初等几何研究试卷2

合集下载

初等几何研究综合测试题(十八).doc

初等几何研究综合测试题(十八).doc

《初等几何研究》综合测试题(十八)适用专业:数学教育专业考试时间:120分钟一、选择题(本题共8小题,每小题3分,共24分)1 -卜列命题是假命题的是()A.直角的补角是直角;B.钝角的补角是锐角;C.两直线被第三条直线所截,同旁内角互补;D.过直线外的一点到直线上点的连线中,垂线段最短。

2.命题“同角的余角相等”的题设是()A.同角;B.余角;C.等角的余角;D.同角的余角3.举反例说明“一个角的余角大于这个角”是假命题,错误的是()• •A.设这个角是45°,则它的余角为45°,但45°=45°;B.设这个角为30°,则它的余角为60°,但30°<60°;C.设这个角为50°,则它的余角为40°,但50°>40°;D.设这个角为60°,则它的余角为30°,但60°>30°.4.下列说法错误的是()• •A.到已知角两边距离相等的点都在同一条直线上;B.一条直线上有一点到己知角的两边的距离相等,这条直线平分已知角;C.到已知角两边距离相等的点与角的顶点的连线平分已知角;D.已知角内有两点各自到两边的距离相等,经过这两点的直线平分已知角。

5.用反证法证明“三角形中必有一个内角不小于60° ”,先应假设这个三角形中有()A.每一个内角都小于6。

°;B.有一个内角小于60°;C.有一个内角大于60°;D.每一个内角都大于60°。

6.如图1所示,直线BD与直线CE相交于点O,且NA0E=90°,则匕A0B的余角是()A.ZBOC;B. ZAOE;C. ZAOD; D・ ZB0C 与ZEODo7.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度是()A・第一次向左拐30°,第二次向右拐30°;\B.第一次向右拐50°,第二次向左拐130° : \I珀c.第一次向右拐50°,第二次向右拐130°;D.第一次向左拐50°,第二次向左拐130°.8.如图2所示,在平行四边形ABCD中,E是AD±一点,连结CE并延长交BA的延长线于点F,则下列结论中错误的是()一力A. ZAEF=ZDEC; B・FA:CD = AE:BC;\ /\C. F A: A B = F E: E C;D. A B = A C. / \二、判断题(本题5小题,每小题2分,共10分)/ \ '1.如果两个相等的角有公共顶点,且有一条边互为反向延长线,则这两个角一定是对顶角()图22.一个角的余角的2倍和它的补角的1/2互为补角,则这个角的度数是36° o ()3.若两条直线同垂直于第三条直线,则这两条直线平行。

初等几何研究试题答案(李长明版)

初等几何研究试题答案(李长明版)

初等几何研究试题答案(I)、线段与角的相等1. O O、O Q相交于A B, O O的弦BC交O Q于E, O 02的弦BD交O0于F,求证:(1)若2 DBA2 CBA贝卩若DF二CE则 / DBA M CBA.证明:⑴连接AC AE AF、AD在O 0 中,由/ CBA W DBA得AC=AF在O O 中,由/ CBA W DBA得AE=AD由A C、B、E四点共圆得/仁/2由A D B、E四点共圆得/ 3二/4所以△ ACE^A AFD••• DF=CE(2) 由(1)得/ 仁/ 2, / 3=2 4v DF=CE• △ACE^A AFD••• AD=AE在O Q 中,由AD=AE^得/ DBA M CBA2. 在厶ABC中,AC=BC,Z ACB=90,D是AC上的一点,AE丄BD的延长线于E,又AE=1BD,2求证:BD平分/ ABC.证明:延长AE,BC交于点F7 AED "BCA =90 ADE "BDC•CBD =/CAF又7 ACF BCA = 90 AC 二BC•ACF 三BCD . AF = BD1 1又、:AE BD . AE AF2 2又ABEE _ BE■ BE平分ABF即BD平分.ABC3. 已知在凸五边形ABCDE中, / BAE=3 ,BC=CD=DE M/ BCD玄CDE=180-求证:/ BAC 2 CAD h DAE.证明:过点B 作BDL BC,交圆周于点D,连结CD ©D•••/ DBC=90, • CD 是直径,则/CAD=90证明:连接BD,得△ CBD 是等腰三角形且底角是/ CDB=[18(0-(180o — 2 - )] -2=.:丄 BDE=(180° — 2G )-O (=180O — 3«••• A B 、D E 共圆同理A C D E 共圆• h BAC h CAD h DAE4. 设H 为锐角△ ABC 的垂心,若AH 等于外接圆的半径由题,可得AH L BC, BH丄AC••• BD// AH, AD// BH二四边形ADBH是□••• AH=BD又;AH等于外接圆的半径(R)• BD=R M CD=2R•••在Rt △ BCD中,CD=2BD即/ BCD=30• / BDC=60又;/ BAC K BDC BAC M BDC=605. 在厶ABC中, / C=90,BE是/B的平分线,CD是斜边上的高,过BE CD之交点0且平行于AB的直线分别交AC BC于F、G,求证AF=CE.证明:如图;/ 1 = 2 3, / 仁/2. 2二/ 3, • GB = GO,;2 5=2 4=2 6, • CO =CE,;FG// AB,「. AF/CF二B$CG二G0CG,又;△ FCO^COG/. CO7CF=G/CG=A/CF,• CO=AF;CO=CE,\ AF=CE.6. 在厶ABC中,先作角A B的平分线,再从点C作上二角的平分线值平行线,并连结它们的交点 D E,若DE// BA,求证:△ ABC等腰.证:如图所示设AG ED的交点为Fv AD是/ A的平分线•••/仁/2T DE// AB 仁/ 3v CE// AD :丄 3二/ 5, / 4二/ 2•/仁/2二/3=Z 4=2 5则厶FAD ffi^ FCE是等腰三角形•A F=DF,EF=CF•A C=DE同理可证BC=DE•A C=BC• △ ABC是等腰三角形7. 三条中线把△ ABC分成6个三角形,若这六个三角形的内切圆中有4个相等.求证:△ ABC是正三角形.AB D C证明:•/△ AOF △ AOE △ COD △ COE △ BOF △ BOD面积都相等--S A OFE=S A OEC即: 11111 1BF X 叶一FOX 叶BO X r= CEX 叶一OE< 叶一OC X r 2 2 2 2 2 21 12 (BF+FO+BO X r= - (CE+OE+OC X r••• BF+FO+BO二CCE+OE+OC••• CE+OE+OC-OG-OI二CE+OE+OC-OL-OJ• 2DH+2BH=2FK+2CK• 2BF=2CE又F、E分别为AB AC之中点••• AB=AC同理:AB=BC故厶ABC是正三角形.8. 平行四边形被对角线分成四个三角形中,若有三个的内切圆相等证明:该四边形为菱形.C证明:又•••△ AOBA BOC、△ CODA DOA四个三角形的面积相等1 1OD DC OC r OB BC OC r2 2CD OC OD 二BC OB OCOD OC DC - OE - OG = OB OC BC - Ol - OG二2DF +2CF =2BH +2CH二2DC =2BC=DC =BC•四边形为菱形9. 凸四边形被对角线分成4个三角形,皆有相等的内切圆,求证:该四边形是菱形证明:连结O i 、O 2,分别作O i 、O 2到AC 的垂线,垂足分别为P 、M•••在厶ABC 中 ,BO 是。

精品《初等几何研究》练习题

精品《初等几何研究》练习题

《初等几何研究》作业一、填空题1、对直线a上任意两点A、B,把B以及a上与B在A同侧的点的集合称作,并记作。

2、在绝对几何中,外角定理的内容是:。

3、第四组公理由条公理组成,它们的名称分别是。

4、欧氏平行公理是:。

5、罗氏几何公理系统与欧氏几何公理系统的共同之处是,不同之处是。

6、几何证明的基本方法,从推理形式上分为法与归纳法;从思维方向上分为法与分析法;从命题结构上分为证法与间接证法,其中间接证法包括法与法。

7、过反演中心的圆,其反演图形是(过或不过)反演中心的。

8、锐角三角形的所有内接三角形中,周长最短的是三角形。

9、锡瓦定理:设⊿ABC的三边(所在直线)BC、CA、AB上分别有点X、Y、Z,则AX、BY、CZ三线共点(包括平行)的充要条件是。

10、解作图问题的常用方法有:、、、等。

11、数学公理系统的三个基本问题是性、性和性.12、对于共面的直线a和a外两点A、B,若a与(AB)相交,则称A、B在a的,否则称A、B在a的 .13、命题:“过直线外一点,至少有一条直线与已知直线共面但不相交”是定理的推论.14、证明直线和圆的连续性时,主要依据了原理.15、罗氏平行公理是: .16、在罗氏几何中,共面的两条直线有种关系,它们分别是17、几何证明的通用方法一般有法、法、法、法、法、法等.18、等边三角形外接圆周上任一点到三顶点的连线段中,最长线段与另两条线段之和具有的关系.19、尺规可作图的充要条件是 .20.由公理可以证明,线段的合同关系具有性、性、性和性.21.如果线段与角对应,那么线段的中点与角的对应.22.命题:“线段小于任意一条连接其两个端点的折线”是定理的推论.23.绝对几何包括有组公理,它们分别是 .24.写出一条与欧氏平行公理等价的命题: .25.在罗氏几何中,两条直线为分散线的充要条件是 .26、.常用的几何变换有等27.托勒密定理:四边形ABCD是圆内接四边形,则 .28.请写出两条作图公法: .29.在希尔伯特给出的欧几里得公理系统中,三角形的定义是:。

初等几何研究答案

初等几何研究答案

《初等几何研究》作业一、填空题1、对直线a 上任意两点A 、B ,把B 以及a 上与B 在A 同侧的点的集合称作 射线(或半直线),; ,并记作 AB 。

2、在绝对几何中,外角定理的内容是: 三角形的外角大于任一不相邻的内角 。

3、第四组公理由 两 条公理组成,它们的名称分别是 度量公理(或阿基米德公理)和康托儿公理 。

4、欧氏平行公理是:对任意直线a 及其外一点A ,在a 和A 决定的平面上,至多有一条过A 与a 不相交的直线 。

5、罗氏几何公理系统与欧氏几何公理系统的共同之处是 前4组公理(或绝对几何) ,不同之处是 平行公理 。

6、几何证明的基本方法,从推理形式上分为 演绎 法与归纳法;从思维方向上分为 综合 法与分析法;从命题结构上分为 直接 证法与间接证法,其中间接证法包括 反证 法与 同一 法。

7、过反演中心的圆,其反演图形是 不过 (过或不过)反演中心的 直线 。

8、锐角三角形的所有内接三角形中,周长最短的是 垂足三角形。

9、锡瓦定理:设⊿ABC 的三边(所在直线)BC 、CA 、AB 上分别有点X 、Y 、Z ,则AX 、BY 、CZ 三线共点(包括平行)的充要条件是1=⋅⋅ZBAZYA CY XC BX 。

10、解作图问题的常用方法有: 交轨法 、三角奠基法、 代数法 、 变换法 等。

11、数学公理系统的三个基本问题是 相容性、 独立性和 完备 性.33.①答案不惟一.34.①(0,+∞),②,(0,π/2),③连续,④单调递减. 35.①平移,②旋转,③轴对称.36. ①1=⋅⋅ZB AZYA CY XC BX (或-1)37.①写出已知与求作,②分析,③作法,④证明,⑤讨论.12、对于共面的直线a和a外两点A、B,若a与(AB)相交,则称A、B在a的异侧,否则称A、B在a的同侧.13、命题:“过直线外一点,至少有一条直线与已知直线共面但不相交”是外角定理的推论.14、证明直线和圆的连续性时,主要依据了戴德金分割原理.15、罗氏平行公理是:对任意直线a及其外一点A,在a和A决定的平面上,至多有一条过A与a不相交的直线.,16、在罗氏几何中,共面的两条直线有3种关系,它们分别是平行,相交,分散.17、几何证明的通用方法一般有化归法、类比法、构造法、数形结合法、变换法、模型法等.18、等边三角形外接圆周上任一点到三顶点的连线段中,最长线段与另两条线段之和具有相等的关系.19、尺规可作图的充要条件是所求的量可用已知量的有理式或只含平方根的无理式表出.20.由公理可以证明,线段的合同关系具有反身性、对称性、传递性和可加性.21.如果线段与角对应,那么线段的中点与角的角平分线对应.22.命题:“线段小于任意一条连接其两个端点的折线”是外角定理的推论.23.绝对几何包括有四组公理,它们分别是结合公理、顺序公理、合同公理、连续公理. 24.写出一条与欧氏平行公理等价的命题:.25.在罗氏几何中,两条直线为分散线的充要条件是.26、.常用的几何变换有合同变换、相似变换、射影变换、反演变换等27.托勒密定理:四边形ABCD是圆内接四边形,则1=⋅⋅ZBAZYACYXCBX(或-1).28.请写出两条作图公法:过两点可作一条直线(或其部分)。

初等几何研究期末试卷

初等几何研究期末试卷

试卷
秋季学期 考试时间: 120 分钟
课程名称 初等几何研究 A 卷□ B
一、证明题(每题10 分,共50分)
1 证明:有七条棱的多面体不存在。

2.rh
R
r
h R r 211,2
2
=
-
,证明:
高为底半径为的球作一外切圆锥,其
半径为
3.已知空间四边形OABC ,OA=OB ,CA=CB ,E ,F ,H ,G 分别为线段OA ,OB ,CA ,CB 的中点,证明:四边形EFHG 为矩形。

4.证明:除四面体外,不存在任何一个凸多面体它每个顶点和其余各顶点都有边相连.
5.证明四面体中,一个二面角的平分面将对棱所分成两线段的比等于夹这二面角的两个面的面积之比。

青岛大学师范学院_______课试卷
………………………………………………装………………订………………线………………………………………………
系:班级_____ 姓名______ 学号_______
密 封 线 ———————————————————————————————————————————————————
二、计算题(每题10 分,共50分)
1 设一线段在互垂三平面上的射影分别为r1,r2,r3,求这线段的长。

2.利用“分割,近似,求和,取极限”的方法求球的表面积公式。

3.一平面截球面所得二部分的面积之差等于截面面积,求平面与球心的距离。

4.设四面体的三侧面积相等为S,求从底面上任意一点到三侧面的距离之和。

5.在定三角形ABC的边BC上求一点,从这点引其余二边的平行线,使与余二边交成的平行四边形的周长为定长。

初等几何研究综合测试题(十六)

初等几何研究综合测试题(十六)

《初等几何研究》综合测试题(十六)适用专业:数学教育专业 考试时间:120分钟一、选择题(本题共8小题,每小题3分,共24分)1.已知ABCD 为平行四边形,下列判断正确的是__________。

A.若∠A=90°,则ABCD 为正方形;B.若AB=BC ,则ABCD 为菱形;C.对角线互相平分垂直;D.以上都不对。

2. 下列判断正确的是_________。

A.任意两个等腰三角形都相似;B.任意两个直角三角形都相似; C .有一个角相等且有两边对应成比例的两个三角形都相似; D.任意两个等腰直角三角形都相似。

3.如图,Rt AB C 中,CD 是斜边AB 上的高,DE ⊥AC 于E,AC:CB=4:5,则AE:EC 等于_______。

A.4:5;C.16:25;D.以上都不对。

4.等腰三角形一腰上的高与底边所成的角等于__________。

A.顶角的一半;B.底角的一半; C.90°减去顶角的一半;D. 90°减去底角的一半。

5.如图,圆锥的底面半径OA=3cm ,高SO=4cm ,则它的侧面积 为__________2cm .A.12π;B.15π;C.16π;D.20π.6. 6.下列命题中能用来判断一条线段是半径的命题是__________。

A.过圆心且垂直于切线的直线必经过切点;B.过切点且垂直于切线的直线必经过圆心;C.圆的切线垂直于过切点的半径;D.过半径的外端且垂直于这条半径的直线是圆的切线。

7.下列图形中,不一定为轴对称图形的是_________。

A.直角;B.线段;C.直角三角形;D.等腰直角三角形。

8.如图,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在_________。

A.在AC 、BC 两边高线的交点处; B.在AC 、BC 两边中线的交点处;C.在AC 、BC 两边垂直平分线的交点处;D.在∠A 、∠B 两内角平分线的交点处。

初等几何研究习题2(李长明版)

初等几何研究习题2(李长明版)

汕头职业技术学院初等几何研究习题课数学教育(师范类)1. I是△ABC的内心,AI、BI、CI的延长线分别交△ABC的外接圆于D、E、F求证:EF⊥AD。

D AB C EFI 五、关于平行与垂直2. A、B、C、D在圆周上相继的四点,P、Q、R、S分别是弧AB、BC、、CD、DA的中点,求证:PR⊥QS。

ACBP QDRS3. 凸四边形ABCD的每条对角线皆平分它的面积,求证:ABCD是平行四边形。

A BDC4. 已知:△BCX 和△DAY 是□ABCD 外的等边三角形,E 、F 、G 、H 是YA 、AB 、XC 、CD 的中点。

求证:EFGH 是平行四边形。

ABXD C YE F GH5. 在△ABC的各边上向外作正方形BCDE、CAFG、ABHI,其中心依次为O1、O2、O3求证:AO1⊥O2O3。

AO1O2BCO36. 在正方形ABCD 内任取一点E ,连接AE 、BE ,在△ABE 外以AE 、BE 为边作正方形AEMN 和EBFG ,连NC 、AF 。

求证:NC∥AF 。

A BCD E MNFG7. 以□ABCD的对角线AC为一边的两侧各作一个正三角形ACP、ACQ。

求证:BPDQ是□。

ABPDCQ8. 已知:凸五边形的四条边平行于所对的对角线。

求证:第五边也平行于所对的对角线。

CA B DE9.在△ABC中,∠B≠90°,BC边的垂直平分线交AB于D,△ABC的外接圆在A、C两点之切线交于E.求证:DE∥BC.AD EB C10.P 是正方形ABCD 的边CD 上的一点,过D 作AP 的垂线分别交AP 、BC 于Q 、R ,O 是正方形的中心.求证:OP ⊥OR.ABCDOPR12. 给定正方形ABCD ,P 、Q 分别人为AB 、BC 上的点,满足BP=BQ ,自B 作BH ⊥PC 于H ,求证:∠DHQ=900.ABCDO PHQ13. 在△ABC中,AB=AC,O为外心,D为AB的中点,E是△ACD的重心。

初等几何研究试题

初等几何研究试题

初等几何研究试题一、选择题 (5分⨯4=20分)1. 如图,CD EF AB ||||,已知20=AB ,,80=CD 100=BC 那么,EF 的值是____. A. 10, B.12, C.16, D.20第1题图 第2题图 2. 如图,在ABC ∆中,P 是AC 上的点,取BP 的中点Q ,连结CQ 并延长与AB 交于D ,则ABP S ∆与ACD S ∆的关系是_____.A. ABP ACD S S ∆∆<B. ABP ACD S S ∆∆=C. ABP ACD S S ∆∆>D. 不能确定.3. 如图,在ABC ∆中,BE 、CF 分别是AC 、AB 边上的高,o A 45=∠,那么,FBCE AEF S S :=______.A 1:1B 2:1C 3:1D 4:1第3题图 第4题图4. 如图,ABCD 是面积为1的正方形,PCB ∆是正三角形,PBD ∆的面积为_____.A.213- B. 8132- C. 43D. 413-二、填空题 (5分⨯4=20分)1.如图,已知正方形ABCD 的边长为1,E 为AD 的中点,P 为CE 的中点,F 为BP 的中点,则BFD S =_____.第1题图 第2题图 2.如图,AB 是圆O 直径,4=AB ,弦3=BC ,ABC ∠的平分线交半圆于D ,BC AD ,的延长线交于E ,DCE ABCD S S :=______.3.已知圆O 是ABC ∆的外接圆,半径为r ,CO BO AO ,,分别交对边于F E D ,,, 则:CF BE AD 111++=______.(用r 表示)4.ABC ∆的三条高分别为c b a h h h ,,,又ABC ∆内任一点P 到三边距离分别为c b a p p p ,,,则=++c c b b a a h p h p h p ______.三、证明题(12分⨯5=60分)1. 在ABC ∆中,过点A 作直线BC l ||,B ∠的平分线交AC 于D ,交直线l 于E ,C ∠的平分线交AB 于F ,交直线l 于G ,且FG DE =,求证: ABC ∆是等腰三角形.2.M是以AB为直径的上不同于BA、的任一点,C是直径AB上的定点,过M作CM 垂直的直线交过处BD、,求证:A、的切线于E(1)ED,成等比数列;BM,EC(2)BEAD⋅是定值.3.三条中线把ABC∆分成6个三角形,若这6个三角开的内切圆中有4个相等,求ABC∆是正三角形.4.从等腰ABC ∆的底边AC 上的中点M 作BC 边的垂线MH ,点P 为线段MH 的中点,求证:BP AH ⊥.5.已知: ABC ∆内接于圆O ,N M L ,,分别是弧AB CA BC ,,的中点,连结LM NM ,分别交BC AB ,于E D ,;I 是ABC ∆的内心,求证: (1)BC DE ||;(2)IE DI DE +=.。

201011120专科初等几何研究复习题

201011120专科初等几何研究复习题

除书上的例题外,下例复习题希望大家认真完成一、两条线段相等的证明方法证明这类问题,常用如下的思考方法:1.证其为两个全等三角形的对应边.若无现成的全等三角形可用,则可添加辅助线,构造出需要的全等三角形.2.证其为等腰三角形的两腰,如无现成的等腰三角形可用,则可添加辅助线造成必要的等腰三角形.3.证其为平行四边形中有关相等的线段,有时也要利用辅助线作成平行四边形.4.证其为同圆或等圆中的有关相等的线段.5.利用三角形中位线或梯形中位线的性质.6.利用相似形.7.利用等量的传递性等等.二、线段与角不等的证明方法要证明两条线段或两个角不等,一般利用已有的线段或角的不等关系定理,或应用不等量公理.如果不好直接利用,那么可以作辅助图形,创造出能够利用已知不等定理和公理的条件,再加以证明.常用的定理有:1.三角形两边之和大于第三边,两边之差小于第三边.2.在一个三角形中,大边所对的角较大,反之大角所对的边较大.3.从直线外一点连结直线上所有各点的线段中,以垂直线段为最短.且斜线长者,其射影较长,反之射影长者,斜线较长.4.在两个三角形中,如果两边对应相等,则其夹角大者,第三边大,反之第三边大者,其夹角大.5.三角形的外角大于不相邻的内对角.6.在同圆或等圆中,关于弦、弧、弦心距、圆心角、圆周角比较大小的有关性质等等.行线的证明方法证明两条直线平行,常常利用下述定理进行思考.1.两条直线被第三条直线所截:(1)同位角相等,则两条直线平行;(2)内错角相等,则两条直线平行;(3)同旁内角互补,则两条直线平行.2.平行于同一条直线的两条直线平行.3.垂直于同一条直线的两条直线平行.4.平行四边形的对边平行.5.三角形的中位线与底边平行.6.梯形中位线与两底平行.7.利用比例线段.即如果在图1-30(1)~(4)中AB∥CD,共点线的证明方法所谓共点线就是指这些直线通过同一点.要证明三线共点,常常采用以下方法思考.1.证直线a、b、c共点,可先确定a、b交于一点P,然后在直线c上取两点Q、R,证明P、Q、R共线.这样就把共点线问题转化为共线点问题来解决了.2.证直线a、b、c共点,可先证a、b交于某点P,然后将P与c上一点Q连结,证明PQ与c 重合.3.证明若干条直线共点,可证它们都通过某一特殊点.4.应用已知共点线定理等等.直角三角形的解法因为直角三角形中有一个是直角,例如△ABC中,C=90°,角A、B、C的对边分别是a、b、c.那么利用以下关系式:1.A+B=90°;2.a2+b2=c2;3.a=csinA=ccosB=b·tgA;4.b=ccosA=csinB=actgA.可分四种情况来解直角三角形.1.已知斜边和一锐角;2.已知一条直角边和一锐角;3.已知一斜边和一直角边;4.已知两条直角边.一、概念1、定义9.1.1若一图形上的各点都具有某种性质,同时具有该性质的点又都在该图形上,则称此图形为具有该性质的点的轨迹。

初等几何研究试题答案(2)李长明版

初等几何研究试题答案(2)李长明版

初等几何研究试题答案(II )二、关于和、差、倍、分线段(角)1、 等腰ABC 中,0100,A B ∠=∠的平分线交AC 于D ,证明:BD+AD=BC 。

D 'BCA4321证:在BC 上取点D ,,使BD ,=BD,连结DD ,0100A ∠=且BD 平分∠ABC00120,40C ∴∠=∠=又BD=BD ,,0380∴∠=,23C ∠+∠=∠0240∴∠=即2C ∠=∠ ,,CD DD ∴=又03180A ∠+∠=∴点A 、D 、D ,、B 四点共圆且14∠=∠∴DD,=ADBC=BD,+CD ,=BD+AD已知,ABCD 是矩形,BC=3AB,P 、Q 位于BC 上,且BP=PQ=QC, 求证:∠DBC +∠DPC=∠DQC解:作矩形BCEF 与矩形ABCD 相等,在EF 上选取点O 使得FO=2EO.连结BO 、DO 。

由图可知,由BO=DO ,且有△BF O ≌△OED,∵∠FBO+∠BOF=90º ∠BOF=∠DOE ∴∠BOF+∠DOE=90º ∴∠BOD=90º △BOD 为等腰直角三角形 有∠DBO=45º ∴∠DBP+∠QBO=45º ∵∠DPC=∠QBO ∴∠DBP+∠DPC=45º ∵△DQC 为等腰直角三角形∴有∠DQC=45º 因此,有∠DBP+∠DPC=∠DQCP QAB CF EO P D3、圆内接四边形ABCD 的对角线AC 、BD 交于X ,由X 向AB 、BC 、CD 和DA 作垂线,垂足分别为A ´、B ´、C ´和D ´. 求证:A ´B ´+C ´D ´=B ´C ´+D ´A ´证明:(方法一)∵X 、A ´、A 、D ´四点共圆(对角和180°) ∴∠XA ´D ´=∠XAD ´又∵∠XAD ´=∠XBC(圆周角)同理∠XA ´B ´=∠XBC,即∠XA ´D ´=∠XA ´B ´ 同理可得∠XB ´A ´=∠XB ´C ´,∠XC ´B ´=∠XC ´D ´, ∠XD ´C ´=∠XD ´A ´∴X 是四边形A ´B ´C ´D ´的内心。

初等几何研究模拟卷2答案

初等几何研究模拟卷2答案

华东师大网络学院考卷《初等几何研究》模拟考卷2答案课程名称:__初等几何研究_______ 学生姓名:___________________ 学号:___________________ 专业:___________________…………………………………………………………………………………………一、(10分)叙述非欧几何的Poincare上半平面模型,并说明在Poincare上半平面模型中欧氏几何的平行公理不成立。

答:见讲义第一章第三节Poincare上半平面模型的介绍.,,,,,,,1X Y Z ABC BC CA AB X Y ZBX CY AZXC YA ZB=-二.(10分)设是三边或其延长线上的点求证三点共线的充分必要条件是B(),,,,//,,,, 1.X Y Z C CD XYZ AB DBX BZ CY DZXC ZD YA ZABX CY AZ BZ DZ AZXC YA ZB ZD ZA ZB⇒====-证明必要性如左图设共线过作交于则所以111111,(), 1, 1, ,,,,.Z Y BC X BX CY AZ BX CY AZX C YA ZB XC YA ZBBX BX X X X X Y Z X C XC⇐=-=-= 充分性 ()(同一法):如右图,连接并延长交或其延长线于由已证的必要性可知又由已知故所以和重合由点的唯一性可知共线() (10) ,,,,,,,,,:1(1);21(2).2ABC O A O X Y X XE AB XF AC Y YM AB YN AC BXE CXF B C YBC YCB B C ∠⊥⊥⊥⊥∠=∠=∠-∠∠=∠=∠+∠ 三分如图所示已知内接于的内外角平分线分别交于过作过作求证证明:见讲义第二章第二节例8.2.(10) (),.O R S S R π=四分设圆的面积为则 12121212222 , ()..., (), .2 ,12 sin 21212lim lim sin lim 22 n n n n n n n n O R n A A A S O R S S S AOA OA OA R AOA nS n R n S S n R n R n n ππππ→∞→∞→∞<==∠=⎛⎫= ⎪⎝⎭⎛⎫⎛⎫∴=== ⎪ ⎪⎝⎭⎝⎭证明如图所示设圆内接正边形的面积为圆的面积为则在中,2R π=P.(10) ,,,,,.A B a b αα五分某人在海岸上望见海中两浮标在一条直线上并与海岸线成一角度当沿海岸向前走一距离以及再向前走一距离时对两浮标张成的视角都为沿海岸为一直线,海水高度不变,试求两浮标间的距离.,,,,, ()() (1) A B D C AB x PA y y y x a a b BCD BAD BPD PDA ==+=+∠=∠=∠+∠ 解 题设四点共圆.(如图)设,则由割线定理,得22 , (2)PDA BDCBC BD BC BD α=+∠=∠∴==222222, ()2()cos (3),, ()()2()()cos (4)(3)(4)PBC BC x y a a x y PBD BD x y a b x y a b αα=++-+=+++-++ 在中由余弦定理,得在中由余弦定理得把和同时代(2),2 (5)2cos (5)(1),2()cos =2a bx y a a b y a bαα++=++入整理得代入得(6)(6)(5),2()cos ()ec 22b a a b x a s a b αα+=+-+代入可得两浮标间距离F(10) ,,,',',',,,,',','ABC BC CA AB D D E E F F AD BF CF AD BE CF 六分一圆交的各边或其延长线于两点假设直线上的交点各是与与与若三线共点则三线共点或相互平行.证明:见讲义第二章第三节例12..(10),,,,,1,2ABC AB AC ABDE ACFG AH BC H HA EG P EP PG AP BC⊥== 七分在的边上,各向形外作正方形又作于的延长线交于求证:且90' ',' ','180.'90, ABC A AC E EC BC AC AC AGC ACB C AG C ACB CAH GAP ===∠=∠∠=∠=∠=-∠=∠证明 如图,把绕点按顺时针方向旋转,落于位置,则有 //' .11''22AP C EEP PG AP GC E AP EC BC∴== 从而故知为的中位线,有=八(15分) 两个位似变换的乘积, 是一个位似变换或是一个平移.111222(,)(,),H O k H O k 设两个位似变换是和可分以下三种情况讨论:12222111312(1) (,)(,)(,).O O OH O k H O k H O k k = 当和是同一点1212222111212(2)1,(,)(,),(1-);O O k k H O k H O k k O O =当和是不同一点,且时则是一个平移其平移向量是 121222211112121221221(3)1,(,)(,),,,1:.(1)O O k k H O k H O k k k O O O O O O k O O OO k k ≠-=- 当和是不同一点,且时则是一个位似变换位似比是位似中心在线段上且点分线段的比为证明:见第四章第三节位似变换的性质6.九、(15分) 用实数模型证明欧氏平行公理 对于任何直线a 和不在其上的任何点A ,至多有一条直线过A ,而且与直线a 共面,但不相交。

初等几何研究作业参考答案

初等几何研究作业参考答案

《初等几何研究》作业参考答案一.填空题1.①射线(或半直线),②。

2. ①两,②度量公理(或阿基米德公理)和康托儿公理。

3.①前4组公理(或绝对几何),②平行公理。

4.①平移,②旋转,③轴对称. 5.1=⋅⋅ZBAZYA CY XC BX 。

6.①交轨法,②三角奠基法,③代数法,④变换法。

7.①反身性、②对称性、③传递性、④可加性. 8.外角. 9.答案不惟一.10.①演绎,②综合,③直接,④反证,⑤同一; 11.1=⋅⋅ZBAZYA CY XC BX .(答-1也对) 12. ①过两点可作一条直线(或其部分),②已知圆心和半径可作一圆(或其部分). 13.①不共线的三点A 、B 、C 及(AB)、(BC)、(CA)构成的点的集合。

14.连续. 15.答案不惟一. 16.①不过,②圆.17.1=⋅⋅ZB AZYA CY XC BX (或-1).18.①写出已知与求作,②分析,③作法,④证明,⑤讨论. 19.①相容,②独立,③完备.20.合同变换、相似变换、射影变换、反演变换等21.对任意直线a 及其外一点A ,在a 和A 决定的平面上,至少有两条过A 与a 不相交的直线. 22.①代数,②解析,③三角,④面积,⑤复数,⑥向量. 23.相等。

24.所求的量可用已知量的有理式或只含平方根的无理式表出. 二.问答题1.对于公理系统∑,若有一组具体事物M ,其性质是已知的,在规定∑中每一个基本概念指M 中某一具体事物后,可验证∑中每个公理在M 中都成立,则称M 为公理系统∑的一个模型;2.①若AB ≡B A '',则d(AB)=d(B A '');②当C BA ˆ时,有d(AB)+d(BC)=d(AC).3.命题“三角形的内角和不大于两个直角” 与欧氏平行公理不等价。

4.结合,介于,合同;结合——即有公共点,介于——即在…之间,合同——相等或完全相等. 5.长度、角度、相等、全等、运动、移置、叠合、重合等.6.由第五公设引出了该公理独立性的问题,对该问题的研究导致了非欧几何等结果的产生. 7.通常用“在……上”、“属于”、“通过”等语句来表述。

初等几何研究期末试题及答案

初等几何研究期末试题及答案

初等几何研究期末试题及答案第一题:已知四边形ABCD中,AB = 6cm,BC = 8cm,∠ABC = 90°,角ADC的度数为60°。

求四边形ABCD的面积。

解析:由题意可知,四边形ABCD为一个平行四边形,且∠ABC = 90°,∠ADC = 60°。

首先,我们可以使用正弦定理求得∠BAC的度数。

根据正弦定理可以得到:sin∠BAC/AB = sin∠ABC/ACsin∠BAC/6 = sin90°/ACsin∠BAC/6 = 1/ACAC = 6/sin∠BAC接下来,我们可以使用余弦定理求得AC的长度。

根据余弦定理可以得到:AC² = AB² + BC² - 2AB·BC·cos∠ABCAC² = 6² + 8² - 2·6·8·cos90°AC² = 100AC = √100AC = 10再次,我们可以使用正弦定理求得AD的长度。

根据正弦定理可以得到:sin∠ADC/AC = sin∠CAD/ADsin60°/10 = sin∠CAD/AD√3/10 = sin∠CAD/ADAD = 10sin∠CAD/√3最后,我们可以计算四边形ABCD的面积。

四边形ABCD可以分成两个三角形,即△ABC和△ACD。

面积公式为:四边形ABCD的面积 = △ABC的面积 + △ACD的面积= (1/2)·AB·AC + (1/2)·AC·AD= (1/2)·6·10 + (1/2)·10·10sin∠CAD/√3= 30 + 50sin∠CAD/√3综上所述,四边形ABCD的面积为30 + 50sin∠CAD/√3。

第二题:已知直角三角形ABC,其中∠B = 90°,AB = 5cm,AC = 12cm。

2018-2019-初等数学研究李长明-推荐word版 (9页)

2018-2019-初等数学研究李长明-推荐word版 (9页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==初等数学研究李长明篇一:初等数学研究(李长明周焕山编) p494第7题,p497第3题,p498第9题答案初等数学研究(李长明周焕山编) p494第7题,p497第3题,p498第9题答案7.在直角梯形ABCD中,AB是垂直二底的腰,另一腰切以AB为直径之圆于E,过E作底的平行线交AB于F,求证:AC平分EF.证明: ∠DAB=∠ABC=90°, 圆O以AB为直径, ∴AD,BC均与圆O相切; 又圆O与CD相切于E, ∴AD=ED;EC=BC;又AD∥EF∥BC,∴FG/BC=AF/AB=DE/DC=AD/DC=EG/EC=EG/BC.∴EG=FG .即AC平分EF.3.凸四边形ABCD的每条对角线皆平分它的面积.求证:ABCD是平行四边形证明:作AE⊥BD于E,CF⊥BD于F,BM⊥AC于M,DN⊥AC于N.BD平分凸四边形ABCD的面积,∴12BD?AE=12BD?CF?AE=CF.又∠AEO=∠CFO=90?,∠AOE=COF(对顶角相等).??AEO??CFO∴AO=CO,同理易证得:BO=DO.?凸四边形ABCD是平行四边形.(对角线互相平分)9.在?ABC中,∠B≠90,BC边的垂直平分线交求证:DE//BC.?AB于D,?ABC的外接圆在A,C两点之切线交于E.证明:连结OA,OC,CD. AE,CE是圆O的切线,∴∠OAE=∠OCE=90?.∴BD=CD.∴∠DBC=∠DCB.2倍),∠BDC=180?-∠DCB-∠DBC.=∠ACE.(同弧弦切角等于圆周角∴∠AOC+∠AEC=180?. DM是BC的垂直平分线又∠AOC=2∠ABC.(同弧圆心角是圆周角的∴∠ACE=∠ADE.(同弧圆周角相等∴∠ADE=∠ABC.∴DE//BC∴∠BDC=180?-2∠DBC=180?-∠AOC=∠AEC.∴A,D,C,E四点共圆.),∠ABC)篇二:初等几何研究试题答案(1)(李长明版)初等几何研究试题答案(I)一、线段与角的相等1. ⊙O1、⊙O2相交于A、B,⊙O1的弦BC交⊙O2于E,⊙O2的弦BD交⊙O1于F, 求证: (1)若∠DBA=∠CBA,则DF=CE; (2) 若DF=CE,则∠DBA=∠CBA.证明:(1)连接AC、AE、AF、AD在⊙O1中,由∠CBA=∠DBA得AC=AF在⊙O2中,由∠CBA=∠DBA得AE=AD由A、C、B、E四点共圆得∠1=∠2由A、D、B、E四点共圆得∠3=∠4所以△ACE≌△AFD∴DF=CE(2)由(1)得∠1=∠2,∠3=∠4∵DF=CE∴△ACE≌△AFD∴AD=AE在⊙O2中,由AD=AE可得∠DBA=∠CBA2. 在△ABC中,AC=BC,∠ACB=90O ,D是AC上的一点,AE⊥BD的延长线于E,又AE=BD, 求证:BD平分∠ABC.12证明:延长AE,BC交于点F∠AED=∠BCA=90? ∠ADE=∠BDC∴∠CBD=∠CAF又∠ACF=∠BCA=90? AC=BC∴?ACF??BCD∴AF=BD11BD∴AE=AF22又ABEE⊥BE又AE=∴BE平分∠ABF即BD平分∠ABC3. 已知在凸五边形ABCDE中,∠BAE=3α,BC=CD=DE,且∠BCD=∠CDE=180o-2α,求证:∠BAC=∠CAD=∠DAE.证明:连接BD,得ΔCBD是等腰三角形且底角是∠CDB=[180o-(180o-2α)]÷2=α. ∴∠BDE=(180°-2α)-α=180o -3α ∴A、B、D、E共圆同理A、C、D、E共圆∴∠BAC=∠CAD=∠DAE4. 设H为锐角△ABC的垂心,若AH等于外接圆的半径. 求证:∠BAC=60o证明:过点B作BD⊥BC,交圆周于点D,连结CD、ADC ∵∠DBC=90o, ∴CD是直径,则∠CAD=90o由题,可得AH⊥BC, BH⊥AC∴BD∥AH, AD∥BH∴四边形ADBH是□ ∴AH=BD又∵AH等于外接圆的半径(R) ∴BD=R,而CD=2R ∴在Rt△BCD中,CD=2BD,即∠BCD=30o ∴∠BDC=60o又∵∠BAC=∠BDC∴∠BAC=∠BDC=60o5. 在△ABC中,∠C=90o,BE是∠B的平分线,CD是斜边上的高,过BE、CD之交点O且平行于AB的直线分别交AC、BC于F、G,求证AF=CE.证明:如图∵∠1=∠3,∠1=∠2.∴∠2=∠3,∴GB = GO, ∵ ∠5=∠4=∠6,∴CO =CE,∵ FG∥AB,∴AF/CF=BG/CG=GO/CG, 又∵△FCO∽△COG,∴CO/CF=GO/CG=AF /CF, ∴CO=AF,∵CO=CE,∴AF=CE.6. 在△ABC中,先作角A、B的平分线,再从点C作上二角的平分线值平行线,并连结它们的交点D、E,若DE∥BA,求证:△ABC等腰.证:如图所示设AC、ED的交点为F∵AD是∠A的平分线∴∠1=∠2 ∵DE∥AB ∴∠1=∠3∵CE∥AD ∴∠3=∠5, ∠4=∠2 ∴∠1=∠2=∠3=∠4=∠5 则△FAD和△FCE是等腰三角形∴AF=DF,EF=CF ∴AC=DE同理可证BC=DE ∴AC=BC∴△ABC是等腰三角形篇三:初等数学研究课后习题答案初等代数研究课后习题201X1115033数学院07(1)杨明1、证明自然数的顺序关系具有对逆性与全序性,即(1)对任何a,b∈N,当且仅当a<b时,b>a.(2))对任何a,b∈N,在a<b,a=b,a>b中有且只有一个成立.证明:对任何a,b∈N,设A=a,B=b,,,(1)“?” a<b,则?B?B,使A~B,∴B?B~A,∴b>a ==,,,“?” b>a,则?B?B,使B~A,∴A~B?B,∴a<b综上对任何a,b∈N,a<b?b>a(2)由(1)a<b?b>a ∴a<b与a>b不可能同时成立,,,假设∴a<b与a=b同时成立,则?B?B,使A~B且A~B,∴B~B,与B为有限集矛盾,∴a<b与a=b不可能同时成立,综上,对任何a,b∈N,在a<b,a=b,a>b中有且只有一个成立..2、证明自然数的加法满足交换律.证明:对任何a,b∈N设M为使等式a+b=b+a成立的所有b组成的集合先证 a+1=1+a,设满足此式的a组成集合k,显然有1+1=1+1成立∴1∈k≠φ,设a∈k,a+1=1+a,则a++1=(a+)+=(a+1)+=(1+a)+=1+a++∴a∈k,∴k=N,取定a,则1∈M≠φ,设b∈M,a+b=b+a,则a+b=(a+b)+++ =(b+a)=b+ + a∴b+∈M,∴M=N∴ 对任何a,b∈N,a+b=b+a3、证明自然数的乘法是唯一存在的证明:唯一性:取定a,反证:假设至少有两个对应关系f,g,对?b∈N,有∈) f(b),g(bN,设M是由使f(b)=g(b)成立的所有的b组成的集合,f(b)=g(b)=a?1 ∴1∈M≠φ设b∈N则f(b)=g(b)∴f(b)+a=g(b)+a∴f(b+)=g(b+),∴b+∈M,∴M=N 即?b∈N,f(b)=g(b)乘法是唯一的存在性:设乘法存在的所有a组成集合K 当a=1时,?b∈N,1?1=1,1?b+=b+=b+1=1?b+1∴1∈k≠φ,设a∈K,?b∈N,有a,b与它对应,且1?a=a,ab=ab+a,对?b∈N,令ab=ab+b ++a+?1=a?1+1=a+1=a+a+b+=ab++b+=ab+a+b+1=(ab+b)+(a+1)=a+b+a+∴a+∈K ∴K=N 即乘法存在p24—5、解:满足条件的A有A1,2},A2={1,2,3},A3={1,2,4},A4={1,2,5}1={A5={1,2,3,,4A}6={1,2,3,5},A7={1,2,4,5},A8={1,2,3,4,5}∴A1=2,A2=A3=A4=3,A5=A6=A7=4,A8=5基数和为2+3?3+4?3+5=28 p24—6、证明:A=a,B=b,A中的x与B中的y对应 ========∴A?B=ab,∴B?A=ba=abA?B=ab ∴A?B=A?B=B? Ap24—8、证明:1)3+4=7+++ 3+1=3=43+2=3+1=(3+1)=4=++++ 3+3=3+2=(3+2)=5=63+4=3+3=(3+3)=6=72)3?4=12 +++3?1=33?2=3?+1=3?1+3= 63?3=3?2+=3?2+3=93?4=3?3+=3?3+3=12p24—12、证明:1)(m+n)=m+n(m+n)=m+n+1=(m+1)+n=m+n++++++++++2)(mn+)+=nm+m+(mn+)+=mn++1=mn+(m+1)=nm+m+p26—36、已知f(m,n)对任何m,n∈N满足f(1,n)=n+1??f(m+1,1)=f(m,2)??f(m+1,n+1)=f(m,f(m+1,n))?求证:1)f(2,n)=n+22)f(3,n)=2n+23)f(4,n)=2n+1-2证明:1)当n=1时,f(2,1)=f(1+1,1)=f(1,2)=2+1=1+2结论成立,假设n=k时,结论成立,即f(2,k)=k+2,当n=k+1时,f(2,k+1)=f(1+1,k+1)=f(1,f(2,k)) =f(1,k+2)=(k+2)+1=(k+1)+2 所以对一切自然数结论都成立2)当n=1时,f(3,n)=f(2+1,n)=f(2,2)=2+2=2?1+2结论成立假设n=k时,结论成立,即f(3,k)=2k+2当n=k+1时,f(3,k+1)=f(2+1,k+1)=f(2,f(3,k)) =f(2,2k+2)=2k+2+2=2(k+1)+2所以对一切自然数结论都成立3)当n=1时,f(4,1)=f(3+1,1)=f(3,2)=2?2-2=2假设n=k时,结论成立,即f(4,k)=2当n=k+1时,k+11+1-2结论成立 -2 f(4,k+1)=f(3,f(4,k))=f(3,2k+1-2)=2(2k+1-2)+2=2k+2-2所以对一切自然数结论都成立p62—1、证明定理2.1证明:?[a,b],[c,d]∈Z,[a,b]+[c,d]=[a+c,b+d]因为自然数加法满足交换律∴[a+c,b+d]=[c+a,d+b]而[c,d]+[a,b]=[c+a,d+b]∴[a,b]+[c,d]=[c,d]+[a,b]?[a,b],[c,d],[e,f]∈Z,[a,b]+[c,d]+[e,f]=[a+c,b+d]+[e,f]=[(a+c)+e,(b+d)+f]以为自然数满足加法结合律∴([a,b]+[c,d])+[e,f]=[a,b]+([c,d]+[e,f]) 即整数加法满足交换律和结合律p62—2、已知[a,b],[c,d]∈Z,求证[a,b]=[c,d]的充要条件是[a,b]-[c,d]=[1,1]证明:“?” 已知[a,b]=[c,d]则a+d=b+c∴[a,b]-[c,d]=[a+d,b+c]=[1,1]“?” 已知[a,b]-[c,d]=[1,1]则[a+d,b+c]=[1,1],a+d=b+c=[c,d ] ∴[a,b]p62—4、已知a,b∈N,求证-(-[a,b])=[a,b]a,b])=-b[a,=]a[ b,证明:-[a,b]=[b,a]-(-[p62—5、已知[a,b],[c,d]∈Z,求证-([a,b]-[c,d])=-[a,b]+[c,d]证明:左边-([a,b]-[c,d])=-[a+d,b+c]=[b+c,a+d]右边-[a,b]+[c,d]=[b,a]+[c,d]=[b+c,a+d]所以左边等于右边∴-([a,b]-[c,d])=-[a,b]+[c,d]p62—7、已知a,b,c∈N,求证当且仅当a+d<b+c时[a,b]<[c,d]证明:“?” 已知a+d<b+c,[a,b]-[c,d]=[a+d,b+c]] 因为a+d<b+c ∴[a+d,b+c是负数,∴[a,b]<[c,d]“?” 已知[a,b]<[c,d]则[a,b]-[c,d]=[a+d,b+c]因为[a+d,b+c]是负数,∴a+d<b+cp62—9、已知α,β∈Z,求证:1)α+β≤α+证明:设α=[a,b],β=[c,d] β,2)αβ=β1)α+β=[a+c,b+d] ∴α+β=(a+c)-(b +)而α=a-b,β=c-d(a+c)-(b+)(a-b)+(cd≤b+c -d∴α+β≤α+β2)αβ=[ac+bd,ad+bc]∴αβ=ac+bd-(ad+bc)而α=a-b,β=c-dac+bd-(ad+bc)=a(c-d)+b(d-c)=(a-b)(c-d)=a-bc-d ∴αβ=αβp63—12、n名棋手每两个比赛一次,没有平局,若第k名胜负的次数各为ak,bk,2222k=1,2,........,n,求证:a12+a2 +...+an=b12+b2+...+bn证明:对于ak(k=1,2,...,n),必存在一个bj(j=1,2,...,n)使得ak=bj2222 ?ak=bj(k,j=1,2,...,n)∴a1+a2+...+an2=b1+b+...+bn 222p63—16、已知pa-b,pc-d,求证pad-bc证明:由已知:?s,t∈Z使10a-b=ps,10c-d=pt? b=10a-ps,d=10c-pt∴ad-bc=10ac-apt-(10ac-cps)=p(cs-at)∴pad-bc2p63—17、设2不整除a,求证8a+1证明:因为2不整除a,所以存在唯一一对q,r∈Z,使a=2q+r,其中0<r<2 2222 ?r=1,∴a=4q+4q+1?a-1=4q(q+1)∴8a-1。

初等几何研究复习题.doc

初等几何研究复习题.doc

习题1.设梯形两底之和等于一腰,则此腰两邻角的平分线必通过另一•腰的屮点。

已知:如图,梯形ABCD 中,AD〃BC, AB二AD+BC,E 是DC屮点求证:ZDAB与ZABC的平分线必经过E点。

证明(同一法):设ZDAB A/ZABC的角平分线交于U点,只需证E,点与E点重合。

・・・AD〃BC・,.ZDAB+ZABC=180°VZ1 = Z2, Z3=Z4,AZ2+Z3=90°・・・ZAE‘ B=90°作RtAABE z的斜边AB ±的中线FE,,则FE' =1AB=AF=BF2AZ2=ZAE/ F, Z3=ZBE^ FAZ1=Z2=ZAE, E:.E f F〃AD〃BC连结EF,则EF为梯形ABCD的屮位线,E F〃AD〃BC:.E f F与EF共线•・・FE,=1AB=1(AD+BC), FE 二丄(AD+BC)2 2 2・・・E'F二EF・・・E‘与E重合,证毕.习题2.A是等腰三角形ABC的顶点,将其腰AB延长至D,狡BD=AB。

知CD=10厘米求AB边上中线的长。

解:过B作BF〃AC交CD于F, 则BF是ADAC的中位线。

// 1・・・BF= -AC2・•・ ZFBC=ZACB乂ZACB=ZABC, AB=ACAZFBC=ZABC, BF二丄AB=BE2A AEBC^AFBC (SAS)・・・CE二CF二丄CD二丄X 10=5cm2 2即AABC屮边上的屮线CE的长为5厘米。

习题3.证明:等腰三角形底边延长线上任一点到两腰距离Z差为常量。

已知:如图,等腰三角形ABC中,AB=AC°D为BC延长线上一点,过D作DE丄AB 于E,作DU AC延长线于F。

求证:DE—DF为常量。

证明:作AABC的边AB上的高CH,再作CG丄DE于G,则四边形CHEG为矩形。

VZ3+ZB=90° , Z4+Z2=90° , ZB=ZACB=Z2AZ3=Z4又CD为公共边。

初等几何研究综合测试题(二)

初等几何研究综合测试题(二)

《初等几何研究》综合测试题(二)适用专业:数学教育专业考试时间:120分钟一、选择题(本题共8小题,每小题3分,共24 分)1. 如图,/ 仁/2, / 3=/ 4, EC=AD 证明i ABD^i EBC 时,应用的方法是 A. AAS ; B.SAS; C.SSS ; D.定义。

2. 已知:三角形的两边长为 2和7,第三边的数值是奇数,那么这个三角形的周长是 _________A.14 ;B.15 ;C.16 ;D.17.3. 判定四边形是正方形的条件是 _________ - O A.对角线相等;B.对角线相等且互相垂直; C.对角线互相垂直平分;D.对角线相等且互相垂直平分。

A. 14 ; B.7; C.21 ; D.10.5.在正三角形、等腰梯形、矩形和圆这四种图形中是轴对称图形,又是中心对称图形的有OA.1 种;B.2 种;C.3 种;D.4 种。

6. 圆的弦长等于它的半径,那么这条弦所对的圆周角的度数是 __________ A.30 ° ; B.60 ° ; C.150 ° ; D.30。

或 150 ° .7. 在平移过程中,对应线段A.互相平行且相等;B.互相垂直且相等;C. 互相平行(或在同一条直线上)且相等;D. 以上都不对。

8. 下列关于平移的说法中正确的是 _____________ OA. 以原图形中的一点为端点,且经过它的对应点的射线的方向是平移的方向;B. 平移后的两个图形中两个顶点连成的线段长是平移的距离;C. 原图形中两个顶点连成的线段长是平移的距离;D. 以对应点中的一点为端点的射线是平移的方向。

二、判断题(本题共5小题,每小题2分,共10分)1.互补两角有一条公共边,则这两个角的平分线所组成的角一定是直角。

()2. 有一边对应相等的两个等腰直角三角形全等。

3. 任意两个等腰三角形都相似。

(4. 同角的余角都相等。

初等几何研究复习题

初等几何研究复习题

习题1.设梯形两底之和等于一腰,则此腰两邻角的平分线必通过另一腰的中点。

已知:如图,梯形ABCD 中,AD ∥BC,AB=AD+BC,E 是DC 中点求证:∠DAB 与∠ABC 的平分线必经过E 点。

证明(同一法):设∠DAB 与∠ABC 的角平分线交于E ′点,只需证E ′点与E 点重合。

∵AD ∥BC∴∠DAB+∠ABC=180° ∵∠1=∠2, ∠3=∠4, ∴∠2+∠3=90° ∴∠A E ′B=90°作Rt △ABE ′的斜边AB 上的中线 FE ′,则 FE ′=21AB=AF=BF∴∠2=∠A E ′F, ∠3=∠B E ′F ∴∠1=∠2=∠A E ′F , ∴E ′F ∥AD ∥BC连结EF,则EF 为梯形 ABCD 的中位线, E F ∥AD ∥BC ∴E ′F 与EF 共线∵FE ′=21AB=21(AD+BC), FE =21(AD+BC)∴E ′F = E F∴E ′与E 重合,证毕.习题2.A 是等腰三角形ABC 的顶点,将其腰AB 延长至D ,使BD=AB 。

知CD=10厘米,求AB 边上中线的长。

解:过B 作BF ∥AC 交CD 于F , 则BF 是△DAC 的中位线。

∴BF 21AC∴∠FBC=∠ACB又∠ACB=∠ABC ,AB=AC ∴∠FBC=∠ABC ,BF=21AB=BE21∴△EBC ≌△FBC (SAS ) ∴CE=CF=21CD=21×10=5cm即△ABC 中边上的中线CE 的长为5厘米。

习题3.证明:等腰三角形底边延长线上任一点到两腰距离之差为常量。

已知:如图,等腰三角形ABC 中,AB=AC 。

D 为BC 延长线上一点,过D 作DE ⊥ AB 于E ,作DF ⊥ AC 延长线于F 。

求证:DE -DF 为常量。

证明:作△ABC 的边AB 上的高CH ,再作CG ⊥DE 于G ,则四边形CHEG 为矩形。

初等几何研究综合测试题(一)

初等几何研究综合测试题(一)

《初等几何研究》综合测试题(一)适用专业:数学教育专业 考试时间:120分钟一、 选择题(本题共8小题,每小题3分,共24分)1.在 ABC 中,AB=AC ,高BF 、CE 交于高AD 上一点O ,图中全等三角形的对数是_____。

A.4;B.5;C.6;D.7.2.已知:如图, ABC 中,∠BAC=90°,AD ⊥BC 于D, 若AB=2,BC=3,则DC 的长度是________。

A.83; B.23; C.43; D.53。

3.下面4个图形中,不是轴对称图形的是_________。

A.有两个内角相等的三角形;B.有一个内角是45°的直角三角形;C.有一个内角是30°的直角三角形;D.有一个内角是30°,一个内角是120°的三角形。

4.下列条件中,不能判别四边形是平行四边形的是_________。

A.一组对边平行,另一组对边相等;B.两组对边分别平行;C.对角线互相平分;D.一组对边平行且相等。

5.若一个四边形既是轴对称图形,又是中心对称图形,则这个四边形是_________。

A.直角梯形;B.等腰梯形;C.平行四边形;D.矩形。

6.下列语句正确的是________。

A.圆可以看作是到圆心的距离等于半径的点的集合。

B.圆的内部可以看作是到定点的距离小于定长的点的集合。

C.圆的一部分叫做弧。

D.能够互相重合的弧叫做等弧。

7.在平移过程中,对应线段A.互相平行且相等;B.互相垂直且相等;C.互相平行(或在同一条直线上)且相等;D.以上都不对。

8.下列关于平移的说法中正确的是___________。

A.以原图形中的一点为端点,且经过它的对应点的射线的方向是平移的方向;B.平移后的两个图形中两个顶点连成的线段长是平移的距离;C.原图形中两个顶点连成的线段长是平移的距离;D.以对应点中的一点为端点的射线是平移的方向。

二、 判断题:(本题共5小题,每小题2分,共10分)1.如图1,直线a ,b ,c 在同一平面内,a//b ,a 与c 相交于P ,则b 与c 也一定相交。

初等几何研究第二版朱德祥朱维宗答案

初等几何研究第二版朱德祥朱维宗答案

初等几何研究第二版朱德祥朱维宗答案期中考试题1. P18 T5四边形有一双对角互补,则必为圆内接四边形2. P26 T3 两圆O与O’相交于点P,M是OO’的中点,过P任做直线交两圆与A及A’,Q是AA’的中点。

证明MP=MQ。

3. P27 T10 在中,证明BC边的中垂线和角A的平分线相交在外接圆周上;他们的,ABC交点距B、C两点,距内切圆心,距角A的旁切圆心都等远 4. P30 例4 蝴蝶定理5. 证明勾股定理(毕达哥拉斯)6. P39 T11 证明欧拉线7. P41 例3 三角形中,大边上的平分角线较小P18 T5四边形有一双对角互补,则必为圆内接四边形首先证?A+?C=180如图所示,连接DO, BO. 设优角BOD为θ?圆周角等于所对的圆心角的一半??C=1/2?BOD,同理,?A=1/2θ??A+?C=1/2*360=180,即两角互补。

同理可证?ABC+?ADC=180.所以对角互补。

T6 证明:等腰三角形底边延长线上任意一点到两腰的距离之差等于一腰上的高。

S,S,S ,ABP,ACP,ABC111AB*PF--AC*PE=AC*CH AB=AC 222PF--PE=CH圆内接偶数边凸多边形相间诸角之和等于其余各角之和 Tp5226、从圆上一点到其内接四边形一双对边的距离之积,等于从该点到两条对角线的距离之积设圆内接四边形ABCD,P是其外接圆上任一点,过P分别作对角线AC,BD;边,BC,,DA的垂线,垂足依次为E,F;G,H,。

根据简单几何定理:三角形两边之积等于第三边上的高与外接圆直径之积R中 PA*PC=R*PE (1) ,PAC,PDB,PD*PB=R*PF (2),PAD PA*PD=R*PG (3)PB*PC=R*PH (4) ,PBC(1)*(2)=(3)*(4)=所以得证P27 T9 在三角形ABC中,分别以AB和AC为一边向外做等边三角形ABD和ACE,求证CD=BEAE=AC,AB=AD, ?,DAB,,EAC ?,DAC,,EAB ?,AEB,,ACD ?CD,BEP31 4.四边形ABCD中,设AD=BC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 (共 2 页)
2
一、填空题(本大题共7题,每空3分,共24分)
1、等边ABC ∆外接圆周上一点P 与三顶点的连线中PA 最长,则PA 、PB 、PC 之间的关系是 。

2、ABC ∆中,AB =3,AC =2,BC =4,则BC 边上的中线AM 长为 。

3、ABC ∆中,AB =AC ,E 、D 分别是AB 、AC 上的点,且BC =BD =EA =ED ,则A ∠的度数是 。

4、等腰梯形ABCD 中,AD CB ,5AB DC ==,:1:2AD BC =,中位线9EF =,则这个等腰梯形的高是 ,面积是 。

5、已知AT 是圆O 的切线,ABC 是割线,OD AC ⊥,并且12AT =,36AC =,2OD =,则半径OC = 。

6、四边形ABCD 中,4AB BC ==,60B ∠=,7CD =,则AD 的取值范围是 。

7、到两定点A 、B 的距离的平方差为常量K 的点的轨迹是垂直于AB 的一条直线,垂足为N ,则AN = 。

二、计算题(本大题共2题,每小题8分,共16分)
1、梯形ABCD 的下底AB 在平面α上,上底高出平面40cm ,已知AB :DC=5:3,求两对角线交点到平面α的距离.
2、AB 与圆O 相切于A ,D 点在圆O 内,DB 与圆O 相交于C ,若3BC DC ==,
2OD =,6AB =,求圆O 的半径.
三、证明题(本大题共5题,第1小题6分,第2、3、4小题每题10分,
第5小题12分,共48分)
1、已知F 是P ∠的平分线上一点,过F 任作两直线AD 、BC 分别交P ∠的一边于A 、C , 交另一边于B 、D ,求证:
AC BD =PA PC
PB PD
∙∙.(6分)
第 2 页 (共 2 页)
2、证明:设两个直角三角形斜边相等而一锐角不等,则不等角所对的边也不等,大角的对边较大.(10分)
3、以正方形ABCD 的边CD 为底向形内作等腰ECD ∆,使其两底角为015,证明:
EAB ∆是等边三角形.(10分)
4、已知圆内接正六边形ABCDEF ,M 、K 分别是CD 与DE 的中点,AM 与BK 交于G 点,证明:
ABG ∆的面积等于四边形GKDM 的面积,并求直线AM 与BK 的夹角.(10分)
5、证明:定圆内定长的弦的中点的轨迹是定圆的一个同心圆.(12分)
四、作图题(本大题共1题,12分)
1、已知两线段的和与积,求作这两线段.。

相关文档
最新文档