七年级数学综合测试题.docx

合集下载

初一数学综合试题.doc

初一数学综合试题.doc

初一数学综合试题班级: 学号: 姓名: 分数:一、填空题(每小题3分,共30分)1、已知⎩⎨⎧==2y 3x 是方程组⎩⎨⎧=+=+9ay -b)x (a 13by ax 的解,则a= ,b= 。

2、设a 、b 是已知数,且a <0,则不等式ax+b <0的解集是 。

3、若4y x b a 32-+与y -3x 2y b 4a 的和是单项式,则x y = 。

4、不等式组⎪⎩⎪⎨⎧≤+4x-109x -152-2x62x -31-x 的整数解是 。

5、3%的食盐和1%的食盐水按1:x 混合成浓度为y%的食盐水,试用含x的代数式表示y= 。

6、一个角的余角和它的补角之比是2:7,则这个角是 。

7、如图,有 条线段。

8、如图,长方体中与棱AB 平行的棱有 ,与棱AB 平 行的面有 。

9、已知:如图,C 、D 是线段AB 上两点, 设AB=a ,CD=b ,M 、N 分别是AC 、CD 、DB 的中点,则AM+PB= 。

10、如图,AB ∥CD ,∠ABE=1200, ∠BEC=900,则∠ECD= 。

二、选择题(每小题3分,共30分)1、下列方程组中,是二元一次方程组的是( )A 、⎩⎨⎧==0x 1y -xB 、⎩⎨⎧==+2z -y 3y xC 、⎪⎩⎪⎨⎧=+=+1y 1x 1-13y 2x D 、⎩⎨⎧=+=y 4x 01-xy2、如图,所表示的解集是( )A 、⎩⎨⎧≥=02-x 01xB 、⎩⎨⎧≤+02-x 01xC 、⎩⎨⎧+02-x 01xD 、⎩⎨⎧≤+02-x 01x3、若关于x 、y 的方程(m-3)x m2-3m+1+y+2=0是二元一次方程,则m 的值为( )A 、m=3, 0B 、m=0C 、m=0, 3D 、以上答案均不对4、若3m <2m ,则关于x 的不等式54-mx4 的解集是( )A 、0>x >mB 、无解C 、8m >x >9mD 、9m >x >8m5、某商店经销一种商品,由于进货价降低了5%,出售价不变,使得利润率由m%提高到(m+6)%,[出售价=进货价(1+利润率)],则m 的值为( )A 、10B 、12C 、14D 、17 6、如图,∠1=1050,∠2+∠3=1800, 则∠4等于( )A 、650B 、750C 、800D 、10507、如图,∠1>∠2,那么21(∠1-∠2)与∠2之间的关系是( )A 、和为450B 、和为22.5 0C 、互补D 、互余8、如图,与∠3是同旁内角的 有( )A 、2个B 、1个C 、0个D 、以上答案均不对 9、如图,已知∠AOB 与∠AOD 的 度数是1:5,OC ⊥OA ,OC 平分∠BOD , 则∠AOB=( )A 、30B 、25C 、22.5D 、以上答案均不对 10、如图,长方形ABCD 中,F 为边 CD 的中点,边BC 的长等于BE 长的3倍, 则长方形ABCD 的面积等于阴影部分面积 的( )倍。

七年级数学全册单元测试卷综合测试卷(word含答案)

七年级数学全册单元测试卷综合测试卷(word含答案)
(2)解:设再经过 x 秒后点 P、Q 两点相距 6cm. 当点 P 在点 Q 左边时,2(x+3)+4x+6=30 解得 x=3; 当点 P 在点 Q 右边时,2(x+3)+4x-6=30 解得 x=5, 所以再经过 3 或 5 秒后点 P、Q 两点相距 6cm;
(3)解:设点 Q 运动的速度为每秒 xcm. 当 P、Q 两点在点 O 左边相遇时,120÷60x=30-2,
七年级数学全册单元测试卷综合测试卷(word 含答案)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.数轴上 A, B, C, D 四点表示的有理数分别为 1, 3, -5, -8 (1)计算以下各点之间的距离:①A、B 两点, ②B、C 两点,③C、D 两点, (2)若点 M、N 两点所表示的有理数分别为 m、n,求 M、N 两点之间的距离. 【答案】 (1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.
② 如图⑥,在(1)问的条件下,延长 AB 到点 M , 延长 FE 到点 N , 过点 B 和点 E 分 别作射线 BP 和 EP , 交于点 P , 使得 BD 平分∠ MBP , EN 平分∠ DEP , 若∠ MBD= 25°,则∠ D﹣∠ P=_____=14; 当 P、Q 两点在点 O 右边相遇时,240÷60x=30-6, 解得 x=6, 所以若 P、Q 两点能相遇点 Q 运动的速度为每秒 14cm 或 6cm. 【解析】【分析】(1)根据点 P、Q 运动路程和等于 AB 求解;(2)分点 P 在点 Q 左右两边两 种可能来解答;(3)分情况讨论,P、Q 在点 O 左右两边相遇来解答.
(2)MN=
【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计 算即可; (2)因为 m、n 的大小未知,则 M、N 两点间的距离为它们所表示的有理数之差的绝对值.

七年级数学期末试卷综合测试卷(word含答案)

七年级数学期末试卷综合测试卷(word含答案)

七年级数学期末试卷综合测试卷(word 含答案)一、选择题1.庆祝澳门回归祖国20周年时,据统计澳门共有女性约360000人,则360000用科学记数法可以表示为( ) A .53610⨯B .60.3610⨯C .53.610⨯D .43610⨯2.下列说法中不正确的是( ) A .两点之间线段最短B .过直线外一点有且只有一条直线与这条直线平行C .直线外一点与直线上各点连接的所有线段中,垂线段最短D .若 AC=BC ,则点 C 是线段 AB 的中点3.钟面上8:45时,时针与分针形成的角度为( ) A .7.5° B .15° C .30°D .45°4.下列各式中与a b c --的值不相等的是( ) A .()a b c -+ B .()a b c -- C .()()a b c -+- D .()()c b a --- 5.下列四个数中,最小的数是() A .5B .0C .1-D .4-6.如图所示的正方体的展开图是( )A .B .C .D .7.国家体育场“鸟巢”的建筑面积达258000m 2,用科学记数法表示为( ) A .25.8×105 B .2.58×105 C .2.58×106 D .0.258×107 8.下列算式中,运算结果为负数的是( )A .()3--B .()33--C .()23-D .3--9.如图,点C 、D 为线段AB 上两点,6AC BD +=,且75AD BC AB +=,则CD 等于( )A .6B .4C .10D .30710.如图正方体纸盒,展开后可以得到( )A .B .C .D .11.下列计算正确的是( ) A .277a a a +=B .22232x y yx x y -=C .532y y -=D .325a b ab +=12.如果a 和14-b 互为相反数,那么多项式()()2210723b a a b -++--的值是 ( ) A .-4B .-2C .2D .413.3-的倒数是( ) A .3B .13C .13-D .3-14.如图,是一个正方体的展开图则“数”字的对面的字是( )A .核B .心C .素D .养15.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒二、填空题16.已知a b c d ,,,表示4个不同的正整数,满足23490a b c d +++=,其中1>d ,则a b c d +++的最大值是__________.17.如图,快艇从P 处向正北航行到A 处时,向左转50︒航行到B 处,再向右转80︒继续航行,此时的航行方向为_____.(用方位角来表示)18.若代数式2a-b 的值是4,则多项式2-a+12b 的值是_______________ . 19.已知76A ∠=︒,则A ∠的余角的度数是_____________. 20.当x =1时,代数式ax 2+2bx+1的值为0,则2a+4b ﹣3=_____. 21.若2x =-是关于x 的方程23a x+=的解,则a 的值为_______. 22.若 2230α'∠=︒,则α∠的余角等于________.23.在 -2 、-3 、4、5 中选取2个数相除,则商的最小值是________. 24.比较大小:-12____23-(填“>”,“<”或“=”) 25.下表是某校七﹣九年级某月课外兴趣小组活动时间统计表,其中各年级同一兴趣小组每次活动时间相同,但表格中九年级的两个数据被遮盖了,记得九年级文艺小组活动次数与科技小组活动次数相同. 年级 课外小组活动总时间(单位:h ) 文艺小组活动次数 科技小组活动次数 七年级 17 6 8 八年级 14.5 57九年级12.5则九年级科技小组活动的次数是_____.三、解答题26.如图,OC 是AOB ∠内的一条射线,OD 、OE 分别平分AOB ∠、AOC ∠.(1)若80BOC ∠=︒,40AOC ∠=︒,求DOE ∠的度数; (2)若BOC α∠=,50AOC ∠=︒,求DOE ∠的度数;(3)若BOC α∠=,AOC β∠=,试猜想DOE ∠与α、β的数量关系并说明理由. 27.计算:(1)1+(―2)+|-3|; (2)2115524326⎛⎫-⨯-+⎪⎝⎭. 28.点A 、O 、B 、C 从左向右依次在数轴上的位置如图所示,点O 在原点,点A 、B 、C 表示的数分别是a 、b 、c .(1)若a=﹣2,b=4,c=8,D 为AB 中点,F 为BC 中点,求DF 的长. (2)若点A 到原点的距离为3,B 为AC 的中点. ①用b 的代数式表示c ;②数轴上B 、C 两点之间有一动点M ,点M 表示的数为x ,无论点M 运动到何处,代数式 |x ﹣c|﹣5|x ﹣a|+bx+cx 的值都不变,求b 的值.29.先化简,再求值.22225(3)4(31)a b ab ab a b ---+-,其中2(2)10a b ++-=.30.如图,在方格纸中, A 、 B 、 C 为 3 个格点,点 C 在直线 AB 外.(1)仅用直尺,过点 C 画AB 的垂线 m 和平行线n ; (2)请直接写出(1)中直线m 、n 的位置关系. 31.在如图所示的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长为1,已知四边形的四个顶点在格点上,利用格点和直尺按下列要求画图:(1)过点O 画AD 的平行线CE ,过点B 画CD 的垂线,垂足为F ;(2)四边形ABCD 的面积为____________32.先化简,再求值:3x 2+(2xy -3y 2)-2(x 2+xy -y 2),其中x =-1,y =2. 33.化简与求值 (1)求3x 2+x +3(x 2﹣23x )﹣(6x 2+x )的值,其中x =﹣6. (2)先化简,再求值:5(3a 2b ﹣ab 2)﹣4(﹣ab 2+3a 2b ),其中|a +1|+(b ﹣12)2=0 四、压轴题34.(阅读理解)如果点M ,N 在数轴上分别表示实数m ,n ,在数轴上M ,N 两点之间的距离表示为MN m n(m n)=->或MN n m(n m)=->或m n -.利用数形结合思想解决下列问题:已知数轴上点A 与点B 的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B 在点A 的右侧,点C 表示的数与点B 表示的数互为相反数,动点P 从A 出发,以每秒2个单位的速度向终点C 移动,设移动时间为t 秒.()1点A 表示的数为______,点B 表示的数为______.()2用含t 的代数式表示P 到点A 和点C 的距离:PA =______,PC =______.()3当点P 运动到B 点时,点Q 从A 点出发,以每秒4个单位的速度向C 点运动,Q 点到达C 点后,立即以同样的速度返回,运动到终点A ,在点Q 开始运动后,P 、Q 两点之间的距离能否为2个单位?如果能,请求出此时点P 表示的数;如果不能,请说明理由.35.如图一,点C 在线段AB 上,图中有三条线段AB 、AC 和BC ,若其中一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”.(1)填空:线段的中点 这条线段的巧点(填“是”或“不是”或“不确定是”) (问题解决)(2)如图二,点A 和B 在数轴上表示的数分别是20-和40,点C 是线段AB 的巧点,求点C 在数轴上表示的数。

七年级数学全册单元测试卷综合测试卷(word含答案)

七年级数学全册单元测试卷综合测试卷(word含答案)

七年级数学全册单元测试卷综合测试卷(word含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.点在线段上, .(1)如图1,,两点同时从,出发,分别以,的速度沿直线向左运动;①在还未到达点时,求的值;②当在右侧时(点与不重合),取中点,的中点是,求的值;(2)若是直线上一点,且 .求的值.【答案】(1)解:①AP=AC-PC,CQ=CB-QB,∵BC=2AC,P、Q速度分别为1cm/s、2cm/s,∴QB=2PC,∴CQ=2AC-2PC=2AP,∴②设运动秒,分两种情况A: 在右侧,,分别是,的中点,,∴B: 在左侧,,分别是,的中点,,∴(2)解:∵BC=2AC.设AC=x,则BC=2x,∴AB=3x,①当D在A点左侧时,|AD-BD|=BD-AD=AB= CD,∴CD=6x,∴;②当D在AC之间时,|AD-BD|=BD-AD= CD,∴2x+CD-x+CD= CD,x=- CD(不成立),③当D在BC之间时,|AD-BD|=AD-BD= CD,∴x+CD-2x+CD= CD,CD= x,∴;|AD-BD|=BD-AD= CD,∴2x-CD-x-CD= CD,∴CD=;④当D在B的右侧时,|AD-BD|=BD-AD= CD,∴2x-CD-x-CD= CD,CD=6x,∴ .综上所述,的值为或或或【解析】【分析】(1)由线段的和差关系,以及QB=2PC,BC=2AC,即可求解;(2)设AC=x,则BC=2x,∴AB=3x,D点分四种位置进行讨论,①当D在A点左侧时,②当D在AC之间时,③当D在BC之间时,④当D在B的右侧时求解即可.2.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数________ ,点P表示的数________(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x﹣8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【答案】(1)点B表示的数是﹣6;点P表示的数是8﹣5t(2)解:设点P运动x秒时,在点C处追上点Q (如图)则AC=5x,BC=3x,∵AC﹣BC=AB∴5x﹣3x=14…解得:x=7,∴点P运动7秒时,在点C处追上点Q(3)解:没有变化.分两种情况:①当点P在点A.B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB=7…②当点P运动到点B的左侧时:MN=MP﹣NP= AP﹣ BP= (AP﹣BP)= AB=7…综上所述,线段MN的长度不发生变化,其值为7…(4)解:式子|x+6|+|x﹣8|有最小值,最小值为14.…【解析】【分析】(1)由于A点表示的数是8,故OA=8,又AB=14,从而得出OB=AB-OA=6,由于点B表示的数在原点的左边,故B点表示的数是-6,根据路程等于速度乘以时间得出AP=5t,从而得出P点表示的数是8-5t;(2)设点P运动x秒时,在点C处追上点Q (如图)格努路程定于速度乘以时间得出AC=5x,BC=3x,然后由AC﹣BC=AB列出方程求解即可得出x的值;(3)没有变化.根据线段中点的定义得出PM=AP,NP=BP,分两种情况:①当点P在点A.B两点之间运动时,由MN=MP+NP= AP+ BP= (AP+BP)= AB得出答案;②当点P运动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP)= AB得出答案,综上所述即可得出答案;(4)式子|x+6|+|x﹣8|有最小值,最小值为14,点D是数轴上一点,点D表示的数是x,那么|x+6|表示点D,B两点间的距离,|x﹣8|表示点D,A两点间的距离,要|x+6|+|x﹣8|其实质就是DB+AD的和,要DB+AD的和最小,只有在D为线段AB上的时候,DB+AD的和最小=AB,即可得出答案。

人教版七年级上数学期末综合能力测试题(含答案).doc

人教版七年级上数学期末综合能力测试题(含答案).doc

人教版七年级上学期数学期末综合能力测试题(一)一、填空题1、俯视图为圆的立体图形可能是______________ 。

2、观察下列图形和所给表样中的数据后回答问题。

当图形的周长为80时,梯形的个数为____________ 。

3、近似数3.1 x 105精确到 _______ ,有__________ 有效数字。

4、为了了解某地初中二年级男生的身高情况,从其中的一个学校测量了60名男生的身高,分组情况如下:(单位:cm)请问:a= ________ , b= _________ ,c= _______ ,m= _______ ,n= _________ .5、一家商店将某种微波炉按原价提高40%t标价,又以8折优惠卖出,结果每台微波炉比原价多赚了180元,这种微波炉原价是______________ 。

&已知x是整数,且3< |x| V 5,贝U x= ___________ 。

7、方程2y —6=y+7变形为2y —y=7+6,这种变形叫 _________________ ,根据是8 9 10 118有公共顶点的两条射线分别表示南偏西15°与北偏东25°,则这两条射线组成的角的度数为 _______________________ .11111 19从和式................. 中,去掉两个数,使余下的数之和为1,这两个数2 4 6 8 10 12是___ 。

10一跳蚤在一直线上从O点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,,,,依此规律跳下去,当它跳第100次落下时,落点处离O点的距离是___________ 个单位.112、 一个角的余角比它的补角的-还少20°,则这个角的度数是。

313、 某市2004年接待境外游客人数和旅游直接创汇名列全省前茅, 实现旅游直接创 汇29092700美元,这个数用科学计数法表示是 _______________ 元(保留三个有 效数字)11 乘火车从A 站出发,沿途经过3个车站方可到达B 站,那么在A 、B 两站之间需 要安排不同的车票 __________ 种。

七年级数学期末试卷综合测试卷(word含答案)

七年级数学期末试卷综合测试卷(word含答案)

七年级数学期末试卷综合测试卷(word含答案)七年级数学期末试卷综合测试卷(word 含答案)一、选择题1.下列计算正确的是() A .325a b ab += B .532y y -= C .277a a a += D .22232x y yx x y -=2.如图,点C 是线段AB 上一点,点D 是线段AC 的中点,则下列等式不成立的是()A .AD +BD =AB B .BD ﹣CD =CBC .AB =2ACD .AD =12AC 3.单项式24x y 3-的次数是( ) A .43-B .1C .2D .34.下列图形中1∠和2∠互为余角的是() A .B .C .D .5.若a ,b 互为倒数,则4ab -的值为 A .4-B .1-C .1D .06.如图,将一段标有0~60均匀刻度的绳子铺平后折叠(绳子无弹性),使绳子自身的一部分重叠,然后在重叠部分沿绳子垂直方向剪断,将绳子分为A 、B 、C 三段,若这三段的长度由短到长的比为1:2:3,则折痕对应的刻度不可能是()A .20B .25C .30D .357.﹣3的相反数为() A .﹣3B .﹣13C .13D .38.2019年是中华人民共和国成立70周年,10月1日上午在天安门举行了盛大的阅兵式和群众游行,约有115000名官兵和群众参与,是我们每个中国人的骄傲.将115000用科学计数法表示为()A .115×103B .11.5×104C .1.15×105D .0.115×1069.下列说法:①两点之间,直线最短;②若AC =BC ,则点C 是线段AB 的中点;③同一平面内过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行.其中正确的说法有() A .1个B .2个C .3个D .4个10.下列生活、生产现象:①用两个钉子就可以把木条固定在墙上;②从A 地到B 地架设电线,总是尽可能沿着线段架设;③植树时,只要定出两颗树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有() A .①②B .①③C .②④D .③④11.有理数a 、b 在数轴上的位置如图所示,则下列各式正确的是( )A .ab >0B .|b|<|a|C .b <0<aD .a+b >012.让人欲罢不能的主题曲,让人潸然泪下的小故事,让人惊叹不已的演出阵容《我和我的祖国》首日票房超过285000000元,数字285000000科学记数法可表示为() A .2.85×109 B .2.85×108C .28.5×108D .2.85×10613.单项式24x y 3-的次数是( ) A .43-B .1C .2D .314.已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是( )A .圆柱B .圆锥C .球体D .棱锥15.下列说法中,正确的是()A .单项式232ab -的次数是2,系数为92- B .2341x y x -+-是三次三项式,常数项是1C .单项式a 的系数是1,次数是0D .单项式223x y-的系数是2-,次数是3二、填空题16.地球的半径大约为6400000m ,用科学计数法表示地球半径为___________m . 17.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为31n +;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数).“C 运算”不停地重复进行,例如,66n =时,其“C 运算”如下:…若35n =,则第2020次“C 运算”的结果是________.18.在数轴上到-3的距离为4个单位长度的点表示的数是___. 19.如图是一把剪刀,若∠AOB+∠COD =60°,则∠BOD =____°.20.已知有理数a 、b 表示的点在数轴上的位置如图所示,化简:1b a a --+=_______.21.按照下图程序计算:若输入的数是-3 ,则输出的数是________22.线段AB=10cm ,BC=5cm ,A 、B 、C 三点在同一条直线上,则AC=______.23.在墙上固定一根木棒时,至少需要两根钉子,这其中所体现的“基本事实”是______.24.如图,已知3654AOB '∠=?,射线OC 在AOB ∠的内部且12AOC BOC ∠=∠,则AOC ∠=___.25.216x -的系数是________三、解答题26.如图,在方格纸中,点A 、B 、C 是三个格点(网格线的交点叫做格点)(1)画线段BC ,画射线AB ,过点A 画BC 的平行线AM ;(2)过点C 画直线AB 的垂线,垂足为点D ,则点C 到AB 的距离是线段______的长度;(3)线段CD ______线段CB (填“>”或“<”),理由是______.27.某校七年级科技兴趣小组计划制作一批飞机模型,如果每人做6个,那么比计划多做了10个,如果每人做5个,那么比计划少做了14个.该兴趣小组共有多少人?计划做多少个飞机模型?28.计算:(1)2(2)(3)(4)---?-.(2)125(60)236??--?-. 29.运动场环形跑道周长400米,小红跑步的速度是爷爷的53倍,小红在爷爷前面20米,他们沿跑道的同一方向同时出发,5min 后小红第一次与爷爷相遇.小红和爷爷跑步的速度各是多少? 30.解方程(组) (1)3(4)12x -= (2)2121136x x -+-= (3) 5616795x y x y +=??-=?31.先化简,再求值.22225(3)4(31)a b ab ab a b ---+-,其中2(2)10a b ++-=.32.给出定义:我们用(a ,b )来表示一对有理数a ,b ,若a ,b 满足a ﹣b =ab +1,就称(a ,b )是“泰兴数”如2﹣11=233+1,则(2,13)是“泰兴数”.(1)数对(﹣2,1),(5,23)中是“泰兴数”的是.(2)若(m ,n )是“泰兴数”,求6m ﹣2(2m +mn )﹣2n 的值;(3)若(a,b)是“泰兴数”,则(﹣a,﹣b)“泰兴数”(填“是”或“不是”).33.如图,数轴上A,B两点表示的数分别为a,b,且a,b满足|a+5|+(b﹣10)2=0.(1)则a=,b=;(2)点P,Q分别从A,B两点同时向右运动,点P的运动速度为每秒5个单位长度,点Q的运动速度为每秒4个单位长度,运动时间为t(秒).①当t=2时,求P,Q两点之间的距离.②在P,Q的运动过程中,共有多长时间P,Q两点间的距离不超过3个单位长度?③当t≤15时,在点P,Q的运动过程中,等式AP+mPQ=75(m为常数)始终成立,求m 的值.四、压轴题34.如图一,点C在线段AB上,图中有三条线段AB、AC和BC,若其中一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)填空:线段的中点这条线段的巧点(填“是”或“不是”或“不确定是”)(问题解决)和40,点C是线段AB的巧点,求(2)如图二,点A和B在数轴上表示的数分别是20点C在数轴上表示的数。

初一数学综合测试题初一数学综合测试题

初一数学综合测试题初一数学综合测试题

精编资料初一数学综合测试题(一). 班级 姓名 评分. 一、选择题(每小题3分,共15分). 1.解方程2x=x-1,移项正确的是( ). A . 2x+x=-1 B.2x-x=1C.2x-x=-1D.-2x-x=1 ...初一初一数学综合测试题(一)班级 姓名 评分一、选择题(每小题3分,共15分)1.解方程2x=x-1,移项正确的是( ).A . 2x+x=-1 B.2x-x=1 C.2x-x=-1 D.-2x-x=12、已知 都满足方程y=kx-b ,则k 、b 的值分别为() A . 一5,—7 B —5,—5 C 5,3 D 5,73.能铺满地面的正多边形组合是( ).A .正三角形和正八边形B .正五边形和正十边形C .正方形和正八边形D .正六边形和正八边形4、如图,下列是轴对称图形的是( )A 、(1)、(2);B 、(1)、(2)、(3);C 、(1)、(3)、(4);D 、(2)、(3)、(4);5.3件衬衣平均价格15元,4双袜子平均价格5元,5双手套平均价格3元,共花钱( ).A.23元B.80元C.67元D.100元二、填空题(每小题3分,共30分)6、当时,关于的方程是一元一次方程。

7.若两数和是11,差是7,则这两个数分别为。

8 .如果是方程3x-ay=8的一个解,那么a= .9.已知(x-y+9)2+=0,则x= ,y= .10.有一个布袋,里面装着1个红球,2个白球,3个黑球,现随机地从中取出一个球,该球是红色的,这是个事件.11.5个数a,2,4,1,5的平均数是3,则a= , 这一组数据的中位数·12.已知⊿ABC,∠A=40°,∠B-∠C=40°,则∠B= °,∠C= °.13.已知⊿ABC中周长是12cm,且三边a,b,c满足a+c=2b,a-c= 2cm,则a= cm ,b= cm, c= cm.14.等腰三角形两边分别为3cm和6cm,则它的周长为 .15、若一个多边形的每一个内角都等于,则这个多边形是____边形,它的内角和等于____.三、解答题(每小题5分,共30分)16. x-32–2x+13=1 17.五、(24小题6分,25小题7分,共13分)24.小明家搬了新居,为了解用电量多少,6月份连续记录用电表示数,:日期1日2日3日4日5日6日7日电表示数(度)115118122127133136140(1)这一周平均每天用电量是多少? 每天用电量的众数是多少?(2)若用电标准收费为每度0.32元,请你帮小明算一下他家6月份的电费是多少?25. 解方程组并将其解与方程组的解进行比较,你能得出什么结论?将上述两方程组推广为一般情形,并判定其解的情况。

七年级数学期末试卷综合测试卷(word含答案)

七年级数学期末试卷综合测试卷(word含答案)

七年级数学期末试卷综合测试卷(word 含答案)一、选择题1.将一张正方形纸片ABCD 按如图所示的方式折叠,AE 、AF 为折痕,点B 、D 折叠后的对应点分别为B ′、D ′,若∠B ′A D ′=16°,则∠EAF 的度数为( ).A .40°B .45°C .56°D .37° 2.已知关于x 的方程34x a -=的解是x a =-,则a 的值是( ) A .1 B .2 C .1- D .2- 3.下列图形中1∠和2∠互为余角的是( )A .B .C .D .4.下列运算正确的是A .325a b ab +=B .2a a a +=C .22ab ab -=D .22232a b ba a b -=-5.如图,给出下列说法:①∠B 和∠1是同位角;②∠1和∠3是对顶角;③ ∠2和∠4是内错角;④ ∠A 和∠BCD 是同旁内角. 其中说法正确的有( )A .0个B .1个C .2个D .3个6.下列四个图形中,能用1∠,AOB ∠,O ∠三种方法表示同一个角的是()A.B. C.D.7.若要使得算式-3□0.5的值最大,则“□”中填入的运算符号是()A.+B.-C.× D.÷8.小明在某月的日历中圈出了三个数,算出它们的和是14,那么这三个数的位置可能是()A.B.C.D.9.如图,某同学用剪刀沿虚线将三角形剪掉一个角,发现四边形的周长比原三角形的周长要小,能正确解释这一现象的数学知识是()A.两点之间,线段最短B.经过一点,有无数条直线C.垂线段最短D.经过两点,有且只有一条直线10.-8的绝对值是()A.8 B.18C.-18D.-811.一个几何体的侧面展开图如图所示,则该几何体的底面是()A.B.C.D.12.下列说法:①两点之间,直线最短;②若AC=BC,则点C是线段AB的中点;③同一平面内过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行.其中正确的说法有()A.1个B.2个C.3个D.4个13.下列计算正确的是( )A .277a a a +=B .22232x y yx x y -=C .532y y -=D .325a b ab +=14.下列各图是正方体展开图的是( )A .B .C .D .15.下列计算正确的是( )A .2334a a a +=B .﹣2(a ﹣b)=﹣2a+bC .5a ﹣4a=1D .2222a b a b a b -=-二、填空题16.用边长为10 cm 的正方形,做了一套七巧板.拼成如图所示的一座“桥”,则“桥”中涂色部分的面积为______cm.17.3615︒'的补角等于___________︒___________′.18.已知关于 x 的一元一次方程 5x - 2a = 6 的解 x=1,则 a 的值是___________.19.计算: x(x-2y) =______________20.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为31n +;②当n 为偶数时,结果为2k n (其中k 是使2kn 为奇数的正整数).“C 运算”不停地重复进行,例如,66n =时,其“C 运算”如下:…若35n =,则第2020次“C 运算”的结果是________.21.若4550a ∠=︒',则a ∠的余角为______.22.多项式32ab b +的次数是______.23.如果向北走20米记作+20米,那么向南走120米记为______米.24.如图,135AOD ∠=︒,75COD ∠=︒,OB 平分AOC ∠,则BOC ∠=________度.25.若线段AB =8cm ,BC =3cm ,且A 、B 、C 三点在同一条直线上,则AC =______cm .三、解答题26.解下列方程:(1)3(1)4(21)8x x --+=(2)12123x x -+-= 27.解下列方程: (1)()5123x x -=- (2)143123y y ---= 28.如图,∠AOB 是平角,OD 是∠AOC 的角平分线,∠COE =∠BOE .(1)若∠AOC = 50°,则∠DOE = °;(2)若∠AOC = 50°,则图中与∠COD 互补的角为 ;(3)当∠AOC 的大小发生改变时,∠DOE 的大小是否发生改变?为什么?29.如图,点O 为直线AB 上一点,过点O 作射线OC ,使∠BOC =135°,将一个含45°角的直角三角板的一个顶点放在点O 处,斜边OM 与直线AB 重合,另外两条直角边都在直线AB 的下方.(1)将图1中的三角板绕着点O 逆时针旋转90°,如图2所示,此时∠BOM = ;在图2中,OM 是否平分∠CON ?请说明理由;(2)接着将图2中的三角板绕点O 逆时针继续旋转到图3的位置所示,使得ON 在∠AOC 的内部,请探究:∠AOM 与∠CON 之间的数量关系,并说明理由;(3)将图1中的三角板绕点O 按每秒4.5°的速度沿逆时针方向旋转一周,在旋转的过程中,当旋转到第 秒时,∠COM 与∠CON 互补.30.先化简,再求值:2a 2b ﹣3ab 2﹣2(a 2b +ab 2),其中a =1,b =﹣2.31.如图,点 O 在直线 AB 上, O C 、 O D 是两条射线, O C OD ⊥,射线OE 平分 BOC ∠.(1)若 150DOE ∠=︒,求AOC ∠的度数.(2)若DOE α∠=,则 AOC ∠= .(请用含α的代数式表示)32.如图,C 为线段AD 上一点,点B 为CD 的中点,且AD=8cm,BD=1cm(1)求AC 的长(2)若点E 在直线AD 上,且EA=2cm,求BE 的长33.如图,射线OM 上有三点,,A B C ,满足40OA =cm ,30AB =cm ,20BC =cm.点P 从点O 出发,沿OM 方向以2cm/秒的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点,P Q 停止运动.(1)若点Q 运动速度为3cm/秒,经过多长时间,P Q 两点相遇?(2)当2PB PA =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度;(3)自点P 运动到线段AB 上时,分别取OP 和AB 的中点,E F ,求OB AP EF-的值.四、压轴题34.探索、研究:仪器箱按如图方式堆放(自下而上依次为第1层、第2层、…),受堆放条件限制,堆放时应符合下列条件:每层堆放仪器箱的个数a n 与层数n 之间满足关系式a n =n²−32n+247,1⩽n<16,n 为整数。

七年级数学期末试卷综合测试卷(word含答案)

七年级数学期末试卷综合测试卷(word含答案)

七年级数学期末试卷综合测试卷(word 含答案)一、选择题1.若关于x 的方程2x ﹣m=x ﹣2的解为x=3,则m 的值是( ) A .5B .﹣5C .7D .﹣72.按图中程序计算,若输出的值为9,则输入的数是( )A .289B .2C .1-D .2或1- 3.在有理数2,-1,0,-5中,最大的数是( )A .2B .C .0D .4.如图,已知AOB ∠是直角,OM 平分AOC ∠,ON 平分BOC ∠,则MON ∠的度数是( )A .30°B .45°C .50°D .60°5.把一个数a 增加2,然后再扩大2倍,其结果应是( )A .22a +⨯B .()22a +C .24a a ++D .()222a a +++6.已知点A 、B 、C 、D 在同一条直线上,线段8AB =,C 是AB 的中点, 1.5DB =.则线段CD 的长为( ) A .2.5B .3.5C .2.5或5.5D .3.5或5.57.有理数 a 在数轴上的位置如图所示,下列各数中,可能在 1 到 2 之间的是( )A .-aB .aC .a -1D .1 -a8.已知一个多项式与3x 2+9x 的和等于3x 2+4x ﹣1,则这个多项式是( ) A .﹣5x ﹣1 B .5x+1C .13x ﹣1D .6x 2+13x ﹣19.如图,是一张长方形纸片(其中AB ∥CD ),点E ,F 分别在边AB ,AD 上.把这张长方形纸片沿着EF 折叠,点A 落在点G 处,EG 交CD 于点H .若∠BEH =4∠AEF ,则∠CHG 的度数为( )A.108°B.120°C.136°D.144°10.让人欲罢不能的主题曲,让人潸然泪下的小故事,让人惊叹不已的演出阵容《我和我的祖国》首日票房超过285000000元,数字285000000科学记数法可表示为()A.2.85×109B.2.85×108C.28.5×108D.2.85×10611.如图所示的几何体的左视图是()A.B.C.D.12.下列各图是正方体展开图的是()A.B.C.D.13.未来三年,国家将投入8 500亿元用于缓解群众“看病难,看病贵”问题.将8 500亿元用科学记数法表示为()A.0.85×104亿元B.8.5×103亿元C.8.5×104亿元D.85×102亿元14.下列各图中,可以是一个正方体的平面展开图的是( )A.B.C.D.15.下列各图中,是四棱柱的侧面展开图的是( )A.B.C.D.二、填空题16.2019上半年溧水实现GDP为420.3亿元,增幅排名全市11个区第一,请用科学计数法表示2019上半年溧水GDP为_________元.17.一组“数值转换机”按下面的程序计算,如果输入的数是10,那么输出的结果为19,要使输出的结果为17,则输入的最小正整数是______.18.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为31n +;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数).“C 运算”不停地重复进行,例如,66n =时,其“C 运算”如下:…若35n =,则第2020次“C 运算”的结果是________.19.已知关于x 的方程2ax=(a+1)x+3的解是正整数,则正整数a=_____. 20.将一张长方形纸条折成如图所示的图形,如果∠1=64°,那么∠2=_______.21.点A 、B 、C 在同一条数轴上,其中点A 、B 表示的数分别为﹣3、1,若BC =2,则AC 等于_____.22.如图,一副三角尺有公共的顶点A ,则 DAB EAC ∠-∠=________.23.若规定这样一种运算法则a ※b=a 2+2ab ,例如3※(-2) = 32+ 2× 3×(-2) =-3 ,则 (-2) ※3 的值为_______________.24.一个角的余角比这个角的补角15的大10°,则这个角的大小为_____. 25.若a 、b 为实数,且()2320a b ++-=,则b a 的值是_________三、解答题26.如果两个角之差的绝对值等于45°,则称这两个角互为“半余角”,即若|∠α-∠β |=45°,则称∠α、∠β互为半余角.(注:本题中的角是指大于0°且小于180°的角)(1)若∠A =80°,则∠A 的半余角的度数为 ;(2)如图1,将一长方形纸片ABCD 沿着MN 折叠(点M 在线段AD 上,点N 在线段CD 上)使点D 落在点D ′处,若∠AMD ′与∠DMN 互为“半余角”,求∠DMN 的度数; (3)在(2)的条件下,再将纸片沿着PM 折叠(点P 在线段BC 上),点A 、B 分别落在点A ′、B ′处,如图2.若∠AMP 比∠DMN 大5°,求∠A ′MD ′的度数.27.由几个相同的棱长为1的小立方块搭成的几何体的俯视图如图所示,方格中的数字表示该位置的小立方块的个数.(1)在下面方格纸中画出这个几何体的1主视图与左视图; (2)求该几何体的表面积28.先化简,再求值:()()2222222x xy yxxy y +--+-,其中1x =-,2y =.29.周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)他们的对话内容,求小明和爸爸的骑行速度,(2)一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m ? 30.小明去买纸杯蛋糕,售货员阿姨说:“一个纸杯蛋糕12元,如果你明天来多买一个,可以参加打九折活动,总费用比今天便宜24元.”问:小明今天计划买多少个纸杯蛋糕? 若设小明今天计划买纸杯蛋糕的总价为x 元,请你根据题意完善表格中的信息,并列方程解答.单价 数量 总价 今天 12 x 明天31.用相同的小立方体搭一个几何体,从正面、上面看到的形状图如图所示,从上面看到的形状图中小正方形的字母表示在该位置上小立方体的个数,请回答下列问题:(1)a ,b ,c 各表示的数字是几?(2)这个几何体最多由几个小立方体搭成?最少呢?(3)当1d e ==,2f =时,画出这个几何体从左面看得到的形状图. 32.把 6个相同的小正方体摆成如图的几何体.(1)画出该几何体的主视图、左视图、俯视图;(2)如果每个小正方体棱长为1cm ,则该几何体的表面积是 2cm .(3)如果在这个几何体上再添加一些相同的小正方体,并并保持左视图和俯视图不变,那么最多可以再 添加 个小正方体. 33.如图,点P 是∠AOB 的边OB 上的一点 (1)过点P 画OA 的平行线PQ (2)过点P 画OA 的垂线,垂足为H (3)过点P 画OB 的垂线,交OA 于点C(4)线段PH 的长度是点P 到______的距离,______是点C 到直线OB 的距离. (5)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC .PH 、OC 这三条线段大小关系是______(用“<“号连接).四、压轴题34.点A 、B 在数轴上分别表示数,a b ,A 、B 两点之间的距离记为AB .我们可以得到AB a b =-:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5两点之间的距离是 ;数轴上表示1和a 的两点之间的距离是 .(2)若点A 、B 在数轴上分别表示数-1和5,有一只电子蚂蚁在数轴上从左向右运动,设电子蚂蚁在数轴上的点C 对应的数为c .①求电子蚂蚁在点A 的左侧运动时AC BC +的值,请用含c 的代数式表示; ②求电子蚂蚁在运动的过程中恰好使得1511c c ,c 表示的数是多少? ③在电子蚂蚁在运动的过程中,探索15c c 的最小值是 .35.一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求b 的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由;(3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫ ⎪⎝+⎭-也是“相伴数对”.36.某市两超市在元旦节期间分别推出如下促销方式: 甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折; 已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少? (2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由. 37.已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?38.尺规作图是指用无刻度的直尺和圆规作图。

七年级数学期末试卷综合测试(Word版 含答案)

七年级数学期末试卷综合测试(Word版 含答案)

七年级数学期末试卷综合测试(Word 版 含答案)一、选择题1.下列说法错误的是( )A .2的相反数是2-B .3的倒数是13C .3-的绝对值是3D .11-,0,4这三个数中最小的数是0 2.方程去分母后正确的结果是( ) A .B .C .D .3.A 、B 两地相距550千米,甲、乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为110千米/小时,乙车的速度为90千米/小时,经过t 小时,两车相距50千米,则t 的值为( )A .2.5B .2或10C .2.5或3D .3 4.一袋面粉的质量标识为“100±0.25千克”,则下列面粉质量中合格的是( )A .100.30千克B .99.51千克C .99.80千克D .100.70千克 5.某小组计划做一批中国结,如果每人做6个,那么比计划多做9个;如果每人做4个,那么比计划少做7个.设计划做个“中国结”,可列方程为( ).A .B .C .D .6.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( ) A .AC =BC B .AB =2AC C .AC +BC =AB D .12BC AB =7.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β一定相等的图形个数共有( )A .1个B .2个C .3个D .4个8.甲队有工人272人,乙队有工人196人,如果要求乙队的人数是甲队人数的,应从乙队调多少人去甲队.如果设应从乙队调x 人到甲队,列出的方程正确的是( )A .272+x =(196-x )B .(272-x )= (196-x )C .(272+x )= (196-x )D .×272+x = (196-x )9.下列计算正确的是( )A .277a a a +=B .22232x y yx x y -=C .532y y -=D .325a b ab +=10.下列运算中,结果正确的是( )A .3a 2+4a 2=7a 4B .4m 2n+2mn 2=6m 2nC .2x ﹣12x =32x D .2a 2﹣a 2=2 11.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m +n )C .4nD .4m12.某商品原价为m 元,由于供不应求,先提价30%进行销售,后因供应逐步充足,价格又一次性降价30%,售价为n 元,则m ,n 的大小关系为( )A .m n =B .0.91n m =C .30%n m =-D .30%n m =- 13.单项式24x y 3-的次数是( ) A .43- B .1 C .2 D .3 14.如图,是一个正方体的展开图则“数”字的对面的字是( )A .核B .心C .素D .养15.2-的相反数是( )A .2-B .2C .12D .12- 二、填空题16.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母y ,则a 的值为__________.17.-6的相反数是 .18.若单项式2a m b 4与-3ab 2n 是同类项,则m -n =__.19.已知线段 AB=7cm ,点 C 在直线 AB 上,若 AC=3cm ,点 D 为线段 BC 的中点,则线段AD= ___________________cm.20.如图,三个一样大小的小长方形沿“竖-横-竖”排列在一个长为10,宽为8的大长方形中,则图中一个小长方形的宽为______.21.如果一个角的余角等于它本身,那么这个角的补角等于__________度.22.已知1x =-是方程23ax a =-的解,则a =__________.23.若关于x 的方程1322020x x b +=+的解是2x =,则关于y 的方程1(1)32(1)2020y y b -+=-+的解是__________. 24.如图所示,在P Q 、处把绳子AB 剪断,且::2:3:4AP PQ QB =,若剪断的各段绳子中最长的一段为16cm ,则绳子的原长为___________25.如图,点C 在直线AB 上,(A C 、、B 三点在一条直线上,)若CE CD ⊥,已知150∠=︒,则2∠=________°三、解答题26.已知线段AB =12cm ,C 为线段AB 上一点,BC =5cm ,点D 为AC 的中点,求DB 的长度.27.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.(请利用网格作图,画出的线请用铅笔描粗描黑)(1)过点C 画AB 的垂线,并标出垂线所过格点E ;(2)过点C 画AB 的平行线CF ,并标出平行线所过格点F ;(3)直线CE 与直线CF 的位置关系是 ;(4)连接AC,BC,则三角形ABC的面积为.28.在一条直路上的A、B、C、D四个车站的位置如图所示(单位千米),如果小明家在A站旁,他的同学小亮家在B站旁,新华书店在D站旁,一天小明乘车从A站出发到D站下车去新华书店购买一些课外阅读书籍,途径B、C两站,当小明到达C站时发现自己所带钱不够购买自己所要的书籍.于是他乘车返回到B站处下车向小亮借足了钱,然后乘车继续赶往D站旁的新华书店.(1)求C、D两站的距离;(用含有a、b的代数式表示)(2)求这一天小明从A站到D站乘车路程.(用含有a、b的代数式表示)O A B三点均在格点(格点指网格中水平线和竖直线的交点) 29.如图所示方格纸中,点,,OB OA交于格点O,点C是直线OB上的格点,按要求画图并回答问题.上,直线,(1)过点C画直线OB的垂线,交直线OA于点D;过点C画直线OA的垂线,垂足为E;DF OB在图中找一格点F,画直线DF,使得//(2)线段CE的长度是点C到直线的距离,线段CD的长度是点到直线OB的距离. 30.一项工程由甲单独做需12天完成,由乙单独做需8天完成,若两人合作3天后,剩下部分由乙单独完成,乙还需做多少天?31.为响应国家节能减排的号召,鼓励人们节约用电,保护能源,某市实施用电“阶梯价格”收费制度.收费标准如表:居民每月用电量单价(元/度)不超过50度的部分0.5超过50度但不超过200度的部分0.6超过200度的部分0.8已知小智家上半年的用电情况如表(以200度为标准,超出200度记为正、低于200度记为负)一月份二月份 三月份 四月份 五月份 六月份 ﹣50 +30 ﹣26 ﹣45 +36 +25 根据上述数据,解答下列问题(1)小智家用电量最多的是 月份,该月份应交纳电费 元;(2)若小智家七月份应交纳的电费200.6元,则他家七月份的用电量是多少?32.某商店以每盏20元的价格采购了一批节能灯,运输过程中损坏了2 盏,然后以每盏25元的价格售完,共获得利润150元.该商店共购进了多少盏节能灯?33.某小组计划做一批“中国结”如果每人做 5 个,那么比计划多了 9 个;如果每人做 4 个,那么比 计划少了 15 个.该小组共有多少人?计划做多少个“中国结”? 小明和小红在认真思考后,根据题意分别列出了以下两个不同的方程:①59415x x -=+;②91554y y +-= (1)①中的x 表示 ;②中的y 表示 .(2)请选择其中一种方法,写出完整的解答过程.四、压轴题34.[ 问题提出 ]一个边长为 ncm(n ⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm 的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究 ]我们先从特殊的情况入手(1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体; 一面涂色的:在面上,每个面上有1个,共有6个;两面涂色的:在棱上,每个棱上有1个,共有12个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.(2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体:一面涂色的:在面上,每个面上有4个,正方体共有 个面,因此一面涂色的共有 个; 两面涂色的:在棱上,每个棱上有2个,正方体共有 条棱,因此两面涂色的共有 个; 三面涂色的:在顶点处,每个顶点处有1个,正方体共有 个顶点,因此三面涂色的共有 个…[ 问题解决 ]一个边长为ncm(n ⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个; 两面涂色的:在棱上,共有______个; 三面涂色的:在顶点处,共______个。

七年级数学期末试卷综合测试卷(word含答案)

七年级数学期末试卷综合测试卷(word含答案)

七年级数学期末试卷综合测试卷(word含答案)一、选择题1.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打9折;③一次性购书超过200元,一律打8折.如果小明同学一次性购书付款162元,那么他所购书的原价为( )A.180元B.202.5元C.180元或202.5元D.180元或200元2.庆祝澳门回归祖国20周年时,据统计澳门共有女性约360000人,则360000用科学记数法可以表示为()A.5⨯D.436103.610⨯3610⨯C.5⨯B.60.36103.下列四个数中,最小的数是()A.5 B.0 C.1-D.4-4.截止到今年6月初,东海县共拥有镇村公交线路28条,投入镇村公交42辆,每天发班236班次,日行程5286公里,方便了98. 46万农村人口的出行.数据“98. 46万”可以用科学记数法表示为()A.4⨯D.69.846100.984610⨯98.4610⨯C.5⨯B.49.846105.有理数a、b在数轴上的位置如图所示,则化简|a+b|-|a-b|的结果为()A.2a B.-2b C.-2a D.2b6.如图,若将三个含45°的直角三角板的直角顶点重合放置,则∠1的度数为( )A.15°B.20°C.25°D.30°7.图中几何体的主视图是()A.B.C.D.8.一个几何体的侧面展开图如图所示,则该几何体的底面是()A .B .C .D .9.我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨.将167000用科学记数法表示为( )A .316710⨯B .416.710⨯C .51.6710⨯D .60.16710⨯ 10.若,,则多项式与的值分别为( ) A .6,26 B .-6,26 C .-6,-26 D .6,-2611.一5的绝对值是( ) A .5 B .15 C .15- D .-512.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m +n )C .4nD .4m13.下列各图是正方体展开图的是( )A .B .C .D .14.-5的相反数是( )A .15B .±5C .5D .-1515.下列运用等式的性质,变形正确的是( )A .若x=y ,则x ﹣5=y+5B .若a=b ,则ac=bcC .若a b c c =,则2a=3bD .若x=y ,则x y a a= 二、填空题16.单项式223x y π-的次数为_________________17.要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是_____. 18.如图,已知ON ⊥l ,OM ⊥l ,所以OM 与ON 重合,其理由是________.19.已知有理数a 、b 表示的点在数轴上的位置如图所示,化简:1b a a --+=_______.20.在数轴上,点A (表示整数a )在原点O 的左侧,点B (表示整数b )在原点O 的右侧,若a b -=2019,且AO =2BO ,则a +b 的值为_________21.如图,O 为模拟钟面圆心,M 、O 、N 在一条直线上,指针OA 、OB 分别从OM 、ON 同时出发,绕点O 按顺时针方向转动,OA 运动速度为每秒12°,OB 运动速度为每秒4°,当一根指针与起始位置重合时,转动停止,设转动的时间为t 秒,当t =______秒时,∠AOB=60°.22.比较大小:-12____23-(填“>”,“<”或“=”) 23.整理一批图书,甲、乙两人单独做分别需要6小时、9小时完成.现在先由甲单独做1小时,然后两人合作整理这批图书要用_____小时.24.某班同学分组参加活动,原来每组8人,后来重新编组,每组6人,这样比原来增加了2组.设这个班共有x 名学生,则可列方程为___.25.如图为正方体的一种平面展开图,各面都标有数字,则数字为1的面所对的面上的数字是__________.三、解答题26.已知180AOB COD +=∠∠.(1)如图 1,若90,68AOB AOD ∠=∠=,求BOC ∠的度数;(2)如图 2,指出AOD ∠的补角并说明理由.27.如图,过直线AB 上点O 作AB 的垂线OE ,三角尺的一条直角边OD 从与OB 重合的位置开始,绕点O 按逆时针方向旋转至与OA 重合时停止,在旋转过程中,设BOD ∠的度数为α,作DOE ∠的平分线OF .(1)当OD 在∠BOE 的内部时,BOD ∠的余角是___________;(填写所有符合条件的角)(2)在旋转过程中,若14EOF BOF ∠=∠,求α的值; (3)在旋转过程中,作AOD ∠的平分线,OG FOG ∠的度数是否会随着α的变化而变化?若不变,直接写出FOG ∠的度数;若变化,试用含有α的式子表示FOG ∠的度数.28.(探索新知)如图1,点C 将线段AB 分成AC 和BC 两部分,若BC =πAC ,则称点C 是线段AB 的圆周率点,线段AC 、BC 称作互为圆周率伴侣线段.(1)若AC =3,则AB = ;(2)若点D 也是图1中线段AB 的圆周率点(不同于C 点),则AC DB ;(深入研究)如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C 的位置.(3)若点M 、N 均为线段OC 的圆周率点,求线段MN 的长度.(4)图2中,若点D 在射线OC 上,且线段CD 与以O 、C 、D 中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D 所表示的数.29.如图,网格线的交点叫格点,格点是的边上的一点(请利用网格作图,保留作图痕迹).(1)过点画的垂线,交于点; (2)线段 的长度是点O 到PC 的距离; (3)的理由是 ;(4)过点C 画的平行线; 30.计算:(1)243()(3)3-⨯-+-; (2)62112(3)522-+⨯--÷⨯. 31.如图,点P 是∠AOB 的边OB 上的一点.(1)过点P 画OB 的垂线,交OA 于点C ;(2)过点P 画OA 的垂线,垂足为H ;(3)线段PH 的长度是点P 到______的距离,______是点C 到直线OB 的距离,线段PC 、PH 、OC 这三条线段大小关系是______(用“<”号连接).32.如图,点C 是线段AB 的中点,6AC =.点D 在线段AB 上,且12BD AD =,求线段CD 的长.33.如图,已知在三角形ABC 中,BD AC ⊥于点D ,点E 是BC 上一点,EF AC ⊥于点F ,点M ,G 在AB 上,且AMD AGF ∠∠=,当1∠,2∠满足怎样的数量关系时,//DM BC ?并说明理由.四、压轴题34.如图,已知数轴上两点A ,B 表示的数分别为﹣2,6,用符号“AB ”来表示点A 和点B 之间的距离.(1)求AB 的值;(2)若在数轴上存在一点C ,使AC =3BC ,求点C 表示的数;(3)在(2)的条件下,点C 位于A 、B 两点之间.点A 以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C 以2个单位/秒的速度也沿着数轴的正方向运动,到达B 点处立刻返回沿着数轴的负方向运动,直到点A 到达点B ,两个点同时停止运动.设点A 运动的时间为t ,在此过程中存在t 使得AC =3BC 仍成立,求t 的值.35.已知M ,N 两点在数轴上所表示的数分别为m ,n ,且m ,n 满足:|m ﹣12|+(n +3)2=0(1)则m = ,n = ;(2)①情境:有一个玩具火车AB 如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具火车的长为 个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB 运动后对应的位置为A ′B ′.是否存在常数k 使得3PQ ﹣kB ′A 的值与它们的运动时间无关?若存在,请求出k 和这个定值;若不存在,请说明理由.36.如图:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,a 是多项式2241x x --+的一次项系数,b 是最小的正整数,单项式2412x y -的次数为.c()1a =________,b =________,c =________;()2若将数轴在点B 处折叠,则点A 与点C ________重合(填“能”或“不能”); ()3点A ,B ,C 开始在数轴上运动,若点C 以每秒1个单位长度的速度向右运动,同时,点A 和点B 分别以每秒3个单位长度和2个单位长度的速度向左运动,t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC ,则AB =________,BC =________(用含t 的代数式表示);()4请问:3AB BC -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.37.如图一,点C 在线段AB 上,图中有三条线段AB 、AC 和BC ,若其中一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”.(1)填空:线段的中点 这条线段的巧点(填“是”或“不是”或“不确定是”) (问题解决)(2)如图二,点A 和B 在数轴上表示的数分别是20-和40,点C 是线段AB 的巧点,求点C 在数轴上表示的数。

七年级数学期末试卷综合测试卷(word含答案)

七年级数学期末试卷综合测试卷(word含答案)

七年级数学期末试卷综合测试卷(word 含答案) 一、选择题 1.如图,点C 是线段AB 上一点,点D 是线段AC 的中点,则下列等式不成立的是( )A .AD +BD =AB B .BD ﹣CD =CBC .AB =2ACD .AD =12AC 2.己知x=2是关于x 的一元一次方程ax-6+a=0 的解,则a 的值为( )A .2B .2-C .1D .03.一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m 2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m 2墙面,每名一级技工比二级技工一天多粉刷10m 2墙面,设每个房间需要粉刷的墙面面积为xm 2,则下列的方程正确的是( )A .3505(10)40810--+=x x B .3505(10)40810+--=x x C .850104035+-=x x +10 D .850104035-+=x x +10 4.如图,表中给出的是某月的月历,任意选取“H”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现这7个数的和不可能的是()A .63B .70C .92D .1055.如图,几何体的名称是( )A .长方体B .三角形C .棱锥D .棱柱6.拖拉机加油50L 记作50L +,用去油30L 记作30L -,那么()5030++-等于( )A .20B .40C .60D .807.下列平面图形不能够围成正方体的是( )A .B .C .D .8.已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为( )A .B .4C .或4D .2或49.由n 个相同的小正方体搭成的几何体,其主视图和俯视图如图所示,则n 的最小值为( )A .10B .11C .12D .1310.下列说法: ①两点之间,直线最短;②若AC =BC ,则点C 是线段AB 的中点;③同一平面内过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行.其中正确的说法有( )A .1个B .2个C .3个D .4个11.如图,学校(记作A )在蕾蕾家(记作B )南偏西20︒的方向上.若90ABC ∠=︒,则超市(记作C )在蕾蕾家的( )A .北偏东20︒的方向上B .北偏东70︒的方向上C .南偏东20︒的方向上D .南偏东70︒的方向上 12.下列计算正确的是( )A .277a a a +=B .22232x y yx x y -=C .532y y -=D .325a b ab += 13.如图,是一个正方体的展开图则“数”字的对面的字是( )A .核B .心C .素D .养 14.关于零的叙述,错误的是( ) A .零大于一切负数B .零的绝对值和相反数都等于本身C .n 为正整数,则00n =D .零没有倒数,也没有相反数. 15.下列各数:-1,2π,4.112134,0,227,3.14,其中有理数有( ) A .6个 B .5个 C .4个 D .3个二、填空题16.若∠α=70°,则它的补角是 .17.若a -2b =1,则3-2a +4b 的值是__.18.如图,已知线段AB =8,若O 是AB 的中点,点M 在线段AB 上,OM =1,则线段BM 的长度为_____.19.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.20.请写出一个系数是-2,次数是3的单项式:________________.21.观察一列数:-1,2,-3,4,-5,6,-7,…,将这列数排成如图所示形式.记ij a 对应的数为第i 行第j 列的数,如234a =,那么97a 对应的数为___________.22.科学家们测得光在水中的速度约为225000000米/秒,数字225000000用科学计数法表示为___________.23.已知关于x 的一元一次方程2020342019x a x +=+的解为4x =,那么关于y 的一元一次方程2020(1)34(1)2019y a y -+=-+的解为y =___________.24.写出一个关于三棱柱的正确结论________.25.如图为正方体的一种平面展开图,各面都标有数字,则数字为1的面所对的面上的数字是__________.三、解答题26.先化简,再求值:3x 2+(2xy -3y 2)-2(x 2+xy -y 2),其中x =-1,y =2.27.在平面内,将一副直角三角板按如图所示的方式摆放,其中三角形ABC 为含60°角的直角三角板,三角形BDE 为含45°角的直角三角板.(1)如图1,若点D 在AB 上,则∠EBC 的度数为 ;(2)如图2,若∠EBC =170°,则∠α的度数为 ;(3)如图3,若∠EBC =118°,求∠α的度数;(4)如图3,若0°<∠α<60°,求∠ABE -∠DBC 的度数.28.如图,直线AB 、CD 相交于点O ,已知∠AOC =75°,∠BOE :∠DOE =2:3.(1)求∠BOE 的度数;(2)若OF 平分∠AOE ,∠AOC 与∠AOF 相等吗?为什么?29.如图,点O 为原点,A 、B 为数轴上两点,点A 表示的数a ,点B 表示的数是b ,且()232+4=0ab b +-.(1)a = ,b = ;(2)在数轴上是否存在一点P ,使2PA PB OP -=,若有,请求出点P 表示的数,若没有,请说明理由?(3)点M 从点A 出发,沿A O A →→的路径运动,在路径A O →的速度是每秒2个单位,在路径O A →上的速度是每秒4个单位,同时点N 从点B 出发以每秒3个单位长向终点A 运动,当点M 第一次回到点A 时整个运动停止.几秒后MN =1?30.解方程:(1)5(x+8)=6(2x-7)+5(2)2x 13-=2x 16+-1 31.解方程:(1)5(x ﹣1)+2=3﹣x(2)2121136x x -+=-32.有三条长度均为a的线段,分别按以下要求画圆.(1)如图①,以该线段为直径画一个圆,记该圆的周长为C1;如图②,在该线段上任取一点,再分别以两条小线段为直径画两个圆,这两个圆的周长的和为C2,请指出C1和C2的数量关系,并说明理由;(2)如图③,当a=11时,以该线段为直径画一个大圆,再在大圆内画若千小圆,这些小圆的直径都和大圆的直径在同一条直线上,且小圆的直径的和等于大圆的直径,那么图中所有小圆的周长的和为.(直接填写答案,结果保留π)33.解方程(组)(1)3(4)12x-=(2)2121 136x x-+ -=(3)5616 795 x yx y+=⎧⎨-=⎩四、压轴题34.[ 问题提出 ]一个边长为 ncm(n⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究 ]我们先从特殊的情况入手(1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体;一面涂色的:在面上,每个面上有1个,共有6个;两面涂色的:在棱上,每个棱上有1个,共有12个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.(2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体:一面涂色的:在面上,每个面上有4个,正方体共有 个面,因此一面涂色的共有 个; 两面涂色的:在棱上,每个棱上有2个,正方体共有 条棱,因此两面涂色的共有 个; 三面涂色的:在顶点处,每个顶点处有1个,正方体共有 个顶点,因此三面涂色的共有 个…[ 问题解决 ]一个边长为ncm(n ⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个; 两面涂色的:在棱上,共有______个; 三面涂色的:在顶点处,共______个。

七年级数学期末试卷综合测试(Word版 含答案)

七年级数学期末试卷综合测试(Word版 含答案)

七年级数学期末试卷综合测试(Word 版 含答案)一、选择题1.2020的相反数是( )A .2020B .﹣2020C .12020D .﹣120202.下列运用等式的性质,变形不正确的是:A .若x y =,则55x y +=+B .若x y =,则ax ay =C .若x y =,则x y a a =D .若a b c c=(c ≠0),则a b = 3.如图,给出下列说法:①∠B 和∠1是同位角;②∠1和∠3是对顶角;③ ∠2和∠4是内错角;④ ∠A 和∠BCD 是同旁内角. 其中说法正确的有( )A .0个B .1个C .2个D .3个 4.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是( ) A . B .C .D .5.下列四个数中,最小的数是()A .5B .0C .1-D .4- 6.下列几何体三视图相同的是( )A .圆柱B .圆锥C .三棱柱D .球体 7.点P 为直线L 外一点,点A 、B 、C 为直线上三点,PA=6cm ,PB=8cm ,PC=4cm ,则点P 到直线l 的距离为( )A .4cmB .6cmC .小于 4cmD .不大于 4cm8.如图,将正方体的平面展开图重新折成正方体后,“会”字对面的字是( )A .秦B .淮C .源D .头9.如图,点C 是AB 的中点,点D 是BC 的中点,则下列等式中正确的有( )①CD AC DB =-②CD AD BC =-③2BD AD AB =- ④13CD AB = A .4个 B .3个 C .2个 D .1个10.一个正方体的表面展开图可以是下列图形中的( )A .B .C .D .11.小红在计算23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭时,拿出 1 张等边三角形纸片按如图所示方式进行操作. ①如图1,把 1 个等边三角形等分成 4 个完全相同的等边三角形,完成第 1 次操作;②如图 2,再把①中最上面的三角形等分成 4 个完全相同的等边三角形,完成第 2 次操作;③如图 3,再把②中最上面的三角形等分成 4 个完全相同的等边三角形,······依次重复上述操作.可得23202011114444⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近的数是()A.13B.12C.23D.112.如图,数轴的单位长度为1,如果点表示的数为-2,那么点表示的数是().A.-1B.0C.3D.413.在同一平面内,下列说法中不正确的是()A.两点之间线段最短B.过直线外一点有且只有一条直线与这条直线平行C.过直线外一点有且只有一条直线与这条直线垂直D.若AC BC=,则点C是线段AB的中点.14.如图,用一副特制的三角板可以画出一些特殊角.在下列选项中,不能画出的角度是()A.81B.63C.54D.5515.下列说法中正确的有()①经过两点有且只有一条直线;②连接两点的线段叫两点的距离;③两点之间的所有连线中,垂线段最短;④过直线外一点有且只有一条直线与已知直线平行.A.0个B.1个C.2个D.3个二、填空题16.在0,1,π,227-这些数中,无理数是___________ .17.单项式235a b -的次数为____________. 18.如图,将一张长方形的纸片沿折痕EF 翻折,使点C 、D 分别落在点M 、N 的位置,且∠BFM=12∠EFM ,则∠BFM 的度数为_______19.下列三个日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某名同学的跳远成绩. 其中,可以用“两点之间线段最短”来解释的是________ .(填序号)20.如图,A 、B 是河l 两侧的两个村庄.现要在河l 上修建一个抽水站P ,使它到两个村庄A 、B 的距离和最小,小丽认为在图中连接AB 与l 的交点就是抽水站P 的位置,你认为这里用到的数学基本事实是_________________________________.21.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元。

七年级下册数学期末试卷综合测试卷(word含答案)

七年级下册数学期末试卷综合测试卷(word含答案)

七年级下册数学期末试卷综合测试卷(word 含答案)一、选择题1.实数2的平方根为() A .2B .2±C .2D .2±2.下列汽车商标图案中,可以由一个“基本图案”通过连续平移得到的是( ) A .B .C .D .3.在平面直角坐标系中,点()2,3P 所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限4.下列命题中,是假命题的是( ) A .两条直线被第三条直线所截,同位角相等 B .同旁内角互补,两直线平行C .在同一平面内,过一点有且只有一条直线与已知直线垂直D .如果两条直线都与第三条直线平行,那么这两条直线也互相平行5.如图,//AB CD ,P 为平行线之间的一点,若AP CP ⊥,CP 平分∠ACD ,68ACD ∠=︒,则∠BAP 的度数为( )A .56︒B .58︒C .66︒D .68︒6.若23a =-,2b =--,()332c =--,则a ,b ,c 的大小关系是( )A .a b c >>B .c a b >>C .b a c >>D .c b a >>7.如图,在//AB CD 中,∠AEC =50°,CB 平分DCE ∠,则ABC ∠的度数为( )A .25°B .30°C .35°D .40°8.已知点0(E x ,)o y ,点2(F x ,2)y ,点1(M x ,1)y 是线段EF 的中点,则0212x x x +=,0212y y y +=.在平面直角坐标系中有三个点A (1,1-),B (1-,1-),C (0,1),点P (0,2)关于点A 的对称点1P (即P ,A ,1P 三点共线,且1)PA P A =,1P 关于点B 的对称点2P ,2P 关于点C 的对称点3P ,⋯按此规律继续以A ,B ,C 三点为对称点重复前面的操作.依次得到点4P ,5P ,6P ⋯,则点2015P 的坐标是( ) A .(0,0)B .(0,2)C .(2,4-)D .(4-,2)二、填空题9.若23(2)m n =0,则n m =________ .10.已知点(),2019A a 与点202()0,B b 关于y 轴对称,则+a b 的值为__________. 11.如图,C 在直线BE 上,∠ABC 与∠ACE 的角平分线交于点1A ,∠A=m,若再作∠1A BE 、∠1A CE 的平分线,交于点2A ;再作∠2A BE 、∠2A CE 的平分线,交于点3A ;……;依次类推,则A n ∠为_______.12.将直角三角板与两边平行的纸条如图放置,若154∠=︒,则2∠=__________︒.13.如图,在ABC ∆中,若将ABC ∆沿DE 折叠,使点A 与点C 重合,若BCD ∆的周长为25,ABC ∆的周长为35,则AE =_______.14.对于正数x 规定1()1f x x=+,例如:11115(3),()11345615f f ====++,则f (2020)+f(2019)+……+f (2)+f (1)+1111()()()()2320192020f f f f ++⋯++=___________ 15.已知点A 在x 轴上方,y 轴左侧,到x 轴的距离是3,到y 轴的距离是4,那么点A 的坐标是______________.16.如图,点A (0,1),点1A (2,0),点2A (3,2),点3A (5,1)…,按照这样的规律下去,点1000A 的坐标为 _____.三、解答题17.计算下列各式的值: (1)|–2|–3–8 + (–1)2021; (2)()2133+3––6⎛⎫ ⎪⎝⎭.18.求满足下列各式的未知数x . (1)2(1)16x +=.(2)31(6)322x -=.19.完成下面推理过程,并在括号中填写推理依据:如图,AD ⊥BC 于点D ,EG ⊥BC 于点G ,∠E =∠3,试说明:AD 平分∠BA C . 证明:∵AD ⊥BC ,EG ⊥BC ∴∠ADC = =90°(垂直定义) ∴ ∥EG (同位角相等,两直线平行) ∴∠1= ( ) ∠2=∠3( ) 又∵∠3=∠E (已知) ∴ =∠2 ∴AD 平分∠BAC20.如图,三角形ABC 的顶点都在格点上,将三角形ABC 向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:(1)平移后的三个顶点坐标分别为:1A ______,1B ______,1C ______; (2)画出平移后三角形111A B C ; (3)求三角形ABC 的面积.21.已知a 是172-的整数部分,b 是173-的小数部分. (1)求a ,b 的值;(2)求()()324a b -++的平方根.二十二、解答题22.如图,用两个面积为2200cm 的小正方形拼成一个大的正方形.(1)则大正方形的边长是 ;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为4:3,且面积为2360cm ?二十三、解答题23.已知:直线AB ∥CD ,直线MN 分别交AB 、CD 于点E 、F ,作射线EG 平分∠BEF 交CD 于G ,过点F 作FH ⊥MN 交EG 于H . (1)当点H 在线段EG 上时,如图1 ①当∠BEG =36︒时,则∠HFG = .②猜想并证明:∠BEG 与∠HFG 之间的数量关系.(2)当点H 在线段EG 的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG 与∠HFG 之间的数量关系.24.已知ABC ,//DE AB 交AC 于点E ,//DF AC 交AB 于点F .(1)如图1,若点D 在边BC 上, ①补全图形; ②求证:A EDF ∠=∠.(2)点G 是线段AC 上的一点,连接FG ,DG .①若点G 是线段AE 的中点,请你在图2中补全图形,判断AFG ∠,EDG ∠,DGF ∠之间的数量关系,并证明;②若点G 是线段EC 上的一点,请你直接写出AFG ∠,EDG ∠,DGF ∠之间的数量关系. 25.如图,已知直线a ∥b ,∠ABC =100°,BD 平分∠ABC 交直线a 于点D ,线段EF 在线段AB 的左侧,线段EF 沿射线AD 的方向平移,在平移的过程中BD 所在的直线与EF 所在的直线交于点P .问∠1的度数与∠EPB 的度数又怎样的关系?(特殊化)(1)当∠1=40°,交点P 在直线a 、直线b 之间,求∠EPB 的度数;(2)当∠1=70°,求∠EPB 的度数;(一般化)(3)当∠1=n°,求∠EPB 的度数(直接用含n 的代数式表示).26.己知:如图①,直线MN ⊥直线PQ ,垂足为O ,点A 在射线OP 上,点B 在射线OQ 上(A 、B 不与O 点重合),点C 在射线ON 上且2OC =,过点C 作直线//l PQ .点D 在点C 的左边且3CD =(1)直接写出的BCD ∆面积 ;(2)如图②,若AC BC ⊥,作CBA ∠的平分线交OC 于E ,交AC 于F ,试说明CEF CFE ∠=∠;(3)如图③,若ADC DAC ∠=∠,点B 在射线OQ 上运动,ACB ∠的平分线交DA 的延长线于点H ,在点B 运动过程中HABC∠∠的值是否变化?若不变,求出其值;若变化,求出变化范围. 【参考答案】一、选择题 1.D 解析:D 【分析】利用平方根的定义求解即可.【详解】∵2的平方根是故选D.【点睛】此题主要考查了平方根的定义,注意一个正数的平方根有2个,它们互为相反数.2.B【分析】根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解.【详解】解:A、可以由一个“基本图案”旋转得到,故本选项错误;B、可以由一个“基本图案”平移得到,故把本选项正解析:B【分析】根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解.【详解】解:A、可以由一个“基本图案”旋转得到,故本选项错误;B、可以由一个“基本图案”平移得到,故把本选项正确;C、是轴对称图形,不是基本图案的组合图形,故本选项错误;D、是轴对称图形,不是基本图案的组合图形,故本选项错误.故选:B.【点睛】本题考查了生活中的平移现象,仔细观察各选项图形是解题的关键.3.A【分析】根据在各象限内,点坐标的符号规律即可得.【详解】>>,解:20,30∴在平面直角坐标系中,点()P所在的象限是第一象限,2,3故选:A.【点睛】本题考查了点坐标的符号规律,熟练掌握点坐标的符号规律是解题关键.4.A【分析】根据平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推论可逐项判断求解.【详解】解:A.两平行直线被第三条直线所截得的同位角相等,故此选项为假命题,符合题意;B. 同旁内角互补,两直线平行,真命题,不符合题意;C. 在同一平面内,过一点有且只有一条直线与已知直线垂直,真命题,不符合题意;D. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行,真命题,不符合题意; 故选A . 【点睛】本题主要考查平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推论,掌握相关内容是解题的关键. 5.A 【分析】过P 点作PM //AB 交AC 于点M ,直接利用平行线的性质以及平行公理分别分析即可得出答案. 【详解】解:如图,过P 点作PM //AB 交AC 于点M .∵CP 平分∠ACD ,∠ACD =68°, ∴∠4=12∠ACD =34°. ∵AB //CD ,PM //AB , ∴PM //CD , ∴∠3=∠4=34°, ∵AP ⊥CP , ∴∠APC =90°,∴∠2=∠APC -∠3=56°, ∵PM //AB , ∴∠1=∠2=56°, 即:∠BAP 的度数为56°, 故选:A . 【点睛】此题主要考查了平行线的性质以及平行公理等知识,正确利用平行线的性质分析是解题关键. 6.D 【分析】根据乘方运算,可得平方根、立方根,根据绝对值,可得绝对值表示的数,根据正数大于负数,可得答案. 【详解】解:∵233a =--,2b =()()33222c =-=--=,>>,∴c b a故选:D.【点睛】本题考查了实数比较大小,先化简,再比较,解题的关键是掌握乘方运算,绝对值的化简.7.A【分析】根据平行线的性质得到∠ABC=∠BCD,∠ECD=∠AEC=50°再根据角平分线的定义得到∠BCE=∠BCD =1∠ECD=25°,由此即可求解.2【详解】解:∵AB∥CD,∴∠ABC=∠BCD,∠ECD=∠AEC=50°∵CB平分∠DCE,∠ECD=25°∴∠BCE=∠BCD =12∠ABC=∠BCD=25°故选A.【点睛】本题考查了平行线的性质,角平分线的定义,掌握平行线的性质:两直线平行,内错角相等是解题的关键.8.A【分析】首先利用题目所给公式求出的坐标,然后利用公式求出对称点的坐标,依此类推即可求出的坐标;由的坐标和的坐标相同,即坐标以6为周期循环,利用这个规律即可求出点的坐标【详解】解:设,∵,解析:A【分析】首先利用题目所给公式求出1P的坐标,然后利用公式求出对称点2P的坐标,依此类推即可求出7P的坐标;由7P的坐标和1P的坐标相同,即坐标以6为周期循环,利用这个规律即可求出点2015P 的坐标 【详解】解:设()1P xy ,, ∵()1,1A -,()0,2P ,且A 是1PP 的中点, ∴021122x y ++==-,,解得:2y 4x ==-,, ∴()124P -, 同理可得:()()()()()()234567424022000224P P P P P P ----,,,,,,,,,,,, ∴每6个点一个循环, ∵201533656=∴点2015P 的坐标是()500P , 故选A 【点睛】此题考查了平面直角坐标系中坐标规律的探索,读懂题目,利用题目所给公式是解题的关键,利用公式求出几个点的坐标,找到循环规律,利用这个规律即可求出.二、填空题 9.9 【解析】试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n -2=0,解得:m=-3,n=2,则==9. 考点:非负数的性质.解析:9 【解析】试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n -2=0,解得:m=-3,n=2,则n m =2(3)-=9. 考点:非负数的性质.10.-1 【分析】直接利用关于y 轴对称点的性质得出a ,b 的值进而得出答案. 【详解】解:∵点A (a ,2019)与点是关于y 轴的对称点, ∴a=-2020,b=2019, ∴a+b=-1. 故答案为:解析:-1直接利用关于y 轴对称点的性质得出a ,b 的值进而得出答案. 【详解】解:∵点A (a ,2019)与点202()0,B b 是关于y 轴的对称点, ∴a=-2020,b=2019, ∴a+b=-1. 故答案为:-1. 【点睛】本题考查关于y 轴对称的点的坐标性质,解题关键是熟练掌握横纵坐标的关系.11.【分析】根据角平分线定义与三角形的外角等于与其不相邻两个内角和求出规律,利用规律解题即可 【详解】当∠A=m 时,∠=,以此类推,∠=,∠=,∠= 故答案为 【点睛】本题主要考查了角平分线性质 解析:2nm 【分析】根据角平分线定义与三角形的外角等于与其不相邻两个内角和求出规律,利用规律解题即可 【详解】当∠A=m 时,∠1A =12m ,以此类推,∠2A =14m ,∠3A =18m ,∠n A =12n m故答案为2nm【点睛】本题主要考查了角平分线性质与三角形外角和定理,根据题意以及相关性质找到规律解题是关键12.36 【分析】先根据平角的定义求出的度数,再根据平行线的性质即可得求解. 【详解】 ∵, ∴, ∵,故答案为:.本题考查了平角的定义、平行线的性质,掌握平行线的性质是解题关键.解析:36 【分析】先根据平角的定义求出3∠的度数,再根据平行线的性质即可得求解. 【详解】 ∵154∠=︒,∴3180190180549036∠=︒-∠-︒=︒-︒-︒=︒, ∵12//l l ,2336∴∠=∠=︒故答案为:36.【点睛】本题考查了平角的定义、平行线的性质,掌握平行线的性质是解题关键.13.【分析】根据翻折得到,根据,即可求出AC,再根据E 是中点即可求解. 【详解】 沿翻折使与重合故答案为:. 【点睛】此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性 解析:5【分析】根据翻折得到DEA DEC ∆≅∆,根据35ABC C AB BC AC ∆=++=,10ABC BCD C C AC ∆∆-==即可求出AC,再根据E 是中点即可求解. 【详解】ABC ∆沿DE 翻折使A 与C 重合 DEA DEC ∴∆≅∆,AD CD AE CE ∴==∴+=+=DB CD BD AD AB35ABC C AB BC AC ∆=++= 25∆=++=DBC C DB BC DC10ABC BCD C C AC ∆∆-==152AE AC ∴== 故答案为:5. 【点睛】此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性质.14.5 【分析】由已知可求,则可求. 【详解】 解:, , , ,故答案为:2019.5 【点睛】本题考查代数值求值,根据所给条件,探索出是解题的关键.解析:5 【分析】由已知可求1()()1f x f x+=,则可求111(2020)(2019)(2)()()()120192019232020f f f f f f ++⋯++++⋯+=⨯=.【详解】 解:1()1f x x=+, 111()1111x f x x x x x ∴===+++,11()()111xf x f x x x∴+=+=++,∴111(2020)(2019)(2)()()()120192019232020f f f f f f ++⋯++++⋯+=⨯=, 1111(2020)(2019)(2)(1)()()()(1)201920192019.523202011++⋯+++++⋯+=+=+=+f f f f f f f f 故答案为:2019.5 【点睛】本题考查代数值求值,根据所给条件,探索出1()()1f x f x+=是解题的关键.15.(-4,3) . 【分析】到x 轴的距离表示点的纵坐标的绝对值;到y 轴的距离表示点的横坐标的绝对值. 【详解】解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数.所以点A 的坐解析:(-4,3) . 【分析】到x 轴的距离表示点的纵坐标的绝对值;到y 轴的距离表示点的横坐标的绝对值. 【详解】解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数. 所以点A 的坐标为(-4,3) 故答案为:(-4,3) . 【点睛】本题考查点的坐标,利用数形结合思想解题是关键.16.(1500,501). 【分析】仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可. 【详解】观察图形可得,点(2,0),点(5,1),(8,2),…,(3n ﹣1,n ﹣1), 点解析:(1500,501). 【分析】仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可. 【详解】观察图形可得,点1A (2,0),点3A (5,1),5A (8,2),…,21n A -(3n ﹣1,n ﹣1),点2A (3,2),4A (6,3),6A (9,4),…,2n A (3n ,n +1), ∵1000是偶数,且1000=2n , ∴n =500,∴1000A (1500,501), 故答案为:(1500,501). 【点睛】本题考查了图形与坐标,分类思想,通过发现特殊点的坐标与序号的关系,运用特殊与一般的思想探索规律是解题的关键.三、解答题17.(1)3;(2)–2 【分析】(1)根据绝对值、立方根、乘方解决此题.(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题. 【详解】 解:(1)原式=, =3. (2)原式, =解析:(1)3;(2)–2 【分析】(1)根据绝对值、立方根、乘方解决此题.(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题. 【详解】解:(1)原式=()()221--+-, =3.(2)原式= =3+1-6, =–2. 【点睛】本地主要考查绝对值、立方根、算术平方根以及乘方,熟练掌握绝对值、立方根、算术平方根以及乘方是解决本题的关键.18.(1)或;(2) 【分析】(1)根据平方根的定义直接开平方求解即可;(2)先两边同时除以,再根据立方根的定义直接开立方即可求解. 【详解】 解:(1), 即或, 解得或. (2), ,解得.解析:(1)3x =或5x =-;(2)10x = 【分析】(1)根据平方根的定义直接开平方求解即可;(2)先两边同时除以12,再根据立方根的定义直接开立方即可求解. 【详解】解:(1)14x +=±, 即14x +=或14x +=-, 解得3x =或5x =-. (2)3(6)64x -=,64x -=,解得10x =. 【点睛】本题主要考查平方根和立方根的应用,解决本题的关键是要熟练掌握平方根和立方根的定义.19.;两直线平等行,同位角相等;两直线平行,内错角相等;;等量代换;角平分线定义 【分析】根据AD ⊥BC ,EG ⊥BC ,可得,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得,,由已知条件∠解析:;;EGC AD E ∠∠;两直线平等行,同位角相等;两直线平行,内错角相等;1∠;等量代换;角平分线定义 【分析】根据AD ⊥BC ,EG ⊥BC ,可得//AD EG ,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得1E ∠=∠,2=3∠∠,由已知条件∠3=∠E ,等量代换即可的12∠=∠,即可证明AD 平分∠BA C . 【详解】证明:∵AD ⊥BC ,EG ⊥BC∴∠ADC =EGC ∠=90°(垂直定义) ∴AD ∥EG (同位角相等,两直线平行) ∴∠1=E ∠(两直线平等行,同位角相等) ∠2=∠3(两直线平行,内错角相等) 又∵∠3=∠E (已知) ∴1∠=∠2(等量代换)∴AD 平分∠BAC (角平分线的定义)故答案是:∠EGC ;AD ;∠E ;两直线平等行,同位角相等;两直线平行,内错角相等;∠1;等量代换;角平分线定义. 【点睛】本题考查了垂线的定义,平行线的性质与判定,角平分线的定义,掌握以上定理性质是解题的关键.20.(1),,;(2)见解析;(3) 【分析】(1)先画出平移后的图形,结合直角坐标系可得出三点坐标;(2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答案; (3)将△ABC 补全为长方形解析:(1)()4,7,()1,2,()6,4;(2)见解析;(3)192【分析】(1)先画出平移后的图形,结合直角坐标系可得出三点坐标;(2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答案; (3)将△ABC 补全为长方形,然后利用作差法求解即可. 【详解】解:(1)平移后的三个顶点坐标分别为:()14,7A ,()11,2B ,()16,4C ; (2)画出平移后三角形111A B C ;(3)1519255322ABCABEGBCAFCEBGF SS SSS=---=---=长方形.【点睛】本题考查了平移作图的知识,解答本题的关键是根据平移的特点准确作出图形,第三问求解不规则图形面积的时候可以先补全,再减去.21.(1)a=2,b=;(2)±3 【分析】(1)首先估算出的范围,从而得到和的范围,可得a ,b 值; (2)将a ,b 的值代入计算,再求平方根即可. 【详解】 解:(1)∵, ∴, ∴,, ∴a=2,b解析:(1)a =2,b 174;(2)±3 【分析】(117172173的范围,可得a ,b 值; (2)将a ,b 的值代入计算,再求平方根即可. 【详解】 解:(1)∵161725<∴4175<,∴21723<,11732<<, ∴a =2,b 1731174-; (2)()()324a b -++ =())2317424++-=9∴()()324a b -++的平方根为±3.【点睛】此题主要考查了估算无理数的大小,平方根的定义,正确得出a ,b 的值是解题关键.二十二、解答题22.(1);(2)无法裁出这样的长方形. 【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解; (2)设长方形长为cm ,宽为cm ,根据题意列出方程,解方程比较4x 与20的大小解析:(1)20;(2)无法裁出这样的长方形. 【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为4x cm ,宽为3x cm ,根据题意列出方程,解方程比较4x 与20的大小即可. 【详解】解:(1)由题意得,大正方形的面积为200+200=400cm 2, ∴cm ;()2根据题意设长方形长为4x cm ,宽为3x cm ,由题:43360x x ⋅= 则230x =0xx ∴=∴长为43020>∴无法裁出这样的长方形.【点睛】本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.二十三、解答题23.(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部 【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.解析:(1)①18°;②2∠BEG +∠HFG =90°,证明见解析;(2)2∠BEG -∠HFG =90°证明见解析部 【分析】(1)①证明2∠BEG +∠HFG =90°,可得结论.②利用平行线的性质证明即可.(2)如图2中,结论:2∠BEG-∠HFG=90°.利用平行线的性质证明即可.【详解】解:(1)①∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°,∵∠BEG=36°,∴∠HFG=18°.故答案为:18°.②结论:2∠BEG+∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°.(2)如图2中,结论:2∠BEG-∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°-∠HFG=180°,∴2∠BEG-∠HFG=90°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(1)①见解析;②;见解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF【分析】(1)①根据题意画出图形;②依据DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠解析:(1)①见解析;②;见解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF【分析】(1)①根据题意画出图形;②依据DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠A+∠AFD=180°,进而得出∠EDF=∠A;(2)①过G作GH∥AB,依据平行线的性质,即可得到∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②过G作GH∥AB,依据平行线的性质,即可得到∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.【详解】解:(1)①如图,②∵DE∥AB,DF∥AC,∴∠EDF+∠AFD=180°,∠A+∠AFD=180°,∴∠EDF=∠A;(2)①∠AFG+∠EDG=∠DGF.如图2所示,过G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②∠AFG-∠EDG=∠DGF.如图所示,过G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.【点睛】本题考查了平行线的判定和性质:两直线平行,内错角相等.正确的作出辅助线是解题的关键.25.(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当解析:(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|.【分析】(1)利用外角和角平分线的性质直接可求解;(2)分三种情况讨论:①当交点P在直线b的下方时;②当交点P在直线a,b之间时;③当交点P在直线a的上方时;分别画出图形求解;(3)结合(2)的探究,分两种情况得到结论:①当交点P在直线a,b之间时;②当交点P在直线a上方或直线b下方时;【详解】解:(1)∵BD平分∠ABC,∠ABC=50°,∴∠ABD=∠DBC=12∵∠EPB是△PFB的外角,∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°;(2)①当交点P在直线b的下方时:∠EPB=∠1﹣50°=20°;②当交点P在直线a,b之间时:∠EPB=50°+(180°﹣∠1)=160°;③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|;【点睛】考查知识点:平行线的性质;三角形外角性质.根据动点P的位置,分类画图,结合图形求解是解决本题的关键.数形结合思想的运用是解题的突破口.26.(1)3; (2)见解析; (3)见解析【详解】分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠解析:(1)3; (2)见解析; (3)见解析【详解】分析:(1)因为△BCD的高为OC,所以S△BCD=12CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE.(3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案.详解:(1)S △BCD =12CD •OC =12×3×2=3. (2)如图②,∵AC ⊥BC ,∴∠BCF =90°,∴∠CFE +∠CBF =90°.∵直线MN ⊥直线PQ ,∴∠BOC =∠OBE +∠OEB =90°.∵BF 是∠CBA 的平分线,∴∠CBF =∠OBE .∵∠CEF =∠OBE ,∴∠CFE +∠CBF =∠CEF +∠OBE ,∴∠CEF =∠CFE .(3)如图③,∵直线l ∥PQ ,∴∠ADC =∠PAD .∵∠ADC =∠DAC∴∠CAP =2∠DAC .∵∠ABC +∠ACB =∠CAP ,∴∠ABC +∠ACB =2∠DAC .∵∠H +∠HCA =∠DAC ,∴∠ABC +∠ACB =2∠H +2∠HCA ∵CH 是,∠ACB 的平分线,∴∠ACB =2∠HCA ,∴∠ABC =2∠H ,∴H ABC ∠∠=12.点睛:本题主要考查垂线,角平分线和三角形面积,解题的关键是找准相等的角求解.。

七年级数学期末试卷综合测试(Word版 含答案)

七年级数学期末试卷综合测试(Word版 含答案)

七年级数学期末试卷综合测试(Word 版 含答案)一、选择题1.下列运算中,结果正确的是( ) A .3a 2+4a 2=7a 4 B .4m 2n+2mn 2=6m 2n C .2x ﹣12x =32x D .2a 2﹣a 2=22.有理数-53的倒数是( ) A .53 B .53-C .35D .353.下列说法错误的是( ) A .2的相反数是2- B .3的倒数是13C .3-的绝对值是3D .11-,0,4这三个数中最小的数是04.下列运算正确的是 A .325a b ab += B .2a a a +=C .22ab ab -=D .22232a b ba a b -=-5.如图,有一个正方体纸巾盒,它的平面展开图不可能的是( )A .B .C .D .6.一袋面粉的质量标识为“100±0.25千克”,则下列面粉质量中合格的是( ) A .100.30千克 B .99.51千克C .99.80千克D .100.70千克 7.下列运算正确的是( )A .225a 3a 2-=B .2242x 3x 5x +=C .3a 2b 5ab +=D .7ab 6ba ab -=8.如图所示的正方体的展开图是( )A .B .C .D .9.甲队有工人272人,乙队有工人196人,如果要求乙队的人数是甲队人数的,应从乙队调多少人去甲队.如果设应从乙队调x 人到甲队,列出的方程正确的是( ) A .272+x =(196-x ) B .(272-x )= (196-x ) C .(272+x )= (196-x ) D .×272+x = (196-x )10.若1x =是方程260x m +-=的解,则m 的值是( ) A .﹣4B .4C .﹣8D .811.让人欲罢不能的主题曲,让人潸然泪下的小故事,让人惊叹不已的演出阵容《我和我的祖国》首日票房超过285000000元,数字285000000科学记数法可表示为( ) A .2.85×109B .2.85×108C .28.5×108D .2.85×10612.一件商品,按标价八折销售盈利 20 元,按标价六折销售亏损 10 元,求标价多少元?小明同学在解此题的时候,设标价为 x 元,列出如下方程: 0.8200.610x x -=+.小明同学列此方程的依据是( ) A .商品的利润不变 B .商品的售价不变 C .商品的成本不变 D .商品的销售量不变13.下列计算正确的是( ) A .2334a a a += B .﹣2(a ﹣b)=﹣2a+b C .5a ﹣4a=1D .2222a b a b a b -=- 14.如图,是一个正方体的展开图则“数”字的对面的字是( )A .核B .心C .素D .养15.已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是( )A .圆柱B .圆锥C .球体D .棱锥二、填空题16.如图是一个正方体的展开图,把展开图折叠成正方体后,与数字3所在的面相对的面上的数字是________.17.计算:82-+-=___________.18.已知3x =是方程35x x a -=+的解,则a 的值为__________. 19.已知A =5x +2,B =11-x ,当x =_____时,A 比B 大3.20.如图,已知ON ⊥l ,OM ⊥l ,所以OM 与ON 重合,其理由是________.21.如图是一个数值转换机.若输出的结果为10,则输入a 的值为______.22.用两钉子就能将一根细木条固定在墙上,其数学原理是______.23.若代数式M =5x 2﹣2x ﹣1,N =4x 2﹣2x ﹣3,则M ,N 的大小关系是M ___N (填“>”“<”或“=”) 24.如果方程21(1)20m m x --+=是一个关于x 的一元一次方程,那么m 的值是__________.25.如图为正方体的一种平面展开图,各面都标有数字,则数字为1的面所对的面上的数字是__________.三、解答题26.先化简,再求值:2211312()()2323x x y x y --+-+,其中,x y 满足22(2)03x y ++-= 27.先化简,再求值:2211312()()2323x x y x y --+-+ ,其中x=5,y=-3 . 28.某市电力部门对居民用电按月收费,标准如下:①用电不超过100度的,每度收费0.5元;②用电超过100度的,超过部分每度收费0.8元.请根据上述收费标准解答下列问题:(1)小明家1月份用电140度,应交电费______________元;(2)小明家2月交电费98元,则他家2月份用电多少度?29.如图,直线AB 、CD 相交于点O ,BOD ∠与∠BOE 互为余角,18BOE ∠=︒.求AOC ∠的度数.30.如图1,∠MON =90°,点A ,B 分别在射线OM 、ON 上.将射线OA 绕点O 沿顺时针方向以每秒9°的速度旋转,同时射线OB 绕点O 沿顺时针方向以每秒3°的速度旋转(如图2).设旋转时间为t (0≤t ≤40,单位秒). (1)当t =8时,∠AOB = °;(2)在旋转过程中,当∠AOB =36°时,求t 的值.(3)在旋转过程中,当ON 、OA 、OB 三条射线中的一条恰好平分另外两条射线组成的角(指大于0°而不超过180°的角)时,请求出t 的值.31.在如图所示的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长为1,已知四边形的四个顶点在格点上,利用格点和直尺按下列要求画图:(1)过点O 画AD 的平行线CE ,过点B 画CD 的垂线,垂足为F ; (2)四边形ABCD 的面积为____________32.某商店以每盏20元的价格采购了一批节能灯,运输过程中损坏了2 盏,然后以每盏25元的价格售完,共获得利润150元.该商店共购进了多少盏节能灯? 33.计算:(1)431(2)4-+-÷ (2)115)321248-⨯-+( 四、压轴题34.概念学习:规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.如:222÷÷,()()()()3333-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作32,读作“2的3次商”,()()()()3333-÷-÷-÷-记作()43-,读作“3-的4次商”.一般地,我们把n 个()0a a ≠相除记作n a ,读作“a 的n 次商”. (1)直接写出结果:312⎛⎫=⎪⎝⎭______,()42-=______. (2)关于除方,下列说法错误的是( ) A .任何非零数的2次商都等于1 B .对于任何正整数n ,()111n --=-C .除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数D .负数的奇数次商结果是负数,负数的偶数次商结果是正数. 深入思考:除法运算能转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢? (3)试一试,将下列运算结果直接写成乘方(幂)的形式()43-=______ 615⎛⎫= ⎪⎝⎭______(4)想一想,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于______.(5)算一算:201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭35.如图一,点C 在线段AB 上,图中有三条线段AB 、AC 和BC ,若其中一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”.(1)填空:线段的中点 这条线段的巧点(填“是”或“不是”或“不确定是”) (问题解决)(2)如图二,点A 和B 在数轴上表示的数分别是20-和40,点C 是线段AB 的巧点,求点C 在数轴上表示的数。

七年级数学期末试卷综合测试(Word版 含答案)

七年级数学期末试卷综合测试(Word版 含答案)

七年级数学期末试卷综合测试(Word 版 含答案)一、选择题1.已知实数a ,b 在数轴上的位置如图,则=a b -( )A .+a bB .a b -+C .-a bD .a b --2.庆祝澳门回归祖国20周年时,据统计澳门共有女性约360000人,则360000用科学记数法可以表示为( ) A .53610⨯ B .60.3610⨯ C .53.610⨯ D .43610⨯ 3.钟面上8:45时,时针与分针形成的角度为( )A .7.5°B .15°C .30°D .45°4.下列说法:①两点之间,直线最短;②若AC =BC ,则点C 是线段AB 的中点;③同一平面内过一点有且只有一条直线与已知直线垂直; ④过一点有且只有一条直线与已知直线平行. 其中正确的说法有( ) A .1个B .2个C .3个D .4个5.将一副直角三角尺按如图所示摆放,图中锐角∠1的度数为( )A .58°B .59°C .60°D .61°6.如图所示的几何体的左视图是( )A .B .C .D .7.下面四个图形中,∠1=∠2一定成立的是( ) A .B .C .D .8.据报道,2019年建成的某新机场将满足年旅客吞吐量45 000 000人次的需求.将45000 000用科学记数法表示应为( ) A .0.45×108B .45×106C .4.5×107D .4.5×1069.有理数a 、b 在数轴上的位置如图所示,则下列各式正确的是( )A .ab >0B .|b|<|a|C .b <0<aD .a+b >010.将一个无盖正方体形状的盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( ) A .B .C .D .11.如图所示的几何体的左视图是( )A .B .C .D .12.如图,用一副特制的三角板可以画出一些特殊角.在下列选项中,不能画出的角度是( )A .81B .63C .54D .5513.有理数a 、b 在如图所示数轴的对应位置上,则2a b b a +--化简后结果为( )A .aB .a -C .2a b -+D .2b a -14.一船在静水中的速度为20km /h ,水流速度为4km /h ,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为xkm ,则下列方程正确的是( ) A .()()204x 204x 15++-= B .20x 4x 5+= C .x x 5204+= D .x x5204204+=+- 15.下列说法正确的是( )A .两点之间的距离是两点间的线段B .与同一条直线垂直的两条直线也垂直C .同一平面内,过一点有且只有一条直线与已知直线平行D .同一平面内,过一点有且只有一条直线与已知直线垂直二、填空题16.3615︒'的补角等于___________︒___________′.17.已知关于 x 的一元一次方程 5x - 2a = 6 的解 x=1,则 a 的值是___________. 18.点A 在数轴上表示的数是2,3AB -=,则点B 表示的数为__________. 19.要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是_____. 20.按照下图程序计算:若输入的数是 -3 ,则输出的数是________21.已知22m n -=-,则524m n -+的值是_______.22.若要使图中的展开图按虚线折叠成正方体后,相对面上两个数之和为10,则x+y=_____.23.如果关于x 方程ax b 0+=的解是x=0.5,那么方程bx 0a -=的解是____________. 24.如果单项式1b xy +-与23a xy -是同类项,那么()2019a b -=______.25.甲数x 的23与乙数y 的14差可以表示为_________ 三、解答题26.如图,数轴上线段AB =2(单位长度),CD =4(单位长度),点A 在数轴上表示的数是﹣8,点C 在数轴上表示的数是10.若线段AB 以6个单位长度/秒的速度向右匀速运动,同时线段CD 以2个单位长度/秒的速度也向右匀速运动.(1)运动t 秒后,点B 表示的数是 ;点C 表示的数是 .(用含有t 的代数式表示)(2)求运动多少秒后,BC =4(单位长度);(3)P 是线段AB 上一点,当B 点运动到线段CD 上时,是否存在关系式4BD AP PC -=,若存在,求线段PD 的长;若不存在,请说明理由. 27.解下列方程:(1)()5123x x -=- (2)143123y y ---= 28.如图,已知直线l 和直线外三点A ,B ,C ,按下列要求画图: (1)画射线CB 交直线l 于点F ; (2)连接BA ;(3)在直线l 上确定点E ,使得AE+CE 最小.29.(1)计算:2311113222⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)化简求值:()()()2214121422x x x x --++-,其中3x =-. 30.计算: (1)()157-724912⎛⎫+⨯-⎪⎝⎭(2)1377-1-244812⎛⎫⎛⎫÷+ ⎪ ⎪⎝⎭⎝⎭31.已知方程532x x -=与方程2463k x x +-=的解互为相反数,求5417k ⎛⎫- ⎪⎝⎭的值. 32.如图,A ,O ,B 三点在同一直线上,∠BOD 与∠BOC 互补. (1)∠AOC 与∠BOD 的度数相等吗,为什么?(2)已知OM 平分∠AOC ,若射线ON 在∠COD 的内部,且满足∠AOC 与∠MON 互余; ①∠AOC =32°,求∠MON 的度数;②试探究∠AON 与∠DON 之间有怎样的数量关系,请写出结论并说明理由.33.已知关于m 的方程()12651m -=-的解也是关于x 的方程()233x n --=的解. (1)求,m n 的值;(2)已知线段AB m =,在直线AB 上取一点P ,恰好使APm PB=,点Q 为PB 的中点,求线段AQ 的长.四、压轴题34.已知:b 是最小的正整数,且a 、b 、c 满足()250c a b -++=,请回答问题. (1)请直接写出a 、b 、c 的值.a =b =c =(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在0到2之间运动时(即0≤x≤2时),请化简式子:1125x x x (请写出化简过程).(3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.35.(阅读理解)如果点M ,N 在数轴上分别表示实数m ,n ,在数轴上M ,N 两点之间的距离表示为MN m n(m n)=->或MN n m(n m)=->或m n -.利用数形结合思想解决下列问题:已知数轴上点A 与点B 的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B 在点A 的右侧,点C 表示的数与点B 表示的数互为相反数,动点P 从A 出发,以每秒2个单位的速度向终点C 移动,设移动时间为t 秒.()1点A 表示的数为______,点B 表示的数为______.()2用含t 的代数式表示P 到点A 和点C 的距离:PA =______,PC =______.()3当点P 运动到B 点时,点Q 从A 点出发,以每秒4个单位的速度向C 点运动,Q 点到达C 点后,立即以同样的速度返回,运动到终点A ,在点Q 开始运动后,P 、Q 两点之间的距离能否为2个单位?如果能,请求出此时点P 表示的数;如果不能,请说明理由.36.如图,数轴上A ,B 两点对应的数分别为4-,-1 (1)求线段AB 长度(2)若点D 在数轴上,且3DA DB =,求点D 对应的数(3)若点A 的速度为7个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =37.问题情境:在平面直角坐标系xOy 中有不重合的两点A (x 1,y 1)和点B (x 2,y 2),小明在学习中发现,若x 1=x 2,则AB ∥y 轴,且线段AB 的长度为|y 1﹣y 2|;若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1﹣x 2|; (应用):(1)若点A (﹣1,1)、B (2,1),则AB ∥x 轴,AB 的长度为 . (2)若点C (1,0),且CD ∥y 轴,且CD=2,则点D 的坐标为 . (拓展):我们规定:平面直角坐标系中任意不重合的两点M (x 1,y 1),N (x 2,y 2)之间的折线距离为d (M ,N )=|x 1﹣x 2|+|y 1﹣y 2|;例如:图1中,点M (﹣1,1)与点N (1,﹣2)之间的折线距离为d (M ,N )=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5. 解决下列问题:(1)已知E (2,0),若F (﹣1,﹣2),求d (E ,F );(2)如图2,已知E (2,0),H (1,t ),若d (E ,H )=3,求t 的值;(3)如图3,已知P (3,3),点Q 在x 轴上,且三角形OPQ 的面积为3,求d (P ,Q ).38.如图,已知点A 、B 是数轴上两点,O 为原点,12AB =,点B 表示的数为4,点P 、Q 分别从O 、B 同时出发,沿数轴向不同的方向运动,点P 速度为每秒1个单位.点Q 速度为每秒2个单位,设运动时间为t ,当PQ 的长为5时,求t 的值及AP 的长.39.已知线段AD =80,点B 、点C 都是线段AD 上的点.(1)如图1,若点M 为AB 的中点,点N 为BD 的中点,求线段MN 的长;(2)如图2,若BC =10,点E 是线段AC 的中点,点F 是线段BD 的中点,求EF 的长; (3)如图3,若AB =5,BC =10,点P 、Q 分别从B 、C 出发向点D 运动,运动速度分别为每秒移动1个单位和每秒移动4个单位,运动时间为t 秒,点E 为AQ 的中点,点F 为PD的中点,若PE=QF,求t的值.40.如图,点A,B,C在数轴上表示的数分别是-3,3和1.动点P,Q两同时出发,动点P从点A出发,以每秒6个单位的速度沿A→B→A往返运动,回到点A停止运动;动点Q从点C出发,以每秒1个单位的速度沿C→B向终点B匀速运动.设点P的运动时间为t (s).(1)当点P到达点B时,求点Q所表示的数是多少;(2)当t=0.5时,求线段PQ的长;(3)当点P从点A向点B运动时,线段PQ的长为________(用含t的式子表示);(4)在整个运动过程中,当P,Q两点到点C的距离相等时,直接写出t的值.41.点O为直线AB上一点,在直线AB同侧任作射线OC、OD,使得∠COD=90°(1)如图1,过点O作射线OE,当OE恰好为∠AOC的角平分线时,另作射线OF,使得OF平分∠BOD,则∠EOF的度数是__________度;(2)如图2,过点O作射线OE,当OE恰好为∠AOD的角平分线时,求出∠BOD与∠COE 的数量关系;(3)过点O作射线OE,当OC恰好为∠AOE的角平分线时,另作射线OF,使得OF平分∠COD,若∠EOC=3∠EOF,直接写出∠AOE的度数42.已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,求∠AOE﹣∠BOF的值;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF=14°时,t=秒.43.已知点O 为直线AB 上的一点,∠EOF 为直角,OC 平分∠BOE , (1)如图1,若∠AOE=45°,写出∠COF 等于多少度;(2)如图1,若∠AOE=()090n n ︒<<,求∠COF 的度效(用含n 的代数式表示); (3)如图2,若∠AOE=()90180n n ︒<<,OD 平分∠AOC,且∠AOD-∠BOF=45°,求n 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据数轴可以判断a 、b 的正负,从而可以解答本题. 【详解】 解:由数轴可得, ∵a<0,b>0, ∴|a |=-a ,|b |=b , ∴=a b --a-b. 故选D. 【点睛】本题考查绝对值,解答本题的关键是明确绝对值的意义.2.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将360000用科学记数法表示为:3.6×105.故选C.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.A解析:A【解析】试题解析:钟面上8:45时,分针指向9,时针在8和9之间,夹角的度数为:45-⨯=30307.5.60故选A.4.A解析:A【解析】【分析】根据线段的性质,平行公理及推理,垂线的性质等知识点分析判断.【详解】解:①两点之间,线段最短,故错误;②若AC=BC,且A,B,C三点共线时,则点C是线段AB的中点,故错误;③同一平面内经过一点有且只有一条直线与已知直线垂直,故正确;④经过直线外一点有且只有一条直线与已知直线平行,故错误.正确的共1个故选:A.【点睛】本题考查了平行公理及推论,线段的性质,两点间的距离以及垂线,熟记基础只记题目,掌握相关概念即可解题.5.C解析:C【解析】【分析】根据特殊直角三角形的角度即可解题.【详解】解:由特殊直角三角形可知,∠1=90°-30°=60°,故选C.【点睛】本题考查了特殊直角三角形的认识,属于简单题,熟悉特殊三角形的角度是解题关键.6.A解析:A【解析】本题考查的是三视图.左视图可以看到图形的排和每排上最多有几层.所以选择A.7.B解析:B【解析】试题分析:A.∠1、∠2是邻补角,∠1+∠2=180°;故本选项错误;B.∠1、∠2是对顶角,根据其定义;故本选项正确;C.根据平行线的性质:同位角相等,同旁内角互补,内错角相等;故本选项错误;D.根据三角形的外角一定大于与它不相邻的内角;故本选项错误.故选B.考点:对顶角、邻补角;平行线的性质;三角形的外角性质.8.C解析:C【解析】【分析】用科学记数法表示较大数时的形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:45 000 000=4.5×107,故选:C.【点睛】本题主要考查科学记数法,掌握科学记数法的形式是解题的关键.9.C解析:C【解析】【分析】根据a与b在数轴上的位置即可判断.【详解】解:由数轴可知:b<-1<0<a<1,且|a|<1<|b|;∴A、 ab<0.故本选项错误;B、|b|>|a|. 故本选项错误;C、b<0<a . 故本选项正确;D、a+b<0 . 故本选项错误;故选:C.【点睛】此题考查了数轴的有关知识,利用数形结合思想是解题关键.10.C解析:C【解析】【分析】【详解】由四棱柱的四个侧面及底面可知,A、B、D都可以拼成无盖的正方体,但C拼成的有一个面重合,有两面没有的图形.所以将一个无盖正方体形状盒子的表面沿某些棱展开后不能得到的平面图形是C.故选C.11.C解析:C【解析】【分析】左视图是从物体的左边观察得到的图形,结合选项进行判断即可.【详解】解:从左边看是一个矩形,矩形的中间是一条横着的线,故选:C.【点睛】本题考查了简单组合体的三视图,属于基础题,掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.12.D解析:D【解析】【分析】一副三角板中的度数,用三角板画出角,无非是用角度加减,逐一分析即可.【详解】︒=︒+︒,则81︒角能画出;解:A、814536︒=︒+︒-︒,则63角能画出;B、63367245︒=︒-︒,则54可以画出;C、549036D、55°不能写成36°、72°、45°、90°的和或差的形式,不能画出;故选:D.【点睛】此题考查的知识点是角的计算,关键是用三角板直接画特殊角的步骤:先画一条射线,再把三角板所画角的一边与射线重合,顶点与射线端点重合,最后沿另一边画一条射线,标出角的度数.13.C解析:C【解析】【分析】代入化简后的算式,求出算式的值是多少即可.【详解】解:由数轴可知:0,||||b a b a <<<∴0,20a b b a +>-<∴原式=()()2a b a b +--=-2a b a b ++=-2a b +故选:C【点睛】此题主要考查了整式的加减-化简求值问题,要熟练掌握,解答此题的关键是要明确:给出整式中字母的值,求整式的值的问题,一般要先化简, 再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.14.D解析:D【解析】【分析】由题意可得顺水中的速度为(20+4)km/h ,逆水中的速度为(20﹣4)km/h ,根据“从甲码头顺流航行到乙码头,再返回甲码头共用5h ”可得顺水行驶x 千米的时间+逆水行驶x 千米的时间=5h ,根据等量关系代入相应数据列出方程即可.【详解】若设甲、乙两码头的距离为xkm ,由题意得:204204x x +=+-5. 故选D .【点睛】本题考查了由实际问题抽象出一元一次方程,关键是正确理解题意,抓住题目中的关键语句,列出方程.15.D解析:D【解析】试题分析:根据线段、垂线、平行线的相关概念和性质判断.解:A 、两点之间的距离是指两点间的线段长度,而不是线段本身,错误;B、在同一平面内,与同一条直线垂直的两条直线平行,错误;C、同一平面内,过直线外一点有且只有一条直线与已知直线平行,应强调“直线外”,错误;D、这是垂线的性质,正确.故选D.考点:平行公理及推论;线段的性质:两点之间线段最短;垂线.二、填空题16.45【解析】【分析】根据补角定义直接解答.【详解】的补角等于:180°−=143°45′.故答案为:143;45.【点睛】此题属于基础题,较简单,本题考查补角的概念,解决本题解析:45【解析】【分析】根据补角定义直接解答.【详解】︒'=143°45′.︒'的补角等于:180°−36153615故答案为:143;45.【点睛】此题属于基础题,较简单,本题考查补角的概念,解决本题的关键是熟记补角的概念.17.-【解析】【分析】把x=1代入方程,即可得到一个关于a的方程,即可求解.【详解】把x=1代入方程得5-2a=6,解得:a=-.故答案为:-.【点睛】本题考查了一元一次方程的解的定义解析:-1 2【解析】【分析】把x=1代入方程,即可得到一个关于a的方程,即可求解.【详解】把x=1代入方程得5-2a=6,解得:a=-12.故答案为:-12.【点睛】本题考查了一元一次方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值.18.或【解析】【分析】首先根据题意,在数轴上表示出点A,根据AB=3,就可得到B表示的数.【详解】解:由题意得,AB=3,即A,B之间的距离是3个单位长度,在数轴上到A的距离是3个单位长度解析:1或5【解析】【分析】首先根据题意,在数轴上表示出点A,根据AB=3,就可得到B表示的数.【详解】解:由题意得,AB=3,即A,B之间的距离是3个单位长度,在数轴上到A的距离是3个单位长度的点有两个,分别表示的数是-5或1;故答案为:-5或1.【点睛】本题考查数轴,“数”和“形”结合起来,可把很多复杂的问题转化为简单的问题,解题关键是在学习中要注意培养数形结合的数学思想.19.两点确定一条直线【解析】【分析】根据两点确定一条直线解答.【详解】解:要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是:两点确定一条直线,故答案为两点确定一条直线.【点睛】本解析:两点确定一条直线【解析】【分析】根据两点确定一条直线解答.【详解】解:要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是:两点确定一条直线,故答案为两点确定一条直线.【点睛】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.20.4【解析】【分析】设输入数为x,观察程序图可得运算程序为(x+1)2,将x= -3代入列式求解即可. 【详解】解:根据题意得,当输入数为-3,则输出的数为:(-3+1)2=4.故答案为:解析:4【解析】【分析】设输入数为x,观察程序图可得运算程序为(x+1)2,将x= -3代入列式求解即可.【详解】解:根据题意得,当输入数为-3,则输出的数为:(-3+1)2=4.故答案为:4.【点睛】本题考查了有理数的混合运算,解答本题的关键就是弄清楚程序图图给出的计算程序.21.9【解析】【分析】根据整体代入法即可求解.【详解】∵∴=5-2()=5+4=9故答案为:9.【点睛】此题主要考查代数式求值,解题的关键是熟知整体法.解析:9【解析】【分析】根据整体代入法即可求解.【详解】∵22m n -=-∴524m n -+=5-2(2m n -)=5+4=9故答案为:9.【点睛】此题主要考查代数式求值,解题的关键是熟知整体法.22.16【解析】这是一个正方体的平面展开图,共有六个面,其中面“1”与面“x”相对,面“3”与面“y”相对,又因相对面上两个数之和为10,可得x=9,y=7,所以x+y=16. 解析:16【解析】这是一个正方体的平面展开图,共有六个面,其中面“1”与面“x ”相对,面“3”与面“y ”相对,又因相对面上两个数之和为10,可得x =9,y =7,所以x +y =16.23.-2【解析】【分析】解方程可得,然后根据方程的解即可得出,变形可得,然后将代入方程中,即可求出方程的解.【详解】解:由解得:∵关于x 方程的解为∴变形得:将代入方程中,解得:解析:-2【解析】【分析】解方程0ax b +=可得b x a =-,然后根据方程的解即可得出0.5b a-=,变形可得0.5b a =-,然后将0.5b a =-代入方程0bx a -=中,即可求出方程的解.【详解】解:由0ax b += 解得:b x a=- ∵关于x 方程0ax b +=的解为0.5x = ∴0.5b a-= 变形得:0.5b a =-将0.5b a =-代入方程0bx a -=中,0.50ax a --=解得: 2x =-故答案为:2x =-.【点睛】此题考查的是解含参数的方程,根据已知方程找到参数之间的关系是解决此题的关键. 24.1【解析】【分析】所含字母相同,并且相同字母的指数也分别相同的项是同类项,根据同类项的定义列式计算得到a 、b ,再代入计算即可.【详解】由题意得:a-2=1,b+1=3,∴a=3,b=2,解析:1【解析】【分析】所含字母相同,并且相同字母的指数也分别相同的项是同类项,根据同类项的定义列式计算得到a 、b ,再代入计算即可.【详解】由题意得:a-2=1,b+1=3,∴a=3,b=2,∴()2019a b -=1, 故答案为:1.【点睛】此题考查同类项的定义,正确理解同类项的定义并熟练解题是关键. 25.【解析】【分析】【详解】被减式为x 的,减式为y 的,让它们相减即可.解:所求的关系式为:.求两个式子的差的关键是找到被减式和减式. 解析:2134x y - 【解析】【分析】【详解】被减式为x 的23,减式为y 的14,让它们相减即可. 解:所求的关系式为:2134x y -. 求两个式子的差的关键是找到被减式和减式.三、解答题26.(1)-6+6t ;10+2t ;(2)5t =,3t =;(3)PD =185或143【解析】【分析】(1)根据题意列出代数式即可.(2)根据题意分点B 在点C 左边和右边两种情况,列出方程解出即可.(3)随着点B 的运动大概,分别讨论当点B 和点C 重合、点C 在A 和B 之间及点A 与点C 重合的情况.【详解】(1)点B 表示的数是-6+6t ;点C 表示的数是10+2t.(2)66(102)4t t -+-+=661024t t -+--=或661024t t -+--=-∴5t = 或 3t =(3)设未运动前P 点表示的数是x,则运动t 秒后,A 点表示的数是86t -+B 点表示的数是-6+6tC 点表示的数是10+2tD 点表示的数是14+2tP 点表示的数是x+6t则BD=14+2t-(-6+6t)=20-4tAP=x+6t-(-8+6t)=x+8 PC=6(102)x t t +-+ (P 点可能在C 点左侧,也可能在右侧)PD=14+2t-(x+6t)=14-(4t+x)∵4BD AP PC -=∴20-4t-(x+8)=46(102)x t t +-+∴12-(4t+x )=4(4t+x)-40 或 12-(4t+x )=40-4(4t+x)∴4t+x=525 或 4t+x=283∴PD=14+2t -(x+6t)=14-(4t+x)=185或143. 【点睛】本题考查了两点间的距离,并综合了数轴、一次元一次方程,关键在于分类讨论,列出对应方程.27.(1)1x =;(2)35y =-【解析】【分析】(1)先去括号,再移项合并同类项,系数化为1即可;(2)方程两边同时乘以6,先去分母再依次计算即可.【详解】解:(1)5162x x -=- 77x =1x =(2)33866y y --+=53y -=35y =- 【点睛】本题考查了解一元一次方程,熟练掌握一元一次方程的解法是解题的关键.28.答案见解析【解析】【分析】根据射线的定义、线段的定义进行作图,E 点即AC 与直线l 的交点.【详解】【点睛】本题考查的知识点是射线的定义和线段的定义,以及两点之间线段最短的基本事实.29.(1)126-;(2)36x -,-15. 【解析】【分析】(1)根据有理数的运算法则即可求解;(2)根据整式的加减运算法则即可化简,再代入x 即可求解.【详解】(1)解:原式111648⎛⎫=-+÷- ⎪⎝⎭126=- (2)解:()()()2214121422x x x x --++- =2244222x x x x ---+-36x =-3x ∴=-时,原式15=-【点睛】此题主要考查有理数与整式的运算,解题的关键是熟知其运算法则.30.(1)-20;(2)−135【解析】【分析】(1)原式先运用乘法分配律去括号,再计算乘除运算,最后算加减运算即可得到结果; (2)原式先计算括号内的运算,再计算乘除运算,最后算加减运算即可得到结果;【详解】(1)()157-724912⎛⎫+⨯- ⎪⎝⎭=()()()15772-72724912⨯-⨯-+⨯- =-18+40-42 =-20;(2)1377-1-244812⎛⎫⎛⎫÷+ ⎪ ⎪⎝⎭⎝⎭=1422114--24242424⎛⎫⎛⎫÷+ ⎪ ⎪⎝⎭⎝⎭=135-2424⎛⎫÷⎪⎝⎭ =−135【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便. 31.-1 【解析】 【分析】先分别求出两方程的解,根据相反数的定义求出k 的值,再代入代数式即可求解. 【详解】解:解方程532x x -=,得1x =, 根据题意,方程2463k xx +-=的解为1x =-, 把1x =-代入方程2463k x x +-=,得()214163k --⨯-=, 解,得72k =. 所以55447111772k ⎛⎫⎛⎫-=-⨯=- ⎪ ⎪⎝⎭⎝⎭. 【点睛】此题主要考查解方程的应用,解题的关键熟知一元一次方程的解法.32.(1)∠AOC =∠BOD ,理由详见解析;(2)① 58°;②∠AON =∠DON ,理由详见解析. 【解析】 【分析】(1)根据补角的性质即可求解; (2)①根据余角的定义解答即可;②根据角平分线的定义以及补角与余角的定义,分别用∠AOM 的代数式表示出∠AON 与∠DON 即可解答. 【详解】解:(1)∠AOC =∠BOD , ∵∠BOD 与∠BOC 互补, ∴∠BOD +∠BOC =180°, ∵∠AOC +∠BOC =180°, ∴∠AOC =∠BOD ;(2)①∵∠AOC 与∠MON 互余, ∴∠MON =90°﹣∠AOC =58°; ②∠AON =∠DON , 理由如下:∵OM 平分∠AOC ,∴∠AOC =2∠AOM ,∠COM =∠AOM , ∵∠AOC 与∠MON 互余, ∴∠AOC +∠MON =90°, ∴∠AON =90°﹣∠AOM , ∴∠CON =90°﹣3∠AOM , ∵∠BOD 与∠BOC 互补, ∴∠BOD +∠BOC =180°, ∴∠CON +∠DON +2∠BOD =180°, 又∵∠BOD =∠AOC =2∠AOM , ∴∠DON =180°﹣∠CON ﹣2∠BOD =180°﹣(90°﹣3∠AOM )﹣4∠AOM =90°﹣∠AOM . ∴∠AON =∠DON . 【点睛】本题主要考查角平分线的定义,补角、余角的求法和角的和与差,掌握角平分线的定义,补角余角的求法,找准角之间的关系是解题的关键. 33.(1)6,3m n ==;(2) 214AQ =或152【解析】 【分析】(1)解出关于m 的方程的解,即m 的值,再将m 值代入关于x 的方程求n 值; (2)分两种情况讨论,即P 点在B 点的左边和右边,根据线段之间的关系求线段长即可. 【详解】 解: ()1()12651m -=-, 1610m -=-,关于m 的方程()12651m -=-的解也是关于x 的方程()233x n --=的解, 6x m ∴==,将6x =,代入方程()233x n --=得;()2633n --=,解得:3n =, 故6,3m n ==;()2由()1知:6AB =,3AP PB=,①点P 在线段AB 上时,如图所示:6,3APAB PB==, 93,22AP BP ∴==,点Q 为PB 的中点, 1324PQ BQ BP ∴=== 9321244AQ AP PQ ∴=+=+= ②点P 在线段AB 的延长线上时,如图所示:6,3APAB PB==, 3PB ∴=,点Q 为PB 的中点,32PQ BQ ∴==, 315622AQ AB BQ ∴=+=+=,故214AQ =或152. 【点睛】本题考查了同解方程的概念,一元一次方程的解法以及线段的度量,数形结合思想和分类讨论思想是解答此题的关键.四、压轴题34.(1)-1;1;5;(2)2x+12;(3)不变,理由见解析 【解析】 【分析】(1)根据b 是最小的正整数,即可确定b 的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a ,b ,c 的值;(2)根据x 的范围,确定x+1,x-3,5-x 的符号,然后根据绝对值的意义即可化简; (3)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2. 【详解】解:(1)∵b 是最小的正整数,∴b=1. 根据题意得:c-5=0且a+b=0, ∴a=-1,b=1,c=5. 故答案是:-1;1;5;(2)当0≤x≤1时,x+1>0,x-1≤0,x+5>0, 则:|x+1|-|x-1|+2|x+5| =x+1-(1-x )+2(x+5) =x+1-1+x+2x+10 =4x+10;当1<x≤2时,x+1>0,x-1>0,x+5>0. ∴|x+1|-|x-1|+2|x+5|=x+1-(x-1)+2(x+5) =x+1-x+1+2x+10 =2x+12;(3)不变.理由如下:t 秒时,点A 对应的数为-1-t ,点B 对应的数为2t+1,点C 对应的数为5t+5. ∴BC=(5t+5)-(2t+1)=3t+4,AB=(2t+1)-(-1-t )=3t+2, ∴BC-AB=(3t+4)-(3t+2)=2,即BC-AB 值的不随着时间t 的变化而改变. 【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.35.(1)2412--;;(2)2t ;362t -;(3)P 、Q 两点之间的距离能为2,此时点P 点Q 表示的数分别是2-,2,2226,33. 【解析】 【分析】()1因为点A 在原点左侧且到原点的距离为24个单位长度,所以点A 表示数24-;点B 在点A 右侧且与点A 的距离为12个单位长度,故点B 表示:241212-+=-;()2因为点P从点A 出发,以每秒运动2两个单位长度的速度向终点C 运动,则t 秒后点P 表示数242t(0t 18-+≤≤,令242t 12-+=,则t 18=时点P 运动到点C),而点A 表示数24-,点C 表示数12,所以()PA 242t 242t =-+--=,PC 242t 12362t =-+-=-;()3以点Q 作为参考,则点P 可理解为从点B 出发,设点Q 运动了m 秒,那么m 秒后点Q 表示的数是244m -+,点P 表示的数是122m -+,再分两种情况讨论:①点Q 运动到点C 之前;②点Q 运动到点C 之后. 【详解】()1设A 表示的数为x ,设B 表示的数是y .x 24=,x 0<∴x 24=- 又y x 12-=y 241212.∴=-+=-故答案为24-;12-.()2由题意可知:t 秒后点P 表示的数是()242t 0t 18-+≤≤,点A 表示数24-,点C表示数12()PA 242t 242t ∴=-+--=,PC 242t 12362t =-+-=-.故答案为2t ;362t -.()3设点Q 运动了m 秒,则m 秒后点P 表示的数是122m -+.①当m 9≤,m 秒后点Q 表示的数是244m -+,则()PQ 24m 4m 122m 2=-+--+=,解得m 5=或7,当m=5时,-12+2m=-2, 当m=7时,-12+2m=2, ∴此时P 表示的是2-或2;②当m 9>时,m 秒后点Q 表示的数是()124m 9--,则()()PQ 124m 9122m 2=----+=, 解得2931m 33或=,当m=293时,-12+2m=223, 当m=313时,-12+2m=263, 此时点P 表示的数是222633或. 答:P 、Q 两点之间的距离能为2,此时点P 点Q 表示的数分别是2-,2,2226,33. 【点睛】本题考查了数轴上两点间的距离公式以及实数与数轴的相关概念,解题时同时注意数形结合数学思想的应用,解题关键是要读懂题目的意思,根据题目给出的条件,用代数式表示出数轴上的动点代表的数,找出合适的等量关系列出方程,再求解. 36.(1)3;(2)12或74-;(3)13秒或79秒 【解析】 【分析】(1)根据数轴上两点间距离即可求解;(2)设点D 对应的数为x ,可得方程314x x +=+,解之即可;(3)设t 秒后,OA=3OB ,根据题意可得47312t t t t -+-=-+-,解之即可. 【详解】解:(1)∵A 、B 两点对应的数分别为-4,-1, ∴线段AB 的长度为:-1-(-4)=3; (2)设点D 对应的数为x ,∵DA=3DB , 则314x x +=+,则()314x x +=+或()314x x +=--, 解得:x=12或x=74-, ∴点D 对应的数为12或74-; (3)设t 秒后,OA=3OB , 则有:47312t t t t -+-=-+-, 则4631t t -+=-+,则()4631t t -+=-+或()4631t t -+=--+, 解得:t=13或t=79, ∴13秒或79秒后,OA=3OB .。

七年级数学期末试卷综合测试卷(word含答案)

七年级数学期末试卷综合测试卷(word含答案)

七年级数学期末试卷综合测试卷(word 含答案)一、选择题1.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )A .a >bB .ab <0C .b a ->0D .+a b >02.下列说法不正确的是( )A .对顶角相等B .两点确定一条直线C .一个角的补角一定大于这个角D .两点之间线段最短3.方程1502x --=的解为( ) A .4-B .6-C .8-D .10-4.如图所示的正方体的展开图是( )A .B .C .D .5.计算233235x y y x -的正确结果是( )A .232x yB .322x yC .322x y -D .232x y -6.下列图形,不是柱体的是( ) A .B .C .D .7.已知3x m =,5x n =,用含有m ,n 的代数式表示14x 结果正确的是 A .3mn B .23m nC .3m nD .32m n8.-5的倒数是 A .15B .5C .-15D .-59.如图所示的几何体的左视图是( )A .B .C .D .10.2019年12月15开始投入使用的盐城铁路综合客运枢纽,建筑总面积的为324000平方米,数据324000用科学记数法可表示为( ) A .33.2410⨯B .43.2410⨯C .53.2410⨯D .63.2410⨯11.如图是一个正方体的展开图,折好以后与“学”相对面上的字是( )A .祝B .同C .快D .乐12.某商品原价为m 元,由于供不应求,先提价30%进行销售,后因供应逐步充足,价格又一次性降价30%,售价为n 元,则m ,n 的大小关系为( ) A .m n =B .0.91n m =C .30%n m =-D .30%n m =-13.未来三年,国家将投入8 500亿元用于缓解群众“看病难,看病贵”问题.将8 500亿元用科学记数法表示为( ) A .0.85×104亿元B .8.5×103亿元C .8.5×104亿元D .85×102亿元14.下列各图中,可以是一个正方体的平面展开图的是( ) A .B .C .D .15.下列说法中正确的有( ) ①经过两点有且只有一条直线; ②连接两点的线段叫两点的距离; ③两点之间的所有连线中,垂线段最短; ④过直线外一点有且只有一条直线与已知直线平行. A .0个B .1个C .2个D .3个二、填空题16.在-4,0,π,1.010010001,-227,1.3•这6个数中,无理数有______个. 17.一个数的绝对值是2,则这个数是_____.18.整理一批图书,甲、乙两人单独做分别需要6小时、9小时完成.现在先由甲单独做1小时,然后两人合作整理这批图书要用_____小时.19.科学家们测得光在水中的速度约为225000000米/秒,数字225000000用科学计数法表示为___________.20.已知x +y =3,xy =1,则代数式(5x +2)﹣(3xy ﹣5y )的值_____.21.若规定这样一种运算法则a ※b=a 2+2ab ,例如3※(-2) = 32+ 2× 3×(-2) =-3 ,则 (-2) ※3 的值为_______________.22.一个角的的余角为30°15′,则这个角的补角的度数为________.23.如图,线段AB a =,CD b =,则AD BC +=______.(用含a ,b 的式子表示)24.如图,快艇从P 处向正北航行到A 处时,向左转50︒航行到B 处,再向右转80︒继续航行,此时的航行方向为_____.(用方位角来表示)25.如图为正方体的一种平面展开图,各面都标有数字,则数字为1的面所对的面上的数字是__________.三、解答题26.如图,A 、B 、C 是正方形网格中的三个格点.(1)①画射线AC ; ②画线段BC ;③过点B 画AC 的平行线BD ;④在射线AC 上取一点E ,画线段BE ,使其长度表示点B 到AC 的距离; (2)在(1)所画图中, ①BD 与BE 的位置关系为 ;②线段BE 与BC 的大小关系为BE BC (填“>”、“<”或“=”),理由是 . 27.在平面内,将一副直角三角板按如图所示的方式摆放,其中三角形ABC 为含60°角的直角三角板,三角形BDE 为含45°角的直角三角板.(1)如图1,若点D在AB上,则∠EBC的度数为;(2)如图2,若∠EBC=170°,则∠α的度数为;(3)如图3,若∠EBC=118°,求∠α的度数;(4)如图3,若0°<∠α<60°,求∠ABE-∠DBC的度数.28.如图,点O是直线AB上一点, OC⊥OE,OF平分∠AOE,∠COF=25°,求∠BOE的度数.29.如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C;(2)过点P画OA的垂线,垂足为H;(3)线段PH的长度是点P到______的距离,______是点C到直线OB的距离,线段PC、PH、OC这三条线段大小关系是______(用“<”号连接).30.如图①,在平整的地面上,用若干个完全相同的棱长为10 cm的小正方体堆成一个几何体.(1)现已给出这个几何体的俯视图(如图②),请你画出这个几何体的主视图与左视图;(2)若现在你手头还有一些相同的小正方体,如果保持这个几何体的主视图和俯视图不变.①在图①所示的几何体中最多可以再添加几个小正方体?②在图①所示的几何体中最多可以拿走几个小正方体?③在②的情况下,把这个几何体放置在墙角,如图③所示是此时这个几何体放置的俯视图,若给这个几何体表面喷上红漆,则需要喷漆的面积最少是多少?31.如图:点A、C、E、B、D在一直线上,AB=CD,点E是CB的中点,那么点E是否为AD中点?试说明理由.32.解方程(组)(1)3(4)12x-=(2)2121 136x x-+ -=(3)5616 795 x yx y+=⎧⎨-=⎩33.如图,点O在直线AB上,OC、OD是两条射线,OC⊥OD,射线OE平分∠BOC.(1)若∠DOE=150°,求∠AOC的度数.(2)若∠DOE=α,则∠AOC=.(请用含α的代数式表示)四、压轴题34.如图一,点C在线段AB上,图中有三条线段AB、AC和BC,若其中一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)填空:线段的中点这条线段的巧点(填“是”或“不是”或“不确定是”)(问题解决)(2)如图二,点A和B在数轴上表示的数分别是20-和40,点C是线段AB的巧点,求点C在数轴上表示的数。

七年级下册数学 期末试卷综合测试卷(word含答案)

七年级下册数学 期末试卷综合测试卷(word含答案)

七年级下册数学 期末试卷综合测试卷(word 含答案)一、选择题1.下列四幅图中,1∠和2∠是同位角的是( )A .①②B .③④C .①②④D .②③④ 2.下列各组图形可以通过平移互相得到的是( )A .B .C .D .3.已知点P 的坐标为P (3,﹣5),则点P 在第( )象限.A .一B .二C .三D .四 4.下列命题中,假命题是( )A .对顶角相等B .两直线平行,内错角相等C .在同一平面内,垂直于同一直线的两直线平行D .过一点有且只有一条直线与已知直线平行5.将一副三角板按如图放置,如果230∠=︒,则有4∠是( )A .15°B .30°C .45°D .60° 6.下列说法错误的是( )A .9的平方根是3±B 168C .127的立方根是13D 38-2- 7.如图,//AB CD ,EF 分别交AB ,CD 于点G ,H ,若139∠=︒,则2∠的度数为( )A .51︒B .39︒C .129︒D .78︒8.在平面直角坐标系中,对于点P (x ,y ),我们把点P '(1﹣y ,x ﹣1)叫做点P 的友好点已知点A 1的友好点为A 2,点A 2的友好点为A 3,点A 3的友好点为A 4,…,这样依次得到点A 1、A 2、A 3、A 4…,若点A 1的坐标为(3,2),则点A 2020的坐标为( ) A .(3,2) B .(﹣1,2) C .(﹣1,﹣2) D .(3,﹣2)二、填空题9.已知223130x x y -+--=,则x +y=___________10.将点()14P -,先关于x 轴对称,再关于y 轴对称的点的坐标为_______. 11.如图,△ABC 的角平分线CD 、BE 相交于F ,∠A =90°,EG ∥BC ,且CG ⊥EG 于G ,下列结论:①∠CEG =2∠DCB ;②∠BFD =45°;③∠ADC =∠GCD ;④CA 平分∠BCG .其中正确的结论是______(填序号).12.如图,AB ∥DE ,AD ⊥AB ,AE 平分∠BAC 交BC 于点F ,如果∠CAD =24°,则∠E =___°.13.如图为一张纸片沿直线AB 折成的V 字形图案,已知图中140∠=︒,则2∠=______°.14.对于有理数a ,b ,规定一种新运算:a ※b=ab+b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上). 15.在平面直角坐标系中,已知线段3,AB =且//AB x 轴,且点A 的坐标是()1,2,则点B 的坐标是____.16.如图,在平面直角坐标系中:A (1,1),B (﹣1,1),C (﹣1,﹣3),D (1,﹣3),现把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A →B →C →D →A →……的规律紧绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是________.三、解答题17.计算:(1)20183(1)128-+(220319()(2018)1252π--+-18.求下列各式中的x 的值.(1)21(1)24x -=; (2)32(2)160x --=.19.请补全推理依据:如图,已知:12180∠+∠=︒,3A ∠=∠,求证:B C ∠=∠.证明:∵12180∠+∠=︒(已知)∴//AD EF ( )∴3D ∠=∠( )又∵3A ∠=∠(已知)∴D A ∠=∠( )∴//AB CD ( )∴B C ∠=∠( )20.如图,ABC 的顶点坐标分别为:(4,5)A ,(1,1)B ,(5,2)C ,将ABC 平移得到A B C ''',使点A 的对应点为(2,1)A '--.(1)A B C '''可以看作是由ABC 先向左平移 个单位,再向下平移 个单位得到的; (2)在图中作出A B C ''',并写出点B 、C 的对应点B '、'C 的坐标;(3)求A B C '''的面积.21.阅读下面文字:22的小数部分我们不可能全21221,将这个数减去其整数部分,差就是小数部分.又例如:由“平方与开平方互为逆运算”可知:22<2(7)<23,即273<<,∴7的整数部分是2,小数部72.(110的整数部分是________,小数部分是________;(25a 37整数部分是b ,求25b a -+(3)已知103x y +=+,其中x 是整数,且01y <<,求y x -. 二十二、解答题22.动手试一试,如图1,纸上有10个边长为1的小正方形组成的图形纸.我们可以按图2的虚线,AB BC 将它剪开后,重新拼成一个大正方形ABCD .(1)基础巩固:拼成的大正方形ABCD 的面积为______,边长AD 为______; (2)知识运用:如图3所示,将图2水平放置在数轴上,使得顶点B 与数轴上的1-重合.以点B 为圆心,BC 边为半径画圆弧,交数轴于点E ,则点E 表示的数是______; (3)变式拓展:①如图4,给定55⨯的方格纸(每个小正方形边长为1),你能从中剪出一个面积为13的正方形吗?若能,请在图中画出示意图;②请你利用①中图形在数轴上用直尺和圆规.....表示面积为13的正方形边长所表示的数.二十三、解答题 23.已知,如图:射线PE 分别与直线AB 、CD 相交于E 、F 两点,PFD ∠的角平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设PFM α∠=︒,EMF β∠=︒且()2350αβα-+-=.(1)α=________,β=________;直线AB 与CD 的位置关系是______;(2)如图,若点G 是射线MA 上任意一点,且MGH PNF ∠=∠,试找出FMN ∠与GHF ∠之间存在一个什么确定的数量关系?并证明你的结论.(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图)分别与AB 、CD 相交于点1M 和点1N 时,作1PM B ∠的角平分线1M Q 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值变不变?若不变,请求出其值;若变化,请说明理由.24.如图,已知AM∥BN,∠A=64°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)①∠ABN的度数是;②∵AM∥BN,∴∠ACB=∠;(2)求∠CBD的度数;(3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律;(4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是.25.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN 与CD相交于点E,求∠CEN的度数;(3)将图①中的三角板OMN绕点O按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第____________秒时,直线MN恰好与直线CD垂直.(直接写出结果)26.如图,△ABC和△ADE有公共顶点A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.(1)若DE//AB,则∠EAC=;(2)如图1,过AC上一点O作OG⊥AC,分别交A B、A D、AE于点G、H、F.①若AO=2,S△AGH=4,S△AHF=1,求线段OF的长;②如图2,∠AFO的平分线和∠AOF的平分线交于点M,∠FHD的平分线和∠OGB的平分线交于点N,∠N+∠M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.【参考答案】一、选择题1.C解析:C【分析】根据两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样的一对角叫做同位角进行分析即可.【详解】解:根据同位角的定义可知:图①②④中,∠1和∠2是同位角;图③中,∠1和∠2不是同位角;故选C.【点睛】本题主要考查同位角的定义,熟记同位角的定义是解决此题的关键.2.C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C通过平移后可以得到.故选:C.【点睛】本题考查的是解析:C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C通过平移后可以得到.故选:C.【点睛】本题考查的是平移变换及其基本性质,掌握以上知识是解题的关键.3.D【分析】直接利用第四象限内的点横坐标大于0,纵坐标小于0解答即可.【详解】解:∵点P的坐标为P(3,﹣5),∴点P在第四象限.故选D.【点睛】本题主要考查了点的坐标,各象限坐标特点如下:第一象限(+,+),第二象限(-,+)第三象限(-,-)第一象限(+,-).4.D【分析】根据对顶角的定义、平行线的性质、平行公理及其推论可直接进行排除选项.【详解】解:A、对顶角相等,是真命题,故不符合题意;B、两直线平行,内错角相等,是真命题,故不符合题意;C、在同一平面内,垂直于同一直线的两直线平行,是真命题,故不符合题意;D、过直线外一点有且只有一条直线与已知直线平行,所以原命题是假命题,故符合题意;故选D.【点睛】本题主要考查命题、平行线的性质、平行公理及对顶角的定义,熟练掌握命题、平行线的性质、平行公理及对顶角的定义等相关知识点是解题的关键.5.C【分析】根据一副三角板的特征先得到∠E=60°,∠C=45°,∠1+∠2=90°,再根据已知求出∠1=60°,从而可证得AC∥DE,再根据平行线的性质即可求出∠4的度数.【详解】解:根据题意可知:∠E=60°,∠C=45°,∠1+∠2=90°,∠=︒,∵230∴∠1=60°,∴∠1=∠E,∴AC∥DE,∴∠4=∠C=45°.故选:C.【点睛】本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键.6.B【分析】根据算术平方根与平方根、立方根的性质逐项判断即可得.【详解】A、9的平方根是3±,此项说法正确;B4,此项说法错误;C、127的立方根是13,此项说法正确;D2-,此项说法正确;故选:B.【点睛】本题考查了算术平方根与平方根、立方根的性质,熟练掌握算术平方根与平方根、立方根的性质是解题关键.7.B【分析】根据平行线的性质和对顶角相等即可得∠2的度数.【详解】解:∵//AB CD,∴∠2=∠FHD,∵∠FHD=∠1=39°,∴∠2=39°.故选:B.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.8.D【分析】根据友好点的定义及点A1的坐标为(3,2),顺次写出几个友好点的坐标,可发现循环规律,据此可解.【详解】解:∵点A1的坐标为(3,2),∴根据友好点的定义可得:A1(3,2),A解析:D【分析】根据友好点的定义及点A1的坐标为(3,2),顺次写出几个友好点的坐标,可发现循环规律,据此可解.【详解】解:∵点A1的坐标为(3,2),∴根据友好点的定义可得:A1(3,2),A2(-1,2),A3(-1,-2),A4(3,-2),A5(3,2),A6(-1,2),•••,∴以此类推,每4个点为一个循环,∵2020÷4=505,∴点A2020的坐标与A4的坐标相同,为(3,-2).故选D.【点睛】本题考查了规律型的点的坐标,从已知条件得出循环规律是解题的关键.二、填空题9.-1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,x-2=0,x2-3y-13=0,解得x=2,y=-3,所以,x+y=2+解析:-1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,x-2=0,x2-3y-13=0,解得x=2,y=-3,所以,x+y=2+(-3)=-1.故答案为:-1.【点睛】本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.(1,-4)【分析】直角坐标系中,关于x轴对称的两点,横坐标相同,纵坐标互为相反数.关于y轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解.【详解】设关于x轴对称的点为则点的坐标为解析:(1,-4)【分析】直角坐标系中,关于x轴对称的两点,横坐标相同,纵坐标互为相反数.关于y轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解.【详解】设()14P -,关于x 轴对称的点为P' 则P'点的坐标为(-1,-4)设点P'和点''P 关于y 轴对称则''P 的坐标为(1,-4)故答案为:(1,-4)【点睛】本题考查了关于坐标轴对称的点的坐标特征,关于x 轴对称的两点,横坐标相同,纵坐标互为相反数,关于y 轴对称的两点,纵坐标相同,横坐标互为相反数.11.①②③.【分析】由EG ∥BC ,且CG ⊥EG 于G ,可得∠GEC =∠BCA ,由CD 平分∠BCA ,可得∠GEC =∠BCA =2∠DCB ,可判定①;由CD ,BE 平分∠BCA ,∠ABC ,根据外角性质可得∠B解析:①②③.【分析】由EG ∥BC ,且CG ⊥EG 于G ,可得∠GEC =∠BCA ,由CD 平分∠BCA ,可得∠GEC =∠BCA =2∠DCB ,可判定①;由CD ,BE 平分∠BCA ,∠ABC ,根据外角性质可得∠BFD =∠BCF +∠CBF =45°,可判定②;根据同角的余角性质可得∠GCE =∠ABC ,由角的和差∠GCD =∠ABC +∠ACD =∠ADC ,可判定③;由∠GCE +∠ACB =90°,可得∠GCE 与∠ACB 互余,可得CA 平分∠BCG 不正确,可判定④.【详解】解:∵EG ∥BC ,且CG ⊥EG 于G ,∴∠BCG +∠G =180°,∵∠G =90°,∴∠BCG =180°﹣∠G =90°,∵GE ∥BC ,∴∠GEC =∠BCA ,∵CD 平分∠BCA ,∴∠GEC =∠BCA =2∠DCB ,∴①正确.∵CD ,BE 平分∠BCA ,∠ABC∴∠BFD =∠BCF +∠CBF =12(∠BCA +∠ABC )=45°,∴②正确.∵∠GCE +∠ACB =90°,∠ABC +∠ACB =90°,∴∠GCE =∠ABC ,∵∠GCD =∠GCE +∠ACD =∠ABC +∠ACD ,∠ADC =∠ABC +∠BCD ,∴∠ADC=∠GCD,∴③正确.∵∠GCE+∠ACB=90°,∴∠GCE与∠ACB互余,∴CA平分∠BCG不正确,∴④错误.故答案为:①②③.【点睛】本题考查平行线的性质,角平分线定义,垂线性质,角的和差,掌握平行线的性质,角平分线定义,垂线性质,角的和差是解题关键.12.33【分析】由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解.【详解】解:∵AD⊥AB,∴∠BAD=90°,∵∠C解析:33【分析】由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解.【详解】解:∵AD⊥AB,∴∠BAD=90°,∵∠CAD=24°,∴∠BAC=66°,∵AE平分∠BAC,∴∠BAE=∠CAE=33°,∵AB∥DE,∴∠E=∠BAE=33°,故答案为33.【点睛】本题主要考查平行线的性质、角平分线的定义及垂线的定义,熟练掌握平行线的性质、角平分线的定义及垂线的定义是解题的关键.13.70【分析】根据∠1+2∠2=180°求解即可.解:∵∠1+2∠2=180°,,∴∠2=70°.故答案为:70.【点睛】本题考查了折叠的性质,角的和差计算,由图得出∠1+2∠解析:70【分析】根据∠1+2∠2=180°求解即可.【详解】∠=︒,解:∵∠1+2∠2=180°,140∴∠2=70°.故答案为:70.【点睛】本题考查了折叠的性质,角的和差计算,由图得出∠1+2∠2=180°是解答本题的关键.14.①③【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若 a=b ,两式相等,若解析:①③【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若 a=b ,两式相等,若a≠b,则两式不相等,所以②错误;方程(x−4) )※3=6化为3(x−4)+3=6,解得x=5,所以③正确;左边=(a※b) ※c=(a×b+b) )※c=(a×b+b)·c+c=abc+bc+c右边=a※(b※c)=a※(b×c+c)=a(b×c+c) +(b×c+c)=abc+ac+bc+c2两式不相等,所以④错误.综上所述,正确的说法有①③.故答案为①③.【点睛】有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义.本题主要考查学生综合分析能力、运算能力.15.或设点B 的坐标为,然后根据轴得出B 点的纵坐标,再根据即可得出B 点的横坐标.【详解】设点B 的坐标为,∵轴,点A (1,2)∴B 点的纵坐标也是2,即 .∵,或 ,解得或 ,∴点解析:()4,2或()2,2-【分析】设点B 的坐标为(,)a b ,然后根据//AB x 轴得出B 点的纵坐标,再根据3,AB =即可得出B 点的横坐标.【详解】设点B 的坐标为(,)a b ,∵//AB x 轴,点A (1,2)∴B 点的纵坐标也是2,即2b = .∵3AB =,13a ∴-=或13a -= ,解得4a =或2a =- ,∴点B 的坐标为()4,2或()2,2-.故答案为:()4,2或()2,2-.【点睛】本题主要考查平行于x 轴的线段上的点的特点,掌握平行于x 轴的线段上的点的特点是解题的关键.16.【分析】先求出四边形ABCD 的周长为12,再计算,得到余数为5,由此解题.【详解】解:A (1,1),B (﹣1,1),C (﹣1,﹣3),D (1,﹣3),四边形ABCD 的周长为2+4+2+4=解析:()1,2--【分析】先求出四边形ABCD 的周长为12,再计算2021121685÷=,得到余数为5,由此解题.【详解】解:A (1,1),B (﹣1,1),C (﹣1,﹣3),D (1,﹣3),∴四边形ABCD 的周长为2+4+2+4=12,2021121685÷=2AB =∴细线另一端所在位置的点在B 点的下方3个单位的位置,即点的坐标(1,2)-- 故答案为:(1,2)--.【点睛】本题考查规律型:点的坐标,解题关键是理解题意,求出四边形的周长,属于中考常考题型.三、解答题17.(1);(2)-5.【分析】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)直接利用算术平方根以及立方根的定义化简得出答案.【详解】(1)=1+-2=(2)=3-4+解析:(12;(2)-5.【分析】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)直接利用算术平方根以及立方根的定义化简得出答案.【详解】(1)2018(1)1-+1-22(2201()(2018)2π--+-=3-4+1-5=-5【点睛】此题主要考查了实数运算,正确化简各数是解题关键.18.(1)或;(2).【分析】(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;(2)先整理变形为(x ﹣2)3=8,开立方根得出x ﹣2=2,求出即可.【详解】解:(1),,,或解析:(1)52x =或12x =-;(2)4x =. 【分析】(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;(2)先整理变形为(x ﹣2)3=8,开立方根得出x ﹣2=2,求出即可.【详解】解:(1)29(1)4x -=, 312x -=±, 312x =±, 52x =或12x =-; (2)32(2)160x --=,32(2)16x -=,3(2)8x -=,22x -=,4x =.【点睛】本题是根据平方根和立方根的定义解方程,将方程系数化为1变形为:x 2=a (a ≥0)或x 3=b 的形式,再根据定义开平方或开立方,注意开平方时,有两个解.19.同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定定理以及性质定理证明即可.【详解】证明:∵∠1+∠2=180解析:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定定理以及性质定理证明即可.【详解】证明:∵∠1+∠2=180°(已知),∴AD ∥EF (同旁内角互补,两直线平行),∴∠3=∠D (两直线平行,同位角相等),又∵∠3=∠A (已知),∴∠D =∠A (等量代换),,∴AB ∥CD (内错角相等,两直线平行),∴∠B =∠C (两直线平行,内错角相等).故答案为:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题主要考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解本题的关键.20.(1)6;6;(2)图见解析,,;(3)【分析】(1)根据平移的性质,由对应点的坐标即可得到平移的方式;(2)根据平移的方式,即可画出平移后的图形.(3)利用间接求面积的方法,即可求出三角形解析:(1)6;6;(2)图见解析,(5,5)B -'-,(1,4)C -'-;(3)132 【分析】(1)根据平移的性质,由对应点的坐标即可得到平移的方式;(2)根据平移的方式,即可画出平移后的图形.(3)利用间接求面积的方法,即可求出三角形的面积.【详解】解:(1)∵(4,5)A 平移后对应点为(2,1)A '--,∴A B C '''可以看作是由ABC 先向左平移6个单位,再向下平移6个单位得到的 故答案为:6;6;(2)作出ΔA B C '''如图所示.∴点B 、C 的对应点B '、C '的坐标分别为:(5,5)B -'-,(1,4)C -'-;(3)将三角形ΔA B C '''补成如图所示的正方形,则其面积为:11113443414132222A B C S '''=⨯-⨯⨯-⨯⨯-⨯⨯=△. 【点睛】本题考查了平移的性质,解题的关键是掌握平移的性质,正确求出平移的方式,画出平移的图形.21.(1)3,;(2);(3)【分析】(1)先估算出的范围,再求出即可;(2)先估算出和的范围,再求出a 、b 的值,最后求出代数式的值即可; (3)先求出10+的范围,再求出x 、y 的值,最后代入求出解析:(1)3103;(2)853)123【分析】(110的范围,再求出即可;(2537的范围,再求出a 、b 的值,最后求出代数式的值即可; (3)先求出3x 、y 的值,最后代入求出即可.【详解】解:(1)∵91016∴310<4, ∴10310-3,故答案为:310-3;(2)∵459363747∴253,6377,∴a 5,b =6, ∴)256522585b a -+=-+(3)∵1<3<2,∴11<103+<12,∴x=11,y=1031131+-=-,y x-=--=-=-.∴3111312123【点睛】本题考查了估算无理数的大小和求代数式的值,能估算出无理数的大小是解此题的关键.二十二、解答题22.(1)10,;(2);(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实解析:(1)10,10;(2)101-;(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实数与数轴的关系可得结果;(3)以2×3的长方形的对角线为边长即可画出图形;(4)得到①中正方形的边长,再利用实数与数轴的关系可画出图形.【详解】解:(1)∵图1中有10个小正方形,∴面积为10,边长AD为10;(2)∵BC=10,点B表示的数为-1,∴BE=10,∴点E表示的数为101-;(3)①如图所示:②∵正方形面积为13,∴13如图,点E表示面积为13的正方形边长.【点睛】本题考查了图形的剪拼,正方形的面积,算术平方根,实数与数轴,巧妙地根据网格的特点画出正方形是解此题的关键.二十三、解答题23.(1)35,35,平行;(2)∠FMN+∠GHF=180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB ∥CD ;(2解析:(1)35,35,平行;(2)∠FMN +∠GHF =180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB ∥CD ; (2)先根据内错角相等证GH ∥PN ,再根据同旁内角互补和等量代换得出∠FMN +∠GHF =180°;(3)作∠PEM 1的平分线交M 1Q 的延长线于R ,先根据同位角相等证ER ∥FQ ,得∠FQM 1=∠R ,设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y ,得出∠EPM 1=2∠R ,即可得1FPN Q∠∠=2. 【详解】解:(1)∵(α-35)2+|β-α|=0,∴α=β=35,∴∠PFM =∠MFN =35°,∠EMF =35°,∴∠EMF =∠MFN ,∴AB ∥CD ;(2)∠FMN +∠GHF =180°;理由:由(1)得AB ∥CD ,∴∠MNF =∠PME ,∵∠MGH =∠MNF ,∴∠PME =∠MGH ,∴GH ∥PN ,∴∠GHM =∠FMN ,∵∠GHF +∠GHM =180°,∴∠FMN +∠GHF =180°;(3)1FPN Q∠∠的值不变,为2, 理由:如图3中,作∠PEM 1的平分线交M 1Q 的延长线于R ,∵AB ∥CD ,∴∠PEM 1=∠PFN ,∵∠PER =12∠PEM 1,∠PFQ =12∠PFN ,∴∠PER =∠PFQ ,∴ER ∥FQ ,∴∠FQM 1=∠R ,设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y ,则有:122y x Ry x EPM ⎧⎨⎩=+∠=+∠, 可得∠EPM 1=2∠R ,∴∠EPM 1=2∠FQM 1,∴11EPM FQM ∠∠=1FPN Q∠∠=2. 【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.24.(1)① ②;(2);(3)不变,,理由见解析;(4)【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的解析:(1)①116,︒ ②CBN ;(2)58︒;(3)不变,:2:1APB ADB ∠∠=,理由见解析;(4)29.︒【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;∠ABN,即可求出结果;(2)由角平分线的定义可以证明∠CBD=12(3)不变,∠APB:∠ADB=2:1,证∠APB=∠PBN,∠PBN=2∠DBN,即可推出结论;(4)可先证明∠ABC=∠DBN,由(1)∠ABN=116°,可推出∠CBD=58°,所以∠ABC+∠DBN=58°,则可求出∠ABC的度数.【详解】解:(1)①∵AM//BN,∠A=64°,∴∠ABN=180°﹣∠A=116°,故答案为:116°;②∵AM//BN,∴∠ACB=∠CBN,故答案为:CBN;(2)∵AM//BN,∴∠ABN+∠A=180°,∴∠ABN=180°﹣64°=116°,∴∠ABP+∠PBN=116°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=116°,∴∠CBD=∠CBP+∠DBP=58°;(3)不变,∠APB:∠ADB=2:1,∵AM//BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1;(4)∵AM//BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN∴∠ABC=∠DBN,由(1)∠ABN=116°,∴∠CBD=58°,∴∠ABC+∠DBN=58°,∴∠ABC=29°,故答案为:29°.【点睛】本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等.25.(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形内角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角解析:(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形内角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角互补即可求出∠CEN的度数.(3)画出图形,求出在MN⊥CD时的旋转角,再除以30°即得结果.【详解】解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°;(2)∵∠BON=30°,∠N=30°,∴∠BON=∠N,∴MN∥CB.∴∠OCD+∠CEN=180°,∵∠OCD=45°∴∠CEN=180°-45°=135°;(3)如图,MN⊥CD时,旋转角为360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒时,直线MN恰好与直线CD垂直.【点睛】本题以学生熟悉的三角板为载体,考查了三角形的内角和、平行线的判定和性质、垂直的定义和旋转的性质,前两小题难度不大,难点是第(3)小题,解题的关键是画出适合题意的几何图形,弄清求旋转角的思路和方法,本题的第一种情况是将旋转角∠DOM放在四边形DOMF中,用四边形内角和求解,第二种情况是用周角减去∠DOM的度数. 26.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定义求出∠M,∠N(用∠FAO表示),可得结论.【详解】解:(1)如图,∵AB∥ED∴∠E=∠EAB=90°(两直线平行,内错角相等),∵∠BAC=45°,∴∠CAE=90°-45°=45°.故答案为:45°.(2)①如图1中,∵OG⊥AC,∴∠AOG=90°,∵∠OAG=45°,∴∠OAG=∠OGA=45°,∴AO=OG=2,∵S△AHG=12•GH•AO=4,S△AHF=12•FH•AO=1,∴GH=4,FH=1,∴OF=GH-HF-OG=4-1-2=1.②结论:∠N+∠M=142.5°,度数不变.理由:如图2中,∵MF,MO分别平分∠AFO,∠AOF,∴∠M=180°-12(∠AFO+∠AOF)=180°-12(180°-∠FAO)=90°+12∠FAO,∵NH,NG分别平分∠DHG,∠BGH,∴∠N=180°-12(∠DHG+∠BGH)=180°-12(∠HAG+∠AGH+∠HAG+∠AHG)=180°-12(180°+∠HAG)=90°-12∠HAG=90°-12(30°+∠FAO+45°)=52.5°-12∠FAO,∴∠M+∠N=142.5°.【点睛】本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用∠FAO表示出∠M,∠N.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学综合测试题
一、选择题(每小题 4 分,共 40 分)
1.2 的相反数和绝对值分别是( )
A.2 ,2
B.-2, 2
C. -2, -2
D.2 , -2 2.如果 a 和 2b 互为相反数,且
b ≠0,那么的 a 的倒数是(
) A.
1 1
2 D. 2b
2b
B.
C.
2b
b
3.计算
1 22
1
62
的值是( )
5 5
32
A.0
B.
C.
4
D. -
4
5
5
5

b 两数在数轴上的位置如图所示,则化简代数式
a b a 1 b 2 的结果
4.已知 a
是(

A. 1
B.2b+3
C.2a-3
D.-1
5.已知有一整式与 (2x 2
5x 2) 的和为(2x 2
5x
4)
,则此整式为(

A.
2
B.6
C.10x+6
D. 4x 2 10x 2
6.下列四个说法中,正确的是( )
A .相等的角是对顶角
B .平移不改变图形的形状和大小,但改变直线的方向
C .两条直线被第三条直线所截,内错角相等
D .两直线相交形成的四个角相等,则这两条直线互相垂直
7.同一平面内的四条直线若满足
a ⊥
b , b ⊥
c , c ⊥
d ,则下列式子成立的是( )
A . a ∥ d
B . b ⊥ d
C . a ⊥ d
D . b ∥ c
8.下列式子是因式分解的是(

2
1 B
. x
2
﹣ x=x
x 1
C . x 2 x =x x 1
D . x
2
x=x x 1x
A . x (x ﹣ 1) =x ﹣
( + )
+
( + )
﹣ ( + )(
﹣ 1)
9.如果 x 2
+kx+25 是一个完全平方式,那么
k 的值是( )
A . 5
B .± 5
C . 10
D .± 10
10.已知∠ A ,∠ B 互余,∠ A 比∠ B 大 30 度.设∠ A ,∠ B 的度数分别为 x °、 y °,下列方
程组中符合题意的是
( )
A .B.
C. D .
二、填空题(每小题 4 分,共 24 分)
11.如果2(x 3)的值与3(1 x)的值互为相反数,那么x 等于 _____.
12.足球比赛的计分规则是:胜一场得 3 分,平一场得 1 分,负一场得0 分.一队打14 场,
负 5 场,共得 19 分,那么这个队共胜了 _____场 .
13.如图, AB ︰BC︰ CD=2 ︰ 3︰4,AB 的中点 M 与 CD 的中点 N 的距离是 3cm,则 BC=______.
A M
B
C N D
第 15 题图
14.如图,直线l1∥ l2, AB ⊥ EF,∠ 1=20°,那么∠2=.
15.如图,已知a∥ b,小亮把三角板的直角顶点放在直线 b 上.若∠ 1=40°,则∠ 2 的度数为.
16.对于任意两个实数对( a, b)和( c,d),规定:当且仅当a=c 且 b=d时,( a, b) =
c d
).定义运算“ ” a b c d=

ac bd ad bc12p q
(,⊕ :(,)⊕(,)﹣, +).若(,)⊕(,)=(5, 0),则 p=, q=.
三、解答题(共36 分)
17.(4 分 )已知 a、b 互为相反数, c、d 互为倒数, x 的绝对值是2,
求 x2(a b cd )x (a b) 2011( cd) 2012的值.
18. (6 分 ) 先化简,再求值:(x+3)2
+(x+2)( x﹣ 2)﹣ 2x
2
,其中 x= ﹣.
19. (12 分如图,△ ABC 中,∠ B=10 °,∠ ACB=20 °, AB=4cm ,△ ABC 逆时针旋转一定
角度后与△ ADE 重合,且点 C 恰好成为 AD 的中点.
(1)指出旋转中心,并求出旋转的度数;
(2)求出∠ BAE 的度数和 AE 的长.
20. (14 分某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试
两项测试,三人的测试成绩如下表所示:
测试成绩 /分
测试项目
甲乙丙
笔试758090
面试937068
根据录用程序,组织 200 名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐 1 人)如图所示,每得一票记作 1 分.
(1)请算出三人的民主评议得分;
(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用;(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4: 3: 3 的比例确定个人成绩,那么谁将被录用?。

相关文档
最新文档