河南省洛阳市2018-2019学年高一下学期期中考试数学试题Word版含答案
河南省洛阳市2013-2014学年高二下学期期中考试数学(理)试题 Word版含答案
![河南省洛阳市2013-2014学年高二下学期期中考试数学(理)试题 Word版含答案](https://img.taocdn.com/s3/m/92bfb1e0102de2bd96058892.png)
15.已知i为虚数单位,则满足不等式|log3x-i|≤ 的实数x的取值范围是______________.
16.已知函数f(x)=x2-4x+alnx在区间[1,4]上是单调函数,则实数a的取值范围是_________.
三、解答题:本大题共6小题,满分70分,解答应写出文字说明,证明过程或演算步骤.
21.(本小题满分12分)
已知数列{an}的前n项和为Sn,a1=1,Sn=n2an(n∈N*),
(1)求S1,S2,S3,S4;(2)猜想{an}的前n项和Sn的公式,并用数学归纳法证明.
22.(本小题满分12分)
已知函数f(x)=ex+ax2+bx.
(1)若a=0且f(x)在-1处取得极值,求实数b的值;
6.看下面的演绎推理过程:
大前提:棱柱的体积公式为:底面积×高.
小前提:如图直三棱柱ABC-DEF,H是棱AB的中点,ABED为底面,CH丄平面ABED,即CH为高.
结论:直三棱柱ABC-DEF的体积为SABED·CH.这个推理过程().
A.正确B.错误,大前提出错C.错误,小前提出错D.错误,结论出错
河南省洛阳市2013-2014学年高二下学期期中考试数学(理)试题 Word版含答案
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至 4页,共150分.考试时间120分钟.
第Ⅰ卷(选择题,共60分)
注意事项:
1.答卷前,考生务必将自己姓名,考号填写在答题卷上.
2.考试结束,将答题卷交回.
17.(本小题满分10分)
(1)已知复数z在复平面内对应的点在第四象限,|z|=1,且z+ =l,求z;
2018-2019学年高一下学期期中考试数学试卷
![2018-2019学年高一下学期期中考试数学试卷](https://img.taocdn.com/s3/m/46574cf0aeaad1f346933fa7.png)
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin 50cos 20cos50sin 20-= ( )A.12 B. 13 C. 2 D. 32. 下列函数中,以π为周期且在区间(0,)2π上为增函数的是( ). A. sin 2xy = B.sin y x = C.tan y x =- D.cos 2y x =-3. 已知向量()1,2a = ,()1,0b = ,()3,4c = .若λ为实数, +)//a b c λ(,则λ=( ) A.14 B. 12C. 1D. 2 4.给出下面四个命题:①0AB BA += ;② AB BC AC += ;③ -AB AC BC =;④00AB ⋅=。
其中正确的个数为 ( )A. 1个 B .2个 C .3个 D .4个5.已知=5a ,=4b ,a 与b 的夹角为120,则b 在a 方向上的投影为( )A. 5-2B. 52 C. -2 D. 26.已知函数()sin()(0,0,||)2f x A x A ωϕωϕπ=+>><的部分图象如下图所示,则函数()f x 的解析式( )A.1()2sin()26f x x π=+B.1()2sin()26f x x π=-C.()2sin(2)6f x x π=-D.()2sin(2)6f x x π=+7. 将函数y=sin2x 的图象向左平移ϕ(ϕ>0)个单位,得到的图象恰好关于直线6x π=对称,则ϕ的一个值是( )A . 12πB .6πC .4π D .3π8. 在Rt ABC ∆中,=90C ∠,=4AC ,则AB AC ⋅=( )A . -16B .-8C .8D .16 9. 若α是锐角,且满足1sin()63απ-=,则αcos 的值为( ). A.6162+ B.6162- C.4132+ D.4132- 10.ABC Rt ∆中, 90=∠C ,2==BC AC ,E D , 分别是BC AC ,的中点,则=⋅AE BD ( )A. 4B.-4C.225 D. 225-11.在ABC ∆中,设222AC AB AM BC -=⋅,那么动点M 的轨迹必通过ABC ∆的( ) A .垂心 B.内心 C .外心 D.重心 12. 函数()2sin()f x x ωϕ=+(0ω>)的图象经过,26A π⎛⎫-- ⎪⎝⎭、,24B π⎛⎫⎪⎝⎭两点,则ω( )A. 最小值为125 B. 最大值为125C. 最小值为3D. 最大值为3二、填空题(本大题共4小题,每小题5分,共20分)13.若扇形的弧长为6cm ,圆心角为2弧度,则扇形的面积为 cm 2.14.已知平行四边形ABCD 中,对角线AC ,BD 相交于点O ,已知,AB a AD b ==,则DO =.15.若tan α,tan β是方程2560++=x x 的两个根,且,(0,)2παβ∈,则αβ+= .16.若点M 是ABC ∆所在平面内的一点,且满足53AM AB AC =+,则ABM ∆与ABC ∆的面积比为 .三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分) 已知角α的终边过点43(,)55P -. (1)求sin ,cos ,tan ααα的值;(2)求sin()tan()2sin()sin(3)πααπαππα--⋅+-的值.18.(12分) 已知向量(2,1),(3,4)a b =-=-.(1)求+2)a b a b ⋅-()(的值;(2)求向量a 与+a b的夹角.19.(12分) 已知函数()sin()(>0,>0,<)2f x A x A πωϕωϕ=+的最小正周期为π,且点,26P π⎛⎫⎪⎝⎭是该函数图象的一个最高点. (1) 求函数()f x 的解析式;(2)若,02x π⎡⎤∈-⎢⎥⎣⎦,求函数()y f x =的值域.20.(12分)已知函数()sin()cos()63f x x x ππ=-+-,2()2sin 2xg x =. (1)若α是第一象限角,且()f α=()g α的值; (2)求使()()f x g x ≥成立的x 的取值范围.21.(12分) 已知函数()2cos (sin cos )1,f x x x x x =-+∈R .(1)求函数()f x 的单调递增区间; (2)将函数()y f x =的图象向左平移4π个单位后,再将图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()y g x =的图象,求()g x 的最大值及取得最大值时的x 的集合.22. (12分)如图,在△ABC 中,已知CA=1,CB=2,∠ACB=60°. (1)求|AB |;(2)已知点D 是AB 上一点,满足=λ,点E 是边CB 上一点,满足=λBC . ①当λ=21时,求AE •; ②是否存在非零实数λ,使得AE ⊥?若存在,求出的λ值;若不存在,请说明理由.答案一、选择题:1----5 ADBBC 6----10 DADBB 11----12 CA二、填空题:13. 9 14. 1-2a b ()15. 4π16. 35三、解答题:17.解:(1)由已知,点P 是α的终边与单位圆的交点,由任意角三角函数的定义知,34334sin =-,cos =,tan =-=-55554ααα -------------------------------4分(2)sin()tan()cos tan 52=sin()sin(3)sin sin 3πααπαααππααα--⋅⋅=+-- ------------------------10分18.解:(1)()()+=1-32=-7a b a b -,,,6+2)=1-7+-36=-25a b a b ∴⋅-⨯⨯()(()()----------------------------5分(2)()=-2,1+=1-3a a b(),,+)=-2-3=-5a a b ∴⋅ (又+a a b,(+)cos 2+a a b a a bθ⋅∴==-⋅[]0θπ∈ , 3=4πθ∴ -----------------------------12分19.解:(1)由题意可得,A=2, =π,∴ω=2.再根据函数的图象经过点M (,2),可得2sin (2×+φ)=2,结合|φ|<,可得ω=,∴f(x )=2sin (2x+). -------------------5分(2)∵x∈[﹣,0],∴2x+∈[﹣,],∴sin(2x+)∈[﹣1,]∴ f (x )=2sin (2x+)∈[﹣2,1]. -------------------12分20.解:(1)1()sin()cos(cos 632f x x x x x ππ=-+-- 1cos 2x x +x ,2g()2sin 1cos 2xx x ==-由()f α=α,3sin =5α∴又α是第一象限角,所以4cos 5α==1()1cos 5g αα∴=-=-------------------------6分(2)由()()f x g x ≥1cos x x ≥-+cos 1x x ≥ 于是1sin 62x π⎛⎫+≥ ⎪⎝⎭ 522,666k x k k Z πππππ∴+≤+≤+∈ 即222,3k x k k Z πππ≤≤+∈ 所以,所求的集合是222,3x k x k k Z πππ⎧⎫≤≤+∈⎨⎬⎩⎭-----------------12分21.解:(1)2()2cos (sin cos )1=2sin cos 2cos 1f x x x x x x x =-+-+sin 2cos 2)4x x x π=--令2-22,242k x k k Z πππππ≤-≤+∈得3-,88k x k k Z ππππ≤≤+∈ 所以,函数的单调递增区间为3-88k k k Z ππππ⎡⎤+∈⎢⎥⎣⎦,() -------------------6分(2)将函数())4y f x x π==-的图象向左平移4π个单位后,所得图象的解析式为2++)444y x x πππ⎡⎤=-⎢⎥⎣⎦(),再将图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()4y g x x π=+的图象。
河南省洛阳市2013-2014学年高二下学期期中考试试题 数学(文) Word版含答案
![河南省洛阳市2013-2014学年高二下学期期中考试试题 数学(文) Word版含答案](https://img.taocdn.com/s3/m/28d354dc49649b6648d74766.png)
洛阳市2013--2014学年第二学期期中考试高二数学试卷(文A )本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.第I 卷1至2页,第Ⅱ卷3至4页,共150分.考试时间120分钟.第I 卷(选择题,共60分)注意事项:1.答卷前,考生务必将自己姓名,考号填写在答题卷上.2.考试结束,将答题卷交回.一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知i 为虚数单位.z 为复数,下面叙述正确的是?A. z z -为纯虚数 B .任何数的偶数次幂均为非负数C .i+1的共轭复数为i-l D. 2+3i 的虚部为32.复平面内与复数 512i i-对应的点所在的象限是 A.第一象限 B .第二象限 C .第三象限 D .第四象限3.已知回归直线的斜率的估计值是2,样本点的中心为(4,12),则回归直线的方程是A. 24y x =+B. 522y x =+ C . 220y x =- D . 126y x =+ 4.若用独立性检验的方法,我们得到能有99%的把握认为变量X 与Y 有关系,则 A. 2 2.706K ≥ B. 26.635K ≥ C. 2 2.706K < D. 2 6.635K <5.复数a 十bi(a ,b ∈R)的平方为实数的充要条件是A. 220a b += B .ab=0 C .a=0,且b ≠0 D.a ≠0,且b=06.观察下面的演绎推理过程,判断正确的是大前提:若直线a ⊥直线 l ,且直线b ⊥直线 l ,则a ∥b .小前提:正方体 1111ABCD A BC D -中, 111A B AA ⊥.且1AD AA ⊥结论: 11//A B ADA. 推理正确 B .大前提出错导致推理错误C .小前提出错导致推理错误D .仅结论错误7. 232014i i i i +++⋅⋅⋅+=A. 1+iB. -1-iC. 1-iD. - l+i8.执行如图程序框图,若输出的 1112T =,则判断框内应填人 的条件是A .i>9?B .i>10?C .i>ll?D .i>12?9.A ,B ,C 是△ABC 的三个内角,下面说法:①至多有一个角大于60; ②至少有两个角大于或等于60 ;③至少有一个角小于60 ;④至多有两个角小于60 .其中正确的个数是A .3B .2C .1 D.010.锐角△ABC 中,三个内角分别为A ,B ,C ,设m= sin A+sinB+sinC,n=cosA+cosB+cosC 则m 与n 的大小关系是A. m>n B .m<n C. m-n D.以上都有可能11.已知△ABC 的三边a ,b ,c 满足 (,2)n n n a b c n N n +=∈>.则△ABC 为A .锐角三角形B .钝角三角形C. 直角三角形D. 不能确定12.对两个变量x 与y 进行回归分析,得到一组样本数据:(1,1),(2,1.5),(4,3), (5.4.5),若甲同学根据这组数据得到的回归模型 1:1y x =-,乙同学根据这组数据得到的回归模型 112:22y x =+,则 A .型1的拟合精度高 B .模型2的拟合精度高C .模型1和模型2的拟合精度一样 D.无法判断哪个模型的拟合精度高第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.1 3.用解释变量对预报变量的贡献率来刻蜮回归效果,若回归模型A 与回归模型B 的解释变量对预报变量的贡献率分别为 220.32,0.91A B R R ==,则这两个回归模型相比较,拟合效果较好的为模型__________.14.若等差数列 {}n a 的公差为d ,前n 项和为 n S 。
2017-2018学年河南省洛阳市高二上学期期中数学试题(解析版)
![2017-2018学年河南省洛阳市高二上学期期中数学试题(解析版)](https://img.taocdn.com/s3/m/f94cd7bdf524ccbff1218475.png)
2017-2018学年河南省洛阳市高二(上)期中数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣6<0},B={x|x2+2x﹣8>0},则A∪B=()A.{x|2<x<3}B.{x|﹣2<x<3}C.{x|x>﹣4或x>2}D.{x|x<﹣4或x >﹣2}2.(5分)△ABC中,==,则△ABC一定是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形3.(5分)若a,b,c∈R,且a>b,则下列不等式一定成立的是()A.>0 B.(a﹣b)c2>0 C.ac>bc D.a+c≥b﹣c4.(5分)在等比数列{a n}中,a n>0,已知a1=6,a1+a2+a3=78,则a2=()A.12 B.18 C.24 D.365.(5分)设正实数a,b满足2a+3b=1,则的最小值是()A.25 B.24 C.22 D.166.(5分)海中有一小岛,海轮由西向东航行,望见这岛在北偏东75°,航行8n mile以后,望见这岛在北偏东60°,海轮不改变航向继续前进,直到望见小岛在正北方向停下来做测量工作,还需航行()n mile.A.8 B.4 C.D.7.(5分)设等差数列{a n}的公差d≠0,且a2=﹣d,若a k是a6与a k+6等比中项,则k=()A.5 B.6 C.9 D.368.(5分)若函数f(x)=的定义域是R,则实数a的取值范围是()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.(﹣∞,﹣2]∪[2,+∞)D.[﹣2,2]9.(5分)已知△ABC的内角A、B、C的对边分别为a、b、c.若a=bcosC+csinB,且△ABC的面积为1+.则b的最小值为()A.2 B.3 C.D.10.(5分)设等差数列{a n}的前n项和为S n,S15>0,a8+a9<0,则使<0成立的最小自然数n的值为()A.15 B.16 C.17 D.1811.(5分)在平而直角坐标系中,不等式组表示的平面区域面积为π,若x,y满足上述约束条件,则z=的最小值为()A.﹣1 B.C.D.12.(5分)已知数列{a n}中,a1=2,若a n+1﹣a n=a n2,设T m=,若T m<2018,则正整数m的最大值为()A.2019 B.2018 C.2017 D.2016二、填空题:本题共4个小题,每小题5分,共20分.x<0|2<x<3}B.{x|-2<x<3}C.{x|x>13.(5分)不等式组表示的平面区域内的整点坐标是.14.(5分)已知△ABC的内角A,B,C的对边分别为a,b,c,若a=2且sinA+cosA=2,则角C的大小为.15.(5分)如图所示,在圆内接四边形ABCD中,AB=6,BC=3,CD=4,AD=5,则四边形ABCD的面积为.16.(5分)已知数列{a n}中,a1=l,S n为其前n项和,当n≥2时,2a n+S n2=a n S n成立,则S10=.三、解答题:本大题共6个小题,共70分.解答应写出文字说明、证明过程或盐酸步骤.17.(10分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知a2+c2﹣b2=﹣ac.(1)求B;(2)若,,求a,c.18.(12分)已知方程x2+2(a+2)x+a2﹣1=0.(1)当该方程有两个负根时,求实数a的取值范围;(2)当该方程有一个正根和一个负根时,求实数a的取值范围.19.(12分)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}的通项公式;(2){b n}为各项非零的等差数列,其前n项和S n=n2,求数列的前n项和T n.20.(12分)某市园林局将一块三角形地块ABC的一个角AMN建设为小游园,已知A=120°,AB,AC的长度均大于400米,现要在边界AM,AN处建设装饰墙,沿MN建设宽1.5米的健康步道.(1)若装饰墙AM,AN的总长度为400米,AM,AN 的长度分别为多少时,所围成的三角形地块AMN的面积最大?(2)若AM段装饰墙墙髙1米,AN段装饰墙墙髙1.5米,AM段装饰墙造价为每平方米150元,AN段装饰墙造价为每平方米100元,建造装饰墙用了90000元.若建设健康步道每100米需5000元,AM,AN的长度分别为多少时,所用费用最少?21.(12分)已知△ABC为锐角三角形,角A,B,C的对边分别为a,b,c且(b2+c2﹣a2)tanA=bc.(1)求角A的大小;(2)若a=,求2b﹣c的取值范围.22.(12分)设数列{a n}的前n项和为S n,且S n=4﹣a n﹣.(1)令b n=2n﹣1•a n,证明数列{b n}为等差数列,并求{b n}的通项公式;(2)是否存在n∈N*,使得不等式成立,若存在,求出λ的取值范围,若不存在,请说明理由.2017-2018学年河南省洛阳市高二(上)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣6<0},B={x|x2+2x﹣8>0},则A∪B=()A.{x|2<x<3}B.{x|﹣2<x<3}C.{x|x>﹣4或x>2}D.{x|x<﹣4或x >﹣2}【分析】解不等式得出集合A、B,根据并集的定义写出A∪B.【解答】解:集合A={x|x2﹣x﹣6<0}={x|(x+2)(x﹣3)<0}={x|﹣2<x<3},B={x|x2+2x﹣8>0}={x|(x+4)(x﹣2)>0}={x|x<﹣4或x>2},则A∪B={x|x<﹣4或x>﹣2}.故选:D.【点评】本题考查了解不等式与集合的运算问题,是基础题.2.(5分)△ABC中,==,则△ABC一定是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形【分析】由,利用正弦定理可得tanA=tanB=tanC,再利用三角函数的单调性即可得出.【解答】解:由正弦定理可得:=,又,∴tanA=tanB=tanC,又A,B,C∈(0,π),∴A=B=C=,则△ABC是等边三角形.故选:D.【点评】本题考查了正弦定理、三角函数的单调性,考查了推理能力与计算能力,属于中档题.3.(5分)若a,b,c∈R,且a>b,则下列不等式一定成立的是()A.>0 B.(a﹣b)c2>0 C.ac>bc D.a+c≥b﹣c【分析】对于A,根据不等式的性质即可判断,举反例即可判断B,C,D【解答】解:A、∵a﹣b>0,c2>0,∴>0B、∵a﹣b>0,∴(a﹣b)2>0,又c2≥0,∴(a﹣b)2c≥0,本选项不一定成立,C、c=0时,ac=bc,本选项不一定成立;D、当a=﹣1,b=﹣2,c=﹣3时,a+c=﹣4,b﹣c=1,显然不成立,本选项不一定成立;故选A【点评】此题考查了不等式的性质,利用了反例的方法,是一道基本题型.4.(5分)在等比数列{a n}中,a n>0,已知a1=6,a1+a2+a3=78,则a2=()A.12 B.18 C.24 D.36【分析】先求出公比q,即可求出答案.【解答】解:设公比为q,由a1=6,a1+a2+a3=78,可得6+6q+6q2=78,解得q=3或q=﹣4(舍去),∴a2=6q=18,故选:B【点评】本题考查了等比数列的通项公式,属于基础题.5.(5分)设正实数a,b满足2a+3b=1,则的最小值是()A.25 B.24 C.22 D.16【分析】直接利用函数的关系式及均值不等式求出函数的最小值.【解答】解:正实数a,b满足2a+3b=1,则=(2a+3b)()=+9≥13+12=25,故的最小值为25.故选:D.【点评】本题考查的知识要点:函数的关系式的恒等变换,均值不等式的应用.6.(5分)海中有一小岛,海轮由西向东航行,望见这岛在北偏东75°,航行8n mile以后,望见这岛在北偏东60°,海轮不改变航向继续前进,直到望见小岛在正北方向停下来做测量工作,还需航行()n mile.A.8 B.4 C.D.【分析】作出示意图,根据等腰三角形锐角三角函数的定义即可求出继续航行的路程.【解答】解:设海岛位置为A,海伦开始位置为B,航行8n mile后到达C处,航行到D处时,海岛在正北方向,由题意可知BC=8,∠ABC=15°,∠BCA=150°,∠ADC=90°,∠ACD=30°,∴∠BAC=15°,∴AC=BC=8,∴CD=AC•cos∠ACD=4.故选C.【点评】本题考查了解三角形的应用,属于基础题.7.(5分)设等差数列{a n}的公差d≠0,且a2=﹣d,若a k是a6与a k+6等比中项,则k=()A.5 B.6 C.9 D.36【分析】运用等差数列的通项公式,以及等比数列的中项的性质,化简整理解方程即可得到k的值.【解答】解:等差数列{a n}的公差d≠0,且a2=﹣d,可得a1=a2﹣d=﹣2d,则a n=a1+(n﹣1)d=(n﹣3)d,若a k是a6与a k+6的等比中项,即有a k2=a6a k+6,即为(k﹣3)2d2=3d•(k+3)d,由d不为0,可得k2﹣9k=0,解得k=9(0舍去).故选:C.【点评】本题考查等差数列的通项公式和等比数列中项的性质,考查化简整理的运算能力,属于基础题.8.(5分)若函数f(x)=的定义域是R,则实数a的取值范围是()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.(﹣∞,﹣2]∪[2,+∞)D.[﹣2,2]【分析】要使函数有意义,则2﹣1≥0,解得即可.【解答】解:要使函数有意义,则2﹣1≥0,即x2+ax+1≥0,∴△=a2﹣4≤0,解得﹣2≤a≤2,故选:D【点评】本题考查了函数的定义域和不等式的解法,属于基础题.9.(5分)已知△ABC的内角A、B、C的对边分别为a、b、c.若a=bcosC+csinB,且△ABC的面积为1+.则b的最小值为()A.2 B.3 C.D.【分析】已知等式利用正弦定理化简,再利用诱导公式及两角和与差的正弦函数公式化简,求出tanB的值,确定出B的度数,利用三角形面积公式求出ac的值,利用余弦定理,基本不等式可求b的最小值.【解答】解:由正弦定理得到:sinA=sinCsinB+sinBcosC,∵在△ABC中,sinA=sin[π﹣(B+C)]=sin(B+C),∴sin(B+C)=sinBcosC+cosBsinC=sinCsinB+sinBcosC,∴cosBsinC=sinCsinB,∵C∈(0,π),sinC≠0,∴cosB=sinB,即tanB=1,∵B∈(0,π),∴B=,=acsinB=ac=1+,∵S△ABC∴ac=4+2,由余弦定理得到:b2=a2+c2﹣2accosB,即b2=a2+c2﹣ac≥2ac﹣ac=4,当且仅当a=c时取“=”,∴b的最小值为2.故选:A.【点评】此题考查了正弦、余弦定理,基本不等式以及三角形的面积公式,熟练掌握定理及公式是解本题的关键,属于中档题.10.(5分)设等差数列{a n}的前n项和为S n,S15>0,a8+a9<0,则使<0成立的最小自然数n的值为()A.15 B.16 C.17 D.18【分析】由于S15==15a8>0,a8+a9<0,可得a8>0,a9<0,进而得出.【解答】解:∵S15==15a8>0,a8+a9<0,∴a8>0,a9<0,∴S16==8(a8+a9)<0,则使<0成立的最小自然数n的值为16.故选:B.【点评】本题考查了等差数列的通项公式与求和公式及其性质、不等式的性质,考查了推理能力与计算能力,属于中档题.11.(5分)在平而直角坐标系中,不等式组表示的平面区域面积为π,若x,y满足上述约束条件,则z=的最小值为()A.﹣1 B.C.D.【分析】由约束条件作出可行域,由z==1+,而的几何意义为可行域内的动点与定点P(﹣3,2)连线的斜率.结合直线与圆的位置关系求得答案.【解答】解:∵不等式组(r为常数)表示的平面区域的面积为π,∴圆x2+y2=r2的面积为4π,则r=2.由约束条件作出可行域如图,由z==1+,而的几何意义为可行域内的动点与定点P(﹣3,2)连线的斜率.设过P的圆的切线的斜率为k,则切线方程为y﹣2=k(x+3),即kx﹣y+3k+2=0.由=2,解得k=0或k=﹣.∴z=的最小值为1﹣=﹣.故选:C.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.12.(5分)已知数列{a n}中,a1=2,若a n+1﹣a n=a n2,设T m=,若T m<2018,则正整数m的最大值为()A.2019 B.2018 C.2017 D.2016=a n2+a n=a n(a n+1)≥6,推导出=,从而【分析】a n+1,进而T m=m﹣(﹣)<m﹣,由此能求出正整数m的最大值.【解答】解:由a n﹣a n=a n2,得a n+1=a n2+a n=a n(a n+1)≥6,+1∴=,∴=﹣,∴++…+=(﹣)+(﹣)+…+(﹣)=﹣∈(0,),∵,∴T m==m﹣(﹣)=m﹣+<m﹣+=m﹣∵T m<2018,∴m﹣<2018,∴m<2018+∴正整数m的最大值为2018,故选:B【点评】本题考查了数列递推关系、放缩法,考查了推理能力与计算能力,属于中档题.二、填空题:本题共4个小题,每小题5分,共20分.x<0|2<x<3}B.{x|-2<x<3}C.{x|x>13.(5分)不等式组表示的平面区域内的整点坐标是(﹣1,1).【分析】先根据不等式组画出可行域,再验证哪些当横坐标、纵坐标为整数的点是否在可行域内.【解答】解:根据不等式组画出可行域如图:由图象知,可行域内的点的横坐标为整数时x=﹣1,纵坐标可能为﹣1或﹣2即可行域中的整点可能有(﹣1,1)、(﹣1,2),经验证点(﹣1,1)满足不等式组,(﹣1,2)不满足不等式组,∴可行域中的整点为(﹣1,1),故答案为:(﹣1,1),【点评】本题考查一元二次不等式表示的区域,要会画可行域,同时要注意边界直线是否能够取到,还要会判断点是否在可行域内(点的坐标满足不等式组时,点在可行域内).属简单题.14.(5分)已知△ABC的内角A,B,C的对边分别为a,b,c,若a=2且sinA+cosA=2,则角C的大小为.【分析】利用三角恒等变换求出A,再利用正弦定理得出C.【解答】解:∵sinA+cosA=2,即2sin(A+)=2,∵0<A<π,∴A+=,即A=,由正弦定理得:,即,∴sinC=,∴C=或C=(舍).故答案为:.【点评】本题考查了正弦定理,属于基础题.15.(5分)如图所示,在圆内接四边形ABCD 中,AB=6,BC=3,CD=4,AD=5,则四边形ABCD 的面积为 6.【分析】利用余弦定理可求BD 2=5﹣4cosA=25+24cosA ,解得cosA=,结合范围0<A <π,利用同角三角函数基本关系式可求sinA ,利用三角形面积公式即可计算得解.【解答】解:∵四边形ABCD 圆内接四边形, ∴∠A +∠C=π,∵连接BD ,由余弦定理可得BD 2=AB 2+AD 2﹣2AB•AD•cosA=36+25﹣2×6×5cosA=61﹣60cosA , 且BD 2=CB 2+CD 2﹣2CB•CD•cos (π﹣A ) =9+16+2×3×4cosA=25+24cosA , ∴61﹣60cosA=25+24cosA , ∴cosA= 又0<A <π, ∴sinA=.∴S 四边形ABCD =S △ABD +S △CBD =AB•AD•sinA +CD•CB•sin (π﹣A )=×6×5×+×3×4×=6,故答案为:6【点评】本题主要考查了余弦定理,同角三角函数基本关系式,三角形面积公式的应用,考查了转化思想和数形结合思想的应用,属于中档题.16.(5分)已知数列{a n}中,a1=l,S n为其前n项和,当n≥2时,2a n+S n2=a n S n成立,则S10=.S n=S n﹣1﹣S n,可得数列{}是首项为1,公差为的等【分析】由已知得S n﹣1差数列,从而能求【解答】解:∵2a n+S n2=a n S n,∴S n2=a n(S n﹣2),a n=S n﹣S n﹣1(n≥2),∴S n2=(S n﹣S n﹣1)(S n﹣2),S n=S n﹣1﹣S n,…①即S n﹣1•S n≠0,由题意S n﹣1•S n,得﹣=,将①式两边同除以S n﹣1∵a1=l,∴=1∴数列{}是首项为1,公差为的等差数列,∴=1+(n﹣1)=(n+1)∴S n=,∴S10=,故答案为:【点评】本题考查数列的递推公式和前n项和,属于中档题三、解答题:本大题共6个小题,共70分.解答应写出文字说明、证明过程或盐酸步骤.17.(10分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知a2+c2﹣b2=﹣ac.(1)求B;(2)若,,求a,c.【分析】(1)直接利用关系式的恒等变换,转化为余弦定理的形式,进一步求出B的值.(2)利用正弦定理已知条件求出结果.【解答】解:(1)△ABC中,角A,B,C所对的边分别为a,b,c,已知a2+c2﹣b2=﹣ac.则:,由于:0<B<π,解得:B=.(2)由于,所以:a=2c,由及a2+c2﹣b2=﹣ac.得到:a2+c2+ac=7.解得:a=2,c=1.【点评】本题考查的知识要点:余弦定理的应用,正弦定理的应用.18.(12分)已知方程x2+2(a+2)x+a2﹣1=0.(1)当该方程有两个负根时,求实数a的取值范围;(2)当该方程有一个正根和一个负根时,求实数a的取值范围.【分析】(1)当方程有两个负根时,利用判别式△≥0和根与系数的关系求出a的取值范围;(2)根据方程有一个正根和一个负根时,对应二次函数满足f(0)<0,由此求出实数a的取值范围.【解答】解:方程x2+2(a+2)x+a2﹣1=0的判别式为△=4(a+2)2﹣4(a2﹣1)=16a+20,当△=16a+20≥0时,设方程x2+2(a+2)x+a2﹣1=0两个实数根为x1、x2,则x1+x2=﹣2(a+2),x1x2=a2﹣1;(1)∵方程x2+2(a+2)x+a2﹣1=0有两个负根,∴,解得,即a>1或﹣≤a<﹣1,∴实数a的取值范围是[﹣,﹣1)∪(1,+∞);(2)∵方程x2+2(a+2)x+a2﹣1=0有一个正根和一个负根,∴对应二次函数满足f(0)=a2﹣1<0,解得﹣1<a<1,∴实数a的取值范围是(﹣1,1).【点评】本题考查了一元二次方程根的分布情况以及判别式和根与系数的关系应用问题,是中档题.19.(12分)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}的通项公式;(2){b n}为各项非零的等差数列,其前n项和S n=n2,求数列的前n项和T n.【分析】(1)设数列{a n}的公比为q,(q>0),由题意列方程组求得首项和公比,则数列{a n}的通项公式可求;(2)由{b n}的前n项和求得通项,代入,然后利用错位相减法求其前n项和T n.【解答】解:(1)设数列{a n}的公比为q,(q>0),由a1+a2=6,a1a2=a3,得,解得a1=q=2.∴;(2)当n=1时,b1=S1=1,当n≥2时,b n=S n﹣S n﹣1=n2﹣(n﹣1)2=2n﹣1,∴,∴,,∴=,∴.【点评】本题考查数列递推式,考查了错位相减法求数列的前n项和,是中档题.20.(12分)某市园林局将一块三角形地块ABC的一个角AMN建设为小游园,已知A=120°,AB,AC的长度均大于400米,现要在边界AM,AN处建设装饰墙,沿MN建设宽1.5米的健康步道.(1)若装饰墙AM,AN的总长度为400米,AM,AN 的长度分别为多少时,所围成的三角形地块AMN的面积最大?(2)若AM段装饰墙墙髙1米,AN段装饰墙墙髙1.5米,AM段装饰墙造价为每平方米150元,AN段装饰墙造价为每平方米100元,建造装饰墙用了90000元.若建设健康步道每100米需5000元,AM,AN的长度分别为多少时,所用费用最少?(1)设AM=x米,AN=y米,则x+y=400,△AMN的面积S=xysin120°=xy,【分析】利用基本不等式,可得结论;(2)由题意得,即x+y=600,要使竹篱笆用料最省,只需MN最短,利用余弦定理求出MN,即可得出结论.【解答】解:设AM=x米,AN=y米,则(1)x+y=400,A=120°,△AMN的面积S=xysin120°=xy≤,当且仅当x=y=200时取等号;(2)由题意得150x+1.5y•100=90000,即x+y=600,要使竹篱笆用料最省,只需MN最短,所以MN2=x2+y2﹣2xycos120°=x2+y2+xy=(x+y)2+y2﹣xy=360000﹣xy所以x=y=300时,MN有最小值300.∴AM=AN=300米时,所用费用最少为3×5000=15000元.【点评】本题考查利用数学知识解决实际问题,考查三角形面积的计算,余弦定理的运用,属于中档题.21.(12分)已知△ABC为锐角三角形,角A,B,C的对边分别为a,b,c且(b2+c2﹣a2)tanA=bc.(1)求角A的大小;(2)若a=,求2b﹣c的取值范围.【分析】(1)利用余弦定理列出关系式,代入已知等式变形求出sinA的值,即可确定出角A的大小;(2),由(1)可得A,由正弦定理可得,从而利用三角函数恒等变换的应用可得2b﹣c=2sin(B﹣),结合B的范围B,可得2b﹣c 取值范围.【解答】解:(1)由(b2+c2﹣a2)tanA=bc.及余弦定理b2+c2﹣a2=2bccosA,得sinA=∵△ABC为锐角三角形,∴A=.(2)由正弦定理可得,∴2b﹣c=4sinB﹣2sinC=4sinB﹣2sin()=3sinB﹣cosB=2sin(B﹣).∵△ABC为锐角三角形,∴,∴∴,2∴2b﹣c的取值范围为(0,3)【点评】本题主要考查了三角函数恒等变换的应用,考查了正弦定理,正弦函数的图象和性质在解三角形中的应用,属于中档题.22.(12分)设数列{a n}的前n项和为S n,且S n=4﹣a n﹣.(1)令b n=2n﹣1•a n,证明数列{b n}为等差数列,并求{b n}的通项公式;(2)是否存在n∈N*,使得不等式成立,若存在,求出λ的取值范围,若不存在,请说明理由.【分析】(1)由已知可得2a n=a n﹣1+,故2n﹣1•a n=2n﹣2•a n﹣1+1,进而可得数列{b n}为等差数列,并得到{b n}的通项公式;(2)存在n=1,使得不等式成立,且9≤λ≤10,利用对勾函数和反比例函数的图象性质,可得答案.【解答】解:(1)∵数列{a n}的前n项和为S n,且S n=4﹣a n﹣.∴当n=1时,a1=S1=4﹣a1﹣,即a1=1,=4﹣a n﹣1﹣.当n≥2时,S n﹣1则a n=S n﹣S n﹣1=a n﹣1﹣a n﹣,即2a n=a n﹣1+,故2n﹣1•a n=2n﹣2•a n﹣1+1,即2n﹣1•a n﹣2n﹣2•a n﹣1=1,∵b n=2n﹣1•a n,即{b n}是以1为首项,以1为公差的等差数列;即b n=n;(2)由(1)知:⇔,根据对勾函数的性质,可得:在n=3时取最小值,由反比例函数的性质,可得:在n=1时取最大值10;当n=1时,9≤λ≤10;当n=2时,6≤λ≤5,不存在满足条件的λ值;当n=3时,≤λ≤,不存在满足条件的λ值;当n≥4时,不存在满足条件的λ值;综上可得:存在n=1,使不等式成立,9≤λ≤10.【点评】本题考查的知识点是数列与不等式及函数的综合应用,难度中档.。
河南省洛阳市2019-2020年高一上学期期中考试物理试卷 PDF版含答案
![河南省洛阳市2019-2020年高一上学期期中考试物理试卷 PDF版含答案](https://img.taocdn.com/s3/m/86e8431af242336c1fb95e2c.png)
D.任意ls内的速度增量都是2 m/s
6.甲、乙两汽车在一 平直公路上同向行驶。在t = O到l = Li的时间内,它们的v-t图
象如图所示.已知 t = t1 时刻,两汽车并排行驶。则在这段时间内
八.两汽车的位移相同
u hk
B两汽车的平均速度均为咛旦
U ’忆
C.t = O时刻,汽车乙在汽车甲前方
甲 …/
以把子弹看成质点
3.关于位移和路程的说法中正确的是
八.运动物体的路程总大于位移的大小
B.位移是描述直线运动的,路程是描述曲线运动的
怪l
叫4
.位移取决于始末位置,路程取决于实际运动的路线
高 一物理 第1页 (共6页) (2019. 11)
D.位移的大小和路程的大小总是相等的,位移是矢量,而路程是标量
4.物体做匀加速直线运动的加速度为2 m/豆,表示这物体
s,实验
测得的重力加速度为
m/豆。
三、解答题(本题共4小题,共44分。解答时请写出必要的文字说明、方程式和重要的演算
步骤。只写出最后答案的不能给分,有数值计算的题目,答案中必须明确写出数值和单位)
17.(10分)矿井里的升降机,由静止开始匀加速上升,经过5s速度达到6 m/s后,又
以这个速度匀速上升lOs,然后匀减速上升,经过lOs恰好停在井口,求矿井的深度?
D.A 点处指向球心。,B点处垂直于筷子斜向上
cYJ B
为交流电源,频率为50 Hz。打出纸带的 一 部分如图(b)所示 ,相邻计数点之间的时间间隔 都为t。
打点计时器
纸带
叫物 ζ二二4
! I ← x, 斗一毛
,,.、 a 、E,
,,‘、 ku 、‘,,,
X;i→
河南省洛阳市2018-2019学年高二下学期期中考试理数试题Word版含解斩
![河南省洛阳市2018-2019学年高二下学期期中考试理数试题Word版含解斩](https://img.taocdn.com/s3/m/17de55efce2f0066f4332216.png)
河南省洛阳市2018-2019学年下学期期中考试高二理数试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复平面内,复数对应的点为,则复数的共轭复数的虚部为()A. 1B.C.D.【答案】B【解析】由题意可知,,所以,所以复数的共轭复数的虚部为;故选B.2. 曲线在点处的切线方程为()A. B.C. D.【答案】B【解析】有题意可知,,所以,所以曲线在点处的切线方程为.3. 有一段演绎推理是这样的:“若函数的图象在区间上是一条连续不断的曲线,且,则在点处取得极值;已知函数在上是一条连续不断的曲线,且,则在点处取得极值”.对于以上推理,说法正确的是()A. 大前提错误,结论错误B. 小前提错误,结论错误C. 推理形式错误,结论错误D. 该段演绎推理正确,结论正确【答案】A【解析】∵大前提是:“若函数的图象在区间上是一条连续不断的曲线,且,则在点处取得极值”,不是真命题,因为对于可导函数,如果,且满足当附近的导函数值异号时,那么是函数的极值点,∴大前提错误,导致结论错误,故选A.4. 函数的图象不可能是()A. B. C. D.【答案】C【解析】对于图像C,可知该函数的导函数由三个零点,又∵,可知至多2个零点,所以可知选项C错误,故选C.5. “”是“函数有极值”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B6. 由曲线,直线,所围成的平面图形的面积为()A. B. C. D.【答案】D【解析】试题分析:,故选D.考点:定积分的应用. 7. 已知,,,则,,的大小关系为( )A. B. C. D.【答案】C【解析】试题分析:考点:比较大小8. 一物体沿直线做运动,其速度和时间的关系为,在到时间段内该物体行进的路程和位移分别是( )A. ,B. ,C. ,D. ,【答案】A【解析】由定积分的几何性质可知,该物体的行进的路程为;该物体的行进的位移为,故选A.9. 函数的图象如图所示,设是的导函数,若,下列各式成立的是( )A. B.C. D.【答案】D【解析】由函数的图象可知,在区间上单调递减,由基本不等式的性质可知,,所以,故选D.10. 已知函数在定义域内存在单调递减区间,则实数的取值范围是()A. B. C. D.【答案】B【解析】求导函数,可得,函数在定义域内是增函数,所以成立,即恒成立,所以,所以,所以时,函数在定义域内是增函数.故选B.11. 已知是定义在上的函数,导函数满足对于恒成立,则()A. ,B. ,C. ,D. ,【答案】C【解析】令,则,∵∴,∴在上递减,∴,,∴∴,,故选C.12. 对于函数,,下列说法错误的是()A. 函数在区间是单调函数B. 函数只有1个极值点C. 函数在区间有极大值D. 函数有最小值,而无最大值【答案】C点睛:对于①针对函数的性质,当时,由三角函数线可知,;利用商的导数运算法则及基本初等函数的导数公式,求出函数的导数,然后根据导函数的符号确定函数的单调性和函数的极值即可得到结论.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 函数在区间上的平均变化率为__________.【答案】2【解析】函数在区间上的平均变化率为:.14. 定积分__________.【答案】【解析】.15. 六个面都是平行四边形的四棱柱称为平行六面体,在平行四边形中(如图甲),有,利用类比推理,在平行六面体中(如图乙),__________.【答案】【解析】如图,平行六面体的各个面以及对角面都是平行四边形,因此,在平行四边形中,…①;在平行四边形中,…②;在平行四边形中,…③;②、③相加,得…④将①代入④,再结合得,.16. 已知,为正实数,直线与曲线相切,则的取值范围是__________.【答案】三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知复数是纯虚数().(1)求的值;(2)若复数,求.【答案】(1);(2).【解析】试题分析:(1)因为复数是纯虚数,可得,据此解不等式组,求交集,即可求出结果;(2)由(1)知,,可得,然后再根据复数的除法公式可得,然后再根据复数的模的公式即可求出结果.试题解析:(1)因为复数是纯虚数.∴,于是,∴.(2)由(1)知,,∴.∴.18. 证明:若,,,则,,至少有一个不大于.【答案】见解析.【解析】试题分析:首先根据题意,通过反证法假设,,中没有一个不大于-2,得出,即,然后根据基本不等式,得出,相互矛盾,即可证明.19. 如图,在海岸线由抛物线和线段组成的小岛上建立一个矩形的直升机降落场,要求矩形降落场的边与小岛海岸线重合,点,在抛物线上,其中直线是抛物线的对称轴,米,海岸线米,求降落场面积最大值及此时降落场的边长.【答案】,米,米.【解析】试题分析:以为坐标原点,为轴,为轴建立平面直角坐标系,易得抛物线方程为.设,则,矩形面积,然后再利用导数即可求出最大值.试题解析:如图,以为坐标原点,为轴,为轴建立平面直角坐标系,易得抛物线方程为.设,则,矩形面积,所以,令,解得或.当,;,;所以当时,,此时矩形边长米,米.20. 已知数列的通项公式,其前项和为.(1)求;(2)若,试猜想数列的通项公式,并用数学归纳法证明. 【答案】(1);(2)见解析.(2)∵,∴,,,,于是猜想.下证明猜想:①当时,,猜想成立;②假设当时,猜想成立,即,那么,当时,所以,时,猜想成立.由①②可知,对任意都成立.21. 已知函数.(1)若,求函数的极值;(2)若函数在定义域内单调递减,求实数的取值范围;【答案】(1)极小值,而无极大值;(2).试题解析:(1)若,则,函数的定义域为,,令,即:,解得.当时,,单调递减;当时,,单调递增.所以,在处取得极小值,而无极大值.(2)若在定义域内单调递减,则在恒成立,即对任意的恒成立.令,则,解,得,当时,,单调递减;当,,单调递减,所以,在上有最大值,于是,的取值范围为.点睛:利用导数求函数的极值的一般方法:求函数的极值的方法:(1)求导数;(2)求方程的根(临界点);(3)如果在根附近的左侧,右侧,那么是的极大值;如果在根附近的左侧,右侧,那么是的极小值.22. 已知函数有两个零点,.(1)求实数的取值范围;(2)求证:.【答案】(1);(2)见解析.即证对恒成立,令,然后再根据导数在函数单调性中的应用即可求出结果.试题解析:(1)函数的定义域为,因为有两个零点,,所以函数与函数有两个不同的交点,,令,解得,当时,,单调递增;当时,,单调递减,所以,并且当,,于是的图象大致为:函数与函数有两个不同的交点时,的取值范围是.。
郑州市2018-2019学年下学期期末考试高一数学(解析版)
![郑州市2018-2019学年下学期期末考试高一数学(解析版)](https://img.taocdn.com/s3/m/0a7f4b21b84ae45c3b358cb2.png)
2018-2019学年下期期末考试高一数学试题卷一、选择题1. AB⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ = A. AC ⃗⃗⃗⃗⃗ B. CD ⃗⃗⃗⃗⃗ C. AB ⃗⃗⃗⃗⃗ D.BD ⃗⃗⃗⃗⃗ 2. sin 140°cos 10°+cos 40°sin 350°= A.12 B. −12 C.√32D.−√323. 某校高一年级从815名学生中选取30名学生参加庆祝建党98周年的大合唱节目,若采用下面的方法选取,先用简单随机抽样从815人中剔除5人,剩下的810人再按系统抽样的方法抽取,则每人入选的概率A. 不全相等B. 均不相等C. 都相等,且为6163D. 都相等,且为1274. 第十一届全国少数民族传统体育运动会将于2019年9月8日至16日在郑州举行,如下图所示的茎叶图是两位选手在运动会前期选拔赛中的比赛得分,则下列说法正确的是 A. 甲的平均数大于乙的平均数 B. 甲的中位数大于乙的中位数 C. 甲的方差大于乙的方差 D. 甲的极差小于乙的极差5.要得到函数y =2√3cos 2x +sin2x −√3的图像,只需将函数y =2sin2x 的图像A. 向左平移π3个单位 B. 向右平移π3个单位 C. 向左平移π6个单位 D. 向右平移π6个单位6. 如图给出的是计算12+14+16+⋯+1102的值的一个程序框图,其中判断框中应填入的是A. i >102B. i ≤102C. i >100D. i ≤1007. 如图所示,在∆ABC 内随机选取一点P ,则∆PBC 的面积不超过四边形ABPC 的面积的概率是 A. 12 B. 14 C. 13 D. 348. 若sin (π6−α)=13,则cos (2π3+2α)=_____A. 13B. −13C. 79D. −799.已知边长为1的菱形ABCD 中,∠BAD =60°,点E 满足BE ⃗⃗⃗⃗⃗ =12EC ⃗⃗⃗⃗ ,则AE ⃗⃗⃗⃗⃗ ∙BD ⃗⃗⃗⃗⃗ 的值是 ( ) A.−13 B. −12 C. −14 D. −1610.已知α,β∈(0,π2),cos α=17,cos (α+β)=−1114,则β=PA. π6B.5π12C. π4D. π311.如图,在平行四边形ABCD 中,点E 、F 满足BE ⃗⃗⃗⃗⃗ =2EC ⃗⃗⃗⃗ ,CF⃗⃗⃗⃗ =2FD ⃗⃗⃗⃗⃗ ,EF 与AC 交于点G ,设AG ⃗⃗⃗⃗⃗ =λGC ⃗⃗⃗⃗⃗ ,则λ= A.97B. 74C. 72D.9212. 设f (x )=asin2x +bcos2x ,ab ≠0,若f (x )≤|f (π6)|对任意x ∈R 成立,则下列命题中正确的命题个数是⑴ f (11π12)=0; ⑵ |f (7π10)|<|f (π5)|;⑶ f(x)不具有奇偶性;⑷ f(x)的单调增区间是[kπ+π6 ,kπ+2π3](k ∈Z );⑸ 可能存在经过点的直线与函数的图像不相交。
人教A版数学高二弧度制精选试卷练习(含答案)2
![人教A版数学高二弧度制精选试卷练习(含答案)2](https://img.taocdn.com/s3/m/ac90d9695f0e7cd1842536fa.png)
人教A 版数学高二弧度制精选试卷练习(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知扇形的周长是5cm ,面积是322cm ,则扇形的中心角的弧度数是( ) A .3B .43C .433或 D .2【来源】江西省九江第一中学2016-2017学年高一下学期期中考试数学(文)试题 【答案】C2.已知扇形的周长为8cm ,圆心角为2,则扇形的面积为( ) A .1B .2C .4D .5【来源】四川省双流中学2017-2018学年高一1月月考数学试题 【答案】C3.《掷铁饼者》 取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为4π米,肩宽约为8π米,“弓”所在圆的半径约为1.25米,你估测一下掷铁饼者双手之间的距离约为( )1.732≈≈)A .1.012米B .1.768米C .2.043米D .2.945米【来源】安徽省五校(怀远一中、蒙城一中、淮南一中、颍上一中、淮南一中、涡阳一中)2019-2020学年高三联考数学(理)试题 【答案】B4.已知扇形的周长为4,圆心角所对的弧长为2,则这个扇形的面积是( ) A .2B .1C .sin 2D .sin1【来源】福建省泉州市南安侨光中学2019-2020学年高一上学期第二次阶段考试数学试题 【答案】B5.已知α是第三象限角,且cos cos22αα=-,则2α是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角【来源】2012人教A 版高中数学必修四1.2任意角的三角函数练习题 【答案】B6.如图,2弧度的圆心角所对的弦长为2,这个圆心角所对应的扇形面积是( )A .1sin1B .21sin 1C .21cos 1D .tan1【来源】广西河池市高级中学2017-2018学年高一下学期第二次月考数学试题 【答案】B7.半径为10cm ,面积为2100cm 的扇形中,弧所对的圆心角为( ) A .2 radB .2︒C .2π radD .10 rad【来源】第一章滚动习题(一) 【答案】A8.若一扇形的圆心角为72︒,半径为20cm ,则扇形的面积为( ). A .240πcmB .280πcmC .240cmD .280cm【来源】陕西省西安市长安区第一中学2016-2017学年高一下学期第一次月考数学试题 【答案】D9.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为1S ,正八边形外侧八个扇形(阴影部分)面积之和为2S ,则12S S =( )A .34B .35C .23D .1【来源】广西省南宁市马山县金伦中学、武鸣县华侨中学等四校2017-2018学年高一10月月考数学试题. 【答案】B10.在-360°到0°内与角1250°终边相同的角是( ) . A .170° B .190° C .-190°D .-170°【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(一)(带解析) 【答案】C11.下列各角中,终边相同的角是 ( ) A .23π和240o B .5π-和314oC .79π-和299π D .3和3o【来源】新疆伊西哈拉镇中学2018-2019学年高一上学期第二次月考数学试题 【答案】C12.已知2弧度的圆心角所对的弧长为2,则这个圆心角所对的弦长是( ) A .sin 2B .2sin 2C .sin1D .2sin1【来源】广东省东莞市2018-2019学年高一第二学期期末教学质量检查数学试题 【答案】D13,弧长是半径的3π倍,则扇形的面积等于( ) A .223cm πB .26cm πC .243cm πD .23cm π【来源】河北省隆华存瑞中学(存瑞部)2018-2019学年高一上学期第二次数学试题 【答案】D14.如图所示,用两种方案将一块顶角为120︒,腰长为2的等腰三角形钢板OAB 裁剪成扇形,设方案一、二扇形的面积分别为12S , S ,周长分别为12,l l ,则( )A .12S S =,12l l >B .12S S =,12l l <C .12S S >,12l l =D .12S S <,12l l =【来源】浙江省省丽水市2018-2019学年高一下学期期末数学试题 【答案】A15.已知sin sin αβ>,那么下列命题成立的是( ) A .若,αβ是第一象限角,则cos cos αβ> B .若,αβ是第二象限角,则tan tan αβ> C .若,αβ是第三象限角,则cos cos αβ> D .若,αβ是第四象限角,则tan tan αβ>【来源】正定中学2010高三下学期第一次考试(数学文) 【答案】D16.半径为1cm ,中心角为150°的角所对的弧长为( )cm . A .23B .23π C .56D .56π 【来源】宁夏石嘴山市第三中学2018-2019学年高一5月月考数学试题 【答案】D 17.设5sin 7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<【来源】2008年高考天津卷文科数学试题 【答案】D18.扇形的中心角为120o )A .πB .45πC D 2【来源】辽宁省大连市第八中学2016-2017学年高一下学期期中考试数学试题【答案】A19.若扇形的周长为8,圆心角为2rad ,则该扇形的面积为( ) A .2B .4C .8D .16【来源】河南省洛阳市2018-2019学年高一下学期期中考试数学试卷 【答案】B20.-300° 化为弧度是( ) A .-43πB .-53πC .-54πD .-76π【来源】2014-2015学年山东省宁阳四中高一下学期期中学分认定考试数学试卷(带解析) 【答案】B21.一个扇形的面积为3π,弧长为2π,则这个扇形的圆心角为( ) A .3π B .4π C .6π D .23π 【来源】湖北省荆门市2017-2018学年高一(上)期末数学试题 【答案】D22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为23π,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中3π≈,1.73≈)A .15B .16C .17D .18【来源】湖北省2018届高三5月冲刺数学(理)试题 【答案】B23.下列各式不正确的是( ) A .-210°=76π-B .405°=49πC .335°=2312πD .705°=4712π【来源】河南信阳市息县第一高级中学、第二高级中学、息县高中2018-2019学年高一下学期期中联考数学(文)试题 【答案】C24.下列函数中,最小正周期为π2的是( )A .y =sin (2x −π3)B .y =tan (2x −π3)C .y =cos (2x +π6) D .y =tan (4x +π6)【来源】20102011年山西省汾阳中学高一3月月考数学试卷 【答案】B25.已知扇形的周长为12cm ,圆心角为4rad ,则此扇形的弧长为 ( ) A .4cmB .6cmC .8cmD .10cm【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(理)试卷 【答案】C二、填空题26.已知扇形的圆心角18πα=,扇形的面积为π,则该扇形的弧长的值是______.【来源】上海市黄浦区2018-2019学年高一下学期期末数学试题 【答案】3π 27.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的底面半径为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】128.一个扇形的弧长与面积的数值都是5,则这个扇形中心角的弧度数为__________. 【来源】河南省灵宝市实验高中2017-2018学年高一下学期第一次月考考数学试题 【答案】5229.已知圆锥的侧面展开图是一个扇形,若此扇形的圆心角为65π、面积为15π,则该圆锥的体积为________.【来源】上海市杨浦区2019-2020学年高三上学期期中质量调研数学试题 【答案】12π30.圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示 ,正方形的顶点A 和点P 重合)沿着圆周顺时针滚动,经过若干次滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为 .【来源】2015届山东省日照市高三3月模拟考试理科数学试卷(带解析)31.已知扇形的圆心角为1弧度,扇形半径为2,则此扇形的面积为______. 【来源】上海市复兴高级中学2018-2019学年高一下学期3月份质量检测数学试题 【答案】232.一个球夹在120°的二面角内,且与二面角的两个面都相切,两切点在球面上的最短距离为π,则这个球的半径为_______ .【来源】上海市七宝中学2017-2018学年高二下学期期中数学试题 【答案】333.用半径为,面积为cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 则该容器盛满水时的体积是 .【来源】2012届江苏省泗阳中学高三上学期第一次调研考试数学试卷(实验班) 【答案】31000cm 3π34.《九章算术》是体现我国古代数学成就的杰出著作,其中(方田)章给出的计算弧田面积的经验公式为:弧田面积12=(弦⨯矢+矢2),弧田(如图阴影部分)由圆弧及其所对的弦围成,公式中“弦”指圆弧所对弦的长,“矢”等于半径长与圆心到弦的距离之差,现有弧长为43π米,半径等于2米的弧田,则弧所对的弦AB 的长是_____米,按照上述经验公式计算得到的弧田面积是___________平方米.【来源】山东省济南市2018-2019学年高一下学期期末学习质量评估数学试题【答案】1235.设扇形的半径长为2cm ,面积为24cm ,则扇形的圆心角的弧度数是 【来源】2013-2014学年山东济南商河弘德中学高一下学期第二次月考数学试卷(带解析) 【答案】236.已知一个圆锥的展开图如图所示,其中扇形的圆心角为120o ,弧长为2π,底面圆的半径为1,则该圆锥的体积为__________.【来源】2018年春高考数学(文)二轮专题复习训练:专题三 立体几何【答案】337.现用一半径为10cm ,面积为280cm π的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________3cm . 【来源】江苏省苏州市2018届高三调研测试(三)数学试题 【答案】128π38.已知扇形的周长为6,圆心角为1,则扇形的半径为___;扇形的面积为____. 【来源】浙江省宁波市镇海区镇海中学2018-2019学年高一上学期期中数学试题 【答案】2 2 39.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关; ④若sin sin αβ=,则α与β的终边相同;⑤若cos 0θ<,则θ是第二或第三象限的角. 其中正确的命题是______.(填序号)【来源】江苏省南通市启东中学2018-2019学年高二5月月考数学(文)试题 【答案】③40.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是________. 【来源】广东省中山市第一中学2016-2017学年高一下学期第一次段考(3月)数学(理)试题 【答案】2三、解答题41.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求其圆心角的大小.(2)求该扇形的面积取得最大时,圆心角的大小和弦长AB .【来源】2015-2016学年四川省雅安市天全中学高一11月月考数学试卷(带解析) 【答案】(1)或;(2);.42.已知一扇形的中心角是120︒,所在圆的半径是10cm ,求: (1)扇形的弧长; (2)该弧所在的弓形的面积【来源】福建省福州市平潭县新世纪学校2019-2020学年高一上学期第二次月考数学试题【答案】(1)203π;(2)1003π-43.某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点O 为圆心的两个同心圆弧和延长后通过点AD 的两条线段围成.设圆弧AB 、CD 所在圆的半径分别为()f x 、R 米,圆心角为θ(弧度).(1)若3πθ=,13r =,26=r ,求花坛的面积;(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段AD 的长度为多少时,花坛的面积最大?【来源】江苏省泰州市泰州中学2019~2020学年高一上学期期中数学试题 【答案】(1)292m π(2)当线段AD 的长为5米时,花坛的面积最大44.已知一个扇形的周长为30厘米,求扇形面积S 的最大值,并求此时扇形的半径和圆心角的弧度数.【来源】上海市华东师范大学第二附属中学2018-2019学年高一上学期期末数学试题 【答案】()2rad α= 152r =45.如图所示为圆柱形大型储油罐固定在U 型槽上的横截面图,已知图中ABCD 为等腰梯形(AB ∥DC ),支点A 与B 相距8m ,罐底最低点到地面CD 距离为1m ,设油罐横截面圆心为O ,半径为5m ,56D ∠=︒,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin530.8︒≈,tan56 1.5︒≈,3π≈,结果保留整数)【来源】上海市闵行区七宝中学2019-2020学年高一上学期9月月考数学试题 【答案】202m46.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…”某教师根据这首词的思想设计如下图形,已知CE l ⊥,DF l ⊥,CB CD =,AD BC ⊥,5DF =,2BE =,AD =则在扇形BCD 中随机取一点求此点取自阴影部分的概率.【来源】山西省阳泉市2018-2019学年高一第一学期期末考试试题数学试题【答案】1)4(P A π=-47.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由试卷第11页,总11页 扇形OAD 挖去扇形OBC 后构成的).已知10, (0<<10)OA=OB =x x ,线段BA 、CD与弧BC 、弧AD 的长度之和为30米,圆心角为θ弧度.(1)求θ关于x 的函数解析式;(2)记铭牌的截面面积为y ,试问x 取何值时,y 的值最大?并求出最大值.【来源】上海市黄浦区2018届高三4月模拟(二模)数学试题【答案】(1)210(010)10x x x θ+=<<+;(2)当52x =米时铭牌的面积最大,且最大面积为2254平方米. 48.已知一扇形的圆心角为()0αα>,所在圆的半径为R .(1)若90,10R cm α==o ,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值()0C C >,当α为多少弧度时,该扇形有最大面积?【来源】2019高考备考一轮复习精品资料 专题十五 任意角和弧度制及任意角的三角函数 教学案【答案】(1)2550π-;(2)见解析49.已知在半径为10的圆O 中,弦AB 的长为10.(1)求弦AB 所对的圆心角α(0<α<π)的大小;(2)求圆心角α所在的扇形弧长l 及弧所在的弓形的面积S .【来源】(人教A 版必修四)1.1.2弧度制(第一课时)同步练习02【答案】(1)π3(2)10π3;50(π3−√32) 50.已知在半径为6的圆O 中,弦AB 的长为6,(1)求弦AB 所对圆心角α的大小;(2)求α所在的扇形的弧长l 以及扇形的面积S.【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(文)试卷【答案】(1)3π ;(2)2l π= ,6S π=。
高一数学下学期期中试题(含解析)
![高一数学下学期期中试题(含解析)](https://img.taocdn.com/s3/m/af3d15c49f3143323968011ca300a6c30c22f12f.png)
,
原式=
=
=
.
【点睛】本题考查了余弦函数的定义、同角三角函数关系中的正弦、余弦平方和为 1 的关系 和商关系,考查了数学运算能力.
18.(1)已知扇形的周长为 8,面积是 4,求扇形的圆心角.
(2)已知扇形的周长为 40,当它的半径和圆心角取何值时,才使扇形的面积最大?
【答案】(1)2;(2)当半径为 10 圆心角为 2 时,扇形的面积最大,最大值为 100.
体重超过
的总人数为
在
的人数为
,应抽取的人数为
,
在
的人数为
,应抽取的人数为
,
在
的人数为
,应抽取的人数为
.
所以在
,
,
三段人数分别为 3,2,1.
甘肃省会宁县第一中学 2018-2019 学年高一数学下学期期中试题(含
解析)
一、选择题(本大题共 12 小题,共 60.0 分)
1.与
终边相同的角是( )
A.
B.
C.
D.
【答案】C
【解析】
【分析】
根据与 终边相同的角可以表示为
这一方法,即可得出结论.
【详解】与
角终边相同的角为:
,
当 时,
.
故选:C.
11.函数
的值域是( )
A.
B.
C.
D.
【答案】C
【解析】
【分析】
因为角 的终边不能落在坐标轴上,所以分别求出角 终边在第一、第二、第三、第四象限时,
根据三角函数的正负性,函数的表达式,进而求出函数的值域.
【详解】由题意可知:角 的终边不能落在坐标轴上,
当角 终边在第一象限时,
河南省洛阳市第一高级中学2018-2019学年高一5月月考数学试题(pdf版)
![河南省洛阳市第一高级中学2018-2019学年高一5月月考数学试题(pdf版)](https://img.taocdn.com/s3/m/bf655252011ca300a6c39097.png)
高一月考数学试题一、选择题(本大题共12小题,每小题5分,共60分.每小题中只有一项符合题目要求)1.如图给出的是计算12+14+16+…+12 014的值的程序框图,其中判断框内应填入的是( )A .i ≤2 012?B .i >2 012?C .i ≤2 014?D .i >2 014?2.某网站对“双十二”网上购物的情况做了一项调查,收回的有效问卷共50 000份,其中购买下列四种商品的人数统计如下表:已知在购买“家用电器”这一类中抽取了92份问卷,则在购买“服饰鞋帽”这一类中应抽取的问卷份数为( )A .198B .116C .99D .943.如果执行如图的程序框图,那么输出的值是( ) A .2 010 B .-1 C.12 D .24.一个k 进制的三位数与某六进制的二位数等值,则k 不可能是( ) A .3 B .4 C .5 D .75. 以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( )A .2,5B .5,5C .5,8D .8,86.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据:根据上表提供的数据,求出y 关于x 的线性回归方程为y =0.7x +0.35,那么表中t 的值为( )A .3B .3.15C .3.5D .4.5 7.已知流程图如下图所示,该程序运行后,为使输出的b 值为16,则循环体的判断框内①处应填( )A .2B .3C .5D .78.学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为n的样本,其频率分布直方图如图所示,其中支出在[50,60)的同学有30人,则n 的值为( )A .100B .1 000C .90D .9009.某班有48名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名同学的成绩有误,甲实得80分却记为50分,乙实得70分却记为100分,更正后平均分和方差分别是( )A .70,25B .70,50C .70,1.04D .65,2510.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )A.14B.12C.34D.7811.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( )A .众数B .平均数C .中位数D .标准差12.自平面上一点O 引两条射线OA ,OB ,点P 在OA 上运动,点Q 在OB 上运动且保持PQ 为定值a (点P ,Q 不与点O 重合),已知∠AOB =π3,a =7,则3PQ PO QP QO POQO⋅⋅+的取值范围为( )A .(12,7]B .(72,7]C .(-12,7]D .(-72,7]二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为________.14.在2019年3月15日,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x 元和销售量y 件之间的一组数据如下表所示:由散点图可知,销售量y 与价格x 之间有较好的线性相关关系,其线性回归直线方程是:y ∧=-3.2 x +a ∧(参考公式:回归方程 y ∧=b ∧x +a ∧ , a ∧=y -b x ),则a =________.15.已知直线y =a 交抛物线y =x 2于A ,B 两点,若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________.11sin cos ,1631()()=33().y a x b x c y f x f x f x ππ⎛⎫=++ ⎪⎝⎭= 16.已知图像上有一最低点,若图像上各点纵坐标不变,横坐标缩为原来的倍,再左移个单位得,又的所有根从小到大依次相差个单位,则的解析式为__________ 三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)假设甲乙两种品牌的同类产品在某地区市场上销售量相等,为了解他们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如下:(1)估计甲品牌产品寿命小于200小时的概率;(2)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是甲品牌的概率.18.(本小题满分12分)高三年级有500名学生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:(1)根据上面图表,①②③④处的数值分别为________、________、________、________;(2)在所给的坐标系中画出[85,155]的频率分布直方图;(3)根据题中信息估计总体平均数,并估计总体落在[129,155]中的频率.19.(本小题满分12分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨)标准煤的几组对照数据.(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出回归方程y ∧=b ∧x +a ∧;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(注:b ∧=∑ni =1x i y i -n x -y -∑n i =1x i 2-n x -2,a ∧=y --b ∧x -)20.(本小题满分12分)已知关于x 的一元二次方程x 2+2ax +b =0.(1)若a ∈{0,1,2,3},b ∈{0,1,2},求方程x 2+2ax +b =0有实根的概率; (2)若a ∈[0,3],b ∈[0,2],求方程x 2+2ax +b =0有实根的概率.21. (本小题满分12分)已知f (x )=1+cos x -sin x 1-sin x -cos x +1-cos x -sin x 1-sin x +cos x 且x ≠2k π+π2,k ∈Z,且x ≠k π+π,k ∈Z .①化简f (x );②是否存在x ,使得tan x2·f (x )与1+tan 2x2sin x 相等?若存在,求x 的值;若不存在,请说明理由.22.(本小题满分12分)已知向量m =(sin x,1),n =(3A cos x ,A2cos2x )(A >0且A 为常数),函数f (x )=m ·n 的最大值为6. (1)求A 的值;(2)将函数y =f (x )的图像向左平移π12个单位,再将所得图像上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图像,求g (x )在[0,5π24]上的值域.参考答案:一、CABDC ABABC DD二、13. 0.25;14. 40;15. [)1+∞,;16 ()=2sin 33f x x π+.三、17: 答案 (1)14 (2)1529解析 (1)甲品牌产品寿命小于200小时的频率为5+20100=14,用频率估计概率,所以甲品牌产品寿命小于200小时的概率为14.(2)根据抽样结果,寿命大于200小时的产品有75+70=145个,其中甲品牌产品是75个,所以在样本中,寿命大于200小时的产品是甲品牌的频率是75145=1529,用频率估计概率,所以已使用了200小时的该产品是甲品牌的概率为1529.18. (1)1 0.025 0.1 1(2)略(3)总体平均数约为122.5,总体落在[129,155]上的频率约为0.315. 解析 (1)随机抽出的人数为120.300=40,由统计知识知④处应填1;③处应填440=0.1;②处应填1-0.050-0.1-0.275-0.300-0.200-0.050=0.025;①处应填0.025×40=1. (2)频率分布直方图如图. (3)利用组中值算得平均数:90×0.025+100×0.05+110×0.2+120×0.3+130×0.275+140×0.1+150×0.05=122.5;总体落在[129,155]上的频率为610×0.275+0.1+0.05=0.315.19. 解析 (1)散点图,如图所示.(2)由题意,得∑i =14x i y i =3×2.5+4×3+5×4+6×4.5=66.5,x -=3+4+5+64=4.5,y -=2.5+3+4+4.54=3.5,∑i =14x i 2=32+42+52+62=86,∴b ∧=66.5-4×4.5×3.586-4×4.52=66.5-6386-81=0.7,a ∧=y --b ∧x -=3.5-0.7×4.5=0.35.故线性回归方程为y ∧=0.7x +0.35.(3)根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为0.7×100+0.35=70.35,故能耗减少了90-70.35=19.65(吨).20. 解析 用(a ,b)表示a ,b 取相应值时所对应的一个一元二次方程.要使x 2+2ax +b =0有实根,则(2a)2-4b ≥0,即a ≥b.(1)(a ,b)的所有可能取值有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中满足a ≥b 的有9个. 故方程x 2+2ax +b =0有实根的概率为912=34.(2)设事件A 表示“一元二次方程x 2+2ax +b =0有实根”,则(a ,b)的所有可能取值构成的区域为{(a ,b)|0≤a ≤3,0≤b ≤2},这是一个长方形区域,面积为2×3=6;构成事件A 的区域为{(a ,b)|0≤a ≤3,0≤b ≤2,a ≥b},如图中阴影部分,面积为2×3-12×22=4.故方程x 2+2ax +b =0有实根的概率为46=23.21.【解析】 ①∵1+cos x -sin x 1-sin x -cos x =2cos 2x 2-2sin x 2cos x 22sin 2x 2-2sin x 2cosx 2 =2cos x 2(cos x 2-sin x 2)-2sin x 2(cos x 2-sin x 2)=-cos x2sin x 2, 同理得1-cos x -sin x 1-sin x +cos x =-sin x2cos x 2.∴f (x )=-cos x 2sin x 2-sin x 2cos x 2=-cos 2x 2+sin 2x 2sin x 2·cos x 2=-2sin x .且x ≠2k π+π2,k ∈Z.②若tan x2·f (x )=1+tan 2x 2sin x ,则-2tan x 2sin x =1+tan 2x2sin x . ∴2tan x 21+tan 2x2=-1,即sin x =-1. 此时x =2k π+3π2,(k ∈Z ),即为存在的值.22. 解析 (1)f (x )=m ·n =3A sin x cos x +A2cos2x =A (32sin2x +12cos2x )=A sin(2x +π6).因为A >0,由题意知A =6. (2)由(1)知f (x )=6sin(2x +π6).将函数y =f (x )的图像向左平移π12个单位后得到 y =6sin[2(x +π12)+π6]=6sin(2x +π3)的图像;再将得到图像上的各点横坐标缩短为原来的12倍,纵坐标不变,得到y =6sin(4x +π3)的图像. 因此g (x )=6sin(4x +π3).因为x ∈[0,5π24],所以4x +π3∈[π3,7π6]. 故g (x )在[0,5π24]上的值域为[-3,6].。
2018-2019学年高一下学期期中考试数学试卷
![2018-2019学年高一下学期期中考试数学试卷](https://img.taocdn.com/s3/m/b694b873fe4733687e21aac2.png)
一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项符合题目要求. 请在答题卡上填涂相应选项。
1. 若2sin()3απ-=,则cos2α=( ) A .59 B .19 C .19- D .59- 2. 在△ABC 中,60A ∠=,45B ∠=,23AC =BC =( )A .42B .32C .26D 6 3. cos80cos 20sin(80)sin160⋅--⋅的值是( ) A.12 B. 32 C. 1-2D. 3-24. 下列命题正确的是( )A.如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行B. 若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行C. 垂直于同一条直线的两条直线相互垂直D.若两条直线与第三条直线所成的角相等,则这两条直线互相平行.5. 设△ABC 的内角A B C ,,的对边分别为a b c ,,,若cos cos a a B b A =+,则△ABC 的形状为( )A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形 6. 在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的余弦值为( ) A .23B 5C 5D 7 7. 在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积与原正方体的体积比为( )A. 2:3B. 3:4C. 4:5D. 5:68. 如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75,30,此时气球的高是50m ,则河流的宽度BC 等于( )A .100(31)m -B .200(31)m -C .200(21)m -D .20(31)m +9. 在ABC ∆中,a ,b ,c 分别为内角A ,B ,C 所对的边长,若22()4c a b =-+,3C π=,则ABC ∆的面积是( )A .32B .3C .3D . 2310. 已知某圆柱的底面周长为12,高为2,矩形ABCD 是该圆柱的轴截面,则在此圆柱侧面上,从A 到C 的路径中,最短路径的长度为( ) A .210B .25C .3D .211. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”若圆周率约为3,则可估算出米堆的体积约为( )A .9立方尺B .18立方尺C .36立方尺D .72立方尺12. 如图是正方体的平面展开图,则在这个正方体中:①BM 与ED 平行 ②CN 与BE 是异面直线 ③CN 与BM 成60角 ④DM 与BN 是异面直线 以上四个命题中,正确命题的个数是( ) A.1 B.2 C.3 D.4二、填空题:本题共4小题,每小题5分.请将答案填在答题卡对应题号的位置上,答错位置、写不清、模棱两可均不得分。
洛阳市2018—2019下学期期中考试高二历史试卷及参考答案
![洛阳市2018—2019下学期期中考试高二历史试卷及参考答案](https://img.taocdn.com/s3/m/747fc316bcd126fff6050b21.png)
洛阳市2018-2019学年第二学期期中考试第Ⅰ卷(选择题,共48分)一、选择题(共32小题,每小题1.5分,共48分。
)1.商朝统治者推行内外服制,内服是商人本族的活动区域,外服是商族以外的方国。
各方国基本保持原有的社会结构,除对商王承担应尽的义务外,有很大的自主权,有的方国还经常与商处于战争状态。
与商朝内外服制相比,西周的分封制A.扩大了中央王朝统治疆域B.遏制了诸侯间的攻伐战事C.加强了中央对地方的管辖D.建立起了有效的官僚体制2.周朝有同姓贵族之间不得联姻的规定,故周王室主要与异姓诸侯联姻,这些诸候国被称为“甥舅之国”。
“甥舅之国”的出现A.推动“家天下”局面最终形成B.强化了部落血缘贵族统治C.扩大了宗法关系巩固了统治D.加强了周天子的专制权力3.柳宗元认为,秦末农民起义“咎在人怨,非郡邑之制失也”,西汉七国之乱“有叛国国无叛郡”,“秦制之得亦明矣”。
柳宗元意在强调A.分封制不利于政权的长期稳固B.都县制有利于加强中央集权C.分封子弟是皇权专制的一种体现D.汉初分封必然导致七国之乱4.礼、乐源自氏族社会的风俗习惯,为维护分封、宗法所形成的等级体系而制度化。
《礼记》中说:“乐者为同,礼者为异。
同则相亲,异则相敬。
”这说明礼乐制度A.起到了稳定统治秩序的作用B.突出强调社会等级分化C.促使社会风俗习惯趋向同一D.与宗法分封制互为表里5.传说古代帝王在阴历一月決定一年的政事,所以阴历一月叫政月。
到了秦朝,由于避讳赢政的名,就把政月改为正月,并且把“正”字的音读作“征”了。
一月的这种变化体现了A.皇帝独尊B.皇位世袭C.君权神授D.皇权至上6.在秦朝朝议中,有发言权的不仅是三公九卿,没有具体行政职责的博土也可进言。
据此可知,朝议制度A.对政治事务的决策实行民主协商B.保证了中央机构的至上权力C.有利于减少重大事务的决策失误D.表明秦代中央官制发展完善7.1975年,在湖北省云梦县睡虎地秦墓中出土的大量秦简,其中包含《置吏制律》三条,规定县、都官、十二郡官吏、属官的考核、升黜工作从每年的十二月开始,到次年月必须截止。
河南省洛阳市第一高级中学2020-2021学年高一下学期5月月考数学试题+PDF版含答案
![河南省洛阳市第一高级中学2020-2021学年高一下学期5月月考数学试题+PDF版含答案](https://img.taocdn.com/s3/m/54214aa6cf84b9d529ea7a22.png)
的值转化为求 n 个一次多项式的值.已知 f(x) .
15.设 O 为△ABC 内部的一点,且
= ,则△AOC 的面积与△BOC 的面积之比为
.
16.已知锐角△ABC,且 tanA+tanB=3tanAtanB,则 tanA•tanB•tanC 的最小值为
.
三.解答题(共 6 小题,第 17 题 10 分,其他小题每小题 12 分)
的值转化为求 n 个一次多项式的值.已知 f(x) .
15.设 O 为△ABC 内部的一点,且
= ,则△AOC 的面积与△BOC 的面积之比为
.
16.已知锐角△ABC,且 tanA+tanB=3tanAtanB,则 tanA•tanB•tanC 的最小值为
.
三.解答题(共 6 小题,第 17 题 10 分,其他小题每小题 12 分)
值作代表).
第 3页(共 4页)
18.已知圆 C 经过点 A(2,﹣1),和直线 x+y﹣1=0 相切,且圆心在直线 y=﹣2x 上. (1)求圆 C 的方程; (2)已知直线 l 经过(2,0)点,并且被圆 C 截得的弦长为 2,求直线 l 的方程.
19.已知四棱锥 P﹣ABCD 的底面为平行四边形,平面 PBC⊥平面 ABCD,点 E 在 AD 上,AD⊥平面 PEC. (1)求证:PC⊥平面 ABCD; (2)若 AE=2ED,在线段 PB 上是否存在一点 F,使得 AF∥平面 PEC,请说明理由.
22.已知函数
.
(1)求函数 f(x)在区间
上的值域;
(2)求函数 f(ωx)(ω>0)图象上的所有点向右平移 个单位长度,再将各点的横坐标缩短到原来
的 倍(纵坐标不变),得到函数 g(x)的图象,若
专题18 任意角、弧度制及任意角的三角函数领军高考数学一轮复习(文理通用)含解析
![专题18 任意角、弧度制及任意角的三角函数领军高考数学一轮复习(文理通用)含解析](https://img.taocdn.com/s3/m/08fe901a7fd5360cba1adbcf.png)
2020年领军高考数学一轮复习(文理通用)专题18任意角、弧度制及任意角的三角函数最新考纲1.了解任意角的概念和弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角三角函数(正弦、余弦、正切)的定义.基础知识融会贯通1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }.(3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. (2)角度制和弧度制的互化:180°=π rad,1°=π180 rad ,1 rad =⎝⎛⎭⎫180π°. (3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时, 则sin α=y ,cos α=x ,tan α=yx (x ≠0).三个三角函数的性质如下表:4.三角函数线如下图,设角α的终边与单位圆交于点P,过P作PM⊥x轴,垂足为M,过A(1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T.【知识拓展】1.三角函数值的符号规律三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦.2.任意角的三角函数的定义(推广)设P(x,y)是角α终边上异于顶点的任一点,其到原点O的距离为r,则sin α=yr,cos α=xr,tan α=yx(x≠0).重点难点突破【题型一】角及其表示【典型例题】已知集合{α|2kπα≤2kπ,k∈Z},则角α的终边落在阴影处(包括边界)的区域是()A.B.C .D .【解答】解:集合{α|2k πα≤2k π,k ∈Z },表示第一象限的角,故选:B . 【再练一题】直角坐标系内,β终边过点P (sin2,cos2),则终边与β重合的角可表示成( )A .2+2πk ,k ∈ZB .2+k π,k ∈ZC .2+2k π,k ∈zD .﹣2+2k π,k ∈Z【解答】解:∵β终边过点P (sin2,cos2),即为(cos (2),sin (2))∴终边与β重合的角可表示成2+2k π,k ∈Z ,故选:A .思维升华 (1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需的角. (2)确定kα,αk(k ∈N *)的终边位置的方法先写出kα或αk 的范围,然后根据k 的可能取值确定kα或αk的终边所在位置.【题型二】弧度制【典型例题】已知扇形的周长是6cm ,面积是2cm 2,试求扇形的圆心角的弧度数( ) A .1B .4C .1或 4D .1或 2【解答】解:设扇形的圆心角为αrad ,半径为Rcm ,则,解得α=1或α=4.故选:C .【再练一题】将300°化成弧度得:300°=rad.【解答】解:∵180°=π,∴1°,则300°=300.故答案为:.思维升华应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.【题型三】三角函数的概念及应用命题点1三角函数定义的应用【典型例题】已知角θ的顶点与原点重合,始边与x轴正半轴重合,若A(x,3)是角θ终边上一点,且,则x=()A.B.C.1 D.﹣1【解答】解:角θ的顶点与原点重合,始边与x轴正半轴重合,若A(x,3)是角θ终边上一点,且,则x=﹣1,故选:D.【再练一题】已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上一点A(2sinα,3),则cosα=()A.B.C.D.【解答】解:∵由题意可得:x=2sinα,y=3,可得:r,∴cosα,可得:cos2α,整理可得:4cos4α﹣17cos2α+4=0,∴解得:cos2α,或(舍去),∴cosα.故选:A.命题点2三角函数线的应用【典型例题】已知,a=sinα,b=cosα,c=tanα,那么a,b,c的大小关系是()A.a>b>c B.b>a>c C.a>c>b D.c>a>b【解答】解:作出三角函数对应的三角函数线如图:则AT=tanα,MP=sinα,OM=cosα,则sinα>0,AT<OM<0,即sinα>cosα>tanα,则a>b>c,故选:A.【再练一题】已知a=sin,b=cos,c=tan,则()A.b<a<c B.c<b<a C.b<c<a D.a<b<c【解答】解:因为,所以cos sin,tan1,所以b<a<c.故选:A.思维升华(1)利用三角函数的定义,已知角α终边上一点P的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围.基础知识训练2,3-,则1.【湖南省衡阳市第八中学2018-2019学年高一下学期期中考试】已知角θ的终边经过点()()A .5B .15-C .15D .5-【答案】A 【解析】由任意角的三角函数定义可知:3tan 2θ=-本题正确选项:A2.【甘肃省会宁县第一中学2018-2019学年高一下学期期中考试】函数的值域是( ) A .B .C .D .【答案】C 【解析】由题意可知:角的终边不能落在坐标轴上, 当角终边在第一象限时, 当角终边在第二象限时, 当角终边在第三象限时,当角终边在第四象限时,因此函数的值域为,故选:C.3.【安徽省淮北师范大学附属实验中学2018-2019学年高一下学期第二次月考】已知角α的终边上一点P 的坐标为,则sin α的值为( )A .12B .1-2C .2D .-2【答案】B 【解析】解:角α的终边上一点P的坐标为1,22⎛⎫- ⎪ ⎪⎝⎭, 它到原点的距离为r =1,由任意角的三角函数定义知:,故选:B .4.【甘肃省宁县第二中学2018-2019学年高一下学期期中考试】已知点P (sin α+cos α,tan α)在第四象限,则在[0,2π)内α的取值范围是( )A .(2π,34π)∪(54π,32π) B .(0,4π)∪(54π,32π) C .(2π,34π)∪(74π,2π)D .(2π,34π)∪(π,32π)【答案】C 【解析】∵点P (sin α+cos α,tan α)在第四象限, ∴,由sin α+cosα=(α4π+), 得2k π<α4<π+2k π+π,k∈Z,即2k π4π-<α<2k π34π+π,k∈Z. 由tan α<0,得k π2π+<α<k π+π,k∈Z.∴α∈(2π,34π)∪(74π,2π).故选:C .5.【安徽省示范高中2018-2019学年高一下学期第三次联考】若角θ是第四象限角,则32πθ+是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角【答案】C 【解析】角θ是第四象限角.,则故32πθ+是第三象限角.故选C. 6.【河南省南阳市第一中学2018-2019学年高一下学期第四次月考】已知且sin 0α>,则下列不等式一定成立的是( ) A . B . C .D .【答案】D 【解析】 由于且sin 0α>,故α为第二象限角,故,故D 选项一定成立,故本小题选D.7.【宁夏石嘴山市第三中学2018-2019学年高一5月月考】半径为1cm ,中心角为150°的角所对的弧长为( )cm . A .23B .23π C .56D .56π 【答案】D 【解析】由题意,半径1r cm =,中心角,又由弧长公式,故选:D .8.【甘肃省会宁县第一中学2018-2019学年高一下学期期中考试】与0420-终边相同的角是( ) A .0120- B .0420C .0660D .0280【答案】C 【解析】与0420-角终边相同的角为:,当3n =时,.故选:C .9.【安徽省淮北师范大学附属实验中学2018-2019学年高一下学期第二次月考】下列说法正确的是( ) A .钝角是第二象限角B .第二象限角比第一象限角大C.大于90︒的角是钝角D.-165︒是第二象限角【答案】A【解析】解:钝角的范围为,钝角是第二象限角,故A正确;﹣200°是第二象限角,60°是第一象限角,-200°<60°,故B错误;由钝角的范围可知C错误;-180°<-165°<-90°,-165°是第三象限角,D错误.故选:A.10.直角坐标系内,角β的终边过点,则终边与角β重合的角可表示成()A.B.C.D.【答案】A【解析】因为点为第四象限内的点,角β的终边过点,所以β为第四象限角,所以终边与角β重合的角也是第四象限角,而,均为第三象限角,为第二象限角,所以BCD排除,故选A11.【江苏省南通市启东中学2018-2019学年高二5月月考】给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关;④若,则α与β的终边相同;θ<,则θ是第二或第三象限的角.⑤若cos0其中正确的命题是______.(填序号) 【答案】③ 【解析】 ①43απ=-,则α为第二象限角;3πβ=,则β为第一象限角,此时αβ<,可知①错误;②当三角形的一个内角为直角时,不属于象限角,可知②错误; ③由弧度角的定义可知,其大小与扇形半径无关,可知③正确; ④若3πα=,23πβ=,此时,但,αβ终边不同,可知④错误;⑤当θπ=时,,此时θ不属于象限角,可知⑤错误.本题正确结果:③12.【甘肃省会宁县第一中学2018-2019学年高一下学期期中考试】与02018-角终边相同的最小正角是______ 【答案】0142 【解析】 解:,即与02018-角终边相同的最小正角是0142, 故答案为:0142.13.【河南省平顶山市郏县第一高级中学2018-2019学年高一下学期第二次5月月考】从8:05到8:50,分针转了________(rad ). 【答案】3π2- 【解析】从8:05到8:50,过了45分钟,时针走一圈是60分钟, 故分针是顺时针旋转,应为负角, 故分针转了32π-. 14.【2017届四川省成都市石室中学高三二诊模拟考试】已知角3πα+的始边是x 轴非负半轴.其终边经过点34(,)55P--,则sinα的值为__________.【解析】解:∵点P(1,2)在角α的终边上,∴tanα2=,将原式分子分母除以cosα,则原式故答案为:5.16.【江苏省涟水中学2018-2019学年高二5月月考】欧拉公式(i为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,3ie-表示的复数在复平面中位于第_______象限.【答案】三【解析】由题e-3i=cos3-i sin3,又cos3<0, sin3>0,故3ie-表示的复数在复平面中位于第三象限.故答案为三17.【甘肃省会宁县第一中学2018-2019学年高一下学期期中考试】(1)已知扇形的周长为8,面积是4,求扇形的圆心角.(2)已知扇形的周长为40,当它的半径和圆心角取何值时,才使扇形的面积最大?【答案】(1)2;(2)当半径为10圆心角为2时,扇形的面积最大,最大值为100.【解析】(1)设扇形的圆心角大小为α()rad,半径为r,则由题意可得:.联立解得:扇形的圆心角2α=.(2)设扇形的半径和弧长分别为r和l,由题意可得240r l+=,∴扇形的面积.当10r =时S 取最大值,此时20l =, 此时圆心角为2lrα==, ∴当半径为10圆心角为2时,扇形的面积最大,最大值为100.18.【上海市徐汇区2019届高三上学期期末学习能力诊断】我国的“洋垃极禁止入境”政策已实施一年多某沿海地区的海岸线为一段圆弧AB ,对应的圆心角,该地区为打击洋垃圾走私,在海岸线外侧20海里内的海域ABCD 对不明船只进行识别查证如图:其中海域与陆地近似看作在同一平面内在圆弧的两端点A ,B 分别建有监测站,A 与B 之间的直线距离为100海里.求海域ABCD 的面积;现海上P 点处有一艘不明船只,在A 点测得其距A 点40海里,在B 点测得其距B 点海里判断这艘不明船只是否进入了海域ABCD ?请说明理由. 【答案】(1)平方海里; (2)这艘不明船只没进入了海域ABCD ..【解析】,在海岸线外侧20海里内的海域ABCD ,,,平方海里,由题意建立平面直角坐标系,如图所示; 由题意知,点P 在圆B 上,即,点P也在圆A上,即;由组成方程组,解得;又区域ABCD内的点满足,由,不在区域ABCD内,由,也不在区域ABCD内;即这艘不明船只没进入了海域ABCD.19.已知角β的终边在直线x-y=0上.①写出角β的集合S;②写出S中适合不等式-360°≤β<720°的元素.【答案】①{β|β=60°+n·180°,n∈Z};②-120°,240°,600°.【解析】①如图,直线x-y=0过原点,倾斜角为60°,在0°~360°范围内,终边落在射线OA上的角是60°,终边落在射线OB上的角是240°,所以以射线OA、OB为终边的角的集合为:S1={β|β=60°+k·360°,k∈Z},S2={β|β=240°+k·360°,k∈Z},所以,角β的集合S=S1∪S2={β|β=60°+k·360°,k∈Z}∪{β|β=60°+180°+k·360°,k∈Z}={β|β=60°+2k·180°,k∈Z}∪{β|β=60°+(2k+1)·180°,k∈Z}={β|β=60°+n·180°,n∈Z}.②由于-360°≤β<720°,即-360°≤60°+n·180°<720°,n∈Z,解得,n∈Z,所以n可取-2、-1、0、1、2、3.所以S中适合不等式-360°≤β<720°的元素为:60°-2×180°=-300°;60°-1×180°=-120°;60°-0×180°=60°;60°+1×180°=240°;60°+2×180°=420;60°+3×180°=600°.20.已知,如图所示.(1)分别写出终边落在OA,OB位置上的角的集合.(2)写出终边落在阴影部分(包括边界)的角的集合.【答案】(1) 终边落在OA位置上的角的集合为{α|α=135°+k·360°,k∈Z};终边落在OB位置上的角的集合为{α|α=-30°+k·360°,k∈Z};(2) {α|-30°+k·360°≤α≤135°+k·360°,k∈Z}.【解析】(1)终边落在OA位置上的角的集合为{α|α=90°+45°+k·360°,k∈Z}={α|α=135°+k·360°,k∈Z};终边落在OB位置上的角的集合为{α|α=-30°+k·360°,k∈Z}.(2)由题干图可知,阴影部分(包括边界)的角的集合是由所有介于[-30°,135°]之间的角及终边与它们相同的角组成的集合,故该区域可表示为{α|-30°+k·360°≤α≤135°+k·360°,k∈Z}.能力提升训练1.【安徽省芜湖市2019届高三模拟考试】如图,点为单位圆上一点,,点沿单位圆逆时针方向旋转角到点,则()A.B.C.D.【答案】D【解析】∵点A为单位圆上一点,,点A沿单位圆逆时针方向旋转角α到点,∴A(cos,sin),即A(),且cos(α),sin(α).则sinα=sin[(α)]=sin(α)cos cos(α)sin,故选:D.∆中,若,那么2.【黑龙江省大庆实验中学2018-2019学年高一下学期期中考试】在ABC∆是()ABCA.锐角三角形B.钝角三角形C.直角三角形D.不能确定【答案】A【解析】∆中,,∵在ABC∴,∴,A B为锐角.又,∴,∴,∴C为锐角,∆为锐角三角形.∴ABC故选A .3.【河北省邯郸市2018-2019学年高一下学期期中考试】已知,那么角是( )A .第一或第二象限角B .第二或第三象限角C .第三或第四象限角D .第一或第四象限角 【答案】B 【解析】由,得异号,则角是第二或第三象限角, 故选:.4.【河南省洛阳市2018-2019学年高一下学期期中考试】已知角α的终边经过点P (-3,y ),且y <0,cosα=-,则tanα=( ) A .B .C .D .【答案】C 【解析】由题意,角的终边经过点,且,则,∴,所以,故选:C .5.【四川省攀枝花市2019届高三下学期第三次统考】已知角83πθ=的终边经过点(,P x ,则x 的值为( ) A .±2 B .2C .﹣2D .﹣4【答案】C 【解析】∵已知角83πθ=的终边经过点(,P x ,∴,则2x =-,故选:C .6.【黑龙江省哈尔滨市第三中学2019届高三上学期期中考试】,则3f π⎛⎫=⎪⎝⎭( )A B C .12D 【答案】C 【解析】根据题意,,且13π<<,则.故选:C .7.【四川省华文大教育联盟2019届高三第二次质量检测考试】在平面直角坐标系xOy 中,已知02απ<<,点是角α终边上一点,则α的值是___________.【答案】3π【解析】,∵02απ<<,且点P 在第一象限, ∴α为锐角,∴α的值是3π, 故答案为:3π8.【安徽省淮北市第一中学2018-2019学年高一下学期开学考试】函数的定义域为______.【答案】或x k π=,k Z}∈【解析】因为所以 2sin x 0cosx≥等价于0cosx >或0sinx =所以或x k π=,k Z ∈故答案为:或x k π=,k Z}∈.9.【四川省蓉城名校联盟2018-2019学年上期期末联考高一】在平面直角坐标系中,已知一个角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (5,-12),则sin α+cos α的值为___. 【答案】【解析】∵一个角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (5,-12), ∴sin α=则sin α+cos α=-,故答案为:-.10.对于任意实数,事件“”的概率为_______.【答案】 【解析】由于“”,故为第二象限角,故概率为.。
2018-2019学年高一下学期期中考试数学试题 (6)
![2018-2019学年高一下学期期中考试数学试题 (6)](https://img.taocdn.com/s3/m/55c07fd1b8f67c1cfad6b860.png)
总分:150分 时间:120分钟一、选择题(共60分,每小题5分,每小题给出的四个选项中,只有一项是符合要求的.) 1.设a 、b 、R c ∈,且b a >,则( )A .bc ac >B .ba 11< C .33b a > D .22b a > 2.ABC ∆的内角A 、B 、C 的对边分别为a ,b ,c ,根据下列条件解三角形,其中有两解的是( )A .2=a ,4=b ,060=AB .2=a ,2=c ,060=A C .34=a ,6=b ,060=AD .3=a ,4=b ,030=A3.设等比数列}{n a 的前n 项和为n S ,若1010=S ,7030=S ,则40S =( )A .80B .110C .130D .150 4.在ABC ∆中,若2cossin sin 2AC B = ,则ABC ∆是( ) A .直角三角形 B .等边三角形 C .等腰三角形D .等腰直角三角形5.已知θtan ,ϕtan 是方程04332=++x x 的两根,且θ,ϕ)23,2(ππ∈,则ϕθ+的值为( )A .34πB .37πC .34π或37πD .35π或37π 6.各项均为正数的等差数列na n 的前}{项和为nS ,)1(0211>=-++-m a a a m m m ,m S m 则,3812=-等于A .38 B .20C .10D .9 ( )7.已知数列}{n a 满足311=a ,n n n a a a -+=+111)(*N n ∈,则=⋅⋅⋅⋅⋅⋅⋅2019321a a a a ( ) A .3- B .2- C .21-D .31-8.已知不等式012≥+-bx ax 的解集是]41,31[-,则不等式02<+-a bx x 的解集是( )A .)4,3(-B .)31,41(- C .),4()3,(+∞⋃--∞D .),31()41,(+∞⋃--∞9.已知ABC ∆的三个内角A ,B ,C 依次成等差数列,BC 边上的中线32=AD ,2=AB ,则ABC ∆的面积S 为( )A.3B.32C.33D.3410.如果ABC ∆的三个内角的正弦值分别等于DEF ∆的三个内角的余弦值,则下列正确的是( )A .ABC ∆与DEF ∆都是锐角三角形B .ABC ∆与DEF ∆都是钝角三角形 C .ABC ∆是锐角三角形且DEF ∆是钝角三角形D .ABC ∆是钝角三角形且DEF ∆是锐角三角形11.已知数列}{n a 满足12n n a a +-=,若不等式33221≤+⋅⋅⋅⋅⋅++n a a a 恒成立,则n 的最大值为( )A .6B .7C .8D .912.已知数列}{n a 、}{m b 的通项公式分别为24-=n a n ),1001(*N n n ∈≤≤,46-=m b m (*N m ∈),由这两个数列的公共项按从小到大的顺序组成一个新的数列,求新数列的各项和( )A .6788B .6800C . 6812D .6824 二、填空题(共4小题,每小题5分,满分20分) 13.已知53)4cos(=+πx ,4743ππ<<x ,则x sin = ; 14.已知数列}{n a 为等差数列,n S 为数列}{n a 的前n 项和,若512≤≤a ,723≤≤a ,则6S 的取值范围是 ;15.已知数列}{n a 满足:1a ,21a a -,32a a -,⋅⋅⋅,1n n a a --,⋅⋅⋅是首项为1,公比为2的等比数列,则数列}{n a 的通项公式为 ;16.把正整数排成如图()a 的三角形阵,然后擦去第偶数行中的所有奇数,第奇数行中的所有偶数,可得如图()b 三角形阵,现将图()b 中的正整数按从小到大的顺序构成一个数列{}n a ,若2019=k a ,则k = ;三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17. (本小题满分10分)如图,在凸四边形ABCD 中,C ,D 为定点,CD =A ,B 为动点,满足2===BC AB DA .(1cos 1C A -=;(2)设BCD ∆和ABD ∆的面积分别为1S 和2S ,求2212S S +的最大值.18. (本小题满12分)函数2()3f x x ax =++(1)当[2,2]x ∈-时()f x a ≥恒成立,求实数a 的取值范围; (2)当[4,6]a ∈时()0f x ≥恒成立,求实数x 的取值范围;19. (本小题满12分)在ABC ∆中,角A 、B 、C 的对边分别为a ,b ,c ,A b A c B a cos cos 2cos -= 且32=a(1)若c b 2=,求B cos 的值; (2)求c b +21的取值范围.20. (本小题满12分)我国某沙漠,曾被称为“死亡之海”,截止2018年年底该地区的绿化率只有103,计划从2019年开始使用无人机飞播造林,弹射的种子可以直接打入沙面里头,实现快速播种,每年原来沙漠面积的51将被改为绿洲,但同时原有绿洲面积的201还会被沙漠化。
2018-2019学年河南省洛阳市洛龙区九年级(上)期中数学试卷(含答案解析)
![2018-2019学年河南省洛阳市洛龙区九年级(上)期中数学试卷(含答案解析)](https://img.taocdn.com/s3/m/954818e426fff705cc170a9a.png)
2018-2019学年河南省洛阳市洛龙区九年级(上)期中数学试卷一、选择题(本大题共10小题,共30分)1.(3分)下列图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2.(3分)如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是()A .14k >-B .14k >-且0k ≠C .14k <-D .14k - 且0k ≠3.(3分)如图,在一幅长为60cm ,宽为40cm 的矩形风景画的四周镶一条相同宽度的纸边,制成一幅矩形挂图.若要使整个挂图的面积是23500cm ,设纸边的宽为()x cm ,则x 满足的方程是()A .(60)(40)3500x x ++=B .(602)(402)3500x x ++=C .(60)(40)3500x x --=D .(602)(402)3500x x --=4.(3分)把抛物线23y x =先向上平移2个单位,再向右平移3个单位,所得的抛物线是()A .23(3)2y x =+-B .23(3)2y x =++C .23(3)2y x =--D .23(3)2y x =-+5.(3分)下列方程,是一元二次方程的是()①2320x x +=,②22340x xy -+=,③24x x -=,④20x =,⑤230x x -+=.A .①②B .①③④⑤C .①③④D .①④⑤6.(3分)如图,在ABC ∆中,75CAB ∠=︒,在同一平面内,将ABC ∆绕点A 旋转到△AB C ''的位置,使得//CC AB ',则(BAB ∠'=)A .30︒B .35︒C .40︒D .50︒7.(3分)方程2240x x --=的根的情况()A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根8.(3分)在同一直角坐标系中,二次函数2y x m =-+与一次函数1(0)y mx m =-≠的图象可能是()A .B .C .D .9.(3分)如图,正方形ABCD 中,8AB cm =,对角线AC ,BD 相交于点O ,点E ,F 分别从B ,C 两点同时出发,以1/cm s 的速度沿BC ,CD 运动,到点C ,D 时停止运动,设运动时间为()t s ,OEF ∆的面积为2()s cm ,则2()s cm 与()t s 的函数关系可用图象表示为()A .B .C .D .10.(3分)已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列4个结论:①0abc >;②b a c <+;③420a b c ++>;④240b ac ->;其中正确的结论有()A .1个B .2个C .3个D .4个二、填空题(本大题共5小题,每题3分,共15分)11.(3分)如图,两条抛物线21112y x =-+,22112y x =--与分别经过点(2,0)-,(2,0)且平行于y 轴的两条平行线围成的阴影部分的面积为.12.(3分)如图,将等边ABC ∆绕顶点A 顺时针方向旋转,使边AB 与AC 重合得ACD ∆,BC 的中点E 的对应点为F ,则EAF ∠的度数是.13.(3分)已知抛物线22y ax ax c =-+与x 轴一个交点的坐标为(1,0)-,则一元二次方程220ax ax c -+=的根为.14.(3分)已知点1(4,)A y ,(2B ,2)y ,3(2,)C y -都在二次函数2(2)y x m =--的图象上,则1y ,2y ,3y 的大小关系为.15.(3分)点(,)P m n 在二次函数22y x x =-的图象上,当03m 时,则n 的取值范围是.三、解答题(本大题共8小题,共75分)16.(8分)解方程:(1)23210x x --=(2)224(1)0x x --=17.(9分)如图,在平面直角坐标系中,每个小正方形的边长都是1个单位长度,ABC ∆的顶点都在格点上.(1)将ABC ∆以原点O 为旋转中心,逆时针旋转90︒,画出旋转后的△111A B C .(2)画出△111A B C 关于x 轴对称的△222A B C ;(3)ABC ∆和△222A B C 是否关于直线对称?若是,请写出对称轴的解析式;若不是,请说明理由.18.(9分)已知关于x 的一元二次方程22(22)40x m x m +++-=有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为负整数,且该方程的两个根都是整数,求m 的值.19.(9分)某种流感病毒,有一人患了这种流感,在每轮传染中一人将平均传给x 人.(1)求第一轮后患病的人数;(用含x 的代数式表示)(2)在进入第二轮传染之前,有两位患者被及时隔离并治愈,问第二轮传染后总共是否会有21人患病的情况发生,请说明理由.20.(9分)如图,在ABC ∆中,90C ∠=︒,AC BC =,点D 是AB 边上任意一点,以点C 为旋转中心,取旋转角等于90︒,把BDC ∆逆时针旋转.(1)画出旋转后的图形;(2)判断2AD 、2BD 、2CD 的数量关系,并说明理由.21.(10分)某商店购进一种商品,每件商品进价为30元,试销中发现:销售价格为36元/件时,每天销售28件;销售价格为32元/件时,每天销售36件.若这种商品的销售量y (件)与销售价格x (元)存在一次函数,请回答下列问题:(1)求出y 与x 的关系式;(2)设商店销售这种商品每天获利w (元),写出w 关于x 的函数关系式;①当商店销售这种商品每天获利150元,销售价格定为多少比较合理;②销售价格定为多少时,商店获利最大,最大利润是多少元?22.(10分)如图1,将两个等腰三角形ABC 和DEC 拼合在一起,其中90C ∠=︒,AC BC =,CD CE =.(1)操作发现如图2,固定ABC ∆,把DEC ∆绕着顶点C 旋转,使点D 落在BC 边上.填空:线段AD 与BE 的关系是①位置关系:②数量关系:(2)变式探究当DEC ∆绕点C 旋转到图3的位置时,(1)中的结论还成立吗?请说明理由;(3)解决问题如图4,已知线段5AB =,线段AC =,以BC 为边作一个正方形BCDE ,连接AD ,随着边BC 的变化,线段AD 的长也会发生变化.请直接写出线段AD 的取值范围.23.(11分)如图,抛物线2(y ax bx c a =++、b 、c 为常数,0)a ≠经过点(1,0)A -,(5,6)B -,(6,0)C .(1)求抛物线的解析式;(2)如图,在直线AB 下方的抛物线上是否存在点P 使四边形PACB 的面积最大?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)若点Q 为抛物线的对称轴上的一个动点,试指出QAB ∆为等腰三角形的点Q 共有几个?并求以AB 为底边时,点Q 的坐标.2018-2019学年河南省洛阳市洛龙区九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,共30分)1.(3分)下列图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、是轴对称图形,不是中心对称图形.故本选项错误;B 、是轴对称图形,也是中心对称图形.故本选项正确;C 、不是轴对称图形,是中心对称图形.故本选项错误;D 、不是轴对称图形,是中心对称图形.故本选项错误.故选:B .【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.(3分)如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是()A .14k >-B .14k >-且0k ≠C .14k <-D .14k - 且0k ≠【分析】若一元二次方程有两不等根,则根的判别式△240b ac =->,建立关于k 的不等式,求出k 的取值范围.【解答】解:由题意知,0k ≠,方程有两个不相等的实数根,所以△0>,△2224(21)4410b ac k k k =-=+-=+>.又 方程是一元二次方程,0k ∴≠,14k ∴>-且0k ≠.故选:B .【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△0>⇔方程有两个不相等的实数根;(2)△0=⇔方程有两个相等的实数根;(3)△0<⇔方程没有实数根.注意方程若为一元二次方程,则0k ≠.3.(3分)如图,在一幅长为60cm ,宽为40cm 的矩形风景画的四周镶一条相同宽度的纸边,制成一幅矩形挂图.若要使整个挂图的面积是23500cm ,设纸边的宽为()x cm ,则x 满足的方程是()A .(60)(40)3500x x ++=B .(602)(402)3500x x ++=C .(60)(40)3500x x --=D .(602)(402)3500x x --=【分析】如果设纸边的宽为xcm ,那么挂图的长和宽应该为(402)x +和(602)x +,根据总面积即可列出方程.【解答】解:设纸边的宽为xcm ,那么挂图的长和宽应该为(602)x +和(402)x +,根据题意可得出方程为:(602)(402)3500x x ++=,故选:B .【点评】考查了一元二次方程的运用,此类题是看准题型列面积方程,题目不难,重在看准题.4.(3分)把抛物线23y x =先向上平移2个单位,再向右平移3个单位,所得的抛物线是()A .23(3)2y x =+-B .23(3)2y x =++C .23(3)2y x =--D .23(3)2y x =-+【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【解答】解:抛物线23y x =先向上平移2个单位,得:232y x =+;再向右平移3个单位,得:23(3)2y x =-+;故选:D .【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.5.(3分)下列方程,是一元二次方程的是()①2320x x +=,②22340x xy -+=,③24x x -=,④20x =,⑤230x x -+=.A .①②B .①③④⑤C .①③④D .①④⑤【分析】根据一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数进行分析.【解答】解:①2320x x +=,是一元二次方程;②22340x xy -+=,含有两个未知数,不是一元二次方程;③24x x -=,是一元二次方程;④20x =,是一元二次方程;⑤230x x -+=,是一元二次方程,故选:B .【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.6.(3分)如图,在ABC ∆中,75CAB ∠=︒,在同一平面内,将ABC ∆绕点A 旋转到△AB C ''的位置,使得//CC AB ',则(BAB ∠'=)A .30︒B .35︒C .40︒D .50︒【分析】旋转中心为点A ,B 与B ',C 与C '分别是对应点,根据旋转的性质可知,旋转角BAB CAC ∠'=∠',AC AC =',再利用平行线的性质得C CA CAB ∠'=∠,把问题转化到等腰ACC ∆'中,根据内角和定理求CAC ∠',即可求出BAB ∠'的度数.【解答】解://CC AB ' ,75CAB ∠=︒,75C CA CAB ∴∠'=∠=︒,又C 、C '为对应点,点A 为旋转中心,AC AC ∴=',即ACC ∆'为等腰三角形,180230BAB CAC C CA ∴∠'=∠'=︒-∠'=︒.故选:A .【点评】本题考查了旋转的基本性质,对应点到旋转中心的距离相等,对应点与旋转中心的连线的夹角为旋转角.同时考查了平行线的性质.7.(3分)方程2240x x --=的根的情况()A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根【分析】根据方程的系数结合根的判别式即可得出△200=>,由此即可得出结论.【解答】解: 在方程2240x x --=中,△2(2)41(4)200=--⨯⨯-=>,∴方程2240x x --=有两个不相等的实数根.故选:B .【点评】本题考查了根的判别式,根据△200=>得出方程有两个不相等的实数根是解题的关键.8.(3分)在同一直角坐标系中,二次函数2y x m =-+与一次函数1(0)y mx m =-≠的图象可能是()A .B .C .D .【分析】根据抛物线中10a =-<,所以开口向下,排除B 答案;再根据直线中1b =-,与y 轴的负半轴相交,排除D 答案;当过一三象限时,0m >,当过二四象限时,0m <,排除A .【解答】解: 二次函数2y x m =-+,∴开口向下,∴排除B ;一次函数1y mx =-,∴直线与y 轴的负半轴相交,排除D ;由图象直接得出0m >,故选:C .【点评】本题考查了二次函数的图象以及一次函数的图象,掌握图象和性质是解题的关键.9.(3分)如图,正方形ABCD 中,8AB cm =,对角线AC ,BD 相交于点O ,点E ,F 分别从B ,C 两点同时出发,以1/cm s 的速度沿BC ,CD 运动,到点C ,D 时停止运动,设运动时间为()t s ,OEF ∆的面积为2()s cm ,则2()s cm 与()t s 的函数关系可用图象表示为()A .B .C.D.【分析】由点E ,F 分别从B ,C 两点同时出发,以1/cm s 的速度沿BC ,CD 运动,得到BE CF t ==,则8CE t =-,再根据正方形的性质得OB OC =,45OBC OCD ∠=∠=︒,然后根据“SAS ”可判断OBE OCF ∆≅∆,所以OBE OCF S S ∆∆=,这样16OBC OECF S S ∆==四边形,于是()11682CEF OECF S S S t t ∆=-=--⋅四边形,然后配方得到21(4)8(08)2S t t =-+ ,最后利用解析式和二次函数的性质对各选项进行判断.【解答】解:根据题意BE CF t ==,8CE t =-,四边形ABCD 为正方形,OB OC ∴=,45OBC OCD ∠=∠=︒,在OBE ∆和OCF ∆中OB OC OBE OCF BE CF =⎧⎪∠=∠⎨⎪=⎩,()OBE OCF SAS ∴∆≅∆,OBE OCF S S ∆∆∴=,218164OBC OECF S S ∆∴==⨯=四边形,()()22111168416(4)808222CEF OECF S S S t t t t t t ∆∴=-=--⋅=-+=-+四边形 ,2()s cm ∴与()t s 的函数图象为抛物线一部分,顶点为(4,8),自变量为08t .故选:B .【点评】本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.10.(3分)已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列4个结论:①0abc >;②b a c <+;③420a b c ++>;④240b ac ->;其中正确的结论有()A .1个B .2个C .3个D .4个【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【解答】解: 抛物线的开口向下,0a ∴<,与y 轴的交点为在y 轴的正半轴上,0c ∴>,对称轴为12b x a=-=,得2a b =-,a ∴、b 异号,即0b >,又0c > ,0abc ∴<,故①错误;抛物线与x 轴的交点可以看出,当1x =-时,0y <,0a b c ∴-+<,即b a c >+,故②错误;对称轴为12b x a=-=,抛物线与x 轴的正半轴的交点是(3,0),则当2x =时,函数值是420a b c ++>,故③正确;抛物线与x 轴有两个交点,240b ac ∴->,故④正确.故选:B .【点评】考查二次函数2y ax bx c =++系数符号由抛物线开口方向、对称轴和、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.二、填空题(本大题共5小题,每题3分,共15分)11.(3分)如图,两条抛物线21112y x =-+,22112y x =--与分别经过点(2,0)-,(2,0)且平行于y 轴的两条平行线围成的阴影部分的面积为8.【分析】把阴影图形分割拼凑成矩形,利用矩形的面积即可求得答案.【解答】解:如图,过22112y x =--的顶点(0,1)-作平行于x 轴的直线与21112y x =-+围成的阴影,同过点(0,3)-作平行于x 轴的直线与22112y x =--围成的图形形状相同,故把阴影部分向下平移2个单位即可拼成一个矩形,因此矩形的面积为428⨯=.故填8.【点评】此题主要考查利用二次函数图象的特点与分割拼凑的方法求不规则图形的面积.12.(3分)如图,将等边ABC ∆绕顶点A 顺时针方向旋转,使边AB 与AC 重合得ACD ∆,BC 的中点E 的对应点为F ,则EAF ∠的度数是60︒.【分析】根据等边三角形的性质以及旋转的性质得出旋转角,进而得出EAF ∠的度数.【解答】解: 将等边ABC ∆绕顶点A 顺时针方向旋转,使边AB 与AC 重合得ACD ∆,BC 的中点E 的对应点为F ,∴旋转角为60︒,E ,F 是对应点,则EAF ∠的度数为:60︒.故答案为:60︒.【点评】此题主要考查了等边三角形的性质以及旋转的性质,得出旋转角的度数是解题关键.13.(3分)已知抛物线22y ax ax c =-+与x 轴一个交点的坐标为(1,0)-,则一元二次方程220ax ax c -+=的根为1-,3.【分析】将1x =-,0y =代入抛物线的解析式可得到3c a =-,然后将3c a =-代入方程,最后利用因式分解法求解即可.【解答】解法一:将1x =-,0y =代入22y ax ax c =-+得:20a a c ++=.解得:3c a =-.将3c a =-代入方程得:2230ax ax a --=.2(23)0a x x ∴--=.(1)(3)0a x x ∴+-=.11x ∴=-,23x =.解法二:已知抛物线的对称轴为(2)12a x a-=-=,又抛物线与x 轴一个交点的坐标为(1,0)-,则根据对称性可知另一个交点坐标为(3,0);故而220ax ax c -+=的两个根为1-,3故答案为:1-,3.【点评】本题主要考查的是抛物线与x 轴的交点,求得a 与c 的关系是解题的关键.14.(3分)已知点1(4,)A y ,B ,2)y ,3(2,)C y -都在二次函数2(2)y x m =--的图象上,则1y ,2y ,3y 的大小关系为312y y y >>.【分析】先根据二次函数的性质得到抛物线的对称轴为直线2x =,然后比较三个点离直线2x =的远近得到1y 、2y 、3y 的大小关系.【解答】解:1(4,)A y ,B ,2)y ,在对称轴的右侧,y 随x 的增大而增大,4<,21y y ∴<,∴点A 离直线2x =近,点C 离直线2x =最远,而抛物线开口向上,则31y y >,故312y y y >>,故答案是:312y y y >>.【点评】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.15.(3分)点(,)P m n 在二次函数22y x x =-的图象上,当03m 时,则n 的取值范围是13n - .【分析】将二次函数解析式整理成顶点式形式,然后确定出对称轴,再根据二次函数的增减性求出m 取值范围内的最大值,然后写出n 的取值范围即可.【解答】解:222(1)1y x x x =-=--,所以,对称轴为直线1x =,03m ,10a =>,∴当1m =时,n 有最小值1-,当3m =时,n 有最大值为2323963-⨯=-=,所以,n 的取值范围是13n - .故答案为:13n - .【点评】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性以及最值问题.三、解答题(本大题共8小题,共75分)16.(8分)解方程:(1)23210x x --=(2)224(1)0x x --=【分析】(1)利用因式分解法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)23210x x --= ,(1)(3)0x x ∴-+=,则10x -=或30x +=,解得11x =,23x =-;(2)224(1)0x x --= ,(21)(21)0x x x x ∴+--+=,即(31)(1)0x x -+=,则310x -=或10x +=,解得113x =,21x =-.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.17.(9分)如图,在平面直角坐标系中,每个小正方形的边长都是1个单位长度,ABC ∆的顶点都在格点上.(1)将ABC ∆以原点O 为旋转中心,逆时针旋转90︒,画出旋转后的△111A B C .(2)画出△111A B C 关于x 轴对称的△222A B C ;(3)ABC ∆和△222A B C 是否关于直线对称?若是,请写出对称轴的解析式;若不是,请说明理由.【分析】(1)利用网格特点和旋转的性质画出点A 、B 、C 的对应点1A 、1B 、1C ,从而得到△111A B C ;(2)根据关于x 轴对称的点的坐标特征写出点2A 、2B 、2C ,然后描点即可得到△222A B C ;(3)观察点A 与2A ,点B 与2B ,点C 与2C 的坐标,可得到它们分别关于直线y x =-对称,于是可判断ABC ∆和△222A B C 关于直线y x =-对称.【解答】解:(1)如图,△111A B C 为所作;(2)如图,△222A B C 为所作;(3)ABC ∆和△222A B C 关于直线y x =-对称.【点评】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.18.(9分)已知关于x 的一元二次方程22(22)40x m x m +++-=有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为负整数,且该方程的两个根都是整数,求m 的值.【分析】(1)根据方程有两个实数根,得到根的判别式的值大于或等于0列出关于m 的不等式,求出不等式的解集即可得到m 的范围;(2)找出m 范围中的正整数解确定出m 的值,经检验即可得到满足题意m 的值.【解答】解:(1) 一元二次方程22(22)40x m x m +++-=有两个不相等的实数根,∴△2224(22)41(4)8200b ac m m m =-=+-⨯⨯-=+>,∴52m >-;(2)m 为负整数,1m ∴=-或2-,当1m =-时,方程230x -=的根为:1x =2x =,当2m =-时,方程220x x -=的根为10x =,22x =都是整数,符合题意.综上所述2m =-.【点评】此题考查了根的判别式,一元二次方程的解,以及公式法解一元二次方程,弄清题意是解本题的关键.19.(9分)某种流感病毒,有一人患了这种流感,在每轮传染中一人将平均传给x 人.(1)求第一轮后患病的人数;(用含x 的代数式表示)(2)在进入第二轮传染之前,有两位患者被及时隔离并治愈,问第二轮传染后总共是否会有21人患病的情况发生,请说明理由.【分析】(1)设每轮传染中平均每人传染了x 人.开始有一人患了流感,第一轮的传染源就是这个人,他传染了x 人,则第一轮后共有(1)x +人患了流感;(2)第二轮传染中,这些人中的每个人又传染了x 人,因进入第二轮传染之前,有两位患者被及时隔离并治愈,则第二轮后共有1(1)x x x -+-人患了流感,而此时患流感人数为21,根据这个等量关系列出方程若能求得正整数解即可会有21人患病.【解答】解:(1)(1)x +人,(2)设在每轮传染中一人将平均传给x 人根据题意得:1(1)21x x x -+-=整理得:2121x -=解得:1x =,2x =1x ,2x 都不是正整数,∴第二轮传染后共会有21人患病的情况不会发生.【点评】本题考查了一元二次方程的应用,解题的关键是能根据进入第二轮传染之前,有两位患者被及时隔离并治愈列出方程并求解.20.(9分)如图,在ABC ∆中,90C ∠=︒,AC BC =,点D 是AB 边上任意一点,以点C 为旋转中心,取旋转角等于90︒,把BDC ∆逆时针旋转.(1)画出旋转后的图形;(2)判断2AD 、2BD 、2CD 的数量关系,并说明理由.【分析】(1)由于CA CB =,90ACB ∠=︒,则点B 的对应点为A 点,作EC CD ⊥且EC DC =得到点E ,则ACE ∆满足条件;(2)先判断ACB ∆为等腰直角三角形得到45B CAB ∠=∠=︒,再根据旋转的性质得CE CD =,AE BD =,90DCE ∠=︒,45CAE B ∠=∠=︒,则90EAD ∠=︒,然后利用勾股定理得到22222DE CE CD CD =+=,222AD AE DE +=,于是得到2222AD BD CD +=.【解答】解:(1)如图,CAE ∆为所作;(2)2222AD BD CD +=.理由如下:90C ∠=︒ ,AC BC =,ACB ∴∆为等腰直角三角形,45B CAB ∴∠=∠=︒,BDC ∆ 绕点C 逆时针旋转90︒得到AEC ∆,CE CD ∴=,AE BD =,90DCE ∠=︒,45CAE B ∠=∠=︒,454590EAD CAE CAB ∴∠=∠+∠=︒+︒=︒,在Rt CDE ∆中,22222DE CE CD CD =+=,在Rt ADE ∆中,222AD AE DE +=,2222AD BD CD ∴+=.【点评】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21.(10分)某商店购进一种商品,每件商品进价为30元,试销中发现:销售价格为36元/件时,每天销售28件;销售价格为32元/件时,每天销售36件.若这种商品的销售量y (件)与销售价格x (元)存在一次函数,请回答下列问题:(1)求出y 与x 的关系式;(2)设商店销售这种商品每天获利w (元),写出w 关于x 的函数关系式;①当商店销售这种商品每天获利150元,销售价格定为多少比较合理;②销售价格定为多少时,商店获利最大,最大利润是多少元?【分析】(1)设y 与x 的关系式为y kx b =+,根据销售价格为36元/件时,每天销售28件;销售价格为32元/件时,每天销售36件,利用待定系数法即可求出该关系式;(2)根据“利润=(销售单价-进价)⨯销售数量”即可得出w 关于x 的函数关系式;①令150w =,求出x 值,即可得出结论;②利用配方法得出22(40)200w x =--+,利用二次函数的性质即可解决最值问题.【解答】解:(1)设y 与x 的关系式为y kx b =+,根据题意得:36283236k b k b +=⎧⎨+=⎩,解得:2100k b =-⎧⎨=⎩,y ∴与x 的关系式为2100y x =-+.(2)由已知得:2(30)21603000w y x x x =-=-+-.①令150y =,即221603000150x x -+-=,解得:135x =,245x =.答:当商店销售这种商品每天获利150元,销售价格应定为35或45元.②22216030002(40)200w x x x =-+-=--+ ,∴当40x =时,w 取最大值,最大值为200.答:销售价格定为40元时,商店获利最大,最大利润是200元.【点评】本题考查了二次函数的应用、待定系数法求函数解析式以及二次函数的性质,解题的关键是:(1)利用待定系数法求出y 关于x 的函数关系式;(2)根据数量关系找出y 关于x 的函数关系式;①令150y =求出x 值;②根据二次函数的性质解决最值问题.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出函数关系式是关键.22.(10分)如图1,将两个等腰三角形ABC 和DEC 拼合在一起,其中90C ∠=︒,AC BC =,CD CE =.(1)操作发现如图2,固定ABC∆绕着顶点C旋转,使点D落在BC边上.∆,把DEC填空:线段AD与BE的关系是①位置关系:AD BE⊥②数量关系:(2)变式探究当DEC∆绕点C旋转到图3的位置时,(1)中的结论还成立吗?请说明理由;(3)解决问题如图4,已知线段5AB=,线段AC=,以BC为边作一个正方形BCDE,连接AD,随着边BC的变化,线段AD的长也会发生变化.请直接写出线段AD的取值范围.【分析】(1)延长AD交BE于点F.依据SAS证明ACD BCE∆≅∆,由全等三角形的性质可得到AD BE=,然后再由CAD CBE∠=∠,可得到∠=∠,CDA FDB ∠=∠=︒;90DFB DCA(2)如图2所示:记AD与BC的交点为O,BE与AD的交点为F.先证明ACD BCE∠=∠,然后依据SAS证明ACD BCE=,然后由∆≅∆,由全等三角形的性质可得到AD BEACO BFO∠=∠,可证明90∠=∠=︒;∠=∠,AOC BOFCAD CBE(3)过点C作CE AC=,连结BE,先在等腰直角ACE∆中求得AE的长,⊥,取AC CE然后依据三角形的三边关系可求得BE的取值范围,最后依据SAS证明BCE DCA∆≅∆,由全等三角形的性质得到AD BE=,故此可求得AD的取值范围.【解答】解:(1)延长AD交BE于点F.在ACD ∆和BCE ∆中,90CD CE ACD ECB AC BC =⎧⎪∠=∠=︒⎨⎪=⎩,ACD BCE ∴∆≅∆.AD BE ∴=,CAD CBE ∠=∠.又CDA FDB ∠=∠ ,90DFB DCA ∴∠=∠=︒.AD BE ∴⊥.故答案为:AD BE ⊥,AD BE =.(2)如图2所示:记AD 与BC 的交点为O ,BE 与AD 的交点为F.90ACB ECD ∠=∠=︒ ,ACB BCD ECD BCD ∴∠+∠=∠+∠,即ACD BCE ∠=∠.在ACD ∆和BCE ∆中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,ACD BCE ∴∆≅∆.AD BE ∴=,CAD CBE ∠=∠.又AOC BOF ∠=∠ ,90ACO BFO ∴∠=∠=︒.AD BE ∴⊥.(3)如图3所示:过点C 作CE AC ⊥,取AC CE =,连结BE.AC CE == ,90ACE ∠=︒,4AE ∴=.4AE = ,5AB =,19BE ∴<<.90DCB ACE ∠=∠=︒ ,DCB BCA BCA ACE ∴∠+∠=∠+∠,即ACD BCE ∠=∠.在BCE ∆和DCA ∆中AC CE BCE ACD BC CD =⎧⎪∠=∠⎨⎪=⎩,BCE DCA ∴∆≅∆.AD BE ∴=.19AD ∴<<.【点评】本题主要考查的是四边形的综合应用,解答本题主要应用了全等三角形的性质和判定、三角形的三边关系、等腰三角形的性质,掌握本题中辅助线的作法是解答问题(3)的关键.23.(11分)如图,抛物线2(y ax bx c a =++、b 、c 为常数,0)a ≠经过点(1,0)A -,(5,6)B -,(6,0)C .(1)求抛物线的解析式;(2)如图,在直线AB 下方的抛物线上是否存在点P 使四边形PACB 的面积最大?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)若点Q 为抛物线的对称轴上的一个动点,试指出QAB ∆为等腰三角形的点Q 共有几个?并求以AB 为底边时,点Q的坐标.【分析】(1)抛物线经过点(1,0)A -,(5,6)B -,(6,0)C ,可利用两点式法设抛物线的解析式为(1)(6)y a x x =+-,代入(5,6)B -即可求得函数的解析式;(2)作辅助线,将四边形PACB 分成三个图形,两个三角形和一个梯形,设2(,56)P m m m --,四边形PACB 的面积为S ,用字母m 表示出四边形PACB 的面积S ,发现是一个二次函数,利用顶点坐标求极值,从而求出点P 的坐标.(3)分三种情况画图:①以A 为圆心,AB 为半径画弧,交对称轴于1Q 和4Q ,有两个符合条件的1Q 和4Q ;②以B 为圆心,以BA 为半径画弧,也有两个符合条件的2Q 和5Q ;③作AB 的垂直平分线交对称轴于一点3Q ,有一个符合条件的3Q ;最后利用等腰三角形的腰相等,利用勾股定理列方程求出3Q 坐标.【解答】解:(1)设(1)(6)(0)y a x x a =+-≠,把(5,6)B -代入:(51)(56)6a +-=-,1a =,2(1)(6)56y x x x x ∴=+-=--;(2)存在,如图1,分别过P 、B 向x 轴作垂线PM 和BN ,垂足分别为M 、N ,设2(,56)P m m m --,四边形PACB 的面积为S ,则256PM m m =-++,1AM m =+,5MN m =-,651CN =-=,5BN =,AMP BNC PMNB S S S S ∆∆∴=++梯形,22111(56)(1)(656)(5)16222m m m m m m =-++++-++-+⨯⨯,231236m m =-++,23(2)48m =--+,当2m =时,S 有最大值为48,这时2256252612m m --=-⨯-=-,(2,12)P ∴-,(3)这样的Q 点一共有5个,①以A 为圆心,以AB 为半径画弧,交抛物线的对称轴于1Q 、4Q ,则14AQ AQ AB ==,设对称轴交x 轴于E ,2254956(24y x x x =--=--;∴抛物线的对称轴是:52x =,(1,0)A - ,(5,6)B -,AB ∴==,57122AE ∴=+=,由勾股定理得:142Q E Q E ===,15(2Q ∴,45(2Q ,②以B 为圆心,以AB 为半径画弧,交抛物线的对称轴于2Q 、5Q ,25Q E Q E AB ∴===,过B 作15BF Q Q ⊥于F ,则25Q F Q F =,(5,6)B - ,52BF ∴=,由勾股定理得:22Q F ==,512622Q E ∴=+=,55(2Q ∴,122+-,212622Q E -=-= ,25(2Q ∴,③连接3Q A 、3Q B ,因为3Q 在对称轴上,所以设35(2Q ,)y , △3Q AB 是等腰三角形,且33Q A Q B =,由勾股定理得:222255(1)(5)(6)22y y ++=-++,52y =-,35(2Q ∴,5)2.综上所述,点Q 的坐标为:5(2,2或5(2,2或5(2,12)2-或5(2,12)2-或5(2,5)2.【点评】本题考查了利用待定系数法求解析式,还考查了多边形的面积,要注意将多边形分解成几个图形求解;还要注意求最大值可以借助于二次函数.同时还结合了抛物线图形考查了等腰三角形的一些性质,注意由一个动点与两个定点组成的等腰三角形三种情况的讨论.。
2018—2019学年度第一学期期中测试初三数学试卷(含答案)
![2018—2019学年度第一学期期中测试初三数学试卷(含答案)](https://img.taocdn.com/s3/m/e22544dd700abb68a982fb4c.png)
2018~2019学年度初三年级数学第一学期期中检测(考试时间:120分钟 分值:150分)一、选择题(本大题共8小题.每小题3分,共24分.在每小题给出的四个选项中,只有一个是符合题目要求的,请将答案序号填在答题卡相应的位置上.................) 1. 方程x 2+x= 的解是 ( ) A .x=0 B .x=1 C . x 1=0,x 2=1 D . x 1=0,x 2=﹣1 2. 关于x 的一元二次方程(a −1)x 2−2x +3=0有实数根,则整数a 的最大值是( )A.2B.1C.0D.−1 3. 已知关于x 的方程x 2+mx +n =0有一个根是-n(n ≠0),则下列代数式的值恒为常数的是 ( ) A .n +m B .n / m C .n -m D .nm 4. 对甲、乙两同学100米短跑进行5次测试,他们的成绩通过计算得:甲x =乙x ,2甲S =0.026, 2乙S =0.025,下列说法正确的是 ( )A.甲短跑成绩比乙好B.乙短跑成绩比甲好C.甲比乙短跑成绩稳定D.乙比甲短跑成绩稳定 5.圆锥的底面半径为4cm ,高为3cm ,则它的表面积为 ( )A .24πcm 2B .36πcm 2C .48πcm 2D .72πcm 26. 如图,一个直角三角形ABC 的斜边AB 与量角器的零刻度线重合,点D 对应56°,则∠BCD 的度数为 ( )A .28°B .56°C .62°D .64°7. 如图,AB 是⊙O 的直径,⊙O 交BC 的中点于D,DE ⊥AC 于E,连接AD,则下列结论正确的个数是 ( )①AD ⊥BC ②∠EDA=∠B ③2OA=AC ④DE 是⊙O 的切线 A .1 个 B .2个 C .3 个 D .4个8. 如图,矩形ABCD 中,AB=2,BC=3,分别以A 、D 为圆心,1为半径画圆,E 、F 分别是⊙A 、⊙D 上的一动点,P 是BC 上的一动点,则PE+PF 的最小值是( )A .2B .3C .4D .5第6题图 第7题图 第8题图二、填空题(本大题共10小题.每小题4分,共40分.请将答案填在答题卡相应的位.............置上..)9. 如果一组数据-2,0,1,3,x的极差是7,那么x的值是.10. 已知关于x的方程x2−kx−6=0的一个根为x=3,则实数k的值为.11.设a、b是方程x2+x-2018=0的两个不等的实根,则a2+2a+b的值为.12.若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是.13.如图,C是以AB为直径的⊙O上一点,已知AB=5,BC=3,则圆心O到弦BC的距离是.14.如图,⊙O的半径为1cm,弦AB、CD cm,1cm,则弦AC、BD所夹的锐角α=.15.如图所示,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB上,此时∠AOE=56°,则α=.第13题图第14题图第15题图16.如图,△ABC的内切圆O与边BC切于点D,若∠BOC=135°,BD=3,CD=2,则△ABC的面积为=.17.如图正方形ABCD的边长为3,点E是AB上的一点,将△BCE沿CE折叠至△FCE,若CF,CE恰好与以正方形ABCD的中心为圆心的⊙O相切,则折痕CE第16题图第17题图第18题图三、解答题(本大题共9大题,共86分.请将答案..........,解答时应....写在答题卡相应的位置上写出必要的计算过程,推演步骤或文字说明.作图时用铅笔)19. (本题满分8分) 解下列方程:(1)(x+1)2= 9 (2)x2﹣2x﹣2=020.(本题满分9分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为多少?求出图①中m的值;(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.21.(本题满分9分)已知□ ABCD两邻边是关于x的方程x2﹣mx+m﹣1=0的两个实数根.(1)当m为何值时,四边形ABCD为菱形?求出这时菱形的边长.(2)若AB的长为2,那么□ ABCD的周长是多少?22.(本题满分9分)某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个,但售价不能超过70元.为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少元?23.(本题满分9分)在半径为17dm 的圆柱形油罐内装进一些油后,横截面如图. ①若油面宽AB=16dm ,求油的最大深度.②在①的条件下,若油面宽变为CD=30dm ,求油的最大深度上升了多少dm ?24.(本题满分9分) 如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧. (1)画出圆弧所在圆的圆心P ; (2)过点B 画一条直线,使它与该圆弧相切;(3)连结AC ,求线段AC 和弧AC 围成的图形的面积.25.(本题满分10分)如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,点D 是AB 延长线上的一点,AE ⊥DC 交DC 的延长线于点E ,AC 平分∠DAE .(1)DE 与⊙O 有何位置关系?请说明理由. (2)若AB=6,CD=4,求CE 的长.26.(本题满分10分)在一节数学实践活动课上,老师拿出三个边长都为2cm 的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如下图所示:(1)通过计算(结果保留根号与π).(Ⅰ)图①能盖住三个正方形所需的圆形硬纸板最小直径应为cm;(Ⅱ)图②能盖住三个正方形所需的圆形硬纸板最小直径为cm;(Ⅲ)图③能盖住三个正方形所需的圆形硬纸板最小直径为cm;(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并求出此时圆形硬纸板的直径.27.(本题满分13分)如图,菱形OABC的顶点O在坐标原点,顶点B在x轴的正半轴上,OA 边在直线x y 33=上,AB 边在直线233+-=x y 上. (1)直接写出:线段OA= ,∠AOC= ;(2)在对角线OB 上有一动点P ,以O 为圆心,OP 为半径画弧MN ,分别交菱形的边OA 、OC 于点 M 、N ,作⊙Q 与边AB 、BC 、弧MN 都相切,⊙Q 分别与边AB 、BC 相切于点D 、E ,设⊙Q 的半径为r ,OP 的长为y ,求y 与r 之间的函数关系式,并写出自变量r 的取值范围;(3)若以O 为圆心、OA 长为半径作扇形OAC ,请问在菱形OABC 中,在除去扇形OAC 后的剩余部分内,是否可以截下一个圆,使得它与扇形OAC 刚好围成一个圆锥,若可以,求出这个圆的半径,若不可以,说明理由.2018-2019学年度第一学期第二次质量调研测试初三数学参考答案(考试时间:120分钟分值:150分)二、填空题(本大题共10题,每小题4分,共计40分).9. 5或-4, 10. 1, 11. 2017 12. 相离, 13. 2,14. 75°, 15. 52°, 16. 6, 17. 23, 18. 43π三、解答题(本大题共9大题,共86分.请将答案..........,解答时应....写在答题卡相应的位置上写出必要的计算过程,推演步骤或文字说明.作图时用铅笔)19.(1)x1=2,x2=﹣4 (4分)(2)x1=1+,x2=1﹣;(4分)20.(1)4÷10%=40(人),…………………2分m=100-27.5-25-7.5-10=30;答为40人,m=30.…………………4分(2)平均数=(13×4+14×10+15×11+16×12+17×3)÷40=15,…………………6分16出现12次,次数最多,众数为16;…………………7分按大小顺序排列,中间两个数都为15,(15+15)÷2=15,中位数为15.…………………9分21.(1)若四边形为菱形,则方程两实根相等.∴△=m2﹣4(m﹣1)=0 …………………1分∴m2﹣4m+4=0∴m1=m2=2 …………………3分∴方程化为x2﹣2x+1=0解得:x1=x2=1∴菱形边长为1.…………………5分(2)由AB=2知方程的一根为2,将x=2代入得,4﹣2m﹣1=0,解得:m=3 …………………6分此时方程化为:x2﹣3x+2=0,解得(x﹣1)(x﹣2)=0解得:x1=1,x2=2 …………………8分∴平行四边形ABCD的周长=2×(1+2)=6.…………………9分22.(本题满分9分)设售价定为x元[600−10(x−40)](x−30)=10000 ……………………3分整理,得x2−130x+4000=0解得:x1=50,x2=80…………………………7分∵x≤70∴x=50 ………………………… 8分答:台灯的售价应定为50元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省洛阳市2018-2019学年下学期期中考试
高一数学试题
第Ⅰ卷(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.
1.sin15cos15= A. 14 B. 12 C. 32 D. 34
2.已知角θ的始边与x 轴的非负半轴重合,终边过点()2,1M ,则tan 4πθ⎛
⎫-
⎪⎝⎭的值为 A. 13 B. 13
- C. 3 D.-3 3.已知向量,a b 满足1,2a b =-,,a b 的夹角为
23π,则()2a b a ⋅-= A. 1 B. 3 C. -1 D. -3 4.函数()cos22cos f x x x =+的最小值和最大值分别为 A. 1,3- B. 2,2- C. 3,32-
D. 3,12-- 5.下列命题中正确的是
A. 22
0a b a b -=⇔= B. a b a b >⇔>
C. 00a a =⇔=
D.//a b a b =⇔
6.下列函数中,是周期函数且最小正周期为π的是 A. sin cos y x x =+ B. 22sin 3y x x = C. cos y x = D. 3sin cos 22x x y =
7.已知非零向量,a b 满足a b a b +=-,a 与b a -的夹角是
A.
34π B. 3π C. 4π D.6
π 8.函数cos y x x =-的部分图象是
9.若函数()()()2sin 20f x x θθπ=+<≤的图象关于,02π⎛⎫
⎪⎝⎭对称,则函数()f x 在,46ππ⎡⎤-⎢⎥⎣⎦上的最小值是 A. -1 B. 3 C. 12- D.32- 10.已知向量1,2a b ==,,a b 的夹角为45,若,c a b d a b =+=-,则c 在d 方向上的投影为 A. 55 B. 55
-11.将函数()()2sin 04f x x πωω⎛
⎫=+> ⎪⎝⎭的图象向右平移4πω
个单位长度,得到函数()y g x =的图象,若()y g x =在,63ππ⎡⎤-⎢⎥⎣⎦
上是增函数,则ω的最大值为 A. 3 B. 2 C. 32 D.54
12.在锐角三角形ABC ∆中,角A,B,C 的对边分别为a,b,c ,若
112tan tan B C +=,则tan tan tan A B C ++的最小值为 A. 4 B. 3363
第Ⅱ卷(非选择题 共90分)
二、填空题:本大题共4小题,每小题5分,共20分.
13.9115sin tan cos 462
πππ-+= . 14.在ABC ∆中,角A,B,C 的对边分别为a,b,c ,若()sin sin sin 2C B A A +-=,则ABC ∆的形状为 . 15.已知AB 与AC 的夹角为()90,2,1,,AB AC AM AB AC r λμλμ===+∈,且0AM BC ⋅=,则
λμ
= . 16.已知定义在R 上的函数()()sin f x A x ωϕ=+满足()32f x f x ⎛
⎫+=- ⎪⎝⎭,且函数34f x ⎛⎫- ⎪⎝
⎭是奇函数,以下四个命题中:①函数()y f x =的一个周期为3;②函数()y f x =在R 上是偶函数;③函数()y f x =的图象关于点3,04⎛⎫ ⎪⎝⎭对称;④函数()y f x =在30,2⎡⎤⎢⎥⎣⎦
上单调递增;⑤函数()y f x =的对称轴为()32
x k k Z =∈,其中真命题的序号为 .(填上所有真命题的序号) 三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程. 17.(本题满分10分)已知1
sin cos 5αα+=-,α为第二象限角.
(1)求sin cos αα-的值;
(2)求()5sin cos 20171
2cos 2cos cos 2παπαπα
αα⎛⎫-+- ⎪⎝⎭+⎛⎫++ ⎪⎝⎭的值.
18.(本题满分12分)已知向量()()()3,2,2,1,3,1,.AB AC AD R λ=-==-∈
(1)若AB AC λ+与AD 共线,求实数λ的值;
(2)若AB AC λ-与AD 垂直,求实数λ的值.
19.(本题满分12分)已知tan 3.α=
(1)求tan 2α的值;
(2)求2sin 2sin sin cos cos 21
ααααα+++的值.
20.(本题满分12分)在ABC ∆中,角A,B,C 的对边分别为a,b,c.已知平面向量
2cos ,2cos ,cos ,cos 2222A A A A m n ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭,且22, 2.2m n n AB AC ⋅+=⋅=
(1)求角A 的大小;
(2)若AC 边上的高为h ,用边长AB 及角A 表示h,求出ABC ∆的面积.
21.(本题满分12分)已知函数()()()()3sin cos 0,0f x x x ωϕωϕωϕπ=+--><<,对于任意x R ∈均满足()()f x f x -=,且函数()y f x =的图象的两条相邻对称轴间的距离为
.2π (1)求()y f x =的解析式;
(2)求函数()4y f x f x π⎛
⎫=++ ⎪⎝⎭
的单调区间.
22.(本题满分12分)
如图,某市园林局准备绿化一块直径为BC 的半圆形空地,ABC ∆以外的地方种草,ABC ∆的内接正方形PQRS 为一水池,其余的地方种花.若BC a =(a 为定值),ABC α∠=,设ABC ∆的面积为1S ,正方形PQRS 的面积为2S .
(1)用,a α表示12,S S ;
(2)当α为何值时,
21
S S 取得最大值,并求出此最大值.。