4 离散型随机变量的数学期望与方差题型13-5 正态分布第三节统计与统计案例题型13-6 抽样方法题型13-7 样本分布题型13-8 频率分布直方图的解读题型13-9 线性回来方程题型13-10 独立性检验第十四章推理与证明第一节合情推理与演绎推理题型14-1 归纳猜想题型14-2 类比推理其次节干脆证明和间接证明题型14-3 综合法与分析法证明第三节数学归纳法题型14-4 数学归纳法的完善题型14-5 证明恒等式题型14-6 整除问题题型14-7 不等式证明题型14-8 递推公式导出{a n}通项公式的猜证与有关问题的证明第十五章复数题型15-1 复数的概念、代数运算和两个复数相等的条件题型15-2 复数的几何意义第十六章选讲内容第一节几何证明选讲(选修4-1)题型16-1 圆和直角三角形中长度和角的计算题型16-2 证明题题型16-3 空间图形问题转化为平面问题其次节坐标系与参数方程(选修4-4)题型16-4 参数方程化为一般方程题型16-5 一般方程化为参数方程题型16-6 极坐标方程化为直角坐标方程第三节不等式选讲(选修4-5)题型16-7含肯定值的不等式题型16-8 不等式的证明题型16-9 一般综合法和分析法(含比较法)题型16-10 数学归纳法。
高考数学题型归纳汇总
高考数学题型归纳汇总高考数学题型:排列组合篇1. 驾驭分类计数原理与分步计数原理,并能用它们分析和解决一些简洁的应用问题。
2. 理解排列的意义,驾驭排列数计算公式,并能用它解决一些简洁的应用问题。
3. 理解组合的意义,驾驭组合数计算公式和组合数的性质,并能用它们解决一些简洁的应用问题。
4. 驾驭二项式定理和二项绽开式的性质,并能用它们计算和证明一些简洁的问题。
5. 了解随机事务的发生存在着规律性和随机事务概率的意义。
6. 了解等可能性事务的概率的意义,会用排列组合的基本公式计算一些等可能性事务的概率。
7. 了解互斥事务、相互独立事务的意义,会用互斥事务的概率加法公式与相互独立事务的概率乘法公式计算一些事务的概率。
8. 会计算事务在n次独立重复试验中恰好发生k次的概率.高考数学题型:立体几何篇1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不行缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟识公理、定理的内容和功能,通过对问题的分析与概括,驾驭立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维实力和空间想象实力。
2. 判定两个平面平行的方法:(1)依据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。
高考数学题型:导数应用篇1. 导数概念的理解。
2. 利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。
复合函数的求导法则是微积分中的重点与难点内容。
课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3. 要能正确求导,必需做到以下两点:(1)娴熟驾驭各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。
高考数学题型全归纳
高考数学题型全归纳
一、选择题型
1. 单选题:从给定的选项中,选择一个正确答案。
2. 多选题:从给定的选项中,选择所有正确答案。
3. 判断题:判断给定的陈述是否正确。
二、填空题型
1. 单项填空题:根据题目要求,在空格内填入一个正确的答案。
2. 同义填空题:根据题目给出的句子,选择与之意思相同的词或词组填入空格中。
3. 近义填空题:根据题目给出的句子,选择与之意思相近的词或词组填入空格中。
三、计算题型
1. 运算题:根据题目要求,进行相应的运算,写出结果或具体步骤。
2. 算式填空题:给出部分算式,要求将剩余部分填写完整。
四、证明和推理题型
1. 数学证明题:根据已知条件,运用逻辑推理和数学知识,完整地证明一个数学结论。
2. 推理判断题:根据已知信息,运用逻辑推理和数学知识,判断陈述的真假。
五、应用题型
1. 实际问题解决题:根据给定的实际情境,应用数学知识解决问题。
2. 图表分析题:根据给定的图表或数据,进行相关的计算和分析。
六、综合题型
1. 综合运用题:将不同类型的题目进行组合,要求综合运用数学知识解答。
2. 综合性试题:将多个知识点进行综合性考查,要求较高的思维和解题能力。
高中数学题型总结160题
高中数学题型总结160题数学作为一门重要的学科,对于高中生来说是必修课程。
在学习数学的过程中,我们会遇到各种各样的题型,这些题型既有基础的知识点,也有一些较为复杂的问题。
为了帮助同学们更好地掌握数学知识,我将对高中数学常见的题型进行总结,共计160题,希望能够对大家的学习有所帮助。
一、代数题型。
1. 解方程,2x + 3 = 7。
2. 解不等式,5x 2 < 13。
3. 因式分解,x^2 + 5x + 6。
4. 多项式运算,(3x + 4)(2x 1)。
5. 求根式,√(x^2 + 4x + 4)。
6. 求导数,y = 3x^2 + 4x + 2。
7. 求积分,∫(2x + 3)dx。
二、几何题型。
1. 直线与平面的交点计算。
2. 圆的面积和周长的计算。
3. 三角形的内角和。
4. 空间几何体的体积和表面积。
5. 相似三角形的性质。
6. 圆锥曲线的图像和性质。
三、概率题型。
1. 抛硬币的概率计算。
2. 掷骰子的概率计算。
3. 事件的互斥和独立性。
4. 条件概率的计算。
5. 随机变量的期望和方差。
四、函数题型。
1. 函数的定义域和值域。
2. 函数的奇偶性和周期性。
3. 函数的极限计算。
4. 函数的图像和性质。
5. 复合函数的求导和积分。
五、数列题型。
1. 等差数列的通项公式。
2. 等比数列的通项公式。
3. 数列的前n项和。
4. 数列的极限计算。
5. 数列的应用题分析。
通过以上的题型总结,我们可以看到高中数学题目涵盖了代数、几何、概率、函数和数列等多个方面,涉及的知识点也十分广泛。
在学习数学的过程中,我们要注重基础知识的掌握,同时也要注重题型的练习和应用能力的培养。
希望同学们能够通过不断的练习和总结,掌握数学知识,提高解题能力,取得更好的成绩。
总结160道高中数学题目,旨在帮助同学们更好地掌握数学知识,提高解题能力。
希望同学们能够认真对待每一道题目,不断总结经验,不断提高自己的数学水平。
相信通过努力和坚持,大家一定能够取得优异的成绩,实现自己的学习目标。
高考数学题型全归纳
高考数学题型全归纳
高考数学题型可以分为以下几类:
1. 选择题:题目给出若干个选项,只有一个是正确的答案。
常见的选择题有单选题和多选题。
2. 填空题:题目要求填写一个数字或一个表达式的值。
通过计算、推理或运用数学公式等方法来求解。
3. 解答题:题目要求解答一个问题,不限答案形式。
答题过程中需要严谨论证和清晰的表述。
4. 计算题:题目给出一些计算步骤,要求按照题目要求进行运算,求得最终结果。
5. 应用题:题目通常与实际问题相关,需要通过数学知识和方法来解决实际问题。
6. 图形题:题目给出一个图形,要求求解或判断一些性质,如图形的面积、周长、相似关系等。
7. 推理题:通过观察数列、图形、规律等,进行推理和归纳,判断下一个数或图形的规律。
8. 几何题:涉及到几何图形的性质、相似关系、全等性质等。
9. 空间几何题:涉及到空间立体图形的性质、体积、面积等。
10. 不等式题:涉及到不等式的性质和求解方法。
以上是高考数学题型的一些常见分类,具体题目的内容和形式还需要根据不同年份的高考试题来确定。
对于高考数学的备考,除了掌握各个题型的解题方法外,还要注重培养数学思维和解题能力,注重综合运用数学知识来解决问题。
高中数学经典题型汇总
高中数学经典题型汇总在高中数学的学习中,掌握经典题型是提高成绩的关键。
以下为大家汇总了一些具有代表性的经典题型,并进行详细的分析和讲解,希望能对同学们的学习有所帮助。
一、函数相关题型1、函数的定义域和值域问题例:求函数$f(x)=\sqrt{x-1}+\frac{1}{x-2}$的定义域。
分析:要使根式有意义,则根号下的式子必须大于等于 0;分式有意义,则分母不为 0。
所以可得$x 1 \geq 0$且$x 2 \neq 0$,解得$x \geq 1$且$x \neq 2$,即定义域为$1, 2) \cup (2, +\infty)$。
求函数值域的方法多样,常见的有观察法、配方法、换元法等。
2、函数的单调性和奇偶性例:判断函数$f(x)=x^3 + x$的奇偶性和单调性。
分析:首先判断奇偶性,对于定义域内的任意$x$,有$f(x)= x^3 x =(x^3 + x) = f(x)$,所以函数为奇函数。
对于单调性,对函数求导$f'(x)= 3x^2 + 1$,因为$f'(x) > 0$恒成立,所以函数在定义域内单调递增。
二、三角函数题型1、三角函数的化简求值例:化简$\sin^2\alpha +\cos^2(\alpha +\frac{\pi}{3})+\sin\alpha\cos(\alpha +\frac{\pi}{3})$。
分析:利用三角函数的和差公式及二倍角公式进行化简,可得$\frac{3}{4} +\frac{1}{2}\sin(2\alpha +\frac{\pi}{3})$。
求值时,通常需要根据已知条件,结合特殊角的三角函数值进行计算。
2、解三角形例:在$\triangle ABC$中,已知$a = 3$,$b = 4$,$\angle A = 30^\circ$,求$c$。
分析:可以使用正弦定理或余弦定理来求解。
使用余弦定理$a^2 =b^2 + c^2 2bc\cos A$,代入数据可得$c^2 4\sqrt{3}c + 7 = 0$,解得$c =\sqrt{3} + 2$或$c = 2 \sqrt{3}$(舍去)。
高考数学17个必考题型及解题技巧
高考数学17个必考题型及解题技巧17个必考题型01题型一运用同三角函数关系、诱导公式、和、差、倍、半等公式进行化简求值类。
02题型二运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心。
03题型三解三角函数问题、判断三角形形状、正余弦定理的应用。
04题型四数列的通项公式求法05题型五数列的前n项求和的求法。
06题型六利用导数研究函数的极值、最值。
07题型七利用导数几何意义求切线方程08题型八利用导数研究函数的单调性,极值、最值09题型九利用导数研究函数的图像。
10题型十求参数取值范围、恒成立及存在性问题。
11题型十一数形结合确定直线和圆锥曲线的位置关系。
12题型十二焦点三角函数、焦半径、焦点弦问题。
13题型十三动点轨迹方程问题。
14题型十四共线问题。
15题型十五定点问题。
16题型十六存在性问题。
存在直线y=kx+m,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆17题型十七最值问题。
02选择填空答题技巧选择题01.排除法、代入法当从正面解答不能很快得出答案或者确定答案是否正确时,可以通过排除法,排除其他选项,得到正确答案。
排除法可以与代入法相互结合,将4个选项的答案,逐一带入到题目中验证答案。
例题已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围为()A、(2,+∞)B、(-∞,-2)C、(1,+∞)D、(-∞,-1)解析:取a=3,f(x)=3x3-3x2+1,不合题意,可以排除A与C;取a=-4/3,f(x)=-4x3/3-3x2+1,不合题意,可以排除D;故只能选B(2014年高考全国卷Ⅰ理数第11题)02.特例法有些选择题涉及的数学问题具有一般性,这类选择题要严格推证比较困难,此时不妨从一般性问题转化到特殊性问题上来,通过取适合条件的特殊值、特殊图形、特殊位置等进行分析,往往能简缩思维过程、降低难度而迅速得解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学经典题型归纳
数学是人类探究世界,研究自然界任何事物的核心。
小编准备了高考数学经典题型,希望你喜欢。
多元函数积分学
解读:在一元函数积分学中,定积分是某种确定形式的和的极限,这种和的极限的概念推广到定义在区域、曲线及曲面上多元函数的情形,便得到重积分、曲线积分及曲面积分的概念。
备考这一部分重点掌握各类多元函数积分的计算。
对于数学二、三的考生而言,每年的命题热点在二重积分的计算。
对于数学一的考生而言,除重积分(包括二重及三重积分)的计算外,还需注意曲线面积分的计算,三个公式:格林公式、高斯公式及斯托克斯公式的应用。
重点分布:
1.二重积分的计算
2.三重积分的计算(数一)
3.曲线积分的计算(数一,重点)
4.曲面积分的计算(数一,重点)
级数
解读:无穷级数,属于数学一和数学三的备考范围。
主要考察点有两个,一是常数项级数的敛散性,二是幂级数的收敛域、求和及将函数展开为幂级数。
考生要掌握其常数项级数敛散性判别的一般方法,对于正项级数的判敛方法比较多,
一般类型的级数通过绝对收敛的性质与正项级数相联系,交错级数用莱布尼茨判别法。
对于幂级数,掌握求和的一般思路,同时注意注明和函数的收敛域,这是容易忽略的一点。
重点分布:
1.求幂级数的和函数
2.将函数展开成幂级数
死记硬背是一种传统的教学方式,在我国有悠久的历史。
但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。
其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。
相反,它恰是提高学生语文水平的重要前提和基础。
不等式的证明
家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。
我和家长共同配合,一道训练,幼儿的阅读能力提高很快。
解读:不等式的证明是思路较为灵活的一类题型,这也是一般考生认为它是比较难的考点,建议考生掌握证明不等式的一般思路,如利用构造辅助函数,函数的单调性来构筑从已知到结论的一个桥梁。
另外,不等式证明是证明题的一类,证明题在解答题中一般多考察中值定理的应用,考查考
生的逻辑分析能力和解决问题的能力。
建议同学们在备考时注意总结基本思路,切忌只做一些偏、难的题目。
高考数学经典题型就为大家介绍到这里,希望对你有所帮助。
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
至元明清之县学一律循之不变。
明朝入选翰林院的进士之师称“教习”。
到清末,学堂兴起,各科教师仍沿用“教习”一称。
其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。
而相应府和州掌管教育生员者则谓“教授”和“学正”。
“教授”“学正”和“教谕”的副手一律称“训导”。
于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。
在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。