高考数学高频考点汇总

合集下载

2024年高考数学新增高频考点(解析版)

2024年高考数学新增高频考点(解析版)

(多拿20分)2024年高考数学新增高频考点专题突破新增高频考点1:复数的三角表示新增高频考点2:三角函数的积化和差公式新增高频考点3:三角函数的和差化积公式新增高频考点4:投影向量新增高频考点5:百分位数新增高频考点6:点、线、面距离公式新增高频考点7:条件概率新增高频考点8:全概率公式新增高频考点9:贝叶斯公式新增高频考点10:二项分布中的最大项2023年高考数学新增高频考点专题突破一.复数的三角表示(共5小题)1已知复数z 1=2cos π12+i sin π12 ,z 2=3cos π6+i sin π6,则z 1z 2的代数形式是()A.6cosπ4+i sin π4B.6cos π12+i sin π12 C.3-3i D.3+3i2若复数z =r (cos θ+i sin θ)(r >0,θ∈R ),则把这种形式叫做复数z 的三角形式,其中r 为复数z 的模,θ为复数z 的辐角,则复数z =32+12i 的三角形式正确的是()A.cos π6+i sinπ6 B.sin π6+i cos π6 C.cos π3+i sin π3 D.sin π3+i cos π33已知复数z =cos θ+i sin θ(i 为虚数单位),则()A.|z |=2B.z 2=1C.z ⋅z =1D.z +1z为纯虚数4复数z =cos -2π5+i sin -2π5 的辐角主值为()A.8π5B.-8π5C.2π5D.-2π55任何一个复数z =a +bi (其中a ,b ∈R ,i 为虚数单位)都可以表示成z =r (cos θ+i sin θ)(其中r ≥0,θ∈R )的形式,通常称之为复数z 的三角形式,法国数学家棣莫弗发现:[r (cos θ+i sin θ)]n =r n (cos nθ+i sin nθ)(n ∈N *),我们称这个结论为棣莫弗定理.由棣莫弗定理可知,若复数cos π8+i sin π8 m (m ∈N *)为纯虚数,则正整数m 的最小值为()A.2B.4C.6D.8二.三角函数的积化和差公式(共5小题)6设直角三角形中两锐角为A 和B ,则cos A cos B 的取值范围是()A.0,12B.(0,1)C.12,1 D.34,17利用积化和差公式化简sin αsin π2-β 的结果为()A.-12[cos (α+β)-cos (α-β)]B.12[cos (α+β)+cos (α-β)]C.12[sin (α+β)-sin (α-β)]D.12[sin (α+β)+sin (α-β)]8已知cos α+cos β=12,则cos α+β2cos α-β2的值为.9已知sin (α+β)•sin (β-α)=m ,则cos 2α-cos 2β的值为.10已知α,β为锐角,且α-β=π6,那么sin αsin β的取值范围是.三.三角函数的和差化积公式(共5小题)11对任意的实数α、β,下列等式恒成立的是()A.2sin α•cos β=sin (α+β)+sin (α-β)B.2cos α•sin β=sin (α+β)+cos (α-β)C.cos α+cos β=2sin α+β2⋅sin α-β2D.cos α-cos β=2cos α+β2⋅cosα-β212在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,设a +c =2b ,则tan A2•tan C 2的值为(参考公式:sin A +sin C =2sin A +C 2cos A -C2)()A.2B.12C.3D.1313已知sin α+sin β=2165,cos α+cos β=2765,则sin β-sin αcos β-cos α=.14已知sin α+sin β=14,cos α+cos β=13,则tan (α+β)的值为.15在△ABC 中a ,b ,c 分别为∠A ,∠B ,∠C 的对边,若cos B +cos C =sin B +sin C ,则△ABC 为三角形.四.投影向量(共5小题)16已知两个单位向量a 和b 的夹角为120°,则向量a -b在向量b 上的投影向量为()A.-12aB.-12bC.32bD.-32b17已知平面向量a =(-2,λ),b =(1,1),且a ⊥b ,则a -b 在b方向上的投影向量的坐标为()A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)18在正△ABC 中,向量AB 在CA上的投影向量为()A.12CAB.-12CAC.32CAD.-32CA19设a ,b 是两个单位向量,若a +b 在b 上的投影向量为23b,则cos ‹a ,b ›=()A.-13B.13C.-223D.22320已知|a |=2|b |,若a 与b的夹角为120°,则2b -a 在a 上的投影向量为()A.3-3aB.-32aC.-12aD.3a五.百分位数(共5小题)21学校组织班级知识竞赛,某班的8名学生的成绩(单位:分)分别是:68、63、77、76、82、88、92、93,则这8名学生成绩的75%分位数是.22为了进一步学习贯彻党的二十大精神,推进科普宣传教育,激发学生的学习热情,营造良好的学习氛围,不断提高学生对科学、法律、健康等知识的了解,某学校组织高一10个班级的学生开展“红色百年路•科普万里行”知识竞赛.统计发现,10个班级的平均成绩恰好成等差数列,最低平均成绩为70,公差为2,则这10个班级的平均成绩的第40百分位数为()A.76B.77C.78D.8023某工厂随机抽取20名工人,对他们某天生产的产品件数进行统计,数据如表,则该组数据的第75百分位数是()件数7891011人数37541A.8.5B.9C.9.5D.1024某校1000名学生参加数学竞赛,随机抽取了20名学生的考试成绩(单位:分),成绩的频率分布直方图如图所示,则下列说法正确的是()A.频率分布直方图中a 的值为0.012B.估计这20名学生数学考试成绩的第60百分位数为80C.估计这20名学生数学考试成绩的众数为80D.估计总体中成绩落在[50,60)内的学生人数为11025某个品种的小麦麦穗长度(单位:cm )的样本数据如下:10.2、9.7、10.8、9.1、8.9、8.6、9.8、9.6、9.9、11.2、10.6、11.7,则这组数据的第80百分位数为.六.点、线、面间的距离(共3小题)26如图,在多面体ABCDE 中,平面ABCD ⊥平面ABE ,AD ⊥AB ,AD ∥BC ,∠BAE =π2,AB =AD =AE =2BC =2,F 是AE 的中点.(1)证明:BF ∥面CDE ;(2)求点F 到平面CDE 的距离.27如图多面体ABCDEF 中,四边形ABCD 是菱形,∠ABC =60°,EA ⊥平面ABCD ,EA ∥BF ,AB =AE =2BF =2.(1)证明:CF ∥平面ADE ;(2)在棱EC 上有一点M (不包括端点),使得平面MBD 与平面BCF 的夹角余弦值为155,求点M 到平面BCF 的距离.28如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,PA ⊥底面ABCD ,PA =AB =2,E 为线段PB 的中点,F 为线段BC 上的动点.(1)证明:平面AEF ⊥平面PBC ;(2)若直线AF 与平面PAB 所成的角的余弦值为255,求点P 到平面AEF 的距离.七.条件概率(共8小题)29已知事件A 、B 满足P (A |B )=0.7,P (A)=0.3,则()A.P (A ∩B )=0.3B.P (B |A )=0.3C.事件A ,B 相互独立D.事件A ,B 互斥30已知P (A )=13,P (B |A )=23,P (B |A )=14,则P (B )=,P (A|B )=.31研究人员开展甲、乙两种药物的临床抗药性研究实验,事件A 为“对药物甲产生抗药性”,事件B 为“对药物乙产生抗药性”,事件C 为“对甲、乙两种药物均不产生抗药性”.若P (A )=415,P (B )=215,P (C )=710,则P (B |A )=.32已知某地市场上供应的一种电子产品中,甲厂产品占80%,乙厂产品占20%,甲厂产品的合格率是75%,乙厂产品的合格率是80%,则从该地市场上买到一个合格产品的概率是()A.0.75B.0.8C.0.76D.0.9533为丰富学生的课外活动,学校羽毛球社团举行羽毛球团体赛,赛制采取5局3胜制,每局都是单打模式,每队有5名队员,比赛中每个队员至多上场一次且上场顺序是随机的,每局比赛结果互不影响,经过小组赛后,最终甲乙两队进入最后的决赛,根据前期比赛的数据统计,甲队明星队员M对乙队的每名队员的胜率均为34,甲队其余4名队员对乙队每名队员的胜率均为12.(注:比赛结果没有平局)(Ⅰ)求甲队明星队员M在前四局比赛中不出场的前提下,甲乙两队比赛4局,甲队最终获胜的概率;(Ⅱ)求甲乙两队比赛3局,甲队获得最终胜利的概率;(Ⅲ)若已知甲乙两队比赛3局,甲队获得最终胜利,求甲队明星队员M上场的概率.34某地病毒暴发,全省支援,需要从我市某医院某科室的4名男医生(含一名主任医师)、5名女医生(含一名主任医师)中分别选派3名男医生和2名女医生,则在有一名主任医师被选派的条件下,两名主任医师都被选派的概率为()A.38B.310C.611D.61735人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为12(先验概率).(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.①求选到的袋子为甲袋的概率,②将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案:方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.36某企业使用新技术对某款芯片进行试生产.在试产初期,该款芯片的生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.已知该款芯片在生产中,前三道工序的次品率分别为P 1=110,P 2=19,P 3=18.(1)求该款芯片生产在进入第四道工序前的次品率;(2)如果第四道工序中智能自动检测为次品的芯片会被自动淘汰,合格的芯片进入流水线并由工人进行人工抽查检验.在芯片智能自动检测显示合格率为90%的条件下,求工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率.八.全概率公式(共2小题)37某铅笔工厂有甲、乙两条生产线,甲生产线的产品次品率为10%,乙生产线的产品次品率为5%.现在某客户在该厂定制生产同一种铅笔产品,由甲、乙两条生产线同时生产,且甲生产线的产量是乙生产线产量的1.5倍.现在从这种铅笔产品中任取一件,则取到合格产品的概率为()A.0.92B.0.08C.0.54D.0.3838假设有两箱零件,第一箱内装有10件,其中有2件次品;第二箱内装有20件,其中有3件次品,现从两箱中随意挑选一箱,然后从该箱中随机取1个零件,则取出的零件是次品的概率为()A.18B.320C.740D.15九.贝叶斯公式(共2小题)39对正在横行全球的“新冠病毒”,某科研团队研发了一款新药用于治疗,为检验药效,该团队从“新冠”感染者中随机抽取若干名患者,检测发现其中感染了“普通型毒株”、“奥密克戎型毒株”、“其他型毒株”的人数占比为5:3:2.对他们进行治疗后,统计出该药对“普通型毒株”、“奥密克戎毒株”、“其他型毒株”的有效率分别为78%、60%、75%,那么你预估这款新药对“新冠病毒”的总体有效率是;若已知这款新药对“新冠病毒”有效,求该药对“奥密克戎毒株”的有效率是.40英国数学家贝叶斯(1701-1763)在概率论研究方面成就显著,创立了贝叶斯统计理论,对于统计决策函数、统计推断等做出了重要贡献.根据贝叶斯统计理论,事件A ,B ,A(A 的对立事件)存在如下关系:P (B )=P (B |A )•P (A )+P (B |A )•P (A).若某地区一种疾病的患病率是0.01,现有一种试剂可以检验被检者是否患病.已知该试剂的准确率为99%,即在被检验者患病的前提下用该试剂检测,有99%的可能呈现阳性;该试剂的误报率为10%,即在被检验者未患病的情况下用该试剂检测,有10%的可能会误报阳性.现随机抽取该地区的一个被检验者,用该试剂来检验,结果呈现阳性的概率为()A.0.01B.0.0099C.0.1089D.0.1十.二项分布中的最大项(共3小题)41若X ~B 100,13 ,则当k =0,1,2,⋯,100时()A.P (X =k )≤P (X =50)B.P (X =k )≤P (X =32)C.P (X =k )≤P (X =33)D.P (X =k )≤P (X =49)42已知随变量从二项分布B 1001,12,则()(多选)A.P (X =k )=C k100112 1001 B.P (X ≤301)=P (X ≥701)C.P (X >E (X ))>12D.P (X =k )最大时k =500或50143经检测有一批产品合格率为75%,现从这批产品中任取5件,设取得合格产品的件数为ξ,则P (ξ=k )取得最大值时k 的值为.(多拿20分)2023年高考新增高频考点专题突破新增高频考点1:复数的三角表示新增高频考点2:三角函数的积化和差公式新增高频考点3:三角函数的和差化积公式新增高频考点4:投影向量新增高频考点5:百分位数新增高频考点6:点、线、面距离公式新增高频考点7:条件概率新增高频考点8:全概率公式新增高频考点9:贝叶斯公式新增高频考点10:二项分布中的最大项参考答案与试题解析一.复数的三角表示(共5小题)已知复数z 1=2cos π12+i sin π12 ,z 2=3cos π6+i sin π6 ,则z 1z 2的代数形式是()+i sin π4B.6cos π12+i sin π12 D.3+3i【解析】:∵z 1=2cosπ12+i sin π12 ,z 2=3cos π6+i sin π6 ,∴z 1z 2=6cos π12+i sin π12 cos π6+i sin π6=6cos π12cos π6-sin π12sin π6 +cos π12sin π6+sin π12cos π6 i=6cos π12+π6 +i sin π12+π6=6cos π4+i sin π4 =622+22i=3+3i ,故选:D .z =r (cos θ+i sin θ)(r >0,θ∈R ),则把这种形式叫做复数z 的三角形式,其中r 为复数z 的模,θ为复数z 的辐角,则复数z =32+12i 的三角形式正确的是()A.cos π6+i sinπ6 B.sin π6+i cos π6 C.cos π3+i sin π3 D.sin π3+i cos π3【解析】:z =32+12i 的模为1,辐角为π6,则复数z =32+12i 的三角形式为cos π6+i sin π6.故选:A .z =cos θ+i sin θ(i 为虚数单位),则()A.|z |=2B.z 2=1C.z ⋅z =1D.z +1z为纯虚数【解析】:对于A ,|z |=cos 2θ+sin 2θ=1,故A 错误,对于B ,z 2=(cos θ+i sin θ)2=cos 2θ+2sin θcos θi +i 2sin 2θ=cos 2θ-sin 2θ+2cos θsin θi ,故B 错误,对于C ,z ⋅z=(cos θ+i sin θ)(cos θ-i sin θ)=cos 2θ+sin 2θ=1,故C 正确,对于D ,z +1z =cos θ+i sin θ+1cos θ+i sin θ=cos θ+i sin θ+cos θ-i sin θ(cos θ+i sin θ)(cos θ-i sin θ)=2cos θ,故D 错误.故选:C .=cos -2π5 +i sin -2π5的辐角主值为()B.-8π5C.2π5D.-2π5=cos -2π5 +i sin -2π5 ,∴复数z 的辐角为2k π-2π5,k ∈Z ,∴复数z 的辐角主值为2π-2π5=8π5.5任何一个复数z =a +bi (其中a ,b ∈R ,i 为虚数单位)都可以表示成z =r (cos θ+i sin θ)(其中r ≥0,θ∈R )的形式,通常称之为复数z 的三角形式,法国数学家棣莫弗发现:[r (cos θ+i sin θ)]n =r n (cos nθ+i sin nθ)(n ∈N *),我们称这个结论为棣莫弗定理.由棣莫弗定理可知,若复数cos π8+i sin π8m(m ∈N *)为纯虚数,则正整数m 的最小值为()A.2B.4C.6D.8【解析】:∵复数cosπ8+i sin π8 m =cos m π8+i sin m π8为纯虚数,∴cos m π8=0,sin m π8≠0,∴m π8=k π+π2,k ∈Z ,根据m ∈N *,可得正整数m 的最小值为4,此时,k =0,故选:B .二.三角函数的积化和差公式(共5小题)6设直角三角形中两锐角为A 和B ,则cos A cos B 的取值范围是()A.0,12B.(0,1)C.12,1 D.34,1【解析】:直角三角形中两锐角为A 和B ,A +B =C =π2,则cos A cos B =12[cos (A -B )+cos (A +B )]=12cos (A -B ),再结合A -B ∈-π2,π2,可得cos (A -B )∈(0,1],∴12cos (A -B )∈0,12 ,故选:A .7利用积化和差公式化简sin αsin π2-β的结果为()A.-12[cos (α+β)-cos (α-β)] B.12[cos (α+β)+cos (α-β)]C.12[sin (α+β)-sin (α-β)]D.12[sin (α+β)+sin (α-β)]【解析】:sin αsin π2-β =sin αcos β=12[sin (α+β)+sin (α-β)]故选:D .8已知cos α+cos β=12,则cos α+β2cos α-β2的值为 14 .【解析】:∵cos α+cos β=12,∴cos α+β2cos α-β2=12cos α+β2-α-β2 +cos α+β2+α-β2 =12(cos α+cos β)=12×12=14.故答案为:14.9已知sin (α+β)•sin (β-α)=m ,则cos 2α-cos 2β的值为 m .【解析】:由已知得:sin (α+β)•sin (β-α)=cos2α-cos2β2=(2cos 2α-1)-(2cos 2β-1)2=cos 2α-cos 2β=m10已知α,β为锐角,且α-β=π6,那么sinαsinβ的取值范围是 0,32 .【解析】:∵α-β=π6∴sinαsinβ=-12[cos(α+β)-cos(α-β)]=-12cos(α+β)-32=-12cos2β+π6-32∵β为锐角,即0<β<π3∴π6<2β+π6<5π6,∴-32<cos2β+π6<32∴0<-12cos2β+π6-32<32故答案为:0,3 2三.三角函数的和差化积公式(共5小题)11对任意的实数α、β,下列等式恒成立的是()A.2sinα•cosβ=sin(α+β)+sin(α-β)B.2cosα•sinβ=sin(α+β)+cos(α-β)C.cosα+cosβ=2sinα+β2⋅sinα-β2D.cosα-cosβ=2cosα+β2⋅cosα-β2【解析】:sin(α+β)+sin(α-β)=sinαcosβ+cosαsinβ+sinαcosβ-cosαsinβ=2sinαcosβ,故选:A.12在△ABC中,a,b,c分别是角A,B,C的对边,设a+c=2b,则tan A2•tan C2的值为(参考公式:sin A+sin C=2sin A+C2cos A-C2)()A.2B.12C.3 D.13【解析】:∵a+c=2b,∴由正弦定理得sin A+sin C=2sin B=2sin(A+C),即2sin A+C2cos A-C2=4sin A+C2cos A+C2,在三角形中sin A+C2≠0,∴cos A-C2=cos A+C2,即cosαA2cos C2+sin A2sin C2=2cos A2cos C2-2sin A2sin C2,即3sin A2sin C2=cos A2cos C2,即sin A2sin C2cos A2cos C2=13,即tan A2•tan C2=13,故选:D.13已知sinα+sinβ=2165,cosα+cosβ=2765,则sinβ-sinαcosβ-cosα= -97 .【解析】:sin α+sin β=2165,可得2sin α+β2cos α-β2=2165⋯①cos α+cos β=2765,2cos α+β2cos α-β2=2765⋯②.①②可得sin α+β2cosα+β2=2127=79.sin β-sin αcos β-cos α=-2cos α+β2sin α-β22sin α+β2sin α-β2=-cos α+β2sinα+β2=-97.故答案为:-97.14已知sin α+sin β=14,cos α+cos β=13,则tan (α+β)的值为 247 .【解析】:由sin α+sin β=14,得2sinα+β2cos α-β2=14,由cos α+cos β=13,得2cos α+β2cos α-β2=13,两式相除,得tanα+β2=34,则tan (α+β)=2tan α+β21-tan 2α+β2=2×341-34 2=247故答案为:24715在△ABC 中a ,b ,c 分别为∠A ,∠B ,∠C 的对边,若cos B +cos C =sin B +sin C ,则△ABC 为直角三角形.【解析】:由cos B +cos C =sin B +sin C 得到2cosB +C 2cos B -C 2=2sin B +C 2cos B -C2两边同除以2cos B -C 2得sin B +C 2=cos B +C 2即tan B +C2=1,由0<B <π,0<C <π,得到B +C 2∈(0,π),所以B +C 2=π4即B +C =π2,所以A =π2,则△ABC 为直角三角形.故答案为:直角四.投影向量(共5小题)16已知两个单位向量a 和b 的夹角为120°,则向量a -b在向量b 上的投影向量为()A.-12aB.-12bC.32bD.-32b【解析】:因为两个单位向量a 和b的夹角为120°,所以a ⋅b =|a |⋅|b |cos120°=1×1×-12=-12,所以(a -b )⋅b =a ⋅b -b 2=-12-1=-32,故所求投影向量为(a-b )⋅b |b |⋅b =-32b.故选:D .17已知平面向量a =(-2,λ),b =(1,1),且a ⊥b ,则a -b 在b方向上的投影向量的坐标为()A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)【解析】:已知a =(-2,λ),b =(1,1),由于a ⊥b ,所以a ⋅b=(-2)×1+λ×1=0,解得λ=2,所以a =(-2,2),b =(1,1),得a -b=(-3,1),则(a -b )⋅b=(-3)×1+1×1=-2,|b |=12+12=2,故a -b 在b 方向上的投影为(a -b )⋅b|b |=-22=-2,得a -b 在b方向上的投影向量为-2⋅b 2=(-1,-1).故选:D .18在正△ABC 中,向量AB 在CA上的投影向量为()A.12CA B.-12CA C.32CA D.-32CA【解析】:AB 与CA 的夹角为2π3,则cos ‹AB ,CA ›=-12,根据投影向量的定义有:AB 在CA 上的投影向量为|AB |⋅cos ‹AB ,CA ›⋅CA|CA |=-12CA .故选:B .19设a ,b 是两个单位向量,若a +b 在b 上的投影向量为23b,则cos ‹a ,b ›=()A.-13B.13C.-223D.223【解析】:∵a +b 在b 上的投影向量为23b,∴(a+b )⋅b |b |⋅b |b |=23b ,∴a ⋅b =-13,∵|a|=|b |=1,∴由向量的夹角公式可知,cos ‹a ,b ›=a ⋅b |a ||b |=-13.故选:A .20已知|a |=2|b |,若a 与b的夹角为120°,则2b -a 在a 上的投影向量为()A.3-3aB.-32aC.-12aD.3a【解析】:∵|a|=2|b |,a 与b 的夹角为120°,∴(2b -a )⋅a =2a ⋅b -a 2=2|a |⋅12|a | ⋅cos120°-a 2=-32a 2,∴2b -a 在a 上的投影向量为:(2b -a )⋅a |a |⋅a|a |=-32a .故选:B .五.百分位数(共5小题)21学校组织班级知识竞赛,某班的8名学生的成绩(单位:分)分别是:68、63、77、76、82、88、92、93,则这8名学生成绩的75%分位数是90分.【解析】:8名学生的成绩从小到大排列为:63,68,76,77,82,88,92,93,因为8×75%=6,所以75%分位数为第6个数和第7个数的平均数,即12×(88+92)=90(分).故答案为:90分.22为了进一步学习贯彻党的二十大精神,推进科普宣传教育,激发学生的学习热情,营造良好的学习氛围,不断提高学生对科学、法律、健康等知识的了解,某学校组织高一10个班级的学生开展“红色百年路•科普万里行”知识竞赛.统计发现,10个班级的平均成绩恰好成等差数列,最低平均成绩为70,公差为2,则这10个班级的平均成绩的第40百分位数为()A.76B.77C.78D.80【解析】:记构成的等差数列为{a n },则a n =70+2(n -1)=2n +68,∵10×40%=4,∴这10个班级的平均成绩的第40百分位数为a 4+a 52=76+782=77,故选:B .23某工厂随机抽取20名工人,对他们某天生产的产品件数进行统计,数据如表,则该组数据的第75百分位数是()件数7891011人数37541A.8.5B.9C.9.5D.10【解析】;抽取的工人总数为20,20×75%=15,那么第75百分位数是所有数据从小到大排序的第15项与第16项数据的平均数,第15项与第16项数据分别为9,10,所以第75百分位数是9+102=9.5.故选:C .24某校1000名学生参加数学竞赛,随机抽取了20名学生的考试成绩(单位:分),成绩的频率分布直方图如图所示,则下列说法正确的是()A.频率分布直方图中a 的值为0.012B.估计这20名学生数学考试成绩的第60百分位数为80C.估计这20名学生数学考试成绩的众数为80D.估计总体中成绩落在[50,60)内的学生人数为110【解析】:由频率分布直方图可得,(a +0.01+0.03+0.035+0.01)×10=1,解得a =0.015,故A 错误,设第60百分位数为x ,则0.1+0.015+(x -70)×0.035=0.6,解得x =80,故B 正确,估计这20名学生数学考试成绩的众数为75,故C 错误,估计总体中成绩落在[50,60)内的学生人数为1000×0.01×10=100,故D 错误.故选:B .25某个品种的小麦麦穗长度(单位:cm )的样本数据如下:10.2、9.7、10.8、9.1、8.9、8.6、9.8、9.6、9.9、11.2、10.6、11.7,则这组数据的第80百分位数为10.8.【解析】:数据从小到大排序为:8.6、8.9、9.1、9.6、9.7、9.8、9.9、10.2、10.6、10.8、11.2、11.7,共有12个,所以12×80%=9.6,所以这组数据的第80百分位数是第10个数即:10.8.故答案为:10.8.六.点、线、面间的距离计算(共3小题)26如图,在多面体ABCDE 中,平面ABCD ⊥平面ABE ,AD ⊥AB ,AD ∥BC ,∠BAE =π2,AB =AD =AE =2BC =2,F 是AE 的中点.(1)证明:BF ∥面CDE ;(2)求点F 到平面CDE 的距离.【答案】(1)证明:取DE 中点G ,连接FG ,CG ,∵F ,G 分别为AE ,DE 中点,∴FG ∥AD ,FG =12AD ,又AD ∥BC ,BC =12AD ,∴BC ∥FG ,BC =FG ,∴四边形BCGF 为平行四边形,∴BF ∥CG ,又BF ⊄平面CDE ,CG ⊂平面CDE ,∴BF ∥平面CDE .(2)∵平面ABCD ⊥平面ABE ,平面ABCD ∩平面ABE =AB ,AD ⊥AB ,AD ⊂平面ABCD ,∴AD ⊥平面ABE ,又∠BAE =π2,则以A 为坐标原点,AB ,AE ,AD正方向为x ,y ,z 轴,可建立如图所示空间直角坐标系,则F (0,1,0),C (2,0,1),D (0,0,2),E (0,2,0),∴CD =(-2,0,1),DE =(0,2,-2),FE =(0,1,0),设平面CDE 的法向量n=(x ,y ,z ),则CD ⋅n=-2x +z =0DE ⋅n =2y -2z =0,令x =1,解得:y =2,z =2,∴n=(1,2,2),∴点F 到平面CDE 的距离d =|FE ⋅n||n |=23.27如图多面体ABCDEF 中,四边形ABCD 是菱形,∠ABC =60°,EA ⊥平面ABCD ,EA ∥BF ,AB =AE =2BF =2.(1)证明:CF ∥平面ADE ;(2)在棱EC 上有一点M (不包括端点),使得平面MBD 与平面BCF 的夹角余弦值为155,求点M 到平面BCF 的距离.【答案】(1)证明:取AE 的中点G ,连接GD ,GF ,因为BF ∥EA ,且BF =12AE ,所以AG ∥BF 且AG =BF ,所以四边形AGFB 是平行四边形,所以GF ∥AB ,又因为ABCD 是菱形,所以AB ∥DC ,且AB =DC ,所以GF ∥DC 且GF =DC ,所以四边形CFGD 是平行四边形,CF ∥DG ,又CF ⊄平面ADE ,DG ⊂平面ADE ,所以CF ∥平面ADE ;解:(2)连接BD 交AC 于N ,取CE 中点P ,∵PN ∥AE ,EA ⊥平面ABCD ,∴PN ⊥平面ABCD ,且CN ⊥BN ,∴以N 为原点,NC ,NB ,NP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,设在棱EC 上存在点M 使得平面MBD 与平面BCF 的夹角余弦值为155,E (-1,0,2),B (0,3,0),C (1,0,0),F (0,3,1),A (-1,0,0),D (0,-3,0)则设CM =λCE=λ(-2,0,2)(0<λ<1),∴M (1-2λ,0,2λ),所以DM =(1-2λ,3,2λ),DB =(0,23,0),BC =(1,-3,0),FB=(0,0,-1)设平面DBM 的一个法向量为n=(x ,y ,z ),则n ⋅DM=0n ⋅DB =0,即(1-2λ)x +3y +2λz =023y =0 ,令y =0,x =-2λ,z =1-2λ,得n=(-2λ,0,1-2λ),设平面FBC 的一个法向量为m=(a ,b ,c ),则m ⋅BC =0m ⋅FB =0,即a -3b =0-c =0 ,取b =1,得m=(3,1,0),∴|cos ‹n ,m ›|=|m ⋅n ||m |⋅|n |=|-23λ|2(-2λ)2+(1-2i )2=155,解得λ=13或λ=1,又∵0<λ<1,∴λ=13,此时M 13,0,23 ,∴CM =-23,0,23 ,∴点M 到平面BCF 的距离d =|CM ⋅m||m |=2332=33.28如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,PA ⊥底面ABCD ,PA =AB =2,E 为线段PB 的中点,F 为线段BC 上的动点.(1)证明:平面AEF ⊥平面PBC ;(2)若直线AF 与平面PAB 所成的角的余弦值为255,求点P 到平面AEF 的距离.【解析】:(1)证明:因为PA ⊥底面ABCD ,BC ⊂平面ABCD ,所以PA ⊥BC .因为ABCD 为正方形,所以AB ⊥BC ,又因为PA ∩AB =A ,PA ⊂平面PAB ,AB ⊂平面PAB ,所以BC ⊥平面PAB .因为AE ⊂平面PAB ,所以AE ⊥BC .因为PA =AB ,E 为线段PB 的中点,所以AE ⊥PB ,又因为PB ∩BC =B ,PB ⊂平面PBC ,BC ⊂平面PBC ,所以AE ⊥平面PBC .又因为AE ⊂平面AEF ,所以平面AEF ⊥平面PBC .(2)因为PA ⊥底面ABCD ,AB ⊥AD ,以A 为坐标原点,以AB ,AD ,AP 的方向分别为x 轴,y 轴,z 轴的正方向,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),P (0,0,2),E (1,0,1),易知u=(0,1,0)是平面PAB 的法向量,设BF =t (t ∈[0,2]),则F (2,t ,0),所以AE=(1,0,1),AF =(2,t ,0),所以|cos ‹AF ,u ›|=|AF ⋅u||AF ||u |=1-255 2,即t t 2+4=55,得t =1,所以AF =(2,1,0),设n=(x 1,y 1,z 1)为平面AEF 的法向量,则n ⋅AE=0,n ⋅AF =0,,所以平面AEF 的法向量n=(-1,2,1),又因为AP=(0,0,2),所以点P 到平面AEF 的距离为d =|AP ⋅n ||n |=26=63,所以点P 到平面AEF 的距离为63,由(1)可知,∠BAF 是直线AF 与平面PAB 所成的角,所以cos ∠BAF =AB AF =AB AB 2+BF 2=255,解得BF =12AB =12BC ,故F 是BC 的中点,所以AF =AB 2+BF 2=5,AE =12PB =2,EF =AF 2-AE 2=3,所以△AEF 的面积为S △AEF =12AE ⋅EF =62,因为PA =AB =2,△PAE 的面积为S △PAE =12S △PAB =14PA ⋅AB =1,设点P 到平面AEF 的距离为h ,则有V P -AEF =13S △AEF ⋅h =66h =V F -PAE =13S △PAE ⋅BF =13,解得h =63,所以点P 到平面AEF 的距离为63.七.条件概率(共8小题)A 、B 满足P (A |B )=0.7,P (A)=0.3,则()A.P (A ∩B )=0.3B.P (B |A )=0.3C.事件A ,B 相互独立D.事件A ,B 互斥【解析】:根据题意,设P (B )=x ,由于P (A |B )=0.7,则P (AB )=P (B )P (A |B )=0.7x ,P (A )=1-P (A)=0.7,则P (A )P (B )=0.7x ,则有P (AB )=P (A )P (B ),事件A ,B 相互独立.不确定x 的值,P (A ∩B )=P (AB )=0.7x ,A 错误;P (B |A )=P (AB )P (A )=x ,B 错误;由于A 、B 相互独立,事件A 、B 可能同时发生,则事件A 、B 一定不互斥,D 错误.故选:C .P (A )=13,P (B |A )=23,P (B |A )=14,则P (B )= 1936 ,P (A |B )= 319 .【解析】:P (A )=13,则P (A )=1-P (A )=23,故P (B )=P (AB )+P (A B )=P (A )P (B |A )+P (A )P B |A )=23×23+13×14=1936,P (A |B )=P (AB )P (B )=13×141936=319.故答案为:1936,319.31研究人员开展甲、乙两种药物的临床抗药性研究实验,事件A 为“对药物甲产生抗药性”,事件B 为“对药物乙产生抗药性”,事件C 为“对甲、乙两种药物均不产生抗药性”.若P (A )=415,P (B )=215,P (C )=710,则P (B |A )= 38 .【解析】:由题意可知P (C )=P (A ∩B )=710,则P (A ∪B )=1-P (A ∩B )=1-710=310.又P (A ∪B )=P (A )+P (B )-P (AB ),所以P (AB )=P (A )+P (B )-P (A ∪B )=415+215-310=110,则P (B |A )=P (AB )P (A )=110415=38.故答案为:38.32已知某地市场上供应的一种电子产品中,甲厂产品占80%,乙厂产品占20%,甲厂产品的合格率是75%,乙厂产品的合格率是80%,则从该地市场上买到一个合格产品的概率是()A.0.75B.0.8C.0.76D.0.95【解析】:设买到的产品是甲厂产品为事件A ,买到的产品是乙厂产品为事件B ,则P (A )=0.8,P (B )=0.2,记事件C :从该地市场上买到一个合格产品,则P (C |A )=0.75,P (C |B )=0.8,所以P (C )=P (AC )+P (BC )=P (A )P (C |A )+P (B )P (C |B )=0.8×0.75+0.2×0.8=0.76.故选:C .33为丰富学生的课外活动,学校羽毛球社团举行羽毛球团体赛,赛制采取5局3胜制,每局都是单打模式,每队有5名队员,比赛中每个队员至多上场一次且上场顺序是随机的,每局比赛结果互不影响,经过小组赛后,最终甲乙两队进入最后的决赛,根据前期比赛的数据统计,甲队明星队员M 对乙队的每名队员的胜率均为34,甲队其余4名队员对乙队每名队员的胜率均为12.(注:比赛结果没有平局)(Ⅰ)求甲队明星队员M 在前四局比赛中不出场的前提下,甲乙两队比赛4局,甲队最终获胜的概率;(Ⅱ)求甲乙两队比赛3局,甲队获得最终胜利的概率;(Ⅲ)若已知甲乙两队比赛3局,甲队获得最终胜利,求甲队明星队员M 上场的概率.【解析】:(Ⅰ)事件B =“甲乙两队比赛4局甲队最终获胜”,事件A j =“甲队第j 局获胜”,其中j =1,2,3,4,A j 相互独立.又甲队明星队员M 前四局不出场,故P (A j )=12,j =1,2,3,4,B =A 1 A 2A 3A 4+A 1A 2 A 3A 4+A 1A 2A 3 A 4,所以P (B )=C 13×124=316.(Ⅱ)设C 为甲3局获得最终胜利,D 为前3局甲队明星队员M 上场比赛,由全概率公式知,P (C )=P (C |D )P (D )+P (C |D )P (D),因为每名队员上场顺序随机,故P (D )=C 24A 33A 35=35,P (D )=1-35=25,P (C |D )=122×34=316,P C |D )=123=18, 所以P (C )=316×35+18×25=1380.(Ⅲ)由(2),P (D |C )=P (CD )P (C )=P (C |D )P (D )P (C )=316×351380=913.34某地病毒暴发,全省支援,需要从我市某医院某科室的4名男医生(含一名主任医师)、5名女医生(含一名主任医师)中分别选派3名男医生和2名女医生,则在有一名主任医师被选派的条件下,两名主任医师都被选派的概率为()A.38B.310C.611D.617【解析】:需要从我市某医院某科室的4名男医生(含一名主任医师)、5名女医生(含一名主任医师)中分别选派3名男医生和2名女医生,设事件A 表示“选派3名男医生和2名女医生,有一名主任医生被选派”,B 表示“选派3名男医生和2名女医生,两名主任医师都被选派”,P (A )=C 23C 24+C 33C 14+C 23C 14C 34C 25=1720,P (AB )=C 23C 14C 34C 25=310,则在有一名主任医师被选派的条件下,两名主任医师都被选派的概率为:P (B |A )=P (AB )P (A )=3101720=617.故选:D .35人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为12(先验概率).(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.①求选到的袋子为甲袋的概率,②将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案:方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.【解析】:设试验一次,“取到甲袋”为事件A 1,“取到乙袋”为事件A 2,“试验结果为红球”为事件B 1,“试验结果为白球”为事件B 2,(1)P (B 1)=P (A 1)P (B 1|A 1)+P (A 2)P (B 1|A 2)=12×910+12×210=1120;所以试验一次结果为红球的概率为1120.(2)①因为B 1,B 2是对立事件,P (B 2)=1-P (B 1)=920,所以P A 1|B 2)=P (A 1B 2)P (B 2)=P (B 2|A 1)P (A 1)P (B 2)=110×12920=19,所以选到的袋子为甲袋的概率为19;②由①得P (A 2|B 2)=1-P A 1|B 2)=1-19=89,中取到红球的概率为:P 1=P (A 1|B2)P (B1|A1)+P (A2|B2)910+89×210=518,方案二中取到红球的概率为:P 2=P (A 2|B 2)P (B 1|A 1)+P (A 1|B 2)P B 1|A 2)=89×910+19×210=3745, 所以方案二中取到红球的概率更大.该款芯片的生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.已知该款芯片在生产中,前三道工序的次品率分别为P 1=110,P 2=19,P 3=18.(1)求该款芯片生产在进入第四道工序前的次品率;(2)如果第四道工序中智能自动检测为次品的芯片会被自动淘汰,合格的芯片进入流水线并由工人进行人工抽查检验.在芯片智能自动检测显示合格率为90%的条件下,求工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率.【解析】:(1)该款芯片生产在进入第四道工序前的次品率P =1-1-110 ×1-19 ×1-18=310.(2)设该批次智能自动检测合格为事件A ,人工抽检合格为事件B ,则P (A )=910,P (AB )=1-310=710,则工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率P (B |A )=P (AB )P (A )=710910=79.八.全概率公式(共2小题)乙两条生产线,甲生产线的产品次品率为10%,乙生产线的产品次品率为5%.现在某客户在该厂定制生产同一种铅笔产品,由甲、乙两条生产线同时生产,且甲生产线的产量是乙生产线产量的1.5倍.现在从这种铅笔产品中任取一件,则取到合格产品的概率为()A.0.92B.0.08C.0.54D.0.38【解析】:甲生产线的产量是乙生产线产量的1.5倍,则从这种铅笔中任取一件抽到甲生产线的概率为0.6,抽到乙生产线的概率为0.4,从这种铅笔产品中任取一件,则取到次品的概率为0.6×10%+0.4×5%=0.08,所以取到合格产品的概率为1-0.08=0.92.故选:A .第一箱内装有10件,其中有2件次品;第二箱内装有20件,其中有3件次品,现从两箱中随意挑选一箱,然后从该箱中随机取1个零件,则取出的零件是次品的概率为()A.18B.320C.740D.15【解析】:设事件A i 表示从第i (i =1,2)箱中取一个零件,事件B 表示取出的零件是次品,则P (B )=P (A 1。

2023年高考数学高频考点汇总(整理)

2023年高考数学高频考点汇总(整理)

2023年高考数学高频考点汇总(整理)高考数学复习重点第一,函数与导数主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。

是高考的重点和难点。

第五,概率和统计这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析主要是证明平行或垂直,求角和距离。

主要考察对定理的熟悉程度、运用程度。

第七,解析几何高考的难点,运算量大,一般含参数。

高考数学冲刺注意事项重视新增内容考查,新课标高考对新增内容的考查比例远远超出它们在教材中占有的比例。

例如:三视图、茎叶图、定积分、正态分布、统计案例等。

立足基础,强调通性通法,增大覆盖面。

从历年高考试题看,高考数学命题都把重点放在高中数学课程中最基础、最核心的内容上,即关注学生在学习数学和应用数学解决问题的过程中最为重要的、必须掌握的核心观念、思想方法、基本概念和常用技能,紧紧地围绕“双基”对数学的核心内容与基本能力进行重点考查。

突出新课程理念,关注应用,倡导“学以致用”。

新课程倡导积极主动、勇于探索的学习方式,注重提高学生的数学思维能力,发展学生的数学应用意识。

加强应用意识的培养与考查是教育改革的需要,也是作为工具学科的数学学科特点的体现。

有意训练每年高考试题中都出现的高频考点。

高考数学答题技巧高考数学答题发现时间来不及怎么办?首先不要慌张,其实这个时候很多同学都会有点紧张,但是同学们要学会调节这种紧张。

不要越急越乱,越乱越错。

你应该安慰自己:“我已经做了那么多了,剩下的不过是少数,我做得慢,自然准确率就高。

”“我没做完,大多数同学也应该没有做完。

”情绪稳定以后,你最好就不要做新题了。

高考数学高频考点汇总

高考数学高频考点汇总

高考数学高频考点汇总在复高考数学时,我们应该深入研究考试大纲和考试说明,确保对“考什么”和“怎么考”有深刻的理解。

此外,我们还应注意练的阶段性、层次性和渐进性,避免重复练并突出重点。

科学性和针对性的知识讲解和练检测也很重要,以便形成系统化、条理化的知识框架。

最后,我们应该确保练检测与高考相符合,难度适宜,注重基础的灵活运用和掌握分析解决问题的思维方法。

在冲刺阶段,我们应该明确重点,以确保对高考“考什么”和“怎样考”了如指掌。

以下是高考数学的7大必考专题、62个高频考点和4大抢分技巧,供参考。

1.7大必考专题:专题1:函数与不等式,以函数为主线,不等式和函数综合题型是考点。

我们应该重点掌握函数的单调性、奇偶性、周期性和对称性等性质。

此外,一元二次函数和不等式也是重点,需要掌握它们的基础性质和解法,以及不等式与数列的结合问题和放缩技巧。

专题2:数列,以等差等比数列为载体,考察等差等比数列的通项公式、求和公式和它们之间的关系,以及求通项公式和前n项和的常用方法。

专题3:三角函数、平面向量和解三角形等问题也是考点,需要掌握它们的基本概念和解法。

2.62个高频考点:这些考点包括函数的性质、一元二次函数、不等式、数列、三角函数、平面向量、解三角形等问题,需要我们掌握它们的基本概念和解法。

3.4大抢分技巧:技巧1:熟练掌握基础知识,包括函数的性质、一元二次函数、不等式、数列、三角函数、平面向量和解三角形等问题。

技巧2:注重解题方法,包括分类讨论、化简、代数运算、几何画图和利用性质等方法。

技巧3:注意细节,如符号、单位、精度等问题,避免因细节错误而失分。

技巧4:多做模拟题,熟悉考试规则和题型,增强应试能力。

高考数学考试中,常规模式是直接套用已知的解题方法。

在理解题意后,考生应该思考该题属于哪一学科、哪一章节,与哪个类型比较接近,有哪些解题方法可用,哪个方法可以首先尝试使用。

这样一来,考生就能够快速确定解题方向,提高解题速度。

高考数学「热门考点」笔记

高考数学「热门考点」笔记

高考数学「热门考点」笔记目录1.高考数学重难点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何。

难点:函数、数列、圆锥曲线。

2.高考数学考点:(1)集合与命题:集合的概念与运算、命题、充要条件。

(2)不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用。

(3)函数:函数的定义、函数解析式与定义域、值域与最值、反函数、三大性质、函数的零点、函数图象、指数与指数函数、对数与对数函数、函数的应用。

(4)三角比与三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、万能公式、辅助角公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用、反三角函数、最简三角方程。

(5)平面向量:有关概念与初等运算、线性运算、三点共线、坐标运算、数量积、三角形“四心”及其应用。

(6)数列:数列的有关概念、等差数列、等比数列、通项公式求法、数列求和、数列的应用、数学归纳法、数列的极限与运算、无穷等比数列。

(7)直线和圆的方程:方向向量、法向量、直线的方程、两直线的位置关系、线性规划、圆的方程、直线与圆的位置关系。

(8)圆锥曲线方程:椭圆的方程、双曲线的方程、抛物线的方程、直线与圆锥曲线的位置关系、轨迹问题、中点弦问题、圆锥曲线的应用、参数方程。

(9)立体几何与空间向量:空间直线、直线与平面、平面与平面、棱柱、棱锥、球与球面距离、几何体的三视图与直观图、几何体的表面积与体积、空间向量。

(10)排列、组合:排列、组合应用题、二项式定理及其应用。

(11)概率与统计:古典概型、系统抽样、分层抽样、互斥事件、对立事件、独立事件、平均数、中位数、众数、频率分布直方图。

(12)复数:复数的概念与运算、复数的平方根与立方根计算、实系数一元二次方程。

(13)矩阵与行列式初步:二元线性方程组、矩阵的基本运算、二阶行列式、三阶行列式、对角线法则、余子式与代数余子式。

(14)算法初步:流程图、算法语句、条件语句、循环语句。

高考数学62个高频考点

高考数学62个高频考点

高考数学62个高频考点高考数学62个高频考点这部分所考察的题目比较简洁,主要出现在选做题中,学生须要熟记公式。

整理了相关的内容,欢迎观赏与借鉴。

1集合、简易逻辑(4个)元素与集合间的运算四种命题之间的关系;全称、特称命题.充要条件;2函数与导数(13个)1.比较大小2.分段函数;3.函数周期性;4.函数奇偶性;5.函数的单调性;6.函数的零点;7.利用导数求值8.定积分的计算9.导数与曲线的切线方程;10.最值与极值;11.求参数的取值范围;12. 证明不等式;13. 数学归纳法.3数列(4个)1.数列求值;2.证明等差、等比数列;3.递推数列求通顶公式;4.数列前n项和.4三角函数(4个)1.求值化简(同角三角函数的基本关系式);2.正弦函数、余弦函数的图象和性质;①.函数图像变换; ②. 函数的周期性;③.函数的奇偶性; ④.函数的单调性;3. 二倍角的正、余弦、协助角公式化简4.解三角形. (正、余弦定理、面积公式)5平面对量(3个)模长与向量的积量积;夹角的计算;向量垂直、平行的判定6不等式(3个)1.不等式的解法;2. 基本不等式的应用(化简、证明、求最值);3.简洁线性规划问题.7直线和圆的方程(3个)1.直线的倾斜角和斜率;2.两条直线平行与垂直的条件;3.点到直线的距离;8圆锥曲线(4个)求标准方程;求离心率;弦长4.直线与圆锥曲线的位置关系.9空间简洁几何体(3个)线、面垂直与平行的判定;夹角与距离的.计算;三视图(体积、表面积、视图推断)10排列、组合、二项式定理(3个)1.分类计数原理与分步计数原理.2.排列、组合的常用方法;3.二项式定理的绽开式(系数与二项式系数、求常数、求参数a的值)11概率与统计(6个)抽样方法;频率分布直方图;古典与几何概率;条件概率5. 离散型随机变量的分布列、望值和方差;6.线性回来方程与耗材估量.12复数(3个)复数的四则运算;复数的模长与共轭复数;复数与复平面的点的位置。

高考数学必考知识点归纳

高考数学必考知识点归纳

高考数学必考知识点归纳一、集合与函数1.集合o表示法:列举法、描述法、图示法(韦恩图)。

o运算:交集、并集、补集(相对于全集)。

2.函数o概念:输入与输出之间的对应关系。

o表示法:解析法、列表法、图像法。

o单调性:增函数、减函数。

o奇偶性:奇函数、偶函数、非奇非偶函数。

二、数列1.定义与表示o数列的定义:按一定顺序排列的一列数。

o表示法:通项公式、递推公式。

2.等差数列o定义、通项公式、前n项和公式。

o性质:中项性质、等差中项。

3.等比数列o定义、通项公式、前n项和公式(注意公比不为1的情况)。

o性质:中项性质、等比中项。

4.数列求和o倒序相加法、错位相减法、分组求和法、裂项相消法等。

5.数列的极限o数列极限的概念、性质及简单计算。

三、三角函数1.基本概念o角度与弧度制、三角函数定义(正弦、余弦、正切)。

2.诱导公式o角度加减变换公式。

3.同角关系式o基本恒等式、平方关系、商数关系。

4.性质o周期性、奇偶性、单调性、有界性。

5.图像与性质o各三角函数图像特征、相位变换、振幅变换。

6.三角恒等变换o和差化积、积化和差、倍角公式、半角公式。

7.解三角形o正弦定理、余弦定理、面积公式、海伦公式。

四、向量1.基本概念o向量的模、方向、坐标表示。

2.运算o加法、减法、数乘、数量积(点积)、向量积(叉积)。

o模长与夹角的关系、平行与垂直的条件。

五、解析几何1.直线o方程:点斜式、斜截式、两点式、截距式、一般式。

o斜率:定义、公式、倾斜角。

o位置关系:平行、垂直的条件。

2.圆o方程:标准方程、一般方程。

o性质:圆心、半径、切线、弦的性质(如相交弦定理)。

3.圆锥曲线o椭圆、双曲线、抛物线的定义、标准方程、性质。

六、立体几何1.空间位置关系o直线与平面、平面与平面的平行、垂直关系。

2.几何体o柱体、锥体、球体等的结构特征及表面积、体积公式。

3.三视图o正视图、侧视图、俯视图及其绘制方法。

七、不等式1.性质o基本性质、传递性、可加性、可乘性(正数时)。

高考数学核心考点

高考数学核心考点

高考数学核心考点一、选择、填空题1、解不等式:一元二次不等式;分式不等式;指数不等式、对数不等式(化为同底). 2、集合的交;并;补运算. 3、充分必要条件的判断(确定互推关系). 4、 四种命题的表达;全称命题、特称命题的否定表达(一改换、二否定);及其真假性判断;或、且、非命题的真假判断。

5、复数的加、减、乘、除运算;模的计算. 6、 向量的加、减、数乘、数量积的坐标运算;模的计算;定义运算;平行、垂直的关系式运用;几何意义的运算(三角形法则,平行四边形法则)。

7、线性规划:求目标函数的最大最小值. 8、古典概型、几何概型的计算. 9、 编读程序框图.10、 求分段函数值. (综合指数式、对数式运算).11、 求定义域(分母0≠、真数0>、偶数根式的被开方数0≥).12、 函数单调性、奇偶性的判断(特殊值法、定义法).13、 函数图像的判断: ①利用变换作图,②性质法(利用定义域、值域、单调性、奇偶性、周期性,过定点)14、 利用零点存在性定理判断零点(即方程的根)所在区间.15、 利用导数求切线方程;求单调区间;求极值;求最值.16、 同角三角函数关系公式;诱导公式;两角和与差公式;二倍角公式的综合运算.17、 三角函数sin()y A x ωϕ=+图像的伸缩、平移的变换,及其性质(周期,对称轴、对称中心、单调区间、最值)18、 等差、等比数列常规量的计算(列方程组求首项和公差或公比;利用性质求解).19、 根据三视图求体积、表面积、侧面积;多面体的外接球与内切球的问题.20、 空间点、线、面位置关系的判断(借助正方体或长方体找反例排除).21、 求直线与圆的方程;直线被圆截得的弦长;及其位置关系(两点间距离、点到线距离公式、两平行线距离公式).22、 求圆锥曲线的方程;及其几何性质(离心率、渐近线等).二、解答题23、 数列:(1) 求通项公式(公式法、累加法、累乘法、构造法).(2) 求前n 项和(公式法、分组求和法、错位相减法、裂项相消法).(3) 证明等差、等比数列(定义法).24、 三角函数与解三角形:(1) 利用正弦定理、余弦定理、勾股定理、内角和定理解三角形,求面积.(2) 化归sin()y A x ωϕ=+形式.(3) 求T A ωϕ、、、值.(4) 给值求值(同角三角函数关系公式、诱导公式、两角和与差公式、二倍角的运用).(5) 求最大最小值(或给定x 的范围),及其对应的x 的集合.(6)求单调区间(当0,0A ω>>时,求增代增,求减代减)25、 统计与概率:(1) 抽样方法:系统抽样(等间距抽样);分层抽样(等比例抽样).(2) 数字特征:众数、中位数、平均数、方差、标准差、极差.(3) 数据分析:茎叶图、频率直方图;回归分析;独立性检验.(4) 从频率直方图估计:众数、中位数、平均数、方差.26、 空间立体几何:(1) 线面平行、面面平行的证明.(2) 线线垂直、线面垂直、面面垂直的证明.(3) 求体积(先证明高、后计算高及底面积、代公式求得体积).(4) 翻折问题.27、 平面解析几何:直线、圆、圆锥曲线的综合运用.28、 用导数研究函数.(恒成立问题,存在性问题)29、 极坐标与参数方程(转化法、数形结合法).。

高三数学高考知识点总结

高三数学高考知识点总结

高三数学高考知识点总结1. 函数与方程1.1 一元二次函数及应用1.2 二次函数与一元二次方程1.3 三角函数与解三角形1.4 指数、对数与幂函数1.5 不等式1.6 等式与方程的应用1.7 参数方程与函数的图形2. 数列与数列极限2.1 数列的概念与性质2.2 等差数列与等比数列2.3 数列极限的定义与性质2.4 数列极限的计算方法2.5 无穷数列极限3. 三角函数与三角恒等变换3.1 三角函数的定义与性质3.2 三角函数的图像与变换3.3 三角函数的复合与反函数3.4 三角恒等式的证明与应用3.5 三角函数的基本计算4. 几何与空间几何4.1 平面几何基本概念与定理4.2 平面图形的性质与计算4.3 立体图形的基本概念与定理4.4 空间图形的性质与计算4.5 空间几何的向量与坐标表示4.6 空间几何的相交与平行关系5. 三角函数与向量5.1 向量的概念与性质5.2 平面向量的基本运算5.3 向量的数量积与向量积5.4 向量与空间图形的应用5.5 三角函数与向量的关系6. 概率与统计6.1 随机事件与概率6.2 概率的计算与性质6.3 组合与排列6.4 统计图与频率分布表6.5 参数估计与假设检验7. 导数与微分7.1 导数的概念与性质7.2 导数的计算及应用7.3 高阶导数与隐函数求导7.4 微分的概念与性质7.5 微分中值定理与泰勒展开7.6 极值与最值的判定8. 不定积分与定积分8.1 不定积分及其基本性质8.2 常用的积分公式与方法8.3 定积分的定义及性质8.4 定积分的计算方法8.5 定积分在几何与物理中的应用9. 空间解析几何9.1 空间直线与面的方程9.2 空间几何的两点形式与一般方程9.3 空间几何的交点、距离与投影9.4 空间直线与面的位置关系9.5 空间曲线及其方程10. 数学建模10.1 建模的基本思路与方法10.2 建模中的数学工具与技巧10.3 建模中的数据处理与分析10.4 建模中的模型建立与求解这些都是高中数学高考的核心知识点,在备考过程中需要掌握这些知识点的概念、性质、计算方法和应用。

高考数学100个高频考点

高考数学100个高频考点

高考数学100个高频考点1.集合的性质:①任何一个集合是它本身的子集,记为A A ⊆;②空集是任何集合的子集,记为A ⊆φ;③空集是任何非空集合的真子集;2.四种命题的形式及相互关系:原命题:若P 则q ; 逆命题:若q 则p ;否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p 。

①、原命题为真,它的逆命题不一定为真。

②、原命题为真,它的否命题不一定为真。

③、原命题为真,它的逆否命题一定为真。

3.函数的性质(1)定义域: (2)值域: (3)奇偶性:(在整个定义域内考虑) ①定义:①偶函数:)()(x f x f =-,②奇函数:)()(x f x f -=-②判断方法步骤:a.求出定义域;b.判断定义域是否关于原点对称;c.求)(x f -;d.比较)()(x f x f 与-或)()(x f x f --与的关系。

(4)函数的单调性定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1<x 2时,都有f(x 1)<f(x 2),则说f(x)在这个区间上是增函数; ⑵若当x 1<x 2时,都有f(x 1)>f(x 2),则说f(x) 在这个区间上是减函数. 4.二次函数的解析式的三种形式 ①一般式f (x )=ax 2+bx +c (a ≠0); ②顶点式f (x )=a (x -h )2+k (a ≠0); ③零点式f (x )=a (x -x 1)(x -x 2)(a ≠0)。

5.设x 1,x 2∈[a ,b ],x 1≠x 2 那么⇔>--⇔>--0)()(0)]()()[(21212121x x x f x f x f x f x x f (x )在[a ,b ]上是增函数;⇔<--⇔<--0)()(0)]()()[(21212121x x x f x f x f x f x x f (x )在[a ,b ]上是减函数。

高考数学高频必背知识点(掌握)

高考数学高频必背知识点(掌握)

高考数学高频必背知识点(把握)数学,是研究数量、结构、变化、空间以及信息等概念的一门学科。

数学是人类对事物的抽象结构与模式进行严格描述、推导的一种通用手段,下面我给大家带来高考数学高频必背知识点,期望大家宠爱!高考数学必考知识点1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,3、正方体a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-底面积h-高V=Sh6、棱锥S-底面积h-高V=Sh/37、棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/38、拟柱体S1-上底面积,S2-下底面积,S0-中截面积h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—侧面积,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、直圆锥r-底半径h-高V=πr^2h/312、圆台r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3 15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6 16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)高考数学必考公式知识点1.适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

高考数学259个核心考点

高考数学259个核心考点

高考数学259个核心考点高考数学的核心考点共有259个,以下是详细的列表:1. 实数与代数基础- 实数的性质与运算- 代数式与多项式的基本概念与运算- 一元一次方程与一元一次不等式- 二次根式与二次方程- 分式与分式方程- 绝对值与不等式2. 函数与图像- 一元函数的概念与性质- 一元函数的图像与性质- 一元函数的运算与复合函数- 一元函数的应用(包括函数的最值、函数的增减性、函数的奇偶性等)3. 三角函数与解三角形- 三角函数的基本概念与性质- 三角函数的图像与性质- 三角函数的运算与复合函数- 三角函数的应用(包括解三角形、三角函数的最值等)4. 平面向量与解析几何- 平面向量的基本概念与运算- 平面向量的数量积与向量积- 平面向量的应用(包括向量的共线、垂直、平行等)5. 空间几何与立体几何- 空间几何的基本概念与性质- 空间几何的运算与判断- 空间几何的应用(包括立体几何的体积、表面积等)6. 数列与数学归纳法- 数列的概念与性质- 等差数列与等比数列- 数列的通项公式与求和公式- 数学归纳法的应用7. 极限与导数- 极限的概念与性质- 极限的运算与判断- 导数的概念与性质- 导数的运算与应用(包括函数的最值、函数的单调性、函数的凹凸性等)8. 积分与微分方程- 积分的概念与性质- 积分的运算与应用(包括定积分、不定积分、曲线的长度、曲线的面积等)- 微分方程的基本概念与解法9. 概率与统计- 概率的基本概念与性质- 概率的运算与应用(包括事件的概率、条件概率、独立事件等)- 统计的基本概念与应用(包括样本调查、数据处理与分析等)10. 数学思想方法与证明- 数学思想方法(包括抽象思维、逻辑推理、归纳与演绎等)- 数学证明的基本方法与技巧以上是高考数学的259个核心考点,掌握这些考点将有助于应对高考数学考试。

高考数学高频考点《求函数的解析式》

高考数学高频考点《求函数的解析式》

高频考点之求函数的解析式1. 设)(x f 是一次函数,且34)]([+=x x f f ,则)(x f =2.已知二次函数)(x f 满足(1)1f =,(1)5f -=,图像过原点,求()f x 的解析式3. 已知()f x 是二次函数,若(0)0,f =且(1)()1f x f x x +=++ 求()f x 的解析式。

4. 已知1)1,f x =+求()f x 的解析式。

5. 已知()21252f x x x +=++,求()f x 的解析式6 .里氏震级M 的计算公式为0lg lg A A M -=,其中A 是测震仪记录的地震曲线的最大振幅,0A 是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振福是1000,此时标准地震的振幅0A 为0.001,则此次地震的震级为 级;9级地震的最大的振幅是5级地震最大振幅的 倍.7. 渔场中鱼群的最大养殖量是m吨,为保证鱼群的生长空间,实际养殖量不能达到最大养殖量,必须留出适当的空闲量。

已知鱼群的年增长量y吨和实际养殖量x吨与空闲率乘积成正比,比例系数为k(k>0).(1)写出y关于x的函数关系式,指出这个函数的定义域;(2)求鱼群年增长量的最大值;(3)当鱼群的年增长量达到最大值时,求k的取值范围.8 .某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿的市场售价P(单位:元/102 kg)与上市时间t(单位:天)的关系符合图1中的折线表示的函数关系,西红柿种植成本Q(单位:元/102 kg)与上市时间t(单位:天)的关系符合图2中的抛物线表示的函数关系.(1)写出图1表示的西红柿的市场售价与上市时间的函数关系式P=f(t),图2表示的西红柿的种植成本与上市时间的函数关系式Q=g(t);(2)若西红柿的市场售价减去其种植成本为西红柿的纯收益,则何时上市西红柿的纯收益最大?9 某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出服药后y 与t 之间的函数关系式)(t f y ;(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗疾病有效.求服药一次治疗疾病有效的时间?。

2024年新高考数学高频考点+重点题型

2024年新高考数学高频考点+重点题型

2024年新高考数学高频考点+重点题型
新高考数学的高频考点和重点题型会因地区和考试年份的不同
而有所差异。

以下是一些可能的高频考点和重点题型:
- 集合与逻辑:集合的运算、充要条件等。

- 函数与导数:函数的性质、图像和应用,导数的计算和应用等。

- 三角函数与解三角形:三角函数的图像和性质,解三角形等。

- 数列:等差数列、等比数列的通项公式和求和公式,数列的应用等。

- 立体几何:空间向量的应用,空间角和距离的计算等。

- 解析几何:直线和圆的方程,椭圆、双曲线和抛物线的标准方程和性质等。

- 概率与统计:概率的计算,分布列和数学期望的计算等。

需要注意的是,以上只是一些常见的高频考点和重点题型,具体的考试内容和难度会因地区和年份的不同而有所差异。

建议你结合所在地区的实际情况,认真学习和掌握数学知识,做好备考工作。

2024年新高考数学的重点题型可能包括以下几种:
- 基本不等式
- 数列
- 立体几何
- 解析几何
- 概率与统计
需要注意的是,不同地区和年份的新高考数学重点题型可能会有所差异,建议你结合所在地区的实际情况,认真学习和掌握数学知识,做好备考工作。

新高考数学高频考点及必背公式

新高考数学高频考点及必背公式

新高考数学高频考点及必背公式1. 含n个元素的非空集合子集有2n个;真子集2n−1个。

2. 集合交并补公式:(1) C u(A∪B)=C u A∩C u BC u(A∩B)=C u A∪C u B(2) A∩B=A⟺A∪B=B⟺A⊆B⟺C u B⊆C u A⇔A∩C u B=∅⟺C u A∪B=R(3) card(A∪B)=card A+card B−card (A∩B)3. 二次不等式解集(Δ>0):同号两边,异号中间(看a和ax2+bx+c两者符号的异同)4. 含绝对值的不等式当a>0时:|x|<a⇔x2<a2⇔−a<x<a|x|>a ⇔x2>a2⇔x>a或x<−a5. 等价转化a2>b2⇔|a|>|b|;1 x >a>0⇔0<x<1a;(x+a)(x+b)>0 ⇔x+ax+b>06. 穿根法解因式分解型高次方程;从上往下穿,从左往右穿,奇穿偶不穿7. 无理不等式(1) √f(x)>√g(x)⇔{f(x)≥0 g(x)≥0f(x)>g(x)(2) √f(x)>g(x)⇔{f(x)≥0 g(x)≥0f(x)>[g(x)]2⇔{f(x)≥0g(x)<0(3) √f(x)<g(x)⇔{f(x)≥0 g(x)>0f(x)<[g(x)]2 8. 指数不等式对数不等式(1) 当a>1时,a f(x)>a g(x)⇔f(x)>g(x);log a f(x)>log a g(x)⇔{f(x)>0 g(x)>0f(x)>g(x)(2) 当0<a<1时,a f(x)>a g(x)⇔f(x)<g(x)log a f(x)>log a g(x)⇔{f(x)>0 g(x)>0f(x)<g(x)9. 常用不等式(1) a,b∈R⇒a2+b2≥2ab(当且仅当a=b时取”=”号)(2) a,b∈R+⇒a+b2≥√ab(当且仅当a=b时取”=”号)和x+y是定值s,那么当x=y时积xy有最大值14s2积xy是定值p,那么当x=y时和x+y有最小值2√p;(3) a3+b3+c3≥3abc (a>0,b>0,c>0)(4) |a|−|b|≤|a+b|≤|a|+|b|10. 经典不等式(1) 1−1x≤ln x≤x−1<x<x+1<e x(x>0 )(2) 11a +1b≤√ab≤a+b2≤√a2+b22(a>0,b>0 )(3) 柯西不等式(a2+b2)(c2+d2)≥(ac+bd)2 (ad=bc取=)(4) 权方和不等式x 2a +y2b≥(x+y)2a+b(xa=yb时取等号)11. 二次函数的解析式的三种形式①一般式f(x)=ax2+bx+c (a≠0);②顶点式f(x)=a(x−ℎ)2+k (a≠0);顶点坐标为(−b2a ,4ac−b24a);对称轴方程x=−b2a③零点式f(x)=a(x−x1)(x−x2)(a≠0)12. 函数单调性设x1,x2∈[a,b],x1≠x2那么(x1−x2)[f(x1)−f(x2)]>0⟺f(x1)−f(x2)x1−x2>0⟺f(x)在[a,b]上是增函数;(x1−x2)[f(x1)−f(x2)]<0 ⟺f(x1)−f(x2)x1−x2<0⟺f(x)在[a,b]上是减函数;设函数y=f(x)在某个区间内可导,如果f′(x)>0,则f(x)为增函数;如果f′(x)<0 ,则f(x)为减函数。

高考数学100个常考高频考点

高考数学100个常考高频考点

高考数学100个常考高频考点高考数学100个常考高频考点数学是高考中必考科目之一,也是许多学生最头疼的科目之一。

为了帮助广大考生高效备考,总结了高考数学100个常考高频考点,希望能对你有所帮助。

一、数与式1.常用数学符号及代表意义2.整数、有理数、无理数、实数3.绝对值及其性质4.分式及其基本性质5.分式运算6.带分数与假分数及其互化7.指数及其运算法则8.对数及其运算法则二、函数9.函数初步10.函数图像的基本性质11.函数的对称性及奇、偶性12.函数的单调性13.函数的零点、极值及其应用14.幂函数、指数函数、对数函数及其图像与性质15.三角函数、反三角函数及其性质16.常用函数的图像及其简单变换17.函数的综合应用问题三、三角函数18.任意角及其弧度制19.三角函数的基本关系20.简单三角函数的图像与性质21.三角函数的单调性22.三角函数的周期性及其性质23.三角函数的和差化积公式24.三角函数的倍角公式、半角公式25.三角函数的化简与求值四、数列与数学归纳法26.数列的基本概念27.等差数列的通项公式及其应用28.等比数列及其通项公式及其应用29.递推数列及递推公式30.数学归纳法及其应用五、平面向量31.向量及其基本概念32.向量的加、减、夹角公式33.向量的数量积及其应用34.向量的叉积及其应用35.平面向量的坐标表示法及其应用六、解析几何36.平面直角坐标系及其应用37.直线的垂直、平行及斜率公式38.直线的方程及其应用39.周长、面积的坐标公式40.圆的标准方程、一般方程及其性质41.直线与圆的位置关系、圆的切线方程42.抛物线、双曲线、椭圆的基本概念与方程43.二次函数的图像与性质44.二次函数的拐点、零点、极小值、极大值、客观题解七、立体几何45.空间几何体的基本概念46.空间向量的基本概念47.空间直线及其方程48.空间平面及其方程49.球的基本性质及其方程50.空间几何体的表面积与体积及其应用八、三角学51.三角形的基本概念、基本性质52.直角三角形及其基本性质53.三角形的内心、外心、垂心、重心及其性质54.三角形的中线、中位线、高及其性质55.相似三角形及其性质56.勾股定理、正弦定理、余弦定理57.解三角形、三角形综合应用九、导数与微积分58.导数的概念、性质、计算方法59.常用函数的导数60.利用导数研究函数的性质61.函数的最值、单调性及其应用62.微分的概念、定义及其应用63.中值定理及其应用十、集合与概率64.集合及其表示法、基本概念及其运算65.概率的基本概念、事件的合并与交66.等可能概型的概率问题67.条件概率及其应用68.互不相容事件、全概率公式和贝叶斯公式69.离散型随机变量及其分布律70.随机事件、概率分布函数、数学期望的概念及其计算方法十一、数理统计71.统计调查的设计方法72.总体、样本、参数及其估计73.频率分布和样本均值、方差的计算74.区间估计75.假设检验的基本概念76.一类、二类错误和检验水平77.正态分布、χ²分布、t分布的概念及其应用78.方差分析、回归分析及其应用79.抽样、分层抽样、整群抽样的基本概念十二、数学模型80.数学建模的基本概念81.数学建模的基本步骤82.常见的数学模型类型83.模型的求解、分析和优化84.数学模型的应用实例以上是高考数学100个常考高频考点的总结,相信通过有效的学习和练习,一定可以在考场上取得好成绩,希望对你有所帮助!。

高考数学必考知识点大全

高考数学必考知识点大全

高考数学必考知识点大全1.代数运算
-同底数幂的乘除法
-倍数关系与比例
-有理数的概念与运算法则
-一元一次方程的解法
-二次函数的三种表示形式
2.平面几何
-圆的基本概念与性质
-圆心角、弧度制与弧长的关系
-相似三角形的性质和判定方法
-平行线的性质和判定方法
-三角形的基本性质与判定方法
3.立体几何
-正方体、长方体、棱柱、棱锥、棱台的计算公式-圆锥的体积、曲面积的计算公式
-球的表面积、体积的计算公式
-空间向量的运算法则
-平面与立体图形的位置关系
4.概率论与数理统计
-随机事件的概念与性质
-事件的关系与运算法则
-事件的概率计算方法
-抽样调查与统计分析的基本方法-随机变量与概率分布的概念与性质5.函数与导数
-函数的概念与性质
-函数的求值与运算法则
-一元函数的最大值与最小值问题-导数的概念与基本性质
-导数的计算方法和应用
6.数列与数学归纳法
-等差数列与等比数列的概念与性质-数列的通项公式与前n项和公式-数列极限的概念与性质
-递推数列与其计算公式
-数学归纳法的基本原理和应用
7.三角函数与解三角形
-三角函数的基本性质与计算方法
-三角函数的图像与性质
-三角函数的运算法则
-解三角形的基本原理和方法
-解三角形的应用问题和求解技巧
8.数与图的关系
-数据的收集和整理方法
-数据的分析和解释方法
-数据的图表表示与分析
-数据统计和概率的计算方法
-利用图表解决实际问题的技巧与方法。

高考数学重要知识点归纳总结

高考数学重要知识点归纳总结

高考数学重要知识点归纳总结一、函数与方程1. 函数的概念和性质- 定义:函数是一种关系,每个自变量都对应唯一的因变量。

- 性质:可逆性、奇偶性、周期性等。

2. 四则运算与复合函数- 加法、减法、乘法、除法的运算规则。

- 复合函数的构成和求值方法。

3. 一次函数和二次函数- 一次函数:形如y = kx + b的函数,其特点和图像。

- 二次函数:形如y = ax^2 + bx + c的函数,其特点和图像。

4. 指数与对数函数- 指数函数:形如y = a^x的函数,指数规律和图像特点。

- 对数函数:形如y = loga(x)的函数,对数规律和图像特点。

5. 三角函数- 正弦、余弦、正切函数的定义和性质。

- 周期性、图像特点和恒等式。

二、空间几何1. 平面与立体图形- 二维平面图形:三角形、四边形、圆等的性质和计算公式。

- 三维立体图形:长方体、正方体、圆柱体等的性质和计算公式。

2. 空间直线和平面- 空间直线的方程和性质。

- 平面方程的表示方法和性质。

3. 空间向量- 向量的定义和表示方法。

- 向量的加法、减法和数量积的计算方法。

4. 空间几何应用- 距离公式和角度计算。

- 位置关系、相交关系和投影关系的判定方法。

三、概率与统计1. 随机事件与概率- 随机事件的定义和性质。

- 概率的定义和计算方法。

2. 概率统计- 频率和概率的关系和计算方法。

- 抽样调查和数据分析的基本概念。

3. 正态分布和抽样分布- 正态分布的特点和应用。

- 抽样分布的概念和统计推断方法。

4. 统计图表和误差分析- 数据的整理和统计图表的绘制方法。

- 误差来源和误差分析方法。

四、解析几何1. 平面直角坐标系与曲线方程- 坐标系的建立和曲线方程的表示。

- 直线、圆、抛物线、椭圆、双曲线方程的特点和图像。

2. 参数方程与极坐标方程- 参数方程的概念和表示方法。

- 极坐标方程的概念和性质。

3. 弧长、曲率和切线方程- 弧长的计算方法和性质。

高考数学重点知识点归纳总结大全

高考数学重点知识点归纳总结大全

高考数学重点知识点归纳总结大全一、函数与方程1. 函数的性质和图像- 定义域、值域和奇偶性- 函数的图像与平移、伸缩关系2. 一次函数与二次函数- 一次函数的表示和性质- 二次函数的标准式、一般式和顶点式- 二次函数的图像与平移、翻转、伸缩关系3. 幂函数与指数函数- 幂函数的表示和性质- 指数函数的表示和性质- 幂函数与指数函数的图像特点4. 对数函数与指数方程- 对数函数的定义和性质- 对数函数的图像与平移、伸缩关系- 指数方程的解法5. 三角函数与三角方程- 基本三角函数的定义和性质- 三角函数的图像与平移、伸缩关系- 三角方程的解法二、平面几何1. 直线和角度- 直线的性质和分类- 直线与角度的关系2. 三角形- 三角形的分类和性质- 三角形的周长和面积计算方法- 三角形中的角平分线、垂心、外心等概念3. 四边形和多边形- 四边形的分类和性质- 多边形的内角和外角和公式- 多边形的对称性和相似性4. 圆的性质- 圆的元素和性质- 弧长、扇形面积、圆心角的计算方法 - 圆与直线的位置关系三、立体几何1. 空间几何基本概念- 空间的基本元素和性质- 点、线、面的特征和分类2. 空间图形的计算- 直线与平面的位置关系- 线段、面积、体积的计算方法- 空间图形的投影和截面3. 空间几何的应用- 空间几何与解题方法- 空间几何在实际问题中的应用四、概率与统计1. 概率的基本概念- 随机事件与概率的关系- 概率的性质和计算方法2. 随机变量与概率分布- 随机变量的概念和分类- 离散型随机变量的概率分布- 连续型随机变量的概率密度函数3. 统计与抽样- 样本与总体的概念- 统计参数与统计量的计算方法- 抽样方法和样本调查的应用4. 统计分析与推断- 统计数据的处理和分析方法- 参数估计和假设检验的原理和步骤 - 统计推断的应用和局限性五、数列与数学归纳法1. 数列的概念和性质- 数列的定义和分类- 数列的通项公式和递推关系- 数列的性质和特征2. 数学归纳法的应用- 数学归纳法的原理和步骤- 数学归纳法在数列证明和推理中的应用 - 数学归纳法的一般性质和局限性六、解析几何1. 坐标系与向量- 坐标系的原理和基本性质- 向量的定义和运算法则- 坐标系和向量与几何图形的关系2. 平面与直线- 平面的方程和性质- 直线的方程和性质- 平面和直线的位置关系和相交性质3. 空间中的几何体- 空间几何体的元素和性质- 空间几何体的投影和截面- 空间几何体的相似性和对称性4. 解析几何的应用- 解析几何和实际问题的关系- 解析几何在几何证明和计算中的应用- 解析几何的优点和局限性以上是高考数学的重点知识点归纳总结,希望对你的复习有所帮助。

高考数学高频考点

高考数学高频考点

高考数学高频考点高考数学高频考点:1.代数:开方、指数、根式、二次根式、一元二次方程组、一次函数、二次函数等;2.几何:直线、圆、平面几何,及其立体几何、极坐标系;3.数论:分式、约分、概率论、计算概率、基本计算方法等;4.向量:行列式、基本定理及其推论、向量的三角不等式、Hilbert法则等;5.普通技术:变量替换、抽签、计数组合等。

数学是一门多面手的科学,也是高考中的重要科目,考生需要学习非常多的知识点来掌握各种高频考点,特别是一些高考数学高频考点,只有在平时多加巩固,才能在考试中获得良好的成绩。

代数中,比较常见的高频考点就有开方、指数、根式、二次根式、一元二次方程组,这几种知识点都是基础,主要是要把基本概念搞懂,对一些经典题型要熟练掌握,在灵活运用中将其融会贯通。

此外,还有一次函数、二次函数等,考生一定要掌握基本的公式,掌握计算方法,熟练掌握图像的分析,以及函数的专题性知识,例如唯一定理、Z字型变换等。

几何是数学里比较重要的科目,也是比较容易考试的高频科目,需要考生掌握较为熟练的几何图形分析、直线、圆形以及它们之间的关系,像三角形及它们的构造、判定等,此外还有关于平面几何、立体几何的知识,另外还有极坐标系的应用知识等等,这些都是需要掌握的考点。

数论,有分式、约分、概率论、计算概率等,这一部分的知识点较难,但也是高考中的重点,考生可以把历年的一些考题进行精读,归类总结,这样可以更好地把握考点中的重点知识,更好地得出正确答案。

另外,还有向量,行列式、基本定理及其推论、向量的三角不等式、Hilbert法则等,这些考点都是考生需要把握的。

最后,还有一些普通技术,有变量替换、抽签、计数组合等,考生对这些知识点也要有较好的掌握,要有一定的理解能力和运用能力。

归纳起来,高考数学的高频考点涉及到代数、几何、数论、向量等,考生需要熟练掌握这些知识,以便在考试中拿到好成绩。

所以,考生要在课业上认真学习,多练习,多思考,多探究,平时多针对高考数学的高频考点,多练习一些实际问题,这样才能在考试中取得高分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学:7大必考专题+62个高频考点+4大抢分技巧!都说“二轮看水平”,二轮复习又被称为“黄金周期”,如果二轮复习利用的好,高考大概率能够打一场翻身仗。

首先,复习时,我们应对高考进行深入研究:一是要看对《考试大纲》《考试说明》理解是否深透,把握是否到位,明确“考什么”“怎么考”。

二是看练习是否体现阶段性、层次性和渐进性,做到减少重复,重点突出。

三是看知识讲解、练习检测等内容科学性、针对性是否强,使模糊的清晰起来,缺漏的填补起来,杂乱的条理起来,孤立的联系起来,形成系统化、条理化的知识框架。

四是看练习检测与高考是否对路,不拔高,不降低,难度适宜,效度良好,重在基础的灵活运用和掌握分析解决问题的思维方法。

明确“考什么”,突出重点冲刺阶段明确重点,对高考“考什么”“怎样考”应了若指掌。

以下列举高考数学的7大必考专题&62个高频考点&4大抢分技巧,供参考。

017大必考专题专题1:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。

这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。

一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。

不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。

当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。

专题2:数列以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。

专题3:三角函数,平面向量,解三角形三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。

向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。

专题4:立体几何立体几何中,三视图是每年必考点,主要出现在选择,填空题中。

大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。

另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。

空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。

专题5:解析几何直线与圆锥曲线的位置关系,动点轨迹的探讨,求定值,定点,最值这些为近年来考的热点问题。

解析几何是考生所公认的难点,它的难点不是对题目无思路,不是不知道如何化解所给已知条件,难点在于如何巧妙地破解已知条件,如何巧妙地将复杂的运算量进行化简。

当然这里边包含了一些常用方法,常用技巧,需要学生去记忆,体会。

专题6:概率统计,算法,复数算法与复数一般会出现在选择题中,难度较小,概率与统计问题着重考察学生的阅读能力和获取信息的能力,与实际生活关系密切,学生需学会能有效得提取信息,翻译信息。

做到这一点时,题目也就不攻自破了。

专题7:极坐标与参数方程、不等式选讲这部分所考察的题目比较简单,主要出现在选做题中,学生需要熟记公式。

0262个高频考点目录集合、简易逻辑(4个)元素与集合间的运算四种命题之间的关系全称、特称命题充要条件函数与导数(13个)比较大小分段函数函数周期性函数奇偶性函数的单调性函数的零点利用导数求值定积分的计算导数与曲线的切线方程最值与极值求参数的取值范围证明不等式数学归纳法数列(4个)数列求值证明等差、等比数列递推数列求通项公式数列前n项和三角函数(4个)求值化简(同角三角函数的基本关系式)正弦函数、余弦函数的图象和性质①.函数图像变换②函数的周期性③函数的奇偶性④函数的单调性二倍角的正、余弦、辅助角公式化简解三角形.(正、余弦定理、面积公式)平面向量(3个)模长与向量的积量积夹角的计算向量垂直、平行的判定不等式(3个)不等式的解法基本不等式的应用(化简、证明、求最值)简单线性规划问题直线和圆的方程(3个)直线的倾斜角和斜率两条直线平行与垂直的条件点到直线的距离圆锥曲线(4个)求标准方程求离心率弦长直线与圆锥曲线的位置关系空间简单几何体(3个)线、面垂直与平行的判定夹角与距离的计算三视图(体积、表面积、视图判断)排列、组合、二项式定理(3个)分类计数原理与分步计数原理排列、组合的常用方法二项式定理的展开式(系数与二项式系数、求常数、求参数a的值)概率与统计(6个)抽样方法频率分布直方图古典与几何概率条件概率离散型随机变量的分布列、望值和方差线性回归方程与耗材估计复数(3个)复数的四则运算复数的模长与共轭复数复数与复平面的点的位置框图(3个)按流程计算出结果循环结构条件的判断程序语言的读取极坐标与参数方程(2个)极坐标与直角坐标之间的互化参数方程的化简不等式选讲(2个)含绝对值不等式的解法(零点分段法)利用不等式求参数的取值范围03高考数学四大抢分技巧1.套——常规模式直接套拿到一道高考题,你的第一反应是什么?迅速生成常规方案,也即第一方案。

为什么要有套路,因为80%的高考题是基本的、稳定的,考查运算的敏捷性,没有套路,就没有速度。

在理解题意后,立即思考问题属于哪一学科、哪一章节?与这一章节的哪个类型比较接近?解决这个类型有哪些方法?哪个方法可以首先拿来试用?这样一想,下手的地方就有了,前进的方向也大体确定了。

这就是高考解题中的模式识别。

运用模式识别可以简捷回答解题中的两个基本问题,从何处下手?向何方前进?我们说,就从辨认题型模式入手,就向着提取相应方法、使用相应方法解题的方向前进。

对高考解题来说,“模式识别”就是将新的高考考试题化归为已经解决的题。

有两个具体的途径:①化归为课堂上已经解过的题理由1:因为课堂和课本是学生知识资源的基本来源,也是学生解题体验的主要引导。

离开了课堂和课本,学生还能从哪里找到解题依据、解题方法、解题体验?还能从哪里找到解题灵感的撞针?高考解题一定要抓住“课堂和课本”这个根本。

理由2:因为课本是高考命题的基本依据。

有的试题直接取自教材,或为原题,或为类题;有的试题是课本概念、例题、习题的改编;有的试题是教材中的几个题目、几种方法的串联、并联、综合与开拓;少量难题也是按照课本内容设计的,在综合性、灵活性上提出较高要求。

按照高考怎样出题来处理高考怎样解题应是顺理成章的。

②化归为往年的高考题。

2.靠——陌生题目往熟靠遇到稍新、稍难一点的题目,可能不直接属于某个基本模式,但将条件或结论作变形后就属于基本模式。

当实施第一方案遇到障碍时,我们的策略是什么?转换视角,生成第二方案。

转换视角,转换到哪里?转换到知识丰富域,也就是说把问题转换到我们最熟悉的领域。

这就包括:(1)把一个领域中的问题,用另一个领域中的方法解决。

(2)换一种说法。

3.绕——正难则反迂回绕高考是智慧的较量,尤其是面对困境如何摆脱的智慧。

现在的高考必然出现“生题”“新题”,对此考生可能一时无法把握,使思考困顿,解题停顿。

这些战略高地以单一的方式一味死攻并非上策,要学会从侧翼进攻,要有“战略迂回”的意识,从侧面或反面的某个点突破,采取类似“管涌”的方式扩大战果可能更好。

“正难则反”是一个重要的解题策略,顺向推有困难时就逆向推,直接证有困难时就间接证,从左边推右边有困难时就从右边推左边。

“人生能有几回搏”,考场如人生,不如意事常有,关键不是无原则的放弃,也不是两败俱伤的死撑,我们要学会“迂回”,要善于走到事物的侧面,甚至反面去看看,也许会出现“风景这边独好”的喜人景象。

4.冒——猜测探路将险冒在常规思路无能为力,需要预测,需要直觉、估算、转换视角、合情推理等思维方式,除了需要综合我们在基本点、交汇点上的经验外,主要不是抽象,而是直观;主要不是逻辑推理,而是合情推理;主要不是知识,而是常识;主要不是我们通过大量训练获知的规律,而是数学活动的经验。

因为演绎推理能力是验证结果的能力,而直观能力是预测结果的能力。

没有预测,我们验证什么。

因此问题的关键是,寻求一种办法,让问题在“直观上变得显然起来”,这是德国数学家。

F·克莱因给我们的教诲。

从上面的分析中我们可以看到,在高考中要能取得优异的成绩,根据试题的类型选择适当的思维策略犹为重要。

我们研究解题的思路与策略,在于形成解题方案。

值得注意的是,方案形成后,还有一个重要问题是我们不能忽略的。

就是:我们是否具备实现方案的能力?不只是思想,还要实践。

运算的准确性、逻辑的严谨性和表达的规范性是需要在实践中获得的,由策略水平到技能水平。

没有策略不行,没有策略思想,就只能停留在套路化的水平,策略是我们解题的哲学思想。

但光有策略水平,没有技能水平也不行,那是坐而论道,纸上谈兵,我们不仅需要思路上的清晰,还需要算法上的娴熟。

因此,在高三复习过程中,要在抓实基础知识的学习、基本技能的训练、提高五大能力的前提下,要有计划有目的地根据不同问题的特点,加强思维策略和思维方法的指导和训练,切实提高思维能力和思维品质,只有这样,才能确保在高考中取得优异的成绩,同时,这更是新课程标准和新的时代给我们中学数学教学提出的要求。

相关文档
最新文档