用MATLAB实现线性卷积运算
卷积运算的matlab命令及其参数设置规则
卷积运算是数字信号处理和图像处理中常用的一种运算方式,它在图像滤波、特征提取等领域中发挥着重要作用。
在Matlab中,卷积运算可以通过一些内置的函数实现,同时可以通过设置不同的参数来实现不同的卷积操作。
本文将结合实际案例,介绍卷积运算在Matlab 中的常用命令及其参数设置规则。
一、卷积运算的基本概念在数字信号处理和图像处理中,卷积运算是一种重要的数学运算。
它通常用于图像滤波、特征提取等方面。
卷积运算的基本原理是将一个函数与另一个函数的翻转及平移进行积分。
在离散情况下,卷积运算可以用离散的形式来表示如下:\[y[n] = \sum_{k=-\infty}^{\infty} x[k] \cdot h[n-k]\]其中,\(x[k]\)和\(h[n]\)分别代表输入信号和卷积核,\(y[n]\)代表卷积运算的输出结果。
二、Matlab中的卷积运算函数在Matlab中,可以使用conv函数来进行一维和二维的卷积运算。
conv函数的基本语法如下:```y = conv(x, h)```其中,x和h分别代表输入信号和卷积核,y代表卷积运算的输出结果。
这里需要注意的是,x和h的长度必须是有限的,而且二者不能交换位置。
在进行二维卷积运算时,可以使用conv2函数。
conv2函数的基本语法如下:```y = conv2(x, h)```其中,x和h分别代表输入图像和卷积核,y代表二维卷积运算的输出结果。
三、卷积运算参数的设置规则在进行卷积运算时,需要注意一些参数的设置规则,以确保卷积运算的正确性和有效性。
以下是一些常见的参数设置规则:1. 卷积核的选择:卷积核的选择对卷积运算的结果影响很大。
通常情况下,可以根据具体的应用需求来选择合适的卷积核,例如高斯滤波、边缘检测等。
2. 边界处理:在进行卷积运算时,往往需要考虑图像或信号的边界处理。
常见的处理方式包括零填充、边界拓展、周期延拓等。
3. 步长和填充:在进行卷积运算时,可以通过设置步长和填充参数来控制输出结果的大小。
matlab卷积实验的内容
matlab卷积实验的内容卷积是数学和信号处理领域中常用的运算方法,可以用于信号滤波、图像处理、模拟电路等方面。
在Matlab中,卷积是一个常见的操作,可以利用卷积函数对信号进行处理。
在Matlab中,可以使用conv函数进行卷积运算。
conv函数的基本语法是:y = conv(x1, x2)其中x1和x2是要进行卷积运算的两个向量,y是卷积运算的结果。
卷积运算的结果长度是两个向量长度之和减1。
在进行卷积运算之前,我们先来了解一下卷积的原理。
数学上,卷积运算可以通过对两个函数进行积分得到。
对于离散信号来说,卷积运算可以通过对两个向量进行逐点相乘然后求和得到。
在Matlab中,我们可以通过创建两个向量来进行卷积运算的实验。
下面是一个简单的示例:x1 = [1 2 3 4];x2 = [0.1 0.2 0.3 0.4];y = conv(x1, x2)运行上述代码得到的结果是:y = [0.1 0.4 0.8 1.3 1.6 1.2]可以看到,卷积运算的结果是一个长度为6的向量。
这个结果的计算过程是:0.1*1 + 0.2*2 + 0.3*3 + 0.4*4 = 0.1 + 0.4 + 0.9 + 1.6 = 1.2。
除了使用conv函数外,Matlab还提供了一个更高级的卷积函数,即conv2函数。
conv2函数可以进行二维卷积运算,常用于图像处理。
假设我们有一个2x2的图像矩阵和一个3x3的卷积核,我们可以使用conv2函数对图像进行卷积运算。
下面是一个简单的示例:image = [1 2; 3 4];kernel = [0.1 0.2 0.3; 0.4 0.5 0.6; 0.7 0.8 0.9];result = conv2(image, kernel)运行上述代码得到的结果是:result = [4.0000 5.8000 7.0000; 7.6000 11.0000 9.8000;7.3000 10.2000 9.2000]可以看到,卷积运算的结果是一个3x3的矩阵。
用matlab计算序列卷积和并绘图
(一)实验目的:学会用MATLAB 对信号与系统分析的方法,理解离散序列卷积和的计算对进行离散信号与系统分析的重要性。
(二)实验原理:1、离散时间序列f1(k)和f2(k)的卷积和定义:f(k)=f1(k)*f2(k)=∑∞-∞=-•i i k f i f )(2)(12、在离散信号与系统分析中有两个与卷积和相关的重要结论:a 、f(k)=∑∞-∞=-•i i k i f )()(δ=f(k)* δ(k)即离散序列可分解为一系列幅度由f(k)决定的单位序列δ(k)及其平移序列之积。
b 、对线性时不变系统,设其输入序列为f(k),单位响应为h(k),其零状态响应为y(k),则有:y(k)=∑∞-∞=-•i i k h i f )()(3、上机:conv.m 用来实现两个离散序列的线性卷积。
其调用格式是:y=conv(x,h)若x 的长度为N ,h 的长度为M ,则y 的长度L=N+M-1。
(三)实验内容1、题一:令x(n)= {}5,4,3,2,1,h(n)={}246326,,,,,,y(n)=x(n)*h(n),求y(n)。
要求用subplot 和stem 画出x(n),h(n),y(n)与n 的离散序列图形。
源程序: N=5; M=6; L=N+M-1; x=[1,2,3,4,5];h=[6,2,3,6,4,2]; y=conv(x,h); nx=0:N-1; nh=0:M-1; ny=0:L-1;subplot(131); stem(nx,x,'*k'); xlabel('n'); ylabel('x(n)'); grid on ;subplot(132); stem(nh,h,'*k'); xlabel('n'); ylabel('h(n)'); grid on ;subplot(133); stem(ny,y,'*k'); xlabel('n'); ylabel('y(n)'); grid on ; 实验结果:nx (n)nh (n)ny (n )分析实验结果:根据实验结果分析可知,实验所得的数值跟x (n )与y (n )所卷积的结果相同。
用matlab验证卷积定理
⽤matlab验证卷积定理
⽤matlab验证卷积定理
卷积定理
⼀、实验⽬的
通过本实验,验证卷积定理,掌握利⽤DFT和FFT计算线性卷积的⽅法。
⼆、实验原理
时域圆周卷积在频域上相当于两序列DFT的相乘,因⽽可以采⽤FFT的算
法来计算圆周卷积,当满⾜
121
L N N
≥+-时,线性卷积等于圆周卷积,因此可利⽤FFT计算线性卷积。
三、实验内容和步骤
1.给定离散信号()
x n和()
h n,⽤图解法求出两者的线性卷积和圆周卷积;2.编写程序计算线性卷积和圆周卷积;
3.⽐较不同列长时的圆周卷积与线性卷积的结果,分析原因。
四、实验设备
计算机、Matlab软件
五、实验报告要求
1.整理好经过运⾏并证明是正确的程序,并且加上详细的注释。
2.给出笔算和机算结果对照表,⽐较不同列长时的圆周卷积与线性卷积的结果对照,作出原因分析报告。
3.结出⽤DFT计算线性卷积的⽅法。
matlab conv函数用法
matlab conv函数用法Matlab的conv函数是一种用于线性系统的基本运算,它的用法十分广泛。
本文将讨论在matlab中使用conv函数的方法,并详细介绍其主要用途及其应用现状。
一、matlab中conv函数的定义conv函数是Matlab中一种重要的数字信号处理函数,它用于计算两个线性系统之间的时域卷积。
在数学上,con v函数可以表示为: $$c(n) = sum_{m=-infty}^{m=infty}f(m)g(n-m)$$ 其中,c(n)是二者的卷积,f(m)和g(n-m)是被卷积的两个线性系统,n是时间变量。
二、matlab中conv函数的用法在matlab中,可以通过conv函数来计算两个线性系统之间的卷积。
.conv函数可以接受两个输入参数,即f和g,其中f是被卷积的一个矢量或矩阵,而g是第二个被卷积的矢量或矩阵。
它返回结果C,即卷积之后得到的结果。
下面是一个例子,展示如何使用conv函数计算两个矢量之间的卷积:f=[1 2 3 4];g=[-1 -2 -3 -4];c=conv(f,g);disp(c);上述代码的运行结果为:[-1, -4, -10, -20, -25, -24, -16]从上面的结果可以看出,经过conv函数计算后,两个输入的矢量得到的卷积结果是一个长度为7的矢量。
三、matlab中conv函数的主要用途1.积滤波:卷积滤波是数字信号处理中重要的算法,它将一个信号限定在一定的时间长度内,以滤除一些不需要的噪音或干扰信号,从而使得信号变得更加明确有效。
可以用conv函数来实现卷积滤波器。
2.字图像处理:卷积运算在数字图像处理中也是一种重要的处理技术,它可以用来改变图像的对比度、模糊度等。
可以使用conv函数来实现图像的多种变换。
3. 信号分析:卷积运算在信号分析中也是一种常用的技术,可以用来分析信号的谱图或求取信号的参数。
可以使用conv函数来实现这类任务。
matlab卷积函数
matlab卷积函数在Matlab中,卷积是一种常用的信号处理操作,它用于将两个函数(或向量)合并到一起。
Matlab提供了多个函数来执行卷积操作,其中最常用的是conv和conv2函数。
1. conv函数conv函数可用于一维和多维信号的卷积操作。
它的基本语法如下:y = conv(x, h)其中,x是输入信号,h是卷积核或输入信号的反转版本。
返回值y 是卷积结果。
-对于一维信号:例如,我们有一个包含N个元素的向量x和一个包含M个元素的向量h,则卷积操作可以用以下代码实现:y = conv(x, h)该代码将向量x和h卷积在一起,并将结果存储在向量y中。
-对于二维信号:对于二维信号,conv函数的使用与一维信号类似,只是输入和输出的维数不同。
我们可以使用以下代码将一个二维矩阵convolve与另一个二维矩阵h:y = conv2(x, h)2. conv2函数conv2函数也用于一维和二维信号的卷积操作,但它提供了更多的选项和灵活性。
其基本语法如下:y = conv2(x, h)其中,x是输入信号,h是卷积核或输入信号的反转版本。
返回值y 是卷积结果。
-对于一维信号:该函数的用法与conv函数类似,只是二者返回结果的维数不同。
conv2函数的结果将是一个大小为(N+M-1)的向量,其中N和M分别是输入信号x和卷积核h的长度。
-对于二维信号:对于二维信号,我们可以使用conv2函数对两个二维矩阵x和h进行卷积操作。
该函数将返回一个与输入矩阵尺寸相关的矩阵,其中包含了卷积的结果。
y = conv2(x, h, shape)shape参数是一个字符串,用于指定输出矩阵的维数。
可以选择的选项包括:- 'full':(默认)输出矩阵的大小将是(N+M-1)。
- 'same':输出矩阵的大小将与输入矩阵相同,即N。
- 'valid':在输出矩阵中,有效的卷积元素将保留,其中无需使用输入矩阵外的任何元素。
matlab卷积程序
matlab卷积程序
在MATLAB中,你可以使用conv函数来进行卷积运算。
下面是一个简单的示例,其中输入信号x和冲激响应h都被定义为向量。
matlab复制代码:
% 定义输入信号x和冲激响应h
x = [1 2 3 4];
h = [0.5 0.5];
% 使用conv函数进行卷积
y = conv(x, h);
% 打印结果
disp(y);
在这个例子中,conv函数将输入信号x和冲激响应h进行卷积,并将结果存储在向量y中。
然后,disp函数用于打印向量y的值。
请注意,卷积运算的结果通常比输入信号和冲激响应都要长。
在上面的例子中,输入信号x的长度为4,冲激响应h 的长度为2,而卷积结果y的长度为5。
这是因为卷积运算涉及到将h翻转并与x的每个元素相乘,然后将这些乘积相
加。
因此,卷积结果的长度通常是输入信号和冲激响应长度之和减去1。
对于二维卷积(如在图像处理中),你可以使用conv2函数。
这个函数的工作方式与conv函数类似,但它接受二维矩阵作为输入,并返回一个二维矩阵作为输出。
matlab实现线性卷积和循环卷积
编号:数字信号处理实训 (论文)说明书题目:用matlab实现两信号的卷积院(系):应用科技学院专业:电子信息工程学生姓名:***学号: ********** 指导教师:严素清童有为纪元法2011 年 6 月29日摘要本文讲述的是运用matlab软件编写线性卷积和循环卷积,运行程序并得到正确结果,附上运行结果图让大家参照对比。
MATLAB是一款在数学类科技应用软件中特别是在数值计算方面首屈一指的软件,它可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。
而线性卷积和循环卷积在工程上的应用亦非常广泛,在Matlab软件处理下,实现任意两个序列的线性和循环卷积对于工程上的辅助是相当重要的。
卷积关系最重要的一种情况,就是在信号与线性系统或数字信号处理中的卷积定理。
利用该定理,可以将时间域或空间域中的卷积运算等价为频率域的相乘运算,从而利用FFT等快速算法,实现有效的计算,节省运算代价。
本文从线性卷积和循环的定义出发,分析其运算原理以及相关的公式、程序,着重介绍并分析了卷积的运算过程,让大家明白什么是卷积。
程序运行之后得到正确的结果,将运行后正确的波形图图放在本次论文中让大家直观的做比较。
关键词:Matlab;线性卷积;循环卷积;波形图;正确AbstractThis is about using matlab software linear convolution and cyclic convolution, operation procedure and get the right result, enclosed operation result diagram let everybody reference MATLAB is a type of technology in applications of mathematics, especially in numerical calculation of the leading software, which can be matrix calculation, and data mapping function, the realization of algorithms, creation of user interface, connected to other procedures, such as programming languages, the main application in engineering computing, control design, signal processing and communications, image processing, signal detection, financial modeling in areas such as design and analysis. And linear convolution in the application of engineering has a very wide range of software in Matlab, the realization of any two sequences of linear convolution support for projects is very important. Convolution relationship between the most important case, that is linear in the signal and digital signal processing system or the convolution theorem. Use of the theorem can be time-domain or space domain to the convolution operation in frequency domain equivalent of the multiplication operation, thus the use of FFT and other fast algorithms, the calculation of effective, cost-saving operation.From linear convolution and circulation of the definition, analyzes its operation principle and relevant formula, procedures, and emphatically introduces and analyses the convolution operation process, let everyone know what convolution. After the program is running properly after operation, the results will be put on the right of the waveform Desmond tutu paper let everybody intuitive to compare.Key words:Matlab;Linear convolution;Circular convolution;Sequence;Wave;Right目录引言 (1)1 MATLAB软件简介 (1)1.1 MATLAB的优势 (1)1.2 MATLAB的组成 (3)2 卷积分析 (3)2.1 卷积的定义 (3)2.2 线性卷积的运算 (4)2.3 循环卷积的运算 (5)3 MATLAB设计线性卷积 (5)3.1 线性卷积的分析 (5)3.2 线性卷积的设计流程图 (6)3.3 线性卷积的MATLAB设计源程序 (6)4 MATLAB设计循环卷积 (8)4.1 循环卷积的分析 (8)4.2 根据循环卷积分析设计流程图 (8)4.3 根据循环卷积流程图设计matlab源代码 (10)5 总结 (11)谢辞 (12)参考文献 (13)引言在泛函分析中,卷积(卷积)、旋积或摺积(英语:Convolution)是通过两个函数f和g生成第三个函数的一种数学算子,表徵函数f与经过翻转和平移与g 的重叠部分的累积。
用MATLAB实现线性卷积运算北邮
信息及通信工程学院数字信号处理实验报告实验题目:用MATLAB实现线性卷积运算班级:2019211113姓名:学号:日期:2019年5月索引一、实验原理 (1)1、算法产生背景 (1)2、算法基本思想 (1)1)重叠相加法 (1)2)重叠保留法 (2)二、流程图设计 (3)1、重叠相加法 (3)2、重叠保留法 (3)三、MATLAB源代码 (3)1、重叠相加源码 (3)2、重叠保留源码 (4)四、实验结果与分析 (5)①调用CONV()计算 (5)②测试重叠相加算法 (5)③测试重叠保留算法 (5)五、讨论与总结 (6)1、算法效率分析: (6)A.重叠相加法 (6)B.重叠保留法 (7)C.调用conv() (8)D.综合对比分析 (8)2、故障和问题分析 (9)①分段问题 (9)②运算完整性问题 (9)③算法硬件实现 (10)一、实验原理1、算法产生背景DFT是连续傅里叶变换在时域和频域上都离散的形式,将时域信号的采样变换为在离散时间傅里叶变换频域的采样。
在形式上,变换两端(时域和频域上)的序列是有限长的。
DFT具备明确且合理的物理含义,适合应用于数字系统,同时可以方便地由计算机进行运算。
对于线性非移变离散系统,可由线性卷积表示时域输入输出关系,即通常采用循环卷积降低运算量,但实际中往往无法满足对信号处理的实时性要求。
因此,产生了重叠相加法和重叠保留法两种典型的算法,用以快速计算线性卷积,成为了DFT的一个重要应用。
2、算法基本思想1)重叠相加法重叠相加法是将待过滤的信号分割成长为N的若干段,如图1所示,每一段都可以和有限时宽单位取样响应作卷积,再将过滤后的各段重叠相加。
具体算法实现原理如图2所示,建立缓存序列,每次输入N点序列,通过计算x(n)和h(n) 的循环卷积实现线性卷积运算,将缓存的M-1点序列和卷积结果相加,并输出前N点作为计算结果,同时缓存后M-1点,如此循环,直至所有分段计算完毕,则输出序列y(n)为最终计算结果。
用matlab计算序列卷积和并绘图
(一)实验目的:学会用MATLAB 对信号与系统分析的方法,理解离散序列卷积和的计算对进行离散信号与系统分析的重要性。
(二)实验原理:1、离散时间序列f1(k)和f2(k)的卷积和定义:f(k)=f1(k)*f2(k)=∑∞-∞=-•i i k f i f )(2)(12、在离散信号与系统分析中有两个与卷积和相关的重要结论:a 、f(k)=∑∞-∞=-•i i k i f )()(δ=f(k)* δ(k)即离散序列可分解为一系列幅度由f(k)决定的单位序列δ(k)及其平移序列之积。
b 、对线性时不变系统,设其输入序列为f(k),单位响应为h(k),其零状态响应为y(k),则有:y(k)=∑∞-∞=-•i i k h i f )()(3、上机:conv.m 用来实现两个离散序列的线性卷积。
其调用格式是:y=conv(x,h)若x 的长度为N ,h 的长度为M ,则y 的长度L=N+M-1。
(三)实验内容1、题一:令x(n)= {}5,4,3,2,1,h(n)={}246326,,,,,,y(n)=x(n)*h(n),求y(n)。
要求用subplot 和stem 画出x(n),h(n),y(n)与n 的离散序列图形。
源程序: N=5; M=6; L=N+M-1; x=[1,2,3,4,5];h=[6,2,3,6,4,2]; y=conv(x,h); nx=0:N-1; nh=0:M-1; ny=0:L-1;subplot(131); stem(nx,x,'*k'); xlabel('n'); ylabel('x(n)'); grid on ;subplot(132); stem(nh,h,'*k'); xlabel('n'); ylabel('h(n)'); grid on ;subplot(133); stem(ny,y,'*k'); xlabel('n'); ylabel('y(n)'); grid on ; 实验结果:nx (n)nh (n)ny (n )分析实验结果:根据实验结果分析可知,实验所得的数值跟x (n )与y (n )所卷积的结果相同。
基于Matlab实现线性卷积等
线性卷积与循环卷积一、作品目的通过matlab的强大功能展示线性卷积和循环卷积过程中方方面面的计算和变化,让大家对这两种卷积有一个更加完美的认识。
二、概念简介卷积是一种典型的乘累加运算。
1.线性卷积线性卷积是对线性移不变(LSI)系统的输入输出关系的描述,体现系统的特性。
线性卷积的表达式为一般情况,现实的系统为因果系统,有k<0时,恒有h(k)=0,则若x(n)是一个N点序列,h(n)是一个m点序列,则卷积的结果y(n)将是L=N+M-1点的序列。
2.循环卷积设x1(n) 和x2(n) 是两个长度为L、M的有限长序列,它们的N 点循环卷积x3(n) 定义为:注意:其中N>=Max{L,M}如果其中一个序列(或者两个序列)的长度没有所求N点循环卷积的长度长,那在该序列后面补零,直到长度达到N。
三、设计思路及程序1. 线性卷积:(1)以输入序列x(n)=[5,4,3,2,1],脉冲响应h(n)=[1,1,1,1]为列进行演示。
(2)计算输入序列和脉冲响应的长度。
(3)画出补零后的输入序列和脉冲响应(4)设计一个循环,在循环中实现反转、位移和计算。
并画出反转后的图像变化和卷积图像,将每一次移位结果保存为fig图。
(5)最后将上一步所生成的所有fig图合起来生成一张gif图程序展示:clear;clc;close all;(1)(2)xn=[5,4,3,2,1];M=length(xn);%输入任意序列并计算长度Mhn=[1,1,1,1];N=length(hn);%输入任意脉冲响应并计算长度Nm=[-(M-1):M+N-2];%设置代换变量的范围以便x(m)翻转和移位(3)xm=[zeros(1,M-1),xn,zeros(1,N-1)];%补零以便与m对应绘图subplot(2,2,1);stem(m,xm,'r.');%%绘输入序列x(m) ylabel('x(m)'); grid on;title('(a)输入序列x(m)');hm=[zeros(1,M-1),hn,zeros(1,M-1)];%补零以便与m对应绘图subplot(2,2,2);stem(m,hm,'r.');%绘脉冲响应ylabel('h(m)'),grid,title('(b)脉冲响应h(m)');%%加标签网格和标题yn=zeros(1,2*M+N-2);%卷积输出初始化(4)for n=0:M+N-2;%逐个计算卷积输出if n==0;xmfy=[fliplr(xn),zeros(1,M+N-2)];%实现翻转else for k=M:-1:1;xmfy(k+n)=xmfy(k+n-1);endxmfy(n)=0;xmfy;%实现翻转后移位并显示endsubplot(2,2,3);stem(m,xmfy,'b.');%%绘制翻转移位序列ylabel('x(n-m)'), grid,title('(c)x(n-m)');%%加标签网格和标题yn(M+n)=sum(xmfy.*hm);%计算第n位输出并与m位置对应subplot(2,2,4);stem(m,yn,'r.');%%绘制卷积输出序列axis([min(m),max(m),min([0,conv(xn,hn)]),max([0,c onv(xn,hn)])]);%%控制绘图坐标ylabel('y(n)');grid on;title('(d)卷积输出y(n)');%%加标签网格和标题pause(.5);drawnow,picname=[num2str(n) '.fig'];%保存的文件名:如i=1时,picname=1.fighold on % 写后面的字时,不把前面的字冲掉saveas(gcf,picname)endyn;stepall=M+N-2;(5)for i=1:stepallpicname=[num2str(i) '.fig'];open(picname)set(gcf,'outerposition',get(0,'screensize'));% matlab窗口最大化frame=getframe(gcf);im=frame2im(frame);%制作gif文件,图像必须是index索引图像[I,map]=rgb2ind(im,20);if i==1imwrite(I,map,'xianxingjuanji.gif','gif', 'Loopcount',inf,'DelayTime',0.5);elseif i==stepallimwrite(I,map,'xianxingjuanji.gif','gif','WriteMo de','append','DelayTime',0.5);elseimwrite(I,map,'xianxingjuanji.gif','gif','WriteMode','append','DelayTime',0.5); end;close allend实验结果展示:2. 循环卷积(1)以输入序列x(n)=[5,4,3,2,1],脉冲响应h(n)=[1,1,1,1]为列进行演示。
线性卷积的FFT算法及其matlab实现
线性卷积的FFT算法线性卷积是求离散系统响应的主要方法之一,许多重要应用都建立在这一理论基础上,如卷积滤波等。
以前曾讨论了用循环卷积计算线性卷积的方法归纳如下:将长为N2的序列x(n)延长到L,补L-N2个零将长为N1的序列h(n)延长到L,补L-N1个零如果L≥N1+N2-1,则循环卷积与线性卷积相等,此时,可有FFT计算线性卷积,方法如下:a.计算X(k)=FFT[x(n)]b.求H(k)=FFT[h(n)]c.求Y(k)=H(k)Y(k) k=0~L-1d.求y(n)=IFFT[Y(k)] n=0~L-1可见,只要进行二次FFT,一次IFFT就可完成线性卷积计算。
计算表明,L>32时,上述计算线性卷积的方法比直接计算线卷积有明显的优越性,因此,也称上述循环卷积方法为快速卷积法。
上述结论适用于x(n),h(n)两序列长度比较接近或相等的情况,如果x(n),h(n)长度相差较多,例如,h(n)为某滤波器的单位脉冲响应,长度有限,用来处理一个很长的输入信号x(n),或者处理一个连续不断的信号,按上述方法,h(n)要补许多零再进行计算,计算量有很大的浪费,或者根本不能实现。
为了保持快速卷积法的优越性,可将x(n)分为许多段后处理,每小段的长与h(n)接近,其处理方法有两种:(1)重叠相加法——由分段卷积的各段相加构成总的卷积输出假定xi(n)表示图中第i段x(n)序列:则输入序列可表为:于是输出可分解为:其中由此表明,只要将x(n)的每一段分别与h(n)卷积,然后再将这些卷积结果相加起来就可得到输出序列,这样,每一段的卷积都可用上面讨论的快速卷积来计算。
先对h(n)及xi(n)补零,补到具有N点长度,N=N1+N2-1。
一般选择N=2M,然后用基2 FFT算法通过正反变换计算y i (n)=xi(n)*h(n)由于yi (n)的长度为N,而xi(n)的长度为N2,因此相邻两yi(n)序列必然有N-N2=N1-1点发生重叠,这个重叠部分应该相加起来才能构成最后的输出序列。
用MATLAB实现线性卷积运算 北邮
通常采用循环卷积降低运算量,但实际中往往无法满足对信号处理的实时性要求。因此,产生了重叠相加法和重叠保留法两种典型的算法,用以快速计算线性卷积,成为了DFT的一个重要应用。
2
重叠相加法是将待过滤的信号分割成长为N的若干段,如图1所示,每一段都可以和有限时宽单位取样响应作卷积,再将过滤后的各段重叠相加。
0.396206
0.246052
0.33387
10000000
59.93776
25.10466
3.897444
2.328122
3.231499
由上表和图1可以看出,随着数据规模增大,运算耗时呈线性增长,因而算法的时间复杂度为O(n),其中n为数据规模。因而重叠相加算法具有可行性和实用性。再从算法的空间复杂度来看,由于分配的缓存空间只由分段长度确定,不随数据规模的变化而变化,因而空间复杂度为O(1)。综合考察,重叠相加法具有较好的时间和空间复杂度。当数据量达到千万量级时,运算延时最少大约为2.328s,可运用于对信号的实时处理。
2
①分段问题
初始时没有考虑到分段长度的限制,导致用户输入分段小于系统冲击响应h(n)的长度时运算出错。后增加一个判断语句,当出现前述情况时,自动提升分段点数,问题解决。
②运算完整性问题
在写好代码之后的测试中,出现了一个十分奇怪的现象,即:当输入点数为1000、10000或者更大时卷积运算最后M-1个结果为0。反复测试发现,不仅1000和10000,只要是分段数N的倍数的输入点数都存在同样问题,而其他非倍数的输入,运算与conv()函数运算结果完全一致。通过设置断点,逐句调试,最终发现问题的症结,当输入序列为N的倍数时,最后的一段卷积实际上没有做。因而将循环次数增加1,将最后一次保留的M-1个点补全N个0,做最后一次分段卷积。修改后,测试结果正确。
matlab conv函数用法
matlab conv函数用法
matlab conv函数是一个强大的函数,它用来执行一维和多维信号和系统之间的线性卷积运算。
1. 函数语法:
conv(A,B) 或者conv(A,B,shape),其中A和B分别代表两个多元维数组,而shape表示结果形态的选项。
2. 函数功能:
(1)通过线性卷积来模拟可导的时间和频率域系统;
(2)计算有理函数的分子/分母形式;
(3)计算多项式和矩阵乘法;
(4)计算信号滤波器的过滤接口。
3. 函数参数:
(1)A:输入多元维数组;
(2)B:输入的第二个多元维数组;
(3)shape:表示规定结果的形态,可以是full,same,valid三个参数中的任意一个。
4. 返回值:
该函数的返回值为一个结果多元维数组,代表着多元维数组A与多
元维数组B之间的线性卷积结果。
5. 示例:
例1:使用conv函数从一组数字中求解卷积
>>a=[1,2,3]
>>b=[4,5,6]
>>conv(a,b)
ans =
4 13 28 27 18
例2:使用conv函数实现图像模糊
>>a=[1,2,3; 4,5,6; 7,8,9]
>>b =[1,1;1,1]
>>conv2(a,b)
ans =
5 7 9
7 10 13
9 13 17。