2019-2020学年广西北流市七年级(上)期末数学试卷

合集下载

2019-2020学年七年级(上)期末考试数学试卷(解析版)

2019-2020学年七年级(上)期末考试数学试卷(解析版)

2019-2020学年七年级(上)期末考试数学试卷一、选择题(每小题3分,共30分)1.计算1+(﹣2)的正确结果是()A.﹣2 B.﹣1 C.1 D.32.﹣2019的相反数是()A.﹣2019 B.2019 C.﹣D.3.观察下列实物模型,其形状是圆柱体的是()A.B.C.D.4.温度先上升6℃,再上升﹣3℃的意义是()A.温度先上升6℃,再上升3℃B.温度先上升﹣6℃,再上升﹣3℃C.温度先上升6℃,再下降3℃D.无法确定5.把(﹣)÷(﹣)转化为乘法是()A.(﹣)×B.(﹣)×C.(﹣)×(﹣)D.(﹣)×(﹣)6.某学习小组为了了解本校2000名学生的视力情况,随机抽查了500名学生,其中有200名学生近视.对于这个问题上,下列说法中正确的是()A.每名学生是总体的一个个体B.样本容量是500C.样本是500名学生D.该校一定有1000名学生近视7.若a为有理数,且|a|=2,那么a是()A.2 B.﹣2 C.2或﹣2 D.48.某校购进价格a元的排球100个,价格b元的篮球50个,则该校一共需支付()A.100a+50b B.100a﹣50b C.50a+100b D.50a+100b 9.下列说法正确的是()A.多项式x2+2x2y+1是二次三项式B.单项式2x2y的次数是2C.0是单项式D.单项式﹣3πx2y的系数是﹣310.王先生到银行存了一笔三年期的定期存款,年利率是4.25%,若到期后取出得到本息和(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×4.25%x=33825 B.x+4.25%x=33825C.3×4.25%x=33825 D.3(x+4.25%x)=33825二、填空题(每小题3分,共15分)11.比较大小:1 ﹣2(填“>,<或=”)12.把(﹣8)+(﹣5)﹣(﹣2)写成省略括号的和的形式是.13.2018年前三季度,我市社会消费品零售总额为19400000000元,该数据用科学记数法可表示为.14.“□”“△”“〇”各代表一种物品,其质量关系由下面两个天平给出(左右平衡状态),如果“〇”的质量是4kg,那么“□”的质量是千克.15.食品店一周中的盈亏情况如下(盈余为正):132元,﹣12.5元,﹣10.5元,127元,﹣87元,136.5元,98元.则该食品店这一周共盈余了元.三、解答题(共55分,解答应写出必要的文字说明,演算步骤或推理过程)16.(5分)计算:﹣32﹣(﹣2)3+4÷2×2.17.(5分)解方程:﹣=1.18.(7分)先化简,再求值:3(m2n﹣mn)﹣6(m2n﹣mn),其中m=1,n=2.19.(7分)甲、乙两列火车从相距480km的A、B两地同时出发,相向而行,甲车每小时行80km,乙车每小时行70km,问多少小时后两车相距30km?20.(7分)在我市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(1)本次共调查了名学生;(2)被调查的学生中,最喜爱丁类图书的有人,最喜爱甲类图书的人数占本次被调查人数的%;(3)在最喜爱丙类学生的图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.21.(8分)如图所示,已知直线AB和CD相交于点O,OM平分∠BOD,∠MON=90°,∠AOC=50°.(1)求∠AON的度数.(2)写出∠DON的余角.22.(8分)已知平面上四点A,B,C,D,如图:(1)请按要求画图:①画直线AB,射线CD;②画射线AD,连接BC;③直线AB与射线CD相交于E;④连接AC、BD相交于点F.(2)根据以上作图,请判断下列位置关系:①点C与直线AB;②点E与直线CD;③直线AB与直线CD.23.(8分)方方和圆圆的房间窗帘的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径都分别相同),它们的窗户能射进阳光的面积分别是多少(窗框面积不计)谁的窗户射进阳光的面积大?参考答案一、选择题1.计算1+(﹣2)的正确结果是()A.﹣2 B.﹣1 C.1 D.3【分析】绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.解:1+(﹣2)=﹣(2﹣1)=﹣1.故选:B.【点评】本题主要考查的是有理数的加法法则,熟练掌握有理数的加法法则是解题的关键.2.﹣2019的相反数是()A.﹣2019 B.2019 C.﹣D.【分析】直接利用相反数的定义分析得出答案.解:﹣2019的相反数是:2019.故选:B.【点评】此题主要考查了相反数,正确把握定义是解题关键.3.观察下列实物模型,其形状是圆柱体的是()A.B.C.D.【分析】熟悉立体图形的基本概念和特性即可解.解:圆柱的上下底面都是圆,所以正确的是D.故选D.【点评】熟记常见圆柱体的特征,是解决此类问题的关键.4.温度先上升6℃,再上升﹣3℃的意义是()A.温度先上升6℃,再上升3℃B.温度先上升﹣6℃,再上升﹣3℃C.温度先上升6℃,再下降3℃D.无法确定【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.上升﹣3℃的意义是下降3℃.解:温度先上升6℃,再上升﹣3℃的意义是温度先上升6℃,再下降3℃.故选:C.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.5.把(﹣)÷(﹣)转化为乘法是()A.(﹣)×B.(﹣)×C.(﹣)×(﹣)D.(﹣)×(﹣)【分析】根据除以一个不等于0的数,等于乘这个数的倒数可得.解:把(﹣)÷(﹣)转化为乘法是(﹣)×(﹣),故选:D .【点评】本题主要考查有理数的除法,解题的关键是掌握有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.6.某学习小组为了了解本校2000名学生的视力情况,随机抽查了500名学生,其中有200名学生近视.对于这个问题上,下列说法中正确的是( )A .每名学生是总体的一个个体B .样本容量是500C .样本是500名学生D .该校一定有1000名学生近视【分析】根据总体,样本,个体,样本容量的定义写出即可.解:A .每名学生的视力情况是总体的一个个体,此选项错误;B .样本容量是500,此选项正确;C .样本是500名学生的视力情况,此选项错误;D .该校大约有800名学生近视,此选项错误;故选:B .【点评】本题考查了对总体,样本,个体,样本容量的理解和运用,关键是能根据定义说出一个事件的总体,样本,个体,样本容量.7.若a 为有理数,且|a |=2,那么a 是( )A .2B .﹣2C .2或﹣2D .4【分析】利用绝对值的代数意义求出a 的值即可.解:若a 为有理数,且|a |=2,那么a 是2或﹣2,故选:C.【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.8.(3分)某校购进价格a元的排球100个,价格b元的篮球50个,则该校一共需支付()A.100a+50b B.100a﹣50b C.50a+100b D.50a+100b 【分析】由总价=单价×数量,可用含a,b的代数式表示出需付金额,此题得解.解:依题意,需付(100a+50b)元.故选:A.【点评】本题考查了列代数式,根据数量之间的关系,利用含a,b的代数式表示出需付总金额是解题的关键.9.下列说法正确的是()A.多项式x2+2x2y+1是二次三项式B.单项式2x2y的次数是2C.0是单项式D.单项式﹣3πx2y的系数是﹣3【分析】根据多项式、单项式、系数、常数项的定义分别进行判断,即可求出答案.解:A.多项式x2+2x2y+1是三次三项式,此选项错误;B.单项式2x2y的次数是3,此选项错误;C.0是单项式,此选项正确;D.单项式﹣3πx2y的系数是﹣3π,此选项错误;故选:C.【点评】此题考查了多项式、单项式;把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.10.王先生到银行存了一笔三年期的定期存款,年利率是4.25%,若到期后取出得到本息和(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×4.25%x=33825 B.x+4.25%x=33825C.3×4.25%x=33825 D.3(x+4.25%x)=33825【分析】根据“利息=本金×利率×时间”(利率和时间应对应),代入数值,计算即可得出结论.解:设王先生存入的本金为x元,根据题意得出:x+3×4.25%x=33825;故选:A.【点评】此题主要考查了一元一次方程的应用,计算的关键是根据利息、利率、时间和本金的关系,进行计算即可.二、填空题(每小题3分,共15分)11.比较大小:1 >﹣2(填“>,<或=”)【分析】根据有理数的大小比较法则比较即可.解:∵负数都小于正数,∴1>﹣2,故答案为:>.【点评】本题考查了对有理数的大小比较法则的应用,注意:负数都小于正数.12.把(﹣8)+(﹣5)﹣(﹣2)写成省略括号的和的形式是﹣8﹣5+2 .【分析】根据有理数的运算法则即可求出答案.解:原式=﹣8﹣5+2,故答案为:﹣8﹣5+2.【点评】本题考查有理数的运算,解题的关键熟练运用有理数的运算法则,本题属于基础题型.13.2018年前三季度,我市社会消费品零售总额为19400000000元,该数据用科学记数法可表示为 1.94×1010.【分析】根据科学记数法的表示方法:a×10n,可得答案.解:19400000000用科学记数法表示为:1.94×1010,故答案为:1.94×1010.【点评】本题考查了科学记数法,确定n的值是解题关键,n是整数数位减1.14.“□”“△”“〇”各代表一种物品,其质量关系由下面两个天平给出(左右平衡状态),如果“〇”的质量是4kg,那么“□”的质量是9 千克.【分析】设△的质量为xkg,□的质量为ykg,根据图示,列出关于x和y的二元一次方程组,解之即可.解:设△的质量为xkg,□的质量为ykg,根据题意得:,解得:,即□的质量为9kg.【点评】本题考查了等式的性质,正确掌握等式的性质是解题的关键.15.食品店一周中的盈亏情况如下(盈余为正):132元,﹣12.5元,﹣10.5元,127元,﹣87元,136.5元,98元.则该食品店这一周共盈余了383.5 元.【分析】利用有理数的加法求出已知各数的和即可求出一周总的盈亏情况.解:132+(﹣12.5)+(﹣10.5)+127+(﹣87)+136.5+98=132﹣12.5﹣10.5+127﹣87+136.5+98=132+98+127﹣87+136.5﹣12.5﹣10.5=230+40+113.5=383.5;答:这一周食品店的盈余了383.5元.故答案为:383.5.【点评】此题主要考查了正数和负数及有理数加法在实际生活中的应用,解题的关键是熟练掌握有理数的加法法则.三、解答题(共55分,解答应写出必要的文字说明,演算步骤或推理过程)16.(5分)计算:﹣32﹣(﹣2)3+4÷2×2.【分析】根据有理数的乘除法和加减法可以解答本题.解:﹣32﹣(﹣2)3+4÷2×2=﹣9﹣(﹣8)+4=﹣9+8+4=3.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17.(5分)解方程:﹣=1.【分析】依次去分母、去括号、移项、合并同类项、系数化为1可得.解:2(x﹣3)﹣3(4x+1)=6,2x﹣6﹣12x﹣3=6,2x﹣12x=6+6+3,﹣10x=15,x=﹣.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1.18.(7分)先化简,再求值:3(m2n﹣mn)﹣6(m2n﹣mn),其中m=1,n=2.【分析】先算乘法,再合并同类项,最后代入求出即可.解:原式=3m2n﹣3mn﹣6m2n+4mn=﹣3m2n+mn,当m=1,n=2时,原式=﹣3×12×2+1×2=﹣6+2=﹣4.【点评】本题主要考查整式的化简求值,解题的关键是掌握去括号和合并同类项法则.19.(7分)甲、乙两列火车从相距480km的A、B两地同时出发,相向而行,甲车每小时行80km,乙车每小时行70km,问多少小时后两车相距30km?【分析】设x小时后两车相距30km,根据相距30km有两种情况分别列出方程求出即可.解:设x小时后两车相距30km,根据题意,得:(80+70)x=480﹣30或(80+70)x=480+30,解得:x=3或.答:3小时或小时后两车相距30km.【点评】此题主要考查了一元一次方程的应用,根据两车相距30km分类讨论得出是解题关键.20.(7分)在我市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(1)本次共调查了200 名学生;(2)被调查的学生中,最喜爱丁类图书的有15 人,最喜爱甲类图书的人数占本次被调查人数的40 %;(3)在最喜爱丙类学生的图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.【分析】(1)根据百分比=频数÷总数可得共调查的学生数;(2)最喜爱丁类图书的学生数=总数减去喜欢甲、乙、丙三类图书的人数即可;再根据百分比=频数÷总数计算可得最喜爱甲类图书的人数所占百分比;(3)设男生人数为x人,则女生人数为1.5x人,由题意得方程x+1.5x=1500×20%,解出x的值可得答案.解:(1)共调查的学生数:40÷20%=200(人);故答案为:50;(2)最喜爱丁类图书的学生数:200﹣80﹣65﹣40=15(人);最喜爱甲类图书的人数所占百分比:80÷200×100%=40%;故答案为:15,40;(3)设男生人数为x人,则女生人数为1.5x人,由题意得:x+1.5x=1500×20%,解得:x=120,当x=120时,1.5x=180.答:该校最喜爱丙类图书的女生和男生分别有180人,120人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(8分)如图所示,已知直线AB和CD相交于点O,OM平分∠BOD,∠MON=90°,∠AOC=50°.(1)求∠AON的度数.(2)写出∠DON的余角.【分析】(1)根据角平分线的定义求出∠MOB的度数,根据邻补角的性质计算即可.(2)根据题意得到:∠DOM为∠DON的余角.解:(1)∵∠AOC+∠AOD=∠AOD+∠BOD=180°,∴∠BOD=∠AOC=50°,∵OM平分∠BOD,∴∠BOM=∠DOM=25°,又由∠MON=90°,∴∠AON=180°﹣(∠MON+∠BOM)=180°﹣(90°+25°)=65°;(2)由∠DON+∠DOM=∠MON=90°知∠DOM为∠DON的余角,∵∠AON+∠BOM=90°,∠DOM=∠MOB,∴∠AON+∠DOM=90°,∴∠NOD+∠BOM=90°,故∠DON的余角为:∠DOM,∠BOM.【点评】本题考查的是邻补角的概念以及角平分线的定义,掌握邻补角的性质是邻补角互补是解题的关键.22.(8分)已知平面上四点A,B,C,D,如图:(1)请按要求画图:①画直线AB,射线CD;②画射线AD,连接BC;③直线AB与射线CD相交于E;④连接AC、BD相交于点F.(2)根据以上作图,请判断下列位置关系:①点C与直线AB;②点E与直线CD;③直线AB与直线CD.【分析】(1)根据直线、射线及线段的定义作图可得;(2)结合图形,依据点与直线的位置关系和直线与直线的位置关系逐一判断即可得.解:(1)如图所示:(2)由图知,①点C在直线AB外;②点E在直线CD上;③直线AB与直线CD相交.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握直线、射线及线段的定义和点与直线、直线与直线的位置关系.23.(8分)方方和圆圆的房间窗帘的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径都分别相同),它们的窗户能射进阳光的面积分别是多少(窗框面积不计)谁的窗户射进阳光的面积大?【分析】第一个窗户射进的阳光的面积=长方形面积﹣半径为的一个半圆的面积;第二个窗户射进的阳光的面积=长方形面积﹣半径为的2个圆的面积.解:第一个窗户射进的阳光的面积为ab﹣×π()2=ab﹣第二个窗户射进的阳光的面积为ab﹣2×π()2=ab﹣∵>∴第一个窗户射进的阳光的面积<第二个窗户射进的阳光的面积.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.要能根据图形得到窗户射进的阳光的面积的计算公式.。

2019-2020学年七年级上学期期末考试数学试卷(解析版)

2019-2020学年七年级上学期期末考试数学试卷(解析版)

2019-2020学年七年级上学期期末考试数学试卷一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1.在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是()A.4个B.3个C.2个D.1个2.在1,﹣1,﹣2这三个数中,任意两数之和的最大值是()A.1B.0C.﹣1D.﹣33.下列各式中运算正确的是()A.3a﹣4a=﹣1B.a2+a2=a4C.3a2+2a3=5a5D.5a2b﹣6a2b=﹣a2b4.下列结论正确的是()A.﹣3ab2和b2a是同类项B.不是单项式C.a比﹣a大D.2是方程2x+1=4的解5.如图,已知直线AB,CD相交于点O,OE平分∠COB,若∠EOB=55°,则∠BOD的度数是()A.35°B.55°C.70°D.110°6.运用等式性质的变形,正确的是()A.如果a=b,那么a+c=b﹣c B.如果,那么a=bC.如果a=b,那么D.如果a=3,那么a2=3a27.有理数a,b在数轴上的点的位置如图所示,则正确的结论是()A.a<﹣4B.a+b>0C.|a|>|b|D.ab>08.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.1009.在图中,将左边方格纸中的图形绕O点顺时针旋转90°得到的图形是()A.B.C.D.10.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A.B.C.D.11.已知点A,B,C在同一条直线上,若线段AB=3,BC=2,AC=1,则下列判断正确的是()A.点A在线段BC上B.点B在线段AC上C.点C在线段AB上D.点A在线段CB的延长线上12.如图,△AOB中,∠B=30°.将△AOB绕点O顺时针旋转52°得到△A′OB′,边A′B′与边OB交于点C(A′不在OB上),则∠A′CO的度数为()A.22°B.52°C.60°D.82°13.有m辆校车及n个学生,若每辆校车乘坐40名学生,则还有10名学生不能上车;若每辆校车乘坐43名学生,则只有1名学生不能上车.现有下列四个方程:①40m+10=43m﹣1;②=;③=;④40m+10=43m+1.其中正确的是()A.①②B.②④C.②③D.③④14.下列图案是用长度相同的火柴按一定规律拼搭而成,图案①需8根火柴,图案②需15根火柴,…,按此规律,图案n需几根火柴棒()A.2+7n B.8+7n C.4+7n D.7n+1二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15.单项式﹣xy2的系数是.16.a的3倍与b的差的平方,用代数式表示为.17.计算:15°37′+42°51′=.18.如图,是一个数值转换机的示意图,若输入x的值为3,y的值为﹣2时,则输出的结果为.19.如果x=1时,代数式2ax3+3bx+4的值是5,那么x=﹣1时,代数式2ax3+3bx+4的值是.20.在排成每行七天的日历表中取下一个3×3的方块(如图所示).若所有日期数之和为189,则n的值为.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.(10分)计算:(1)﹣12014﹣(1﹣)÷[﹣32÷(﹣2)2](2)a﹣(5a﹣2b)﹣2(a﹣3b)22.(10分)解方程(1)4(2x﹣3)﹣(5x﹣1)=7(2).23.(10分)如图所示.(1)阴影部分的周长是;(2)阴影部分的面积是;(3)当x=5.5,y=4时,阴影部分的周长是多少?面积是多少?24.(10分)已知含字母x,y的多项式是:3[x2+2(y2+xy﹣2)]﹣3(x2+2y2)﹣4(xy﹣x﹣1)(1)化简此多项式;(2)小红取x,y互为倒数的一对数值代入化简的多项式中,恰好计算得多项式的值等于0,那么小红所取的字母y的值等于多少?25.(10分)周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)请根据他们的对话内容,求小明和爸爸的骑行速度.(2)爸爸第一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m?26.(10分)已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.参考答案与试题解析一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1.【分析】先化简原题中的各数,然后即可判断哪些数是负数,本题得以解决.【解答】解:∵﹣22=﹣4,(﹣2)2=4,﹣(﹣2)=2,﹣|﹣2|=﹣2,∴在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是2个,故选:C.【点评】本题考查正数和负数,解题的关键是明确负数的定义,可以对题目中的数进行化简.2.【分析】求最大值,应是较大的2个数的和,找到较大的两个数,相加即可.【解答】解:∵在1,﹣1,﹣2这三个数中,只有1为正数,∴1最大;∵|﹣1|=1,|﹣2|=2,1<2,∴﹣1>﹣2,∴任意两数之和的最大值是1+(﹣1)=0.故选:B.【点评】考查有理数的比较及运算;得到三个有理数中2个较大的数是解决本题的突破点.3.【分析】根据合并同类项进行解答即可.【解答】解:A、3a﹣4a=﹣a,错误;B、a2+a2=2a2,错误;C、3a2与2a3不是同类项,不能合并,错误;D、5a2b﹣6a2b=﹣a2b,正确.故选:D.【点评】此题考查合并同类项问题,理解合并同类项法则,是解决这类问题的关键.4.【分析】根据同类项、单项式、有理数的大小比较、一元一次方程的解逐个判断即可.【解答】解:A、﹣3ab2和b2a是同类项,故本选项符合题意;B、是单项式,故本选项不符合题意;C、当a=0时,a=﹣a,故本选项不符合题意;D、1.5是方程2x+1=4的解,2不是方程的解,故本选项不符合题意;故选:A.【点评】本题考查了同类项、单项式、有理数的大小比较、一元一次方程的解,能熟记知识点的内容是解此题的关键.5.【分析】利用角平分线的定义和补角的定义求解.【解答】解:OE平分∠COB,若∠EOB=55°,∴∠BOC=55+55=110°,∴∠BOD=180﹣110=70°.故选:C.【点评】本题考查了角平分线和补角的定义.6.【分析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:A、利用等式性质1,两边都加c,得到a+c=b+c,所以A不成立;B、利用等式性质2,两边都乘以c,得到a=b,所以B成立;C、不成立,因为c必需不为0;D、因为a2=9,3a2=27,所以a2≠3a2;故选:B.【点评】主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.7.【分析】根据图示,可得:﹣4<a<﹣3,1<b<2,据此逐项判断即可.【解答】解:根据图示,可得:﹣4<a<﹣3,1<b<2,﹣4<a<﹣3,选项A不符合题意;∵﹣4<a<﹣3,1<b<2,∴a+b<0,选项B不符合题意;∴|a|>|b|,选项C符合题意;∵a<0,b>0,∴ab<0,选项D不符合题意.故选:C.【点评】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.8.【分析】设商品进价为每件x元,则售价为每件0.8×200元,由利润=售价﹣进价建立方程求出其解即可.【解答】解:设商品的进价为每件x元,售价为每件0.8×200元,由题意,得0.8×200=x+40,解得:x=120.故选:B.【点评】本题考查了销售问题的数量关系利润=售价﹣进价的运用,列一元一次方程解实际问题的运用,解答时根据销售问题的数量关系建立方程是关键.9.【分析】根据旋转的性质,找出图中三角形的关键处(旋转中心)按顺时针方向旋转90°后的形状即可选择答案.【解答】解:根据旋转的性质可知,绕O点顺时针旋转90°得到的图形是.故选:B.【点评】本题考查旋转的性质.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.10.【分析】根据图形,结合互余的定义判断即可.【解答】解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:C.【点评】本题考查了对余角和补角的应用,主要考查学生的观察图形的能力和理解能力.11.【分析】依据点A,B,C在同一条直线上,线段AB=3,BC=2,AC=1,即可得到点C在线段AB上.【解答】解:如图,∵点A,B,C在同一条直线上,线段AB=3,BC=2,AC=1,∴点A在线段BC的延长线上,故A错误;点B在线段AC延长线上,故B错误;点C在线段AB上,故C正确;点A在线段CB的反向延长线上,故D错误;故选:C.【点评】本题主要考查了两点间的距离,解决问题的关键是判段点C的位置在线段AB上.12.【分析】根据旋转变换的性质可得∠B′=∠B,因为△AOB绕点O顺时针旋转52°,所以∠BOB′=52°,而∠A'CO是△B′OC的外角,所以∠A′CO=∠B′+∠BOB′,然后代入数据进行计算即可得解.【解答】解:∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB绕点O顺时针旋转52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选:D.【点评】本题考查的是图形的旋转及三角形外角与内角的关系,图形旋转角即为原三角形的一边与形成新三角形后该对应边的夹角.13.【分析】有m辆校车及n个学生,则无论怎么分配,校车和学生的个数是不变的,据此列方程即可.【解答】解:根据学生数不变可得:40m+10=43m+1,故④正确;根据校车数不变可得:=,故③正确.故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.14.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n﹣1)=7n+1根.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;故选:D.【点评】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15.【分析】根据单项式系数的定义来求解.单项式中数字因数叫做单项式的系数.【解答】解:单项式﹣xy2的系数是﹣,故答案为:﹣.【点评】本题考查了单项式系数的定义,确定单项式的系数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数的关键.注意π是数字,应作为系数.16.【分析】先算差,再算平方.【解答】解:所求代数式为:(3a﹣b)2.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.注意抓住关键词,找到相应的运算顺序.17.【分析】把分相加,超过60的部分进为1度即可得解.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.【点评】本题考查了度分秒的换算,比较简单,要注意度分秒是60进制.18.【分析】首先根据已知一个数值转换机的示意图,逐步列出代数式并化简,最后表示出输出的结果的代数式,然后代入求值.【解答】解:根据已知一个数值转换机的示意图可得x×2=2x,(y)3=y3,(2x+y3)÷2=x+,把x=3,y=﹣2代入得3+×(﹣2)3=3+(﹣4)=﹣1.故答案为:﹣1.【点评】此题考查了代数式求值问题的理解和掌握.关键是首先根据示意图正确列出代数式,再代入求值.19.【分析】将x=1代入代数式2ax3+3bx+4,令其值是5求出2a+3b的值,再将x=﹣1代入代数式2ax3+3bx+4,变形后代入计算即可求出值.【解答】解:∵x=1时,代数式2ax3+3bx+4=2a+3b+4=5,即2a+3b=1,∴x=﹣1时,代数式2ax3+3bx+4=﹣2a﹣3b+4=﹣(2a+3b)+4=﹣1+4=3.故答案为:3【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.20.【分析】根据日历表中的数据列出方程,求出方程的解即可得到结果.【解答】解:根据题意得:n﹣8+n﹣7+n﹣6+n﹣1+n+n+1+n+6+n+7+n+8=189,解得:n=21,则n的值为21,故答案为:21【点评】此题考查了一元一次方程的应用,弄清日历时候数据的规律是解本题的关键.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(2)原式去括号合并即可得到结果.【解答】解:(1)原式=﹣1﹣÷(﹣)=﹣1+×=﹣1+=﹣;(2)a﹣(5a﹣2b)﹣2(a﹣3b)=a﹣5a+2b﹣2a+6b=﹣6a+8b.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.22.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:8x﹣12﹣5x+1=7,移项合并得:3x=18,解得:x=6;(2)去分母得:2(2x﹣1)﹣(5﹣x)=﹣12,去括号得:4x﹣2﹣5+x=﹣12,移项合并得:5x=﹣5,解得:x=﹣1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.23.【分析】(1)阴影部分的周长等于各边长的和,将各边长相加即可;(2)阴影部分的面积等于大长方形的面积减去小长方形的面积;(3)将x=5.5,y=4代入(1)(2)即可.【解答】解:(1)阴影部分的周长:y+2y+y+y+2x+2x=4x+6y,故答案为4x+6y;(2)阴影部分的面积2x•2y﹣y•(2x﹣x﹣0.5x)=3.5xy,故答案为3.5xy;(3)当x=5.5,y=4时,阴影部分的周长为4x+6y=4×5.5+6×4=46,阴影部分的面积为3.5xy=3.5×5.5×4=77.【点评】本题考查了代数式的值,正确列出代数式是解题的关键.24.【分析】(1)原式去括号合并即可得到结果;(2)由x,y互为倒数,得到xy=1,原式整理后即可求出y的值.【解答】解:(1)3[x2+2(y2+xy﹣2)]﹣3(x2+2y2)﹣4(xy﹣x﹣1)=3x2+6(y2+xy﹣2)﹣3x2﹣6y2﹣4xy+4x+4=3x2+6y2+6xy﹣12﹣3x2﹣6y2﹣4xy+4x+4=2xy+4x﹣8;(2)∵x,y互为倒数,∴xy=1,∴2xy+4x﹣8=4x﹣6=0,解得:x=,则y=.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.25.【分析】(1)设小明的骑行速度为x米/分钟,则爸爸的骑行速度为2x米/分钟,根据距离=速度差×时间即可得出关于x的一元一次方程,解之即可得出结论;(2)设爸爸第一次追上小明后,在第二次相遇前,再经过y分钟,小明和爸爸跑道上相距50m.根据距离=速度差×时间即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设小明的骑行速度为x米/分钟,则爸爸的骑行速度为2x米/分钟,根据题意得:2(2x﹣x)=400,解得:x=200,∴2x=400.答:小明的骑行速度为200米/分钟,爸爸的骑行速度为400米/分钟.(2)解:设爸爸第一次追上小明后,在第二次相遇前,再经过y分钟,小明和爸爸相距50m.400y﹣200y=50y=或者60×y+50﹣60×y=400,解得y=.答:爸爸第一次追上小明后,在第二次相遇前,再经过或分钟,小明和爸爸相距50m.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,由路程差找出合适的等量关系列出方程,再求解.26.【分析】(1)MN的长为3﹣(﹣1)=4,即可解答;(2)根据题意列出关于x的方程,求出方程的解即可得到x的值;(3)可分为点P在点M的左侧和点P在点N的右侧,点P在点M和点N之间三种情况计算;(4)分别根据①当点M和点N在点P同侧时;②当点M和点N在点P异侧时,进行解答即可.【解答】解:(1)MN的长为3﹣(﹣1)=4.(2)根据题意得:x﹣(﹣1)=3﹣x,解得:x=1;(3)①当点P在点M的左侧时.根据题意得:﹣1﹣x+3﹣x=8.解得:x=﹣3.②P在点M和点N之间时,PN+PM=8,不合题意.③点P在点N的右侧时,x﹣(﹣1)+x﹣3=8.解得:x=5.∴x的值是﹣3或5.(4)设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1.PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=,符合题意.综上所述,t的值为或4.【点评】此题主要考查了数轴的应用以及一元一次方程的应用,根据M,N位置的不同进行分类讨论得出是解题关键.。

2019-2020学年七年级(上)期末数学试卷4

2019-2020学年七年级(上)期末数学试卷4

2019-2020学年七年级(上)期末数学试卷学校:___________姓名:___________班级:___________考号:___________得分1.−13的相反数是()A. 3B. −3C. 13D. −132.下列几何体中,是圆锥的为()A. B.C. D.3.电影《流浪地球》中的行星发动机利用重核聚变技术,可以直接利用石头作为燃料,每座发动机产生150亿吨推力,请用科学记数法表示150亿为()A. 150×109B. 1.5×1010C. 1.5×1011D. 1.5×10124.下列计算正确的是()A. 7a+a=7a2B. 3x2y−2x2y=x2yC. 5y−3y=2D. 3a+2b=5ab5.由几个相同的小正方体搭成的几何体的视图如图所示,则搭成这个几何体的小正方体的个数是()A. 4B. 5C. 6D. 76.如果x=y,那么根据等式的性质,下列变形正确的是()A. x+y=0B. x5=5yC. 2−x=2−yD. x+7=y−77.下列调查方式合适的是()A. 为了了解市民对70周年国庆大阅兵的感受,小华在某校随机采访了8名初一学生B. 为了了解全校学生用于做数学作业的时间,小民同学在网上向6位好友做了调查C. 为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式D. 为了了解“北斗导航”卫星零部件的状况,检测人员采用了普查的方式8.如图,OC是∠AOB的平分线,OD平分∠AOC,且∠AOB=100°,则∠COD的度数是()A. 75°B. 50°C. 25°D. 20°9.下列说法正确的个数为()①过两点有且只有一条直线;②连接两点的线段的长度叫做两点间的距离③两点之间的所有连线中,线段最短④直线AB和直线BA表示同一条直线A. 4B. 3C. 2D. 110.已知一件标价为400元的上衣按八折销售,仍可获利50元.设这件上衣成本价为x元,根据题意,那么下面所列方程正确的是()A. 400×8−x=50B. 400×0.8−x=50C. 400×8+x=50D. 400×0.8+x=5011.已知x=5是关于x的方程ax+8=20−a的解,则a的值是______.12.已知2x2m y3和−14x6y1−n是同类项,则m−n的值是______.13.已知|x+3|+(y−2)2=0,则x+y=______.14.如图,在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB=______.15.(1)2×(−5)+4−3÷12(2)(−1)4+130−(−23+35)÷(−2)16.解方程(1)4x−3(2−4x)=26(2)3x−12−2x−23=−117.先化简,再求值:3(x2−xy−2y)−2(x2−3y),其中x=−1,y=2.18.2019年11月,我区组织了一次职工篮球联赛,比赛分初赛阶段和决赛阶段,在初赛阶段中,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,输一场得1分,积分超过15分才能获得决赛资格.(1)若乙队初赛获得4场胜利,问乙队是否有资格参加决赛?请说明理由.(2)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;19.我区的数学爱好者申请了一项省级课题--《中学学科核心素养理念下渗透数学美育的研究》,为了了解学生对数学美的了解情况,随机抽取部分学生进行问卷调查,按照“理解、了解、不太了解、不知道”四个类型,课题组绘制了如图两幅不完整的统计图,请根据统计图中提供的信息,回答下列问题:(1)本次调查共抽取了多少名学生?并补全条形统计图;(2)在扇形统计图中,“理解”所占扇形的圆心角是多少度?(3)我区七年级大约8000名学生,请估计“理解”和“了解”的共有学生多少名?20.已知线段AB=m(m为常数),点C为直线AB上一点(不与点A、B重合),点M、N分别在线段BC、AC上,且满足CN=3AN,CM=3BM.(1)如图,当点C恰好在线段AB中点,且m=8时,则MN=______;(2)若点C在点A左侧,同时点M在线段AB上(不与端点重合),请判断CN+2AM−2MN的值是否与m有关?并说明理由.(3)若点C是直线AB上一点(不与点A、B重合),同时点M在线段AB上(不与端点重合),求MN长度(用含m的代数式表示).21.如果方程11x+2m=37与方程113x−3=223的解相同,那么m=______.22.已知a、b互为相反数且a≠0,c、d互为倒数,|m|是最小的正整数,则m+2019(a+b)2020−cd的值为______.23.若规定f(x)=5−x+|x−5|,例如f(1)=5−1+|1−5|=8,则f(1)+f(2)+f(3)+⋯+f(2020)=______.24.如图1,在长方形纸片ABCD中,E点在边AD上,F、G分别在边AB、CD上,分别以EF、EG为折痕进行折叠并压平,点A、D的对应点分别是点A′和点D′,若ED′平分∠FEG,且ED′在∠A′EF内部,如图2,设∠A′ED′=n°,则∠FEG的度数为______(用含n的代数式表示).25.如图所示,甲、乙两人沿着边长为10m的正方形,按A→B→C→D→A…的方向行走,甲从A点以5m/分钟的速度,乙从B点以8m/分钟的速度行走,两人同时出发,当甲、乙第20次相遇时,它们在______边上.26.已知关于x的整式M=x2+6ax−3x+2,整式N=−2x2+4ax−2x+2,若a是常数,且2M+N的值与x无关.(1)求a的值;(2)若b为整数,关于x的一元一次方程bx+b−3=0的解是正整数,求a b的值.27.某公司销售甲、乙两种运动鞋,2018年这两种鞋共卖出11000双.2019年甲种运动鞋卖出的数量比2018年增加6%,乙种运动鞋卖出的数量比2018年减少5%,且这两种鞋的总销量增加了2%.(1)求2018年甲、乙两种运动鞋各卖了多少双?(2)某制鞋厂组织工人生产甲、乙两种运动鞋.原计划安排2的工人生产甲种运动鞋,3现抽调其中的16人去生产乙种运动鞋,已知每位工人一天可生产甲种运动鞋6双或乙种运动鞋4双,若调配后制成的两种运动鞋数量相等,求该鞋厂工人的人数.28.已知∠AOB=90°,∠COD=60°,按如图1所示摆放,将OA、OC边重合在直线MN上,OB、OD边在直线MN的两侧:(1)保持∠AOB不动,将∠COD绕点O旋转至如图2所示的位置,则①∠AOC+∠BOD=______;②∠BOC−∠AOD=______.(2)若∠COD按每分钟5°的速度绕点O逆时针方向旋转,∠AOB按每分钟2°的速度也绕点O逆时针方向旋转,OC旋转到射线ON上时都停止运动,设旋转t分钟,计算∠MOC−∠AOD(用t的代数式表示).(3)保持∠AOB不动,将∠COD绕点O逆时针方向旋转n°(n≤360),若射线OE平分∠AOC,射线OF平分∠BOD,求∠EOF的大小.答案和解析1.【答案】C【解析】解:−13的相反数是13, 故选:C .一个数的相反数就是在这个数前面添上“−”号.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“−”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.【答案】C【解析】解:观察可知,C 选项图形是圆锥. 故选:C .根据圆锥的定义解答.本题考查了认识立体图形,熟悉常见的立体图形是解题的关键.3.【答案】B【解析】解:150亿=150********=1.5×1010. 故选:B .科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.【答案】B【解析】解:(A)原式=8a ,故A 错误; (C)原式=2y ,故C 错误;(D)3a 与2b 不是同类项,故D 错误; 故选:B .根据合并同类项的法则即可求出答案.本题考查合并同类项的法则,注意同类项才能进行合并同类项,本题属于基础题型.5.【答案】B【解析】解:综合三视图,我们可得出,这个几何体的底层应该有2+1=3个小正方体;第二层应该有1个小正方体;第三层应有1个小正方体;因此搭成这个几何体的小正方体的个数是3+1+1=5个.故选B.从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.6.【答案】C【解析】解:A、由x=y,得到x−y=0,故A不符合题意;B、由x=y,得到x5=y5,故B不符合题意;C、由x=y,得到2−x=2−y,故C符合题意;D、由x=y,得到x+7=y+7,故D不符合题意,故选:C.利用等式的性质变形得到结果,即可作出判断.此题考查了等式的性质,熟练掌握等式的性质是解本题的关键.7.【答案】D【解析】解:A、为了了解市民对70周年国庆大阅兵的感受,小华在某校随机采访了8名初一学生,8名初一学生不具有代表性,调查方式不合适;B、为了了解全校学生用于做数学作业的时间,小民同学在网上向6位好友做了调查,小民的6位好友不具有代表性,调查方式不合适;C、为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式,普查的意义或价值不大,应选择抽样调查,调查方式不合适;D、为了了解“北斗导航”卫星零部件的状况,检测人员采用了普查的方式,调查方式合适;故选:D.根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.【答案】C【解析】解:∵∠AOB=100°,OC是∠AOB平分线,∠AOB=50°,∴∠AOC=12又∵OD平分∠AOC,∠3AOC=25°.∴∠COD=12故选:C.从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.由角平分线的定义,易求∠COD的度数.本题利用角平分线的定义,从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.9.【答案】A【解析】解:①过两点有且只有一条直线,正确;②连接两点的线段的长度叫做两点间的距离,正确;③两点之间的所有连线中,线段最短,正确;④直线AB和直线BA表示同一条直线,正确,综上所述,说法正确的是①②③④共4个.故选:A.根据线段的性质,两点的距离,直线的性质,直线的表示方法,对各小题分析判断即可得解.本题考查了线段的性质,两点的距离,直线的性质,直线的表示方法,是基础题,熟记概念是解题的关键.10.【答案】B【解析】解:设这件上衣的成本价为x元,由已知得上衣的实际售价为400×0.8元,然后根据利润=售价−成本价,可列方程:400×0.8−x=50.故选:B.根据售价−成本价=利润50元列方程即可.本题考查了由实际问题抽象出一元一次方程,列方程的关键是正确找出题目的相等关系,此题应重点弄清两点:(1)利润、售价、成本价三者之间的关系;(2)打折的含义.11.【答案】2【解析】解:把x=5代入方程得:5a+8=20−a,解得:a=2.故答案为:2.把x=5代入方程建立a的一元一次方程,再解这个方程即可求出a的值.此题考查了一元一次方程的解,解一元一次方程,方程的解即为能使方程左右两边相等的未知数的值.正确建立a的一元一次方程是关键.12.【答案】5【解析】解:由题意得:2m=6,1−n=3,解得:m=3,n=−2,则m−n=3−(−2)=3+2=5.故答案为:5.根据所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项可得2m=6,1−n=3,再解可得m、n的值,进而可得答案.此题主要考查了同类项,关键是掌握同类项定义:所含字母相同,并且相同字母的指数也相同.13.【答案】−1【解析】解:∵|x+3|+(y−2)2=0,∴x=−3,y=2,∴x+y=−3+2=−1,故答案为:−1.直接利用偶次方的性质以及绝对值的性质化简进而求出答案.此题主要考查了偶次方的性质以及绝对值的性质,正确得出x,y的值是解题关键.14.【答案】141°【解析】【分析】此题主要考查了方向角,关键是根据题意找出图中角的度数.首先计算出∠3的度数,再计算∠AOB的度数即可.【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°−54°=36°,∠AOB=36°+90°+15°=141°.故答案为141°.15.【答案】解:(1)原式=−10+4−6=−12(2)原式=1+130−(13−310)=1+130−130=1.【解析】(1)先计算有理数的乘除法,再计算加减法便可;(2)先计算乘方,再计算除法,最后计算加减便可.本题是有理数的混合运算,主要考查了有理数的混合运算顺序和运算法则,运算律的应用,是基础题目,要加强训练,提高自己的计算能力,为进一步学习打好基础.16.【答案】解:(1)去括号,得:4x−6+12x=26,移项,得:4x+12x=26+6,合并同类项,得:16x=32,化系数为1,得:x=2;(2)去分母,得:3(3x−1)−2(2x−2)=−6,去括号,得:9x−3−4x+4=−6,移项,得:9x−4x=−6+3−4,合并同类项,得:5x=−7,.化系数为1,得:x=−75【解析】(1)直接去括号进而移项合并同类项解方程得出答案;(2)直接去分母进而移项合并同类项解方程得出答案.此题主要考查了解一元一次方程,正确掌握相关运算法则是解题关键.17.【答案】解:原式=3x2−3xy−6y−2x2+6y=x2−3xy,把x=−1,y=2代入x2−3xy=(−1)2−3×(−1)×2=7.【解析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.18.【答案】解:(1)没有资格参加决赛.因为积分为4×2+(10−4)×1=14<15.(2)设甲队初赛阶段胜x场,则负了(10−x)场,由题意,得:2x+1×(10−x)=18,解得:x=8,所以,10−x=10−8=2,答:甲队初赛阶段胜8场,负2场.【解析】(1)用胜的场数×胜场积分+负的场数×负场积分列式计算可得;(2)设甲队初赛阶段胜x场,则负了(10−x)场,根据以上数量关系列出方程,解之可得.本题主要考查一元一次方程的应用,解题的关键是理解题意,找到题目蕴含的数量关系,并据此列出方程求解.=400(名),19.【答案】解:(1)本次调查共抽取学生为:205%∴不太了解的学生为:400−120−160−20=100(名),补全条形统计图如下:×360°=108°;(2)“理解”所占扇形的圆心角是:120400)=5600(名),(3)8000×(40%+120400所以“理解”和“了解”的共有学生5600名.【解析】(1)根据统计图中的数据可以求得本次抽取的学生数;补全条形统计图即可;×360°=108°;(2)根据统计图中的数据可以求得“理解”所占扇形的圆心角为120400)=5600(名)即可.(3)由8000×(40%+120400本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.【答案】6【解析】解:(1)设AN=x,BM=y,则CN=3x,CM=3y.∵AB=AN+CN+CM+MB=m,∴x+3x+3y+y=m=8,∴x+y=2,MN=NC+CM=3x+3y=3(x+y)=6.(2)CN+2AM−2MN的值与m无关.理由如下:如图1,∵CN=3AN,∴CN+2AM−2MN=3AN+2AM−2(AN+AM)=AN∵AN与m的取值无关,∴CN+2AM−2MN的值与m无关;(3)设AN=x,BM=y,则CN=3x,CM=3y①当C点在B点右边时,∵满足CM=3BM,M在线段AB上,如图2此时,M不是线段BC上的点,不符合题意,会去;②当点C在点A的左边,如图3,∵AB=CB−CA=(CM+MB)−(CN+AN)=m,m,∴(3y+y)−(x+3x)=m,∴y−x=14∴MN=CM−CN=3y−3x=3(y−x)=3m;4③当点C在线段(AB上时,如图4,∵AB=CB+CA=(CM+MB)+(CN+AN)=m,∴(3y+y)+(x+3x)=m,m,∴x+y=14m;∴MN=CM+CN=3y+3x=3(y+x)=34m.∴MN长度为34综上,MN长度为34m.(1)设AN=x,BM=y,则CN=3x,CM=3y.由AB=8列出方程,求得x+y,再进而求得MN;(2)把MN=AM+AN代入CN+2AM−2MN中计算便可知道结果;(3)设AN=x,BM=y,则CN=3x,CM=3y,①当C点在B点右边时,不符合题意,会去;②当点C在点A的左边,由AB=CB−CA得出y−x=14m,进而得MN=3(y−x)=34m;③当点C在线段(AB上时,由AB=CB+CA得y+x=14m,进而得MN=3(y+x)=34m,最后总结结论.本题主要考查两点间的距离,方程的应用,掌握线段的和差运算是解题的关键,分类讨论是难点.21.【答案】10【解析】解:解方程113x−3=223,得x=1711,把x=1711代入11x+2m=37中得:17+2m=37,解得:m=10,故答案为:10.求出第二个方程的解,代入第一个方程计算即可求出m的值.此题考查了解一元一次方程和同解方程的定义.解题的关键是掌握解一元一次方程的方法和同解方程的定义,同解方程即为两个方程解相同的方程.22.【答案】0或−2【解析】解:∵a、b互为相反数且a≠0,c、d互为倒数,m的绝对值是最小的正整数,∴a+b=0,cd=1,|m|=1,∴m=1或−1,∴原式=m+2019×02020−1=m−1,当m=1时,原式=1−1=0;当m=−1时,原式=−1−1=−2.故答案为:0或−2.根据a、b互为相反数且a≠0,c、d互为倒数,m的绝对值是最小的正整数,可以求得a+b、cd、|m|的值,从而可以求得题目中所求式子的值.本题考查有理数混合运算,求代数式的值,相反数的应用,绝对值的性质,倒数的性质,有理数的有关概念,解答本题的关键是明确有理数混合运算的计算方法和正确求出a+b、cd、m的值.23.【答案】20【解析】解:∵f(1)=5−1+|1−5|=8;f(2)=5−2+|2−5|=6;f(3)=5−3+|3−5|=4,f(4)=5−4+|4−5|=2;f(5)=5−5+|5−5|=0,f(6)=5−6+|6−5|=0;f(7)=5−7+|7−5|=0,f(8)=5−3+|3−5|=0;f(9)=5−9+|9−5|=0,f(10)=5−10+|10−5|=0,∴f(5)及以后结果都是0,∴f(1)+f(2)+f(3)+⋯…+f(2020)=8+6+4+2=20,故答案为:20.根据题意得到f(1)=5−1+|1−5|=8;f(2)=5−2+|2−5|=6;f(3)=5−3+ |3−5|=4,f(4)=5−4+|4−5|=2,f(5)以后结果都是0,于是得到结论.此题考查了数字的变化规律、有理数的运算,绝对值的计算,弄清题中的规律是解本题的关键.24.【答案】180°−n°2【解析】解:∵∠AEA′+∠DED′−∠A′ED′=180°,∠A′ED′=n°,∴∠AEA′+∠DED′=180°+n°,∵2∠A′EF=∠AEA′,2∠D′EG=∠DED′,∴∠A′EF+∠D′EG=180°+n°2,∴∠FEG=∠A′EF+∠D′EG−∠A′ED′=180°+n°2−n°=180°−n°2.故答案为:180°−n°2.结合图形,先表示出∠A′EF+∠D′EG的度数,再根据∠FEG=∠A′EF+∠D′EG+∠A′ED′求解可得.考查了翻折变换(折叠问题),解题的关键是掌握翻折变换的性质、角度的和差倍分运算等知识点.25.【答案】AD【解析】解:设第一次相遇用时t1分钟,依题意有8t1−5t1=10×3,解得t1=10,又过了t2分钟第二次相遇,依题意有8t2−5t2=10×4,解得t2=403,从第二次相遇开始每隔403分钟甲、乙相遇一次,第20次相遇用时为10+403×(20−1)=7903(分钟),乙的路程为7903×8÷40=5223(圈),故当甲、乙第20次相遇时,它们在AD边.故答案为:AD.设第一次相遇用时t1分钟,根据乙追上甲时,比甲多走了10×3=30米,可得出方程,求出时间;设又过了t2分钟第二次相遇,根据乙追上甲时,比甲多走了10×4=40米,可得出方程,求出时间;继而得到从第二次相遇开始每隔403分钟甲、乙相遇一次,从而可求第20次相遇的用时,再根据路程=速度×时间计算,即可判断在哪一条边上相遇.此题考查一元一次方程的实际运用,掌握行程问题中追击问题的基本数量关系是解决问题的关键.26.【答案】解:(1)∵M=x2+6ax−3x+2,N=−2x2+4ax−2x+2,∴2M+N=2x2+12ax−6x+4−2x2+4ax−2x+2=16ax−8x+6=(16a−8)x+6∵2M+N的值与x无关,∴16a−8=0,解得a=12;(2)bx=3−b,∴x=3−bb =3b−1,∵方程bx+b−3=0的解是正整数,∴x也是正整数,∵b为整数,∴b=1,∴a b=12.【解析】(1)把M与N代入2M+N中,去括号合并得到最简结果,由结果与x值无关,则x的系数为0,得m的方程求出m的值即可;(2)解方程得:x=3−bb =3b−1,x是正整数,则3b=3,据此即可求得b的值,再计算结果便可.此题考查了整式的加减,一元一次方程的解,去括号与合并同类项法则,第(1)题关键是根据题意“2M+N的值与x无关”得出a的方程;第(2)题的关键是根据“方程bx+ b−3=0的解是正整数”得出b的值.27.【答案】解:(1)设2018年甲种运动鞋卖了x双,则乙种运动鞋卖了(11000−x)双,由题意,得:6%x−5%(11000−x)=11000×2%,解得:x=7000,答:2018年甲种运动鞋卖了7000双,则乙种运动鞋卖了4000双.(2)设该厂有y名工人,则生产甲种运动鞋的人数为(23y−16),生产乙种运动鞋的人数为(13y+16),由题意得:6(23y−16)=4(13y+16),解得:y=60,答:该鞋厂有工人60人.【解析】(1)设2018年甲种运动鞋卖了x双,则乙种运动鞋卖了(11000−x)双,根据“甲增加的数量−乙减少的数量=两种鞋增加的数量”列出方程求解可得;(2)设该厂有y名工人,则生产甲种运动鞋的人数为(23y−16),生产乙种运动鞋的人数为(13y+16),根据“调配后制成的两种运动鞋数量相等”列出方程,解之可得答案.本题主要考查一元一次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并依据相等关系建立方程.28.【答案】150°30°【解析】解:(1)①∠AOC+∠BOD=∠AOC+∠AOD+∠AOB=∠COD+∠AOB=60°+90°=150°;②∠BOC−∠AOD=(∠AOB−∠AOC)−(∠COD−∠AOC)=∠AOB−∠AOC−∠COD+∠AOC=∠AOB−∠COD=90°−60°=30°;故答案为:150°、30°;(2)设运动时间为t秒,0<t≤36,∠MOC=(5t)°,①0<t≤20时,OD与OA相遇前,∠AOD=(60+2t−5t)°=(60−3t)°,∴∠MOC−∠AOD=(8t−60)°;②20<t≤36时,OD与OA相遇后,∠AOD=[5t−(60+2t)]°=(3t−60)°,∴∠MOC−∠AOD=(2t+60)°;(3)设OC绕点O逆时针旋转n°,则OD也绕点O逆时针旋转n°,①0<n°≤150°时,射线OE、OF在射线OB同侧,在直线MN同侧,∵∠BOF=12(150−n)°,∠BOE=(90−12n)°=12(180−n)°,∴∠EOF=∠BOE−∠BOF=15°;②150°<n°≤180°时,射线OE、OF在射线OB异侧,在直线MN同侧,∵∠BOF=12(n−150)°,∠BOE=(90−12n)°=12(180−n)°,∴∠EOF=∠BOE+∠BOF=15°;③180°<n°≤330°时,射线OE、OF在射线OB异侧,在直线MN异侧,∵∠DOF=12(n−150)°,∠COE=12(360−n)°,∴∠EOF=∠DOF+∠COD+∠COE=165°;④330°<n°≤360°时,射线OE、OF在射线OB同侧,在直线MN异侧,∵∠DOF=12[360−(n−150)]°=12(510−n)°,∠COE=12(360−n)°,∴∠EOF=∠DOF−∠COD−∠COE=15°;综上,∠EOF=15°或165°.(1)①将∠AOC+∠BOD拆分、转化为∠COD+∠AOB即可得;②依据∠BOC=∠AOB−∠AOC、∠AOD=∠COD−∠AOC,将原式拆分、转化为∠AOB−∠COD计算可得;(2)设运动时间为t秒,0<t≤36,∠MOC=(5t)°,只需表示出∠AOD即可得出答案,而∠AOD在OD与OA相遇前、后表达式不同,故需分OD与OA相遇前后即0<t≤20和20<t≤36两种情况求解;(3)设OC绕点O逆时针旋转n°,则OD也绕点O逆时针旋转n°,再分①射线OE、OF 在射线OB同侧,在直线MN同侧;②射线OE、OF在射线OB异侧,在直线MN同侧;③射线OE、OF在射线OB异侧,在直线MN异侧;④射线OE、OF在射线OB同侧,在直线MN异侧;四种情况分别求解.本题主要考查角的计算,解题的关键是掌握角的和差计算、角平分线的定义及分类讨论思想的运用.第21页,共21页。

2019-2020学年度第一学期期末考试七年级数学试题参考答案

2019-2020学年度第一学期期末考试七年级数学试题参考答案

2019—2020学年度第一学期期末考试七年级数学试题参考答案说明:解答题各小题只给出了一种解法及评分标准.其他解法,只要步骤合理,解答正确,均应给出相应的分数.一、选择题:每小题3分,满分30分题号 1 2 3 4 5 6 7 8 9 10答案 B D C B A B A C D C二、填空题:本题共5小题,每题3分,共15分11.1;12.36;13.-6;14.250;15.8m+12.三、解答题:本题共7小题,共55分.要写出必要的文字说明或演算步骤.16.(本小题6分)(每正确画出一个图形得2分,共6分)17.(本小题6分)解:(1)(1)A-2B=(3a2-5ab)-2(a2-2ab)1分=3a2-5ab-2a2+4ab 2分=a2-ab. 3分(2)∵|3a +1|+(2-3b )2=0,∴3a +1=0,2-3b =0,解得a =13-,b =23. 4分 ∴A -2B =a 2-ab . =2112333⎛⎫⎛⎫---⨯ ⎪ ⎪⎝⎭⎝⎭ 5分 =121993+=. 6分 18.(本小题7分)(1)画图:如图所示. 4分(每正确画出一条射线得2分)(2)解:由题意知:∠MOG =110°,∠MOA =40°, 5分∴∠AOG=∠MOG -∠MOA =110°-40°=70° 射线OG 表示的方向是北偏东70°. 7分19.(本小题8分)解:(1)设甲、乙两车合作还需要x 天运完垃圾,根据题意,得31151530x x ++= 2分解得:x =8 3分答:甲、乙两车合作还需要8天运完垃圾.4分 (2)设乙车每天租金为y 元,则甲车每天租金为(y +100)元,根据题意,得 (3+8)(y +100)+8y =3950 6分解得:y =150 7分150+100=250答:甲车每天租金为250元,乙车每天租金为150元. 8分20.(本小题8分)解:(1)∵OB 平分∠AOC ,∴∠BOC =21∠COA =21×30°=15°. 1分同理:∠DOC =21∠EOC =21×90°=45°. 2分∴∠BOD =∠BOC +∠DOC =15°+45°=60°. 3分(2)∵OB 平分∠AOC ,∴∠COA =2∠BOC =2α. 4分同理:∠EOC =2∠DOC =2β. 5分∴∠AOE =∠COA +∠EOC =2α+2β. 6分(3)∠AOE =2∠BOD . 8分21.(本小题9分)(1)答:第①步错误,原因是去括号时,2这项没有乘以3;2分第④步错误,原因是应该用8除以2,小马用2除以8了. 4分【原因只要叙述合理即可得分】(2)解:7531164y y ---=,去分母得:12-2(7-5y )=3(3y -1). 6分去括号得:12-14+10y =9y -3. 7分移项得:10y -9y =-3-12+14. 8分合并同类项,得:y =-1. 9分22.(本小题11分)解:(1)EF =2020-(-2020)=4040. 2分(2)①当点P 是线段AB 的中点时,则PA =PB .所以x -(-2)=3-x .解得:x =0.5. 4分②当点A 是线段PB 的中点时,则PA =AB .所以(-2)-x =3-(-2).解得:x =-7. 6分③当点B 是线段P A 的中点时,则PB =AB .所以x -3=3-(-2).解得:x =8. 8分(3)答:在点A 左侧存在一点Q ,使点Q 到点A ,B 的距离和为19. 9分解:设点Q 表示的数是y .因为QA +QB =19,所以(-2)-y +3-y =19. 10分解得:y=-9.所以点Q表示的数是-9.11分。

广西北流市2019-2020学年七年级(上)期末数学试卷

广西北流市2019-2020学年七年级(上)期末数学试卷

2019-2020学年广西北流市七年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列各数:﹣2,+2,+3.5,0,﹣,﹣0.7,11,+π,其中负分数有()A.1个B.2个C.3个D.4个2.(3分)如图,数轴上点M所表示的数可能是()A.1.5B.﹣2.6C.﹣1.6D.2.63.(3分)在下列代数式中,次数为5的单项式是()A.xy⁴B.xy⁵C.x+y⁴D.x3+y24.(3分)下面合并同类项正确的是()A.3x+2x2=5x3B.2a2b﹣a2b=1C.﹣ab﹣ab=0D.﹣y2x+xy2=0 5.(3分)下列有理数的大小关系判断正确的是()A.﹣(﹣)<﹣|﹣|B.﹣32>(﹣3)2C.|a|>﹣2019D.﹣<﹣6.(3分)将(3x+2)﹣2(2x﹣1)去括号正确的是()A.3x+2﹣2x+1B.3x+2﹣4x+1C.3x+2﹣4x﹣2D.3x+2﹣4x+2 7.(3分)小马在计算“41+x”时,误将“+”看成“﹣”,结果得12,则41+x的值应为()A.29B.53C.67D.708.(3分)在方程①3y﹣4=1;②;③5y﹣2=1;④3(x+1)=2(2x+1)中,解为1的是()A.①②B.①③C.②④D.③④9.(3分)将如图所示的直角三角形ABC绕直角边AB所在直线旋转一周,所得几何体从正面看到的形状图为()A.B.C.D.10.(3分)有下列生活,生产现象:①用两个钉子就可以把木条固定在墙上.②从A地到B地架设电线,总是尽可能沿着线段AB架设.③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④11.(3分)如图,在正方形网格中,点O,A,B,C,D均是格点,若OE平分∠BOC,则∠DOE的度数为()A.20.5°B.22.5°C.24.5°D.26.5°12.(3分)北流市某风景区的门票价格在2019年国庆期间有如下优惠:购票人数为1~50人时,每人票价格为50元;购票人数为51﹣100人时,每人门票价格45元购票人数为100人以上时,每人门票价格为40元.某初中初一有两班共103人去该风景区,如果两班都以班为单位分别购票,一共需付4860元,则两班人数分别为()A.56,47B.57,48C.58,45D.59,44二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)一只蜗牛在数轴上爬行,从原点出发爬行2个单位长度到达终点,那么这个终点表示的数值是.14.(3分)下列各组式子:①a﹣b与﹣a﹣b,②a+b与﹣a﹣b,③a+1与1﹣a,④﹣a+b 与a﹣b,互为相反数的有.15.(3分)如果方程3x=9与方程2x+k=﹣1的解相同,则k=.16.(3分)在一节体育课中,体育老师将全班排成一列,班长在队伍中数了一下他前后的人数,发现前面的人数是后面的两倍,体育老师调整班长的位置,将他往前超了6位同学,发现前面的人数和后面的人数一样,问在老师调整前班长后面有多少人?设在老师调整前班长后面有x人,则列方程为.17.(3分)如图,将一张长方形纸片ABCD分别沿着BE、BF折叠,使边AB、CB均落在BD上,得到折痕BE、BF,则∠ABE+∠CBF=.18.(3分)找出下列各图形中数的规律,依此规律,那么a的值是.三、解答题(本大题共8小题,共66分)19.(10分)计算:(1)﹣24×(﹣+)(2)﹣13﹣×[3﹣(﹣3)2]20.(10分)解下列方程:(1)7﹣(3x﹣1)=x(2)+1=21.(6分)先化简,再求值:2(a2﹣ab)﹣5(a2﹣ab)+6,其中a=﹣2,b=3.22.(6分)已知a、b互为相反数,x、y互为倒数,m的绝对值是2,求:(a+b)2﹣+m3的值.23.(6分)已知轮船A在灯塔P的北偏东30°的方向上,距离为30海里,轮船B在灯塔P的南偏东45°的方向上,距离20海里.(1)请用1个单位长度表示10海里,在图上画出A、B的位置.(2)求从灯塔P看两轮船的视角∠APB的度数.24.(8分)北流市某信用社本储蓄员王芳在办理业务时,约定存入为正,取出为负,10月6日她办理了6件业务:﹣3600元,﹣46500元,+62500元,﹣5500元,﹣5400元,+2400元.(1)若他早上领取备用金60000元,那么下班时应上交给银行多少元?(2)若每办一件业务时,信用社都会发给业务量的0.05%作为奖励,那么这一天王芳应得奖金多少元?25.(10分)已知甲、乙两地相距160km,A、B两车分别从甲、乙两地同时出发,A车速度为85km/h,B车速度为65km/h.(1)A、B两车同时同向而行,A车在后,经过几小时A车追上B车?(2)A、B两车同时相向而行,经过几小时两车相距20km?26.(10分)如图,已知∠AOD和∠BOE都是直角,它们有公共顶点O (1)若∠DOE=60°,求∠AOB的度数.(2)判断∠AOE和∠BOD的大小关系,并说明理由.(3)猜想:∠AOB和∠DOE有怎样的数量关系,并说明理由.2019-2020学年广西北流市七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列各数:﹣2,+2,+3.5,0,﹣,﹣0.7,11,+π,其中负分数有()A.1个B.2个C.3个D.4个【分析】小数就是负数,从中找出负分数即可,﹣,﹣0.7是负分数,有2个.【解答】解:﹣,﹣0.7是负分数,有2个,故选:B.2.(3分)如图,数轴上点M所表示的数可能是()A.1.5B.﹣2.6C.﹣1.6D.2.6【分析】根据数轴上点M的位置在﹣2和﹣1之间,再由选项中的数据可得点M表示的数.【解答】解:点M表示的数大于﹣2且小于﹣1,A、1.5>﹣1,故A错误;B、﹣2.6<﹣2,故B错误;C、﹣2<﹣1.6<﹣1,故C正确;D、2.6>﹣1,故D错误.故选:C.3.(3分)在下列代数式中,次数为5的单项式是()A.xy⁴B.xy⁵C.x+y⁴D.x3+y2【分析】根据单项式的概念、单项式的次数的概念判断.【解答】解:A、xy4的次数为:1+4=5;B、xy5的次数为:1+5=6;C、x+y4,不是单项式;D、x3+y3,不是单项式;故选:A.4.(3分)下面合并同类项正确的是()A.3x+2x2=5x3B.2a2b﹣a2b=1C.﹣ab﹣ab=0D.﹣y2x+xy2=0【分析】本题考查同类项的定义,所含字母相同,相同字母的指数也相同的项叫做同类项,几个常数项也是同类项,合并时系数相加减,字母与字母的指数不变.【解答】解:3x+2x2不是同类项不能合并,2a2b﹣a2b=a2b,﹣ab﹣ab=﹣2ab,﹣y2x+x y2=0.故选:D.5.(3分)下列有理数的大小关系判断正确的是()A.﹣(﹣)<﹣|﹣|B.﹣32>(﹣3)2C.|a|>﹣2019D.﹣<﹣【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵﹣(﹣)=,﹣|﹣|=﹣,∴﹣(﹣)>﹣|﹣|,∴选项A不符合题意;∵﹣32=﹣9,(﹣3)2=9,∴﹣32<(﹣3)2,∴选项B不符合题意;∵|a|≥0,∴|a|>﹣2019,∴选项C符合题意;∵﹣>﹣,∴选项D不符合题意.故选:C.6.(3分)将(3x+2)﹣2(2x﹣1)去括号正确的是()A.3x+2﹣2x+1B.3x+2﹣4x+1C.3x+2﹣4x﹣2D.3x+2﹣4x+2【分析】根据去括号法则解答.【解答】解:(3x+2)﹣2(2x﹣1)=3x+2﹣4x+2.故选:D.7.(3分)小马在计算“41+x”时,误将“+”看成“﹣”,结果得12,则41+x的值应为()A.29B.53C.67D.70【分析】先根据错误算法求出x的值,然后再代入进行正确计算.【解答】解:根据题意,41﹣x=12,解得x=29,∴41+x=41+29=70.故选:D.8.(3分)在方程①3y﹣4=1;②;③5y﹣2=1;④3(x+1)=2(2x+1)中,解为1的是()A.①②B.①③C.②④D.③④【分析】把1代入方程的左右两边,判断方程的左右两边是否相等,即可作出判断.【解答】解:①把y=1代入方程,左边=﹣1≠右边,则1不是方程的解;②把m=1代入方程,左边==右边,则1是方程的解;③把y=1代入方程,左边=3≠右边,则1不是方程的解;④把x=1代入方程,左边=6,右边=6,则左边=右边,1是方程的解.故选:C.9.(3分)将如图所示的直角三角形ABC绕直角边AB所在直线旋转一周,所得几何体从正面看到的形状图为()A.B.C.D.【分析】应先得到旋转后得到的几何体,找到从正面看所得到的图形即可.【解答】解:Rt△ABC绕直角边AB旋转一周,所得几何体是圆锥,圆锥的主视图是等腰三角形,故选:C.10.(3分)有下列生活,生产现象:①用两个钉子就可以把木条固定在墙上.②从A地到B地架设电线,总是尽可能沿着线段AB架设.③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④【分析】四个现象的依据是两点之间,线段最短和两点确定一条直线,据此作出判断.【解答】解:根据两点之间,线段最短,得到的是:②④;①③的依据是两点确定一条直线.故选:C.11.(3分)如图,在正方形网格中,点O,A,B,C,D均是格点,若OE平分∠BOC,则∠DOE的度数为()A.20.5°B.22.5°C.24.5°D.26.5°【分析】观察图形可知,∠BOC=135°,∠COD=45°,根据角平分线的定义可得∠EOC,再根据角的和差关系即可求解.【解答】解:由图形可知,∠BOC=135°,∠COD=45°,∵OE平分∠BOC,∴∠EOC=67.5°,∴∠DOE=67.5°﹣45°=22.5°.故选:B.12.(3分)北流市某风景区的门票价格在2019年国庆期间有如下优惠:购票人数为1~50人时,每人票价格为50元;购票人数为51﹣100人时,每人门票价格45元购票人数为100人以上时,每人门票价格为40元.某初中初一有两班共103人去该风景区,如果两班都以班为单位分别购票,一共需付4860元,则两班人数分别为()A.56,47B.57,48C.58,45D.59,44【分析】设人数较少的班级有x人,则人数较多的班级有(103﹣x)人,根据总价=单价×数量,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设人数较少的班级有x人,则人数较多的班级有(103﹣x)人,∵4860÷45=108(人),108>103,∴1<x≤50.依题意,得:50x+45(103﹣x)=4860,解得:x=45,∴103﹣x=58.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)一只蜗牛在数轴上爬行,从原点出发爬行2个单位长度到达终点,那么这个终点表示的数值是2或﹣2.【分析】在原点左侧或原点右侧,因此答案为2或﹣2.【解答】解:从原点出发,向右爬行2个单位长度,得+2,从原点出发,向作爬行2个单位长度,得﹣2,故答案为:2或﹣2.14.(3分)下列各组式子:①a﹣b与﹣a﹣b,②a+b与﹣a﹣b,③a+1与1﹣a,④﹣a+b 与a﹣b,互为相反数的有①③.【分析】直接利用互为相反数的定义分析得出答案.【解答】解:①a﹣b与﹣a﹣b=﹣(a+b),不是互为相反数,②a+b与﹣a﹣b,是互为相反数,③a+1与1﹣a,不是相反数,④﹣a+b与a﹣b,是互为相反数.故答案为:①③.15.(3分)如果方程3x=9与方程2x+k=﹣1的解相同,则k=﹣7.【分析】先求得方程3x=9的解,再代入方程2x+k=﹣1中求得k的值即可.【解答】解:解3x=9得,x=3,把x=3代入2x+k=﹣1,解得k=﹣7.16.(3分)在一节体育课中,体育老师将全班排成一列,班长在队伍中数了一下他前后的人数,发现前面的人数是后面的两倍,体育老师调整班长的位置,将他往前超了6位同学,发现前面的人数和后面的人数一样,问在老师调整前班长后面有多少人?设在老师调整前班长后面有x人,则列方程为2x﹣6=x+6.【分析】设在老师调整前班长后面有x人,根据将他往前超了6位同学,发现前面的人数和后面的人数一样,得出等式即可.【解答】解:设在老师调整前班长后面有x人,则列方程为:2x﹣6=x+6.故答案为:2x﹣6=x+6.17.(3分)如图,将一张长方形纸片ABCD分别沿着BE、BF折叠,使边AB、CB均落在BD上,得到折痕BE、BF,则∠ABE+∠CBF=45°.【分析】根据折叠得到∠ABE=∠DBE,∠CBF=∠DBF,再根据这四个角的和为直角,进而得出∠ABE+∠CBF等于直角的一半.【解答】解:由折叠得,∠ABE=∠DBE,∠CBF=∠DBF,∵∠ABE+∠DBE+∠CBF+∠DBF=∠ABC=90°,∴∠ABE+∠CBF=∠ABC=×90°=45°,故答案为:45°.18.(3分)找出下列各图形中数的规律,依此规律,那么a的值是226.【分析】根据各个图形中的数据,可以发现数字的变化特点,从而可以求得a的值,本题得以解决.【解答】解:由图可知,左上角的数字是一些连续的偶数,从0开始;右上角的数字都是左上角的数字加1得到的;左下角的数字都是左上角的数字加2得到的;右下角的数字都是右上角的数字与左下角的数字乘积减去左上角的数字得到的;当左上角的数字为14时,右上角数字是15,左下角数字是16,右下角数字是15×16﹣14=226,即a=226,故答案为:226.三、解答题(本大题共8小题,共66分)19.(10分)计算:(1)﹣24×(﹣+)(2)﹣13﹣×[3﹣(﹣3)2]【分析】(1)根据乘法分配律简便计算;(2)先算乘方,再算乘法,最后算减法;如果有括号,要先做括号内的运算.【解答】解:(1)﹣24×(﹣+)=﹣24×+24×﹣24×=﹣12+16﹣20=﹣16;(2)﹣13﹣×[3﹣(﹣3)2]=﹣1﹣×(3﹣9)=﹣1﹣×(﹣6)﹣1+1=0.20.(10分)解下列方程:(1)7﹣(3x﹣1)=x(2)+1=【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【解答】解:(1)去括号,可得:7﹣3x+1=x,移项,合并同类项,可得:﹣4x=﹣8,系数化为1,可得:x=2.(2)去分母,可得:2(2x+1)+6=3(x+3),去括号,可得:4x+2+6=3x+9,移项,合并同类项,可得:x=1.21.(6分)先化简,再求值:2(a2﹣ab)﹣5(a2﹣ab)+6,其中a=﹣2,b=3.【分析】根据去括号法则、合并同类项法则吧原式化简,代入计算即可.【解答】解:2(a2﹣ab)﹣5(a2﹣ab)+6=2a2﹣2ab﹣2a2+5ab+6=3ab+6,当a=﹣2,b=3时,原式=3×(﹣2)×3+6=﹣12.22.(6分)已知a、b互为相反数,x、y互为倒数,m的绝对值是2,求:(a+b)2﹣+m3的值.【分析】利用相反数,倒数,以及绝对值的定义求出a+b,xy及m的值,代入原式计算即可求出值.【解答】解:根据题意得:a+b=0,xy=1,m=2或﹣2,当m=2时,原式=0﹣6+8=2;当m=﹣2时,原式=0﹣6﹣8=﹣14.综上所述,(a+b)2﹣+m3的值为2或﹣14..23.(6分)已知轮船A在灯塔P的北偏东30°的方向上,距离为30海里,轮船B在灯塔P的南偏东45°的方向上,距离20海里.(1)请用1个单位长度表示10海里,在图上画出A、B的位置.(2)求从灯塔P看两轮船的视角∠APB的度数.【分析】(1)根据轮船A在灯塔P的北偏东30°的方向上,距离为30海里,轮船B在灯塔P的南偏东45°的方向上,距离20海里,即可用1个单位长度表示10海里,在图上画出A、B的位置;(2)根据所画图形即可求从灯塔P看两轮船的视角∠APB的度数.【解答】解:(1)轮船A在灯塔P的北偏东30°的方向上,距离为30海里,轮船B在灯塔P的南偏东45°的方向上,距离20海里,如图所示,点A,B即为所求;(2)根据题意可知:∠APB=60°+45°=105°答:从灯塔P看两轮船的视角∠APB的度数为105°.24.(8分)北流市某信用社本储蓄员王芳在办理业务时,约定存入为正,取出为负,10月6日她办理了6件业务:﹣3600元,﹣46500元,+62500元,﹣5500元,﹣5400元,+2400元.(1)若他早上领取备用金60000元,那么下班时应上交给银行多少元?(2)若每办一件业务时,信用社都会发给业务量的0.05%作为奖励,那么这一天王芳应得奖金多少元?【分析】(1)求出这些数据的和,进而求出下班时上交银行的钱数;(2)求出这些资金的和,按总金额乘以0.05%即可.【解答】解:(1)(﹣3600)+(﹣46500)+62500+(﹣5500)+(﹣5400)+2400=3900元,60000+3900=63900元,答:下班时应上交给银行63900元.(2)(|﹣3600|+|﹣46500|+|62500|+|﹣5500|+|﹣5400|+|2400|)×0.05%=62.95元,答:这一天王芳应得奖金62.95元.25.(10分)已知甲、乙两地相距160km,A、B两车分别从甲、乙两地同时出发,A车速度为85km/h,B车速度为65km/h.(1)A、B两车同时同向而行,A车在后,经过几小时A车追上B车?(2)A、B两车同时相向而行,经过几小时两车相距20km?【分析】(1)设经过x小时A车追上B车,根据路程=速度÷时间结合A车比B车多行驶160km,即可得出关于x的一元一次方程,解之即可得出结论;(2)设经过y小时两车相距20km,分两次相遇前及两车相遇后两种情况考虑,根据两车之间相距20km,即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设经过x小时A车追上B车,依题意,得:85x﹣65x=160,解得:x=8.答:经过8小时A车追上B车.(2)设经过y小时两车相距20km.两车相遇前,85y+65y=160﹣20,解得:y=;两车相遇后,85y+65y=160+20,解得:y=.答:经过或小时两车相距20km.26.(10分)如图,已知∠AOD和∠BOE都是直角,它们有公共顶点O(1)若∠DOE=60°,求∠AOB的度数.(2)判断∠AOE和∠BOD的大小关系,并说明理由.(3)猜想:∠AOB和∠DOE有怎样的数量关系,并说明理由.【分析】(1)根据∠AOD和∠BOE都是直角,∠DOE=60°,可得∠AOE=∠AOD﹣∠DOE=90°﹣60°=30°,进而可求∠AOB的度数;(2)由∠AOE=∠AOD﹣∠DOE=90°﹣∠DOE,∠BOD=∠BOE﹣∠DOE=90°﹣∠DOE,可得∠AOE=∠BOD;(3)由∠DOB=∠AOB﹣90°,∠DOB=90°﹣∠DOE,可得∠AOB+∠DOE=180°.【解答】解:(1)因为∠AOD和∠BOE都是直角∠DOE=60°,所以∠AOE=∠AOD﹣∠DOE=90°﹣60°=30°所以∠AOB=∠AOE+∠BOE=30°+90°=120°答:∠AOB的度数为120°.(2)∠AOE和∠BOD的大小关系是相等,理由如下:因为∠AOD和∠BOE都是直角所以∠AOE=∠AOD﹣∠DOE=90°﹣∠DOE∠BOD=∠BOE﹣∠DOE=90°﹣∠DOE所以∠AOE=∠BOD.(3)∠AOB+∠DOE=180°.理由如下:因为∠AOB=∠AOD+∠DOB=90°+∠DOB所以∠DOB=∠AOB﹣90°因为∠DOE=∠BOE﹣∠DOB=90°﹣∠DOB所以∠DOB=90°﹣∠DOE所以∠AOB﹣90°=90°﹣∠DOE 所以∠AOB+∠DOE=180°.。

2019-2020 学年七年级上学期期末数学试题(解析版 )

2019-2020 学年七年级上学期期末数学试题(解析版 )

初中2019级第一学期末教学质量监测数学第Ⅰ卷(选择题,共36分)一、选择题(本大题共12个小题,每小题3分,共36分.)1. 5的相反数是( )A. 15B.15- C. 5 D. 5-【答案】D【解析】【分析】根据相反数的定义解答.【详解】解:只有符号不同的两个数称为互为相反数,则5的相反数为-5,故选D.【点睛】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2. 下列四个几何体中,是三棱柱的为( ).A. B.C. D.【答案】C【解析】【分析】分别判断各个几何体的形状,然后确定正确的选项即可.【详解】解:A、该几何体为四棱柱,不符合题意;B、该几何体为四棱锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选C.【点睛】考查了认识立体图形的知识,解题的关键是能够认识各个几何体,难度不大.3. 中国陆地面积约为29600000km ,将数字9600000用科学记数法表示为()A. 59610⨯B. 69.610⨯C. 79.610⨯D. 80.9610⨯ 【答案】B【解析】【分析】根据科学记数法的表示方法写出即可.【详解】解:将9600000用科学记数法表示为69.610⨯.故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.4. 如果单项式312m x y +-与2x 4y n+3的差是单项式,那么(m+n)2019的值为( ) A. 1-B. 0C. 1D. 22019【答案】A【解析】 【分析】 根据312m x y +-和2x 4y n+3是同类项,求出m 和n 的值,即可得出答案. 【详解】∵单项式312m x y +-与2x 4y n+3的差是单项式 ∴m+3=4,n+3=1解得:m=1,n=-2∴(m+n)2019=[1+(-2)]2019=-1故答案选择A.【点睛】本题考查的是同类项的定义:①字母相同;②相同字母的指数相同.5. 若(k ﹣5)x |k |﹣4﹣6=0是关于x 的一元一次方程,则k 的值为( )A. 5B. ﹣5C. 5 或﹣5D. 4 或﹣4【答案】B【解析】【分析】由一元一次方程的定义可得|k |﹣4=1且k ﹣5≠0,计算即可得到答案.【详解】∵(k ﹣5)x |k |﹣4﹣6=0是关于x 的一元一次方程, ∴|k |﹣4=1且k ﹣5≠0,解得:k =﹣5.故选B .【点睛】本题考查一元一次方程的定义,解题的关键是掌握一元一次方程的定义.6. 用四舍五入法得到的近似数1.02×104,其精确度为( )A. 精确到十分位B. 精确到十位C. 精确到百位D. 精确到千位【答案】C【解析】【分析】 先把近似数还原,再求精确度,即可得出答案.【详解】1.02×104=10200,2在百位上,故答案选择C. 【点睛】本题考查的是近似数的精确度,比较简单,近似数最后一位所在的数位即为该数的精确度. 7. 下列说法错误的是 ( )A. 若a=b,则3-2a=3-2bB. 若a b c c =,则a=b C. 若a b =,则a=bD. 若a=b,则ca=cb【答案】C【解析】【分析】 根据等式的性质逐一判断即可得出答案.【详解】A :因为a=b ,所以-2a=-2b ,进而3-2a=3-2b ,故选项A 正确;B :因为a b c c =,所以a=b ,故选项B 正确;C :因为a b =,所以a=b 或a=-b ,故选项C 错误;D :因为a=b ,所以ca=cb ,故选项D 正确;故答案选择C.【点睛】本题考查的是等式的性质,比较简单,需要熟练掌握等式的基本性质.8. 一张试卷有25道选择题,做对一题得4分,做错一题得-1分,某同学做完了25道题,共得70分,那么他做对的题数是( )A. 17道B. 18道C. 19道D. 20道【答案】C【解析】【分析】设作对了x道,则错了(25-x)道,根据题意列出方程进行求解.【详解】设作对了x道,则错了(25-x)道,依题意得4x-(25-x)=70,解得x=19故选C.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系.9. 已知x2+3x=2,则多项式3x2+9x﹣4的值是()A. 0B. 2C. 4D. 6【答案】B【解析】【分析】【详解】解:∵x²+3x=2,∴3x²+9x−4=3(x²+3x)−4=3×2−4=6−4=2,故选B. 10. 已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是()A. a+bB. ﹣a﹣cC. a+cD. a+2b﹣c【答案】C【解析】【分析】首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.【详解】解:通过数轴得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案为a+c.故选C11. 观察如图所示图形,则第n个图形中三角形的个数是( )A. 2n+2B. 4n+4C. 4nD. 4n-4【答案】C【解析】【分析】由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.【详解】解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选C.【点睛】此题考查了学生由特殊到一般的归纳能力.解此题时要注意寻找各部分间的联系,找到一般规律.12. 如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A. 36°B. 45°C. 60°D. 72°【答案】D【解析】【分析】先推出∠AOD+∠BOC=180°,结合∠AOD=4∠BOC,求出∠BOC的度数,再根据角平分线求出∠COE的度数,利用∠DOE=∠COD-∠COE即可解答.【详解】解:∵∠AOB=90°,∠COD=90°,∴∠AOB+∠COD=180°,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD ,∴∠AOC+∠BOC+∠BOC+∠BOD=180°,∴∠AOD+∠BOC=180°,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180°,∴∠BOC=36°,∵OE 为∠BOC 的平分线,∴∠COE=12∠BOC=18°,∴∠DOE=∠COD−∠COE=90°−18°=72°,故选择:A.【点睛】本题考查了角平分线的定义,角的和差计算及数形结合的数学思想,根据图中的数量关系求出∠BOC=36°是解答本题的关键.第Ⅱ卷(非选择题,共64分)二、填空题:(本大题共6小题,每小题3分,共18分.)13. 建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,这样做的依据是:__________.【答案】两点确定一条直线【解析】【分析】由直线公理可直接得出答案.【详解】建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,沿着这条线就可以砌出直的墙,则其中的道理是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】本题主要考查的是直线的性质,掌握直线的性质是解题的关键.14. 用“>、=、<”符号填空:45-______78-.【答案】> 【解析】【分析】先求绝对值,再用绝对值相减即可得出答案.【详解】∵44=55-,77=88-又4732-353-==-0 584040<∴47 < 58∴47 ->-58故答案为:>【点睛】本题考查的是负数的比较大小,先取绝对值,再比较大小,绝对值大的反而小.15. 如图,OA是北偏东28°36′方向的一条射线,OB是北偏西71°24′方向的一条射线,则∠AOB=__________.【答案】100°【解析】【分析】根据题意求出∠AOC和∠BOC的度数,相加即可得出答案.【详解】根据题意可得:∠AOC =28°36′,∠BOC=71°24′∠AOB=71°24′+28°36′=100°故答案为:100°【点睛】本题考查的是角度的计算,比较简单,角度的计算记住满60进1.16. 已知|3m ﹣12|+212n ⎛⎫+ ⎪⎝⎭=0,则2m ﹣n=_____. 【答案】10【解析】【分析】【详解】∵|3m ﹣12|+2(1)2n +=0,∴|3m ﹣12|=0,2(1)2n +=0,∴m =4,n =﹣2,∴2m ﹣n =8﹣(﹣2)=10.点睛:本题考查了非负数的性质,几个非负数的和等于0,则每个数都等于0,初中范围内的非负数有:绝对值,算术平方根和偶次方.17. 规定“Δ”是一种新的运算法则,满足:a △b=ab-3b ,示例:4△(-3)=4×(-3)-3×(-3)=-12+9=-3.若-3△(x+1)=1,则x=____________. 【答案】76- 【解析】【分析】根据新定义代入得出含x 的方程,解方程即可得出答案.【详解】∵a △b=ab-3b∴-3△(x+1)=-3(x+1)-3(x+1)=-6(x+1)∴-6(x+1)=1解得:x=76- 【点睛】本题考查的是新定义,认真审题,理清题目意思是解决本题的关键.18. 在数轴上点A 对应的数为-2,点B 是数轴上的一个动点,当动点B 到原点的距离与到点A 的距离之和为6时,则点B 对应的数为_________.【答案】-4或2【解析】【分析】先设点B 对应的数为b ,再用距离公式计算即可得出答案.【详解】设点B 对应的数为b解:设点B 表示的数为b ,①当点B 在点A 的左侧时,则有-2-b-b=6,解得,b=-4,②当点B 在OA 之间时,AB+AO=2≠6,因此此时不存在,③当点B 在原点的右侧时,则有b+2+b=6,解得,b=2,故答案为:-4或2.【点睛】本题考查的是数轴的动点问题,解题关键是利用距离公式进行计算.三、解答题(本大题共6个小题,共46分.)19. 计算:100211(10.5)3(3)3⎡⎤---⨯⨯--⎣⎦ 【答案】0【解析】【分析】按照有理数的混合运算顺序:先算乘方,再算乘除,最后算加减,若有括号先算括号内的,计算即可. 【详解】解:100211(10.5)3(3)3⎡⎤---⨯⨯--⎣⎦ =-1-12×13×(3-9) =-1-16×(-6) =-1+1=0【点睛】本题考查有理数的混合运算,掌握运算顺序及法则,正确计算是本题的解题关键.20. 解方程:12136x x x -+-=- 【答案】27x =-【解析】【分析】方程两边同时乘以最小公倍数去掉分母,进而去括号、移项、合并同类项即可求解.【详解】解:去分母得:6x-2(1-x )=x+2-6,去括号得:6x-2+2x=x+2-6,移项得:6x+2x-x=2-6+2,合并同类项得:7x=-2,解得:27x =-. 【点睛】本题考查一元一次方程的解法,掌握解方程的步骤正确计算是本题的关键.21. 先化简,再求值:已知()()222242x x y x y --+- ,其中1x =-,y=2. 【答案】22x y +;5.【解析】【分析】先去括号再合并同类项,然后把1x =-,y=2代入计算.【详解】解:原式=22222422=2x x y x y x y --+++, 当1x =-,y=2时,原式=(-1)2+2×2=5. 【点睛】本题考查了整式的加减−化简求值:先去括号,再合并同类项,然后把满足条件的字母的值代入计算得到对应的整式的值.22. 如图所示,已知C ,D 是线段AB 上的两个点,M ,N 分别为AC ,BD 的中点,若AB=10cm ,CD=4cm ,求线段MN 的长;【答案】7cm【解析】【分析】根据题目求出AC+DB 的值,进而根据中点求出AM+DN 的值,即可得出答案.【详解】解:∵AB=10cm ,CD=4cm∴AC+DB=AB-CD=6cm又M ,N 分别为AC ,BD 的中点∴AM=CM=12AC ,DN=BN=12DB ∴AM+DN=12(AC+DB)=3cm ∴MN=AB-(AM+DN)=7cm【点睛】本题考查的是线段的中点问题,解题关键是根据进行线段之间等量关系的转换.23. 小魏和小梁从A ,B 两地同时出发,小魏骑自行车,小梁步行,沿同条路线相向匀速而行。

2019-2020学年七年级上学期期末考试数学试卷(含解析版)

2019-2020学年七年级上学期期末考试数学试卷(含解析版)

2019-2020学年七年级上学期期末考试数学试卷一、选择题(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣18的倒数是()A.18B.﹣18C.﹣D.2.下列代数式书写正确的是()A.a48B.x÷y C.a(x+y)D.abc3.下列说法不正确的是()A.0是单项式B.单项式﹣的系数是﹣C.单项式a2b的次数为2D.多项式1﹣xy+2x2y是三次三项式4.下列说法中正确的是()A.射线是直线的一半B.两点间的线叫做线段C.延长射线OA D.两点确定一条直线5.如果x=2是方程2x=5﹣a的解,那么a的值为()A.2B.6C.1D.126.下列运算正确的是()A.(﹣2)÷(﹣4)=2B.0﹣2=2C.D.﹣=﹣47.下列各式成立的是()A.2x+3y=5xy B.a﹣(b+c)=a﹣b+cC.3a2b+2ab2=5a3b3D.﹣2xy+xy=﹣xy8.如图,线段AB=18cm,BC=6cm,D为BC的中点,则线段AD的长为()A.12 cm B.15cm C.13cm D.11 cm9.长方形长为3x+2y,宽为x﹣y,则这个长方形的周长为()A.4x+y B.8x+2y C.10x+10y D.12x+8y10.一件工作,甲单独做要20小时完成,乙单独做要12小时完成,现在由甲单独做4小时,剩下的部分由甲、乙合做,那么剩下的部分需要几个小时完成?若设还要xh完成,则依题意可列方程为()A.B.C.D.11.多项式a+5与2a﹣8互为相反数,则a=()A.﹣1B.0C.1D.212.如果代数式2y2﹣y+5的值为7,那么代数式4y2﹣2y+1的值为()A.5B.4C.3D.213.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为()A.400cm2B.500cm2C.600cm2D.300cm214.如图,已知∠AOC=∠BOC=90°,若∠1=∠2,则图中互余的角共有()A.5对B.4对C.3对D.2对15.某工厂原计划用a天生产b件产品,由于技术革新实际比原计划少用x天完成,则实际每天要比原计划多生产()件.A.B.C.D.16.有理数a、b、c在数轴上的对应点如图所示,化简代数式:|a﹣b|﹣|c﹣a|=()A.﹣2a﹣b+c B.﹣b﹣c C.﹣2a﹣b﹣c D.b﹣c二、填空题(本大题共4个小题每小题3分,共12分)17.已知a、b互为相反数,c、d互为倒数,那么2a+2b﹣5cd=.18.如果x m+1与x n是同类项,那么m﹣n=.19.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,若∠AOB=160°,则∠COD =.20.将图①中的正方形剪开得到图②中的4个正方形;将图②中一个正方形剪开得到图③中的7个正方形,将图③中一个正方形剪开得到图④,图④中共有10个正方形;…;如此下去.则第n个图中共有个正方形.三、解答题(本大题共6个小题共56分解答应写出文字说明、证明过程或演算步骤)21.计算(1)(﹣﹣1)×(﹣12)(2)﹣22×+(﹣3)3×(﹣)22.解方程(1)3x+7=32﹣2x;(2)﹣1=23.先化简,后求值:a+(5a﹣3b)﹣2(a﹣2b),其中a=2,b=﹣3.24.如图,已知∠AOB=114°,OF是∠AOB的平分线,∠AOE和∠AOF互余,求∠AOE和∠BOE 的度数.25.联华商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款电风扇,因价格提高30元,进货量减少了10台.(1)这两次各购进电风扇多少台?(2)商场以250元/台的售价卖完这两批电风扇,商场获利多少元?26.如图,边长为4的正方形ABCD中,动点P以每秒1个单位的速度从点B出发沿线段BC方向运动,动点Q同时以每秒4个单位的速度从点A出发沿正方形的边AD﹣DC﹣CB方向顺时针做折线运动,当点P与点Q相遇时停止运动,设点P的运动时间为t秒.(1)当点P在BC上运动时,PB=;(用含t的代数式表示)(2)当点Q在AD上运动时,AQ=;(用含t的代数式表示)(3)当点Q在DC上运动时,DQ=,QC=;(用含t的代数式表示)(4)当t等于多少时,点Q运动到DC的中点?(5)当t等于多少时,点P与点Q相遇?参考答案与试题解析一、选择题(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣18的倒数是﹣,故选:C.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.【分析】根据代数式的书写要求判断各项.【解答】解:选项A正确的书写格式是48a,B正确的书写格式是,C正确,D正确的书写格式是abc.故选:C.【点评】代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.3.【分析】根据单项式、单项式次数、单项式的系数的定义,结合各选项判断即可.【解答】解:A.0是单项式,此选项正确;B.单项式﹣的系数是﹣,此选项正确;C.单项式a2b的次数为3,此选项错误;D.多项式1﹣xy+2x2y是三次三项式,此选项正确;故选:C.【点评】本题考查了单项式的知识,属于基础题,解答本题的关键是熟练掌握单项式、单项式次数、单项式的系数的定义.4.【分析】根据直线,射线,线段的含义进行逐项判断.【解答】解:A、射线只有一个端点,是一条向一端无限延长的线,直线是可以向两端无限延长,所以两者之间并不存在什么数量关系A错;B、直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点而不只是两点间的线,所以B错;C、射线只有一个端点,只能反向延长,C错;D、两点确定一条直线,正确故选:D.【点评】本题主要考查直线、射线、线段等知识点,熟练掌握射线,线段,直线的含义.5.【分析】x=2是方程2x=5﹣a的解,那么将x=2代入方程可使得方程左右两边相等,从而转化成只含一个未知数a的方程,解一元一次方程即可求出a值【解答】解∵x=2是方程2x=5﹣a的解∴将x=2代入方程得,2×2=5﹣a,解得a=1故选:C.【点评】此题考查的是一元一次方程的解,使方程两边左右相等的未知数的值即为方程的解6.【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:∵(﹣2)÷(﹣4)=2÷4=0.5,故选项A错误,∵0﹣2=﹣2,故选项B错误,∵=,故选项C错误,∵﹣=﹣=﹣4,故选项D正确,故选:D.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.7.【分析】利用合并同类项,系数相加字母和字母的指数不变;以及去括号法则,对各选项计算后利用排除法求解.【解答】解:A、不是同类项不能合并,故选项错误;B、a﹣(b+c)=a﹣b﹣c,故选项错误;C、不是同类项不能合并,故选项错误;D、正确.故选:D.【点评】本题考查了合并同类项得法则,去括号得法则,正确认识同类项,理解同类项得定义是关键.8.【分析】根据AD=AC+CD=(AB﹣BC)+BC,再抓住已知线段来求未知线段的长度,即可得线段AD的长.【解答】解:∵AB=18cm,BC=6cm,∴AC=AB﹣BC=12cm又∵D为BC的中点,∴CD=BC=3于是AD=AC+CD=12+3=15故选:B.【点评】本题考查的线段的长度计算问题,根据图形利用线段的和、差、倍、分进行计算是解决问题的关键.9.【分析】根据题意列出代数式即可求出答案.【解答】解:长方形额周长为:2[(3x+2y)+(x﹣y)]=2(3x+2y+x﹣y)=2(4x+y)=8x+2y,故选:B.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.10.【分析】要列方程,首先要理解题意,根据题意找出等量关系:甲的工作量+乙的工作量=总的工作量,此时可设工作总量为1,由甲,乙的单独工作时间可得到两者各自的工作效率,再根据“效率×时间=工作量”可以表示甲,乙的工作量,这样再根据等量关系列方程就不难了.【解答】解:“设剩下部分要x小时完成”,那么甲共工作了4+x小时,乙共工作了x小时,设工作总量为1,则甲的工作效率为,乙的工作效率为.那么可得出方程为:+=1;即++=1,故选:D.【点评】本题主要考查一元一次方程的应用,解题的关键是理解工作效率,工作时间和工作总量的关系,从而找出题中存在的等量关系.11.【分析】利用相反数性质列出方程,求出方程的解即可得到a的值.【解答】解:根据题意得:a+5+2a﹣8=0,移项合并得:3a=3,解得:a=1,故选:C.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.12.【分析】根据已知条件,可求出2y2﹣y的值,然后将原代数式变形为:2(2y2﹣y)+1,再将(2y2﹣y)整体代入所求代数式中求值即可.【解答】解:∵2y2﹣y+5的值为7,∴2y2﹣y=2,则4y2﹣2y+1=2(2y2﹣y)+1=4+1=5.故选:A.【点评】做此类题的时候,应先得到只含字母的代数式的值为多少,把要求的式子整理成包含那个代数式的形式.13.【分析】由题意可知本题存在两个等量关系,即小长方形的长+小长方形的宽=50cm,小长方形的长+小长方形宽的4倍=小长方形长的2倍,根据这两个等量关系可列出方程组,进而求出小长方形的长与宽,最后求得小长方形的面积.【解答】解:设一个小长方形的长为xcm,宽为ycm,则可列方程组,解得,则一个小长方形的面积=40cm×10cm=400cm2.故选:A.【点评】此题考查方程组的应用问题,解答本题关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.并弄清小长方形的长与宽的关系.14.【分析】根据互为余角的两个角的和等于90°和等角的余角相等解答.【解答】解:∵∠AOC=∠BOC=90°,∠1=∠2,∴∠1+∠AOE=90°,∠2+∠COD=90°,∠2+∠AOE=90°,∠1+∠COD=90°,∴互余的角共有4对.故选:B.【点评】本题考查了余角和补角,是基础题,熟记概念并准确识图是解题的关键.15.【分析】根据题意得出原计划每天生产件,实际每天生产件,相减即可得.【解答】解:根据题意知,原计划每天生产件,而实际每天生产件,则实际每天要比原计划多生产﹣(件),故选:C.【点评】本题主要考查根据实际问题列代数式,根据题意表示出原来和现在每天生产的件数是关键.16.【分析】根据数轴上a、b、c对应的位置,判断a﹣b、c﹣a正负,然后对绝对值进行化简即可.【解答】解:由图形可知c>0>b>a∴a﹣b<0,c﹣a>0∴|a﹣b|﹣|c﹣a|=b﹣a﹣c+a=b﹣c故选:D.【点评】本题考查的是关于绝对值的化简,利用数轴对绝对值内的代数式判断正负是解决问题的关键.二、填空题(本大题共4个小题每小题3分,共12分)17.【分析】由相反数性质和倒数的定义得出a+b=0,cd=1,再代入原式=2(a+b)﹣5cd计算可得.【解答】解:由题意知a+b=0,cd=1,则原式=2(a+b)﹣5cd=2×0﹣5×1=0﹣5=﹣5,故答案为:﹣5.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则及相反数、倒数的性质.18.【分析】根据同类项是字母相同且相同字母的指数也相同,可得m+1=n,再移项即可得.【解答】解:∵x m+1与x n是同类项,∴m+1=n,则m﹣n=﹣1,故答案为:﹣1.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.19.【分析】先根据直角三角板的性质得出∠AOC+∠DOB=180°,进而可得出∠COD的度数.【解答】解:∵△AOC△BOD是一副直角三角板,∴∠AOC+∠DOB=180°,∴∠AOB+∠COD=∠DOB+∠AOD+∠COD=∠DOB+∠AOC=90°+90°=180°,∵∠AOB=160°,∴∠COD=180°﹣∠AOB=180°﹣160°=20°.故答案为:20°.【点评】本题考查的是角的计算,熟知直角三角板的特点是解答此题的关键.20.【分析】观察图形可知,每剪开一次多出3个正方形,然后写出前4个图形中正方形的个数,再根据此规律写出第n个图形中的正方形的个数的表达式即可.【解答】解:第1个图形有正方形1个,第2个图形有正方形4个,第3个图形有正方形7个,第4个图形有正方形11个,…,第n个图形有正方形(3n﹣2)个.故答案为:(3n﹣2).【点评】本题是对图形变化规律的考查,观察出每剪开一次多出3个正方形是解题的关键.三、解答题(本大题共6个小题共56分解答应写出文字说明、证明过程或演算步骤)21.【分析】(1)利用乘法分配律展开,再计算乘法,最后计算加减可得;(2)先计算乘方,再计算乘法,最后计算加减可得.【解答】解:(1)原式=×(﹣12)﹣×(﹣12)﹣1×(﹣12)=﹣3+4+12=13;(2)原式=﹣4×+(﹣27)×(﹣)=﹣1+8=7.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.22.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:(1)3x+7=32﹣2x,移项得:3x+2x=32﹣7,合并得:5x=25,解得:x=5;(2)﹣1=.去分母得:3(2y﹣1)﹣6=2(5y﹣7),去括号得:6y﹣3﹣6=10y﹣14,移项:6y﹣10y=﹣14+6+3,合并得:﹣4y=﹣5,解得:y=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.23.【分析】先去括号,再合并同类项,把a、b的值代入进行计算即可.【解答】解:原式=a+5a﹣3b﹣2a+4b=(1+5﹣2)a﹣(3﹣4)b=4a+b,当a=2,b=﹣3时,原式=4×2﹣3=5.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.24.【分析】首先根据∠AOB=114°,OF是∠AOB的平分线,求出∠AOF的度数,然后根据互余两角之和为90°,求出∠AOE的度数,再根据角的和差关系求出∠BOE的度数.【解答】解:因为∠AOB=114°,OF是∠AOB的平分线,所以∠AOF=∠AOB=×114°=57°,因为∠AOE与∠AOF互余,所以∠AOE+∠AOF=90°所以∠AOE=90°﹣∠AOF=90°﹣57°=33°,所以∠BOE=∠AOE+∠AOB=33°+114°=147°.【点评】本题考查了余角和补角以及角平分线的定义,解答本题的关键是掌握互余两角之和为90°.25.【分析】(1)设第一次购买了x台电风扇,则第二次购买了(x﹣10)台电风扇,根据题意可得,第一次比第二次单价低30元,据此列方程求解;(2)分别求出两次的盈利,然后求和.【解答】解:(1)设第一次购买了x台电风扇,则第二次购买了(x﹣10)台电风扇,由题意得,=150+30,解得:x=60,经检验:x=60是原分式方程的解,且符合题意,则x﹣10=60﹣10=50,答:第一次购买了60台电风扇,则第二次购买了50台电风扇;(2)两次获利:(250﹣150)×60+(250﹣150﹣30)×50=6000+3500=9500(元).答:商场获利9500元.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.26.【分析】(1)由路程=速度×时间,可得BP 的值;(2)由路程=速度×时间,可得AQ 的值;(3)由DQ =点Q 的路程﹣AD 的长度,可得DQ 的值;由QC =CD ﹣DQ ,可求QC 的长; (4)由路程=速度×时间,可得t 的值;(5)由点P 路程+点Q 路程=AD +CD +BC ,可求t 的值.【解答】解:(1)∵动点P 以每秒1个单位的速度从点B 出发沿线段BC 方向运动, ∴BP =1×t =t ,故答案为:t ,(2)∵动点Q 同时以每秒4个单位的速度从点A 出发,∴AQ =4×t =4t ,故答案为:4t ,(3)∵DQ =4t ﹣AD∴DQ =4t ﹣4,∵QC =CD ﹣DQ∴QC =4﹣(4t ﹣4)=8﹣4t故答案为:4t ﹣4,8﹣4t(4)根据题意可得:4t =4+2t =1.5答:当t 等于1.5时,点Q 运动到DC 的中点.(5)根据题意可得:4t +t =4×3t =答:当t 等于时,点P 与点Q 相遇.【点评】本题四边形综合题,考查了正方形的性质,一元一次方程的应用,正确理解题意列出方程是本题的关键.。

2019-2020学年七年级(上)期末数学试卷(含答案)

2019-2020学年七年级(上)期末数学试卷(含答案)

2019-2020学年七年级(上)期末数学试卷一、选择题(本题共12个小题,每小题3分,共36分)1.﹣3的相反数是()A.﹣3 B.3 C.D.2.下列四个数中,在﹣2到0之间的数是()A.3 B.1 C.﹣3 D.﹣13.下列计算正确的是()A.3a+4b=7ab B.7a﹣3a=4C.3a+a=3a2D.3a2b﹣4a2b=﹣a2b4.下列图形中,不是三棱柱的表面展开图是()A.B.C.D.5.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列如图是以下四个图中的哪一个绕着直线旋转一周得到的()A.B.C.D.6.地球半径约为6 400 000米,这个数用科学记数法表示为()A.640×104B.64×105 C.6.4×106D.0.64×1077.下列关于单项式的说法中,正确的是()A.系数、次数都是3 B.系数是,次数是3C.系数是,次数是2 D.系数是,次数是38.如图是某班学生最喜欢的球类活动人数统计图,则下列说法不正确的是()A.该班喜欢乒乓球的学生最多B.该班喜欢排球和篮球的学生一样多C.该班喜欢足球的人数是喜欢排球人数的1.25倍D.该班喜欢其他球类活动的人数为5人9.某商品的价格标签已丢失,售货员只知道它的进价为80元,打七折售出后,仍可获利5%,你认为标签上的价格为()元.A.110 B.120 C.130 D.14010.如图,从A地到B地有多条道路,人们一般会选中间的直路,而不会走其它的曲折的路,这是因为()A.两点确定一条直线B.两点之间,线段最短C.垂线段最短D.无法确定11.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于()A.35°B.70°C.110° D.145°12.若a、b两数在数轴上的位置如图所示,则下列结论正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.>0二、填空题(本小题共4小题,每小题3分,共12分)13.﹣的倒数是.14.如果2a﹣b=1,则4a﹣2b﹣1=.15.一副三角板按如图所示方式重叠,若图中∠DCE=35°,则∠ACB=.16.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.三、解答题(本大题共8小题,共52分)17.计算:(1)﹣7+13﹣6+20(2)(﹣+﹣)×(﹣24)18.先化简,再求值:2m2﹣4m+1﹣2(m2+2m﹣),其中m=﹣1.19.解方程:(1)4﹣3x=6﹣5x;(2)﹣1=.20.如图所示是由若干个大小相同的小立方体所组成几何体从上面看的图,小正方形中的数字表示在该位置的小立方体的个数,请画出这个几何体从正面看到的图,从左面看到的图.21.为了了解市民“获取新闻的最主要途径”某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)这次接受调查的市民总人数是;(2)扇形统计图中,“电视”所对应的圆心角的度数是;(3)请补全条形统计图;(4)若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.22.李华早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟,如果他骑自行车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,求他推车步行了多少分钟?23.填空,完成下列说理过程如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.解:(1)如图,因为OD是∠AOC的平分线,所以∠COD=∠AOC.因为OE是∠BOC的平分线,所以=∠BOC.所以∠DOE=∠COD+ =(∠AOC+∠BOC)=∠AOB=°.(2)由(1)可知∠BOE=∠COE=﹣∠COD=°.所以∠AOE=﹣∠BOE=°.24.如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC边长为3.(1)数轴上点A表示的数为.(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B′C′与原长方形OABC重叠部分(如图2中阴影部分)的面积记为S.①当S恰好等于原长方形OABC面积的一半时,数轴上点A′表示的数为.②设点A的移动距离AA′=x.ⅰ.当S=4时,x=;ⅱ.D为线段AA′的中点,点E在线段OO′上,且OE=OO′,当点D,E所表示的数互为相反数时,求x的值.一、选择题(本题共12个小题,每小题3分,共36分)1.﹣3的相反数是()A.﹣3 B.3 C.D.故选:B.2.下列四个数中,在﹣2到0之间的数是()A.3 B.1 C.﹣3 D.﹣1【解答】解:∵3>0,1>0,﹣3<﹣2,﹣2<﹣1<0,∴在﹣2到0之间的数是﹣1.故选:D.3.下列计算正确的是()A.3a+4b=7ab B.7a﹣3a=4C.3a+a=3a2D.3a2b﹣4a2b=﹣a2b【解答】解:A、3a和4b不是同类项,不能合并,故本选项错误;B、字母不应去掉.故本选项错误;C、字母的指数不应该变,故本选项错误;D、符合合并同类项的法则,故本选项正确.故选D.4.下列图形中,不是三棱柱的表面展开图是()A.B.C.D.【解答】解:A、B、C中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D 围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D不能围成三棱柱.故选D.5.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列如图是以下四个图中的哪一个绕着直线旋转一周得到的()A.B.C.D.【解答】解:A、可以通过旋转得到两个圆柱,故本选项正确;B、可以通过旋转得到一个圆柱,一个圆筒,故本选项错误;C、可以通过旋转得到一个圆柱,两个圆筒,故本选项错误;D、可以通过旋转得到三个圆柱,故本选项错误.故选:A.6.地球半径约为6 400 000米,这个数用科学记数法表示为()A.640×104B.64×105 C.6.4×106D.0.64×107【解答】解:将6 400 000用科学记数法表示为6.4×106.故选C.7.下列关于单项式的说法中,正确的是()A.系数、次数都是3 B.系数是,次数是3C.系数是,次数是2 D.系数是,次数是3【解答】解:根据单项式系数、次数的定义可知:单项式的系数是﹣,次数是2+1=3,只有D正确,故选:D.8.如图是某班学生最喜欢的球类活动人数统计图,则下列说法不正确的是()A.该班喜欢乒乓球的学生最多B.该班喜欢排球和篮球的学生一样多C.该班喜欢足球的人数是喜欢排球人数的1.25倍D.该班喜欢其他球类活动的人数为5人【解答】解:A、正确.从扇形统计图中看出:该班喜欢乒乓球的学生占30%,是最多的,故正确.B、正确.喜欢排球与篮球的学生均占20%,一样多,故正确.C、正确.因为25%÷20%=1.25,喜欢足球的人数是喜欢排球人数的1.25倍,故正确.D、错误.班喜欢其他球类活动的占5%,故错误.故选D.9.某商品的价格标签已丢失,售货员只知道它的进价为80元,打七折售出后,仍可获利5%,你认为标签上的价格为()元.A.110 B.120 C.130 D.140【解答】解:设标签上的价格为x元,根据题意得:0.7x=80×(1+5%),解得:x=120.故选B.10.如图,从A地到B地有多条道路,人们一般会选中间的直路,而不会走其它的曲折的路,这是因为()A.两点确定一条直线B.两点之间,线段最短C.垂线段最短D.无法确定【解答】解:从A地到B地有多条道路,人们一般会选中间的直路,而不会走其它的曲折的路,这是因为两点之间,线段最短.故选:B.11.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于()A.35°B.70°C.110° D.145°【解答】解:∵射线OC平分∠DOB.∴∠BOD=2∠BOC,∵∠COB=35°,∴∠DOB=70°,∴∠AOD=180°﹣70°=110°,故选:C.12.若a、b两数在数轴上的位置如图所示,则下列结论正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.>0【解答】解:∵a<0<b,﹣a>b,∴a+b<0,∴选项A不正确,选项B正确;∵a<0<b,∴ab<0,∴选项C不正确;∵a<0<b,∴<0,∴选项D不正确.故选:B.二、填空题(本小题共4小题,每小题3分,共12分)13.﹣的倒数是﹣.【解答】解:(﹣)×(﹣)=1,所以﹣的倒数是﹣.故答案为:﹣.14.如果2a﹣b=1,则4a﹣2b﹣1=1.【解答】解:∵2a﹣b=1,∴4a﹣2b=2,∴4a﹣2b﹣1=2﹣1=1.故答案为:1.15.一副三角板按如图所示方式重叠,若图中∠DCE=35°,则∠ACB=145°.【解答】解:(1)∵∠ACD=∠ECB=90°,∴∠ACB=180°﹣35°=145°,故答案为145°.16.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是【解答】解:∵分数的分子分别是:2 2=4,23=8,24=16,…分数的分母分别是:2 2+3=7,23+3=11,24+3=19,…∴第n个数是.故答案为:.三、解答题(本大题共8小题,共52分)17.计算:(1)﹣7+13﹣6+20(2)(﹣+﹣)×(﹣24)【解答】解:(1)﹣7+13﹣6+20=6﹣6+20=20(2)(﹣+﹣)×(﹣24)=(﹣)×(﹣24)+×(﹣24)﹣×(﹣24)=18﹣4+9=2318.先化简,再求值:2m2﹣4m+1﹣2(m2+2m﹣),其中m=﹣1.【解答】解:2m2﹣4m+1﹣2(m2+2m﹣)=2m2﹣4m+1﹣2m2﹣4m+1=﹣8m+2,当m=﹣1时,原式=8+2=10.19.解方程:(1)4﹣3x=6﹣5x;(2)﹣1=.(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)4﹣3x=6﹣5x,移项,得5x﹣3x=6﹣4,合并同类项,得2x=2,系数化为1,得x=1;(2)去分母,得3(x+1)﹣6=2(2﹣x),去括号,得3x+3﹣6=4﹣2x,移项、合并同类项,得5x=7,系数化为1,得x=.2如图所示是由若干个大小相同的小立方体所组成几何体从上面看的图,小正方形中的数字表示在该位置的小立方体的个数,请画出这个几何体从正面看到的图,从左面看到的图.【解答】解:如图所示:21.为了了解市民“获取新闻的最主要途径”某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)这次接受调查的市民总人数是1000;(2)扇形统计图中,“电视”所对应的圆心角的度数是54°;(3)请补全条形统计图;(4)若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.【解答】解:(1)这次接受调查的市民总人数是:260÷26%=1000;(2)扇形统计图中,“电视”所对应的圆心角的度数为:(1﹣40%﹣26%﹣9%﹣10%)×360°=54°;(3)“报纸”的人数为:1000×10%=100.补全图形如图所示:(4)估计将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数为:80×(26%+40%)=80×66%=52.8(万人).22.李华早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟,如果他骑自行车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,求他推车步行了多少分钟?【解答】解:设他推车步行了x分钟,依题意得:80x+250(15﹣x)=2900,解得x=5.答:他推车步行了5分钟.23.填空,完成下列说理过程如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.解:(1)如图,因为OD是∠AOC的平分线,所以∠COD=∠AOC.因为OE是∠BOC的平分线,所以∠COE=∠BOC.所以∠DOE=∠COD+ ∠COE=(∠AOC+∠BOC)=∠AOB=90°.(2)由(1)可知∠BOE=∠COE=∠DOE﹣∠COD=25°.所以∠AOE=∠AOB﹣∠BOE=155°.【解答】解:(1)如图,因为OD是∠AOC的平分线,所以∠COD=∠AOC.因为OE是∠BOC的平分线,所以∠COE=∠BOC.所以∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=∠AOB=90°.(2)由(1)可知∠BOE=∠COE=∠DOE﹣∠COD=25°,所以∠AOE=∠AOB﹣∠BOE=155°.故答案为(1)∠COE;∠COE;90;(2)∠DOE(或者90°);25;∠AOB(或者180°);155.24.如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC边长为3.(1)数轴上点A表示的数为4.(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B′C′与原长方形OABC重叠部分(如图2中阴影部分)的面积记为S.①当S恰好等于原长方形OABC面积的一半时,数轴上点A′表示的数为6或2.②设点A的移动距离AA′=x.ⅰ.当S=4时,x=;ⅱ.D为线段AA′的中点,点E在线段OO′上,且OE=OO′,当点D,E所表示的数互为相反数时,求x的值.【解答】解:(1)∵长方形OABC的面积为12,OC边长为3,∴OA=12÷3=4,∴数轴上点A表示的数为4,故答案为:4.(2)①∵S恰好等于原长方形OABC面积的一半,∴S=6,∴O′A=6÷3=2,当向左运动时,如图1,A′表示的数为2当向右运动时,如图2,∵O′A′=AO=4,∴OA′=4+4﹣2=6,∴A′表示的数为6,故答案为:6或2.②ⅰ.如图1,由题意得:CO•OA′=4,∵CO=3,∴OA′=,∴x=4﹣=,故答案为:;ⅱ.如图1,当原长方形OABC向左移动时,点D表示的数为,点E表示的数为,由题意可得方程:4﹣x﹣x=0,解得:x=,如图2,当原长方形OABC向右移动时,点D,E表示的数都是正数,不符合题意.。

广西壮族自治区2019-2020学年七年级上学期数学期末考试试卷C卷

广西壮族自治区2019-2020学年七年级上学期数学期末考试试卷C卷

广西壮族自治区2019-2020学年七年级上学期数学期末考试试卷C卷姓名:________ 班级:________ 成绩:________一、选择题(每题3分,共30分) (共10题;共29分)1. (3分)(2019·连云港) 一个几何体的侧面展开图如图所示,则该几何体的底面是()A .B .C .D .2. (3分) (2017七上·大埔期中) 下表是淮河某河段今年雨季一周内水位变化情况,(其中0表示警戒水位)那么水位最高是()星期一二三四五六日水位变化/米+0.03+0.41+0.25+0.100-0.13-0.2A . 周一B . 周二C . 周三D . 周五3. (3分)(2017·玄武模拟) 南京规划地铁6号线由栖霞山站开往南京南站,全长32100米,这个数据用科学记数法表示为()A . 321×102B . 32.1×103C . 3.21×104D . 3.21×1054. (3分)下列说法正确的是()A . 为了解我国中学生课外阅读的情况,应采用全面调查的方式B . 一组数据1,2,5,5,5,3,3的中位数和众数都是5C . 抛掷一枚硬币100次,一定有50次“正面朝上”D . 甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定5. (3分)在平面直角坐标系中,我们把横坐标和纵坐标都是整数的点称为格点,则到坐标原点O的距离为10的格点共有()个.A . 4B . 6C . 8D . 126. (3分)(2017·仪征模拟) 下列式子正确的是()A . a2+a3=a5B . (a2)3=a5C . a+2b=2abD . (﹣ab)2=a2b27. (3分) (2019七上·辽阳月考) 从九边形的一个顶点出发可以引出的对角线条数为()A . 3B . 4C . 6D . 98. (3分)下列说法正确的是()A . 同号两数相乘,取原来的符号B . 两个数相乘,积大于任何一个乘数C . 一个数与0相乘仍得这个数D . 一个数与-1相乘,积为该数的相反数9. (3分) (2016八上·平武期末) 下列计算不正确的是()A . 5a3﹣a3=4a3B . a3•a3=a6C . ()2=D . a6÷a3=a310. (2分)某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛.小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的A . 中位数B . 众数C . 平均数D . 极差二、填空题(每题3分,共18分) (共6题;共18分)11. (3分) (2018七上·高安期中) -2.5的倒数是________,的相反数是________;的倒数的绝对值是________.12. (3分) (2019七上·武汉月考) 已知有理数a,b满足ab<0,a+b>0,7a+2b+1=﹣|b﹣a|,则的值为________.13. (3分) (2018七上·天台期中) 若x2m+1=3是关于x的一元一次方程,则m=________.14. (3分)(2017·罗平模拟) ﹣|﹣2017|=________.15. (3分) (2019七下·长春月考) 若x=3 是方程的解,则a=________.16. (3分)按如图所示的方式,用火柴棒搭x个正方形,要计算火柴棒的根数,有下面几个思路:思路1:在这些图形中,第一个正方形用4根,每增加一个正方形就增加3根,那么搭x个正方形就需要火柴棒________根.思路2:把每一个正方形都看成是用4根火柴棒搭成的,然后再减去多算的根数,得到的代数式是________.思路3:第一个正方形可以看成是3根火柴棒加1根火柴棒搭成的,此后每增加一个正方形就增加3根火柴棒,那么搭x个正方形共需________根火柴棒.三、解答题(共52分) (共8题;共52分)17. (5分) (2017七上·黑龙江期中)(1);(2);(3);(4);(5) .18. (10分) (2020七上·大丰期末) 解下列一元一次方程:(1)(2)19. (6分) (2020七上·临颍期末) 计算与化简(1)计算:(2)先化简,再求值:,其中,20. (6分) (2020七上·青岛期末) 如图,线段,,D是BC的中点,求AD的长.21. (6分) (2019七上·沈阳月考) 如图(1)如图1是由大小相同的小立方块搭成的几何体,请在图2的方格中画出从上面和左面看到的该几何体的形状图.(只需用2B铅笔将虚线化为实线)(2)若要用大小相同的小立方块搭一个几何体,使得它从上面和左面看到的形状图与你在图2方格中所画的形状图相同,则搭这样的一个几何体最多需要________个小立方块.22. (7.0分) (2019·金昌模拟) 学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B 级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了________名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A 级和B级)?23. (6分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,∠COD=20°,,求∠AOC的度数.24. (6分) (2018七上·彝良期末) 如图,已知线段AB=60,点C,D分别是线段AB上的两点,且满足AC:CD:DB=3:4:5,点K是线段CD的中点,求线段KB的长.参考答案一、选择题(每题3分,共30分) (共10题;共29分) 1-1、2-1、3-1、4-1、5-1、6-1、答案:略7-1、8-1、9-1、10-1、二、填空题(每题3分,共18分) (共6题;共18分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(共52分) (共8题;共52分) 17-1、答案:略17-2、答案:略17-3、答案:略17-4、答案:略17-5、答案:略18-1、18-2、19-1、答案:略19-2、答案:略20-1、21-1、21-2、22-1、22-2、22-3、答案:略22-4、23-1、24-1、。

广西壮族自治区2019-2020学年七年级上学期数学期末考试试卷D卷

广西壮族自治区2019-2020学年七年级上学期数学期末考试试卷D卷

广西壮族自治区2019-2020学年七年级上学期数学期末考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分) (2019七上·襄阳月考) 有四包洗衣粉,每包以标准克数(500克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是()A . +6B . -7C . -14D . +182. (1分)与3a2b是同类项的是()A . a2B . 2abC . 3ab2D . 4a2b3. (1分)已知代数式8x﹣7与6﹣2x的值互为相反数,那么x的值等于()A .B . -C .D .4. (1分)(2019·瑞安模拟) 如图,桌面上放着一个一次性纸杯,它的俯视图是()A .B .C .D .5. (1分) (2019七上·灌阳期中) 下列各式中,与3x2y3是同类项的是()A . 2x5B . 3x3y2C . ﹣ y5D . ﹣ x2y36. (1分)如图.若乙、丙都在甲的北偏东70°方向上.乙在丁的正北方向上,且乙到丙、丁的距离相同.则α的度数是()A . 25°C . 35°D . 40°7. (1分)已知a+b=2,则a2-b2+4b的值是()A . 2B . 3C . 4D . 68. (1分) (2019七上·沈阳月考) 下列计算正确的是()A .B .C .D .9. (1分)某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x个零件,则所列方程为()A . 13x=12(x+10)+60B . 12(x+10)=13x+60C .D .10. (1分)如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A . 4cmC . 4cm或2cmD . 小于或等于4cm,且大于或等于2cm二、填空题 (共8题;共8分)11. (1分) (2018七上·栾城期末) 如果a、b互为相反数,而c、d互为倒数,那么(a+b)2015+2016ad 的值应为________.12. (1分)(2016·攀枝花) 月球的半径约为1738000米,1738000这个数用科学记数法表示为________.13. (1分) (2018七上·大冶期末) 56.28°=________°________′________″.14. (1分)(2011·希望杯竞赛) 如图,∠C=45°,∠B=45°+2 ,∠BAC=45°+3 ,AE平分∠BAD,则∠CAE=________;15. (1分) (2018七上·永康期末) 在数轴上,点A,O,B分别表示-16,0,14,点P,Q分别从点A,B 同时开始沿数轴正方向运动,点P的速度是每秒3个单位,点Q的速度是每秒1个单位,运动时间为t秒.若点P,Q,O三点在运动过程中,其中一点恰好是另外两点为端点构成的线段的三等分点时,则运动时间为_秒.16. (1分)(2016·藁城模拟) 某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省________元.17. (1分) (2017七上·临海期末) 在灯塔O处观测到轮船A位于北偏西43°的方向,同时轮船B在东北的方向,那么∠AOB的大小为________°.18. (1分) (2016七上·工业园期末) 如图,该平面展开图按虚线折叠成正方体后,相对面上两个数之和为8,则x+y=________.三、解答题 (共8题;共16分)19. (2分)用计算器求下列各式的值:(1)24.12×2+3.452×4.2;(精确到0.1);(2)(2.42﹣1.32)×3.1+4.13;(精确到0.01)20. (1分) (2019七上·长春期末) 先化简,再求值:3(x2y+2xy)+2(x2y﹣2xy)﹣5x2y ,其中x=,y=﹣8.21. (2分)解方程(1)(2)22. (1分) (2016七上·凤庆期中) 把一批图书分给七年级(11)班的同学阅读,若每人分3本,则剩余20本,若每人分4本,则缺25本,这个班有多少学生?23. (3分) (2018七上·镇平期末) 如图,O是直线AB上一点,OD平分∠AOC.(1)若∠AOC=60°,请求出∠A OD和∠BOC的度数.(2)若∠AOD和∠DOE互余,且∠AOD= ∠AOE,请求出∠AOD和∠COE的度数.24. (2分) (2015七上·深圳期末) 某公司要把240吨白砂糖运往某市的A、B两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种货车的载重量分别为15吨/辆和10吨/辆,运往A地的运费为:大车630元/辆,小车420元/辆;运往B地的运费为:大车750元/辆,小车550元/辆.(1)求两种货车各用多少辆;(2)如果安排10辆货车前往A地,其中调往A地的大车有a辆,其余货车前往B地,若设总运费为W,求W 与a的关系式(用含有a的代数式表示W).25. (3分) (2020七上·温州期末) 如图1,将一副直角三角板的两顶点重合叠放于点O,其中一个三角板的顶点C落在另一个三角板的边OA上,已知∠ABO=∠DCO=90°,∠AOB=45°,∠COD=60°作∠AOD的平分线交边CD于点E。

北流七年级数学期末试卷

北流七年级数学期末试卷

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √16B. √-9C. πD. 0.1010010001…2. 已知a > 0,则下列不等式中正确的是()A. a + b > aB. a - b < aC. ab > aD. a/b > a3. 下列代数式中,同类项是()A. x^2yB. 2xyC. 3x^2D. 4y^24. 下列函数中,是反比例函数的是()A. y = x^2B. y = 2x + 3C. y = 3/xD. y = x^35. 下列图形中,不是轴对称图形的是()A. 等腰三角形B. 长方形C. 平行四边形D. 圆6. 在直角坐标系中,点P(2, -3)关于x轴的对称点是()A. (2, 3)B. (-2, -3)C. (-2, 3)D. (2, -3)7. 下列方程中,x的值为-1的是()A. 2x + 5 = 0B. 3x - 4 = 0C. x + 3 = 0D. 5x - 2 = 08. 下列数据中,众数是3的是()A. 1, 2, 3, 3, 4B. 1, 2, 3, 3, 5C. 2, 3, 3, 4, 5D. 1, 2, 3, 4, 59. 下列数中,绝对值最大的是()A. -3B. -2C. 1D. 010. 下列命题中,正确的是()A. 平行四边形的对边相等B. 等腰三角形的底角相等C. 相似三角形的面积比等于相似比的平方D. 平行四边形的对角线互相平分二、填空题(每题5分,共50分)11. 计算:-5 + 3 - 2 = ______12. 简化:3a^2 - 2a + 5a^2 - 3a = ______13. 已知:x + 4 = 10,求x的值:x = ______14. 分式方程:2/(x + 3) = 4/(x - 1),求x的值:x = ______15. 下列图形中,四边形ABCD是平行四边形,则∠A的度数是______。

2019-2020学年七年级(上)期末数学试卷

2019-2020学年七年级(上)期末数学试卷

2019-2020学年七年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分) 1.43的绝对值是( )A. −43B. 43 C. 34 D. ±43 2. 下列四个数中最小的数是( )A. −103B. −3C. 0D. 53. 用科学记数法表示2017000,正确的是( )A. 2017×103B. 2.017×105C. 2.017×106D. 0.2017×1074. 下列简单几何体中,属于柱体的个数是( )A. 5B. 4C. 3D. 2 5. 计算43+(−77)+27+(−43)的结果是( )A. 50B. −104C. −50D. 104 6. 下列各式成立的是( )A. 34=3×4B. −62=36C. (13)3=19 D. (−14)2=116 7. 下列每组单项式中是同类项的是( )A. 2xy 与−13yxB. 3x 2y 与−2xy 2C. −12x 与−2xyD. xy 与yz8. 下列调查中,适合用普查的是( )A. 中央电视台春节联欢晚会的收视率B. 一批电视剧的寿命C. 全国中学生的节水意识D. 某班每一位同学的体育达标情况9. 过某个多边形一点顶点的所有对角线,将这个多边形分成了5个三角形,则这个多边形是( ) A. 五边形 B. 六边形 C. 七边形 D. 八边形10. 用棋子摆出下列一组“口”字,按照这种方法摆下去,则第n 个“口”字需要用棋子( )A. (4n −4)枚B. 4n 枚C. (4n +4)枚D. n 2枚二、填空题(本大题共6小题,共18.0分) 11. 计算[(−6)+11]÷3的结果是______.12. 如图是一个正方体纸盒的展开图,正方体的各面标有数字1,2,3,−3,A ,B ,相对面上是两个数互为相反数,则A =______.13.某场电影成人票25元/张,卖出m张,学生票15元/张,卖出n张,共得票款______元.14.把角度化为秒的形式,则5.5∘=______″.15.在一次全市的数学监测中某6名学生的成绩与全市学生的平均分80的差分别为5,−2,8,11,5,−6,则这6名学生的平均成绩为______分.16.如图,在3×3的幻方的九个空格中,填入9个数字,使得处于同一横行,同一竖行,同一斜对角线上的三个数的和都相等,按以上规则的幻方中,x的值为______.三、计算题(本大题共2小题,共12.0分)17.计算:(−24)×(13−14)−(−2)2.18.先化简后求值:M=(−2x2+x−4)−(−2x2−12x+1),其中x=2.四、解答题(本大题共7小题,共56.0分)19.解方程:2x−13−5x−16=1注:要写出详细的解答过程(含文字)20.某文具店,甲种笔记本标价每本8元,乙种笔记本标价每本5元(1)两种笔记本各销售了多少?(2)所得销售款可能是660元吗?为什么?21.如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25∘(1)求∠AOB的度数;(2)若OE=1,求扇形EOF的面积.22.小敏为了解本市的空气质量情况,从市环保局随机抽取了若干天的空气质量情况作为标本进行统计,绘制成如图所示的条形统计图和扇形统计图(部分信息为给出)请你根据图中提供的信息,解答下列问题:(1)本次调查中共抽取了多少天的空气质量情况作为标本?(2)求轻微污染天数并补全条形统计图;(3)请你估计该市这一年(365天)空气质量达到“优”和“良”的总天数.23.如图,已知线段AB(1)请用尺规按下列要求作图:①延长线段AB到C,使BC=AB,②延长线段BA到D,使AD=AC(不写画法,当要保留画图痕迹)(2)请直接回答线段BD与线段AC长度之间的大小关系(3)如果AB=2cm,请求出线段BD和CD的长度.24.某粮库3天内粮食进、出库的吨数如下(“+”表示进库,“−”表示出库):+26,−32,−15,+34,−38,−20(1)经过这3天,仓库里的粮食是增加了还是减少了?(2)经过这3天,仓库管理员结算时发现库里还存280吨粮,那么3天前仓库里存粮多少吨?(3)如果进出的装卸费都是每吨5元,那么这3天要付多少装卸费?25.阅读下面的材料:如图①,若线段AB在数轴上,A,B点表示的数分别为a,b(b>a),则线段AB 的长(点A到点B的距离)可表示为AB=b−a请用上面材料中的知识解答下面的问题:如图②,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm 到达B点,然后向右移动7cm到达C点,用1个单位长度表示1cm(1)请你在数轴上表示出A,B,C三点的位置,并直接写出线段AC的长度;(2)若数轴上有一点D,且AD=4cm,则点D表示的数是什么?(3)若将点A向右移动xcm,请用代数式表示移动后的点表示的数?(4)若点B以每秒2cm的速度向左移动至点P1,同时点A,点C分别以每秒1cm和4cm的速度向右移动至点P2,点P3,设移动时间为t秒,试探索:P3P2−P1P2的值是否会随着t的变化而变化?请说明理由.答案和解析【答案】 1. B 2. A 3. C4. B5. C6. D7. A8. D 9. C10. B11. 5312. −213. (25m +15n) 14. 19800 15. 83.5 16. 517. 解:原式=−8+6−4=−12+6=−6. 18. 解:M =−2x 2+x −4+2x 2+12x −1=32x −5,当x =2时,原式=32×2−5=3−5=−2.19. 解:去分母,得2(2x −1)−(5x −1)=6,去括号,得4x −2−5x +1=6, 移项,得4x −5x =6−1+2, 合并同类项,得−x =7, 系数化成1,得x =−7.20. 解:(1)设甲种笔记本销售x 本,乙种笔记本销售y 本,依题意得 {8x +5y =695x+y=100, 解得{y =35x=65,答:甲种笔记本销售65本,乙种笔记本销售35本; (2)所得销售款可能是660元,当甲种笔记本销售65本,乙种笔记本销售28本时, 销售款为:65×8+28×5=660(元).21. 解:(1)∵OD 是∠AOC 的平分线,且∠COD =25∘, ∴∠AOC =2×25∘=50∘, ∵OC 是∠AOB 的平分线,∴∠AOB 的度数为:50∘×2=100∘. (2)扇形EOF 的面积=100π×12360=518π.22. 解:(1)抽查的总天数是:32÷64%=50(天)(2)空气质量是轻度污染的天数是:50−8−32−3−1−1=5天, 扇形统计图中表示优的圆心角度数是850×360∘=57.6∘.;(3)∵样本中优和良的天数分别为:8,32,×365=292(天).∴一年(365天)达到优和良的总天数为:8+325023. 解:(1)如图所示,BC、AD即为所求;(2)由图可得,BD>AC;(3)∵AB=2cm,∴AC=2AB=4cm,∴AD=4cm,∴BD=4+2=6cm,∴CD=2AD=8cm.24. 解:(1)26+(−32)+(−15)+34+(−38)+(−20)=−45吨,答:库里的粮食是减少了45吨;(2)280+45=325吨,答:3天前库里有粮325吨;(3)(26+|−32|+|−15|+34+|−38|+|−20|)×5=165×5=825元,答:这3天要付825元装卸费.25. 解:(1)如图所示:CA=4−(−1)=4+1=5(cm);(2)设D表示的数为a,∵AD=4,∴|−1−a|=4,解得:a=−5或3,∴点D表示的数为−5或3;(3)将点A向右移动xcm,则移动后的点表示的数为−1+x;(4)P3P2−P1P2的值不会随着t的变化而变化,理由如下:根据题意得:P3P2=(4+4t)−(−1+t)=5+3t,P1P2=(−1+t)−(−3−2t)=2+3t,∴P3P2−P1P2=(5+3t)−(2+3t)=3,∴P3P2−P1P2的值不会随着t的变化而变化.【解析】1. 解:43的绝对值是43,故选:B .根据绝对值的求法解得即可.此题考查绝对值问题,①当a 是正有理数时,a 的绝对值是它本身a ; ②当a 是负有理数时,a 的绝对值是它的相反数−a ; ③当a 是零时,a 的绝对值是零.2. 解:∵−103<−3<0<5,∴四个数中最小的数是−103;故选:A .根据有理数的大小比较方法,找出最小的数即可.此题考查了有理数的大小比较,用到的知识点是负数<0<正数,两个负数,绝对值大的反而小,是一道基础题.3. 解:2017000=2.017×106, 故选:C .科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4. 解:柱体分为圆柱和棱柱,所以柱体有圆柱、正方体、长方体、五棱柱,共4个. 故选:B .解这类题首先要明确柱体,椎体、球体的概念,然后根据图示进行解答.本题考查了立体图形的定义,注意几何体的分类,一般分为柱体、锥体和球,注意球和圆的区别,球是立体图形,圆是平面图形.5. 解:原式=(−43+43)+(−77+27)=−50. 故选:C .先将互为相反数的两数相加,然后,再依据加法法则进行计算即可.本题主要考查的是有理数的加法法则,熟练掌握有理数的加法法则是解题的关键. 6. 解:A 、34=3×3×3×3,此选项错误; B 、−62=−36,此选项错误; C 、(13)3=127,此选项错误; D 、(−14)2=116,此选项正确;故选:D .根据乘方的定义计算可得.本题主要考查有理数的乘方,解题的关键是熟练掌握乘方的定义.7. 解:A 、2xy 与−13yx 是同类项,故此选项正确;B 、3x 2y 与−2xy 2所含字母相同,但相同字母的指数不同,不是同类项,故此选项错误;C 、−12x 与−2xy 所含字母不同,不是同类项,故此选项错误; D 、xy 与yz 所含字母不同,不是同类项,故此选项错误; 故选:A .所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.本题主要考查同类项,掌握同类项的定义:所含字母相同,并且相同字母的指数也相同是解题的关键.8. 解:A、中央电视台春节联欢晚会的收视率,人数多,范围广,应采用抽样调查,故此选项错误;B、一批电视剧的寿命,普查具有破坏性,应采用抽样调查,故此选项错误;C、全国中学生的节水意识,人数多,范围广,应采用抽样调查,故此选项错误;D、某班每一位同学的体育达标情况,人数较少,采用普查,故此选项正确;故选:D.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9. 解:根据n边形从一个顶点出发可引出(n−3)条对角线,可组成n−2个三角形,∴n−2=5,即n=7.故选:C.根据n边形从一个顶点出发可引出(n−3)条对角线,可组成n−2个三角形,依此可得n的值.本题考查了多边形的对角线,求对角线条数时,直接代入边数n的值计算,而计算边数时,需利用方程思想,解方程求n.10. 解:n=1时,棋子个数为4=1×4;n=2时,棋子个数为8=2×4;n=3时,棋子个数为12=3×4;…;n=n时,棋子个数为n×4=4n.故选:B.首先根据图形得到规律是:每增加一个数就增加四个棋子,然后根据规律解题即可.本题考查了图形的变化类问题,主要培养学生的观察能力和空间想象能力,找出其中的规律是解题的关键.11. 解:原式=5÷3=5,3故答案为:53先计算括号中的加法运算,再计算除法运算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12. 解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“1”与“B”是相对面,“2”与“A”是相对面,“3”与“−3”是相对面,∵相对面上是两个数互为相反数,∴A=−2.故答案为:−2.正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据相对面上是两个数互为相反数解答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.13. 解:依题意得:25m+15n.故答案是:(25m+15n).根据“成人票价×m+学生票价×n”列出代数式.考查了列代数式.解题的关键是读懂题意,找准题中的等量关系.14. 解:5.5∘=330′=19800″,故答案为:19800.根据小单为化大单位乘进率,可得答案.本题考查了度分秒的换算,利用小单为化大单位乘进率是解题关键.15. 解:由题意知,这6名学生的平均成绩=80+(5−2+8+11+5−6)÷6=83.5(分).故答案为83.5.只要运用求平均数公式解答即可.本题考查了平均数的计算.平均数等于所有数据的和除以数据的个数.16. 解:∵同一横行,同一竖行,同一斜对角线上的三个数的和都相等,∴4+x+x+1=2x−1+x+1,解得:x=5.故答案为:5.先依据同一横行,同一竖行,同一斜对角线上的三个数的和都相等列出方程,然后可求得x的值.本题主要考查的是有理数的加法,依据题意列出方程是解题的关键.17. 原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18. 先去括号、合并同类项化简原式,再将x的值代入计算可得.本题考查了整式的加减,解答本题的关键是掌握去括号法则以及合并同类项法则.19. 去分母,去括号,移项,合并同类项,系数化成1即可.本题考查了解一元一次方程,能灵活运用等式的基本性质进行变形是解此题的关键.20. (1)设甲种笔记本销售x本,乙种笔记本销售y本,依题意得列方程组求解即可;(2)当甲种笔记本销售65本,乙种笔记本销售28本时,销售款为:65×8+28×5=660元.本题主要考查了二元一次方程组的应用,由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.21. (1)直接利用角平分线的性质得出∠AOC的度数,进而得出答案.(2)连接扇形面积公式解答即可.此题考查扇形面积问题,关键是利用角平分线的性质得出∠AOC的度数.22. (1)根据空气质量是良的天数是32天,所占的百分比是64%,即可求得抽查的总天数;(2)利用360∘乘以优所占的比例即可求得;(3)利用总天数乘以对应的比例即可求解.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23. (1)以B为圆心,AB长为半径画弧,交AB的延长线于C,以A为圆心,AC长为半径画弧,交BA的延长线于D;(2)依据图形,即可得到线段BD与线段AC长度之间的大小关系;(3)依据AB=2cm,可得AC=2AB=4cm,AD=4cm,进而得出BD=4+2=6cm,CD=2AD=8cm.本题主要考查了两点间的距离,平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,注意强调最后的两个字“长度”.24. (1)根据有理数的加法,可得答案;(2)根据剩余的加上减少的45吨,可得答案;(3)根据单位费用乘以数量,可得答案.本题考查了正数和负数,利用有理数的运算是解题关键.25. (1)根据题意容易画出图形;由题意容易得出CA的长度;(2)设D表示的数为a,由绝对值的意义容易得出结果;(3)将点A向右移动xcm,则移动后的点表示的数为−1+x;(4)用代数式表示出P3P2和P1P2,再相减即可得出结论.此题考查了数轴,掌握数轴上两点之间的距离求解方法是解决问题的关键.第11页,共11页。

2019-2020学年七年级上学期期末考试数学试卷含解析版

2019-2020学年七年级上学期期末考试数学试卷含解析版

2019-2020学年七年级上学期期末考试数学试卷一、选择題(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果气温升高3℃时气温变化记作+3℃,那么气温下降3℃时气温变化记作( )A .﹣6℃B .﹣3℃C .0℃D .+3℃2.在﹣6,﹣5.01,﹣5,这四个数中,最大的数是( )A .﹣6B .﹣5.01C .﹣5D . 3.|﹣2|的倒数是( )A .2B .﹣2C .D .4.下列各式中,次数为5的单项式是( )A .5abB .a 5bC .a 5+b 5D .6a 2b 35.多项式﹣2x 2+2x +3中的二次项系数是( )A .﹣1B .2C .﹣2D .36.三个立体图形的展开图如图①②③所示,则相应的立体图形是( )A .①圆柱,②圆锥,③三棱柱B .①圆柱,②球,③三棱柱C .①圆柱,②圆锥,③四棱柱D .①圆柱,②球,③四棱柱 7.在数轴上表示有理数a ,﹣a ,﹣b ﹣1的点如图所示,则( )A .﹣b <﹣aB .|b +1|<|a |C .|a |>|b |D .b ﹣1<a8.已知等式3a =b +2c ,那么下列等式中不一定成立的是( )A .3a ﹣b =2cB .4a =a +b +2cC .a =b +cD .3=+9.某商店以每件a 元的价格卖出两件衣服,其中一件盈利25%,另一件亏损20%,那么商店卖出这两件衣服总的情况是()A.盈利0.05a元B.亏损0.05a元C.盈利0.15a元D.亏损0.15a元10.若关于x的方程有无数解,则3m+n的值为()A.﹣1B.1C.2D.以上答案都不对二、填空题(本大题共6小题,每小题3分,满分18分)11.﹣2019的相反数是.12.目前我国年可利用的淡水资源总量约为38050亿立方米,是世界上严重缺水的国家之一.38050用科学记数法表示为.13.若x与3的积等于x与﹣16的和,则x=.14.若﹣x m y4与x3y n是同类项,则(m﹣n)9=.15.如图所示的运算程序中,若开始输入的x值为100,我们发现第1次输出的结果为50,第2次输出的结果为25,…,则第2019次输出的结果为.16.如图,第n个图形是由正n+2边形“扩展”而来(n=1,2,3,4…),第n个图形中共有个顶点(结果用含n的式子表示).三、解答題(本大题共8小题,满分72分,解答须写出文字说明、推理过程)17.计算:(1)(﹣7)+(﹣5)﹣(﹣13)﹣(+10)(2)﹣(﹣1)10×2+(﹣2)3÷418.先化简,再求值:,其中x=﹣2,y=﹣319.解下列方程:(1)2(x+3)=5(x﹣3)(2)20.有理数a,b,c在数轴上的位置如图所示请化简:﹣|a|﹣|b+2|+2|c|﹣|a+b|+|c﹣a|.21.我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x的一元一次方程3x=m是“和解方程”,求m的值;(2)已知关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.22.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为30元,乙平均每本书的价格为15元,优惠后甲乙两人的书费共283.5元(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场7.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?23.如图1,已知∠AOB=126°,∠COD=54°,OM在∠AOC内,ON在∠BOD内,∠AOM=∠AOC,∠BON=∠BOD.(1)∠COD从图1中的位置绕点O逆时针旋转到OC与OB重合时,如图2,求∠MON的度数;(2)∠COD从图2中的位置绕点O逆时针旋转n°(0<n<126且n≠54),求∠MON的度数.24.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣2|+|c﹣3|=0.(1)在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴正方向运动经过t秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.参考答案与试题解析一、选择題(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果气温升高3℃时气温变化记作+3℃,那么气温下降3℃时气温变化记作()A.﹣6℃B.﹣3℃C.0℃D.+3℃【分析】根据负数的意义,可得气温上升记为“+”,则气温下降记为“﹣”,据此解答即可.【解答】解:因为气温上升3℃,记作+3℃,所以气温下降3℃,记作﹣3℃.故选:B.【点评】此题主要考查了负数的意义及其应用,要熟练掌握,解答此题的关键是要明确:气温上升记为“+”,则气温下降记为“﹣”.2.在﹣6,﹣5.01,﹣5,这四个数中,最大的数是()A.﹣6B.﹣5.01C.﹣5D.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣6<﹣5.01<﹣5<﹣,∴这四个数中,最大的数是﹣.故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.3.|﹣2|的倒数是()A.2B.﹣2C.D.【分析】根据绝对值和倒数的定义作答.【解答】解:∵|﹣2|=2,2的倒数是,∴|﹣2|的倒数是.故选:C.【点评】一个负数的绝对值是它的相反数.若两个数的乘积是1,我们就称这两个数互为倒数.4.下列各式中,次数为5的单项式是()A.5ab B.a5b C.a5+b5D.6a2b3【分析】直接利用单项式以及多项式次数确定方法分别分析得出答案.【解答】解:A、5ab是次数为2的单项式,故此选项错误;B、a5b是次数为6的单项式,故此选项错误;C、a5+b5是次数为5的多项式,故此选项错误;D、6a2b3是次数为5的单项式,故此选项正确.故选:D.【点评】此题主要考查了单项式以及多项式次数,正确把握单项式次数确定方法是解题关键.5.多项式﹣2x2+2x+3中的二次项系数是()A.﹣1B.2C.﹣2D.3【分析】根据多项式的概念即可求出答案.【解答】解:二次项系数为﹣2,故选:C.【点评】本题考查多项式的概念,解题的关键熟练运用多项式的概念,本题属于基础题型.6.三个立体图形的展开图如图①②③所示,则相应的立体图形是()A.①圆柱,②圆锥,③三棱柱B.①圆柱,②球,③三棱柱C.①圆柱,②圆锥,③四棱柱D.①圆柱,②球,③四棱柱【分析】根据圆柱、圆锥、三棱柱表面展开图的特点解题.【解答】解:观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是圆柱、圆锥、三棱柱.故选:A.【点评】本题考查圆锥、三棱柱、圆柱表面展开图,记住这些立体图形的表面展开图是解题的关键.7.在数轴上表示有理数a,﹣a,﹣b﹣1的点如图所示,则()A.﹣b<﹣a B.|b+1|<|a|C.|a|>|b|D.b﹣1<a【分析】因为a与﹣a互为相反数,所以根据图示知,a<0<﹣a<﹣b﹣1,由此对选项进行一一分析.【解答】解:∵a与﹣a互为相反数,∴根据图示知,a<0<﹣a<﹣b﹣1,∴|﹣a|=|a|<|﹣b﹣1|=|b+1|,则|b+1|>|a|,故B选项错误;∴﹣b>﹣a,故A选项错误;∴|a|>|b|,故C选项错误;∴b﹣1<a,故D选项正确.故选:D.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.8.已知等式3a=b+2c,那么下列等式中不一定成立的是()A.3a﹣b=2c B.4a=a+b+2c C.a=b+c D.3=+【分析】根据等式的基本性质逐一判断即可得.【解答】解:A、原等式两边都减去b即可得3a﹣b=2c,此选项正确;B、原等式两边都加上a即可得4a=a+b+2c,此选项正确;C、原等式两边都除以3即可得a=b+c,此选项正确;D、在a≠0的前提下,两边都除以a可得3=+,故此选项不一定成立;故选:D.【点评】本题主要考查等式的性质,解题的关键是掌握等式两边加同一个数(或式子)结果仍得等式、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.9.某商店以每件a元的价格卖出两件衣服,其中一件盈利25%,另一件亏损20%,那么商店卖出这两件衣服总的情况是()A.盈利0.05a元B.亏损0.05a元C.盈利0.15a元D.亏损0.15a元【分析】设盈利的衣服的进价为x元/件,亏损的衣服的进价为y元/件,根据售价﹣进价=利润,可得出关于x(y)的一元一次方程,解之即可得出x(y)的值,再利用总利润=两件衣服的售价﹣两件衣服的进价,即可得出结论.【解答】解:设盈利的衣服的进价为x元/件,亏损的衣服的进价为y元/件,依题意,得:a﹣x=25%x,a﹣y=﹣20%y,解得:x=0.8a,y=1.25a,∴2a﹣x﹣y=﹣0.05a,∴商店卖出这两件衣服总的情况是亏损0.05a元.故选:B.【点评】本题考查了一元一次方程的应用以及列代数式,找准等量关系,正确列出一元一次方程是解题的关键.10.若关于x的方程有无数解,则3m+n的值为()A.﹣1B.1C.2D.以上答案都不对【分析】原方程经过移项,合并同类项,根据“该方程有无数解”,得到关于m和关于n的一元一次方程,解之,代入3m+n,计算求值即可得到答案.【解答】解:mx+=﹣x,移项得:mx+x=﹣,合并同类项得:(m+1)x=,∵该方程有无数解,∴,解得:,把m=﹣1,n=2代入3m+n得:原式=﹣3+2=﹣1,故选:A.【点评】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.二、填空题(本大题共6小题,每小题3分,满分18分)11.﹣2019的相反数是2019.【分析】直接利用相反数的定义进而得出答案.【解答】解:﹣2019的相反数是:2019.故答案为:2019.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.12.目前我国年可利用的淡水资源总量约为38050亿立方米,是世界上严重缺水的国家之一.38050用科学记数法表示为 3.805×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:38050=3.805×104.故答案为:3.805×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.若x与3的积等于x与﹣16的和,则x=﹣8.【分析】由题意列出方程进而解方程得出答案.【解答】解:由题意可得:3x=x﹣16,解得:x=﹣8.故答案为:﹣8.【点评】此题主要考查了解一元一次方程,正确掌握解题方法是解题关键.14.若﹣x m y4与x3y n是同类项,则(m﹣n)9=﹣1.【分析】首先根据同类项定义可得m=3,n=4,再代入(m﹣n)9进行计算即可.【解答】解:由题意得:m=3,n=4,则(m﹣n)9=﹣1,故答案为:﹣1.【点评】此题主要考查了同类项,关键是掌握所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.15.如图所示的运算程序中,若开始输入的x值为100,我们发现第1次输出的结果为50,第2次输出的结果为25,…,则第2019次输出的结果为2.【分析】根据设计的程序进行计算,找到循环的规律,根据规律推导计算.【解答】解:由设计的程序,知依次输出的结果是50,25,32,16,8,4,2,1,8,4,2,1…,发现从8开始循环.则2019﹣4=2015,2015÷4=503…3,故第2019次输出的结果是2.故答案为:2【点评】此题主要考查了数字的变化规律,正确发现循环的规律,根据循环的规律进行推广.该题中除前4次不循环外,后边是4个一循环.16.如图,第n个图形是由正n+2边形“扩展”而来(n=1,2,3,4…),第n个图形中共有(n+2)(n+3)个顶点(结果用含n的式子表示).【分析】由已知图形得出顶点的个数是序数分别与2、3和的乘积,据此可得.【解答】解:由图形知,当n=1时,顶点的个数为12=3×4;当n=2时,顶点的个数20=4×5;当n=3时,顶点的个数30=5×6;当n=4时,顶点的个数42=6×7;……所以第n个图形中顶点的个数为(n+2)(n+3)(个),故答案为:(n+2)(n+3).【点评】本题主要考查图形的变化规律,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.三、解答題(本大题共8小题,满分72分,解答须写出文字说明、推理过程)17.计算:(1)(﹣7)+(﹣5)﹣(﹣13)﹣(+10)(2)﹣(﹣1)10×2+(﹣2)3÷4【分析】(1)先化简,再计算加减法即可求解;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(﹣7)+(﹣5)﹣(﹣13)﹣(+10)=﹣7﹣5+13﹣10=﹣22+13=﹣9;(2)﹣(﹣1)10×2+(﹣2)3÷4=﹣1×2+(﹣8)÷4=﹣2﹣2=﹣4.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.先化简,再求值:,其中x=﹣2,y=﹣3【分析】先去掉括号,然后合并同类项,再把x、y的值代入进行计算即可得解.【解答】解:原式==﹣3x+y2,把x=﹣2,y=﹣3代入﹣3x+y2=﹣3×(﹣2)+(﹣3)2=6+9=15.【点评】本题考查了整式加减,先化简然后再代入数据进行求值更加简便,整式的加减实质就是去括号,合并同类项的运算.19.解下列方程:(1)2(x+3)=5(x﹣3)(2)【分析】(1)直接去括号进而合并同类项解方程即可;(2)直接去分母进而移项合并同类项解方程即可.【解答】解:(1)2(x+3)=5(x﹣3)2x+6=5x﹣15,则3x=21,解得:x=7;(2)45﹣5(2x﹣1)=3(4﹣3x)﹣15x,整理得:14x=38,解得:x=.【点评】此题主要考查了解一元一次方程,正确掌握解题方法是解题关键.20.有理数a,b,c在数轴上的位置如图所示请化简:﹣|a|﹣|b+2|+2|c|﹣|a+b|+|c﹣a|.【分析】根据数轴上点的位置,判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】根据题意得:a=﹣2.5,b=﹣0.5,c=1.5,则b+2>0,a+b<0,c﹣a<0,则化简得:a﹣(b+2)+2c+(a+b)﹣(c﹣a)=3a+c代入数值a=﹣2.5,b=﹣0.5,c=1.5,原式=﹣6.【点评】本题考查了合并同类项,利用绝对值的性质化简绝对值,利用合并同类项,代数数值得出答案.21.我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x的一元一次方程3x=m是“和解方程”,求m的值;(2)已知关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.【分析】(1)根据和解方程的定义即可得出关于m的一元一次方程,解之即可得出结论;(2)根据和解方程的定义即可得出关于m、n的二元二次方程组,解之即可得出m、n的值.【解答】解:(1)∵方程3x=m是和解方程,∴=m+3,解得:m=﹣.(2)∵关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,∴﹣2n=mn+n,且mn+n﹣2=n,解得m=﹣3,n=﹣.【点评】本题考查了一元一次方程的解、解一元一次方程以及二元二次方程组,解题的关键是:根据“和解方程“的定义列出关于m的一元一次方程;根据和解方程的定义列出关于m、n的二元二次方程组.22.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为30元,乙平均每本书的价格为15元,优惠后甲乙两人的书费共283.5元(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场7.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?【分析】(1)设甲购书x本,则乙购书为(15﹣x)本,再根据总价格列出方程即可;(2)先计算7.5折后的价格,加上办卡的费用,与原来的价格差即为节省的钱数.【解答】解:(1)甲购书x本,则乙购书为(15﹣x)本,由题意得30x×0.9+15(15﹣x)×0.9=283.5解得x=6则15﹣x=9答:甲购书6本,乙购书9本.(2)购书7.5折的应付款表示为283.5÷0.9×0.75=236.25办卡节省的费用为283.5﹣236.25﹣20=22.25答:办卡购书比不办卡购书共节省22.25元.【点评】本题考查的是一元一次方程应用中的打折销售问题,明确等量关系,并正确列出方程是解题的关键.23.如图1,已知∠AOB=126°,∠COD=54°,OM在∠AOC内,ON在∠BOD内,∠AOM=∠AOC,∠BON=∠BOD.(1)∠COD从图1中的位置绕点O逆时针旋转到OC与OB重合时,如图2,求∠MON的度数;(2)∠COD从图2中的位置绕点O逆时针旋转n°(0<n<126且n≠54),求∠MON的度数.【分析】(1)根据∠MON=∠BOM+∠BON计算即可;(2)分两种情形分别计算即可.【解答】解:(1)由题意;∠MON=∠AOB+∠COD=86°+28°=114°;(2)①当0<n<54°时,如图1中,∠AOC=126°﹣n°,∠BOD=54°﹣n°,∴∠MON=∠MOC+∠COB+∠BON=(126°﹣n°)+n°+(54°﹣n°)=114°,②当60°<n<120°时,如图2中,∠AOC=126°﹣n°,∠COD=54°,∠BOD=n°﹣54°∴∠MON=∠MOC+∠COD+∠DON=(126°﹣n°)+54°+(n°﹣54°)=114°.综上所述,∠MON=114°【点评】本题考查角的和差定义,解题的关键是学会用分类讨论的思想思考问题,学会利用参数解决问题.24.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣2|+|c﹣3|=0.(1)在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴正方向运动经过t秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.【分析】由绝对值的非负性可求出a,b,c的值.(1)设点P对应的数为x,分x<﹣5,﹣5≤x<2,2≤x<3及x≥3四种情况考虑,由PA+PB =PC利用两点间的距离公式,即可得出关于x的一元一次方程,解之即可得出结论;(2)找出当运动时间为t秒时点A,B,C对应的数,进而可求出AB﹣BC=6,此题得解.【解答】解:∵a,b,c满足|a+5|+|b﹣2|+|c﹣3|=0,∴a=﹣5,b=2,c=3.(1)设点P对应的数为x.当x<﹣5时,﹣5﹣x+2﹣x=3﹣x,解得:x=﹣6;当﹣5≤x<2时,x﹣(﹣5)+2﹣x=3﹣x,解得:x=﹣4;当2≤x<3时,x﹣(﹣5)+x﹣2=3﹣x,解得:x=0(舍去);当x≥3时,x﹣(﹣5)+x﹣2=x﹣3,解得:x=﹣6(舍去).综上所述:在数轴上存在点P,使得PA+PB=PC,点P对应的数为﹣6或﹣4.(2)AB﹣BC的值不变,理由如下:当运动时间为t秒时,点A对应的数为t﹣5,点B对应的数为3t+2,点C对应的数为5t+3,∴AB﹣BC=3t+2﹣(t﹣5)﹣[5t+3﹣(3t+2)]=6.∴AB﹣BC的值不变.【点评】本题考查了一元一次方程的应用、数轴以及绝对值的非负性,解题的关键是:(1)分x <﹣5,﹣5≤x<2,2≤x<3及x≥3四种情况,找出关于x的一元一次方程;(2)利用两点间的距离公式求出AB﹣BC=6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年广西北流市七年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列各数:﹣2,+2,+3.5,0,﹣,﹣0.7,11,+π,其中负分数有()A.1个B.2个C.3个D.4个2.(3分)如图,数轴上点M所表示的数可能是()A.1.5B.﹣2.6C.﹣1.6D.2.63.(3分)在下列代数式中,次数为5的单项式是()A.xy⁴B.xy⁵C.x+y⁴D.x3+y24.(3分)下面合并同类项正确的是()A.3x+2x2=5x3B.2a2b﹣a2b=1C.﹣ab﹣ab=0D.﹣y2x+xy2=05.(3分)下列有理数的大小关系判断正确的是()A.﹣(﹣)<﹣|﹣|B.﹣32>(﹣3)2C.|a|>﹣2019D.﹣<﹣6.(3分)将(3x+2)﹣2(2x﹣1)去括号正确的是()A.3x+2﹣2x+1B.3x+2﹣4x+1C.3x+2﹣4x﹣2D.3x+2﹣4x+27.(3分)小马在计算“41+x”时,误将“+”看成“﹣”,结果得12,则41+x的值应为()A.29B.53C.67D.708.(3分)在方程①3y﹣4=1;②;③5y﹣2=1;④3(x+1)=2(2x+1)中,解为1的是()A.①②B.①③C.②④D.③④9.(3分)将如图所示的直角三角形ABC绕直角边AB所在直线旋转一周,所得几何体从正面看到的形状图为()A.B.C.D.10.(3分)有下列生活,生产现象:①用两个钉子就可以把木条固定在墙上.②从A地到B地架设电线,总是尽可能沿着线段AB架设.③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④11.(3分)如图,在正方形网格中,点O,A,B,C,D均是格点,若OE平分∠BOC,则∠DOE的度数为()A.20.5°B.22.5°C.24.5°D.26.5°12.(3分)北流市某风景区的门票价格在2019年国庆期间有如下优惠:购票人数为1~50人时,每人票价格为50元;购票人数为51﹣100人时,每人门票价格45元购票人数为100人以上时,每人门票价格为40元.某初中初一有两班共103人去该风景区,如果两班都以班为单位分别购票,一共需付4860元,则两班人数分别为()A.56,47B.57,48C.58,45D.59,44二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)一只蜗牛在数轴上爬行,从原点出发爬行2个单位长度到达终点,那么这个终点表示的数值是.14.(3分)下列各组式子:①a﹣b与﹣a﹣b,②a+b与﹣a﹣b,③a+1与1﹣a,④﹣a+b与a﹣b,互为相反数的有.15.(3分)如果方程3x=9与方程2x+k=﹣1的解相同,则k=.16.(3分)在一节体育课中,体育老师将全班排成一列,班长在队伍中数了一下他前后的人数,发现前面的人数是后面的两倍,体育老师调整班长的位置,将他往前超了6位同学,发现前面的人数和后面的人数一样,问在老师调整前班长后面有多少人?设在老师调整前班长后面有x人,则列方程为.17.(3分)如图,将一张长方形纸片ABCD分别沿着BE、BF折叠,使边AB、CB均落在BD上,得到折痕BE、BF,则∠ABE+∠CBF=.18.(3分)找出下列各图形中数的规律,依此规律,那么a的值是.三、解答题(本大题共8小题,共66分)19.(10分)计算:(1)﹣24×(﹣+)(2)﹣13﹣×[3﹣(﹣3)2]20.(10分)解下列方程:(1)7﹣(3x﹣1)=x(2)+1=21.(6分)先化简,再求值:2(a2﹣ab)﹣5(a2﹣ab)+6,其中a=﹣2,b=3.22.(6分)已知a、b互为相反数,x、y互为倒数,m的绝对值是2,求:(a+b)2﹣+m3的值.23.(6分)已知轮船A在灯塔P的北偏东30°的方向上,距离为30海里,轮船B在灯塔P的南偏东45°的方向上,距离20海里.(1)请用1个单位长度表示10海里,在图上画出A、B的位置.(2)求从灯塔P看两轮船的视角∠APB的度数.24.(8分)北流市某信用社本储蓄员王芳在办理业务时,约定存入为正,取出为负,10月6日她办理了6件业务:﹣3600元,﹣46500元,+62500元,﹣5500元,﹣5400元,+2400元.(1)若他早上领取备用金60000元,那么下班时应上交给银行多少元?(2)若每办一件业务时,信用社都会发给业务量的0.05%作为奖励,那么这一天王芳应得奖金多少元?25.(10分)已知甲、乙两地相距160km,A、B两车分别从甲、乙两地同时出发,A车速度为85km/h,B车速度为65km/h.(1)A、B两车同时同向而行,A车在后,经过几小时A车追上B车?(2)A、B两车同时相向而行,经过几小时两车相距20km?26.(10分)如图,已知∠AOD和∠BOE都是直角,它们有公共顶点O(1)若∠DOE=60°,求∠AOB的度数.(2)判断∠AOE和∠BOD的大小关系,并说明理由.(3)猜想:∠AOB和∠DOE有怎样的数量关系,并说明理由.2019-2020学年广西北流市七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.【解答】解:﹣,﹣0.7是负分数,有2个,故选:B.2.【解答】解:点M表示的数大于﹣2且小于﹣1,A、1.5>﹣1,故A错误;B、﹣2.6<﹣2,故B错误;C、﹣2<﹣1.6<﹣1,故C正确;D、2.6>﹣1,故D错误.故选:C.3.【解答】解:A、xy4的次数为:1+4=5;B、xy5的次数为:1+5=6;C、x+y4,不是单项式;D、x3+y3,不是单项式;故选:A.4.【解答】解:3x+2x2不是同类项不能合并,2a2b﹣a2b=a2b,﹣ab﹣ab=﹣2ab,﹣y2x+x y2=0.故选:D.5.【解答】解:∵﹣(﹣)=,﹣|﹣|=﹣,∴﹣(﹣)>﹣|﹣|,∴选项A不符合题意;∵﹣32=﹣9,(﹣3)2=9,∴﹣32<(﹣3)2,∴选项B不符合题意;∵|a|≥0,∴|a|>﹣2019,∴选项C符合题意;∵﹣>﹣,∴选项D不符合题意.故选:C.6.【解答】解:(3x+2)﹣2(2x﹣1)=3x+2﹣4x+2.故选:D.7.【解答】解:根据题意,41﹣x=12,解得x=29,∴41+x=41+29=70.故选:D.8.【解答】解:①把y=1代入方程,左边=﹣1≠右边,则1不是方程的解;②把m=1代入方程,左边==右边,则1是方程的解;③把y=1代入方程,左边=3≠右边,则1不是方程的解;④把x=1代入方程,左边=6,右边=6,则左边=右边,1是方程的解.故选:C.9.【解答】解:Rt△ABC绕直角边AB旋转一周,所得几何体是圆锥,圆锥的主视图是等腰三角形,故选:C.10.【解答】解:根据两点之间,线段最短,得到的是:②④;①③的依据是两点确定一条直线.故选:C.11.【解答】解:由图形可知,∠BOC=135°,∠COD=45°,∵OE平分∠BOC,∴∠EOC=67.5°,∴∠DOE=67.5°﹣45°=22.5°.故选:B.12.【解答】解:设人数较少的班级有x人,则人数较多的班级有(103﹣x)人,∵4860÷45=108(人),108>103,∴1<x≤50.依题意,得:50x+45(103﹣x)=4860,解得:x=45,∴103﹣x=58.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)13.【解答】解:从原点出发,向右爬行2个单位长度,得+2,从原点出发,向作爬行2个单位长度,得﹣2,故答案为:2或﹣2.14.【解答】解:①a﹣b与﹣a﹣b=﹣(a+b),不是互为相反数,②a+b与﹣a﹣b,是互为相反数,③a+1与1﹣a,不是相反数,④﹣a+b与a﹣b,是互为相反数.故答案为:①③.15.【解答】解:解3x=9得,x=3,把x=3代入2x+k=﹣1,解得k=﹣7.16.【解答】解:设在老师调整前班长后面有x人,则列方程为:2x﹣6=x+6.故答案为:2x﹣6=x+6.17.【解答】解:由折叠得,∠ABE=∠DBE,∠CBF=∠DBF,∵∠ABE+∠DBE+∠CBF+∠DBF=∠ABC=90°,∴∠ABE+∠CBF=∠ABC=×90°=45°,故答案为:45°.18.【解答】解:由图可知,左上角的数字是一些连续的偶数,从0开始;右上角的数字都是左上角的数字加1得到的;左下角的数字都是左上角的数字加2得到的;右下角的数字都是右上角的数字与左下角的数字乘积减去左上角的数字得到的;当左上角的数字为14时,右上角数字是15,左下角数字是16,右下角数字是15×16﹣14=226,即a=226,故答案为:226.三、解答题(本大题共8小题,共66分)19.【解答】解:(1)﹣24×(﹣+)=﹣24×+24×﹣24×=﹣12+16﹣20=﹣16;(2)﹣13﹣×[3﹣(﹣3)2]=﹣1﹣×(3﹣9)=﹣1﹣×(﹣6)﹣1+1=0.20.【解答】解:(1)去括号,可得:7﹣3x+1=x,移项,合并同类项,可得:﹣4x=﹣8,系数化为1,可得:x=2.(2)去分母,可得:2(2x+1)+6=3(x+3),去括号,可得:4x+2+6=3x+9,移项,合并同类项,可得:x=1.21.【解答】解:2(a2﹣ab)﹣5(a2﹣ab)+6=2a2﹣2ab﹣2a2+5ab+6=3ab+6,当a=﹣2,b=3时,原式=3×(﹣2)×3+6=﹣12.22.【解答】解:根据题意得:a+b=0,xy=1,m=2或﹣2,当m=2时,原式=0﹣6+8=2;当m=﹣2时,原式=0﹣6﹣8=﹣14.综上所述,(a+b)2﹣+m3的值为2或﹣14..23.【解答】解:(1)轮船A在灯塔P的北偏东30°的方向上,距离为30海里,轮船B在灯塔P的南偏东45°的方向上,距离20海里,如图所示,点A,B即为所求;(2)根据题意可知:∠APB=60°+45°=105°答:从灯塔P看两轮船的视角∠APB的度数为105°.24.【解答】解:(1)(﹣3600)+(﹣46500)+62500+(﹣5500)+(﹣5400)+2400=3900元,60000+3900=63900元,答:下班时应上交给银行63900元.(2)(|﹣3600|+|﹣46500|+|62500|+|﹣5500|+|﹣5400|+|2400|)×0.05%=62.95元,答:这一天王芳应得奖金62.95元.25.【解答】解:(1)设经过x小时A车追上B车,依题意,得:85x﹣65x=160,解得:x=8.答:经过8小时A车追上B车.(2)设经过y小时两车相距20km.两车相遇前,85y+65y=160﹣20,解得:y=;两车相遇后,85y+65y=160+20,解得:y=.答:经过或小时两车相距20km.26.【解答】解:(1)因为∠AOD和∠BOE都是直角∠DOE=60°,所以∠AOE=∠AOD﹣∠DOE=90°﹣60°=30°所以∠AOB=∠AOE+∠BOE=30°+90°=120°答:∠AOB的度数为120°.(2)∠AOE和∠BOD的大小关系是相等,理由如下:因为∠AOD和∠BOE都是直角所以∠AOE=∠AOD﹣∠DOE=90°﹣∠DOE∠BOD=∠BOE﹣∠DOE=90°﹣∠DOE所以∠AOE=∠BOD.(3)∠AOB+∠DOE=180°.理由如下:因为∠AOB=∠AOD+∠DOB=90°+∠DOB所以∠DOB=∠AOB﹣90°因为∠DOE=∠BOE﹣∠DOB=90°﹣∠DOB所以∠DOB=90°﹣∠DOE所以∠AOB﹣90°=90°﹣∠DOE所以∠AOB+∠DOE=180°.。

相关文档
最新文档