示波器观察动磁滞回线讲义

合集下载

磁滞回线实验讲义(用示波器观测铁磁材料的磁化曲线和磁滞曲线)

磁滞回线实验讲义(用示波器观测铁磁材料的磁化曲线和磁滞曲线)

4
图 6 DH4516N 型动态磁滞回线测试仪
2. 观测样品 1 在不同频率交流信号下的磁化曲线和磁滞回线。 (1)按图 5 所示的线路图接线。 注意:由于信号源、电阻R1和电容C的一端已经与地相连,所以不能与其他接线端相 连接。否则会短路信号源、UR或UC,从而无法正确做出实验。 标有红色箭头的线表示接线的方向,样品的更换通过换接接线位置来完成。 (2) 逆时针调节幅度调节旋钮到底, 使信号输出最小。 调示波器显示工作方式为 X-Y 方式, 示波器 X 输入和 Y 输入选择为 DC 方式。 (3)接通示波器和 DH4516N 型动态磁滞回线测试仪电源,适当调节示波器辉度,以 免荧光屏中心受损。预热 10 分钟后开始测量。 ( 4 )将示波器光点调至显示屏中心,调节实验仪频率调节旋钮,频率显示窗显示 50.00Hz。 (5)退磁。 ①单调增加励磁电流,即缓慢顺时针调节幅度调节旋钮,使示波器显示的磁滞回线上 B值缓慢增加,达到饱和。改变示波器上X、Y输入衰减器开关(偏转因数旋钮) ,并将他 们的微调旋钮顺时针旋转到底(此时偏转因数旋钮对应的数值处于校准状态) ,调节R1、
μ=
B μ0 H
通常铁磁材料的 μ 是温度 T、磁化场 H、频率 f 的函数。基本磁化曲线上的点与原点 的连线的斜率即为磁导率。 H → 0 时的磁导率称为起始磁导率,即
μi = lim
H →0
B μ0 H
7
(7)测绘动态磁滞回线 ①当示波器显示的磁滞回线的顶点在 X 方向上读数为(-5.00,+5.00)格时(即在饱 和状态) ,记录磁滞回线在 X 坐标分别为-5.00、-4.00、-3.00、-2.00、-1.50、-1.00、 -0.50、0.00、0.50、1.00、1.50、2.00、3.00、4.00、5.00 格时,相对应的 Y 坐标,将 数据填入表 2。 表2 序号 X/格 Y1/格 Y2/格 续表 序号 X/格 Y1/格 Y2/格 9 0.50 10 1.00 11 1.50 12 2.00 13 3.00 14 4.00 15 5.00 1 -5.00 2 -4.00 3 -3.00 4 -2.00 5 -1.50 6 -1.00 7 -0.05 8 0.00

[大学物理实验]用示波器测动态磁滞回线

[大学物理实验]用示波器测动态磁滞回线

[大学物理实验]用示波器测动态磁滞回线实验指导实验重点、难点:1.铁磁性物质的磁化过程及磁滞现象的理解2.测量动态磁滞回线的原理和方法3.实验过程中样品退磁的概念及操作方法。

辅助功能介绍:界面的右上角的功能显示框:当在普通实验状态下,显示实验实际用时、记录数据按钮、结束操作按钮;在考试状态下,显示考试所剩时间的倒计时、记录数据按钮、结束操作按钮、显示试卷按钮(考试状态下显示)。

右上角工具箱:各种使用工具,如计算器等。

右上角help和关闭按钮:help可以打开帮助文件,关闭按钮功能就是关闭实验。

实验仪器栏:存放实验所需的仪器,可以点击其中的仪器拖放至桌面,鼠标触及到仪器,实验信息提示栏会显示仪器的相关信息;仪器使用完后,则不允许拖动仪器栏中的仪器了。

提示信息栏:显示实验过程中的仪器信息,实验内容信息,仪器功能按钮信息等相关信息,按F1键可以获得更多帮助信息。

实验内容栏:显示实验名称和实验内容信息(多个实验内容依次列出),当前实验内容显示为黄色,其他实验内容为蓝色;可以通过单击实验内容进行实验内容之间的切换。

切换至新的实验内容后,实验桌上的仪器会重新按照当前实验内容进行初始化。

实验操作方法:1.测量动态磁滞回线和基本磁化曲线(1)启动实验程序,进入实验窗口。

(2)调节示波器a.打开示波器窗体。

点击开关按钮,打开示波器电源。

调节辉度旋钮、聚焦旋钮,并将校准信号接入示波器,分别对示波器CH1通道和CH2通道进行校准。

b.按下示波器X-Y按钮,调节示波器CH1通道和CH2通道的光点均与坐标原点重合。

(3)按照实验原理图进行线路连接连线方法:a.鼠标移动到仪器的接线柱上,按下鼠标左键不放。

b.移动鼠标到目标接线柱上c.松开鼠标左键,即完成一条连线(4)打开可调隔离变压器电源开关,调节输出电压到最大值,缓慢调节调压器的输出电压,使励磁电流从最大值600mA每次减小20mA,直至调为零,样品即被退磁。

(5)调节输出电压为80V,观察并记录示波器显示的饱和磁滞回线波形。

用示波器观察铁磁材料的动态磁滞回线_试验报告

用示波器观察铁磁材料的动态磁滞回线_试验报告

用示波器观察铁磁材料动态磁滞回线【摘要】铁磁材料按特性分硬磁和软磁两大类,铁磁材料的磁化曲线和磁滞回线,反映该材料的重要特性。

软磁材料的矫顽力H小于100A/m,常用做电机、电力变压器的铁芯和电 c子仪器中各种频率小型变压器的铁芯。

磁滞回线是反映铁磁材料磁性的重要特征曲线。

矫顽力和饱和磁感应强度B s、剩磁B r P等参数均可以从磁滞回线上获得.这些参数是铁磁材料研制、生产、应用是的重要依据。

【关键词】磁滞回线示波器电容电阻Bm Hm Br H【引言】铁磁物质的磁滞回线能够反映该物质的很多重要性质。

本实验主要运用示波器的X 输入端和Y 输入端在屏幕上显示的图形以及相关电阻箱(两个),电容(3-5微法),数字万用表,示波器,交流电源,互感器。

【实验原理】铁磁物质是一种性能特异,用途广泛的材料。

铁、钻、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。

其特征是在外磁场作用下能被强烈磁化,故磁导率〃很高。

另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B与磁化场强度H 之间的关系曲线。

图中的原点O表示磁化之前铁磁物质处于磁中性状态,即B=H = O,当磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段oa所示,继之B随H迅速增长,如ab所示,其后B的增长又趋缓慢,并当H增至H S时,B到达饱和值B S,0abs称为起始磁化曲线。

图1专业资料值得拥有表明,当磁场从H S 逐渐减小至零,磁感应强度B 并不沿起始磁化曲线恢复到“O”点,而是 沿另一条新的曲线SR 下降,比较线段OS 和SR 可知,H 减小8相应也减小,但B 的变化滞 后于H 的变化,这现象称为磁滞,磁滞的明显特征是当H = O 时,B 不为零,而保留剩磁Br 。

当磁场反向从0逐渐变至一H D 时,磁感应强度B 消失,说明要消除剩磁,必须施加反向 磁场,H D称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD 称为退磁曲线。

用示波器观察铁磁材料的动态磁滞回线_实验报告

用示波器观察铁磁材料的动态磁滞回线_实验报告

图1 起始磁化曲线和磁滞回线 用示波器观察铁磁材料动态磁滞回线【摘要】铁磁材料按特性分硬磁和软磁两大类,铁磁材料的磁化曲线和磁滞回线,反映该材料的重要特性。

软磁材料的矫顽力H c 小于100A/m ,常用做电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯。

磁滞回线是反映铁磁材料磁性的重要特征曲线。

矫顽力和饱和磁感应强度B s 、剩磁B r P 等参数均可以从磁滞回线上获得.这些参数是铁磁材料研制、生产、应用是的重要依据。

【关键词】磁滞回线 示波器 电容 电阻 Bm Hm Br H【引言】铁磁物质的磁滞回线能够反映该物质的很多重要性质。

本实验主要运用示波器的X 输入端和Y 输入端在屏幕上显示的图形以及相关数据,来分析形象磁滞回线的一些因素,并根据数据的处理得出动态磁滞回线的大致图线。

【实验目的】1. 认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。

2. 测定样品的H D 、B r 、B S 和(H m ·B m )等参数。

3. 测绘样品的磁滞回线,估算其磁滞损耗。

【实验仪器】电阻箱(两个),电容(3-5微法),数字万用表,示波器,交流电源,互感器。

【实验原理】铁磁物质是一种性能特异,用途广泛的材料。

铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。

其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。

另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B 与磁化场强度H 之间的关系曲线。

图中的原点O 表示磁化之前铁磁物质处于磁中性状态,即B =H =O ,当磁场H 从零开始增加时,磁感应强度B 随之缓慢上升,如线段oa 所示,继之B 随H 迅速增长,如ab 所示,其后B 的增长又趋缓慢,并当H 增至H S 时,B 到达饱和值B S ,oabs 称为起始磁化曲线。

图1表明,当磁场从H S 逐渐减小至零,磁感应强度B 并不沿起始磁化曲线恢复到“O ”点,而是沿另一条新的曲线SR 下降,比较线段OS 和SR 可知,H 减小B 相应也减小,但B 的变化滞后于H 的变化,这现象称为磁滞,磁滞的明显特征是当H =O 时,B 不为零,而保留剩磁Br 。

实验11 用示波器法观测磁滞回线

实验11  用示波器法观测磁滞回线

实验11 用示波器法观测磁滞回线【实验目的】学习使用示波器来观测铁氧体的磁滞回线,并从回线上定量的求出材料的几个主要磁参数H C (矫顽力)、Bm (饱和磁感应强度)、P (损耗)的数值。

【实验原理】磁性材料在交流磁场下的特性比起直流特性要复杂得多。

这是由于涡流和磁滞造成的。

在交流情况下的特点是用种种方法测得的磁性参数都不再象直流情况下那样仅仅取决于被测材料本身的磁性,而与材料的厚度、试样的尺寸以及测量时磁化电源频率等因素有关。

交流磁滞回线的测量是交流测量工作中的重要课题之一,它之所以需要,是因为交流回线最能反映在交变磁场作用下样品内部的磁状态的变化历程。

在交变磁场作用下的B -H 关系。

我们通称之为交流磁滞回线,下面我们介绍用普通示波器观测磁滞回线的原理。

示波器为我们提供了显示交流回线的最方便的条件,对示波器的水平和垂直偏向极分别输入与磁场H 和磁感B 成正比的电压,就可以在它的荧光屏上得到交流回线,如图1所示。

图1 交流回线的显示 【实验方法】从理论上讲,将V x 、V y 分别加到示波器的水平及垂直偏向极上即可得到B -H 曲线。

但由于除磁滞和涡流等因素造成的样品内部B 要对H 之间的滞后关系外,还存在讯号传输过程中产生不同的相移。

从而造成输出电压的相位移,那么在示波器上显示出的回线将不一定准确反映样品中的B 随H 的变化关系。

为了清除磁滞回线的失真,以得到真正无畸变的磁滞回线,我们在积分放大器的输出端引入一相移电路。

对于荧光屏上显示出的回线,我们还需要定量地进行测量,即要求得B m 、B r 、H m 、H c 和P 值的数值为此我们必须对回线进行定标。

定标的方法很多,我们实验中采用直接测量法。

将真空管毫伏表(或平均值电压表)按在样品次级线圈上测出感应电压的平均值V ev ,然后根据下式8282104104⨯=⨯=S fN V S fN V B r ev m (高斯)其中:f 为磁化电流的频率;N 2为次线圈的函数;S 为样品截面;V r 为mV 表读得的电压有效值。

用示波器观察铁磁材料的动态磁滞回线_实验报告

用示波器观察铁磁材料的动态磁滞回线_实验报告

图1 起始磁化曲线和磁滞回线 用示波器观察铁磁材料动态磁滞回线【摘要】铁磁材料按特性分硬磁和软磁两大类,铁磁材料的磁化曲线和磁滞回线,反映该材料的重要特性。

软磁材料的矫顽力H c 小于100A/m ,常用做电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯。

磁滞回线是反映铁磁材料磁性的重要特征曲线。

矫顽力和饱和磁感应强度B s 、剩磁B r P 等参数均可以从磁滞回线上获得.这些参数是铁磁材料研制、生产、应用是的重要依据。

【关键词】磁滞回线 示波器 电容 电阻 Bm Hm Br H【引言】铁磁物质的磁滞回线能够反映该物质的很多重要性质。

本实验主要运用示波器的X 输入端和Y 输入端在屏幕上显示的图形以及相关数据,来分析形象磁滞回线的一些因素,并根据数据的处理得出动态磁滞回线的大致图线。

【实验目的】1. 认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。

2. 测定样品的H D 、B r 、B S 和(H m ·B m )等参数。

3. 测绘样品的磁滞回线,估算其磁滞损耗。

【实验仪器】电阻箱(两个),电容(3-5微法),数字万用表,示波器,交流电源,互感器。

【实验原理】铁磁物质是一种性能特异,用途广泛的材料。

铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。

其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。

另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B 与磁化场强度H 之间的关系曲线。

图中的原点O 表示磁化之前铁磁物质处于磁中性状态,即B =H =O ,当磁场H 从零开始增加时,磁感应强度B 随之缓慢上升,如线段oa 所示,继之B 随H 迅速增长,如ab 所示,其后B 的增长又趋缓慢,并当H 增至H S 时,B 到达饱和值B S ,oabs 称为起始磁化曲线。

图1表明,当磁场从H S 逐渐减小至零,磁感应强度B 并不沿起始磁化曲线恢复到“O ”点,而是沿另一条新的曲线SR 下降,比较线段OS 和SR 可知,H 减小B 相应也减小,但B 的变化滞后于H 的变化,这现象称为磁滞,磁滞的明显特征是当H =O 时,B 不为零,而保留剩磁Br 。

实验名称用示波器观测铁磁材料的动态磁滞回线

实验名称用示波器观测铁磁材料的动态磁滞回线

实验名称用示波器观测铁磁材料的动态磁滞回线实验目的:1.了解铁磁性材料的特性,理解磁滞回线的概念及其重要性。

实验原理:铁磁性材料在磁场的作用下会发生磁化,当磁场的方向发生改变时,材料内部的磁场也会跟着发生变化,这种对磁场变化的响应就是磁滞回线。

动态磁滞回线测量是通过在交变磁场中对材料进行磁化和去磁化,观察磁能的变化,得到材料的动态磁滞回线。

在实验中,我们需要将铁磁材料放置在电磁铁中,当电磁铁通电时,材料内部会发生磁化,此时可以用示波器观察电磁铁的电流和磁场强度的变化。

通过改变电磁铁的电流方向,可以获得材料的正、反磁化过程中的电流和磁场强度的变化,从而得到材料的动态磁滞回线。

设电流的方向为i,磁场的方向为H,磁化强度的方向为M,则有:H=i*N/L (N为匝数,L为电磁铁长度)M=(N/L)*S*μ0*B (S为铁磁材料的截面积,μ0为真空磁导率,B为磁场强度)磁滞回线的求取需要通过反演法或者差分法进行处理。

实验步骤:1.将电磁铁连接上电源并通电,调节电源电压,使电流在2A左右。

2.打开示波器电源,将示波器的探头连接到电磁铁两端,并调节示波器的时间和节数以及Y轴灵敏度。

3.调整电源的极性,使电磁铁反向磁化。

4.从示波器读取动态磁滞回线的数据,使用反演法或差分法处理数据,得到磁滞回线。

5.调整电源的极性,使电磁铁沿正向磁化,重复步骤4,得到另外一半的磁滞回线。

6.将两部分磁滞回线拼接,得到完整的磁滞回线。

实验注意事项:1.在实验前充分检查电磁铁和示波器的连接,确保安全。

2.在实验时要注意调节电源电压,避免电流过大造成的伤害。

3.在拼接磁滞回线时,要注意两部分的数据点数量和数据点之间距离的一致性。

4.实验结束后要关掉电源和示波器,并注意清理现场。

实验结果分析:通过实验可以得到铁磁材料的动态磁滞回线,由此可以了解到材料在磁场作用下的特性,以及对材料的磁学性质作出相应的改进。

此外,通过磁滞回线的测量,还可以得到一些物理量的参数,如矫顽力、剩磁、饱和磁化强度等等。

物理实验报告2 用示波器测动态磁滞回线资料

物理实验报告2 用示波器测动态磁滞回线资料

物理实验报告2 用示波器测动态磁滞回线资料贝尔定律实验
一、实验目的
本实验旨在通过实验验证贝尔定律,熟练掌握用示波器测量动态磁滞回线资料的方法。

二、实验原理
贝尔定律是化学工程领域的重要定律之一,其核心内容是变化量和变化速率成反比。

它其实是热力学的原理,贝尔定律可以用来表述物体受到外力影响后,产生驱动力引起系
统动量发生变化。

即:动态磁滞系统输入为不变的空间磁场(或输入电流),输出动态磁
滞回线的时间位移与空间磁场的强度成反比关系。

三、实验设备和仪器
1、实验设备:动态磁滞仪
2、实验仪器:多功能数字示波器
四、实验过程及注意事项
1、准备实验: strict按照实验总线图,按照示意图把动态磁滞仪和多功能数字示波器连接上,用直流电源供给电源给仪器,调整示波器和动态磁滞仪正确。

2、测试:先仔细观察动态磁滞仪机芯,将实验电路调节到0 ohm的位置,然后用带
夹夹住实验机芯的短针接通输入端A,留空缺输出端G。

然后将示波器设置分频比例分频
器对应实验频率,在示波器上调整一组参数:最大触发边沿从上到下一致,偏移两分钟,
上边沿处在线屏幕中心线,用复位键重置,时间脉冲分布在时间屏体中心位置,然后选择
正脉冲触发。

五、结论
通过此次实验,我们验证了贝尔定律的有效性和真实性。

同时,我们还完成了用示波
器测量动态磁滞回线资料的实验,明白了实验中设备和仪器的使用原理和步骤,提高了实
验的操作能力和认知水平。

[大学物理实验]用示波器测动态磁滞回线

[大学物理实验]用示波器测动态磁滞回线

用示波器测动态磁滞回线(本文内容选自高等教育出版社《大学物理实验》)工程技术中有许多仪器设备,大的如发电机和变压器,小的如手表铁心和录音磁头等,都要用到铁磁材料。

而铁磁材料的磁化曲线和磁滞回线是该材料的重要特性。

本实验中用交流电对材料样品进行磁化,测得的B-H 曲线称为动态磁滞回线。

测量磁性材料动态磁滞回线方法较多,用示波器法测动态磁滞回线的方法具有直观、方便、迅速以及能够在不同磁化状态下(交变磁化及脉冲磁化等)进行观察和测量的独特优点,所以在实验中被广泛利用。

本实验要求掌握铁磁材料磁滞回线的概念和用示波器测量动态磁滞回线的原理和方法。

试验原理1.铁磁材料的磁滞性质铁磁材料除了具有高的磁导率外,另一重要的特点就是磁滞。

当材料磁化时,磁感应强度B 不仅与当时的磁场强度H 有关,而且决定于磁化的历史情况,如图2.3.2-1所示。

曲线OA 表示铁磁材料从没有磁性开始磁化,磁感应强度B 随H 的增加而增加,称为磁化曲线。

当H 增加到某一值H S 时,B 几乎不再增加,说明磁化已达到饱和。

材料磁化后,如使H 减小,B 将不沿原路返回,而是沿另一条曲线ACA 下降。

当H 从-H S 增加时,B 将沿A ’C ’A 曲线到达A ,形成一闭合曲线称为磁滞回线,其中H=0时,r B B ,B r称为剩余磁感应强度。

要使磁感应强度B 为零,就必须加一反向磁场-H c , H c 称为矫顽力。

各种铁磁材料有不同的磁滞回线,主要区别在于矫顽力的大小,矫顽力大的称为硬磁材料,矫顽力小的称为软磁材料。

由于铁磁材料的磁滞特性,磁性材料所处的某一状态必然和它的历史有关。

为了使样品的磁特性能重复出现,也就是指所测得的基本磁化曲线都是由原始状态(H=0,B=0)开始,在测量前必须进行退磁,以消除样品中的剩余磁性。

2.示波器测量磁滞回线的原理图2.3.2-2所示为示波器测动态磁滞回线的原理电路。

将样品制成闭合的环形,然后均匀地绕以磁化线圈N 1及副线圈N 2,即所谓的罗兰环。

实验名称用示波器观测铁磁材料的动态磁滞回线

实验名称用示波器观测铁磁材料的动态磁滞回线

实验名称:用示波器观测铁磁材料的动态磁滞回线姓名学号班级桌号教室基础教学楼1201实验日期 20 年月日节一、实验目的:一、把握磁滞、磁滞回线、磁化曲线、大体磁化曲线、矫顽力、剩磁、和磁导率的的概念。

二、学会用示波法测绘大体磁化曲线和动态磁滞回线。

3、依照磁滞回线测定铁磁材料在某一频率下的饱和磁感应强度Bs、剩磁Br和矫顽力Hc的数值。

4、研究磁滞回线形状与频率的关系;并比较不同材料磁滞回线形状。

二、实验仪器1.双踪示波器2.DH4516C型磁滞回线测量仪评分此实验项目教材没有相应内容,请做实验前仔细阅读本实验报告!并携带计算器,否则实验无法按时完成!3、大体磁化曲线关于同一铁磁材料,设开始时呈去磁状态,依次选取磁化电流I1、I2、….I n,那么相应的磁场强度为H1、H2、….H3,在每一磁化电流下反复互换电流方向(称为磁锻炼),即在每一个选定的磁场值下,使其方向反复发生几回转变(如H1→- H1→H1→- H1….),如此操作的结果,是在每一个电流下都将取得一条磁滞回线,最后,可得一组慢慢增大的磁滞回线。

咱们把原点O和各个磁滞回线的极点a1、a2、….所连成的曲线称为铁磁材料的大体磁化曲线,如图3所示。

图3大体磁化曲线(二)利用示波器观测铁磁材料动态磁滞回线测量原理一、示波器显示B—H曲线原理线路由上述磁滞现象可知,要观测磁介质磁滞现象及相应的物理量,需要依照磁化进程测定材料内部的磁场强度和磁感应强度。

因此,测量装置必需具有三个功能:①提供使样品磁化的可调强度的磁场(磁化场)②可跟踪测量与磁化场有一一对应关系的样品的磁感应强度③可定量显示样品的磁化进程图4 磁滞回线的测量原理图图4是利用示波器观测铁磁材料动态磁滞回线测量装置原理图:第一将待测的铁磁物质制成一个环形样品,在样品上绕有原线圈即励磁线圈N1匝,由它提供磁化场;在样品上再绕副线2、示波器的定标为了定量研究磁化曲线、磁滞回线,必需对示波器定标。

用示波器测量铁磁材料的磁滞回线

用示波器测量铁磁材料的磁滞回线

2.定出磁滞回线各顶点所代表的和值(即H和B值),画出基本 磁化曲线,测出相应值。
图1
的磁场强度H成正比的电压加到“X轴输入”,把与相应磁感应
强度B成正比的电压 [实验原理]
uy
加到“Y轴输入”。
如图1所示,L为被测样品的平均长度(虚线框),N1、 N2分别为 初、次级匝数, R1、R2为电阻,C为电容。
当 路初定级律端可输算入得交磁流场电强压度Hu为 时就产生交变的磁化电流 i1 ,由安培环
Q 1
uC C C i2dt
当次级回路中所选元件R2和C很大,满足R2 ?
i2
2
R2
N2S R2
dB dt
1 时,可得到 C
i2
dQ dt
C
duc dt
(9)
C duc N2S dB
dt
R2 dt将(Βιβλιοθήκη )式两边积分,整理后可得到B的数值为
B
R2C N2S
uc
uc
N2S R2C
B
(10)
(10)式表明电容器C上的电压uc∝B, uc确能反映B。 式中:N2为次圾线圈匝数,S为环的截面积, R2和C都是固定值。
H N1i1
(1)
又因
i1
u1 R1
L
(2)
所以
H
( N1 ) L
u1 R1
N1 LR1
u1
u1
LR1 N1
H
由上式可知H∝u1,加到示波器X轴的电压u1= ux确能反映H。 交变的H在样品中产生交变的磁感应强度B,在次级线圈中产生感
应电动势:
2
N2S
dB dt
2 i2 R2 uc
式中:为次级电流,为电容C上的电压。

8+《测磁滞回线》——用示波器观测动态磁滞回线讲义(教705)

8+《测磁滞回线》——用示波器观测动态磁滞回线讲义(教705)

8+《测磁滞回线》——用示波器观测动态磁滞回线讲义(教705)用示波器观测动态磁滞回线【实验简介】磁性材料应用广泛,从常用的永久磁铁、变压器的铁芯到录音、录像、计算机存储用的磁带、磁盘等都采用磁性材料。

铁磁材料是最常见和最常用的磁性材料。

它分为硬磁和软磁两大类,其根本区别在于矫顽力的大小不同。

硬磁材料的剩磁和矫顽力大,因而磁化后,其磁感应强度可长久保持,适宜做永久磁铁。

软磁材料的矫顽力小,但磁导率和饱和磁感应强度大,容易磁化和去磁,故广泛用于电机、变压器、电器和仪表制造等工业部门。

磁滞回线和磁化曲线反映了铁磁材料的主要特征。

本实验将采用动态法测量磁滞回线。

【实验目的】1. 掌握利用示波器测量铁磁材料动态磁滞回线的方法;2. 了解铁磁性材料的动态磁化特性;13. 了解磁滞、磁滞回线和磁化曲线的概念,加深对饱和磁化强度、剩余磁化强度、矫顽力等物理量的理解。

【实验仪器与用具】磁特性综合测量实验仪(包括正弦波信号源,待测样品及绕组,积分电路所用的电阻和电容)。

双踪示波器,直流电源,电感,数字多用表。

磁特性综合测量实验仪主要技术指标如下:1)样品1:锰锌铁氧体,圆形罗兰环,磁滞损耗较小。

平均磁路长度l=0.130 m,铁芯实验样品截面积S=1.24×10-4 m2,线圈匝数:N=150匝,2N=150匝;3N=150匝。

12)样品2:EI型硅钢片,磁滞损耗较大。

平均磁路长度l=0.075 m,铁芯实验样品截面积S=1.20×10-4 m2,线圈匝数:N=150匝,1N=150匝;3N=150匝。

2233) 信号源的频率在20~200 Hz 间可调;可调标准电阻1R 、2R 均为无感交流电阻,1R 的调节范围为0.1~11 Ω;2R 的调节范围为1~110 kΩ。

标准电容有0.1 μF ~11 μF 可选。

【实验原理】1.铁磁材料的磁化特性把物体放在外磁场H 中,物体就会被磁化。

其内部产生磁场。

用示波器测量铁磁材料的磁化曲线和磁滞回线试验原理

用示波器测量铁磁材料的磁化曲线和磁滞回线试验原理

线圈N1中交变磁场H在铁磁材料中产生交变的磁感应 强度B,因此在线圈N2中产生感应电动势 2 ,其大小 用公式(2)表示
d dB 2 N2S dt dt
(2)
2 是线圈N2中产生的感应电动势
N 2 , S2 分别是线圈N2的匝数和截面积
当 R2
1 时, 2fC
I2
2
H
N1 Ux, LR1
B
的磁场强度H和磁感应强度B的值。有公式:
H0 H B , B0 nx ny
实验内容: 1、熟悉示波器各旋钮的作用,学会用示波器测量电压;
2、按照实验原理图正确连接线路,在确认调压器的输 出为0伏后,接通电源;
3、对被测样品退磁(将输出电压升至80V,再将电压由 80V逐渐降到0V); 4、用80V时的磁滞回线对示波器H轴、B轴进行定标(计 算示波器上每格对应的H0,B0的值)。 5、用列表法计算出不同电压下磁滞回线顶点对应的 B, H值,并在坐标纸上绘出基本磁化曲线和80伏时的磁 滞回线并计算80伏时Hm,Bm,Hc,Br的值。
该式表明了在交变磁场下,任一时刻输入到示波器上的 电压降Ux与磁场强度H 成正比。 输入到示波器y偏转板上的电压Uy: 为了得到和铁磁材料中的瞬时磁感应强度B成正比的Uy 值,采用电阻R2和电容C组成的积分电路。
L N 1 H U x I1R1 H I 1 I1 N1 L LR1 Ux H .....( 1) N1
d
反向减小H到0,则B沿de到-Br。H按原方向增加经ef到Hc; 继续增大H,则B沿fa回到原来饱和状态。
不同的铁磁质具有不同形状的磁滞回线,按矫顽 力的大小,铁磁材料可分为:
软磁材料:矫顽磁力很小 ,适合于做变压器、 电机中的铁芯等。 硬磁材料:矫顽磁力很大,常用做永磁体。

示波器观测动态磁滞回线

示波器观测动态磁滞回线

示波器观测动态磁滞回线一、用示波器观测动态磁滞回线简介:1. 实验原理。

参照《新编基础物理实验》实验四十三《磁滞回线的测量》的实验原理。

2. 测量电路。

3. 相关公式1R 11N H R u =l 2C 2R C B N Su = l ,铁磁样品的磁路长度;S ,铁磁样品磁路的横截面积;N 1,N 2,初级、次级绕组匝数。

对样品1(铁氧体):l = 0.130m ,S = 1.24×10-4 m 2 ,N 1 = N 2 = N 3 = 150匝。

对样品2(硅钢片):l = 0.075m ,S = 1.20×10-4 m 2 ,N 1 = N 2 = N 3 = 150匝。

4. 名词术语:1) 磁中性状态:磁化场H 为零时磁感应强度B 也为零的状态,称为磁中性状态。

对铁磁样品加一个振幅足够大的交变磁场,并逐渐将振幅减小到零,铁磁样品即可被磁中性化。

2) 磁滞回线:磁化场H 循环变化时(-H 0H + )B 的变化轨迹称为磁滞回线。

它是相对于原点对称的闭合曲线。

(样品测量前需要先磁中性化)3) 饱和磁滞回线:磁化场H 在循环变化过程中可以达到足够大,使铁磁材料的磁化强度0BM H μ=−随H 的增大不再增大,由这样的循环变化磁化场得到的磁滞回线称为饱和磁滞回线。

饱和磁滞回线上磁感应强度最大的值称为饱和磁感强度,用B S 表示。

饱和磁滞回线上B=0所对应的磁化场称为矫顽力,用H C 表示。

饱和磁滞回线上H=0所对应的磁感应强度称为剩余磁感应强度,用B r 表示。

4) 基本磁化曲线:将振幅不同的循环变化磁化场下所得到的磁滞回线的顶点连接起来的曲线。

(样品测量前需要先磁中性化)5) 起始磁导率i μ:磁导率μ定义为0B Hμμ=,通常铁磁材料的μ是温度T 、磁化场H 、频率f 的函数。

在很低的磁化场下,磁化是可逆的,H 和B 之间呈线性关系,没有滞后现象,在此区域中,磁导率为常数,该磁导率称为起始磁导率,即i H 00B lim H μμ→=。

动态磁滞回线讲义

动态磁滞回线讲义

铁磁材料动态磁滞回线和磁化曲线的测量磁性材料在通讯、计算机和信息存储、电力、电子仪器、交通工具等领域有着十分广泛的应用。

磁化曲线和磁滞回线反映磁性材料在外磁场作用下的磁化特性,根据材料的不同磁特性,可以用于电动机、变压器、电感、电磁铁、永久磁铁、磁记忆元件等。

铁磁材料分为硬磁和软磁两类。

硬磁材料(如模具钢)的磁滞回线宽,剩磁和矫顽磁力较大(120-20000安/米,甚至更高),因而磁化后,它的磁感应强度能保持,适宜制作永久磁铁。

软磁材料(如铁氧体)的磁滞回线窄,矫顽磁力小(一般小于120安/米),但它的磁导率和饱和磁感应强度大,容易磁化和去磁,故常用于制造电机、变压器和电磁铁。

可见,铁磁材料的磁化曲线和磁滞回线是该材料的重要特性,也是设计电磁机构或仪表的依据之一。

动态磁滞回线是磁性材料的交流磁特性,其在工业中有重要应用,因为交流电动机、变压器的铁芯都是在交流状态下使用的。

通过实验研究这些性质不仅能掌握用示波器观察磁滞回线以及基本磁化曲线的测绘方法,而且能从理论和实际应用上加深对材料磁特性的认识。

一.实验目的1. 了解磁性材料的磁滞回线和磁化曲线的概念,加深对铁磁材料的重要物理量矫顽力、剩磁和磁导率的理解。

2. 用示波器测量软磁材料(软磁铁氧体)的磁滞回线和基本磁化曲线,求该材料的饱和磁感应强度、剩磁和矫顽力。

m B r B c H 3. 学习示波器的X 轴和Y 轴用于测量交流电压时,各自分度值的校准。

4. 用示波器显示硬铁磁材料(模具钢)的交流磁滞回线,并与软磁材料进行比较。

12Cr5. 学习精确测量电阻和电容的实验方法,测量不同阻值电阻和未知电容。

6. 学习用计算机测量磁性材料动态磁滞回线和磁化曲线的方法。

(选配计算机接口后完成)二. 实验原理(一)铁磁物质的磁滞现象铁磁性物质的磁化过程很复杂,这主要是由于它具有磁性的原因。

一般都是通过测量磁化场的磁场强度H 和磁感应强度B 之间关系来研究其磁化规律的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

示波器观测动态磁滞回线
一、用示波器观测动态磁滞回线简介:
1. 实验原理。

参照《新编基础物理实验》实验四十三《磁滞回线的测量》的实验原理。

2. 测量电路。

3. 相关公式
1R 1
1N H R u =l 2C 2R C B N S
u = l ,铁磁样品的磁路长度;S ,铁磁样品磁路的横截面积;N 1,N 2,初级、次级绕组匝数。

对样品1(铁氧体):l = 0.130m ,S = 1.24×10-4 m 2 ,N 1 = N 2 = N 3 = 150匝。

对样品2(硅钢片):l = 0.075m ,S = 1.20×10-4 m 2 ,N 1 = N 2 = N 3 = 150匝。

4. 名词术语:
1) 磁中性状态:磁化场H 为零时磁感应强度B 也为零的状态,称为磁中性状态。

对铁磁样品加一个振幅足够大的交变磁场,并逐渐将振幅减小到零,铁磁样品即可被磁中性化。

2) 磁滞回线:磁化场H 循环变化时(-H 0H + )B 的变化轨迹称为磁滞回
线。

它是相对于原点对称的闭合曲线。

(样品测量前需要先磁中性化)
3) 饱和磁滞回线:磁化场H 在循环变化过程中可以达到足够大,使铁磁材料的磁化强度0B
M H μ=−随H 的增大不再增大,由这样的循环变化磁化场得到的
磁滞回线称为饱和磁滞回线。

饱和磁滞回线上磁感应强度最大的值称为饱和磁感强度,用B S 表示。

饱和磁滞回线上B=0所对应的磁化场称为矫顽力,用H C 表示。

饱和磁滞回线上H=0所对应的磁感应强度称为剩余磁感应强度,用B r 表示。

4) 基本磁化曲线:将振幅不同的循环变化磁化场下所得到的磁滞回线的顶点连接
起来的曲线。

(样品测量前需要先磁中性化)
5) 起始磁导率i μ:磁导率μ定义为0B H
μμ=,通常铁磁材料的μ是温度T 、磁化场H 、频率f 的函数。

在很低的磁化场下,磁化是可逆的,H 和B 之间呈线性关系,没有滞后现象,在此区域中,磁导率为常数,该磁导率称为起始磁导率,即i H 00
B lim H μμ→=。

6) 可逆磁导率r μ:当一个直流磁场H 和一个很弱的交变磁场h
同时作用在铁磁材料上时,直流磁场H (也称为直流偏磁场)使铁磁材料偏离磁中性化状态,h
引起磁感应强度B 的交流变化b 。

当h 0→ 时,由h 产生的退化磁滞回线(即一条斜线)的斜率与0μ的比值称为可逆磁导率r μ,即00
lim r h h b μμΔ→Δ=Δ,其中h Δ和b Δ分别是h 和b 的变化范围。

r
μ是H 的函数,一般H 越大,r μ越小。

二、实验内容:
1. 观测样品1(铁氧体)的饱和磁滞回线。

1) 取1R 2.0=Ω,2R =50k Ω,C 10.0F μ=,100Hz f =,调节励磁电流大小
及示波器的垂直、水平位移旋钮,在示波器显示屏上调出一个相对于坐标原点对称的饱和磁滞回线。

在回线的上半支上,从-B S 到B S 选取9个以上测量点(其中必须包括S B ,B 0=,H 0=三个点),测量各点的H 和B 。

根据测量的数据在坐标纸上画出饱和磁滞回线。

给出S B ,r B ,C H 的测量值。

2) 保持1R ,R 2C 不变,测量并比较f =50Hz 和150Hz 时的r B 和C H 。

3) 取1R 2.0=Ω,f =50Hz ,励磁电流0.2A m I =,积分常数R 2C 分别为0.01秒、
0.05秒、0.5秒时,观察并粗略画出不同积分常数下李萨如图形的示意图。

2. 测量样品1(铁氧体)的基本磁化曲线。

(测量前需要先对样品进行磁中性化。


1) 取1R 2.0=Ω,2R =50k Ω,C 10.0F μ=,100Hz f =。

若S H 是与S B 对应
的磁化场,让H 从0到S H 单调增加,测量并画出基本磁化曲线(至少25个测量点)。

2) 根据测量数据计算并画出H μ−曲线。

3. 测量样品1(铁氧体)的起始磁导率和在不同直流偏置磁场下的可逆磁导率。

(测量
前需要先对样品进行磁中性化。


参数设置为:1R 2.0=Ω,2R =20k Ω,C 2.0F μ=,100Hz f =。

1) 不加直流偏置磁场,测起始磁导率i μ。

(测量时,需调交流信号源幅度使交流
磁场h 足够小,并调示波器偏转因数,使屏幕上出现线状的李萨如图形。


2) 让直流偏磁场H 从0到S H 单调增加,测量对应于每个H 的可逆磁导率r μ。

画出r H μ−曲线(至少10个点)。

(!!!注意:数字电表选“20A ”电流插孔,20A 量程)
4. 测量并画出样品2(硅钢)在给定交变磁化场(幅度H m =400A/m )下的磁滞回线,
参数设置为:1R 2.0=Ω,2R =50k Ω,C 10.0F μ=。

1) 测量并画出f =50Hz 的磁滞回线。

确定m B ,r B ,C H 。

2) 观察f =20Hz ,40Hz ,60Hz 时磁滞回线的变化规律。

测量f =20Hz ,40Hz ,60Hz
的m B ,r B ,C H 。

三、思考题
1. 铁磁材料的动态磁滞回线与静态磁滞回线在概念上有什么区别?铁磁材料动态磁
滞回线的形状和面积受哪些因素的影响?
2. 本实验中,电路参数应怎样设置才能保证1R C u
u ∼所形成的李萨如图形正确反映材料动态磁滞回线的形状?
3. 实验中如何判断磁滞回线绕行方向?(提示:李萨如图形的X 和Y 信号哪个相位
超前?)。

相关文档
最新文档