现代高分子材料综述(非常好!!)
常用高分子材料总结
常用高分子材料总结
一、涤纶
涤纶(Polyester),是一种具有良好弹性及耐磨性的弹性纤维,同
时也是一种化学纤维。
涤纶的分子结构具有氧化物键,其特性包含了强度、柔韧性及耐磨性等特性,是服装纺织品及特种布料的主要原料之一、涤纶
可以分为短纤涤纶和长纤涤纶,分别用于织物的做结线和花线。
涤纶有着
用途广泛的优点,如耐腐蚀性佳、延展性佳的特点,使其在服装纺织品行
业中得到了广泛应用。
二、尼龙
尼龙(Nylon)是一种经典的高分子材料,它的性能比较好,特别是
耐磨性好,耐油性好等特点,使其被广泛应用于鞋材、腰带、绝缘材料及
车帘、帐篷、工作服等。
由于其耐磨性好,可用于制作足球、网球等运动
器材中的弹性部分,还可用于制作彩色尼龙绳和布料等。
尼龙还可以用于
制造口罩,具有抗菌、抗氧化和防蛀牙的优点。
三、氯丁橡胶
氯丁橡胶(Neoprene)是一种具有坚固耐用的特性的橡胶材料,可以
用来制作防水夹克、涂层织物、包包、衬衫等。
它的性能优于其他橡胶材料,包括抗紫外线、红外线、抗老化,抗水性等。
由于它的坚韧结实的特性,氯丁橡胶广泛应用于军队用品、水上运动用品、钢琴用品等,在运动
场上也是表现出色的材料。
四、聚乙烯。
高分子材料发展现状
高分子材料发展现状
在高分子材料领域,过去几十年来取得了巨大的发展。
高分子材料具有优异的物理性能,如高强度、高韧性、低密度、耐腐蚀等特点,因此在许多领域得到广泛应用。
首先,聚合物基复合材料是高分子材料领域的一个重要研究热点。
聚合物基复合材料是由不同类型的高分子材料和其他添加剂组合而成的复合材料。
通过调整不同组分的比例和结构,可以获得具有特定性能的复合材料。
这种材料在航空航天、汽车制造、电子等领域具有重要的应用前景。
其次,高分子材料在能源领域得到了广泛的研究和应用。
随着全球能源需求的增加和环境问题的日益严重,高分子材料的新型应用成为了发展的方向。
例如,聚合物电池材料是电动车和可再生能源储存系统的核心材料,具有高能量密度和长循环寿命的特点。
另外,聚合物太阳能电池材料的研发也是一个热门方向,旨在提高太阳能的转换效率和稳定性。
再次,在医疗器械领域,高分子材料也发挥了重要的作用。
例如,聚氨酯、聚乳酸等高分子材料被广泛应用于人工关节、心脏支架等医疗器械的制备中,其生物相容性和生物降解性能能够有效地减少术后并发症,并提高患者的生活质量。
最后,高分子材料在环境保护领域也有着广泛的应用。
例如,将可降解聚合物应用于塑料袋、餐具等传统塑料制品的替代品,可以减少塑料垃圾对环境的危害。
另外,高分子吸附材料被广泛用于水处理、油污处理等领域,用于去除水中的污染物和回
收废弃物。
总之,高分子材料作为一种重要的功能材料,在各个领域都得到了广泛的研究和应用。
随着科技的不断进步和需求的不断增加,高分子材料的发展潜力巨大,并将在未来继续发挥重要的作用。
高分子材料发展现状
高分子材料发展现状高分子材料是一类具有大分子结构的材料,由高分子化合物组成。
高分子材料具有独特的物理和化学性质,广泛应用于各个领域,如塑料、橡胶、纤维等。
在过去几十年里,高分子材料得到了广泛的研究和发展,取得了显著的进展。
近年来,高分子材料的研究方向主要包括以下几个方面:一是新型高分子材料的开发。
与传统的高分子材料相比,新型高分子材料具有更优异的性能,如高强度、高导电性、高耐热性等。
通过不断地开发新型高分子材料,可以满足不同领域对材料性能的要求。
二是高分子材料的功能化。
通过在高分子材料中引入功能性基团,可以赋予材料新的性能,如光学、电子和磁性等。
这将进一步扩展高分子材料的应用范围。
三是高分子材料的加工技术的改进。
高分子材料的加工性能是影响其应用的重要因素,不断改进高分子材料的加工技术,可以提高材料的加工效率和质量。
高分子材料的应用范围也在不断扩大。
在汽车工业中,高分子材料广泛应用于车身和内饰件的制造。
高分子材料的轻量化和高强度能够提升汽车的燃油效率和安全性能。
在电子行业中,高分子材料被应用于电池、电容器、光纤等。
高分子材料的高导电性和热稳定性能可以提升电子产品的性能和寿命。
在医疗领域中,高分子材料被用于生物医用材料和药物传递系统。
高分子材料的生物相容性和可控释放能力可以满足医疗器械和药物的需求。
尽管高分子材料取得了显著的进展,但仍存在一些挑战。
首先,高分子材料的稳定性有待提高。
由于高分子材料大分子结构的特性,容易受到光、热、湿等外界因素的影响,导致材料性能的变化。
其次,高分子材料的可持续性亟待解决。
目前,许多高分子材料来源于石油,资源有限且环境污染严重。
因此,开发可持续的高分子材料具有重要意义。
另外,高分子材料的加工和应用技术还有待完善。
一些高分子材料具有较高的粘度和熔融温度,加工困难,制造难度大。
因此,需要进一步研究和改进高分子材料的加工和应用技术。
总的来说,高分子材料的发展现状是较为乐观的。
高分子材料的现状和发展
高分子材料的现状和发展高分子材料是指一类相对分子量较高(通常大于1000),在一定温度下为固体或半固态、可塑性较强、在化学性质、物理性质和结构性质方面都具有特殊性质的大分子化合物。
近年来,由于其多样性、可调性、可塑性等优良特性,高分子材料已经广泛应用于各个领域,包括医学、建筑、电子、能源、环保等。
本文将就高分子材料的现状和发展进行讨论。
1. 成果丰硕高分子材料是一种多元化产品,其性能和用途千变万化,既可以作为新材料的制备原料,也可以作为传统材料的改性剂和增强剂。
因此,在科学家们的不断努力下,高分子材料已经涌现出了许多新的材料,比如PTFE、PU、PA、PEEK等等,这些新材料的性能不断提升,用途也越来越广泛。
2. 应用领域广泛高分子材料的应用领域广泛,从医疗和生命科学到工程和构建,从新能源和环保到电子和信息技术,都有其广泛的应用。
比如,高分子材料可以用于电子设备中的电气绝缘、塑料包装材料、医用外科手术器械、化妆品、颜料、纺织品、涂料等等。
在军事等特殊领域,高分子材料更是被用于防弹材料、导弹燃料、火箭绝缘、前沿预警系统等严苛应用条件下。
3. 热度持续随着人们对环保和节能的需求不断增加,高分子材料在这方面的优势也不断突显。
比如,高分子锂离子电池是目前可行的电池应用,可以为新能源和节能提供保障。
另外,高性能塑料的研究发展也在不断加强。
未来,高分子材料的应用领域将会继续扩大,这将促进其发展。
随着技术的进步和人们对生态、环保等问题的关注,高分子材料的发展呈现出以下几个趋势:1. 多功能化随着对质量的要求越来越高,高分子材料也需要逐渐向多功能化的方向发展,具备防腐蚀、耐高温、防辐射、自修复等多种功能,以满足不同领域、不同场合的需求。
2. 绿色化环保成为各行各业所关注的热点。
高分子材料绿色化的发展势在必行。
绿色高分子材料应该是能回收、降解或生物降解的,不会污染环境或人类身体,提高了人们的生活安全保障和生活质量。
和高分子相关的文献综述
和高分子相关的文献综述高分子材料是一类由大量重复单元组成的大分子化合物。
它们具有独特的化学和物理性质,广泛应用于各个领域,如材料科学、化学工程、生物医学等。
在过去的几十年里,高分子材料的研究取得了巨大的进展,为我们的生活带来了许多便利和创新。
高分子材料的研究领域非常广泛,其中包括合成方法、结构与性质关系、表面改性、功能化等方面。
合成方法是高分子材料研究的基础,不同的合成方法可以得到具有不同结构和性质的高分子材料。
例如,聚合反应是一种常见的合成方法,通过将单体分子连接起来形成大分子,从而得到高分子材料。
另外,也可以利用化学修饰方法对已有的高分子材料进行改性,使其具有特定的功能。
高分子材料的结构与性质关系是研究的重点之一。
高分子材料的性能往往取决于其分子结构和链的排列方式。
例如,在聚合物中引入不同的官能团可以改变其热稳定性、机械性能和电学性能等。
此外,高分子材料的链的排列方式也会影响其物理性质。
例如,线性聚合物和交联聚合物具有不同的力学性能和热膨胀系数。
高分子材料的表面改性是提高其性能的重要途径之一。
高分子材料的表面性质对其在实际应用中的性能起着至关重要的作用。
通过改变高分子材料的表面性质,可以实现对其润湿性、抗菌性、耐腐蚀性等性能的调控。
例如,聚合物表面的修饰可以使其具有亲水性或疏水性,从而实现不同的应用需求。
另一方面,高分子材料的功能化也是研究的热点之一。
通过引入具有特定功能的基团或添加剂,可以赋予高分子材料特定的性能和应用。
例如,聚合物中引入荧光基团可以使其具有荧光性能,用于生物成像和传感应用。
另外,高分子材料还可以通过掺杂纳米颗粒或添加纳米填料来实现特定的性能,如导电性、导热性和机械强度等。
总结起来,高分子材料的研究涉及到合成方法、结构与性质关系、表面改性和功能化等方面。
通过对这些方面的研究,可以得到具有特定性能和应用的高分子材料。
高分子材料的研究不仅为我们提供了各种新材料,还为解决实际问题提供了新思路和方法。
高分子材料的现状和发展
高分子材料的现状和发展高分子材料是一种由许多重复单元组成的大分子化合物,具有高分子量、高效能和多功能性的特点。
它们广泛应用于塑料、橡胶、纤维、涂料、粘合剂和其他领域,已成为现代工业中不可或缺的材料之一。
随着科技的发展和人类对材料性能要求的不断提高,高分子材料的研究和应用也在不断深化和拓展。
本文将从高分子材料的现状和发展两方面进行探讨。
高分子材料的现状目前,高分子材料已成为现代工业的支柱之一,广泛应用于日常生活和各种工业领域。
在塑料方面,高分子材料可以根据不同的结构和性能要求,生产出各种类型的塑料制品,如聚乙烯、聚丙烯、聚氯乙烯等,满足了人们对于产品轻便、坚固、防水、隔热、绝缘等多种性能需求。
在橡胶方面,高分子材料被广泛运用于汽车轮胎、密封件、橡胶管等领域。
在纤维方面,高分子材料也被用于生产合成纤维,如聚酯纤维、聚酰胺纤维等,取代了传统的天然纤维,提高了纤维的强度和稳定性。
高分子材料还应用于涂料、粘合剂、包装材料等领域,其性能稳定、加工成形容易、成本低廉等优点,使得它在工业生产中得到了广泛的应用。
高分子材料的科研领域也在不断深化和发展。
随着纳米技术、生物技术、新能源技术等的兴起,高分子材料也得到了更多的关注和研究。
通过材料设计与改性,高分子材料的性能得到了极大的提升,如高强度纤维素材料、高导电高分子材料、高温高分子材料等的研究和应用不断取得突破。
生物可降解高分子材料也成为了近年来的研究热点,在环保和可持续发展的理念下,越来越多的生物可降解高分子材料被应用于生活用品、医疗器械等领域。
在未来,高分子材料的发展将呈现以下几个趋势:1.功能性高分子材料:随着人们对产品性能要求的不断提高,功能性高分子材料将成为未来发展的重点。
高强度、高韧性、高导电、高耐热、高阻燃等功能性高分子材料的研究和应用将继续受到关注,以满足各种特定领域的需求。
2.生物可降解高分子材料:在环保和可持续发展的理念下,生物可降解高分子材料将成为未来的发展趋势。
高分子材料技术的发展现状与未来趋势
高分子材料技术的发展现状与未来趋势近年来,高分子材料技术在科技领域取得了巨大的发展和突破,它不仅改变了人们的生活方式,还推动了工业的革命。
本文将探讨高分子材料技术的发展现状以及未来的趋势。
首先,让我们来了解高分子材料的定义和特点。
高分子材料是由大量分子通过共价键连接而形成的聚合物,如塑料和橡胶。
它具有轻质、高强度、耐腐蚀、绝缘性能好、生物相容性高等特点,被广泛应用于各个领域。
目前,高分子材料技术已经渗透到生活的方方面面。
在汽车制造业中,高分子材料被广泛应用于车身结构和内饰件的制造,使车辆更轻、更安全。
在电子产品中,高分子材料的应用使得可穿戴设备如智能手表和智能眼镜变得更加舒适轻便。
此外,高分子材料还广泛应用于医疗器械、航空航天等领域。
然而,高分子材料技术仍然面临一些挑战和限制。
首先,高分子材料的可持续性仍然是一个问题。
塑料制品的大量使用导致了环境污染和资源浪费。
因此,寻找可替代塑料的生物可降解材料成为了一个研究热点。
其次,高分子材料的力学性能和耐久性仍然有待提高。
高分子材料在高温、高压、紫外线等极端环境下的稳定性问题需要更多的研究。
未来,高分子材料技术有很大的发展潜力。
一方面,随着环保意识的增强,研究人员将更加注重开发可持续性的高分子材料。
生物可降解材料、可回收材料和可再生材料将成为新的研究方向。
另一方面,高分子材料的性能将进一步提高。
纳米材料技术的发展使得高分子材料具有了更好的强度、导电性和稳定性。
此外,3D打印技术的出现也为高分子材料的应用带来了新的机遇。
通过3D打印,可以制造出更复杂的结构和形状的高分子材料制品。
此外,高分子材料技术还将与其他领域的技术相结合,产生更多的创新。
例如,将高分子材料与生物技术相结合,可以开发出更适合人体生物医学应用的材料。
将高分子材料与纳米技术相结合,可以制造出更小尺寸、更高性能的材料。
综上所述,高分子材料技术的发展现状非常迅速,它已经在各个领域产生了巨大的影响。
浅析高分子材料发展现状和应用趋势
浅析高分子材料发展现状和应用趋势高分子材料是由长链分子构成的,具有许多特殊性质,例如高强度、高韧性、耐磨性、耐腐蚀性和绝缘性等。
自二十世纪初发明以来,高分子材料已经得到广泛应用,如塑料、纤维和橡胶等。
随着各个领域对高分子材料的需求增加,其发展趋势也日益明显。
一、高分子材料的发展现状1.1 塑料塑料是高分子材料的主要应用领域之一,其用途范围涵盖了各种制品,如塑料薄膜、包装、容器、玩具、家具等。
随着人们对环保要求的提高,对于塑料材料的性能、质量和成本要求也变得越来越高。
当前,高分子材料已经成为最具发展潜力的材料之一,而塑料的应用前景也非常广泛。
在未来,塑料材料将会以更高的性能、更低的成本、更好的可持续性等特点逐渐取代传统的材料,并且在橡胶、垃圾分类等多个领域也将得到广泛应用。
1.2 纤维纤维是指由高分子材料构成,呈长柱状的材料。
纤维的特性是轻质、耐磨、抗拉强度高、柔软透气并具有质量稳定性。
它可以被处理成各种形状,如线、布、垫等形式。
纤维材料的应用范围非常广泛,如服装、鞋类、家居装饰、汽车、飞机等。
1.3 橡胶橡胶是一种高分子材料,是由天然橡胶或合成橡胶制成的。
橡胶的独特性质使它广泛应用于轮胎、导管、密封件、球类、鞋子、手套等制品中。
近些年来,人们对橡胶材料的性能和质量要求不断提高,因此,橡胶材料的研发和应用都越来越受到关注。
二、高分子材料的应用趋势2.1 可持续发展在全球关注环境问题的时代,高分子材料的可持续发展已成为一项主要的趋势。
随着人们对环保、绿色、健康等问题的重视,可再生材料和可降解材料得到了越来越多的关注。
例如生物可降解塑料、再生塑料等,将有望在未来得到广泛的应用。
2.2 精细化和个性化随着技术的不断进步,高分子材料的制备工艺越来越精细化。
不同的应用场景需要不同的高分子材料,因此,高分子材料的研发越来越个性化。
这意味着逐步由传统的单一、大批量的制备方式转向小批量、高精度的制备方式。
2.3 智能化高分子材料的应用也趋向智能化,要求高分子材料不仅具有优秀的物理性能,还具有人工智能、感应、自适应等高科技性能。
现代高分子材料发展前沿
高份子材料的发展前沿综述近年世界高份子科学在诸多领域取得重要发展,主要是控制聚合、超份子聚合物、聚合物纳米微结构、高通量筛选高份子合成技术、超支化高份子、光电活性高份子等方面。
1 高份子合成化学高份子合成化学研究从单体合成开始,研究高份子合成化学中最基本问题, 探索新的催化剂体系、精确控制聚合方法、反应机理以及反应历程对产物会萃态的影响规律等,高份子合成化学基础研究具有双重作用,一是运用已有合成方法研究聚合物结构调控;二是设计新的合成方法,获得新颖聚合物。
20 世纪 90 年代以来在高份子合成化学领域中,前沿领域是可控聚合反应, 包括立构控制,相对份子质量分布控制,构筑控制、序列分布控制等。
其中,活性自由基聚合和迭代合成化学研究最为活跃。
活性自由基聚合取得了许多重要的成果,但还存在一些问题。
活性自由基的发展前景,特殊是工业应用前景以及未来研究工作趋势是令人关心的问题。
对于活性自由基聚合反应机理的深入研究、在较低的温度下能快速进行聚合的研究是目前受到关注的研究方向。
迭代合成化学是惟一可用来制备多肽、核酸、聚多糖等生物高份子和具有精确序列、单分散非生物活性高份子齐聚物的方法。
树枝状超支化高份子的合成就是此合成策略的成功应用例证之一,是过去 10 年高份子合成中最具影响力的发展方向。
树枝状超支化聚合物由于其独特球形份子形状,份子尺寸,支化图形和表面功能性赋予它不同于线型聚合物的化学和物理性质。
高份子合成化学发展需注意以下几点:(1)与无机化学、配位化学、有机化学等的融合与渗透,吸取这些学科领域的研究成果开辟新的引起/催化体系,这是合成化学的核心,是高份子合成化学与聚合方法原始创新发展的关键。
对于传统的工业化单体,需要利用新型引起/ 催化体系和相应聚合方法,研究开辟合成新的微观结构的聚合物新材料。
(2)与有机合成化学和高份子化学密切结合,将有机合成化学的先进技术“嫁接”到高份子合成化学中,研发高份子合成的新方法,实现高份子合成的可设计化、定向化和控制化,这里包括通过非共价键的份子间作用力结合来“合成”超份子体系。
常用高分子材料总结
常用高分子材料总结
塑料:1、热固性塑料
2、热塑性塑料:①通用塑料(五大通用塑料)
②工程塑料(通用工程塑料特种工程塑料)
工程塑料具有更高的力学强度,能经受较宽的温度变化范围和较苛刻的环境条件,具有较高的尺寸稳定性,五大通用工程塑料为:聚酰胺、聚碳酸酯、聚甲醛、热塑性聚酯、聚苯醚。
参考学习资料
参考学习资料
参考学习资料
参考学习资料
参考学习资料
参考学习资料
参考学习资料
参考学习资料
参考学习资料
参考学习资料
参考学习资料
参考学习资料。
高分子材料发展历程综述
高分子材料发展历程综述
高分子材料是指由大分子结构构成的材料,一般可以用来构筑填充剂,密封剂,涂料,装饰、缓冲、吸附、绝缘等材料。
近二百多年来,高分子材料的发展历程始终很精彩。
19世纪末,著名的德国发明家豪斯·瓦尔特·韦伯研制了第一种人造高分子,用葡萄糖丙交联来制造塑料,利用活性助剂
调节塑料物理性能,从而发明出高分子研发故事一曲。
20世纪早期,高分子材料的发展开始发力:1904年,美国科学家乔治·邓特·拉里
利发明了第一种塑料,即聚甲醛;1909年,美国科学家乔治·马歇尔·路德利发明了第一种涤纶,即聚酯聚乙烯。
之后,各种高分子材料不断发展,例如:甲苯材料——聚苯乙烯,醋酸环氧乙烯;乙醇醚醚材料——环氧树脂,聚氨酯;硅酮类材料——硅橡胶,模塑硅酮。
20世纪50年代,由于科学技术的发展和近几十年来全球经济增速的加快,高分子材
料的生产和应用取得了飞跃式发展,制造成本急剧降低,运用领域扩大,无论在任何行业,都受到很大的好评。
20世纪60年代,高分子材料又与复合材料和低流动性高分子材料一起进入一个新的
阶段。
分子级复合材料的出现,彻底改变了传统的高分子材料的形象,使其走了一条性能
更高,价格更低的新道路。
此外,随着现代科技的发展,高分子材料整体材料性能以及特性以及加工工艺也经历
了极大的改观,物理和机械性能都有了很大的进步。
可以说,高分子材料的未来发展前景
一片光明。
总而言之,高分子材料的发展越来越成熟,应用范围也越来越广泛,它在构筑现代社
会科技发展框架中起到了不可磨灭的历史作用,是近两百多年来的一个重要科技成果。
国内外高分子材料发展概况与趋势
国内外高分子材料发展概况与趋势
随着社会发展的进步和经济的快速增长,人们对材料的需求量越来越大,这就需要研发更新更持久的材料以满足人们的需求,高分子材料也因
此受到了重视。
高分子材料是由不同的分子组成的多种新型材料。
根据材料的组成成分,可以分为PA(聚酰胺)、PP(聚丙烯)、PE(聚乙烯)、PVC(聚氯
乙烯)、PVDF(聚偏氟乙烯)、ABS(丙烯腈-丁二烯-苯乙烯)、PMMA
(聚甲基丙烯酸甲酯)、PC(聚碳酸酯)、PU(聚氨酯)和PET(聚酯)等。
近年来,高分子材料发展迅速,新型高分子材料大量涌现。
国内的高
分子材料的发展稳定,主要是以塑料材料为主,以聚氨酯和聚酯为主,其
中聚苯胺、PC/ABS、PA/ABS等塑料材料发展较为迅速。
此外,还有复合
材料、竹纤维、光电、增韧、织物等新型高分子材料的发展也在不断推广
应用。
国外的高分子材料发展较为迅速,以改性高分子材料和病毒材料为主。
高分子材料的发展趋势以及表现在材料性能上也得到很好的改善,尤其是
改性高分子材料和病毒材料,其前景非常乐观。
以上是国内外高分子材料发展概况与趋势的情况介绍。
高分子材料具
有良好的耐腐蚀性、机械性能、热稳定性、电阻和电介质性等特性,广泛
应用于航空航天。
高分子材料改性综述
高分子材料改性综述在当今的社会中, 材料是人类赖以生存和发展的重要物质, 是现代工业和高科技发展的基础和关键。
由于材料单体的种类有限, 而且材料单体的单一的某的些性能比较差, 不符合人们所求, 所以要对其材料经行改性。
所谓的改性是通过物理, 机械和化学等作用使搞分子材料原有的性能得到改善。
高分子材料的改性即可能是物理变化也可能是化学变化在终多的改性方法中, 共混改性是最简单的也是最直接的方法。
他可以在各种加工设备中完成, 通过共混改性可以使高分子材料得到比较好的性能上的提升。
并且是现在应用最广的改性方法之一。
化学改性可以赋予高分子材料更好的物理化学和力学性能, 现在常用的有无轨共聚, 交替共聚, 嵌段共聚, 接枝共聚, 交联和互穿聚合物网络等技术, 化学改性能得更高的性能比物理改性, 但化学改性比物理改性的成本一般会更高, 而且工艺过程更复杂, 设备的要求更高。
还有填充与纤维增强改性, 表面改性, 共挤出复合改性, 对于公挤出复合改性一般用于管材等应用会比较多一高分子的共混改性高分子共混改性的目的和作用有: 1可以从各高分子组分的性能中取长补短, 获得更优越的性能的材料, 2还可以改善其高分子的加工性能。
3或者还可以制备新型的高分子材料, 聚烯烃与壳聚糖共混可以获得抗菌功能的材料。
4还可以使一些材料原本比较贵, 通过改性在不降低其原有的材料性能上可以使材料的成本更低。
在高分子的改性中遇到的一个难题就是两种或者多种不同的材料共混时他们的相容性, , 两种高分子能否相容就取决他们共混工程的自由能的变化, △Gm=△Hm-T△Sm≤0由于高分子的相对分子质量很大, 共混的过程熵变化很小, 如果高分子之间不存在特殊的相互作用, 共混过程通常是吸热过程, 也就是△Hm>0,因此绝大多的高分子共混时不能达到分子水平的共混,因此要他们自由相容是很困难的,这样我们就要借助其他方法来使他们相容,如增容剂.增溶剂是能使不相容的两种高分子结合在一起,从而形成稳定的共混物.增容剂大体可以分为反应型和非反应型的.反应型指共混时伴随化学反应与共混组分生成化学键,而非反应型只是起到乳化剂的分散作用,可以降低其相界面的张力,从而达到增容的目的.非反应型的有A-X-B,A-C.D-B.C-D等其中A-X-B具有A,B两种链段的嵌物, A-X-B型可以对多种共聚物增容.对于非反应型的增容剂: 1嵌段共聚物比接枝共聚物更有效2,二嵌段共聚物优于三段的.3接枝共聚物增容效果优于星型和三嵌段.4当共聚物的链段的相对分子质量大于或等于其均聚物的相对分子质量,效果比较好,反应型增容剂,有高分子和低分子两种,对于所有的低分子都是反应型,而高分子有反应型和非反应型增容剂.反应型增容剂主要是有一些可以与共混组分反应的官能团的共聚物,他们适合相容性差的又带有反应官能团的高分子之间的增容.反应增容剂对于他们参加反应的类型不同可以分为, 1反应性曾容剂与共混高分子组分反应而增容, 2使共混高分子先有官能团在凭借他们相互反应而增容。
近十年发现的高分子材料
近十年发现的高分子材料在日常生活中,大多数人都会接触到各种各样的高分子材料,它们不仅能够承受大量负荷,还能提供良好的热稳定性。
尽管它们以各种各样神奇的方式在生活中扮演着重要角色,但对于许多人来说,高分子材料仍是一个神秘而陌生的存在。
目前,高分子材料已经被广泛用于制造人造皮肤可用于皮肤清洁)和人体器官(例如心脏)。
在过去的十年里,人们已经发现了许多不同类型的高分子材料。
随着研究进展和不断研究创新,高分子材料正不断被开发和利用。
许多合成高分子材料为我们提供了独特且令人兴奋。
这类材料具有独特的性质和性能:良好绝缘性;易加工性;高能量密度;高强度;热稳定性等优点。
在日常生活中需要广泛应用,如太阳能电池板、电线电缆、通讯器材、电子产品和其他电子产品中,如传感器、电池包及外壳等都需要使用高分子材料。
虽然这些成果目前尚不能被认为是真正的高分子材料,但它们往往与其他功能材料一起出现来改善我们生活质量,推动社会文明发展发挥着重要作用。
1、尼龙66:纤维和橡胶结合的人造皮肤2019年,一组研究人员将尼龙66纤维和橡胶聚合物与天然丝织物相结合,制作出了一种人造皮肤。
这种人造皮肤具有良好的柔软性、弹性和柔韧性,并且很容易剥离和清洗。
尼龙66是一种人造纤维,由聚酯化聚乙烯(PET)制成,具有良好的耐热性和耐化学性、耐磨性和耐腐蚀性。
然而,尼龙66聚合物不具备该特性,并不能作为皮肤纤维或人造皮肤。
因此,研究人员想通过改进材料功能来改变这种材料的性能。
此外,因为其不耐水,因此不适合在潮湿或者经常清洗的环境中使用。
为了克服这一问题,研究人员提出了一种策略来改变他们所使用的聚合物的分子结构。
他们将一组高聚物分子中比较大的烯烃氧化为单键,然后在单键中引入苯环及双键,形成双键单键网络(NRF)。
研究人员使用这种策略来改进尼龙66纤维与橡胶(如尼龙66丁腈橡胶)之间的亲和力。
当利用单键网络时,该纤维非常柔软且具有良好的耐磨性和耐化学性;当利用双键网络时,可以在较高的热稳定性和高热稳定性下制造出更多形状(如卷曲)和更薄(比如由直径为3微米的单根纤维制成)的人造皮肤。
高分子材料与工程毕业论文文献综述
高分子材料与工程毕业论文文献综述在现代材料科学与工程领域中,高分子材料作为一种重要的材料类别,具有广泛的应用前景。
本文将对高分子材料与工程的相关文献进行综述,旨在全面了解该领域的最新研究进展和发展趋势。
一、高分子材料的定义与分类高分子材料是由大分子化合物(分子量通常在10^4至10^6量级)构成的材料系统。
根据其结构和性质的不同,高分子材料可分为线性高分子、交联高分子、支化高分子等多种类型。
二、高分子材料的合成方法高分子材料的合成方法多种多样,常见的有聚合反应、缩合反应、开环聚合、改性反应等。
每种方法都有其独特的特点和适用范围,研究人员根据具体需求选择不同的方法进行材料合成。
三、高分子材料的性质与表征高分子材料的性质与表征是研究该领域的关键内容之一。
其中,高分子材料的力学性质、热学性质、电学性质等是研究的重点。
通过使用各种表征手段,如拉伸试验、差示扫描量热法、电导率测试等,可以对高分子材料的性质进行全面而准确的评估。
四、高分子材料在工程领域中的应用高分子材料在工程领域有着广泛的应用。
其中,聚合物材料在塑料工业、橡胶工业、纤维工业等行业中扮演着重要的角色;高分子复合材料在航空航天、汽车制造、电子器件等领域中展现出巨大的潜力;生物材料作为一种新兴的材料类型,被广泛应用于医疗、生物工程等领域。
五、高分子材料领域的新兴研究方向为了满足日益增长的科技需求,高分子材料领域的研究也在不断发展。
其中,纳米复合材料、生物可降解材料、功能性高分子材料等成为了研究的热点。
这些新兴研究方向的涌现为高分子材料的应用与发展提供了更多的可能性。
六、高分子材料领域的挑战与展望虽然高分子材料在各个领域中都有广泛应用,但仍存在一些挑战。
如高分子材料的工艺性能、稳定性、可持续性等问题仍有待解决。
因此,考虑到环境保护和可持续发展的要求,高分子材料研究需要在解决这些问题的基础上不断创新,为材料科学与工程的发展做出贡献。
综上所述,高分子材料与工程领域是一门重要的学科,具有广阔的研究前景和应用潜力。
高分子材料的优点
高分子材料的优点
高分子材料是一类由大量重复单元组成的高分子化合物,具有许多优点,使其在各种领域得到广泛应用。
首先,高分子材料具有优异的物理性能。
例如,高分子材料具有较低的密度,使其成为轻量化材料的理想选择。
此外,高分子材料还具有良好的机械性能,如强度高、韧性好等,能够满足不同领域对材料性能的要求。
其次,高分子材料具有良好的化学稳定性。
高分子材料在常温下具有较好的耐腐蚀性能,能够在恶劣的环境条件下保持稳定。
这使得高分子材料在化工、航空航天等领域得到广泛应用,成为各种设备和器件的重要构成材料。
另外,高分子材料还具有良好的加工性能。
高分子材料可以通过热压、注塑、挤出等多种加工工艺进行成型,使其在制造过程中具有较大的灵活性和可塑性。
这一特点使得高分子材料成为现代工业制造中不可或缺的材料之一。
此外,高分子材料还具有良好的绝缘性能和隔热性能。
这使得高分子材料在电子电器、建筑等领域得到广泛应用,能够有效地保护设备和建筑结构,提高其安全性和稳定性。
总的来说,高分子材料具有物理性能优异、化学稳定性好、加工性能良好、绝缘性能和隔热性能优秀等诸多优点,使其在各种领域得到广泛应用。
随着科学技术的不断进步,相信高分子材料将会在更多领域展现出其独特的优势,为人类社会的发展做出更大的贡献。
生活中的高分子材料
生活中的高分子材料
高分子材料在我们的生活中扮演着重要的角色。
从塑料制品到纤维材料,高分子材料的应用无处不在。
它们不仅改善了我们的生活质量,还对环境和可持续发展产生了积极影响。
首先,让我们来看看塑料制品。
塑料是一种常见的高分子材料,它们轻便、耐用且易于加工。
由于这些特性,塑料制品已经成为我们日常生活中不可或缺的一部分。
从食品包装到家用电器,从交通工具到医疗器械,塑料制品的应用范围非常广泛。
然而,随着人们对环境问题的关注不断增加,塑料制品的可持续性也成为了一个热门话题。
因此,科学家们正在努力研发可降解的塑料,以减少对环境的影响。
其次,让我们来谈谈纤维材料。
纤维材料是另一种常见的高分子材料,它们具有优异的柔软性和耐磨性。
纤维材料被广泛应用于服装、家居用品和工业制品中。
例如,合成纤维材料如涤纶和尼龙在服装行业中占据着重要地位,它们不仅具有良好的弹性和吸湿性,还能够耐受日常的磨损和清洗。
此外,纤维材料的可再生性也受到了越来越多的关注。
天然纤维材料如棉花和麻类在可持续发展方面具有独特的优势,因为它们可以通过农业种植来进行生产,减少了对非可再生资源的依赖。
总的来说,高分子材料在我们的生活中扮演着不可或缺的角色。
它们不仅为我们提供了方便和舒适,还对环境和可持续发展产生了积极影响。
随着科学技术的不断进步,相信高分子材料的应用领域将会更加广泛,对我们的生活产生更多的积极影响。
现代高分子材料综述(非常好!!)
现代高分子材料综述材料学王晓梅学号:112408摘要高分子材料作为新时期的全新全能型材料,是现代人类发展的重要支柱,是发展高新科技的基础与先导,高分子材料的应用将会使人类支配改造自然的能力和社会生产力的发展带到一个新的水平,对人类的发展将会出现前所未有的促进。
本文将从高分子材料的定义、主要种类、应用和以塑料为例介绍与人类生活息息相关的高分子材料的相关常识。
本文综述了各类高分子材料的研究及发展,主要论述了导电高分子材料、功能高分子材料、工程高分子材料、复合高分子材料以及生物高分子材料等应用领域。
前言高分子材料是由相对分子质量比一般有机化合物高得多的高分子化合物为主要成分制成的物质。
一般有机化合物的相对分子质量只有几十到几百,高分子化合物是通过小分子单体聚合而成的相对分子质量高达上万甚至上百万的聚合物。
巨大的分子质量赋予这类有机高分子以崭新的物理、化学性质:可以压延成膜;可以纺制成纤维;可以挤铸或模压成各种形状的构件;可以产生强大的粘结能力;可以产生巨大的弹性形变;并具有质轻、绝缘、高强、耐热、耐腐蚀、自润滑等许多独特的性能。
于是人们将它制成塑料、橡胶、纤维、复合材料、胶粘剂、涂料等一系列性能优异、丰富多彩的制品,使其成为当今工农业生产各部门、科学研究各领域、人类衣食住行各个环节不可缺少、无法替代的材料[1]。
由于高分子化学反应和合成方法对高分子化学学科发展的推动,促进了高分子合成材料的广泛应用。
同时,随着高分子材料的发展,纳米技术与生物技术之间的界限变得越来越小,并与更多的传统分子科学与技术相结合。
因此,我们相信,高分子技术的发展促使使各类高分子材料得到更加迅速的发展,推广和应用。
11 高分子导电材料与传统导电材料相比较,导电高分子材料具有许多独特的性能。
导电高聚物可用作雷达吸波材料、电磁屏蔽材料、抗静电材料等。
介绍了导电高分子材料的结构、种类及导电机理、合成方法、导电高分子材料的应用、研究现状及发展趋势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代高分子材料综述材料学王晓梅学号:112408摘要高分子材料作为新时期的全新全能型材料,是现代人类发展的重要支柱,是发展高新科技的基础与先导,高分子材料的应用将会使人类支配改造自然的能力和社会生产力的发展带到一个新的水平,对人类的发展将会出现前所未有的促进。
本文将从高分子材料的定义、主要种类、应用和以塑料为例介绍与人类生活息息相关的高分子材料的相关常识。
本文综述了各类高分子材料的研究及发展,主要论述了导电高分子材料、功能高分子材料、工程高分子材料、复合高分子材料以及生物高分子材料等应用领域。
前言高分子材料是由相对分子质量比一般有机化合物高得多的高分子化合物为主要成分制成的物质。
一般有机化合物的相对分子质量只有几十到几百,高分子化合物是通过小分子单体聚合而成的相对分子质量高达上万甚至上百万的聚合物。
巨大的分子质量赋予这类有机高分子以崭新的物理、化学性质:可以压延成膜;可以纺制成纤维;可以挤铸或模压成各种形状的构件;可以产生强大的粘结能力;可以产生巨大的弹性形变;并具有质轻、绝缘、高强、耐热、耐腐蚀、自润滑等许多独特的性能。
于是人们将它制成塑料、橡胶、纤维、复合材料、胶粘剂、涂料等一系列性能优异、丰富多彩的制品,使其成为当今工农业生产各部门、科学研究各领域、人类衣食住行各个环节不可缺少、无法替代的材料[1]。
由于高分子化学反应和合成方法对高分子化学学科发展的推动,促进了高分子合成材料的广泛应用。
同时,随着高分子材料的发展,纳米技术与生物技术之间的界限变得越来越小,并与更多的传统分子科学与技术相结合。
因此,我们相信,高分子技术的发展促使使各类高分子材料得到更加迅速的发展,推广和应用。
11 高分子导电材料与传统导电材料相比较,导电高分子材料具有许多独特的性能。
导电高聚物可用作雷达吸波材料、电磁屏蔽材料、抗静电材料等。
介绍了导电高分子材料的结构、种类及导电机理、合成方法、导电高分子材料的应用、研究现状及发展趋势。
1976 年美国宾夕法尼亚大学的化学家Mac Diarmid 领导的研究小组首次发现掺杂后的聚乙炔(Polyacetylene ,简称PA)具有类似金属的导电性以后,人们对共轭聚合物的结构和认识不断深入和提高,新型交叉学科——导电高分子领域诞生了。
在随后的研究中科研工作者又逐步发现了聚吡咯、聚对苯撑、聚苯硫醚、聚噻吩、聚对苯撑乙烯撑、聚苯胺等导电高分子。
导电高分子特殊的结构和优异的物理化学性能使它成为材料科学的研究热点,作为不可替代的新兴基础有机功能材料之一,导电高分子材料在能源、光电子器件、信息、传感器、分子导线和分子器件,以及电磁屏蔽、金属防腐和隐身技术上有着广泛、诱人的应用前景。
到目前为止,导电高分子在分子设计和材料合成、掺杂方法和掺杂机理、可溶性和加工性、导电机理、光、电、磁等物理性能及相关机理以及技术上的应用探索都已取得重要的研究进展。
1.1 导电高分子材料的构成根据加入基体聚合物中导电成分的不同,复合型导电高分子材料可分为两类:填充复合型导电高分子材料和共混复合型导电高分子材料。
填充复合型导电高分子材料一般是将抗静电剂及各种导电材料加入到基体聚合物中复合而成。
抗静电剂多为极性或离子型表面活性剂;导电材料主要有碳系材料、金属系材料、金属氧化物系材料、各种导电金属盐类物质以及复合填料等。
共混复合型导电高分子材料是将亲水性聚合物或结构型导电高分子与基体高分子进行共混,它们是抗静电材料和电磁屏蔽材料的主要用料,其用途十分广泛。
1.2 导电机理高分子导电复合材料的导电机理比较复杂。
自从导电高分子复合材料出现后,人们对其导电机理进行了广泛的研究,目前比较流行的有三个理论:一是宏观的渗流理论,即导电通道学说;二是微观量子力学的隧道效应理论;三是微观量子力学的场致发射效应理论。
21.2.1 结构型导电聚合物导电机理物质的导电过程是载流子在电场作用下定向移动的过程。
高分子聚合物导电必须具备两个条件: (1) 要能产生足够数量的载流子(电子、空穴或离子等);(2) 大分子链内和链间要能够形成导电通道。
在离子型导电高分子材料中,聚醚、聚酯等的大分子链呈螺旋体空间结构,与其配位络合的阳离子在大分子链段运动作用下,就能够在螺旋孔道内通过空位迁移(“自由体积模型”) ; 或被大分子“溶剂化”了的阴阳离子同时在大分子链的空隙间跃迁扩散(“动力学扩散理论”) 。
对于电子型导电高分子材料,作为主体的高分子聚合物大多为共轭体系(至少是不饱和键体系) ,长链中的π键电子较为活泼,特别是与掺杂剂形成电荷转移络合物后,容易从轨道上逃逸出来形成自由电子。
大分子链内与链间π电子轨道重叠交盖所形成的导电能带为载流子的转移和跃迁提供了通道。
在外加能量和大分子链振动的推动下,便可传导电流。
1.2.2 复合型导电高分子材料(1)填充型材料的导电机理目前,关于复合型导电高分子材料导电机理研究报道的较多,人们从多方面进行了广泛深入的研究,建立了许多数学模型或物理模型。
目前比较流行的有3 种理论: (1)是宏观渗流理论,即导电通路学说; (2)是微观量子力学隧道效应理论; (3)是微观量子力学场致发射效应理论。
1) 渗流理论:这种观点认为,当复合体系中导电填料用量增加到某一临界用量时,体系电阻率急剧下降,体系电阻率—导电填料用量曲线出现一个狭窄的突变区域,在此区域内导电填料的任何微小变化都会导致电阻率显著变化,这种现象称为渗滤现象,导电填料的临界用量通常称为渗滤值。
图1 高分子导电复合材料的体积电阻率与导电填料含量的关系32) 隧道效应理论:该理论认为复合体系在导电填料用量较低时,导电粒子间距较大,混合物微观结构中尚未形成导电网络通道,此时仍具有导电现象。
这是因为此时高分子材料的导电性是由热振动电子在导电粒子之间的迁移造成的,导电电流是导电粒子间间隙宽度的指数函数。
隧道效应现象几乎仅仅发生在距离很接近的导电粒子之间,间隙过大的导电粒子之间没有电流传导行为。
3) 场致发射效应理论:该理论认为,当复合体系中导电填料用量较低,导电粒子间距较大、导电粒子内部电场很强时,电子将有很大几率飞跃树脂界面势垒跃迁到相邻电子离子上,产生场致发射电流,形成导电网络。
图2 是高分子导电复合材料的等效电路模型综上所述,导电通路机理、隧道效应机理和场致发射机理在复合材料中是同时存在的,但在不同条件下可以某一种或某两种为主。
在临界体积以上材料以导电通路为主要传导方式,即以渗流理论表现为主导;若导电填料用量较低和外加电压较小时,孤立粒子或聚集体的间隙较大而无法参与导电,热振动受激电子发生跃迁,形成较大隧道电流;填料浓度较低、粒子间内部电场很强时,基体隔层相当于内部分布电容,场致发射机理更为显著。
(2)共混复合型导电机理共混复合型导电高分子材料是将亲水性聚合物或结构型导电高分子与基体高分子进行共混,这类结构型导电高分子材料主要包括聚苯胺、聚乙炔、聚毗咤、聚对苯撑、聚噬吩、聚喳琳、聚对苯硫醚等共扼性高分子。
这些高分子由于结构中含有共扼双键,二电子可以在分子链上自由运动,载流子迁移率很大,因而这类材料具有高电导率。
从根本上讲,这类导电高分子材料本身就可以作为抗静电材料,但由于这类高分子一般分子刚性大、难溶难熔、成型困难、易氧化和稳定性差,无法直接单独应用,因而一般只是作为导电填料,与其它高分子基体进行共混制成。
所以起导电机理可以归结为构型新导电高分子类。
41.3 电磁屏蔽效能分析由于高分子导电复合材料具有成型加工和屏蔽一次完成的特点,从而可以大大缩短工艺过程,降低生产成本,便于大批量生产,提高产品的可靠性,因此是目前最有发展前途的新型电磁屏蔽材料。
高分子导电复合材料的电磁屏蔽效能主要受导电填料、高分子基体以及制备工艺的影响。
1.3.1 导电填料的影响电磁屏蔽用高分子导电复合材料的导电填料主要是一些导电性能优良的金属粉末、金属片或金属纤维,镀金属的碳纤维、石墨纤维、云母以及碳黑和石墨等非金属填料。
仅从单一物质的导电性而言,使用金属粉末或金属片当然是既有效又经济的选择。
当需要特别高的电导率时,最好选用银粉或金粉作导电填料。
但由于银粉或金粉价格昂贵,仅限于某些特殊场合下使用。
铜是优良的导电体,且价格适中,但它容易被氧化而降低导电性能。
为了解决这一问题,通常采用抗氧化剂对铜粉进行表面处理,抗氧化剂包括有机胺、有机硅、有机钛、有机磷等化合物;或用较不活泼的金属包覆铜粉表面,如在铜粉上敷一层镍或在铜粉上镀银,或采用铜粉和镍、银混合使用,均可达到理想的屏蔽效能。
铝片则具有密度小、颜色浅、价格低等优点,并具有较大的长径比,容易在高分子基体中形成导电网络,但是铝的导电性不太高。
导电填料的形态(尤其是长径比)对高分子导电复合材料的屏蔽效能有显著的影响。
长径比越大,则导电性越好。
此外,导电填料的表面形态以及在高分子基体中的分散状况也会影响复合材料的屏蔽效能。
若采用多孔质、比表面大以及分散性好的导电填料,更容易获得较好的屏蔽效能。
在高分子导电复合材料中,当导电填料用量较少时,填料分散在高分子基体中互相接触很少,故导电性较差。
随着导电填料用量的增加,填料之间相互接触的机会增多,使导电性逐渐提高。
当导电填料达到“渗滤阈值”时,导电通路就会形成。
有时为了达到一定的屏蔽效能,导电填料的填充量必须达到一定的要求,但将会导致复合材料力学性能的下降。
1.3.2 高分子基体的影响高分子作为复合材料的连续相和粘结基体,其种类和结构对材料的屏蔽效能也有明显的影响。
一般说来,以不同种类高分子材料为基体制成的复合材料,随着高分子材料表面张力的减小,其导电性能和电磁屏蔽效能相应提高;而对于同5一种类高分子材料为基体的复合材料,其导电性能随高分子黏度的降低而升高。
高分子基体的结晶度越大,则导电性能越好。
这可以理解为,导电填料主要分布在高分子基体的非晶区,所以当结晶相比例增大时,在填料用量相同的情况下,高分子非晶区中导电填料的含量就相对增大,导致形成导电通路的几率加大。
1.3.3 制备工艺的影响高分子导电复合材料的导电性能和屏蔽效能很大程度上取决于导电填料与高分子基体的分散状况和导电结构的形成过程。
为保证各组分充分混合,复合体系必须进行混炼,但混炼往往又会破坏导电填料的组织结构,从而影响导电性能。
因此,选择合理的混炼工艺参数和混炼设备的技术参数对高分子导电复合材料具备良好的电磁屏蔽效能十分关键。
影响高分子导电复合材料电磁屏蔽效能的因素是多种多样的。
除上述因素外,复合体系中的各种助剂、成型加工模具、使用环境及使用时间等都会在一定程度上影响复合材料的屏蔽效能[3- 4]。
1.4导电高分子材料的应用1.4.1雷达吸波材料与传统材料相比优点:电磁参量可控,通过改变导电聚合物的主链结构、掺杂度、对阴离子的尺寸、制备方法等来调节导电聚合物的电磁参量,以满足实际要求。