热力学函数基本关系式53页PPT

合集下载

热力学函数的基本关系式

热力学函数的基本关系式
H T S V p V T V T V T
麦克斯韦关系式 S p V T T V
14
思考:定容或定压下S 随T 的变化率各等于什么?
S(T,p) S(T,V)
由定义式出发
1)由定义式出发
dS Qr C dT
定压
S Cp T p T
H p
T
T
V T
p
V
热力学状态方程,将U(或H)与p,V,T联系起来了。
—— 对实际气体,已知pVT状态方程式,代入,积分 可求ΔU、ΔH。
13
典型证明题:
证明: H T p V p V T T V V T
证:由热力学基本方程 dH = TdS + Vdp 定温下等式两边同除以dV,得
除了定义式外, 还可以导出四种类型的重要关系式
2
1. 热力学基本方程
封闭系统中, 微小可逆过程:dU=δQr+δWr
δWr ′=0时,
dS δ Qr T
δWr=-pdV,
dU=TdS-pdV
H=U+pV
dH=dU+pdV+Vdp
A=U-TS dA=dU-TdS-SdT
dH=TdS+Vdp
dA= - SdT - pdV
4
由四个热力学基本方程,分别加上相应的条件,可得到
8个派生公式:
dU = TdS- pdV
U S
V
T
U V
S
p
dH = TdS + Vdp
T V HS p源自H p SdA = -SdT- pdV
A T
V
S
A V
T
p
dG = -SdT + Vdp

热力学函数的基本关系式

热力学函数的基本关系式

dU = TdS- pdV
(1-108)
dH = TdS + Vdp
(1-109)
dA = -SdT- pdV
(1-110)
dG = -SdT + Vdp
(1-111)
式(1-108),(1-109),(1-110),(1-111)称为热力学基本方程
dU = TdS- pdV dH = TdS + Vdp dA = -SdT- pdV dG = -SdT + Vdp
常用的是式(1-120)及式(1-121),这两等式右边的变化率是可以由 实验直接测定的,而左边则不能。可用等式右边的变化率代替左
4.热力学状态方程
由dU=TdS-pdV
定温下, dUT=TdST-pdVT
等式两边除以dVT 即
dUT T dST p
dVT
dVT
由麦克斯韦方程 于是
U T S p V T V T S p V T T V
式(1-116)及 (1-117)叫吉布斯 - 亥姆霍茨方程。
(1-117)
G-H方程常用的形式为:



(G / T )
T p


H T2
加△
(1-116)
Gibbs自由能随压力的变化

(эG/эP)T,n=V
(э△G/эP)T,n=△V 此即G---V关系式
只要知道△V--p关系式,在定温下P1的△G1就可求算出P2的△G2。
在定压下从T1到 T2积分得: (△G)2/ T2- (△G)1/ T1=- =∫T1 T2 △H/T2dT 若知△H--T关系以及T1时的△G1就可求算T2时的△G2 而: △H= △H T0+∫ T0 T △CpdT △H T0是T0时的焓变。

热力学函数的基本关系式

热力学函数的基本关系式

dG = -SdT + Vdp
S p
T
V T
p
麦克斯韦关系式 :表示的是系统在同一状态的两种
变化率数值相等。 9
二阶混合偏导数
T p V S S V 麦氏方程记忆法:
T p
S
V S
p
① 对角乘积永远是pV,TS;
② 等式两边分母与外角标互换;
S p
T
V T
4
由四个热力学基本方程,分别加上相应的条件,可得到
8个派生公式:
dU = TdS- pdV
U S
V
T
U V
S
p
dH = TdS + Vdp
T V H
S p
H p S
dA = -SdT- pdV
A T
V
S
A V
T
p
dG = -SdT + Vdp
G T
P
S
G P

U T p p
V T T V
11
练习:由热力学基本方程出发证明,
H p
T
T
V T
p
V
证明:
dH=TdS+Vdp
定温下,等式两边除以dp
H p
T
T
S p
T
V
由麦克斯韦方程
S p
T
V T
p
返回
H p
T
T
V T
p
V
12
U T p p V T T V
S T p
T
T
定容
S CV T V T
S T V
15
T
V
5
2. 吉布斯 - 亥姆霍茨方程

物理化学(机材类第四版,ppt课件)2.9 热力学基本关系式

物理化学(机材类第四版,ppt课件)2.9 热力学基本关系式
适用条件:组成不变,W′= 0 的封闭系统或 封闭系统,W′= 0,可逆过程。
4
2、热力学函数的基本关系式
由热力学基本方程
热力学恒等式
dU = TdS- pdV dH = TdS + Vdp
U T ; U p
S V
V S
H T; S p
H p
S
V
dA = -SdT- pdV dG = -SdT + Vdp
再将dU = TdS – pdV 式代入得到 dH = TdS +Vdp
(c) A=U-TS 微分,并用上式代入得到
dA = -SdT- pdV
(d) G = H – T S微分,并用上式代入得到 dG = -SdT + Vdp
3
四个热力学基本方程
dU = TdS- pdV dH = TdS + Vdp dA = -SdT- pdV dG = -SdT + Vdp
G p3 p2 p1
p3>p2>p1
T Tm
T
26
(1)求U随V的变化关系 (2)求H随p的变化关系 (3)求S与Cp的变化关系 (4)求G或Δr G与温度的关系 (5)求G随p的变化关系
27
关于U,H, S, G,A与T、p、V的关系
(一定量、一定组成的单相系统)
➢理想气体 U、H 只是T 的函数,与p、V 无关;S与T、p、V 均有关。
-p -S
G T p
麦克斯韦关系式中不含熵与温度的偏微商。
问题
S T p
S T V
Cp/T CV/T
10
思考题
1、对于只作膨胀功的封闭系统 ()
A T
V

热力学函数精品PPT课件

热力学函数精品PPT课件
3.1.1热力学函数的相互关系
1 2 3 4 5 物质状态 能量状态 各热力学函数之间的关系 状态发生变化的两类过程 化学反应的吉布斯自由能
返回
1 物质状态
• 物质的特定状态是由一些规定物质状 态的参变量所决定的。 • 参变量可分为广延参量和内含参量两 类:广延参量和物质的量有关,如体积、 组元的摩尔数……等,内含参量又称强 度参量,它和物质的量无关,如温度、 压力、摩尔分数等。物质的状态由这些 参变量决定,并随这些参变量的变化而 变化,用数学形式表示为: • 式中X代表物质的状态。
返回
2 能量状态
• 物质状态变化时,其能量状态也发 生变化。在热力学中用内能、焓、熵、 亥姆霍兹茨自由能F和吉布斯自由能 G五个函数来表示物质的能量特征。 状态一定,表示能量状态的各热力学 函数的值也一定。因此,这些热力学 函数都是状态函数。
返回
3 各热力学函数之间的关系
H=U+PV G=F+PV H=G+TS F=U+TS
•可见,焓与内能之间,吉布斯自由能和亥姆霍兹茨自由能之间, 相差为PV,焓与亥姆霍兹茨自由能之间,焓与吉布斯自由能之 间,相差为TS。 •等压过程,dP=0, dH=dU+PdV; dG=dF+PdV •等容过程,dV=0, dH=dU+VdP; dG=dF+VdP
•dH和dG常应用于等压条件,dU和dF则应用于等容 条件。在相应条件下,过程吸收或放出的热,可用来 量度状态变化时内能或焓的变化。
Q
返回
5 化学反应的吉布斯自由能
•化学反应的吉布斯自由能变化( G )是判断反 应在恒温、恒压下能否自发进行的依据。 •对于任意炼钢反应,其吉布斯自由能变化可表示为: •即它等于反应产物与反应物的吉布斯自由能的差值。 G <0,反应能自发正向进行; G >0,反应逆向 G =0,反应达平衡。因此,的负值是反应正 进行。 向进行的驱动力。此负值越大,则该反应正向进行 的趋势也越大。 化学反应的热力学性质,如温度、压力及活度 等条件能改变吉布斯自由能变化的特征,从而使反 应向需求的方向进行。

2.11热力学函数间的关系

2.11热力学函数间的关系
式中
dc = 0 d ( cv ) = cdv d ( u ± v ) = du ± dv d ( uv ) = vdu + udv
u vdu − udv d = 2 v v
c为常数; u、v 为变量 为常数; 为常数
不定积分公式
∫ du = u + C
u m +1 u m du = +C ∫ m +1 du ∫ u = ln u + C
一、热力学基本关系式
(2) 因为
dH = TdS + Vdp
H = U + pV
d H = d U + p d V + Vd p
dU = TdS − pdV dH = TdS + Vdp
所以
一、热力学基本关系式
(3)
dF = − SdT − pdV
F = U − TS dF = dU − TdS − SdT
式中:m为常数(指数); C为积分常数。
二、对应系数关系式
U = f ( S ,V )
可逆过程) (W’=0;可逆过程) 可逆过程
F = f (T , V )
dU = (
∂U ∂U )V dS + ( ) S dV ∂S ∂V ∂U p = −( )S ∂V
dU = T dS − pdV
∂F ∂F )V dT + ( )T d V ∂T ∂V dF = − SdT − pdV dF = ( S = −( ∂F )V ∂T p = −( ∂F θ )T ∂V
第十一节 热力学函数间的关系
H
H = U + pV pV
U
U = H − pV
TS TS

热力学函数间的关系

热力学函数间的关系
则T = 1000 K, rG1000 = 61900 Jmol-1>0
计算结果说明,在给定条件下,298K时,合成氨反应可 以进行;而在1000K时,反应不能自发进行
再见!
H
U
TS
G
TS F
H U pV pV U H pV
G H TS F pV pV F U TS G pV
T1
T
T2 T1
H T2
dT
(1) 若温度变化范围不大,△H可近似为不随温度变化的常数
G T
T 2
G T
T 1
H
1 T2
1 T1
四、G与温度的关系—吉布斯-亥姆霍兹公式
25℃,反应 2SO3(g) 2SO2(g) O2(g)
rGm (298K) 1.400 10 5 J mol1 r Hm 1.966 105 J mol1
H T2
吉布斯-亥姆赫兹公式
G T
T
H T2
P
四、G与温度的关系—吉布斯-亥姆霍兹公式
吉布斯-亥姆赫兹方程式
Байду номын сангаас
G T
T
H T2
P
(微分形式)
应用:在等压下若已知反应在T1的rGm(T1),则可求得该反 应在T2时的rGm(T2)。
积分形式
T2 d ( G )
M 和N也是 x,y 的函数
二阶导数
M
2Z
( y )x xy ,
N
2Z
( x )y xy
所以
M N ( y )x ( x )y
三、Maxwell 关系式
热力学函数是状态函数,数学上具有全微分性质,将上述
关系式用到四个基本公式中, 就得到Maxwell关系式:

热力学函数的基本关系式

热力学函数的基本关系式
△S=QR/T; T △S= QR 故△G= △H- T △S=0- T △S= QR= WR=-RTlnP1/P2=5744Jmol-1 解法二: △G=∫ p1 p2Vdp = RTlnP2/P1=5744Jmol-1.
⑵等温等压相变△G 对于等温等压的可逆相变,直接可得(△G)T,P=0.对于非等温 等压的非可逆相变或同温同压下两个相态的△G,可以通过设计可 逆过程进行计算,也可根据G---P关系公式求算。
1.8 热力学函数的基本关系式
H
U、H、S、A、G 、 p、V、T H =U+pV,A =U-TS,G =H-TS 1. 热力学基本方程
U
pV
TS A pV
TS
G
δWr ′=0时,则δWr=-pdV,于是
一微小可逆过程
dU=δQr+δWr,
dS δ Qr T
δWr ′ =0时,则δWr=-pdV,于是
=8586Jmol-1 故△G= △G1+ △G2 + △G3=8584Jmol-1 依Gibbs自由能减少原理,298K,1atm水不能经等温等压过程转变 为同温 同压的水蒸气,但其逆过程则是可以的。因此在298K, 1atm下液态水是稳定态。
⒊应用Gibbs--helmholtz方程求△G 将 G--H方程:{э(△G/T)/эT}P=- △H/T2
△S=0,△T=0,△H=0,
△G=0
⑵理气在等温等压的Gibbs自由能改变 △G = △H-T △S (△H=0) △S=-R∑nilnXi △G= RT∑nilnXi 其中ni为组分i的量,Xi为理想混合气中
为组分I的摩尔数。
⒌非等温等压两态的△G 若体系的两态温度,压力都不相等,根据G的定义:

物理化学:2.13热力学函数间的重要关系式

物理化学:2.13热力学函数间的重要关系式
即: (Wr ) T = dF
② 恒温恒容可逆:
dF = SdT PdV Wr, f = Wr, f
即: (Wr, f ) T, V = dF
③ 恒温恒压可逆:
dG = SdT + VdP Wr, f = Wr, f 即: (Wr, f ) T, P = dG
上述结论与前面讨论的结果一样。
U、T、S、P、V、T、 H、F、G
均与相同始、终态的可逆过程的改变 量相同。
2)涉及不可逆变化时,过程曲线不在状 态空间内,无法在始、终态范围内直 接对过程曲线积分求状态函数变化值;
但始、终态间状态函数变化值与经可 逆过程的变化值是一样的;
所以可设计有相同始、终态的可逆过 程,对上述公式积分,得到任意变化 过程的U、G、… 等。
二、热力学第一、第二定律基本公式
第一定律:dU = Q W = Q P环 dV Wf …①
第二定律:dS = Qr / T Qr = TdS (可逆) …②
②代入①:dU = TdS PdV Wf …③ (可逆过程: Q = Qr,P = P环)
dU = TdS PdV Wf …③
3)对上述公式直接积分计算时,仅适合 于体系组成不变,或仅发生可逆相变、 可逆化学反应的过程。
否则,需设计相同始态及最终态的可 逆过程、可逆相变等来分段计算并加 和(有例题)。
结论:
上述基本公式可用于封闭、无非体积 功 ( Wf = 0 )、组成平衡 ( 组成不变或 仅发生可逆变化 ) 的体系;
§2.13 热力学函数间的重要关系式
一、热力学函数之间的关系 • 在热力学第一、第二定律中,共涉及
五个热力学函数:U、H、S、F、G:
H U + PV F U TS G H TS F + PV

热力学基本方程PPT课件

热力学基本方程PPT课件

如果取C(V )T nRT / (V nb),就得范德华方程 如果取C(V )T是硬球状态方程,就得硬球范德华方程
复习在热力学中常用到的偏导数关系式: 1. 由微分式求导数:导数的定义
f x y
lim
Δx 0
f ( x Δx, y) Δx
f (x, y)
Δf lim Δx0 Δx
y不变
V
4c S 3 V
1/ 3
p
U V
S
c S 3 V
4/3
T T (S,V )
27T 4
27T 3V
p
p(S,V )
p
256c3
,
T T (S,V ) S
64c3
如果已知的是U(T, V),那么我们将得不到完整的其他热力学 性质,比如不能由它推导出体系状态方程。
已知U(T ,V )
T
U S
V
H S
p
H G
V
p
S
p
T
p
U V
S
A V
T
S
A T
V
G T
p
(A/T) T V
U T2
,
(A/T)
(1/ T )
V
U
(G / T T
)
p
H T2
,
(G / T )
(1/T )
p
H
4.麦克斯韦关系式(Maxwell relations)
U V
T
dV
CV dT
U V
T
dV
类似的,焓的自然的独立变量是熵和压强,为方便 起见,焓的独立变量也常取为温度和压强
dH TdS Vdp

《热力学函数》课件

《热力学函数》课件
自由能函数是描述系统在等温、等压条件 下进行自发过程的能量变化。在等温、等 压条件下,自发过程总是向着自由能减少 的方向进行。自由能的变化可以用来计算 等温、等压条件下自发过程的方向和限度 。
吉布斯函数
总结词
表示系统在等温、等压、等容条件下进行自 发过程的能量变化
详细描述
吉布斯函数是描述系统在等温、等压、等容 条件下进行自发过程的能量变化。在等温、 等压、等容条件下,自发过程总是向着吉布 斯函数减少的方向进行。吉布斯函数的变化 可以用来计算等温、等压、等容条件下自发 过程的方向和限度。
在节能减排中的应用
节能技术评估
利用热力学函数可以对各种节能技术 进行评估,如余热回收、热泵技术等 ,以确定其节能效果和适用范围。
污染物排放控制
通过分析热力学函数,可以研究控制 污染物排放的方法和技术,如燃烧控 制、尾气处理等。
在新能源开发中的应用
新能源转化效率
利用热力学函数可以分析新能源转化过程的效率,如太阳能热利用、生物质能转化等。
理想气体热力学函数计算实例
以水蒸气为例,可以计算其在不同温度和压力下的内能、 熵、焓等热力学函数的值。
真实气体热力学函数的计算
真实气体与理想气体的差异
01
真实气体在高温、高压下偏离理想气体状态方程,因此其热力
学函数与理想气体存在差异。
真实气体热力学函数计算方法
02
根据实验数据和物性参数,可以采用物性方程或状态方程来计
3
能源管理与优化
热力学函数理论可以为能源管理和优化提供科学 依据和技术支持,提高能源利用效率和经济效益 。
热力学函数面临的挑战与问题
基础理论框架的完

尽管热力学函数理论已经取得了 一定的进展,但仍需要进一步完 善其基础理论框架,提高理论的 完整性和严密性。

物理化学1.15-1 热力学函数的基本关系式

物理化学1.15-1  热力学函数的基本关系式
§1.15 热力学函数的基本关系式
8个热力学函数: 可直接测定
p、V、T、U 、H 、S、A、G
定 H =U+pV 义 式 A =U-TS
可求得
G =H-TS=A+pV
1.热力学基本方程
封闭系统 dU =δQ + δW
可逆过程
=δQr -pdV + δWr′
δQr =TdS
dU = TdS -pdV + δWr' δWr'=0:
dA = -SdT- pdV dG = -SdT + Vdp
G S T p

G p
T
V
证明:无相变和化学变化的封 闭系统,在定温下其吉布斯自 由能随压力的改变恒为正值。
证明:
dG = -SdT + Vdp
G ( p )T
V
>0
解: dG = -SdT + Vdp
S T2 nCV ,mdT nR ln V2 ,
T1
T
V1
A nRT ln V2 V1
应(用ቤተ መጻሕፍቲ ባይዱ()i封条i()i无i闭件i)非可系:体逆统积过,功程,。
可用于: (i)定量,定组成的单相系统;
(ii) 保持相平衡及化学平衡的系统.
8个派生公式: dU = TdS- pdV dH = TdS + Vdp
U T S V U p V S
dU = TdS -pdV
dU=TdS-pdV
H=U+pV dH=dU+pdV+Vdp
A=U-TS dA=dU-TdS-SdT
dH=TdS+Vdp
dA= - SdT - pdV

热力学基本关系式

热力学基本关系式

至今讨论中常应用的八个热力学函数--p、V、T、U、H、S、A、G。

其中 U 和 S 分别由热力学第一定律和第二定律导出;H、A、G 则由定义得来。

而 U、H、A、G 为具有能量量纲的函数。

这些热力学函数间通过一定关系式相互联系着。

基本热力学关系式共有十一个(以下分别用公式左边括弧中的数字标明)。

从这十一个基本关系式出发,可以导出许多其它衍生关系式,它们表示出各不同物理量间的相互关系,利用它们可以帮助我们由易于直接测量的物理量出发以计算难于直接测量的物理量的数值。

由定义可得如下三个关系式:(1) (3-136)(2) (3-137)(3) (3-138)又由热力学第一定律、第二定律联合公式,在无非膨胀功条件下:将它和式(3-136)、(3-137)、(3-138)联系起来:即可得以下四个一组被称为恒组成均相封闭系统的热力学基本方程。

又称 Gibbs 方程。

(4) (3-139)(5) (3-140)(6) (3-141)(7) (3-142)这四个基本方程均不受可逆过程的限制,因为 U、H、A、G 等随着相应两个独立的状态函数变化而变化,因而与变化的具体途径(可逆或不可逆)无关,自然亦可用于不可逆过程。

公式虽然是四个,但式(5)、(6)、(7)实际上是基本公式(4)在不同条件下的表示形式。

根据全微分定义可有如下关系:(3-143)(3-144)(3-145)(3-146)式(3-139)与式(3-143)对比、式(3-140)与式(3-144)对比、式(3-141)与式(3-145)对比、式(3-142)与式(3-146)对比,可得如下关系(或称"对应系数式"):(3-147)(3-148)(3-149)和 (3-150)如分别将尤拉(Euler)定则:应用于热力学基本方程(4)、(5)、(6)、(7)可得如下四式:(8) (3-151)(9) (3-152)(10) (3-153)(11) (3-154)这四式常称为"麦克斯威关系式"。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档