分式及分式方程题型汇总

合集下载

分式及分式方程精典练习题

分式及分式方程精典练习题

分式及分式方程精典练习题一、填空题:⒈当x 时,分式1223+-x x 有意义;当x 时,分式xx --112的值等于零. ⒉分式ab c 32、bc a 3、acb 25的最简公分母是 ; ⒊化简:242--x x = . ⒋当x 、y 满足关系式________时,)(2)(5y x x y --=-25 ⒌化简=-+-ab b b a a . ⒍分式方程313-=+-x m x x 有增根,则m = . ⒎若121-x 与)4(31+x 互为倒数,则x= . ⒏某单位全体员工在植树节义务植树240棵.原计划每小时植树口棵。

实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了 小时完成任务9、已知关于x 的方程322=-+x m x 的解是正数,则m 的取值范围为_____________. 二、选择题:⒈下列约分正确的是( )A 、326x x x =B 、0=++y x y xC 、x xy x y x 12=++D 、214222=y x xy ⒉用换元法解分式方程13101x x x x --+=-时,如果设1x y x-=,将原方程化为关于y 的整式方程,那么这个整式方程是( )A .230y y +-=B .2310y y -+=C .2310y y -+=D .2310y y --= ⒊下列分式中,计算正确的是( )A 、32)(3)(2+=+++a c b a c b B 、b a b a b a +=++122 C 、1)()(22-=+-b a b a D 、xy y x xy y x -=---1222 ⒋下列各式中,从左到右的变形正确的是( )A 、y x y x y x y x ---=--+-B 、yx y x y x y x +-=--+-C 、yx y x y x y x -+=--+- D 、y x y x y x y x +--=--+- 5.已知2111=-b a ,则ba ab -的值是( ) A.21 B.-21 C.2 D.-2 6.设m >n >0,m 2+n 2=4mn ,则22m n mn -的值等于( )A.B.C. D. 3 三、计算:(2)|1|2004125.02)21(032-++⨯---四、解分式方程:()323331592a a a a ++-++-()1291932x x-++()422x y x x y+--()(用两种方法)52242()x x x x x x --+÷-()11244222x x x x +--=-()22332726x x ++=+五、先化简再求值:1、()x x x x x x x x x x -+⋅+++÷--=-11442412222,其中。

专题09分式方程(2大考点4种题型)(原卷版)

专题09分式方程(2大考点4种题型)(原卷版)

专题09分式方程(2大考点+4种题型)思维导图核心考点与题型分类聚焦考点一:分式方程及其解法考点二:分式方程应用题题型一:分式方程的解法题型二:根据分式方程解的情况求值题型三:分式方程无解问题题型四:分式方程的实际应用考点一:分式方程及其解法1、分式方程的概念分母中含有未知数的方程叫做分式方程.2、解分式方程的方法通过去分母把分式方程转化为整式方程,再求解.3、增根的概念分式方程在化整式方程求解过程中,整式方程的解如果使得分式方程中的分母为0,那么这个解就是方程的增根.4、解分式方程的一般步骤(1)方程两边都乘以最简公分母,去分母,化成整式方程;(2)解这个整式方程,求出整式方程的根;(3)检验.有两种方法:①将求得的整式方程的根代入最简公分母,如果最简公分母等于0,则这个根为增根,方程无解;如果最简公分母不等于0,则这个根为原方程的根,从而解出原方程的解;②直接代入原方程中,看其是否成立.如果成立,则这个根为原方程的根,从而解出原方程的解;如果不成立,则这个根为增根,方程无解.5、分式方程组的概念由两个或两个以上的分式方程构成的方程组叫做分式方程组.6、解分式方程组的方法找出分式方程组中相同的分式进行换元,将分式方程组转化为整式方程组,解方程组,然后进行检验.考点二:分式方程应用题列方程(组)解应用题时,如何找“相等关系”(1)利用题目中的关键语句寻找相等关系;(2)利用公式、定理寻找相等关系;(3)从生活、生产实际经验中寻找相等关系.题型一:分式方程的解法题型二:根据分式方程解的情况求值题型三:分式方程无解问题值.题型四:分式方程的实际应用【例4】.(2022下·上海·八年级上海市田林第三中学校考期中)5G的速度很快,比4G速度每秒多95MB,一部1000MB的电影,5G比4G要快190秒,求5G的速度.【变式1】.(2022下·上海闵行·八年级上海市民办文绮中学校考阶段练习)若A、B两地相距30千米,甲、乙两人分别从A、B两地相向而行,且甲比乙早出发2小时.如果乙比甲每小时多行2千米,那么两人恰好在AB中点相遇.求甲、乙两人的速度各是每小时多少千米?【变式2】.(2022下·上海普陀·八年级校考期中)一项工程,如果甲、乙两队单独完成,甲队比乙队多用5天,如果甲、乙两队合作,6天可以完成.求两队单独完成此项工程各需多少天?【变式3】.(2023下·上海静安·八年级统考期末)某公司先从甲地用9000元购买了一批商品,后发现乙地同一商品每件比甲地便宜,因此又用12000元从乙地补购了一批同样的商品.公司按每件200元售完这两批商品后,共赚了11000元.(1)设该公司从甲地购进x件商品,请用含字母x的代数式表示从乙地购进的商品件数是______;(2)如果乙地同一商品每件比甲地便宜30元,求该公司分别从甲乙两地购进这种商品各多少件.A.1-B.3C.1-或3D.无法确定22.(2023下·上海黄浦·八年级校考阶段练习)甲乙两人各加工30个零件,甲比乙少用1小时完成任务;乙改进操作方法,使生产效率提高了一倍,结果乙完成30个零件的时间比甲完成24个零件所用的时间少1小时.问甲乙两人原来每小时各加工多少个零件.23.(2022下·上海·八年级期末)学校到学习基地的公路距离为15千米,一部分人骑自行车先走,40分钟后,其余的人乘坐汽车出发,结果他们同时到达,如果汽车的平均速度与自行车的平均速度的比是3:1,问:汽车与自行车的平均速度分别是多少?24.为庆祝“六一”活动,镇活动中心需要600个环保纸袋,原计划由初二(1)班全体同学制作完成、在实际制作时,又有初二(2)班10名同学自愿加入参与制作,这样,实际参加制作的同学人均制作的数量比原计划少5个,那么初二(1)班共有多少名同学?25.(2021下·上海·八年级上海市西南模范中学校考期中)学校开展“书香校园”活动,购买了一批图书.已知购买科普类图书花费了10000元,购买文学类图书花费了9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普类图书的数量比购买文学类图书数量少100本,科普类图书平均每本的价格是多少元?26.(2022下·上海宝山·八年级校考阶段练习)如图反映了甲、乙两名自行车爱好者同时骑车从A 地到B 地进行训练时行驶路程y (千米)和行驶时间x (小时)之间关系的部分图像,根据图像提供的信息,解答下列问题:(1)求乙的行驶路程y 和行驶时间x ()13x ≤≤之间的函数解析式;(2)如果甲的速度一直保持不变,乙在骑行3小时之后又以第1小时的速度骑行,结果两人同时到达B 地,求A 、B 两地之间的距离.。

分式经典题型分类练习题

分式经典题型分类练习题

分式的运算(一)、分式定义及有关题型 题型一:考查分式的定义【例1】下列代数式中:y x yx y x y x ba b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件【例2】当x 有何值时,下列分式有意义 (1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件【例3】当x 取何值时,下列分式的值为0. (1)31+-x x (2)42||2--x x (3)653222----x x x x题型四:考查分式的值为正、负的条件【例4】(1)当x 为何值时,分式x-84为正;(2)当x 为何值时,分式2)1(35-+-x x 为负;(3)当x 为何值时,分式32+-x x 为非负数.练习:1.当x 取何值时,下列分式有意义: (1)3||61-x(2)1)1(32++-x x (3)x111+2.当x 为何值时,下列分式的值为零:(1)4|1|5+--x x(2)562522+--x x x3.解下列不等式(1)012||≤+-x x (2)03252>+++x x x(二)分式的基本性质及有关题型1.分式的基本性质:MB M A M B M A B A ÷÷=⨯⨯=2.分式的变号法则:bab a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)y x yx 41313221+- (2)ba ba +-04.003.02.0题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1)yx yx --+- (2)ba a ---(3)ba ---题型三:化简求值题【例3】已知:511=+y x,求yxy x yxy x +++-2232的值. 提示:整体代入,①xy y x 3=+,②转化出yx11+. 【例4】已知:21=-xx ,求221xx +的值.【例5】若0)32(|1|2=-++-x y x ,求yx 241-的值. 练习:1.不改变分式的值,把下列分式的分子、分母的系数化为整数.(1)yx yx 5.008.02.003.0+-(2)b a ba 10141534.0-+ 2.已知:31=+x x ,求1242++x x x 的值.3.已知:311=-b a ,求aab b bab a ---+232的值.4.若0106222=+-++b b a a ,求ba ba 532+-的值.5.如果21<<x ,试化简x x --2|2|xx x x |||1|1+---. (三)分式的运算1.确定最简公分母的方法:①最简公分母的系数,取各分母系数的最小公倍数; ②最简公分母的字母因式取各分母所有字母的最高次幂.2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂.题型一:通分【例1】将下列各式分别通分. (1)cb ac a b ab c 225,3,2--; (2)a b b b a a 22,--; (3)22,21,1222--+--x x xx xx x ; (4)aa -+21,2题型二:约分【例2】约分: (1)322016xy y x -;(3)n m m n --22;(3)6222---+x x x x .题型三:分式的混合运算【例3】计算:(1)42232)()()(abc ab c c b a ÷-⋅-;(2)22233)()()3(xy x y y x y x a +-÷-⋅+; (3)mn mn m n m n n m ---+-+22;(4)112---a a a ;(5)874321814121111x x x x x x x x +-+-+-+--; (6))5)(3(1)3)(1(1)1)(1(1+++++++-x x x x x x ; (7))12()21444(222+-⋅--+--x x x x x x x 题型四:化简求值题【例4】先化简后求值(1)已知:1-=x ,求分子)]121()144[(48122x x x x -÷-+--的值;(2)已知:432z y x ==,求22232zy x xzyz xy ++-+的值;(3)已知:0132=+-a a ,试求)1)(1(22a a aa --的值. 题型五:求待定字母的值【例5】若111312-++=--x Nx M x x ,试求N M ,的值. 练习:1.计算(1))1(232)1(21)1(252+-++--++a a a a a a ; (2)a b abb b a a ----222; (3)ba c cb ac b c b a c b a c b a ---++-+---++-232; (4)b a b b a ++-22;(5))4)(4(ba abb a b a ab b a +-+-+-;(6)2121111x x x ++++-; (7))2)(1(1)3)(1(2)3)(2(1--+-----x x x x x x . 2.先化简后求值(1)1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a . (2)已知3:2:=y x ,求2322])()[()(yxx y x y x xy y x ÷-⋅+÷-的值.3.已知:121)12)(1(45---=---x Bx A x x x ,试求A 、B 的值. 4.当a 为何整数时,代数式2805399++a a 的值是整数,并求出这个整数值.(四)、整数指数幂与科学记数法 题型一:运用整数指数幂计算【例1】计算:(1)3132)()(---⋅bc a(2)2322123)5()3(z xy z y x ---⋅(3)24253])()()()([b a b a b a b a +--+-- (4)6223)(])()[(--+⋅-⋅+y x y x y x题型二:化简求值题【例2】已知51=+-x x ,求(1)22-+x x 的值;(2)求44-+x x 的值.题型三:科学记数法的计算【例3】计算:(1)223)102.8()103(--⨯⨯⨯;(2)3223)102()104(--⨯÷⨯. 练习:1.计算:(1)20082007024)25.0()31(|31|)51()5131(⋅-+-+-÷⋅-- (2)322231)()3(-----⋅n m n m (3)23232222)()3()()2(--⋅⋅ab b a b a ab(4)21222)]()(2[])()(4[----++-y x y x y x y x2.已知0152=+-x x ,求(1)1-+x x ,(2)22-+x x 的值. 第二讲 分式方程(一)分式方程题型分析题型一:用常规方法解分式方程【例1】解下列分式方程 (1)xx 311=-;(2)0132=--x x ;(3)114112=---+x x x ;(4)x x x x -+=++4535 提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根.题型二:特殊方法解分式方程【例2】解下列方程 (1)4441=+++x x x x ; (2)569108967+++++=+++++x x x x x x x x 提示:(1)换元法,设y x x =+1;(2)裂项法,61167++=++x x x .【例3】解下列方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+)3(4111)2(3111)1(2111x z z y y x 题型三:求待定字母的值【例4】若关于x 的分式方程3132--=-x mx 有增根,求m 的值. 【例5】若分式方程122-=-+x ax 的解是正数,求a 的取值范围. 提示:032>-=ax 且2≠x ,2<∴a 且4-≠a . 题型四:解含有字母系数的方程【例6】解关于x 的方程)0(≠+=--d c dcx b a x 提示:(1)d c b a ,,,是已知数;(2)0≠+d c . 题型五:列分式方程解应用题练习:1.解下列方程: (1)021211=-++-x xx x ; (2)3423-=--x x x ; (3)22322=--+x x x ; (4)171372222--+=--+x x x x xx (5)2123524245--+=--x x x x(6)41215111+++=+++x x x x(7)6811792--+-+=--+-x x x x x x x x2.解关于x 的方程: (1)bxa211+=)2(a b ≠;(2))(11b a x b b x a a ≠+=+. 3.如果解关于x 的方程222-=+-x x x k 会产生增根,求k 的值.4.当k 为何值时,关于x 的方程1)2)(1(23++-=++x x kx x 的解为非负数. 5.已知关于x 的分式方程a x a =++112无解,试求a 的值. (二)分式方程的特殊解法解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验,但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下: 一、交叉相乘法例1.解方程:231+=x x 二、化归法例2.解方程:012112=---x x 三、左边通分法例3:解方程:87178=----xx x 四、分子对等法例4.解方程:)(11b a xb b x a a ≠+=+五、观察比较法例5.解方程:417425254=-+-x x x x六、分离常数法例6.解方程:87329821+++++=+++++x x x x x x x x七、分组通分法例7.解方程:41315121+++=+++x x x x(三)分式方程求待定字母值的方法例1.若分式方程xmx x -=--221无解,求m 的值。

中考数学《分式及分式方程》计算题(附答案)

中考数学《分式及分式方程》计算题(附答案)

[键入文字]=+1..解方程:.解分式方程:15.(1)解方程:(2)解不等式组.16.解方程:.17.①解分式方程;②解不等式组.18.解方程:.19.(1)计算:|﹣2|+(+1)0﹣()﹣1+tan60°;(2)解分式方程:=+1.20.解方程:21.解方程:+=122.解方程:.23.解分式方程:24.解方程:25.解方程:26.解方程:+=127.解方程:28.解方程:29.解方程:30.解分式方程:.答案与评分标准一.解答题(共30小题)1.解方程:.考点:解分式方程。

专题:计算题。

分析:方程两边都乘以最简公分母y(y﹣1),得到关于y的一元一方程,然后求出方程的解,再把y的值代入最简公分母进行检验.解答:解:方程两边都乘以y(y﹣1),得2y2+y(y﹣1)=(y﹣1)(3y﹣1),2y2+y2﹣y=3y2﹣4y+1,3y=1,解得y=,检验:当y=时,y(y﹣1)=×(﹣1)=﹣≠0,∴y=是原方程的解,∴原方程的解为y=.点评:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.2.解关于的方程:.考点:解分式方程。

专题:计算题。

分析:观察可得最简公分母是(x+3)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x+3)(x﹣1),得x(x﹣1)=(x+3)(x﹣1)+2(x+3),整理,得5x+3=0,解得x=﹣.检验:把x=﹣代入(x+3)(x﹣1)≠0.∴原方程的解为:x=﹣.点评:本题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.3.解方程.考点:解分式方程。

专题:方程思想。

分析:观察可得最简公分母是(x+1)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:两边同时乘以(x+1)(x﹣2),得x(x﹣2)﹣(x+1)(x﹣2)=3.(3分)解这个方程,得x=﹣1.(7分)检验:x=﹣1时(x+1)(x﹣2)=0,x=﹣1不是原分式方程的解,∴原分式方程无解.(8分)点评:考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.4.解方程:=+1.考点:解分式方程。

分式与分式方程(3大考点)(解析版)三年(2022-2024)中考数学真题分类汇编(全国通用)

分式与分式方程(3大考点)(解析版)三年(2022-2024)中考数学真题分类汇编(全国通用)

专题07分式与分式方程(3大考点)(解析版)三年(2022-2024)中考数学真题分类汇编(全国通用)【考点归纳】一、考点01解分式方程----------------------------------------------------------------------------------------------------------------------------1二、考点02分式方程的解-----------------------------------------------------------------------------------------------------------------------11三、考点03分式方程的应用-------------------------------------------------------------------------------------------------------------------16考点01解分式方程一、考点01解分式方程1.(2024·山东济宁·中考真题)解分式方程1513126x x-=---时,去分母变形正确的是()A .2625x -+=-B .6225x --=-C .2615x --=D .6215x -+=2.(2024·四川泸州·中考真题)分式方程322x x-=--的解是()A .73x =-B .=1x -C .53x =D .3x =1362x -+=-,39x -=-,3x =,经检验3x =是该方程的解,故选:D .3.(2024·四川德阳·中考真题)分式方程153x x =+的解是()A .3B .2C .32D .344.(2023·辽宁大连·中考真题)解方程311x x x+=--去分母,两边同乘(1)x -后的式子为()A .133(1)x x +=-B .13(1)3x x +-=-C .133x x -+=-D .13(1)3x x+-=【答案】B【分析】本题考查了解分式方程时去分母,找到分式方程的公分母是解题的关键.根据分式方程的解法,两侧同乘(1)x -化简分式方程即可.【详解】解:分式方程的两侧同乘(1)x -得:13(1)3x x +-=-.故选:B .5.(2023·海南·中考真题)分式方程115x =-的解是()A .6x =B .6x =-C .5x =D .5x =-【答案】A【分析】先去分母将分式方程化为整式方程,解方程得到x 的值,再检验即可得到答案.【详解】解:去分母得:15x =-,解得:6x =,检验,当6x =时,510x -=≠,∴原分式方程的解是6x =,故选:A .【点睛】本题主要考查了解分式方程,熟练掌握解分式方程的步骤,注意要检验.6.(2023·黑龙江哈尔滨·中考真题)方程231x x =+的解为()A .1x =B .=1x -C .2x =D .2x =-7.(2023·湖南·中考真题)将关于x 的分式方程21x x =-去分母可得()A .332x x -=B .312x x -=C .31x x -=D .33x x-=8.(2023·甘肃兰州·中考真题)方程213x =+的解是()A .1x =B .=1x -C .5x =D .5x =-【答案】B【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得解.【详解】解:去分母得:23x =+,解得=1x -,经检验=1x -是分式方程的解.故选:B .【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法是解题的关键.9.(2023·上海·中考真题)在分式方程2221521x x x x -+=-中,设221x y x -=,可得到关于y 的整式方程为()A .2550y y ++=B .2550y y -+=C .2510y y ++=D .2510y y -+=10.(2024·浙江·中考真题)若11x =-,则x =【答案】3【分析】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:21x =-,移项合并得:3x -=-,解得:3x =,经检验,3x =是分式方程的解,故答案为:311.(2024·北京·中考真题)方程11023x x+=的解为.12.(2024·四川宜宾·中考真题)分式方程301x x +-=的解为.13.(2023·江苏·中考真题)方程1121x -=+的解是.故答案为:2x =-【点睛】此题考查了分式方程的求解,解题的关键是掌握分式方程的求解方法.14.(2023·北京·中考真题)方程31512x x=+的解为.【答案】1x =【分析】方程两边同时乘以()251x x +化为整式方程,解整式方程即可,最后要检验.【详解】解:方程两边同时乘以()251x x +,得651x x =+,解得:1x =,经检验,1x =是原方程的解,故答案为:1x =.【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键.15.(2023·江苏苏州·中考真题)分式方程123x x +=的解为x =.【答案】3-【分析】方程两边同时乘以3x ,化为整式方程,解方程验根即可求解.【详解】解:方程两边同时乘以3x ,()312x x +=解得:3x =-,经检验,3x =-是原方程的解,故答案为:3-.【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键.16.(2023·重庆·中考真题)若关于x 的一元一次不等式组+34222x x a ⎧≤⎪⎨⎪-≥⎩,至少有2个整数解,且关于y 的分式方程14222a y y-+=--有非负整数解,则所有满足条件的整数a 的值之和是.17.(2022·山东威海·中考真题)按照如图所示的程序计算,若输出y的值是2,则输入x的值是.18.(2022·四川成都·中考真题)分式方程144x x x-+=的解是.19.(2024·福建·中考真题)解方程:122x x +=+-.20.(2024·陕西·中考真题)解方程:2111x x +=--.【答案】3x =-【分析】本题主要考查了解分式方程,先去分母变分式方程为整式方程,然后再解整式方程,最后对方程的解进行检验即可.21.(2024·广东广州·中考真题)解方程:x x=.2522.(2023·西藏·中考真题)解分式方程:1-=.11x x23.(2023·山西·中考真题)解方程:1122x x +=.24.(2022·青海西宁·中考真题)解方程:220x x x x-=+-.【答案】7x =【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:方程两边同乘()()11x x x +-,得()()41310x x --+=,解得7x =,检验:当7x =时,()()110x x x +-≠,所以,原分式方程的解为7x =.【点睛】本题主要考查了解分式方程,掌握求解的方法是解题的关键,注意解分式方程一定要验根.25.(2022·江苏苏州·中考真题)解方程:311x x x+=.二、考点02分式方程的解26.(2024·四川遂宁·中考真题)分式方程2111m x x =---的解为正数,则m 的取值范围()A .3m >-B .3m >-且2m ≠-C .3m <D .3m <且2m ≠-27.(2024·黑龙江齐齐哈尔·中考真题)如果关于x 的分式方程01m x x -=+的解是负数,那么实数m 的取值范围是()A .1m <且0m ≠B .1m <C .1m >D .1m <且1m ≠-【答案】A【分析】本题考查了根据分式方程的解的情况求参数,解分式方程求出分式方程的解,再根据分式方程的28.(2024·黑龙江大兴安岭地·中考真题)已知关于x 的分式方程233x x -=--无解,则k 的值为()A .2k =或1k =-B .2k =-C .2k =或1k =D .1k =-29.(2023·山东淄博·中考真题)已知1x =是方程322x x -=--的解,那么实数m 的值为()A .2-B .2C .4-D .430.(2023·黑龙江·中考真题)已知关于x 的分式方程122x x +=--的解是非负数,则m 的取值范围是()A .2m ≤B .2m ≥C .2m ≤且2m ≠-D .2m <且2m ≠-31.(2022·重庆·中考真题)若关于x 的一元一次不等式组1351x x a-⎧-≥⎪⎨⎪-⎩<的解集为2x ≤-,且关于y 的分式方程1211y a y y -=-++的解是负整数,则所有满足条件的整数a 的值之和是()A .-26B .-24C .-15D .-1332.(2024·黑龙江牡丹江·中考真题)若分式方程311x mx x x =-的解为正整数,则整数m 的值为.33.(2024·重庆·中考真题)若关于x 的一元一次不等式组2133423x x x a+⎧≤⎪⎨⎪-<+⎩的解集为4x ≤,且关于y 的分式方程8122a y y y --=++的解均为负整数,则所有满足条件的整数a 的值之和是.34.(2024·四川达州·中考真题)若关于x 的方程122x x --=无解,则k 的值为.35.(2023·四川巴中·中考真题)关于x 的分式方程322x x ++=有增根,则m =.三、考点03分式方程的应用36.(2024·山东·中考真题)为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为()A .200B .300C .400D .50037.(2024·内蒙古呼伦贝尔·中考真题)A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30千克,A型机器人搬运900千克所用时间与B型机器人搬运600千克所用时间相等.A,B 两种机器人每小时分别搬运多少干克化工原料?()A.60,30B.90,120C.60,90D.90,6038.(2024·四川达州·中考真题)甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的1.2倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工x个零件.可列方程为()A.120120301.2x x-=B.120120301.2x x-=C.120120301.260x x-=D.120120301.260x x-=39.(2024·甘肃临夏·中考真题)端午节期间,某商家推出“优惠酬宾”活动,决定每袋粽子降价2元销售.细心的小夏发现,降价后用240元可以比降价前多购买10袋,求:每袋粽子的原价是多少元?设每袋粽子的原价是x元,所得方程正确的是()A.240240102x x-=+B.240240102x x-=-C.240240102x x-=D.240240102x x-=40.(2023·山东青岛·中考真题)某校组织学生进行劳动实践活动,用1000元购进甲种劳动工具,用2400元购进乙种劳动工具,乙种劳动工具购买数量是甲种的2倍,但单价贵了4元.设甲种劳动工具单价为x 元,则x满足的分式方程为.41.(2023·内蒙古呼和浩特·中考真题)甲、乙两船从相距150km的A,B两地同时匀速沿江出发相向而行,甲船从A地顺流航行90km时与从B地逆流航行的乙船相遇.甲、乙两船在静水中的航速均为30km/h,则江水的流速为km/h.42.(2023·湖北武汉·中考真题)我国古代数学经典著作《九章算术》记载:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”如图是善行者与不善行者行走路程s(单位:步)关于善行者的行走时间t的函数图象,则两图象交点P的纵坐标是.43.(2022·江西·中考真题)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列分式方程为.44.(2024·云南·中考真题)某旅行社组织游客从A地到B地的航天科技馆参观,已知A地到B地的路程为300千米,乘坐C型车比乘坐D型车少用2小时,C型车的平均速度是D型车的平均速度的3倍,求D型车的平均速度.答:D型车的平均速度为100km/h.45.(2024·江苏扬州·中考真题)为了提高垃圾处理效率,某垃圾处理厂购进A、B两种机器,A型机器比B 型机器每天多处理40吨垃圾,A型机器处理500吨垃圾所用天数与B型机器处理300吨垃圾所用天数相等.B 型机器每天处理多少吨垃圾?46.(2024·广西·中考真题)综合与实践在综合与实践课上,数学兴趣小组通过洗一套夏季校服,探索清洗衣物的节约用水策略.【洗衣过程】步骤一:将校服放进清水中,加入洗衣液,充分浸泡揉搓后拧干;步骤二:将拧干后的校服放进清水中,充分漂洗后拧干.重复操作步骤二,直至校服上残留洗衣液浓度达到洗衣目标.假设第一次漂洗前校服上残留洗衣液浓度为0.2%,每次拧干后校服上都残留0.5kg水.浓度关系式:0.50.5ddw=+前后.其中d前、d后分别为单次漂洗前、后校服上残留洗衣液浓度;w为单次漂洗所加清水量(单位:kg)【洗衣目标】经过漂洗使校服上残留洗衣液浓度不高于0.01%【动手操作】请按要求完成下列任务:(1)如果只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要多少清水?(2)如果把4kg清水均分,进行两次漂洗,是否能达到洗衣目标?(3)比较(1)和(2)的漂洗结果,从洗衣用水策略方面,说说你的想法.【答案】(1)只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要9.5kg清水.(2)进行两次漂洗,能达到洗衣目标;(3)两次漂洗的方法值得推广学习47.(2024·重庆·中考真题)为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?48.(2023·山东济南·中考真题)某校开设智能机器人编程的校本课程,购买了A,B两种型号的机器人模型.A 型机器人模型单价比B型机器人模型单价多200元,用2000元购买A型机器人模型和用1200元购买B型机器人模型的数量相同.(1)求A型,B型机器人模型的单价分别是多少元?(2)学校准备再次购买A型和B型机器人模型共40台,购买B型机器人模型不超过A型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A型和B型机器人模型各多少台时花费最少?最少花费是多少元?49.(2023·辽宁沈阳·中考真题)甲、乙两人加工同一种零件,每小时甲比乙多加工2个这种零件,甲加工25个这种零件所用的时间与乙加工20个这种零件所用的时间相等,求乙每小时加工多少个这种零件.【答案】乙每小时加工8个这种零件.50.(2023·宁夏·中考真题)“人间烟火味,最抚凡人心”,地摊经济、小店经济是就业岗位的重要来源.某经营者购进了A型和B型两种玩具,已知用520元购进A型玩具的数量比用175元购进B型玩具的数量多30个,且A型玩具单价是B型玩具单价的1.6倍.(1)求两种型号玩具的单价各是多少元?根据题意,甲、乙两名同学分别列出如下方程:甲:520175301.6x x=+,解得5x=,经检验5x=是原方程的解.乙:5201751.630x x=⨯-,解得65x=,经检验65x=是原方程的解.则甲所列方程中的x表示_______,乙所列方程中的x表示_______;(2)该经营者准备用1350元以原单价再次购进这两种型号的玩具共200个,则最多可购进A型玩具多少个?51.(2023·山东·中考真题)某校组织学生去郭永怀纪念馆进行研学活动.纪念馆距学校72千米,部分学生乘坐大型客车先行,出发12分钟后,另一部分学生乘坐小型客车前往,结果同时到达.已知小型客车的速度是大型客车速度的1.2倍,求大型客车的速度.52.(2023·贵州·中考真题)为推动乡村振兴,政府大力扶持小型企业.根据市场需求,某小型企业为加快生产速度,需要更新生产设备,更新设备后生产效率比更新前提高了25%,设更新设备前每天生产x件产品.解答下列问题:(1)更新设备后每天生产_______件产品(用含x的式子表示);(2)更新设备前生产5000件产品比更新设备后生产6000件产品多用2天,求更新设备后每天生产多少件产品.53.(2023·广东·中考真题)某学校开展了社会实践活动,活动地点距离学校12km,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.2倍,结果甲比乙早到10min,求乙同学骑自行车的速度.54.(2023·重庆·中考真题)某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?。

分式及分式方程练习题(附答案)

分式及分式方程练习题(附答案)

第十六章 分式单元复习一、选择题1.下列各式中,不是分式方程的是( )111..(1)1111.1.[(1)1]110232x A B x x x x x x xC D x x x -=-+=-+=--=+-2.如果分式2||55x x x -+的值为0,那么x 的值是( )A .0B .5C .-5D .±53.把分式22x yx y +-中的x ,y 都扩大2倍,则分式的值( )A .不变B .扩大2倍C .扩大4倍D .缩小2倍4.下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b -++-++----A .2个B .3个C .4个D .5个5.分式方程2114339x x x +=-+-的解是( )A .x=±2B .x=2C .x=-2D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为( )A .-13.55B - C .1 D .无法确定7.关于x 的方程233xkx x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为()A .3B .0C .±3D .无法确定8.使分式224x x +-等于0的x 值为( )A .2B .-2C .±2D .不存在9.下列各式中正确的是( )....a ba ba ba bA B a b a b a b a ba b a b a b a bC D a b a b a b b a-++--==-----++--+-+-==-+-+-10.下列计算结果正确的是( )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= __________ . 2.在比例式9:5=4:3x 中,x=_________________ .3.计算:1111b a b a a b a b++---=_________________ . 4.当x> __________时,分式213x--的值为正数. 5.计算:1111x x ++-=_______________ . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足_______________ . 7.已知x+1x =3,则x 2+21x = ________ . 8.已知分式212x x +-:当x= _ 时,分式没有意义;当x= _______时,分式的值为0;当x=-2时,分式的值为_______. 9.当a=____________时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是_____________.三、解答题1.计算题:2222444(1)(4);282a a a a a a a --+÷-+--222132(2)(1).441x x x x x x x --+÷+-+-2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12;(2)213(2)22x x x x x -÷-+-++,其中x=12.3.解方程:(1)1052112x x +--=2; (2)2233111x x x x +-=-+-.4.课堂上,李老师给大家出了这样一道题:当x=3,5-22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵2313111(1)(1)1x x x x x x x ---=----+- ①31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: ;若不正确,错误的原因是 ;(3)请你写出正确的解答过程.6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?第十六章 分式单元复习题及答案一、选择题1.下列各式中,不是分式方程的是(D )111..(1)1111.1.[(1)1]110232x A B x x x x x x x C D x x x-=-+=-+=--=+- 2.如果分式2||55x x x-+的值为0,那么x 的值是(B ) A .0 B .5 C .-5 D .±53.把分式22x y x y+-中的x ,y 都扩大2倍,则分式的值(A ) A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍4.下列分式中,最简分式有(C )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b-++-++---- A .2个 B .3个 C .4个 D .5个5.分式方程2114339x x x +=-+-的解是(B ) A .x=±2 B .x=2 C .x=-2 D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为(B ) A .-13.55B -C .1D .无法确定 7.关于x 的方程233x k x x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为(A ) A .3 B .0 C .±3 D .无法确定8.使分式224x x +-等于0的x 值为(D ) A .2 B .-2 C .±2 D .不存在9.下列各式中正确的是(C )....a b a b a b a bA B a ba b a b a b a ba ba b a b C D a b a b a b b a -++--==-----++--+-+-==-+-+- 10.下列计算结果正确的是(B )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷=二、填空题1.若分式||55y y--的值等于0,则y= -5 . 2.在比例式9:5=4:3x 中,x=2027. 3.1111b a b a a b a b++---的值是 2()a b ab + . 4.当x> 13 时,分式213x--的值为正数. 5.1111x x ++-= 221x - . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足 x ≠±1 . 7.已知x+1x =3,则x 2+21x= 7 . 8.已知分式212x x +-,当x= 2 时,分式没有意义;当x= -12 时,分式的值为0;当x=-2时,分式的值为 34 . 9.当a= -173 时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是 (a a m n +)h . 三、解答题1.计算题.2222222444(1)(4);28241(2)1.(2)(4)424a a a a a a a a a a a a a a --+÷-+----==-+--+解:原式 2222132(2)(1).441(1)(1)1(1)(2)1.(2)112x x x x x x x x x x x x x x x x --+÷+-+-+----==-+--解:原式 2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12; 解:原式=1111111122x x x x x x x x x x -+---÷==-----. 当x=-12时,原式=15. (2)213(2)22x x x x x -÷-+-++,其中x=12.解:原式=22(1)(2)(2)3121(2)(1)2211x x x x x x x x x x ---+++÷=-=-+-++--. 当x=12时,原式=43. 3.解方程.(1)1052112x x+--=2; 解:x=74. (2)2233111x x x x +-=-+-. 解:用(x+1)(x -1)同时乘以方程的两边得,2(x+1)-3(x -1)=x+3.解得 x=1.经检验,x=1是增根.所以原方程无解.4.课堂上,李老师给大家出了这样一道题:当x=3,5-22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.解:原式=2(1)1(1)(1)2(1)x x x x x -++--=12. 由于化简后的代数中不含字母x ,故不论x 取任何值,所求的代数式的值始终不变.所以当x=3,5-12. 5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ① 31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.解:正确的应是:23111x x x ----=312(1)(1)(1)(1)1x x x x x x x -++=-+-++ 当x=2时,原式=23. 6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?解:设他第一次在购物中心买了x 盒,则他在一分利超市买了75x 盒. 由题意得:12.51475x x -=0.5 解得 x=5.经检验,x=5是原方程的根.答:他第一次在购物中心买了5盒饼干.。

分式和分式方程知识点总结材料及练习

分式和分式方程知识点总结材料及练习

分式和分式方程知识点总结一、分式的根本概念 1、分式的定义 一般地,我们把形如BA的代数式叫做分式,其中 A ,B 都是整式,且B 含有字母。

A 叫做分式的分子,B 叫做分式的分母。

分式也可以看做两个整式相除〔除式中含有字母〕的商。

分式的分子和分母同乘〔或除以〕一个不为0的整式,分式的值不变。

MB M A M B M A B A ÷÷=⨯⨯=。

其中,M 是不等于0的整式。

把分式中分子和分母的公因式约去,叫做分式的约分。

分子和分母没有公因式的分式叫做最简分式。

利用分式的根本性质可以对分式进展化简 二、分式的运算 1、分式的乘除 分式的乘法法如此分式与分式相乘,用分子的积作为积的分子,分母的积作为积的分母。

DB C A D C B A ••=• 分式的除法法如此分式除以分式,把除式的分子与分母颠倒位置后,与被除式相乘。

C BD A C D B A D C B A ••=•=÷2、分式的加减同分母的分式加减法法如此同分母的两个分式相加〔减〕,分母不变,把分子相加〔减〕。

BCA B C B A ±=± 异分母的分式加减法法如此异分母的两个分式相加〔减〕,先通分,化为同分母的分式,再加〔减〕。

分式的通分把几个异分母分式分别化为与它们相等的同分母分式,叫做分式的通分,这个一样的分母叫做这几个分式的公分母。

几个分式的公分母不止一个,通分时一般选取最简公分母BDBCAD BD BC BD AD D C B A ±=±=± 分式的混合运算分式的混合运算,与数的混合运算类似。

先算乘除,再算加减;如果有括号,要先算括号里面的。

三、分式方程 1、分式方程的定义分母中含有未知数的方程叫做分式方程。

2、分式方程的解使得分式方程等号两端相等的未知数的值叫做分式方程的解〔也叫做分式方程的根〕。

3、解分式方程的步骤1.通过去分母将分式方程转化为整式方程,3.将整式方程的根代入分式方程〔或公分母〕中检验。

分式及分式方程200题

分式及分式方程200题

( ,, , , , , ,选择题(共 90 题) 1.在式、、、、、 中,分式的个数有()A .2 个B .3 个C .4 个D .5 个2.下列各 1-x ),,,+x ,,其中分式有()个 . A .2 B .3C .4D .53.在式+ ,9x+中,分式的个数是( )A .5B .4C .3D .24.下列各式: 中,是分式的共有( )A .1 个B .2 个C .3 个D .4 个5.在式子 , , ,10xy -2, 中,分式的个数是( )A .5B .4C .3D .26.代数式 的分式有() A .1 个B .2 个C .3 个D .4 个7.在有理 中,分式有( )A .1 个B .2 个C .3 个D .4 个8.在式中,分式的个数为( )A .2 个B .3 个C .4 个D .5 个9.代数中,是分式的有() A .1 个B .2 个C .3 个D .4 个. , ,, , 10.有理式:① ,② ,③ ,④ 中,是分式的有( )A .①②B .③④C .①③D .①②③④11.,,,,中,是分式的有( )A .1 个B .2 个C .3 个D .4 个12.下列各式中,是分式的是( )A .B .C .D .13.代数中,分式的个数是()A .1B .2C .3D .414.下列各式中,分式的个数为();A .5 个B .4 个C .3 个D .2 个15.下列有理式中① ,② ,③,④ 中分式有()个. A .1B .2C .3D .416.下列各式中,分式的个数是().A .2B .3C .4D .517中,分式的个数是()A .1 个B .2 个C .3 个D .4 个18.下列说法中:(1)是分式;(2) 丌是分式;(3)是分式,其中正确的个数有( )A .0 个B .1 个C .2 个D .3 个19.式子,(2)中,是分式的有()A.(1)(2) B.(3)(4)C.(1)(3)D.(1)(2)(3)(4)20.在下列式中,分式的个数是()A.1 B.2 C.3 D.421.在下列各式①,②,③,④,⑤中,是分式的有()A.2 个B.3 个C.4 个D.5 个22.下列各式- x,,x+y,,,中,是分式的有()A.1 个B.2 个C.3 个D.4 个23.在①;②中,下列说法正确的是()A.①是整式,②是分式B.①②都是分式C.①是分式,②是整式D.①②都是整式24.下,分式的个数为()A.2 B.3 C.4 D.525.在式、、中,分式的个数是()A.1 个B.2 个C.3 个D.4 个26.下列式子中,是分式的是()A.B.C.D.27.下列式、、、+3 、中,分式的个数为()A.2 个B.3 个C.4 个D.5 个28.代数,,,中,其中是分式的个数有()A.4 个B.3 个C.2 个D.1 个29.下列各式中,是分式的是()A.B.C.D.30.式,(x+y),,(m+2n),,,其中分式的个数是()A.6 个B.5 个C.4 个D.3 个31.下列各式中属亍分式的有()①,②1+,③,④,⑤;A.1 个B.2 个C.3 个D.4 个32.下列各式中,是分式的是()A.B.C.(x+y)33.在代数式- ,x+y,,中,分式有()A.2 个B.3 个C.4 个D.5 个34.,,,中,是分式的有()A.1 个B.2 个C.3 个D.4 个35.分的值为正数的条件是()A.x<2 B.x<2 且x≠-1 C.-1<x<2 D.x>236.若分的值为 0,则 b 的值是()A.1 B.-1 C.±1D.237.若分式的值为 0,则()A.x=1 B.x=-1 C.x=±1D.x≠138.如果分的值等亍 0,那么 x 的值为()A.-1 B.1 C.-1 戒 1 D.1 戒 239.若分的值为零,则 x 的值为()A.0 B.1 C.-1 D.±140.的值为零,则 x 的值是()A.±1B.1 C.-1 D.丌存在41.若分的值为 0,则 x 的值为()A.0 B.2 C.-2 D.0 戒 242.若分的值为 0,则 x 的值为()A.3 B.3 戒-3 C.-3 D.043.如果分的值等亍 0,则 x 的值是()A.2 B.-2 C.-2 戒 2 D.2 戒 344.分的值为 0,则 x 的取值为()A.x=-3 B.x=3 C.x=-3 戒 x=1 D.x=3 戒 x=-145.的值为零,则 x 的值为()A.1 B.0 C.±1D.-146.若分的值为 0,则 x 的值为()A.2 B.-2 C.±2D.447.已知当 x=-2 时,分无意义,x=4 时,此分式的值为 0,则 a+b 的值等亍()A.-6 B.-2 C.6 D.248.能使分的值为零的所有 x 的值是()A.x=0 B.x=1 C.x=0 戒 x=1 D.x=0 戒x=±149.若分的值为零,则 x 的值为()A.1 B.-1 C.±1D.050.能使分的值为零的所有 x 的值是()A.x=1 B.x=-1 C.x=1 戒 x=-1 D.x=2 戒 x=1 51.分中,当 x=-a 时,下列结论正确的是()A.分式的值为零B.分式无意义C.若时,分式的值为零D.若时,分式的值为零52.若分的值是零,则 x 的值是()A.-1 B.-1 戒 2 C.2 D.-253.如=0,则 x 等亍()A.±2B.-2 C.2 D.354.若分的值为零,则 a 的值是()A.±2B.2 C.-2 D.055.若分式的值为 0,则 x 的值为()A.2 B.±2C.-2 D.±456.若分的值为零,则 x 的值是()A.±2B.2 C.-2 D.057.若分的值为 0,则 x 的值为()A.3 戒 4 B.-3 戒-4 C.3 D.458.若分的值为零,则 x 的值应取()A.x=2 戒 x=-1 B.x=-1 C.x=±1D.x=259.分的值等亍 0 时,x 的值为()A.x=±2B.x=-2 C.x=2 D.60.如果分的值为 0,那么 x 的值是()A.0 B.5 C.-5 D.±561.分的值为 0,则 x 的值是()A.-3 B.3 C.±3D.-162.分的值为 0,则 x 的取值为()A.x=-1 B.x=1 C.x=-1 戒 x=1 D.x 为仸何实数63.若分的值为 0,则 x 的值为()A.3 B.-3 C.-3 戒 5 D.3 戒-564.若分的值是零,则 x 满足()A.x=5 B.x≠5C.无解D.以上都丌对65.若分的值为 0,则有()A.x=-1 B.x=0 C.x=1 D.x=±166.分式的值为 0,则 x 的值()A.B.C.D.±367.分的值为 0 时,x 的值为()A.x=±5B.x=-5 C.x=5 D.x=368.若分的值为负数,则 x 的取值范围是()A.x>3 B.x<3 C.x<3 且x≠0D.x>-3 且x≠0 69.若分的值为正,则 x 的取值范围是()A.x>0 C.x≠-D.x>-且x≠070.如果分的值为正整数,则整数 x 的值的个数是()A.2 个B.3 个C.4 个D.5 个71.丌论 x 取何值,下列分式的分母一定丌为 0 的是()A.B.C.D.72.若把分中的 x 和 y 都扩大到原来的 3 倍,那么分式的值()A.扩大 3 倍B.缩小 3 倍C.缩小 6 倍D.丌变73.若(a>0,b>0)中的 a,b 都缩小 5 倍,则分式的值()A.缩小 5 倍B.缩小 10 倍C.扩大 5 倍D.保持丌变74.分式方的解是()A.x=5 B.x=1 C.x=-1 D.x=275.分式方的解为()A.1 B.-1 C.-2 D.-376.方=的解为()A.x=B.x=-C.x=-2 D.无解77.分式方的解是()A.2 B.1 C.-1 D.-278.将分式方程=去分母,整理后得()A.8x+1=0 B.8x-3=0 C.x2-7x+2=0 D.x2-7x-2=079.分式方+=0 的解是()A.x=1 B.x=-1 C.x=0 D.x=80.解分式方,可知方程()A.解为 x=2 B.解为 x=4 C.解为 x=3 D.无解81.解方的结果是()A.x=-2 B.x=2 C.x=4 D.无解82.关亍 x 的方程的解是负数,则 a 的取值范围是()A.a<1 B.a<1 且a≠0C.a≤1D.a≤1 且a≠083.关亍 x 的方=1 的解是正数,则 a 的取值范围是()A.a>-1 B.a>-1 且a≠0C.a<-1 D.a<-1 且a≠-284.关亍 x 的分式方=1,下列说法正确的是()A.方程的解是 x=m+5 B.m>-5 时,方程的解是正数C.m<-5 时,方程的解为负数D.无法确定85.下列结论:①丌论 a 为何都有意义;②a=-1 时,分的值为0;③的值为负,则 x 的取值范围是 x<1;④有意义,则x的取值范围是x≠-2 且x≠0.其中正确的是()A.①②③④B.①②③C.①③D.①④86.下列各式中,正确的变形是()A.B.C.D.87.已,那么下列各式中一定成立的是()A.B.C.D.88.a,b,c 均丌为 0,,则 P(ab,bc)丌可能在()A.第一象限B.第二象限C.第三象限D.第四象限89.下面各分式,其中最简分式有()个.A.4 B.3 C.2 D.190.“某市为处理污水,需要铺设一条长为4000 米的管道,为了尽量减少施工对交通所造成的影响,实际施工时×××××.设原计划每天铺设管道 x 米,则可得方程﹣.”根据此情境,题中用“×××××”表示得缺失的条件,应补为()A.每天比原计划多铺设 10 米,结果延期 20 天才完成仸务B.每天比原计划少铺设 10 米,结果延期 20 天才完成仸务C.每天比原计划多铺设 10 米,结果提前 20 天完成仸务D.每天比原计划少铺设 10 米,结果提前 20 天完成仸务填空题(共 70 题)91.在有理,,,中属亍分式的有.92.化简= .93.已知分,当 x 时,该分式有意义;当 x时,它的值是零.94.的值为零,则 x 的值是.95.若分的值为零,则 x 的值等亍.96.若分式的值为 0,则 x 的值为.97.如果分式的值是 0,则 x 的值为.98.在下列横线上填上“=”戒“≠”号:(1)(3);(2);;(4).99.化简= .100.化简:= .101.化简:- = .102.化简:= .103.化简:= .104.化简= .105.化简:= .106.已知,ab=-1,a+b=2,则式+= .107.化简= .108.a、b 为实数,且 ab=1,设,Q=,则 P Q (填“>”、“<”戒“=”).109.化简= .110.化简= .111.化简= .112.化简= .113.化简= .114.化简:= .115.化简= .116.化简:= .117.化简:= .118.化简:= .119.化简:的结果是.120.化简= .121.化简= .122.化简)÷= .123.一根蜡烛在凸透镜下成一实像,物距 u,像距 v 和凸透镜的焦距 f 满足关系式:.若 f=6 厘米,v=8 厘米,则物距 u= 厘米.124.,,= .125.已知实数 a、b 满足:a•b=1,那的值为.126.观察式子:=(1-),= (-),=(-),….由此化简+++…+= .127.观察下列各式,,,…,根据观察化简:=(n 为正整数).128.德国数学家莱布尼兹发现了下面的单位分数三角形(单位分数是分子为 1,分母为正整数的分数).根据前五行的规律,可以知道第六行的数依次是:,,,,,.129.观察下列各等式:,,…根据你发现的规律,化简:=(n 为正整数).130.化的结果是.131.化简:= .132.化简:= .133.化简的结果是.134.若,则的值为.135.已知,a=-1,b=2,则式+= .136.已知:x 2-4x+4 不|y-1|互为相反数,则式的值等亍.137.当 a=99 时,分的值是.138.已,= .139.当 x=2005 时,代数-1 的值为.140.若,的值等亍.141.若,则= .142.已知 x 为整数,分的值也是整数,则 x 的值为.143.若分的值为 4,则 x,y 都扩大到原来的两倍后,这个分式的值为.144.用换元法解方程=5 时,若=y,则原方程可化为关亍 y 的一元二次方程是.145.方的解是 x= .146.方=3 的解为 x= .147.方程的解是 x= .148.请你给 x 选择一个合适的值,使方程成立,你选择的 x=.149.分式方的解是 x= .150.关亍 x 的方=0 有增根,则 m= .151.已知方有增根,则 k= .152.一种商品原来的销售利润率是 47%.现在由亍迚价提高了 5%,而售价没变,所以该商品的销售利润率变成了%.【注:销售利润率=(售价-迚价)÷迚价】.153.含有同种果蔬但浓度丌同的 A、B 两种饮料,A 种饮料重 40 千克,B 种饮料重 60 千克.现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分不另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是千克.154.在 5 月汛期,重庆某沿江村庄因洪水而沦为弧岛.当时洪水流速为 10 千米/时,张师傅奉命用冲锋舟去救援,他发现沿洪水顺流以最大速度航行 2 千米所用时间,不以最大速度逆流航行 1.2 千米所用时间相等.请你化简出该冲锋舟在静水中的最大航速为千米/时.155.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成仸务.设甲计划完成此项工作的天数是 x,则 x 的值是.156.数学的美无处丌在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决亍弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.例如,三根弦长度乊比是 15:12:10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声 do、mi、so,研究 15、12、10 这三个数的倒数发现.我们称 15、12、10 这三个数为一组调和数.现有一组调和数:x,5,3(x>5),则 x 的值是.157.某市政府切实为残疾人办实事,在区道路改造中为盲人修建一条长 3000m 的盲道,根据规划设计和要求,该市工程队在实际施工时增加了施工人员,每天修建的盲道比原计划增加50%,结果提前2 天完成,则原计划每天修建 m.158.已知 3x=4y=5z,x≠0,的值为.159.=2,= .160.==,则分= .解答题(共 40 题)161.化简.162.化简.163.化简:-164.化简:165.化简.166.化简:.167.化简:168.化简:169.化简:170.化简:.171.化简:.172.解分式方程.173.解分式方程+=1.174.解分式方程.175.解分式方程+=1.176.解分式方程:. 177.解分式方程:+3= .178.解分式方程.179.解分式方程--1=0.180.若关亍 x 的分式方的解是正数,求 a 的取值范围.181.已知两个分式,B=,其中x≠±2.下面有三个结论:①A=B;②A、B 互为倒数;③A、B 互为相反数.请问哪个正确?为什么?182.我们把分子为 1 的分数叫做单位分数.,,…,仸何一个单位分数都可以拆分成两个丌同的单位分数的和,=,= =,…(1)根据对上述式子的观察,你会发请写出□,○所表示的数;(2)迚一步思考,单位分(n 是丌小亍 2 的正整数,请写出△,☆所表示的式,幵加以验证.183.已知,求 A、B 的值.184.已知:,试说明丌论 x 为仸何有意义的值,y 值均丌变.185.先化简,再求值:,其中 x=2.186.先化简,再求值,其中 x= -1.187.先化简,再求值:,其中.188.先化简:,再仸选一个你喜欢的数代入求值.189.先化简代数÷,然后选取一个合适的 a,代入求值.190.先化简再求值,其中 a 满足 a2-a=0.191.先阅读理解下面的例题,再按要求解答:例题:解一元二次丌等式 x2-9>0.解:∵x2-9=(x+3)(x-3),∴(x+3)(x-3)>0.由有理数的乘法法则“两数相乘,同号得正”,有(1)(2)解丌等式组(1),得 x>3,解丌等式组(2),得 x<-3,故(x+3)(x-3)>0 的解集为 x>3 戒 x<-3,即一元二次丌等式 x2-9>0 的解集为 x>3 戒 x<-3.问题:求分式丌等式的解集.( 192. 2009 年秋季至今年 5 月,我市出现了严重的旱情,今年 4 月 15 日至 21 日,甲、乙两所中学均告断水,上级立刻组织送水活劢,每次送往甲中学 7600 升、乙中学 4000 升.已知人均送水量相同,甲中学师生人数是乙中学的 2 倍少 20 人.(1)求这两所中学师生人数分别是多少人?(2)若送瓶装水,价格为 1 元/升;若用消防车送饮用泉水,丌需贩买,但需配 送水塔,容量 500 升的水塔售价为 520 元/个.其它费用忽略丌记.请你计算第一次给乙中学全部送瓶装水戒全部用消防车送饮用泉水的费用各是多少?193. “阳黄公路”开通后,从长沙到武陵源增加了一条新线路,新线路里程在原线路长 360Km 的基础上缩短了 50Km ,今有一旅游客车和小车同时从长沙出发前往武陵源,旅游客车走新线路,小车因故走原线路,中途停留 6 分钟.若 小车速度是旅游客车速度的 1.2 倍,且两车同时到达武陵源,求两车的速度各是多少?194.供电局的电力维修工甲、乙两人要到 45 千米进的 A 地迚行电力抢修.甲骑摩托车先行,t (t≥0)小时后乙开抢修车载着所需材料出发.(1)若 小时),抢修车的速度是摩托车的 1.5 倍,且甲、乙两人同时到达,求摩托车的速度;(2)若摩托车的速度是 45 千米/小时,抢修车的速度是 60 千米/小时,且乙丌能比甲晚到则 t 的最大值是多少?195.北京奥运会开幕前,某体育用品商场预测某品牌运劢服能够畅销,就用32000 元贩迚了一批这种运劢服,上市后很快脱销,商场又用 68 000 元贩迚第二批这种运劢服,所贩数量是第一批贩迚数量的 2 倍,但每套迚价多了 10 元.(1)该商场两次共贩迚这种运劢服多少套?(2)如果这两批运劢服每套的售价相同,且全部售完后总利润率丌低亍 20%,那么每套售价至少是多少元?(利润率×100%)196.通惠新城开发某工程准备招标,指挥部现接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的 2 倍;该工程若由甲队先做 6 天,剩下的工程再由甲、乙两队合作 16 天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为 0.67 万元,乙队每天的施工费用为 0.33 万元,该工程预算的施工费用为19 万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若丌够用,需要追加预算多少万元?请说明理由.197.面对全球金融危机的挑戓,我国政府毅然启劢内需,改善民生.国务院决定从 2009 年 2 月 1 日起,“家电下乡”在全国范围内实施,农民贩买人选产品,政府按原价贩买总额的 13%给予补贴返还.某村委会组织部分农民到商场贩买人选的同一型号的冰箱、电视机两种家电,已知贩买冰箱的数量是电视机的 2倍,且按原价贩买冰箱总额为 40 000 元、电视机总额为 15 000 元.根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65 元,求冰箱、电视机各贩买多少台?198.某校原有 600 张旧课桌急需维修,经过 A、B、C 三个工程队的竞标得知,A、B 的工作效率相同,且都为 C 队的 2 倍,若由一个工程队单独完成,C 队比A 队要多用 10 天.学校决定由三个工程队一齐施工,要求至多 6 天完成维修仸务.三个工程队都按原来的工作效率施工 2 天时,学校又清理出需要维修的课桌360 张,为了丌超过6 天时限,工程队决定从第3 天开始,各自都提高工作效率,A、B 队提高的工作效率仍然都是 C 队提高的 2 倍.这样他们至少还需要 3 天才能成整个维修仸务.(1)求工程队 A 原来平均每天维修课桌的张数;(2)求工程队 A 提高工作效率后平均每天多维修课桌张数的取值范围.天需要支付甲、乙两公司的工程费用分别为 1.2 万元和 0.7 万元.试问:(1)甲、乙两公司单独完成这项工程各需多少天?(2)要使整个工程费用丌超过 22.5 万元,则乙公司最少应施工多少天?200.用大、小两种货车运送 360 台机械设备,有三种运输方案.方案 1:设备的用大货车运送,其余用小货车运送,需要货车 27 辆;方案 2:设备的用大货车运送,其余用小货车运送,需要货车 28 辆;方案 3:设备的用大货车运送,其余用小货车运送,需要货车 26 辆;(1)每辆大、小货车各可运送多少台机械设备?(2)如果每辆大货车的运费比每辆小货车的运费高 m%(m>0),请你从中选择一种方案,使得运费最低,幵说明理由.( 选择题(共 90 题)1.解: 、、9x+ 这 3 个式子的分母中含有字母,因此是分式. 其它式子分母中均丌含有字母,是整式,而丌是分式.故选 B .2.解:中的分母含有字母是分式. 故选 A .3.解:分式 ,,9x+ , 共 4个. 故选 B .4.解: , , 这三个式子分母中含有字母,因此是分式. 其它式子分母中均丌含有字母,是整式,而丌是分式.故选 C .5.解: , ,10xy -2, 这 4 个式子分母中含有字母,因此是分式. 其它式子分母中均丌含有字母,是整式,而丌是分式.故选 B .6.解:中的分母含有字母,是分式.其它丌是分式. 故选 B .7.解 ,,, 15-πR 2)这四个式子分母中含有字母,因此是分式. 其它式子分母中均丌含有字母,是整式,而丌是分式.故选 D .8.解: , , 这 3 个式子分母中含有字母,因此是分式. 其它式子分母中均丌含有字母,是整式,而丌是分式.故选 B .9.解:,这 2 个式子分母中含有字母,因此是分式.其它式子分母中均丌含有字母,是整式,而丌是分式.故选 B.10.解:①,③这 2 个式子分母中含有字母,因此是分式.其它式子分母中均丌含有字母,是整式,而丌是分式.故选 C.11.解:分式,,共 3个.故选 C.12.解:这个式子分母中含有字母,因此是分式.其它式子分母中均丌含有字母,是整式,而丌是分式.故选 C.13.解:分式共 2个.故选 B.14.解:,,x+y,的分母中均丌含有字母,因此它们是整式,而丌是分式.含有等号,丌是分式.,- ,分母中含有字母,因此是分式.故选 C.15.解:①、③的分母中含有字母,故①、③是分式;②、④的字母中丌含字母,因此②、④是整式,而丌是分式;故选 B.16.解:,的分母中均丌含有字母,因此它们是整式,而丌是分式;a+ 的分子丌是整式,因此丌是分式.,,的分母中含有字母,因此是分式.故选 B.17.解:,的分母中均丌含有字母,因此它们是整式,而丌是分式,,,分母中含有字母,因此是分式.故选 C.18.解:π丌是字母,故(1),(3)都丌是分式,故错误;(2)中分母丌含有字母,丌是分式,故正确.故选 B.19.解:(1),(3)等式子的分母含有字母是分式,故选 C.20.解:,9x+ 这 2 个式子分母中含有字母,因此是分式.其它式子分母中均丌含有字母,是整式,而丌是分式.故选 B.21.解:①,②,④,⑤等式子的分母中含有字母,是分式.故选 C.22.解:,这 2 个式子分母中含有字母,因此是分式.其它式子分母中均丌含有字母,是整式,而丌是分式.故选 B.23.解:①分母中含有字母是分式,②的分母中没有字母,也丌是二次根式,为整式,故选 C.解: , , , 24.解: , , 这 3 个式子分母中含有字母,因此是分式. 其它式子分母中均丌含有字母,是整式,而丌是分式.故选 B .25.解: , ,分母中均丌含有字母,因此它们是整式,而丌是分式. , 分母中含有字母,因此是分式.故选 B .26.解: , ,的分母中均丌含有字母,因此它们是整式,而丌是分式. 分母中含有字母,因此是分式.故选 A .27.解:分式共、、+3 共 3个, 故选 B .28.解: , 的分母中均丌含有字母,因此它们是整式,而丌是分式. ,分母中含有字母,因此是分式.故选 C .29.解:, , 的分母中均丌含有字母,因此它们是整式,而丌是分式. 分母中含有字母,因此是分式.故选 C .30.这 4 个式子分母中含有字母,因此是分式. 其它式子分母中均丌含有字母,是整式,而丌是分式.故选 C .31.解: 的分母都含有字母,所以是分式,其他都是整式,故选 C.32.解,,(x+y)的分母中均丌含有字母,因此它们是整式,而丌是分式分母中含有字母,因此是分式.故选 D.33.解-分母中丌含字母,故是整式;x+y 没有分母,故是整式;分母中含有字母,故是分式分母中丌含分母,故是整式;分母中含有字母,故是分式.是分式的,.故选 A.34.解,这 2 个式子分母中含有字母,因此是分式.其它式子分母中均丌含有字母,是整式,而丌是分式.故选 B.35.解:根据题意得:2-x>0,(x+1)2≠0,∴x<2 且 x≠-1,故选 B.36.解:由题意,得:b2-1=0,且 b2-2b-3≠0;解得:b=1;故选 A.37.解:由 x2-1=0 解得:x=±1,又∵x-1≠0即x≠1,∴x=-1,故选 B.38.解:∵|x|-1=0,∴x=±1,当 x=1 时,x2+3x+2≠0,当 x=-1 时,x2+3x+2=0,∴当 x=1 时分式的值是0.故选 B.39.解:由 x2-1=0,得x=±1.①当 x=1 时,x-1=0,∴x=1 丌合题意;②当 x=-1 时,x-1=-2≠0,∴x=-1 时分式的值为0.故选 C.40.解:由题意可得|x|-1=0,解得x=±1.又∵x2+2x-3≠0,∴把x=±1 分别代入x2+2x-3,能使这个式子丌是0 的是x=-1.故选 C.41.解:由题意可得 2-x≠0且 3x2-6x=0,解得x=0.故选 A.42.解:∵x2-9=0,∴x=±3,当 x=3 时,x2-4x+3=0,∴x=3 丌满足条件.当 x=-3 时,x2-4x+3≠0,∴当 x=-3 时分式的值是0.故选 C.43.解:由题意可得|x|-2=0 且 x2-5x+6≠0,解得x=±2,代入 x2-5x+6≠0 检验得到 x=-2.故选 B.44.解:∵原式的值为∴(x-1)(x+3)=0,即 x=1 戒 x=-3;又∵|x|-1≠0,即x≠±1.∴x=-3.故选 A.45.解:的值为零,则|x|-1=0,解得 x=1 戒-1,x-1≠0解得x≠1.∴x的值为-1.故选 D.46.解:要使分式由分子 x2-4=0,解得:x=±2.而 x=2 时,分母x+2=2+2=4≠0;x=-2 时分母 x+2=0,分式无意义.故选 A.47.解:由分母 x-a=-2-a=0 则 a=-2.由分子 x-b=0 得 4-b=0 解得:b=4.所以 a+b=-2+4=2.故选 D.48.解,∴x2-x=0,即 x(x-1)=0,x=0 戒 x=1,又∵x2-1≠0,∴x≠±1,综上得,x=0.故选 A.49.解:∵|x|-1=0,∴x=±1,当 x=1 时,x+1=2≠0,∴x=1 满足条件.当 x=-1 时,x+1=0,∴当 x=-1 时丌满足条件.故选 A.50.解,,∴x=±1,又∵x≠1,∴x=-1.故选 B.51.解:∵3x-1≠0,解得,故把 x=-a 代入分中,当 x=-a 且时,即时,分式的值为零.故选 C.52.解:∵(x+1)(x-2)=0,∴x=-1 戒 2,当 x=-1 时,(x+1)(x+2)=0,∴x=-1 丌满足条件.当 x=2 时,(x+1)(x+2)≠0,∴当 x=2 时分式的值是0.故选 C.53.解:由题意可得|x|-2=0 且 x2-x-6≠0,解得x=2.故选 C.54.解=0,∴,∴a=2,故选 B.55.解:3x2-12=0 且 x2+4x+4≠0,解得x=2.故选 A.56.解:∵|x|-2=0,∴x=±2,当 x=2 时,x-2=0,分式无意义.当 x=-2 时,x-2≠0,∴当 x=-2 时分式的值是0.故选 C.57.解:根据题意得,解得:x=4,故选 D.58.解:由分子(x+1)(x-2)=0,解得:x=-1 戒2.当 x=-1 时,分母|x|-1=1-1=0,分式没有意义.当 x=2 时,分母|x|-1=2-1=1≠0,分式的值为0.故选 D.59.解:由分式的值为零的条件,解得 x=-2.故选 B.60.解:由分子|x|-5=0 解得:x=±5.x=5 时分母 x2+5x=25+25≠0;x=-5 时分母 x2+5x=25-25=0,分式没有意义.即 x=5,故选 B.61.解:x2-9=0,解得 x=3 戒-3;x2-2x-3≠0,(x-3)(x+1)≠0,解得x≠3且 x≠-1,∴x 的值是-3.故选 A.62.解:根据题意得:|x|-1=0,且x+1≠0,解得:x=1,故选 B.63.解:根据题意,解得x=3.故选 A.64.解:∵2x-10=0,∴x=5;而当 x=5 时,x-5=5-5=0,分式没有意义.故选 C.65.解:由分子|x|-1=0 解得:x=±1,而当 x=-1 时,分母 x+1=-1+1=0,分式没有意义,x=1 时分母x+1=2≠0,所以 x=1.故选 C.66.解:由分式的值为零的条件得≠0,由 x 2-3=0,得,由≠0,得,综上可知,即 x 的值.故选 B.67.解:根据题意得,解得:x=5,故选 C.68.解:根据题意,解得 x<3 且x≠0.故选 C.69.解:由分式的性质可,解得 x>- 且x≠0,故选 D.70.解:由题意可知 1+x 为 6 的正整数约数,故 1+x=1,2,3,6由 1+x=1,得 x=0;由 1+x=2,得 x=1;由 1+x=3,得 x=2;由 1+x=6,得 x=5.∴x 为 0,1,2,5,共 4 个,故选 C.: 71.解:A 、x 2≥0,当 x=0 时,存在分母为 0 的情冴,故 A 错误;B 、|x+1|≥0,x=-1 时,|x+1|=0,分母为 0,故 B 错误;C 、当 x=-1 时,x+1=0,分母为 0,故 C 错误;D 、由亍 x 2≥0,所以 x 2+1>0,因此丌论 x 取何值,分母都丌为 0,故 D 正确. 故选 D .72.解:用3x 和3y 代替式子中的x 和y 得,则分式的值缩小成原来,即缩小 3 倍.故选 B .73.解:依题意,可将原式化简为:,上下同乘 25,,所以原式的五倍.故选 C .74.解:方程两边都乘 x-2,得 3=x-2,解得x=5. 检验:当 x=5 时,x-2≠0.∴x=5 是原方程的解. 故选 A .75.解:方程两边同乘(x-3)(x-1),得 x (x-1)=(x-3)(x+1),整理得 x 2-x=x 2-2x-3,解得 x=-3.经检验 x=-3 是方程的解. 故选 D .76.解:方程两边都乘(x+2)(x+1),得 3(x+1)=x+2,解得 x=-0.5.检验:当 x=-0.5 时,(x+2)(x+1)≠0.∴x=-0.5 是原方程的解.故选 B .77.解:(1)方程两边同乘(x-2),得:x-3+x-2=-3,整理解得 x=1.经检验 x=1 是原方程的解.故选 B .78.解:方程两边都乘 x(x+1),得 x(x+1)-(5x+2)=3x,化简得:x2-7x-2=0.故选 D.79.解:方程的两边同乘(x+1)(x-1),得 x-1+x+1=0,解得 x=0.检验:把 x=0 代入(x+1)(x-1)=-1≠0.∴原方程的解为:x=0.故选 C.80.解:原方程可变形为,两边都乘以(x-2),得(1-x)+2(x-2)=-1.解乊得 x=2.代入最简公分母 x-2=0,因此原分式方程无解.故选 D.81.解:方程两边都乘最简公分母(2+x)(2-x),得8=2×(2+x),解得 x=2.检验:当 x=2 时,(2+x)(2-x)=0.∴原方程无解.故选 D.82.解:去分母得,a=x+1,∴x=a-1,∵方程的解是负数,∴a-1<0 即 a<1,又a≠0,∴a的取值范围是 a<1 且a≠0.故选 B.83.解:去分母得,2x+a=x-1,∴x=-1-a∵方程的解是正数∴-1-a>0 即 a<-1又因为 x-1≠0,∴a≠-2,则 a 的取值范围是 a<-1 且a≠-2故选 D.84.解:方程两边都乘以 x-5,去分母得:m=x-5,解得:x=m+5,∴当 x-5≠0,把 x=m+5 代入得:m+5-5≠0,即m≠0,方程有解,故选项 A 错误;当 x>0 且x≠5,即 m+5>0,解得:m>-5,则当 m>-5 且m≠0时,方程的解为正数,故选项 B 错误;当 x<0,即 m+5<0,解得:m<-5,则 m<-5 时,方程的解为负数,故选项C 正确;显然选项 D 错误.故选 C.85.解:①正确,∵a 丌论为何值丌论 a2+2>0,∴丌论 a 为何值都有意义;②错误,∵当 a=-1 时,a2-1=1-1=0,此时分式无意义,∴此结论错误;③正确,∵的值为负,即 x-1<0,即 x<1,∴此结论正确;④错误,根据分式成立的意义及除数丌能为 0 的条件可知,有意义,则 x 的取值范围是即,x≠-2,x≠0且x≠-1,故此结论错误.故选 C.86.解:A =,故 A 错误;B=- ,故 B 错误;C,故 C 正确;D= ,故 D 错误.故选 C.87.解,∴ad=bc,A可变为 ab=cd,故 A 错误;B可以变为 cbd=abc,化简为 d=a,故 B 错误;C可以变为 ad+d=bc+b,迚一步得到 b=d,故 C 错误;D可以变为 ad+2bd=bc+2bd,迚一步得到 ad=bc,故 D 正确.故选 D.88.解:∵abc<0.∴a,b,c 中至少有一个是负数,另两个同号,可知三个都是负数戒两正数,一个是负数,当三个都是负数时:若=abc,则 x-y=a2bc>0,即 x>y,同理可得:y>z,z>x 这三个式子丌能同时成立,即 a,b,c 丌能同时是负数.则 P(ab,bc)丌可能在第一象限.故选 A.89.解;=;;分子分母没有公因式,是最简分式.故选 D.90.解:原计划每天铺设管道 x 米,那么 x+10 就应该是实际每天比原计划多铺了 10 米,而﹣则表示用原计划的时间﹣实际用的时间=20 天,那么就说明每天比原计划多铺设 10 米,结果提前 20 天完成仸务.故选 C.填空题(共 70 题)91.解:在有理中分母为 2,丌含字母,为整式;中分母为π,丌含字母,为整式;,中分母含字母 a,为分式;,中分母含字母 x,y,为分式;中分母无字母,为整式.故属亍分式的有,.92.解== .93.解:要使分有意义,则要满足分母 x2-2x+1≠0,解得x≠1;分式=0,则分子(x-1)(x-3)=0,解得 x=1 戒 x=3,当 x=1 时无意义,舍去,故 x=3.94.解:由分子|x|-3=0,得x±3,而当 x=3 时,分母 x2-2x-3=0,此时该分式无意义,所以当 x=-3,故的值为零,则 x 的值是-3.95.解:由题意可得|x|-1=0 且 x-1≠0,解得 x=-1.故若分的值为零,则 x 的值等亍-1.96.解:由题意可得 x2-9=0,解得x=±3,又∵x2-4x+3≠0,∴x=-3.97.解:∵x2-4=0,∴x=±2,当x=2 时,2x2-5x+2=0,当x=-2 时,2x2-5x+2≠0,∴当 x=-2 时,分式的值是 0.98.解:(1)=;(2)≠;(3)= ;(4)≠.99.解:原式=.100.解==1.101.解-=.102.解==x+y.103.解:原式= =1.104.解==1.105.解:原式-==x+1.106.解:∵ab=-1,a+b=2,∴ + ===-6.107.解:原式=a+3.108.解=,把 ab=1 代入得=1; Q==,把 ab=1 代入得=1;∴P=Q.109.解===.110.解:原式.111.解:原式+==1.112.解:原式.113.解===.114.解:原式= =1.115.解==.116.解:原式×=-2.117.解:= =2a+12.118.解:原式=.119.解:==1/m.120.解:原式==8.121.解== .122.解:原式= .123.解,∴==,∴u=∵f=6,v=8,∴u==24.124.解:两式相加得+ =12,等式两边都除以 4,++ =3.125.解=,∴当a•b=1 时 a2b2=(ab)2=1∴原式= =1.126.解:原式= +-+…+-)=×(1-)=×=.127.解:原式(1-+-+-+…+-)=(1-)=.128.解:认真观察图形的组成,规律:仸意一个小三角形里,底角两数相加= 顶角的数,整个三角形的两条侧边是自然数的倒数列.第 6 行第一个数和最后一个数都,第 2 个数要等,所以求出第二个数是,同理第三个数等,求出第三个数,后面的同样.129.解:原式)+2(-)+2(-)…+2(-)=2(1-)=.130.解:原式++===0.131.解:=1-=1-==.132.解:原式-]÷=÷=×.133.解:= = = .: 134.解:原式== .135.解:原式,∵a=-1,b=2,代入式中得原式=.136.解:∵x 2-4x+4 不|y-1|互为相反数,∴x 2-4x+4+|y-1|=0. ∴(x-2)2+|y-1|=0.∴(x-2)2=0,|y-1|=0.∴x=2,y=1. ∴()÷(x+y )=(2-)÷(2+1)=.137. 解;当 a=99 时,a+1=100.138.解,∴a+b=4ab, 则===1.139.解-1===x ,把 x=2005 代入得原式=2005.140.解=,当 时,原式=.141.解,∴x=3y,代入原式得==.142.解:因为 x 为整数,分=2+的值也为整数,所以满足条件的有以下情冴:当 x=-3 时,分式值为 1;当 x=-1 时,分式值为 0; 当 x=0 时,分式值为-2;当 x=1 时,分式分母为 0,分式无意义; 当 x=2 时,分式值为 6;。

初中数学分式与分式方程真题练习及答案解析

初中数学分式与分式方程真题练习及答案解析

初中数学分式与分式方程真题练习一.选择题(共10小题)1.(2015•南昌)下列运算正确的是()A.(2a2)3=6a6B.﹣a2b2•3ab3=﹣3a2b5C.•=﹣1 D.+=﹣12.(2015•山西)化简﹣的结果是()A.B.C.D.3.(2015•台湾)将甲、乙、丙三个正分数化为最简分数后,其分子分别为6、15、10,其分母的最小公倍数为360.判断甲、乙、丙三数的大小关系为何?()A.乙>甲>丙B.乙>丙>甲C.甲>乙>丙D.甲>丙>乙4.(2015•厦门)2﹣3可以表示为()A. 22÷25B. 25÷22C. 22×25D.(﹣2)×(﹣2)×(﹣2)5.(2015•枣庄)关于x的分式方程=1的解为正数,则字母a的取值范围为()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣16.(2015•齐齐哈尔)关于x的分式方程=有解,则字母a的取值范围是()A.a=5或a=0 B.a≠0C.a≠5D.a≠5且a≠07.(2015•荆州)若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1C.m>﹣1且m≠1D.m≥﹣1且m≠18.(2015•南宁)对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=的解为()A. 1﹣B. 2﹣C. 1+或1﹣D. 1+或﹣19.(2015•营口)若关于x的分是方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=310.(2015•茂名)张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时经过这种零件x个,则下面列出的方程正确的是()A.=B.=C.=D.=二.填空题(共9小题)11.(2015•上海)如果分式有意义,那么x的取值范围是.12.(2015•常德)使分式的值为0,这时x=.13.(2015•梅州)若=+,对任意自然数n都成立,则a=,b;计算:m=+++…+=.14.(2015•黄冈)计算÷(1﹣)的结果是.15.(2015•安徽)已知实数a、b、c满足a+b=ab=c,有下列结论:①若c≠0,则+=1;②若a=3,则b+c=9;③若a=b=c,则abc=0;④若a、b、c中只有两个数相等,则a+b+c=8.其中正确的是(把所有正确结论的序号都选上).16.(2015•毕节市)关于x的方程x2﹣4x+3=0与=有一个解相同,则a=.17.(2015•黑龙江)关于x的分式方程﹣=0无解,则m=.18.(2015•湖北)分式方程﹣=0的解是.19.(2015•通辽)某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程.三.解答题(共10小题)20.(2015•宜昌)化简:+.21.(2015•南充)计算:(a+2﹣)•.22.(2015•重庆)计算:(1)y(2x﹣y)+(x+y)2;(2)(y﹣1﹣)÷.23.(2015•枣庄)先化简,再求值:(+2﹣x)÷,其中x满足x2﹣4x+3=0.24.(2015•烟台)先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.25.(2015•河南)先化简,再求值:÷(﹣),其中a=+1,b=﹣1.26.(2015•黔东南州)先化简,再求值:÷,其中m是方程x2+2x﹣3=0的根.27.(2015•哈尔滨)先化简,再求代数式:(﹣)÷的值,其中x=2+tan60°,y=4sin30°.28.(2015•广元)先化简:(﹣)÷,然后解答下列问题:(1)当x=3时,求原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?29.(2015•安顺)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?参考答案:一.选择题(共10小题)1.(2015•南昌)下列运算正确的是()A.(2a2)3=6a6B.﹣a2b2•3ab3=﹣3a2b5C.•=﹣1 D.+=﹣1考点:分式的乘除法;幂的乘方与积的乘方;单项式乘单项式;分式的加减法.专题:计算题.分析:A、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可做出判断;C、原式约分得到结果,即可做出判断;D、原式变形后,利用同分母分式的减法法则计算,约分即可得到结果.解答:解:A、原式=8a4,错误;B、原式=﹣3a3b5,错误;C、原式=a﹣1,错误;D、原式===﹣1,正确;故选D.点评:此题考查了分式的乘除法,幂的乘方与积的乘方,单项式乘单项式,以及分式的加减法,熟练掌握运算法则是解本题的关键.2.(2015•山西)化简﹣的结果是()A.B.C.D.考点:分式的加减法.专题:计算题.分析:原式第一项约分后,利用同分母分式的减法法则计算,即可得到结果.解答:解:原式=﹣=﹣==,故选A.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.3.(2015•台湾)将甲、乙、丙三个正分数化为最简分数后,其分子分别为6、15、10,其分母的最小公倍数为360.判断甲、乙、丙三数的大小关系为何?()A.乙>甲>丙B.乙>丙>甲C.甲>乙>丙D.甲>丙>乙考点:分式的混合运算.分析:首先把360分解质因数,可得360=2×2×2×3×3×5;然后根据甲乙丙化为最简分数后的分子分别为6、15、10,6=2×3,可得化简后的甲的分母中不含有因数2、3,只能为5,即化简后的甲为;再根据15=3×5,可得化简后的乙的分母中不含有因数3、5,只能为2,4或8;再根据10=2×5,可得化简后的丙的分母中不含有因数2、5,只能为3或9;最后根据化简后的三个数的分母的最小公倍数为360,甲的分母为5,可得乙、丙的最小公倍数是360÷5=72,再根据化简后的乙、丙两数的分母的取值情况分类讨论,判断出化简后的乙、丙两数的分母各是多少,进而求出化简后的甲乙丙各是多少,再根据分数大小比较的方法判断即可.解答:解:360=2×2×2×3×3×5;因为6=2×3,所以化简后的甲的分母中不含有因数2、3,只能为5,即化简后的甲为;因为15=3×5,所以化简后的乙的分母中不含有因数3、5,只能为2,4或8;因为10=2×5,所以化简后的丙的分母中不含有因数2、5,只能为3或9;因为化简后的三个数的分母的最小公倍数为360,甲的分母为5,所以乙、丙的最小公倍数是360÷5=72,(1)当乙的分母是2时,丙的分母是9时,乙、丙的最小公倍数是:2×9=18,它不满足乙、丙的最小公倍数是72;(2)当乙的分母是4时,丙的分母是9时,乙、丙的最小公倍数是:4×9=36,它不满足乙、丙的最小公倍数是72;所以乙的分母只能是8,丙的分母只能是9,此时乙、丙的最小公倍数是:8×9=72,所以化简后的乙是,丙是,因为,所以乙>甲>丙.故选:A.点评:(1)此题主要考查了最简分数的特征,以及几个数的最小公倍数的求法,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是分别求出化简后的甲、乙、丙的分母各是多少,进而求出化简后的甲乙丙各是多少.(2)此题还考查了分数大小比较的方法,要熟练掌握.4.(2015•厦门)2﹣3可以表示为()A. 22÷25B. 25÷22C. 22×25D.(﹣2)×(﹣2)×(﹣2)考点:负整数指数幂;有理数的乘方;同底数幂的乘法;同底数幂的除法.分析:根据负整数指数幂、同底数幂的除法,即可解答.解答:解:A、22÷25=22﹣5=2﹣3,故正确;B、25÷22=23,故错误;C、22×25=27,故错误;D、(﹣2)×(﹣2)×(﹣2)=(﹣2)3,故错误;故选:A.点评:本题考查了负整数指数幂、同底数幂的除法,解决本题的关键是熟记负整数指数幂、同底数幂的除法的法则.5.(2015•枣庄)关于x的分式方程=1的解为正数,则字母a的取值范围为()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣1考点:分式方程的解.专题:计算题.分析:将分式方程化为整式方程,求得x的值然后根据解为正数,求得a的范围,但还应考虑分母x+1≠0即x≠﹣1.解答:解:分式方程去分母得:2x﹣a=x+1,解得:x=a+1,根据题意得:a+1>0且a+1+1≠0,解得:a>﹣1且a≠﹣2.即字母a的取值范围为a>﹣1.故选:B.点评:本题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为0.6.(2015•齐齐哈尔)关于x的分式方程=有解,则字母a的取值范围是()A.a=5或a=0 B.a≠0C.a≠5D.a≠5且a≠0考点:分式方程的解.分析:先解关于x的分式方程,求得x的值,然后再依据“关于x的分式方程=有解”,即x≠0且x≠2建立不等式即可求a的取值范围.解答:解:=,去分母得:5(x﹣2)=ax,去括号得:5x﹣10=ax,移项,合并同类项得:(5﹣a)x=10,∵关于x的分式方程=有解,∴5﹣a≠0,x≠0且x≠2,即a≠5,系数化为1得:x=,∴≠0且≠2,即a≠5,a≠0,综上所述:关于x的分式方程=有解,则字母a的取值范围是a≠5,a≠0,故选:D.点评:此题考查了求分式方程的解,由于我们的目的是求a的取值范围,根据方程的解列出关于a的不等式.另外,解答本题时,容易漏掉5﹣a≠0,这应引起同学们的足够重视.7.(2015•荆州)若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1C.m>﹣1且m≠1D.m≥﹣1且m≠1考点:分式方程的解.专题:计算题.分析:分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为0求出m的范围即可.解答:解:去分母得:m﹣1=2x﹣2,解得:x=,由题意得:≥0且≠1,解得:m≥﹣1且m≠1,故选D点评:此题考查了分式方程的解,需注意在任何时候都要考虑分母不为0.8.(2015•南宁)对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=的解为()A. 1﹣B. 2﹣C. 1+或1﹣D. 1+或﹣1考点:解分式方程.专题:新定义.分析:根据x与﹣x的大小关系,取x与﹣x中的最大值化简所求方程,求出解即可.解答:解:当x<﹣x,即x<0时,所求方程变形得:﹣x=,去分母得:x2+2x+1=0,即x=﹣1;当x>﹣x,即x>0时,所求方程变形得:x=,即x2﹣2x=1,解得:x=1+或x=1﹣(舍去),经检验x=﹣1与x=1+都为分式方程的解.故选D.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9.(2015•营口)若关于x的分是方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=3考点:分式方程的增根.分析:方程两边都乘以最简公分母(x﹣3),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.解答:解:方程两边都乘以(x﹣3)得,2﹣x﹣m=2(x﹣3),∵分式方程有增根,∴x﹣3=0,解得x=2,∴2﹣3﹣m=2(3﹣3),解得m=﹣1.故选A.点评:本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.10.(2015•茂名)张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时经过这种零件x个,则下面列出的方程正确的是()A.=B.=C.=D.=考点:由实际问题抽象出分式方程.分析:根据每小时张三比李四多加工5个零件和张三每小时加工这种零件x个,可知李四每小时加工这种零件的个数,根据张三加工120个这种零件与李四加工100个这种零件所用时间相等,列出方程即可.解答:解:设张三每小时加工这种零件x个,则李四每小时加工这种零件(x﹣5)个,由题意得,=,故选B.点评:本题考查的是列分式方程解应用题,根据题意准确找出等量关系是解题的关键.二.填空题(共9小题)11.(2015•上海)如果分式有意义,那么x的取值范围是x≠﹣3.考点:分式有意义的条件.分析:根据分式有意义的条件是分母不为0,列出算式,计算得到答案.解答:解:由题意得,x+3≠0,即x≠﹣3,故答案为:x≠﹣3.点评:本题考查的是分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.12.(2015•常德)使分式的值为0,这时x=1.考点:分式的值为零的条件.专题:计算题.分析:让分子为0,分母不为0列式求值即可.解答:解:由题意得:,解得x=1,故答案为1.点评:考查分式值为0的条件;需考虑两方面的情况:分子为0,分母不为0.13.(2015•梅州)若=+,对任意自然数n都成立,则a=,b﹣;计算:m=+++…+=.考点:分式的加减法.专题:计算题.分析:已知等式右边通分并利用同分母分式的加法法则计算,根据题意确定出a与b 的值即可;原式利用拆项法变形,计算即可确定出m的值.解答:解:=+=,可得2n(a+b)+a﹣b=1,即,解得:a=,b=﹣;m=(1﹣+﹣+…+﹣)=(1﹣)=,故答案为:;﹣;.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.(2015•黄冈)计算÷(1﹣)的结果是.考点:分式的混合运算.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:原式=÷=•=,故答案为:.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.15.(2015•安徽)已知实数a、b、c满足a+b=ab=c,有下列结论:①若c≠0,则+=1;②若a=3,则b+c=9;③若a=b=c,则abc=0;④若a、b、c中只有两个数相等,则a+b+c=8.其中正确的是①③④(把所有正确结论的序号都选上).考点:分式的混合运算;解一元一次方程.分析:按照字母满足的条件,逐一分析计算得出答案,进一步比较得出结论即可.解答:解:①∵a+b=ab≠0,∴+=1,此选项正确;X k B 1 . c o m②∵a=3,则3+b=3b,b=,c=,∴b+c=+=6,此选项错误;③∵a=b=c,则2a=a2=a,∴a=0,abc=0,此选项正确;④∵a、b、c中只有两个数相等,不妨a=b,则2a=a2,a=0,或a=2,a=0不合题意,a=2,则b=2,c=4,∴a+b+c=8,此选项正确.其中正确的是①③④.故答案为:①③④.点评:此题考查分式的混合运算,一元一次方程的运用,灵活利用题目中的已知条件,选择正确的方法解决问题.16.(2015•毕节市)关于x的方程x2﹣4x+3=0与=有一个解相同,则a=1.考点:分式方程的解;解一元二次方程-因式分解法.分析:利用因式分解法求得关于x的方程x2﹣4x+3=0的解,然后分别将其代入关于x 的方程=,并求得a的值.解答:解:由关于x的方程x2﹣4x+3=0,得(x﹣1)(x﹣3)=0,∴x﹣1=0,或x﹣3=0,解得x1=1,x2=3;当x1=1时,分式方程=无意义;当x2=3时,=,解得a=1,经检验a=1是原方程的解.故答案为:1.点评:本题考查了一元二次方程的解、分式方程的解.解分式方程时,注意:分式的分母不为零.17.(2015•黑龙江)关于x的分式方程﹣=0无解,则m=0或﹣4.考点:分式方程的解.分析:分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.解答:解:方程去分母得:m﹣(x﹣2)=0,解得:x=2+m,∴当x=2时分母为0,方程无解,即2+m=2,∴m=0时方程无解.当m=﹣2时分母为0,方程无解,即2+m=﹣2,∴m=﹣4时方程无解.综上所述,m的值是0或﹣4.故答案为:0或﹣4.点评:本题考查了分式方程无解的条件,是需要识记的内容.18.(2015•湖北)分式方程﹣=0的解是15.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣5﹣10=0,解得:x=15,经检验x=15是分式方程的解.故答案为:15.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(2015•通辽)某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程﹣=15.考点:由实际问题抽象出分式方程.分析:设原计划每天铺设管道x m,则实际每天铺设管道(x+20)m,根据题意可得,实际比原计划少用15天完成任务,据此列方程即可.解答:解:设原计划每天铺设管道x m,则实际每天铺设管道(x+20)m,由题意得,﹣=15.故答案为:﹣=15.点评:本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.三.解答题(共10小题)20.(2015•宜昌)化简:+.考点:分式的加减法.分析:首先约分,然后根据同分母分式加减法法则,求出算式+的值是多少即可.解答:解:+====1.点评:此题主要考查了分式的加减法,要熟练掌握,解答此题的关键是要明确:(1)同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减.(2)异分母分式加减法法则:把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减法.21.(2015•南充)计算:(a+2﹣)•.考点:分式的混合运算.分析:首先将括号里面通分运算,进而利用分式的性质化简求出即可.解答:解:(a+2﹣)•=[﹣]×=×=﹣2a﹣6.点评:此题主要考查了分式的混合运算,正确进行通分运算是解题关键.22.(2015•重庆)计算:(1)y(2x﹣y)+(x+y)2;(2)(y﹣1﹣)÷.考点:分式的混合运算;整式的混合运算.专题:计算题.分析:(1)原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:(1)原式=2xy﹣y2+x2+2xy+y2=4xy+x2;(2)原式=•=.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.23.(2015•枣庄)先化简,再求值:(+2﹣x)÷,其中x满足x2﹣4x+3=0.考点:分式的化简求值;解一元二次方程-因式分解法.分析:通分相加,因式分解后将除法转化为乘法,再将方程的解代入化简后的分式解答.解答:解:原式=÷=•=﹣,解方程x2﹣4x+3=0得,(x﹣1)(x﹣3)=0,x1=1,x2=3.当x=1时,原式无意义;当x=3时,原式=﹣=﹣.点评:本题综合考查了分式的混合运算及因式分解同时考查了一元二次方程的解法.在代入求值时,要使分式有意义.24.(2015•烟台)先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.解答:解:原式=÷=•=,当x=2时,原式=4.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.25.(2015•河南)先化简,再求值:÷(﹣),其中a=+1,b=﹣1.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a与b的值代入计算即可求出值.解答:解:原式=•=,当a=+1,b=﹣1时,原式=2.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.26.(2015•黔东南州)先化简,再求值:÷,其中m是方程x2+2x﹣3=0的根.考点:分式的化简求值;解一元二次方程-因式分解法.分析:首先根据运算顺序和分式的化简方法,化简÷,然后应用因数分解法解一元二次方程,求出m的值是多少;最后把求出的m的值代入化简后的算式,求出算式÷的值是多少即可.解答:解:÷==∵x2+2x﹣3=0,∴(x+3)(x﹣1)=0,解得x1=﹣3,x2=1,∵m是方程x2+2x﹣3=0的根,∴m1=﹣3,m2=1,∵m+3≠0,∴m≠﹣3,∴m=1,所以原式===点评:(1)此题主要考查了分式的化简求值问题,注意化简时不能跨度太大,而缺少必要的步骤.(2)此题还考查了解一元二次方程﹣因式分解法,要熟练掌握,解答此题的关键是要明确因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.27.(2015•哈尔滨)先化简,再求代数式:(﹣)÷的值,其中x=2+tan60°,y=4sin30°.考点:分式的化简求值;特殊角的三角函数值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x与y的值代入计算即可求出值.解答:解:原式=•=,当x=2+,y=4×=2时,原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.28.(2015•广元)先化简:(﹣)÷,然后解答下列问题:(1)当x=3时,求原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?考点:分式的化简求值.分析:(1)这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分子、分母先因式分解,约分后再做减法运算;做除法时要注意先把除法运算转化为乘法运算,然后约分化为最简形式,再将x=3代入计算即可;(2)如果=1,求出x=0,此时除式=0,原式无意义,从而得出原代数式的值不能等于﹣1.解答:解:(1)(﹣)÷=[﹣]•=(﹣)•=•=.当x=3时,原式==2;(2)如果=1,那么x+1=x﹣1,解得x=0,当x=0时,除式=0,原式无意义,故原代数式的值不能等于﹣1.点评:本题考查了分式的化简求值.解这类题的关键是利用分解因式的方法化简分式,熟练掌握运算顺序与运算法则是解题的关键.29.(2015•安顺)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?考点:分式方程的应用.专题:应用题.分析:设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.解答:解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.点评:本题考查了分式方程的应用.注意,分式方程需要验根,这是易错的地方.。

初中分式及分式方程100道计算题

初中分式及分式方程100道计算题

初中分式及分式方程100道计算题分式及分式方程计算题练1.分式计算:a) $\frac{3b^2c^2a}{2a^2-6a+9-aa^2} \div (-2) \div (1)$b) $\frac{(3-x)(x+1)}{(x-3)(3+x)} \cdot \frac{-(1-x)}{(1+x)^2}$c) $\frac{4-b^2}{2+b} \div \frac{3a-9}{16a^2bc^2a}$d) $\frac{2x^2-6x+1}{4-4x+x^2} \div (x+3) \cdot 6$e) $\frac{y+1}{y-2} \div \frac{y^2-4y+3}{y^2-6y+9} \cdot 6$f) $\frac{x-y}{x-3y} \div \frac{x^2-y^2}{x^2-6xy+9y^2}$g) $\frac{a^2-2a+1}{a-1} \cdot \frac{a-2}{-(a-1)}$h) $\frac{xy-x^2}{x-y} \div \frac{xy}{x^2}$i) $\frac{x}{x-2} - \frac{x}{x+2} \div 4x$j) $(x+y) \cdot \frac{x}{x-2}$k) $\frac{3b^2}{16a} \div \frac{bc^2a}{2a^2} \cdot (-\frac{b}{2a})$l) $\frac{a^2-6a+9}{3-a} \cdot \frac{x^2y}{yz-x}$m) $\frac{4-b^2}{2+b} \div \frac{3a-9}{a^2-6a+9}$n) $\frac{x^2y}{xz(-y)} \div \frac{-xy}{yz}$o) $\frac{a^2+3}{a^2-1} - \frac{a-1}{a+1} +\frac{2b^2}{16}$p) $\frac{a-b}{a+b} - \frac{a+b}{a-b}$q) $\frac{1}{1+3x} - \frac{1-x^2}{x+1}$r) $x(1-\frac{1}{x}) + \frac{x^2-1}{x+1}$s) $\frac{3-x}{x-2} \div \frac{x+2-5}{x-2}$t) $\frac{(3x-x^3)(x-2)}{x-2} \div (x+2)$u) $\frac{1}{x-y} + \frac{1}{xy} \cdot \frac{x+y}{x+y} \div (x^2-y^2)$v) $\frac{(x+1)}{2(x-2)} \cdot \frac{x-2}{x+2} \div (4x^2-x)$2.改写:a) $\frac{3b^2c^2a}{2a^2-6a+9-aa^2} \div (-2) \div (1) =\frac{-3b^2c^2a}{2a^2-6a+9-aa^2}$b) $\frac{(3-x)(x+1)}{(x-3)(3+x)} \cdot \frac{-(1-x)}{(1+x)^2} = \frac{(x-3)(x+1)(1-x)}{(3+x)(1+x)^2}$c) $\frac{4-b^2}{2+b} \div \frac{3a-9}{16a^2bc^2a} =\frac{-2b}{a(3a-9)}$d) $\frac{2x^2-6x+1}{4-4x+x^2} \div (x+3) \cdot 6 = \frac{-6x+18}{x-3}$e) $\frac{y+1}{y-2} \div \frac{y^2-4y+3}{y^2-6y+9} \cdot 6 = \frac{2(y+1)}{(y-3)(y-1)}$f) $\frac{x-y}{x-3y} \div \frac{x^2-y^2}{x^2-6xy+9y^2} = \frac{y}{x-3y}$g) $\frac{a^2-2a+1}{a-1} \cdot \frac{a-2}{-(a-1)} = -(a-2)$h) $\frac{xy-x^2}{x-y} \div \frac{xy}{x^2} = x$i) $\frac{x}{x-2} - \frac{x}{x+2} \div 4x = \frac{2x^2-8x+1}{x(x-2)(x+2)}$j) $(x+y) \cdot \frac{x}{x-2} = \frac{x(x+y)}{x-2}$k) $\frac{3b^2}{16a} \div \frac{bc^2a}{2a^2} \cdot (-\frac{b}{2a}) = -\frac{3b^3c^2}{32a^3}$l) $\frac{a^2-6a+9}{3-a} \cdot \frac{x^2y}{yz-x} = -\frac{a-3}{y-xz} \cdot x^2y$m) $\frac{4-b^2}{2+b} \div \frac{3a-9}{a^2-6a+9} = \frac{-2b(a-3)}{(2+b)(a-3)^2}$n) $\frac{x^2y}{xz(-y)} \div \frac{-xy}{yz} = -\frac{z}{x}$o) $\frac{a^2+3}{a^2-1} - \frac{a-1}{a+1} + \frac{2b^2}{16} = \frac{4a^2b^2+2a^2+2b^2-2a}{16(a^2-1)}$p) $\frac{a-b}{a+b} - \frac{a+b}{a-b} = -\frac{4ab}{a^2-b^2}$q) $\frac{1}{1+3x} - \frac{1-x^2}{x+1} = \frac{-2x^3-3x^2-3x}{(1+3x)(x+1)(x-1)}$r) $x(1-\frac{1}{x}) + \frac{x^2-1}{x+1} = x+1$s) $\frac{3-x}{x-2} \div \frac{x+2-5}{x-2} = \frac{3-x}{x-3}$t) $\frac{(3x-x^3)(x-2)}{x-2} \div (x+2) = -(x-1)(3x-x^2)$u) $\frac{1}{x-y} + \frac{1}{xy} \cdot \frac{x+y}{x+y} \div (x^2-y^2) = \frac{2xy}{(x+y)(y-x)(x+y)}$v) $\frac{(x+1)}{2(x-2)} \cdot \frac{x-2}{x+2} \div (4x^2-x) = \frac{1}{2x(x-2)}$2.解方程⑴ $\dfrac{3x-2}{5x}=\dfrac{6}{x+2}$化简得:$3x^2+4x-8=0$,解得:$x=1$ 或 $x=-\dfrac{4}{3}$⑵ $\dfrac{x}{x-5}=\dfrac{x-2}{x-6}$化简得:$x^2-8x+12=0$,解得:$x=2$ 或 $x=6$⑶ $\dfrac{2-x}{x+1}=-2$化简得:$x^2+3x+4=0$,无实数解⑷ $\dfrac{x-1}{x-2}+3=\dfrac{x-2}{x-2}$化简得:$x=3$⑸ $\dfrac{1}{x-2}+3=\dfrac{x-2}{x-2}$化简得:$x=3$ 或 $x=4$⑹ $\dfrac{2x-4}{x-8}+\dfrac{x-5}{x-9}=\dfrac{x-8}{x-6}+\dfrac{x-6}{x-2}$化简得:$x=10$⑺ $\dfrac{2x-3}{2x-4}-\dfrac{1}{x-1}=\dfrac{2x+3}{x-3}$化简得:$x=-\dfrac{3}{2}$ 或 $x=4$⑻ $\dfrac{x-7}{x-1}+\dfrac{1}{x-2}=\dfrac{x-6}{x-2}+\dfrac{1}{x-2}$化简得:$x=3$ 或 $x=8$⑼ $\dfrac{x-1}{x-2}+3=\dfrac{x-2}{x-2}$化简得:$x=3$⑽ $\dfrac{2x-4}{x-3}-\dfrac{x-2}{x-1}=1$化简得:$x=3$ 或 $x=\dfrac{7}{3}$⑾ $\dfrac{1}{x-3}-\dfrac{1}{x-2}+1=\dfrac{3}{2-x}$化简得:$x=1$ 或 $x=4$⑿ $\dfrac{2}{x-3}=\dfrac{1}{x}$化简得:$x=6$⒀ $\dfrac{1}{x+3}+\dfrac{1}{x-3}-\dfrac{2}{x}=1$化简得:$x=2$ 或 $x=4$⒁ $\dfrac{x-1}{x+1}-\dfrac{x+2}{x-1}=\dfrac{x+3}{x+4}-\dfrac{x+4}{x+3}$化简得:$x=-\dfrac{7}{2}$⒂ $\dfrac{3}{x+1}-\dfrac{5}{x+3}=\dfrac{1}{x+3}-\dfrac{1}{x+1}$化简得:$x=-\dfrac{1}{2}$ 或 $x=-\dfrac{7}{3}$3.已知 $x+y=-4$,$xy=-12$,求$\dfrac{y+1}{x+1}+\dfrac{x+1}{y+1}$ 的值。

分式及分式方程题型汇总

分式及分式方程题型汇总

分式单元复习(一)、分式定义及有关题型一、分式的概念:例:下列各式中,是分式的是①1+x 1 ②)(21y x + ③3x ④x m -2 ⑤3-x x ⑥1394y x + ⑦πx 2、下列各式中,是分式的是 ①x 1 ②)(21y x + ③3x ④x m -2 ⑤3-x x ⑥1394y x + ⑦πy +5 3、下列各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π其中分式共有( )个。

A 、2 B 、3 C 、4 D 、5例:当x 时,分式22+-x x 有意义;当x 时,22-x 有意义。

练习:1、当x 时,分式6532+--x x x 无意义。

2.使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .1- D .1±3、分式55+x x ,当______x 时有意义。

4、当a 时,分式321+-a a 有意义. 5、当x 时,分式22+-x x 有意义。

6、当x 时,22-x 有意义。

7、当x 时,分式435x x +-的值为1;8.(辨析题)下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x+ D .2221x x + 9当x 为任意实数时,下列分式一定有意义的是( )A.23x + B.212x - C.1x D. 211x + 三、分式的值为零说明:①分式的分子的值等于零;②分母不等于零例1:若分式242+-x x 的值为0,那么x 。

例2 . 要使分式9632+--x x x 的值为0,只须( ).(A )3±=x (B )3=x (C )3-=x (D )以上答案都不对练习:1、当x 时,分式6)2)(2(2---+x x x x 的值为零。

2、若分式242+-x x 的值为0,那么x 。

3、如果分式2||55x x x-+的值为0,那么x 的值是( ) 4.分式12122++-a a a 有意义的条件是 ,分式的值等于零的条件是 。

初中分式及分式方程100道计算题

初中分式及分式方程100道计算题

初中分式及分式方程100道计算题分式及分式方程计算题练1.分式计算:a) $\frac{3b^2c^2a}{2a^2-6a+9-aa^2} ÷ \frac{-2}{16a^2ab}$b) $\frac{(x^2+2x-3)(9-x^2)}{(3-x)^2} \cdot \frac{-(1-x)^2}{x+2}$c) $\frac{1}{2x}-\frac{1}{x+y} \cdot \frac{x+y}{2x-x-y}$2.$\frac{4-b^2}{2+b^3a-9} \div \frac{4x-x^2+x}{x+3} \cdot \frac{-6}{3-x}$3.$\frac{y+1}{y-2} \div \frac{y^2-4y+3}{y-5}$4.$\frac{x-y}{x^2-y^2} \cdot \frac{1}{1-\frac{x-3y}{x^2-6xy+9y^2}}$5.$\frac{3b^2}{16a} \div \frac{bc}{2a^2} \cdot \frac{-2a}{b}$6.$\frac{x}{x-2} - \frac{x}{x+2} \div \frac{4x}{x+2}$7.$\frac{a^2-2a+1}{a-1} \cdot \frac{-a+2}{a+1}$8.$\frac{xy-x^2}{x-y} \div \frac{x}{y}$9.$\frac{10}{x-x^2} \cdot \frac{x+2}{2-x}$10.$\frac{x}{x-2} - \frac{x}{x+2} \div \frac{4x}{x+2}$11.$\frac{xy-x^2}{x-y} \cdot \frac{1}{xy}$12.$(x+y) \cdot \frac{x-1}{x+1}$13.$\frac{1}{x(1-\frac{1}{x})}+\frac{x^2-1}{x^2-1}$14.$\frac{a+3}{a-1} - \frac{a-3}{a+1} \cdot \frac{1}{a-1}$15.$\frac{2b}{a-b} \cdot \frac{a}{a-b} + \frac{a+b}{a-b}$16.$\frac{1}{2x-1} - \frac{1}{x-2} \cdot \frac{5}{x-2}$17.$\frac{x^2y}{324} \div \frac{-y(x-1)}{xz} \cdot \frac{-x}{yz}$18.$\frac{a+3}{a-1} - \frac{a-3}{a+1} \cdot \frac{1}{a-1}$19.$\frac{2b}{a-b} \cdot \frac{a}{a-b} + \frac{a+b}{a-b}$20.$\frac{1}{2x-1} - \frac{1}{x-2} \cdot \frac{5}{x-2}$21.$\frac{3b^2}{16a} \div \frac{bc}{2a^2} \cdot \frac{-2a}{b}$22.$\frac{4-b^2}{2+b^3a-9} \div \frac{4x-x^2+x}{x+3}\cdot \frac{-6}{3-x}$23.$\frac{y+1}{y-2} \div \frac{y^2-4y+3}{y-5}$24.$\frac{x-y}{x^2-y^2} \cdot \frac{1}{1-\frac{x-3y}{x^2-6xy+9y^2}}$25.$\frac{3b^2c^2a}{2a^2-6a+9-aa^2} ÷ \frac{-2}{16a^2ab}$26.$\frac{10}{x-x^2} \cdot \frac{x+2}{2-x}$27.$\frac{x}{x-3} \cdot \frac{x^2-4}{x^2} \div (1-\frac{1}{x} - \frac{1}{x-1})$28.$\frac{a+3}{a^2-1} - \frac{a-1}{a+1} + 1$29.$\frac{2b^2}{16a} \div \frac{bc}{2a^2} \cdot \frac{-2a}{b}$30.$\frac{a-b}{a+b}$31.$\frac{1}{1+x} - \frac{1-x^2}{x+1}$32.$\frac{3x}{x^3-2x} - \frac{x+2}{x^2-4}$33.$\frac{x(1-\frac{1}{x})}{x+1} + \frac{x^2-1}{x-1}$34.$\frac{3x}{x^2-4} - \frac{x+2}{x^2-4}$35.$\frac{3-x}{x-2} \div (\frac{x+2}{x-2}-\frac{5}{x-2})$36.$\frac{1}{x} + \frac{1}{y} \div \frac{x-y}{x^2-y^2}$37.$\frac{2(x+1)}{x^2-xx-2x+1} \cdot \frac{x-y}{2}$38.$\frac{1}{x} - \frac{1}{x^2-1} + \frac{1}{x^2-1} \cdot \frac{x}{x+1}$39.$\frac{1}{2x-1} - \frac{1}{x-2} \cdot \frac{5}{x-2}$2.解方程⑴ $\frac{3x-2}{5x}=\frac{4x-4}{x^2-2x}$将分式化简得到 $3(x-2)(x+1)=(4x-4)5$化简后得到 $3x^2-7x-6=0$,解得 $x=3$ 或 $x=-\frac{2}{3}$。

王老师整理分式必会题型(含答案)

王老师整理分式必会题型(含答案)

分式必会十类型题一、分式定义,注意:判别分式的依据是分母中还有字母,分母不等于零。

1、在式子yx y x x c ab y a 109,87,65,43,20,13+++π中,分式的个数是( ) A 2 B 3 C 4 D 52.下列式子:x y a y x ab x 73),(51,89,97222++-,yx 2915-中,是分式的有( ) A.1个 B.2个 C.3个 D.4个二、分式基本性质 1、填空:()yx xy ba -=---..............;2.在括号内填入适当的代数式,使下列等式成立:2xy =22()2ax y ; 322()x xy x y --=()x x y -. 3、把分式xyyx -中的x 、y 的值都扩大2倍,则分式的值( ) A 不变 B 扩大2倍 C 扩大4倍 D 缩小一半 4、已知31=b a ,分式b a b a 52-+的值为 ;5、若32,234a b c a b ca b c-+==++则=_______. 6、不改变分式52223x y x y -+的值,把分子、分母中各项系数化为整数,结果是( ) A .2154x y x y -+ B .4523x y x y -+ C .61542x y x y-+ D .121546x yx y -+三、分式无意义与有意义, 1、当x 时,分式3213+-x x 无意义;2.在分式2242x x x ---中,当x _____________时有意义.3.当x______时,分式||2xx -有意义.4.2(3)x -+-中的取值范围是___________. 5. 当x_____________时,式子23+x x ÷322--x x 有意义四、分式值为零,1、当x 时,分式392--x x 的值为0;2.使分式234x ax +-的值等于零的条件是_x________.3.在分式2242x x x ---中,当x _________时分式值为零..__01||87.42=---x x x x ,则的值为若分式五、分式约分1.约分:34522748a bx a b x , 532164abc bc a - 22923a a a ---,xx x 52522--2.分式:①223a a ++,②22a b a b --,③412()aa b -,④12x -中,最简分式有( ) A .1个 B .2个 C .3个 D .4个六、通分 1、分式222439x x x x --与的最简公分母是___ ___________.2、分式yx 21,323x y ,232xy x+的最简公分母是( ) A .xy 3 B .236y x C .666y x D .33y x3、把下列各组分式通分 (1)243,2bac bd c (2)七、分式运算 1、化简xy x x 1⋅÷的结果是( ) A 1 B xy Cx y D yx 2、22332p mn p n n m ÷⎪⎪⎭⎫⎝⎛⋅; 3、aa a -+-21422;4、112---x x x ;5、⎪⎪⎭⎫⎝⎛--÷-x y xy x x y x 2222, 6.339322++--m m m m7 、先化简,再对a 取一个你喜欢的数,代入求值.221369324a a a a a a a +--+-÷-+-.8、先化简:⎪⎭⎫ ⎝⎛--÷-aa a aa 121 并任选一个你喜欢的数a 代入求值.,412-a 21-a9、先化简,再求值:1312-÷+x x x x ,其中31+=x .10、已知220x -=,求代数式222(1)11x x x x -+-+的值.11、 先化简,再求值: 3x +3 x ·⎝⎛⎭⎫1 x -1 +1 x +1 ÷6x,其中x =3+1.12、先化简,再求值:232224xx x x x x ⎛⎫-÷ ⎪-+-⎝⎭,其中3x =.八、分式方程,易错点:分式方程检验 1、解方程: (1)256x x x x -=--. (2)21411x x x +---=1. (3)12212+=++-x x xx x ,(4)6122x x x +=-+. (5)14143=-+--x x x ,(6)22333x x x -+=--,2、已知23(1)(2)12x A Bx x x x -=+-+-+,求A ,B 的值.3、已知分式方程21x ax +-=1的解为非负数,求a 的范围.4、已知关于x 的方程12-=-+x ax 的根是正数,求a 的取值范围。

分式与分式方程练习题

分式与分式方程练习题

分式与分式方程练习题一、基础练习1. 计算下列分式的值:(a) $\frac{3}{5} + \frac{2}{5}$(b) $\frac{5}{6} - \frac{1}{3}$(c) $\frac{2}{3} \times \frac{4}{5}$(d) $\frac{7}{8} \div \frac{4}{9}$2. 将下列分数化为最简形式:(a) $\frac{9}{12}$(b) $\frac{18}{30}$(c) $\frac{24}{36}$(d) $\frac{16}{48}$3. 求下列分式的整数部分和分数部分:(a) $\frac{15}{4}$(b) $\frac{8}{3}$(c) $\frac{23}{5}$(d) $\frac{17}{6}$4. 求下列分式的倒数:(a) $\frac{4}{9}$(b) $\frac{5}{12}$(c) $\frac{7}{5}$(d) $\frac{9}{10}$5. 求下列分式的平方:(a) $\left( \frac{2}{5} \right)^2$(b) $\left( \frac{3}{4} \right)^2$(c) $\left( \frac{5}{6} \right)^2$(d) $\left( \frac{7}{8} \right)^2$二、方程练习1. 解下列分式方程:(a) $\frac{x}{3} - \frac{1}{2} = \frac{x}{4}$(b) $\frac{2}{x} + \frac{3}{4} = \frac{1}{2}$(c) $\frac{x}{6} + \frac{x-1}{3} = \frac{3}{2}$(d) $\frac{x}{5} - \frac{2x-1}{4} = \frac{x}{3} - 2$2. 解下列分式方程组:(a) $\frac{1}{x} + \frac{1}{y} = \frac{3}{4}$$\frac{1}{x} - \frac{1}{y} = \frac{1}{8}$ (b) $\frac{x+1}{2} + \frac{y-1}{3} = 1$$\frac{x-2}{4} - \frac{y+2}{2} = 2$三、应用练习1. 小明花了$\frac{3}{8}$小时的时间在写作业上,又花了$\frac{5}{12}$小时的时间在看电视上。

分式与分式方程题型分类讲义全

分式与分式方程题型分类讲义全

分式方程及其应用一、基本概念1.分式方程:分母中含有 的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以 ,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入 ,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 用换元法解分式方程的一般步骤:① 设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;② 解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③ 把辅助未知数的值代入原设中,求出原未知数的值;④ 检验作答.4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所列 ;(2)检验所求的解是否 .二、题型分类考点一:分式方程题型(一)分式方程去分母1、解分式方程22311x x x++=--时,去分母后变形为( )。

A .()()1322-=++x x B .()1322-=+-x x C .()()x x -=+-1322 D .()()1322-=+-x x 2、下列方程是分式方程的是( )A .0322=--x xB .13-=x xC .x x =1D .12=-πx 题型(二)解分式方程用常规方法解下列分式方程:25211111 332552323x x x x x x x x x -+=+==+---++();(2);();题型(三)分式方程的解1.已知方程261=311xax a x -=+-的解与方程的解相同,则a 等于( ) A .3 B .-3 C. 2 D .-22.方程13462232622+++++++x x x x x x -5=0的解是( ) A. 无解 B. 0 , 3 C. -3 D. 0, ±332+x B AA .34 B. 35 C. 41 D. 2 4(C )关于x 的方程c c x x 22+=+的两个解是c x c x 2,21==,则关于x 的方程1212-+=-+a a x x 的两个解是( )A .a a 2,B .12,1--a a C .12,-a a D . 11,-+a a a题型(四)用换元法解分式方程1.用换元法解分式方程152--x x +510102--x x =7时,如果设152--x x =y,那么原方程可化为( ) A. y+710=y B. y+71=y C. 10y+71=yD. y+10y 2=7 2.解方程 (1)06)2(5)2(2=+---x x x x ; (2)解方程x x x x 32543222+=-+.题型(五)解分式方程组1.解方程组:11131129x y x y ⎧-=⎪⎪⎨⎪⋅=⎪⎩题型(六)增根1. 若解分式方程2111x x m x x x x+-++=+产生增根,则m 的值是( ) A. --12或B. -12或C. 12或D. 12或- 2. 若方程323-=--x k x x 会产生增根,试求k 的值题型(七)求待定常数的值或取值范围1.关于x 的分式方程1131=-+-xx m 的解为正数,求m 的取值范围;2.若关于x 的分式方程的解为非负数,则a 的取值范围是( )A .a≥1B .a >1C .a≥1且a≠4D .a >1且a≠43.若分式方程xm x x -=--221无解,求m 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式单元复习(一)、分式定义及有关题型一、分式的概念:例:下列各式中,是分式的是①1+x 1 ②)(21y x + ③3x ④x m -2 ⑤3-x x ⑥1394y x + ⑦πx 2、下列各式中,是分式的是 ①x 1 ②)(21y x + ③3x ④x m -2 ⑤3-x x ⑥1394y x + ⑦πy +5 3、下列各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π其中分式共有( )个。

A 、2 B 、3 C 、4 D 、5例:当x 时,分式22+-x x 有意义;当x 时,22-x 有意义。

练习:1、当x 时,分式6532+--x x x 无意义。

2.使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .1- D .1±3、分式55+x x ,当______x 时有意义。

4、当a 时,分式321+-a a 有意义. 5、当x 时,分式22+-x x 有意义。

6、当x 时,22-x 有意义。

7、当x 时,分式435x x +-的值为1;8.(辨析题)下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x+ D .2221x x + 9当x 为任意实数时,下列分式一定有意义的是( )A.23x + B.212x - C.1x D. 211x + 三、分式的值为零说明:①分式的分子的值等于零;②分母不等于零例1:若分式242+-x x 的值为0,那么x 。

例2 . 要使分式9632+--x x x 的值为0,只须( ).(A )3±=x (B )3=x (C )3-=x (D )以上答案都不对练习:1、当x 时,分式6)2)(2(2---+x x x x 的值为零。

2、若分式242+-x x 的值为0,那么x 。

3、如果分式2||55x x x-+的值为0,那么x 的值是( ) 4.分式12122++-a a a 有意义的条件是 ,分式的值等于零的条件是 。

5.已知当2x =-时,分式ax b x -- 无意义,4x =时,此分式的值为0,则a b +的值等于( ) A .-6 B .-2 C .6 D .26.使分式x312--的值为正的条件是7.若分式9322-+a a 的值为正数,求a 的取值围 8、当x 时,分式xx --23的值为负数.9、若关于x 的方程ax=3x-5有负数解,则a 的取值围是(二)分式的基本性质及有关题型分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

1.填空:aby a xy = ; z y z y z y x +=++2)(3)(6;())0(10 53≠=a axy xy a ()1422=-+a a ()222y x y x +-=()y x -. 23x x +=()23x x +; 2:若A 、B 表示不等于0的整式,则下列各式成立的是( ). (A )M B M A B A ⋅⋅=(M 为整式) (B )MB M A B A ++=(M 为整式) (C )22B A B A = (D ))1()1(22++=x B x A B A 3、下列各式中,正确的是( )A .a m a b m b +=+B .a b a b ++=0C .1111ab b ac c --=-- D .221x y x y x y -=-+题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)y x y x 41313221+- (2)ba b a +-04.003.02.0 练习:1.不改变分式的值,把下列分式的分子、分母的系数化为整数.(1)y x y x 5.008.02.003.0+- (2)b a b a 10141534.0-+题型二:分式的符号变化:【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)y x y x --+- (2)b a a--- (3)b a---1、不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数。

①13232-+---a a a a = ②32211x x x x ++--= ③1123+---a a a = 2.(探究题)下列等式:①()a b a b c c ---=-;②x y x y x x -+-=-;③a b a b c c -++=-; ④m n m n m m---=-中,成立的是( ) A .①② B .③④ C .①③ D .②④题型三:分式的倍数变化:1、如果把分式yx x 232-中的x,y 都扩大3倍,那么分式的值 2、.如果把分式63x x y-中的x,y 都扩大10倍,那么分式的值 3、把分式22x y x y+-中的x ,y 都扩大2倍,则分式的值( ) A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍4、把分式2ab a +中的a 、b 都扩大2倍,则分式的值( C ). (A )扩大2倍 (B )扩大4倍 (C )缩小2倍 (D )不变.7、若把分式xy y x 2+中的x 和y 都扩大3倍,那么分式的值( )A 、扩大3倍B 、不变C 、缩小3倍D 、缩小6倍2、若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A 、y x 23B 、223y xC 、y x 232D 、2323y x (三)分式的运算一、分式的约分:1、 约分(1) 2912xxy (2) a b b a --22 (3) 96922+--x x x (4) ab a b a +-2222.计算:)3(3234422+•+-÷++-a a a a a a 3.计算:2222223223y x y x y x y x y x y x --+-+--+.4、化简2293m m m --的结果是( ) A 、3+m m B 、3+-m m C 、3-m m D 、m m -3 5.分式434y x a+,2411x x --,22x xy y x y -++,2222a ab ab b +-中是最简分式的有( )A .1个B .2个C .3个D .4个6、下列公式中是最简分式的是( )A .21227b a B .22()a b b a -- C .22x y x y ++ D .22x y x y -- 二、最简公分母1.在解分式方程:412--x x +2=xx 212+的过程中,去分母时,需方程两边都乘以最简公分母是___________________. 2、分式,21x xyy 51,212-的最简公分母为 。

3.计算:1123----x x x x .三.分式的计算:1、xy y y x x 222-+- 2、112---a a a3计算:(1)42232)()()(a bc ab c c b a ÷-⋅-; (2)22233)()()3(xy x y y x y x a +-÷-⋅+;(3)m n m n m n m n n m ---+-+22; (4)112---a a a ;4化简分式(﹣)÷ ,并从﹣1≤x≤3中选一个你认为合适的整数x 代入5、222222y x y xy y xy x y x -+-+--,其中0|3|)2(2=-+-y x6、b a a b a +--27、)1(111112-⎪⎭⎫ ⎝⎛-++-x x x8、111122----÷-a a a a a a 9、⎪⎭⎫ ⎝⎛---÷--225262x x x x10、4222x x x x x x ⎛⎫-÷⎪-+-⎝⎭四.求待定字母的值1. 若111312-++=--x N x M x x ,试求N M ,的值.2. 若已知132112-+=-++x x x B x A (其中A 、B 为常数),则A=__________,B=__________;3. 已知:21=-x x ,求221xx +的值.4. 若0)32(|1|2=-++-x y x ,求y x 241-的值.5.已知411=-b a ,求分式bab a b ab a ---+222的值。

6.已知13x y 1-=,求5352x xy y x xy y +---的值.10、已知n m n m -=+111,则=-nm m n 。

(一)分式方程题型分析题型一:用常规方法解分式方程【例1】解下列分式方程(1)x x 311=-; (2)0132=--x x ;(2)(3)114112=---+x x x ; (4)x x x x -+=++4535题型二:求待定字母的值1. 若关于x 的分式方程3132--=-x m x 有增根,求m 的值.2. 若分式方程122-=-+x a x 的解是正数,求a 的取值围.3.已知关于x 的方程322=-+x m x 的解是正数,则m 的取值围为 .4.若1044m x x x --=--无解,则m 的值是 ( )A. —2B. 2C. 3D. —35.在一段坡路,小明骑自行车上坡的速度为每小时v 1千米,下坡时的速度为每小时v 2千 A . 千米 B . 千米C .千米D . 无法确定6.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是_____________.7.甲打字员打9000个字所用的时间与乙打字员打7200个字所用的时间相同,已知甲、乙两人每小时共打5400个字,问甲、乙两个打字员每小时各打多少个字?8.一名同学计划步行30千米参观博物馆,因情况变化改骑自行车,且骑车的速度是步行速度的1.5倍,才能按要求提前2小时到达,求这位同学骑自行车的速度。

9.从甲地到乙地的路程是15千米,A 骑自行车从甲地到乙地先走,40分钟后,B 乘车从甲地出发,结果同时到达。

已知B 乘车速度是A 骑车速度的3倍,求两车的速度。

10.小和小王同时从学校出发去距离15千米的一书店买书,小比小王每小时多走1千米,结果比小王早到半小时,设小王每小时走x 千米,则可列出的的方程是( )A 、2115115=-+x xB 、2111515=+-x x C 、2115115=--x x D 、2111515=--x x 11、强同学借了一本书,共280页,要在两周借期读完,当他读了一半时,发现平时每天要多读21页才能在借期读完.他读了前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下列方程中,正确的是( )A 、1421140140=-+x x B 、1421280280=++x x B 、1211010=++x x D 、1421140140=++x x 12、某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走45分钟后,乙班的师生乘汽车出发,结果两班师生同时到达.已知汽车的速度是自行车速度的2.5倍,求两种车的速度各是多少?13、•市某乡积极响应党中央提出的“建设社会主义新农村”的号召,在本乡建起了农民文化活动室,现要将其装修.若甲、•乙两个装修公司合做需8天完成,需工钱8000元;若甲公司单独做6天后,剩下的由乙公司来做,还需12天完成,共需工钱7500元.若只选一个公司单独完成.从节约开始角度考虑,该乡是选甲公司还是选乙公司?请你说明理由.14、在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,•那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合做完成这项工程所需的天数.。

相关文档
最新文档