换元积分法(第一类换元法)
定积分第一类换元法积分上下限
定积分第一类换元法积分上下限
定积分第一类换元法积分上下限,是指在定积分的过程中使用第
一类换元法时,需要注意换元变量和被积函数的取值范围问题。
第一类换元法是指通过引入变量替换的方法将被积函数进行简化,从而求解定积分的方法。
当进行第一类换元法时,需要确保换元变量
和被积函数的取值范围是一致的,以保证换元的可行性。
在定积分中,上下限是指积分区间的起始点和结束点,用来确定
积分的范围。
换元后的定积分中,上下限也需要进行相应的变换。
具体来说,如果积分区间在原积分中的上下限为a和b,在进行
第一类换元法后,需要确定变量的取值范围来确定新的积分区间。
如
果换元变量记为u,且原积分区间中的a对应u的取值为u=a_1,b对
应的u取值为u=b_1,则新的积分区间的上下限为a_1和b_1。
需要注意的是,在进行第一类换元法时,需要保证换元变量和被
积函数的取值范围是一致的,否则换元后的积分结果可能会发生改变。
综上所述,定积分第一类换元法积分上下限需要根据换元变量和
被积函数的取值范围来确定新的积分区间。
第五章 2-1 第一类换元法
步骤: (1)凑微分;(2)换元求出积分; (3)代回原变量。
例 求 sin 2 xdx .
sin u du
1 解 sin 2 xdx sin 2 xd ( 2 x ) 2
(4). 有些问题需要反复使用凑微分法求解不定积分. 例.
dx x ln x ln ln x
d (ln x ) d (ln ln x ) ln | ln ln x | C. ln x ln ln x ln ln x
(5) 常用的几种配元形式:
1 (1) f (ax b)dx a 1 n n 1 (2) f ( x )x dx n 1 n 1 (3) f (x ) dx n x
机动 目录 上页 下页 返回 结束
解法 2
(sec x tan x) sec x tan x sec 2 x sec x tan x dx sec x tan x d (sec x tan x) sec x tan x
同样可证
csc xdx ln csc x cot x C
令u 2x
1 1 sin udu cos u C 2 2 1 cos 2 x C ; 2
1 dx. 例 求 2x 3
1 udu 1 1 令2 x 3 u 1 1 d (2 x 3) du 解: 原式 2 2x 3 2 u 1 1 l n u C ln 2 x 3 C . 2 2 ( x) u f [ ( x )] ( x )dx f (u)du
3.3第一类换元积分法
§3.3 第一类换元积分法教学目的:使学生理解第一类换元积分法,掌握第一类换元积分法的一般步骤及其应用。
重点:第一类类换元积分法及其应用 难点:第一类类换元积分法及其应用教学过程:一、问题的提出不定积分的概念较为简单,但从计算上讲是较为繁杂的,如同数学中一般逆运算比正运算困难一样,不定积分作为微分运算的逆运算,其难易程度却相差甚远,若把求导数比喻为将一根绳子打结,求不定积分则是解结,解结显然比打结难,有时甚至解不开。
而且利用直接积分法所能计算的不定积分是非常有限的,因此,有必要进一步研究不定积分的其它计算方法,由复合函数的求导法则可推得一种十分重要的积分方法——换元积分法(通常简称换元法)。
该法可分为两类,即第一类和第二类换元法。
本节将介绍第一类换元法。
二、第一类换元积分法(凑微分法)我们将把复合函数的求导法反过来用于求不定积分,即利用变量代换的方法将所要求的不定积分变为基本积分表中所已有的形式或原函数为已知的其他形式来求函数的不定积分,这种方法称为换元积分法。
下面先介绍第一类换元积分法。
定理 设)(u f 具有原函数,)(x u ϕ=可导,则有换元公式⎰⎰=='⋅)(])([)()]([x u du u f dx x x f ϕϕϕ证明 设)(u f 具有原函数)(u F ,即)(u F '=)(u f ,⎰du u f )(=Cu F +)(.又因为u 是关于x 的可导函数)(x u ϕ=,所以有⎰⎰⎰+==='⋅C x F x dF x d x f dx x x f )]([)]([)]([)]([)()]([ϕϕϕϕϕϕ又)(])([x u du u f ϕ=⎰)(])([x u C u F ϕ=+=C x F +=)]([ϕ从而推得⎰⎰=='⋅)(])([)()]([x u du u f dx x x f ϕϕϕ 证毕推论 若 ⎰dx x f )(=C x F +)(成立,则⎰du u f )(=Cu F +)(.也成立,其中u 为x 的任一可导函数该推论表明:在基本的积分公式中,把自变量x 换为u 的任一可导函数后,公式仍成立,这就大大的扩大了公式的使用范围。
《微积分》第二节 不定积分的第一类换元积分法
(sin2 x 2sin4 x sin6 x)d(sin x)
1 sin3 x 2 sin5 x 1 sin7 x C .
3
5
7
说明 当被积函数是三角函数相乘时,拆开奇 次项去凑微分.
例17 . 求
解: cos4 x (cos2 x)2 (1 cos 2x)2
2
1 4
(1
2
例4. 求 解:
d x
a
1
(
x a
)2
d(
x a
)
1
(
x a
)
2
想到
du 1u2
arcsin u
C
f [ ( x)] ( x)dx f ( (x))d (x)
(直接配元)
例5. 求 解:
sin cos
xdx x
dcos x cos x
类似地,
cos x dx sin x
d sin x sin x
2a xa
例7. 求
解: 原式 =
1
dln x 2 ln
x
1 2
d(1 2 ln x 1 2 ln x
)
例8. 求
e3
x
dx.
x
解: 原式 = 2 e3 x d x 2 e3 x d(3 x) 3
2 e3 x C
3
例9 求
(1
1 x2
x 1
)e xdx.
解
x
1 x
1
1 x2
解
(1
x x
)3
dx
x 1 (1 x)
31dx
[ (1
1 x)2
(1
1 x)3
]d (1
换元积分法(第一类换元法)
§4.2 换元积分法 Ⅰ 授课题目 §4.2 换元积分法(第一类换元法) Ⅱ 教学目的与要求:理解第一类换元法的基本思想,它实际上是复合函数求导法则的逆过程,其关键是“凑微分”,dx x x d )()(ϕ'=ϕ .掌握几种典型的凑微分的方法,熟练应用第一类换元积分法求有关不定积分. Ⅲ 教学重点与难点: 重点:第一换元法的思想,难点:熟练应用第一换元法计算有关函数的不定积分. Ⅳ 讲授内容:一、第一类换元积分法 设)(u f 具有原函数)(u F ,()()f u du F u C =+⎰.若u 是中间变量,()u x ϕ=,()x ϕ可微,则根据复合函数求导法则,有(())()[()]()dF x dF du duf u f x x dx du dx dxϕϕϕ'===。
所以根据不定积分的定义可得:()[()]()[()][][()]u x f x x dx F x C F u C f u du ϕϕϕϕ='=++=⎰⎰ 以上是一个连等式可以改变顺序从新写一遍,就有[][]()[()]()][()]()u x f x x dx f u du F u C F x C ϕϕϕϕ='=+=+⎰⎰.以上就是第一换元积分法。
从以上可以看出,虽然[()]()f x x dx ϕϕ'⎰是一个整体记号,但是被积表达式中的dx 可当作变量x 的微分来对待从而上式中的()x dx ϕ'可以看成是()x ϕ的微分,通过换元()u x ϕ=,应用到被积表达式中就得到()x dx du ϕ'=.定理1 设)(u f 具有原函数)(u F ,)(x u ϕ=可导,dx x du )(ϕ'=,则[()()()()[()]f x x dx f u du F u C F x C ϕϕϕ'==+=+⎰⎰ (1)如何应用公式(1),在求不定积分积分()g x dx ⎰时如果被积函数g(x)可以化为一个复合函数与它内函数的导函数的积的形式[()]()f x x ϕϕ'的形式 那么()()[()]()[()]x u g x dx f x x dx f u du ϕϕϕ='=⎰⎰⎰()()[()]u x F u C F x C ϕϕ==++.所以第一换元积分法体现了“凑”的思想.把被积函数凑出一个复合函数与其内函数的积[()]()f x x ϕϕ'来.例1 求33x e dx ⎰解33333=3x x x e dx e dx e x dx '=⎰⎰⎰(),可设中间变量x u 3=,dx x d du 3)3(== 3dx du ∴=,所以有3333x x u u x e dx e dx e du e C e C ===+=+⎰⎰⎰.首先观察被积函数的复合函数是什么样的,然后看是否有它的内函数的导数,若没有就去凑。
第2节换元积分法
因为 { F [ ( x )]} f [ ( x )] ( x )
若 f ( u) , ( x )及 ( x )均为连续函数, 且
f (u)du F (u) C
则
f [ ( x )] ( x )dx F [ ( x )] C
1/28/2019 6:06 AM
f ( x) f ( x ) f ( x ) [1 ]d x 2 f ( x ) f ( x) f ( x ) f 2 ( x ) f ( x ) f ( x ) [ ]d x 2 f ( x ) f ( x)
1/28/2019 6:06 AM
1 f ( x) 2 f ( x) f ( x) ] C d[ ] [ f ( x ) f ( x ) 2 f ( x )
1 令 u x 3 , 则 xdx du 2 1 1 2 2 x x 3 dx u du 2
2
1 2 1 u C ( x 3) C 3 3
3 2
3 2
1/28/2019 6:06 AM
第5章
不定积分
当运算熟练时, 可以不必将 u 写出来。 例3 求不定积分 解
2 6t 5dt t 3 4 6 dt t t 1 t
1 t2 1 1 dt 6 dt 6 ( t 1)dt 6 1 t 1 t
3t 6t 6ln t 1 C
2
3 3 x 6 6 x 6ln
1/28/2019 6:06 AM
cot xdx ln sin x C
第5章
不定积分
例5
解
dx 求不定积分 2 2 (a 0) a x 1 1 1 dx a 2 x 2 2a ( a x a x )dx 1 1 1 ( dx dx ) 2a a x a x 1 (ln a x ln a x ) C 2a 1 a x ln C 2a a x
高数4.2
2
其中C 1=C−ln a .
例 23 求 ∫ 例21
dx x −a
2 2
x (a>0).
解 当 x>a 时,设 x=a sec t (0<t< 那么
π
2
t
),
a
x 2 − a 2 = a 2 sec 2 t − a 2 = a sec 2 t − 1 =a tan t , 于是
∫
a sec t tan t =∫ dt = ∫ sec tdt = ln |sec t + tan t |+C . 2 2 a tan t x −a
§4.2 换元积分法 .
一、第一类换元法 二、第二类换元法 三、积分公式小结
一、第一类换元法
定理1 设f(u)具有原函数,u=ϕ(x)可导,则有换元公式
∫
f[ϕ(x)]ϕ′(x)dx = dx
∫
f[ϕ(x)]dϕ(x)= [ )
∫
f(u)d u]u = ϕ(x) .
根据得
∫
cot x dx=ln|sin x|+C .
熟练之后,不必再写出变量代换.
例6 例6
∫
1 a2 + x2
dx =
1 a2
∫
1 x = arctan +C . a a x x x x ch dx =a ch d = a sh +C . 例7 例7 a a a a 1 例8 dx (a>0). 例8 求 a2 − x2 1 1 1 1 x dx = 解 dx = d 2 2 a a a2 − x2 x x 1− 1− a a x = arc sin +C . a
补充公式:
不定积分的第一类换元积分法
例 6 求不定积分 sin x cos xdx .
1 2
解法一 sin x cos xdx sin xd(sin x) sin x C .
2
1 2
解法二 sin x cos xdx cos xd( cos x) cos xd(cos x) cos x C .
关于变量u的积分,于是有
∫f[φ(x)]φ′(x)dx=∫f(u)du.
如果∫f(u)du 可以求出,那么∫g(x)dx 的问题也就解决了,这就是第一类换元积分
法,又称为凑微分法.
31-4
第一类换元法(凑微分法)
定理
设函数 f (u ) 在区间 D 上有一个原函数 F (u ) ,u ( x) 在
1 x3 3
解: 原式 e dx
3
u x3
1 u
= e du
3
1 u
e C
3
1 x3
e C
3
解:
ln x
例 3 求
dx .
x
1 2
解: 原式 lnxdlnx ln x C
2
eex
解
dx
x
1 e
1
x
d(1
区间 I 上(内)可导,且有 { (x)|x I } D ,则
f ( ( x)) (x)dx f ( ( x))d (x)
u ( x )
f (u)du F (u) C F ( ( x)) C .
31-5
熟记常用微分形式
例1
2 x3
求 x e dx .
1
[ln|a+x| ln|a-x|] C
§4.2-换元积分法(第一类换元法)
§ 4.2 -换元积分法(第一类换元§ 4.2 换元积分法I 授课题目§ 4.2 换元积分法(第一类换元法)n 教学目的与要求:1. 理解第一类换元法的基本思想,它实际上是 复合函数求导法则的逆过程,其关键是“凑微 分",d (x) (x)dx.2. 掌握几种典型的凑微分的方法,熟练应用第 一类换元积分法求有关不定积分. 皿教学重点与难点:重点:第一换元法的思想,难点:熟练应用第一换元法计算有关函数的不定积 分.W 讲授内容:一、第一类换元积分法设f(u)具有原函数F(u), f(u)du F(u) C .若u 是中间变 量,u (x),(x)可微,则根据复合函数求导法则,有所以根据不定积分的定义可得:dF( (x))dxd£du du dxf(u)乎 dxf[ (x)] (x)。
f[ (X)] (x)dx F[ (x)] C u (x)F[u] C [ f(u)du]以上是一个连等式可以改变顺序从新写一遍,就有f[ (x)] (x)]dx u (x)[ f (u)du] F u C F (x) C .以上就是第一换元积分法。
从以上可以看出,虽然f[ (x)] (x)dx是一个整体记号,但是被积表达式中的dx可当作变量x的微分来对待从而上式中的(x)dx可以看成是(x)的微分,通过换兀u(X),应用到被积表达式中就得到(x)dx du .定理1设f(u)具有原函数F(u) , u (x)可导,du (x)dx , 则f[ (x) (x)dx f(u)du F(u) C F[ (x)] C (1)如何应用公式(1),在求不定积分积分g(x)dx时如果被积函数g(x)可以化为一个复合函数与它内函数的导函数的积的形式f[ (x)] (x)的形式那么g(x)dx f[ (x)] (x)dx (x) u[ f(u)du] F(u) C u (x)F[ (x)] C.所以第一换元积分法体现了“凑”的思想•把被积函数凑出一个复合函数与其内函数的积f[ (x)] (x)来.例 1 求3e3x dx角军3e3x dx e3x3dx= e3x(3x) dx,可设中间变量u 3x,du d (3x) 3dx 3dx du,1 5 1 63dx 二一(3x 2) d(3x 2)(3x 2) 3183 2x^^以^^ e 3xdxe 3x 3dxe u du e u C e 3x C .首先观察被积函数的复合函数是什么样的, 看是否有它的内函数的导数,若没有就去凑。
第一类换元积分法
例4 求
2 x 1dx .
解
1 2 x 1dx 2 x 1d ( 2 x 1) 2
1 ( 2 x 1) d ( 2 x 1) 2
1 2
1 ( 2 x 1) 2 C 3
1 1 ( 2 x 1) 1 2 1 23
1 1 2
例5 求
tan 3 x(1 tan 2 x )d (tan x )
(sec 2 x 1) sec 3 xd (sec x )
1 dx. 例17 求 x 1 e 1 1 ex ex dx dx 解 x x 1 e 1 e x x e e dx dx dx 1 x x 1 e 1 e 1 dx d (1 e x ) x 1 e
§4-3
换元积分法(一) 第一类换元积分法 (凑微分法)
复习:不定积分定义,性质和公式
1. F ( x ) f ( x )
f ( x )dx F ( x ) C
2. [k1 f ( x ) k 2 g( x )]dx k1 f ( x )dx k 2 g( x )dx
解
1 1 1 3 2 xdx 2 3 2 x d (3 2 x ) 1 1 1 1 du ln u C ln 3 2 x C . 2 2 2 u
1 一般地 f (ax b)dx [ f ( u)du]uax b a 1 即d (ax b) adx故dx d (ax b) a
f [ ( x )] ( x)dx [ f (u)du]
F [ ( x )] C
实际上 [F [ ( x )] C ] F (u) ( x ) f [ ( x )] ( x )
定积分的换元法和分部积分法
不定积分法
定积分法,
且使用方法与相应的不定积分法类似。
一、定积分的换元法
我们知道,不定积分的换元法有两种,下面就分别 介绍对应于这两种换元法的定积分的换元法。
1. 第一类换元积分法(凑微分法)
设函数 f ( x) 在区间 [a, b]上连续, f (x)dx F( x) C
那么
b a
0
1
1
t
)dt
2t
ln
|
1
t
|
2 0
4 2ln3
(2)根号下为 x 的二次式
例8 计算
1
2
0
x2 dx 1 x2
解 设 x sint, π t π , 则 dx cos t dt,
2
2
且当 x 0 时,t 0; 当 x 1 时,t π, 因此
2
6
1 2 0
x2 dx 1 x2
0
分部积分
t sint
6
0
6 sintdt
0
1 62
[
cos
t
]6 0
3 1.
12 2
例16
计算
e-1
ln(1
x)dx
0
解
e-1
ln(1
x)dx
e-1
ln(1
x)d( x)
0
0
x
ln(1
x)
e1 0
e1
0
xd
ln(1
x)
e
1
e-1 0
x
1
1
x
dx
e
1
e-1 0
(1
1
1
x
换元积分法
例2 求 (3x 1)
2008
dx.
解 令u 3x 1,得du 3dx,得dx 1 du, 3
于是有 (3x- 1)
2008
dx u
2008 1
3
du
1 2008 = u du 3
1 1 2009 u C 3 2009 1 (3 x 1) 2009 C. 6027
1 x arctan C. a a
例11 求
1
a -x
2
2
dx.
1 dx
1 解 dx 2 2 a a -x
1
x 1 a
1
2
1 a
1
x d 2 a x
a
x arcsin C. a
1 例12 求 2 dx. 2 x a
3 1 2 ( x 4)2 C. 3
还应注意到,在换元—积分—还原的解题过程中, 关键是换元,若在被积函数中作变量代换 ( x), 还需要 在被积表达式中再凑出 ' ( x)dx 即d ( x) ,也就是 du , 这样才能以u为积分变量作积分,也就是所求积分化为
f ( x) d ( x) f (u ) du F ( x) C
1 2 dt 2 d(1 t ) 1 t
2t 2 ln 1 t C
2 x 2 ln 1 x C.
一般的说,若积分 f ( x)dx不易计算可以作适当的 变量代换 x (t ) ,把原积分化为 f ( ( x))' ( x) dt 的形 式而可能使其容易积分.当然在求出原函数后, 还要 将 t 1 ( x) 代回.还原成x的函数,这就是第二换元 积分法计算不定积分的基本思想.
定积分第一类换元法和第二类换元法
定积分是微积分中的重要概念,通过定积分我们可以求解曲线与坐标轴之间的面积、体积以及质心等问题。
在求解定积分时,换元法是一种常用且有效的方法。
换元法分为第一类换元法和第二类换元法,它们在不同类型的积分计算中发挥着重要作用。
下面我们将分别介绍这两种换元法的原理和应用。
一、第一类换元法1.1 换元法简介第一类换元法,又称代换法或变量代换法,是对定积分中被积函数中的变量进行替换,将原来的积分变为更容易求解的积分。
其基本思想是通过引入适当的新变量,将被积函数中的复杂部分转化为简单的形式,从而便于积分计算。
1.2 换元法的步骤(1)寻找合适的变量替换:根据被积函数的形式和特点,选择适当的新变量代替原来的变量。
(2)计算新变量的微分:对新变量进行微分,求出新变量的微分表达式。
(3)将被积函数用新变量表示:将原来的积分中的被积函数用新变量表示出来,得到新的积分形式。
(4)进行积分计算:对新的积分形式进行计算,得出最终结果。
1.3 换元法的应用第一类换元法常用于代换型积分,如含有根式、三角函数等形式的积分。
通过合适的变量替换,可以将原积分化为简单的形式,从而便于求解。
二、第二类换元法2.1 换元法简介第二类换元法,又称参数代换法或极坐标代换法,是通过引入参数来替换被积函数中的自变量,从而实现对原积分的简化。
这种换元法常用于解决平面曲线和曲面的面积、弧长以及质心等问题。
2.2 换元法的步骤(1)引入参数:选择适当的参数替换自变量,通常选择直角坐标系下的参数形式或极坐标系下的参数形式。
(2)表达被积函数:将原来的被积函数用参数表示出来,并求出新的被积函数。
(3)进行积分计算:对新的被积函数进行积分计算,得出最终结果。
2.3 换元法的应用第二类换元法常用于参数型积分,如平面曲线、曲面以及柱面体的面积、弧长和质心的计算。
通过引入参数替换自变量,可以将原积分化为简单的形式,从而便于求解。
三、第一类换元法和第二类换元法的比较3.1 适用范围(1)第一类换元法适用于一般的代换型积分,如含有根式、三角函数等形式的积分;(2)第二类换元法适用于参数型积分,如平面曲线、曲面以及柱面体的面积、弧长和质心的计算。
第一类换元积分法与第二类换元积分法
第一类换元积分法与第二类换元积分法
第一类换元积分法和第二类换元积分法都是求解不定积分的方法,但它们在应用和具体操作上有所不同。
第一类换元积分法也叫凑微分法,它适用于两个式子相乘的形式,是复合函数求导的逆运算。
其核心思想是通过寻找新的变量,将复杂的积分转化为容易计算的积分,从而得到原函数的表达式。
这种方法主要依赖于对复合函数的求导和微分的理解。
第二类换元积分法则是通过变量代换,将积分化为积分。
这种方法主要用于处理包含根式的积分,或者需要消去根式的积分。
它的核心思想是选择适当的变换公式,将原函数中的积分变量替换为新的函数,同时将dx也替换为新的函数的导数乘以dx。
这种方法需要一定的技巧和经验,因为选择正确的变换公式和反函数代回去都需要一定的数学素养。
总的来说,第一类换元积分法和第二类换元积分法都是通过不同的方式将不定积分问题转化为容易解决的问题,从而得到原函数的表达式。
这两种方法都有其特定的应用场景和优势,需要根据具体问题选择合适的方法。
不定积分换元法公式
不定积分换元法公式不定积分换元法是求解不定积分中常用的一种方法,它通过引入一个新的变量替换原积分中的变量,从而将原积分转化为新的不定积分,进而更容易求解。
不定积分换元法公式主要包括两种形式:第一类换元法和第二类换元法。
接下来,我将详细介绍这两种形式的公式及其应用。
一、第一类换元法:第一类换元法是通过引入一个新的变量来替换原不定积分中的变量,一般选择不定积分的变量作为新变量的导数。
设新变量为u = g(x),则原不定积分可表示为∫f(x)dx = ∫h(u)du,其中h(u)为f(x)与g(x)之间的关系。
此时,需要求出u关于x的导数du/dx,并应用链式法则来完成变量替换和求导。
公式如下:∫f(x)dx = ∫h(u)du = ∫h(g(x))g'(x)dx二、第二类换元法:第二类换元法是通过引入一个新的变量来替换原不定积分中的一部分表达式,一般选择积分中的一部分表达式作为新变量的导数。
设新变量为u = g(x),则将表达式f(x)dx进行替换,可得∫f(x)dx =∫g'(x)h(u)du,其中g'(x)为新变量u关于x的导数,h(u)为f(x)dx与g'(x)之间的关系。
此时,需要求出u关于x的导数du/dx,并应用链式法则来完成变量替换和求导。
公式如下:∫f(x)dx = ∫g'(x)h(u)du通过以上两种换元法,可以将原不定积分转化为新的不定积分,然后利用新的不定积分公式及基本积分公式进行求解。
下面举例说明这两种换元法的应用。
(1)第一类换元法的应用:求解∫(2x + 1)²dx。
设u = 2x + 1,则du/dx = 2将du/dx代入原式,并将原积分中的x用u表示∫(2x + 1)²dx = ∫u² * (1/2)du = (1/2) * ∫u²du = (1/2) * u³/3 + C = (1/6)(2x + 1)³ + C。
20-不定积分的第一类换元积分法
例6
求
1 ln x (x ln x)2
dx.
解
1 ln x
(x ln x)2 dx
(x
1 ln
x)2
d(xlnx)
u x ln x,
du (1 ln x)dx.
1 C. x ln x
9
首页
上页
返回
下页
结束
铃
f [j(x)]j(x)dx f [j(x)]dj(x), u j(x) ?
通过凑微分确定 u
例7
ln x x
dx
ln x d(ln x)
1 ln 2 x C. 2
例8
x
1 x4 dx
1
2
1
1 (x2 )2
d(x2 )
1 arctan(x2 ) C. 2
10
首页
上页
返回
1 dx d(ln x) x
xdx 1 d(x2 ) 2
x2, d(1 x2) 2 xdx.
原式 x
u ( 1 )du 2x
dx 1 du, 2x
1212
1
u u2
d12 duu11uu23 33
23CC11(1(1xx2)223) 33
3
2CC
du
1
u
3 2
3
C
1
(1
x2
)
3 2
4
首页
上页
返回
下页
结束
铃
一、第一类换元法
定理1(换元积分公式)
设 F 是 f 的一个原函数, u=j(x)可导, 则有
计算积分的方法
计算积分的方法
1、凑微分法:把被积分式凑成某个函数的微分的积分方法。
2、换元法:包括整体换元,部分换元等等。
3、分部积分法:利用两个相加函数的微分公式,将所建议的分数转变为另外较为简
单的函数的分数。
4、有理函数积分法:有理函数是指由两个多项式函数的商所表示的函数,由多项式
的除法可知,假分式总能化为一个多项式与一个真分式之和。
分数公式法
直接利用积分公式求出不定积分。
换元积分法
换元积分法可分为第一类换元法与第二类换元法。
一、第一类换元法(即为兎微分法)
通过凑微分,最后依托于某个积分公式。
进而求得原不定积分。
二、备注:第二类换元法的转换式必须对称,并且在适当区间上就是单调的。
第二类换元法经常用于消去被积函数中的根式。
当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。
常用的换元手段有两种:
1、根式赋值法,
2、三角代换法。
在实际应用领域中,赋值法最常用的就是链式法则,而往往用此替代前面所说的换元。
链式法则就是一种最有效率的微分方法,自然也就是最有效率的分数方法。
分部积分法
分部积分法的实质就是:将所求分数化成两个分数之差,分数难者先分数,实际上就
是两次分数。
有理函数分为整式(即多项式)和分式(即两个多项式的商),分式分为真分式和假
分式,而假分式经过多项式除法可以转化成一个整式和一个真分式的和,可见问题转化为
计算真分式的积分。
可以证明,任何真分式总能水解为部分分式之和。
第一类换元积分法
第一类换元积分法第一类换元积分法是一种常用的积分计算方法,它可以用来解决复杂的数学问题。
本文将介绍第一类换元积分法的定义、性质以及应用,以加深读者对这种积分计算方法的理解。
一、第一类换元积分法的定义第一类换元积分法是一种积分计算方法,它可以用来解决复杂多元数学问题。
其定义是:当一个函数f(x)在某一区间上有一定的变换关系,即f(x)可以表示为f(x) = g(u),那么,该函数在该区间上的积分可以表示为:$$\int_{a}^{b}f(x)dx=\int_{c}^{d}g(u)du$$二、第一类换元积分法的性质第一类换元积分法有两个重要的性质:(1)对称性:当一个函数f(x)的变换关系可以表示为f(x) = g(u),其中x与u的变换关系是对称的,即x = h(u),那么该函数积分的变换关系也是对称的,即:$$\int_{a}^{b}f(x)dx=\int_{c}^{d}g(u)du$$(2)结果一致性:当一个函数f(x)的变换关系可以表示为f(x) = g(u),其中x与u 的变换关系不对称,即x = h(u),那么该函数积分的变换关系也是一致的,即:$$\int_{a}^{b}f(x)dx=\int_{c}^{d}g(u)du$$三、第一类换元积分法的应用第一类换元积分法的应用非常广泛,可以用来解决复杂的数学问题。
它的应用可以分为以下几类:(1)解方程:第一类换元积分法可以用来解决含有复杂项的多元方程;(2)求积分:第一类换元积分法可以帮助计算复杂函数的积分;(3)求极限:有时候,函数的极限可以通过第一类换元积分法来求解;(4)求微分:第一类换元积分法也可以用来求解复杂函数的微分。
四、结论综上所述,第一类换元积分法是一种常用的积分计算方法,它具有对称性和结果一致性的性质,并且可以用来解决复杂的数学问题。
因此,它在数学领域的应用十分广泛,深受广大学者的青睐。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§4.2 换元积分法Ⅰ 授课题目 §4.2 换元积分法(第一类换元法) Ⅱ 教学目的与要求:1. 理解第一类换元法的基本思想,它实际上是复合函数求导法则的逆过程,其关键是“凑微分”,dx x x d )()(ϕ'=ϕ .2. 掌握几种典型的凑微分的方法,熟练应用第一类换元积分法求有关不定积分.Ⅲ 教学重点与难点: 重点:第一换元法的思想,难点:熟练应用第一换元法计算有关函数的不定积分. Ⅳ 讲授内容:一、第一类换元积分法 设)(u f 具有原函数)(u F ,()()f u du F u C =+⎰.若u 是中间变量,()u x ϕ=,()x ϕ可微,则根据复合函数求导法则,有(())()[()]()dF x dF du duf u f x x dx du dx dxϕϕϕ'===。
所以根据不定积分的定义可得:()[()]()[()][][()]u x f x x dx F x C F u C f u du ϕϕϕϕ='=++=⎰⎰ 以上是一个连等式可以改变顺序从新写一遍,就有[][]()[()]()][()]()u x f x x dx f u du F u C F x C ϕϕϕϕ='=+=+⎰⎰.以上就是第一换元积分法。
从以上可以看出,虽然[()]()f x x dx ϕϕ'⎰是一个整体记号,但是被积表达式中的dx 可当作变量x 的微分来对待从而上式中的()x dx ϕ'可以看成是()x ϕ的微分,通过换元()u x ϕ=,应用到被积表达式中就得到()x dx du ϕ'=.定理1 设)(u f 具有原函数)(u F ,)(x u ϕ=可导,dx x du )(ϕ'=,则[()()()()[()]f x x dx f u du F u C F x C ϕϕϕ'==+=+⎰⎰ (1)如何应用公式(1),在求不定积分积分()g x dx ⎰时如果被积函数g (x )可以化为一个复合函数与它内函数的导函数的积的形式[()]()f x x ϕϕ'的形式 那么()()[()]()[()]x u g x dx f x x dx f u du ϕϕϕ='=⎰⎰⎰()()[()]u x F u C F x C ϕϕ==++. 所以第一换元积分法体现了“凑”的思想.把被积函数凑出一个复合函数与其内函数的积[()]()f x x ϕϕ'来.例1 求33x e dx ⎰解33333=3x x x e dx e dx e x dx '=⎰⎰⎰(),可设中间变量x u 3=,dx x d du 3)3(== 3dx du ∴=,所以有3333x x u u x e dx e dx e du e C e C ===+=+⎰⎰⎰.首先观察被积函数的复合函数是什么样的,然后看是否有它的内函数的导数,若没有就去凑。
例2 ⎰xdx 2cos解11cos 2cos 22=cos 2(2)22xdx x dx x x dx '=⋅⋅⎰⎰⎰ 令x u 2=,显然dx du 2=,则1cos 2cos 222xdx x dx =⋅⎰⎰111cos sin sin 2222udu u C x C ==+=+⎰.在比较熟练后,我们可以将设中间变量()u x ϕ=的过程省略,从而使运算更加简洁。
例3⎰-dx x 5)23(解 如将5)23(-x 展开是很费力的,不如把23-x 作为中间变量,dx x d 3)23(=- ,5556111(32)=(32)3=(32)(32)(32)3318x dx x dx x d x x C --⋅--=-+⎰⎰⎰. 例4132dx x +⎰ 111111=2=(32)ln |32|322322322dx dx d x x C x x x ⋅+=+++++⎰⎰⎰. 例522x xedx ⎰2222222()x x x xxe dx e x dx e dx e C '===+⎰⎰⎰例6 求⎰1(22x =--⎰⎰2211)(1)22x dx x '=--=--33222211211(1)2233x u C x Cu --=-⨯+=--=+. 二、掌握几种典型的“凑微分”的方法1()dx d ax b a =+; 11()n n x dx d x b n -=+; )(x x e d dx e =;1(ln )dx d x x=; 1()ln x x a dx d a a =; )(sin cos x d xdx =; )(cos sin x d xdx -=; )(tan sec 2x d xdx =; 2csc (cot )xdx d x =-; )(sec tan sec x d xdx x =;)(arcsin 12x d x dx =-;)(arctan 12x d xdx=+。
三、利用第一换元积分法法计算有关函数的不定积分计算有关函数的不定积分时,需要先把被积函数变形转化,再利用第一换元积分法计算. 例7 求⎰xdx 2sin解2111sin (1cos 2)cos 2222xdx x dx dx xdx =-=-⎰⎰⎰⎰ 11(cos 2)2sin 22424x x x dx x C =-⋅=-+⎰.(此题利用三角函数中的降幂扩角公式) 例8求⎰-22xa dx)0(>a 解()arcsin x xdx C a a===+⎰. 利用dx nxx d n n1)(-=,有如下例题例9 求⎰dx xx 21sin解 dx xxd 21)1(-= 221sin1111(sin )()(sin )()x dx dx dx x x x x x '∴=--=-⎰⎰⎰ 111sin ()cos d C x x x =-=+⎰例10求⎰dx e e xx cos 解C e e d e dx e e xx x x x +=⎰⎰sin )(cos cos =. 利用dx e e d xx=)(,adx a a d xxln )(=例11 求⎰-+x x e e dx习题 4-2:2(30)解 C e e de dx e e e e dx xx x x x x x +=+=+=+⎰⎰⎰-arctan 1)(1)(22. 例12 求⎰+1x e dx解 111111+-=+-+=+x xxx x x e e e e e eC e x e e d x dx e e dx e dx x x x x x x ++-=++-=+-=+∴⎰⎰⎰⎰)1ln(1)1(11.例13 求dx xxx⎰+946 解 263()64239491()124x xx x x xx x xdx dx dx ==+++⎰⎰⎰ 211313[()]arctan()32ln3ln 223ln 1()22x x x d C ==+-⎡⎤+⎢⎥⎣⎦⎰.此题利用adx a a d xxln )(=下面几个例题利用dx xx d 1)(ln = 例14 求⎰x x dx ln解111(ln )ln ln ln ln ln dx dx d x x C x x x x x ===+⎰⎰⎰.又如习题 4-2:2(16)ln ln ln dxx x x ⋅⋅⎰;解 111=ln ln ln ln ln ln dx dxx x x x x x ⋅⋅⋅⋅⎰⎰11ln ln ln ln d x x x=⋅⎰1ln ln ln |ln ln |ln ln d x x C x ==+⎰. 例15 求dx x x⎰+4)5ln 2(1解 44112(2ln 5)(2ln 5)2x dx x dx x x +=+⎰⎰4511(2ln 5)(2ln 5)(2ln 5)210x d x x C =++=++⎰. 第一次课可以讲到这里.被积函数是分母是二次函数,分子是常数或一次函数的有理分式函数的不定积分的求法 (例16~例22六个例题) 例16求⎰+22x a dx)0(>a 分子是常数,分母是二次二项式,没有一次项.解2222111()dx dx x a x a a =++⎰⎰2111()arctan 1()x xd C x a a a a a==++⎰. 例17 ⎰++41292x x dx被积函数分母是一个完全平方式解2211=391243(32)dx dx x x x ⋅+++⎰⎰2111(32)3(32)3(32)d x C x x =+=-+++⎰.被积函数分母是一个完全平方式,被积函数化为22111=()()()dx d ax b ax b a ax b +++⎰⎰例18⎰++17442x x dx分子是常数,分母是二次三项式,不是完全平方式解 2221121441716(21)161()4dx dx dx x x x x ==++++++⎰⎰⎰ 2112111()tan()21848241()4x x d arc C x +==++++⎰被积函数分母是二次三项式且不可以分解因式,不是完全平方式时可以把分母配方化为2()ax b c ++的形式, 然后利用21arctan 1dx x C x=++⎰练习:求2125dx x x -+⎰(第一换元积分法分)解 2225(1)4x x x -+=-+,222111=1(25)(144(12dx dx dx x x x x =--+-++⎰⎰⎰)) 211111==arctan 122221(2x x d Cx --+-+⎰) 例19 求⎰--122x x dx分子是常数,分母是二次三项式且可以分解因式解211111()12(3)(4)743x x x x x x ==---+--+2111()12743dx dx x x x x ∴=----+⎰⎰11117473dx dx x x =--+⎰⎰ 1111(4)(3)7473d x d x x x =--+-+⎰⎰1114ln |4|ln |3|ln ||7773x x x C C x -=--++=++. 被积函数分母是二次三项式且可以分解因式,被积函数可以用裂项法转化为两个简单分式的差.11[]()()()()c c x a x b a b x a x b =------例20求⎰+dx x x21 分子是一次多项式,分母是二次多项式解 xdx x d 2)1(2=+2212121x x dx dx x x ∴=++⎰⎰222111(1)ln(1)212d x x C x =+=+++⎰. 例21求⎰++dx x x x1022解 2(210)(22)d x x x dx ++=+,则1022222110222++-+⋅=++x x x x x x2212222102210x x dx dx x x x x +-∴=++++⎰⎰221221222102210x dx dx x x x x +=-++++⎰⎰222221(210)11ln(210)22102102(1)9d x x dx x x dx x x x x x ++=-=++-++++++⎰⎰⎰22111ln(210)129()13x x dx x =++-++⎰2111ln(210)arctan233x x x C +=++-+. 被积函数分子是一次多项式,分母是二次多项式时,首先把分子凑成分母的导数. 下面几个例题利用三角函数的微分公式:xdx x d cos )(sin =;xdx x d sin )(cos -=;xdx x d 2sec )(tan =;2()csc d cotx xdx =-例22 求⎰xdx tan(化切为弦)解sin sin tan =cos cos x x xdx dx dx x x --⎰⎰⎰= 1=(cos )ln cos cos d x x C x-=-+⎰ 例23 求⎰xdx 3tan 解322sin tan tan (sec 1)tan sec cos xxdx x x dx x xdx dx x=-=-⎰⎰⎰⎰ 211tan (tan )(cos )tan ln cos cos 2xd x d x x x C x =+=++⎰⎰例24 求csc xdx ⎰222tan 21cos 112csc =sin 22sin cos sin2222cos2x sec x xx xdx dx dx dx d x x x x x ==⎰⎰⎰⎰⎰= 1tanln |tan |22tan 2x xd C x ==+⎰. 因为 22sin 2sin 2sin 222cos 2sin cos 2221cos tan csc cot sin 2sin xxxx x xx x x x x x-=====-.所以csc ln |tan |ln |csc cot |2xxdx C x x C =+=-+⎰. 此题用三角万能公式代换也可以22112tan csc 2sin 21x tt xdx dx dt x t t +=⋅=+⎰⎰⎰=1ln ||ln |tan |2x dt t C C t =+=+⎰. 例25 求s c e xdx ⎰解22211s c s c()()cos sin()e xdx dx dx e x d x x x πππ===+++⎰⎰⎰⎰ 22ln |csc()cot()|ln |s c tan |x x C e x x C ππ=+-++=++. s c ln |s c tan |e xdx e x x C =++⎰例26 求cos3cos 2x xdx ⋅⎰(利用三角函数积化和差公式)和差化积公式 积化和差2sin 2sin 2cos cos 2cos 2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+-=--+=+-+=--+=+; )]cos()[cos(21sin sin )]cos()[cos(21cos cos )]sin()[sin(21sin cos )]sin()[sin(21cos sin βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=解 根据三角函数的积化和差公式:1cos3cos 2(cos5cos )2x x x x ⋅=+ 1cos3cos 2cos5cos 2x xdx x xdx ⋅=+⎰⎰1111cos55cos sin 5sin 102102xd x xdx x x C =+=++⎰⎰. 由以上例题可以看出,第一换元积分法是一种非常灵活的计算方法,始终贯穿着“凑微分”思想,因此学生应熟悉这些基本例题。