四年级奥数-图形问题

合集下载

四年级奥数第二讲图形的计数问题含答案

四年级奥数第二讲图形的计数问题含答案

四年级奥数第⼆讲图形的计数问题含答案第⼆讲图形的计数问题⼀、知识点:⼏何图形计数问题往往没有显⽽易见的顺序,⽽且要数的对象通常是重叠交错的,要准确计数就需要⼀些智慧了.实际上,图形计数问题,通常采⽤⼀种简单原始的计数⽅法-⼀枚举法.具体⽽⾔,它是指把所要计数的对象⼀⼀列举出来,以保证枚举时⽆⼀重复、.⽆⼀遗漏,然后计算其总和.正确地解答较复杂的图形个数问题,有助于培养同学们思维的有序性和良好的学习习惯.⼆、典例剖析:例(1)数出右图中总共有多少个⾓分析:在∠AOB内有三条⾓分线OC1、OC2、OC3,∠AOB被这三条⾓分线分成4个基本⾓,那么∠AOB内总共有多少个⾓呢?⾸先有这4个基本⾓,其次是包含有2个基本⾓组成的⾓有3个(即∠AOC2、∠C1OC3、∠C2OB),然后是包含有3个基本⾓组成的⾓有2个(即∠AOC3、∠C1OB),最后是包含有4个基本⾓组成的⾓有1个(即∠AOB),所以∠AOB内总共有⾓:4+3+2+1=10(个)解:4+3+2+1=10(个)答:图中总共有10个⾓。

练⼀练:数⼀数右图中总共有多少个⾓?答案: 总共有⾓:10+9+8+…+4+3+2+1=55(个)例(2 )数⼀数共有多少条线段?共有多少个三⾓形?分析:①要数多少条线段:先看线段AB、AD、AE、AF、AC、上各有2个分点,各分成3条基本线段,再看BC、MN、GH这3条线段上各有3个分点,各分成4条基本线段.所以图中总共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条).②要数有多少个三⾓形,先看在△AGH中,在GH上有3个分点,分成基本⼩三⾓形有4个.所以在△AGH中共有三⾓形4+3+2+1=10(个).在△AMN与△ABC中,三⾓形有同样的个数,所以在△ABC中三⾓形个数总共:(4+3+2+1)×3=10×3=30(个)解::①在△ABC中共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条)②在△ABC中共有三⾓形是:(4+3+2+1)×3=10×3=30(个)答:在△ABC中共有线段60条,共有三⾓形30个。

图形问题(四年级奥数3)

图形问题(四年级奥数3)
米,那么它的面积增加30平方米;如果 长不变,宽增加3米,那么它的面积增加 48平方米。这个长方形原来的面积是多 少平方米?
【例题1】 人民路小学操 场长90米,宽45米。改造 后,长增加10米,宽增加5 米。现在操场面积比原来 增加了多少平方米?
【例题1】 人民路小学操场长90米,宽45米。 改造后,长增加10米,宽增加5米。现在操 场面积比原来增加了多少平方米?【思路导 航】用操场现在的面积减去操场原来的面积, 就得到增加的面积。 操场现在的面积是 (90+10)×(45+5)=5000平方米, 操场原来的面积是90×45=4050平方米。所 以,现在的面积比原来 增加5000-4050=950平方米。
练习1.有一块长方形的 木板,长22分米,宽8 分米。如果长和宽分别 减少10分米、3分米, 面积比原来减少多少平 方分米?
【例题2】一个长方形,如 果宽不变,长增加6米,那 么它的面积增加54平方米; 如果长不变,宽减少3米, 那么它的面积减少36平方 米。这个长方形原来的面 积是多少平方米?
练习2.一个长方形,如果宽不变, 长减少3米,那么它的面积减少 24平方米;如果长不变,宽增 加4米,那么它的面积增加60平 方米。这个长方形原来的面积是 多少平方米?
独立练习:
1.一块长方形铁板,长18分米,宽
13分米。如果长和宽各减少2分米, 面积比原来减少多少平方分米?
பைடு நூலகம்
2. 一个长方形,如果宽不变,长增加5
3月10日班级奥数课
独立练习:
1.甲、乙两数的和是112.甲数除以 2.甲、乙、丙三数之和是360,已知
甲是乙的3倍,丙是乙的2倍。求甲、 乙、丙各是多少?
乙数的商是6,甲、乙两数各是多少?

四年级奥数举一反三第1516周之图形问题

四年级奥数举一反三第1516周之图形问题

四年级奥数举一反三第1516周之图形问题、巧妙求和第15讲图形问题一、知识要点解答有关“图形面积”问题时,应注意以下几点:1.细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利地解决;2.从整体上观察图形特征,掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化。

二、精讲精练【例题1】人民路小学操场长90米,宽45米。

改造后,长增加10米,宽增加5米。

现在操场面积比原来增加了多少平方米?【思路导航】用操场现在的面积减去操场原来的面积,就得到增加的面积。

操场现在的面积是(90+10)×(45+5)=5000平方米,操场原来的面积是90×45=4050平方米。

所以,现在的面积比原来增加5000-4050=950平方米。

练习1:1.有一块长方形的木板,长22分米,宽8分米。

如果长和宽分别减少10分米、3分米,面积比原来减少多少平方分米?2.一块长方形铁板,长18分米,宽13分米。

如果长和宽各减少2分米,面积比原来减少多少平方分米?3.一块长方形地,长是80米,宽是45米。

如果把宽增加5米,要使面积不变,长应减少多少米?【例题2】一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。

这个长方形原来的面积是多少平方米?【思路导航】由“宽不变,长增加6米,面积增加54平方米”可知,它的宽为54÷6=9米;由“长不变,宽减少3米,面积减少36平方米”可知,它的长为36÷3=12米。

所以,这个长方形原来的面积是12×9=108平方米。

练习2:1.一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。

这个长方形原来的面积是多少平方米?2.一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米;如果长不变,宽增加3米,那么它的面积增加48平方米。

小学四年级奥数思维训练-数数图形

小学四年级奥数思维训练-数数图形

小学四年级奥数思维训练-数数图形数数图形专题简析:当线段、角、三角形、长方形等图形重重叠叠地交错在一起时就构成了复杂的几何图形.要想准确地计数这类图形中所包含的某一种基本图形的个数,必须注意以下几点:1,弄清被数图形的特征和变化规律.2,要按一定的顺序数,做到不重复,不遗漏.例1:数一数下图中共有多少个三角形.分析:以AD上的线段为底边的三角形也是1+2+3=6个;以EF上的线段为底边的三角形也是1+2+3=6个.所以图中共有6×2=12个三角形..()个三角形()个三角形例2:数一数下图中有多少个长方形.·分析:数长方形与数线段的方法类似.可以这样思考,图中的长方形的个数取决于AB或CD 边上的线段,AB边上的线段条数是1+2+3=6条,所以图中有6个长方形.试一试2:数一数下面各图中分别有多少个长方形.()个长方形数数图形(二)专题简析:“数图形”时,既可以逐个计数,也可以把图形分成若干个部分,先对每部分按照各自构成的规律数出图形的个数,再把他们的个数合起来.例1:数一数下图中有多少个长方形?分析:AB边上有线段1+2+3=6条,把AB边上的每一条线段作为长,AD边上的每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以,图中共有6×3=18个长方形.即:长边线段数×宽边线段数=长方形的个数试一试1:数一数,下图中有( )个长方形.例2:数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)分析:图中边长为1个长度单位的正方形有3×3=9个,边长为2个长度单位的正方形有2×2=4个,边长为3个长度单位的正方形有1×1=1个.所以图中的正方形总数为:1+4+9=14个.经进一步分析可以发现,由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为:1×1+2×2+…+n×n.试一试2:数一数下图中有()个正方形.(每个小方格为边长是1的小正方形)例3:数一数右图中有多少个正方形?(其中每个小方格都是边长为1个长度单位的正方形)分析:边长是1个长度单位的正方形有6×4=24个;边长是2个长度单位的正方形有(6-1)×(4-1)=15个;边长是3个长度单位的正方形有(6-2)×(4-2)=8个;边长是4个长度单位的正方形有(6-3)×(4-3)=3个;共有:24+15+8+3=50个.如果一个长方形的长被分成m等份,宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为:mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)·1试一试3:数一数下图中有( )个正方形.。

小学四年级奥数第15讲 图形问题(含答案分析)

小学四年级奥数第15讲 图形问题(含答案分析)

第15讲图形问题一、知识要点解答有关“图形面积”问题时,应注意以下几点:1.细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利地解决;2.从整体上观察图形特征,掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化。

二、精讲精练【例题1】人民路小学操场长90米,宽45米。

改造后,长增加10米,宽增加5米。

现在操场面积比原来增加了多少平方米?练习11、有一块长方形的木板,长22分米,宽8分米。

如果长和宽分别减少10分米、3分米,面积比原来减少多少平方分米?2、一块长方形铁板,长18分米,宽13分米。

如果长和宽各减少2分米,面积比原来减少多少平方分米?【例题2】一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。

这个长方形原来的面积是多少平方米?练习21、一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。

这个长方形原来的面积是多少平方米?2、一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米;如果长不变,宽增加3米,那么它的面积增加48平方米。

这个长方形原来的面积是多少平方米?【例题3】下图是一个养禽专业户用一段16米的篱笆围成的一个长方形养鸡场,求它的占地面积。

练习31、下图是某个养禽专业户用一段长13米的篱笆围成的一个长方形养鸡场,求养鸡场的占地面积。

2、用56米长的木栏围成长或宽是20米的长方形,其中一边利用围墙,怎样才能使围成的面积最大?【例题4】街心花园中一个正方形的花坛四周有1米宽的水泥路,如果水泥路的总面积是12平方米,中间花坛的面积是多少平方米?练习41、有一个正方形的水池,如下图的阴影部分,在它的周围修一个宽8米的花池,花池的面积是480平方米,求水池的边长。

2、已知大正方形比小正方形的边长多4厘米,大正方形的面积比小正方形面积大96平方厘米(如下图)。

四年级奥数专题第一讲 图形问题

四年级奥数专题第一讲 图形问题

四年级奥数专题第一讲图形问题【一】将一个长10厘米,宽5厘米的长方形纸片,剪成一个最大的正方形,这个正方形的面积是多少平方厘米?练习1、一个长方形,长24分米,如果长减少了4分米,就成了正方形,则原长方形的面积是多少?2、将一个长8厘米,宽5厘米的长方形纸片,剪成一个最大的正方形,要剪去多大面积的纸片?【二】有一块长方形土地,长6米,长是宽的2倍,这块长方形土地的面积是多少?练习1、有一块面积是18平方米的长方形草地,长是宽的2倍,长与宽各是多少?2、一块面积为25平方厘米的正方形手帕,它的边长是多少?【三】竹苑小学操场长60米,宽30米,改造后,长增加10米,宽增加10米。

现在操场面积比原来增加了多少平方米?练习1、有一块长方形的铁片,长16分米,宽9分米,如果长和宽分别减少6分米、5分米,面积比原来减少多少平方分米?2、一个长方形,长15分米,宽6分米,如果长和宽各减少3分米,面积比原来减少多少平方分米?【四】一个长方形,如果长增加3米,那么它的面积增加12平方米;如果宽减少2米,那么它的面积减少14平方米。

这个长方形原来的面积是多少平方米?练习1、一个长方形,如果宽不变,长减少2米,那么它的面积减少24平方米;如果长不变,宽增加3米,那么它的面积增加18平方米,这个长方形原来的面积是多少平方米?2、一个长方形,如果宽不变,长增加8米,那么它的面积增加32平方米,如果长不变,宽增加6米,那么它的面积增加36平方米,这个长方形原来的面积是多少平方米?【五】下图是一个果农在院子周围用一段长20米的篱笆围成的一个长方形围墙,求占地面积有多大?1、用1米长的铁丝围成一个长方形,要使它的宽为15厘米,则它的面积是多少平方厘米?2、一个正方形与一个长方形的周长相等,长方形的长与宽的和是14分米,则正方形的面积是多少?【六】中心小学一个正方形的花坛四周有1米宽的水泥路,如果水泥路的总面积是20平方米,这个花坛的面积是多少平方米?练习1、有一块长方形土地,长是宽的2倍,中间有一座雕塑,雕塑的地面是一个正方形,周围是草坪,那么草坪的面积是多少平方米?2、四个完全相同的长方形和一个小正方形拼成了一个大正方形(如图)。

四年级奥数-数数图形

四年级奥数-数数图形

数数图形1一、知识要点我们已经认识了线段、角、三角形、长方形等基本图形,当这些图形重重叠叠地交错在一起时就构成了复杂的几何图形。

要想准确地计数这类图形中所包含的某一种基本图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果。

要准确、迅速地计数图形必须注意以下几点:1.弄清被数图形的特征和变化规律。

2.要按一定的顺序数,做到不重复,不遗漏。

二、精讲精练【例题1】数出下面图中有多少条线段。

【思路导航】要正确解答这类问题,需要我们按照一定的顺序来数,做到不重复,不遗漏。

从图中可以看出,从A点出发的不同线段有3条:AB、AC、AD;从B点出发的不同线段有2条:BC、BD;从C点出发的不同线段有1条:CD。

因此,图中共有3+2+1=6条线段。

练习1::数出下列图中有多少条线段。

(2)(3)【例题2】数一数下图中有多少个锐角。

【思路导航】数角的方法和数线段的方法类似,图中的五条射线相当于线段上的五个点,因此,要求图中有多少个锐角,可根据公式1+2+3……(总射线数-1)求得:1+2+3+4=10(个).练习2::下列各图中各有多少个锐角?【例题3】数一数下图中共有多少个三角形。

【思路导航】图中AD边上的每一条线段与顶点O构成一个三角形,也就是说,AD边上有几条线段,就构成了几个三角形,因为AD上有4个点,共有1+2+3=6条线段,所以图中有6个三角形。

练习3::数一数下面图中各有多少个三角形。

【例题4】数一数下图中共有多少个三角形。

【思路导航】与前一个例子相比,图中多了一条线段EF,因此三角形的个数应是AD和EF上面的线段与点O所围成的三角形个数的和。

显然,以AD上的线段为底边的三角形也是1+2+3=6个,所以图中共有6×2=12个三角形。

练习4::数一数下面各图中各有多少个三角形。

【例题5】数一数下图中有多少个长方形。

【思路导航】数长方形与数线段的方法类似。

四年级奥数课后分层作业-第15讲 图形问题 通用版

四年级奥数课后分层作业-第15讲  图形问题 通用版

四年级奥数重点常考第十五讲图形问题分层作业基础卷1、一块长54米、宽30米的长方形草坪,把这块草坪的长减少18米,宽应增加多少米,这块草坪的面积不变?这个长方形草坪的面积是54×30÷36=45,宽应该增加45-30=15(米),答:宽应该增加15米,才能使草坪的面积不变.2、一块长方形试验田,如果宽不变,长增加5米,它的面积就增加100平方米;如果长不变,宽增加5米,它的面积就增加150平方米。

这块长方形试验田原来有多大?宽:100÷5=20米长:150÷5=30米面积:20×30=600平方米3、一个长方形,如果长减少10分米,或它的宽减少8分米,它的面积都会减少160平方分米。

求这个长方形原来的面积。

首先,先算出它原来的宽:160÷10=16(分米)再算出它的长:160÷8=20(分米)所以,原来的面积就是16×20=320(平方分米)答:原来的面积是320平方分米.4、赵大妈用一段15米的篱笆围城一个长方形院子,已知她家的房子长7米,院子的占地面积多少平方米?她家的房子长7米,则院子长7m.宽(15-7)÷2=4m院子占地面积=4×7=28平方米5、用700米长的铁栏围成一边是150米的长方形操场,其中一边利用围墙,这个操场的面积可能是多少平方米?(一)长靠墙:长150米,宽:(700米-150米×2)=400米面积:150米×200米=60000平方米答:操场面积为60000平方米(二)宽靠墙:面积是=(700-150)÷2×150=41250平方米6、用64米长的竹篱笆利用一面墙围成一个养殖场。

如果每条边的长度都是整米数,怎样围才能使养殖场的面积尽可能大?设围成的长方形的宽为x米,则长为2x米,。

四年级奥数思维第 15 周 图形问题

四年级奥数思维第 15 周 图形问题

第15周图形问题一、教学内容及要求:1、细心观察,把握图形的特点,合理的进行切拼,从而使问题得以顺利的解答。

2、从整体上观察图形的特征,掌握图形的本质,结合必要的分析,推理和计算,使得隐藏的数量关系明朗化。

二、教学过程:例1:人民南路小学操场长90米,宽45米,改造后,长增加10米,宽增加5米。

现在操场的面积比原来增加了多少平方米?分析:疯狂操练1:1、有一块长方形木板,长22分米,宽8分米,如果长与宽分别减少10分米、3分米,面积比原来减少了多少平方分米?2、一块长方形木板,长18分米,宽13分米,如果长和宽都减少2分米,面积比原来减少了多少平方分米?3、一块长方形地,长是80米,宽是45米,如果把宽增加5米,要是面积不变,长应该减少多少米?例2:一个长方形,如果宽不变,长增加6米,那么面积增加54平方米,如果长不变,宽减少3米,那么它的面积减少36平方米,这个长方形的面积原来是多少平方米?分析:疯狂操练2:1、一个长方形,如果长不变,宽增加4米,那么面积就增加60平方米;如果宽不变,长减少3米,那么面积减少24平方米,这个长方形的面积原来是多少平方米?2、一个长方形,如果宽不变,长增加5米,那么面积就增加30平方米;如果长不变,宽增加3米,那么面积增加48平方米,这个长方形的面积原来是多少平方米?3、一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积都减少36平方米,求这个长方形原来的面积。

4米墙墙例3:右图是一个养禽专业户用一段长16米的篱笆围成的一个长方形养鸡场,求占地面积有多大?分析:疯狂操练3:1、 右图是一个养禽专业户用一段长13米的篱笆围成的一个长方形养鸡场,求占地面积有多大?2、 用15长的栅栏沿着一面围墙围一个种植花草的长方形苗圃。

如果每边的长度都是整数,怎样才能使围成的面积最大?例4:街心花园中有一个正方形的花坛四周有1米宽的水泥路,如果水泥路的总面积是12平方米,中间花坛的面积是多少平方米?疯狂操练4:1、 有一个正方形水池,如下图的阴影部分,在它的四周修一个宽8米的花池,花池的面积是480平方米,求水池的边长。

奥数之图形问题及答案

奥数之图形问题及答案

奥数之图形问题及答案 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998图形问题(一)1.如图,在三角形ABC中,D是AB的中点,E是DB的中点,F是BC的中点,如果三角形ABC的面积是96cm2,那么三角形AEF的面积是多少平方厘米CFA D E B解:三角形ABF与三角形ABC有公用的顶点A,并且它们的底BC和BF在同一条直线上,所以它们的高相等,而三角形ABF的底BF只有三角形ABC的底BC的一半,所以三角形ABF的面积等于三角形ABC的一半,是96÷2=48(cm2)。

同理,三角形AFD的面积是48÷2=24(cm2),三角形DEF的面积是24÷2=12(cm2),因此,三角形AEF的面积是24+12=36(cm2)。

答:三角形AEF的面积是36 cm2。

2.如图所示,大正方形的边长为12 cm,小正方形的边长为10 cm,求阴影部分的面积。

解:阴影三角形的面积无法直接求出,可以用两个正方形面积的和,减去阴影部分周围三个三角形的面积。

所以,阴影部分的面积是122+102-12×(12+10)÷2-102÷2-12×(12-10)÷2=144+100-132-50-12=50(cm2)。

答:阴影部分的面积是50 cm2。

3.把三角形ABC的边AB三等分,AC四等分,如图。

已知三角形ADE的面积是1 cm2,求三角形ABC的面积是多少平方厘米AE DB C解:三角形AEC的面积是三角形AED的4倍,三角形ABC的面积是三角形AEC的3倍,所以三角形ABC的面积是三角形AED的4×3=12倍,是12(cm2)。

4.一个任意四边形ABCD,将各边延长一倍,得到四边形EFGH如图。

已知四边形ABCD的面积是5 cm2,那么四边形EFGH的面积是多少平方厘米HEA DB C GF解:连接BD、BE,三角形ABD、ABE、BEF的面积相等,所以三角形AEF的面积是三角形ABD的2倍,同理,三角形CHG的面积是三角形BCD的2倍,所以三角形AEF与CGH面积的和是四边形ABCD的2倍;同理,三角形EDH与BFG面积的和也是四边形ABCD的2倍。

四年级奥数举一反三第十五周图形问题

四年级奥数举一反三第十五周图形问题

四年级奥数举一反三第十五周图形问题专题简析;解答有关“图形面积”问题时’应注意以下几点;1’细心观察’把握图形特点’合理地进行切拼’从而使问题得以顺利地解决;2’从整体上观察图形特征’掌握图形本质’结合必要的分析推理和计算’使隐蔽的数量关系明朗化。

例1;人民路小学操场长90米’宽45米。

改造后’长增加10米’宽增加5米。

现在操场面积比原来增加了多少平方米?分析与解答;用操场现在的面积减去操场原来的面积’就得到增加的面积。

操场现在的面积是[90+10]×[45+5]=5000平方米’操场原来的面积是90×45=4050平方米。

所以’现在的面积比原来增加5000-4050=950平方米。

练习一1’有一块长方形的木板’长22分米’宽8分米。

如果长和宽分别减少10分米、3分米’面积比原来减少多少平方分米?2’一块长方形铁板’长18分米’宽13分米。

如果长和宽各减少2分米’面积比原来减少多少平方分米?3’一块长方形地’长是80米’宽是45米。

如果把宽增加5米’要使面积不变’长应减少多少米?例2;一个长方形’如果宽不变’长增加6米’那么它的面积增加54平方米;如果长不变’宽减少3米’那么它的面积减少36平方米。

这个长方形原来的面积是多少平方米?分析与解答;由“宽不变’长增加6米’面积增加54平方米”可知’它的宽为54÷6=9米;由“长不变’宽减少3米’面积减少36平方米”可知’它的长为36÷3=12米。

所以’这个长方形原来的面积是12×9=108平方米。

练习二1’一个长方形’如果宽不变’长减少3米’那么它的面积减少24平方米;如果长不变’宽增加4米’那么它的面积增加60平方米。

这个长方形原来的面积是多少平方米?2’一个长方形’如果宽不变’长增加5米’那么它的面积增加30平方米;如果长不变’宽增加3米’那么它的面积增加48平方米。

这个长方形原来的面积是多少平方米?3’一个长方形’如果它的长减少3米’或它的宽减少2米’那么它的面积都减少36平方米。

四年级奥数-图形问题整理版

四年级奥数-图形问题整理版

练 习 二 1、一个长方形,如果宽不变,长减少3米,那么它 的面积减少24平方米;如果长不变,宽增加4米,那 么它的面积增加60平方米。这个长方形原来的面积 是多少平方米?
2、一个长方形,如果它的长减少3米,或它的宽减 少2米,那么它的面积都减少36平方米。求这个长方 形原来的面积。
例3、下图是一个养禽专业户用一段16米的篱笆围 成的一个长方形养鸡场,求它的占地面积。
分析与解答:用操场现在的面积减去操场原来的面积, 就得到增加的面积。操场现在的面积是:
(90+10)×(45+5)=5000平方米,
操场原来的面积是: 90×45=4050平方米。 所以,现在的面积比原来增加; 5000-4050=950平方米。
练 习 一 1、有一块长方形的木板,长22分米,宽8分米。如 果长和宽分别减少10分米、3分米,面积比原来减少 多少平方分米?
2、一块长方形地,长是80米,宽是45米。如果把 宽增加5米,要使面积不变,长应减少多少米?
例2 、一个长方形,如果宽不变,长增加6米, 那么它的面积增加54平方米;如果长不变,宽 减少3米,那么它的面积减少36平方米。这个长 方形原来的面积是多少平方米?
分析 :由“宽不变,长增加6米,面积增加54平方米” 可知,它的宽为 54÷6=9米; 由“长不变,宽减少3米,面积减少36平方米”可知, 它的长为 36÷3=12米。 所以,这个长方形原来的面积是12×9=108平方米。
例5 、一块正方形的钢板,先截去宽5分米的长方形, 又截去宽8分米的长方形(如图),面积比原来的正方 形减少181平方分米。原正方形的边长是多少?
分析:把阴影部分剪下来,并把剪下的两个小长方形拼起来 (如图),再被上长、宽分别是8分米、5分米的小长方形, 这个拼合成的长方形的面积是: 181+8×5=221平方分米, 长是原来正方形的边长,宽是: 8+5=13分米。 所以,原来正方形的边长是: 221÷13=17分米。

四年级奥数思维第 17 18 周 图形问题

四年级奥数思维第 17 18 周 图形问题
A
(1)
(2)
(3)
例 3:数一数图中共有多少个三角形。
分析:
0
疯狂操练 3: 数一数下面图中各有多少个三角形。
(1)
(2)
例 4:数一数下图中共有多少个三角形。 分析:
疯狂操练 4: 数一数下面各图中各有多少个三角形。
AB
CD
(3)
O
A'
D'
AB C
D
例 5:数一数下图中有多少个三角形。
分析:
A
2、弄清被数图形的特征和变化规律。 3、要按一定的顺序数,做到不重不漏。 二、教学过程: 例 1:数出下图有多少条线段。 分析:
A
B
C
D
疯狂操练 1: 数出下列图形中有多少条线段。
(1)
A
B
C
(2)
(3)
例 2:数一数下图有多少个锐角。 分析:
DE
O
疯狂操练 2: 下列各图分别有多少个锐角三角形
E D C B
数数图形拓展练习
1、数出下列图中有多少条线段。
(1)
(2)
2、数出下图中有多少个锐角。
3、数一数下图中各有多少个三角形。
(1)
(2)
A1 A2
A3 A11
A12
(3)
4、数一数下图中各有多少个长方形。
(1)
(2)
(3)
5、数一数下面的图形中有多少个正方形。
(1)
(2)
6、下图中有多少个长方形,其中有多少个是正方形。
分析:
疯狂操练:9
(1)、从上海到武汉的航运线上,有 9 个停靠码头,航运公司要为这段航运线准备多少
种不同的船票?
(2)、从上海到青岛的某次直快列车,中途要停靠 6 个大站,这次列车有几种不同票价?

四年级奥数第三讲:图形面积问题

四年级奥数第三讲:图形面积问题

第三讲:图形面积问题
姓名:
例1、一块长方形铁板,长18分米,宽15分米。

若长和宽分别减少3分米,面积比原来减少多少平方分米?
练习1、人民路小学操场长90米,宽45米,改造后,场合宽分别增加10米。

现在操场面积比原来增加了多少平方米?
练习2、一块长方形地,长80米,宽45米,如果把宽增加5米,要使面积不变,长应该减少多少米?
例2、一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米;如果长不变,宽增加3米,那么它的面积增加48平方米。

问这个长方形原来的面积时多少平方米?
练习1、一个长方形花圃,如果它的长减少5米,或它的宽减少6米,那么它的面积都减少60平方米。

求这个长方形花圃原来的面积时多少平方米?
例3、右图是一个养鸡专业户用一段长17米的篱笆围成的一个长方形养鸡场,那么这个养鸡场的占地面积是多少平方米?
练习1、用56米长的木栏围成长或宽是20米的长方形,其中一边利用围墙,怎样才能使围成的面积最大?
例4、街心花园中一个正方形的花坛四周有一条1米宽的水泥路,如果水泥路的总面积是12平方米,那么中间花坛的面积是多少平方米?
练习1、有一个正方形的水池,如右图阴影部分所示,在它的周围修了一个宽8米的花池,花池的面积是480平方米,求水池的边长是多少米?
例5、一块正方形的钢板,先截去宽5分米的长方形,又截去宽8分米的长方形(如下图所示),这样面积就比原来的正方形减少了181平方分米。

原来正方形的边长是多少分米?
练习1、一个正方形一条边减少6分米,另一条边减少10分米后变成一个长方形,这个长方形的面积比正方形的面积少260平方分米,求原来正方形的边长是多少分米?。

四年级奥数之数数图形一

四年级奥数之数数图形一

数数图形
1 .数一数下图中有多少个长方形?
2 .数一数,下面各图中分别有几个长方形?
3 .数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)
4 .数一数下列各图中分别有多少个正方形?(每个小方格为边长是1的小正方形)
5 .数一数下图中有多少个正方形?(其中每个小方格都是边长为1个长度单位的正方形)
6.数一数下列各图中分别有多少个正方形。

7 .下图中有多少个长方形,其中有多少个是正方形?
8 .从广州到北京的某次快车中途要停靠8个大站,铁路局
要为这次快车准备多少种不同车的车票?这些车票中有多少种不同的票价?
9 .从上海到武汉的航运线上,有9个停靠码头,航运公司要为这段航运线准备多少种不同的船票?
10 .从上海至青岛的某次直快列车,中途要停靠6个大站,这次列车有几种不同票价?
11 .从成都到南京的快车,中途要停靠9个站,有几种不
同的票价?
12 .求下列图中线段长度的总和。

(单位:厘米)
13 .一条线段上有21个点(包括两个端点),相邻两点的距离都是4厘米,所有线段长度的总和是多少?
14 .求下图中所有线段的总和。

(单位:米)
15 .求下图中所有线段的总和。

(单位:厘米)。

(完整版)四年级奥数图形问题

(完整版)四年级奥数图形问题

图形问题:练习1:1.人民路小学操场长90米,宽45米,改造后,长和宽分别增加10米。

现在操场面积比原来增加了多少平方米?2.有一块长方形的木板,长22分米,宽8分米。

如果长和宽分别减少10分米和3分泌,面积比原来减少多少平方分米?3.一块长方形地,长是80米,宽是45米,如果把宽增加5米,要使面积不变,长应减少多少米?练习2:4.一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。

这个长方形原来的面积是多少平方米?5.一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。

问这个长方形的面积是多少平方米?6.一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积都减少36平方米。

求这个长方形原来的面积。

练习3:7.右图是某个养禽专业户用一段长13米的篱笆围成一个长方形的养鸡场,求养鸡场的占地面积有多大?8.用56米长的木栏围成长或宽是20米的长方形,其中一边利用围墙,怎样才能使围成的面积最大?练习4:9.有一个正方形的水池,如右图的阴影部分,在它的周围修一个宽8米的花池,花池的面积是480平方米,求水池的边长。

11.四个完全相同的长方形和一个小正方形拼成一个大正方形(如右图)。

大正方形的面积是100平方分米,小正方形的面积是16平方分米,求每个小长方形的面积是多少平方分米?它的宽又是多少分米?巧妙求和(二)练习1:1.刘师傅做一批零件,第一天做了20个,以后每天都比前一天多做2个,第15天做了48个,正好做完。

这批零件共有多少个?2.胡倩读一本故事书,她第一天读了20页,从第二天起,每天读的页数都比前一天多5页,最后一天读了50页恰好读完。

这本书共有多少页?3.丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。

丽丽在这些天中学会了多少个单词?练习二:4.有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?5.有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁都配上自己的钥匙。

小学四年级上册的奥数图形题

小学四年级上册的奥数图形题

小学四年级上册的奥数图形题
一个正方形的边长是8厘米,它的面积是多少平方厘米?
一个长方形的长是12厘米,宽是8厘米,它的周长和面积分别是多少?
一个平行四边形的底是10厘米,高是6厘米,它的面积是多少平方厘米?
一个三角形的底是15厘米,高是8厘米,它的面积是多少平方厘米?一个梯形的上底是6厘米,下底是10厘米,高是8厘米,它的面积是多少平方厘米?
一个圆的半径是5厘米,它的周长和面积分别是多少?
一个圆环的内圆半径是4厘米,外圆半径是6厘米,它的面积是多少平方厘米?
一个长方形的周长是36厘米,长是宽的2倍,它的长和宽分别是多少厘米?
一个正方形的周长是40厘米,它的面积是多少平方厘米?
一个平行四边形的周长是52厘米,一条底边长是10厘米,它的高是多少厘米?
一个等腰三角形的周长是30厘米,一条腰长是10厘米,它的底边长是多少厘米?
一个等边三角形的边长是8厘米,它的周长和面积分别是多少?
一个直角三角形的两条直角边分别是6厘米和8厘米,它的斜边长是多少厘米?
一个长方体的长、宽、高分别是10厘米、8厘米、6厘米,它的表面积和体积分别是多少?
一个正方体的棱长是6厘米,它的表面积和体积分别是多少?
一个圆柱的底面半径是4厘米,高是10厘米,它的表面积和体积分别是多少?
一个圆锥的底面半径是3厘米,高是6厘米,它的体积是多少立方厘米?
一个长方体鱼缸的长是8分米,宽是4分米,高是6分米,它的容积是多少升?
一个正方体水池的棱长是2米,它最多能装多少立方米的水?
一块长方形菜地的长是20米,宽是15米,如果每平方米收菜5千克,这块菜地一共可以收菜多少千克?。

小学四年级奥数ppt:图形问题

小学四年级奥数ppt:图形问题

练一练
• 2、一个长方形试验田,如果宽不变,长增
加5米,它的面积就增加100平方米;如果 长不变,宽增加5米,它的面积就增加150 平方米。这块长方形试验田原来有多大?
• 3、一个长方形,如果长减少10分米,或它
的宽减少8分米,它的面积都会减少160平 方分米。求这个长方形原来的面积。
例2
• 赵大妈用一段长15米的篱笆围成一个长方形院子,
已知她家的房子长7米,院子的占地面积是多少平
方米?
分析:15米的篱笆里

有几个长,几个宽。


可以求出院子的宽是

列式为:
• 15-7=8(米) • 8 ÷2=4(米) • 7×4=28(平方米) • 答:院子的占地面积是15平方米.
练一练
• 5、用700米长的铁栏围成一边是150米的长 方形操场,其中一边利用围墙,这个操场 的面积可能是多少平方米?
• 6、用64米长的竹篱笆利用一面墙围成一个 养殖场。如果每条边的长度都是整米数, 怎样围才能使养殖场的面积尽可能大?
例1
• 一块长54米,宽30米的长方形草坪,把这块草坪 的长减少18米,宽应增加多少米这块草坪的面积 不变?
• 分析:1、有长和宽,可以求出长方形 的面积。
• 2、长方形的长减少18米后是新长方形 的长。
• 3、有新长形的面积,长求宽。
• 宽=面积÷长
列式为:
• 54×30=1620(平方米) • 54-18=36(米) • 1620 ÷36=45(米) • 45-30=15(米) • 答:宽应增加15米这块草坪的面积不变。

四年级奥数专题--图形周长与面积

四年级奥数专题--图形周长与面积

第一讲图形周长和面积知识导航亲爱的同学们,我们已经学会长方形、正方形的周长与面积的计算,利用公式很容易算出它们的面积与周长。

但在遇到一些较复杂的有关长方形和正方形的周长和面积计算时,一些同学就会感到棘手。

这一讲我们将学习用平移、转化、分解、合并等技巧解决难题,使大家在解题中能顺利地找到突破口,化难为易,化繁为简。

精典例题例1:下图是由16个同样大小的正方形组成的,如果这个图形的面积是400平方厘米,那么它的周长是多少厘米?思路点拨每个正方形的面积为:400÷16=25(平方厘米),所以每个正方形的边长是5厘米。

从上下方向来看有14条边是周长的一部分,从左右方向来看有20条边是周长的一部分,所以……模仿练习计算右面图形的周长(单位:厘米)。

例2:有9个小长方形,它们的长和宽分别相等,用这9个小长方形拼成的大长方形(如图)的面积是45平方厘米,求这个大长方形的周长。

思路点拨从图上可以知道,小长方形的长的4倍等于宽的5倍,所以长是宽的5÷4=1.25倍。

每个小长方形的面积为45÷9=5平方厘米,所以1.25×宽×宽=5,所以宽为2厘米,长为2.5厘米。

模仿练习下图的长方形被分割成5个正方形,已知原长方形的面积为120平方厘米,求原长方形的长与宽。

例3:一块正方形的苗圃(如右图实线所示),若将它的边长各增加30米,则面积增加9900平方米,问原来这块正方形苗圃的面积是多少平方米?思路点拨通过画图可以算出:小正方形的面积为:30×30=900平方米。

用增加的面积减去小正方形的面积就得到增加的两个长方形的面积之和,9900-900=9000平方米。

而增加的两个长方形的面积相等,于是其中一个长方形的面积为9000÷2=4500平方米。

模仿练习喜阳阳小学的操场长90米,宽45米。

改造后,长增加10米,宽增加5米。

现在操场面积比原来增加了多少平方分米?例4:如下图,用标号为1,2,3,4,5的五种大小不同的正方形拼成一个大长方形,大长方形的长和宽分别是18,14,则标号为5的正方形的面积是多少?(2006年“希望杯”第二试)思路点拨如果标号为5的正方形的边长是a ,那么1号比2号大a ,2号比3号大a ,所以1号比3号大2a ,又因为2号和3号的边长之和是14,1号和2号的边长之和是18,所以1号比3号大18-14=4。

小学奥数图形找规律四年级

小学奥数图形找规律四年级

找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题: ⑴图形数量的变化;⑵图形形状的变化;⑶图形大小的变化; ⑷图形颜色的变化;⑸图形位置的变化;⑹图形繁简的变化.对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.板块一 数量规律【例 1】 观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【解析】 横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变.因为圆形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个圆形。

【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形??【解析】 (方法一)横着看,每行三角形的个数依次减少,而正方形的个数依次增加,但每行图形的总个数不变.因为三角形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个三角形△.(方法二)竖着看,三角形由左而右依次减少,而正方形由左而右依次增加,三角形按照4、?、2、1的顺序变化,也可以看出 “?”处应是三角形△.【例 2】 观察下面的图形,按规律在“?”处填上适当的图形.(5)(4)(3)(2)(1)?图形找规律【解析】本题中,几何图形的变化表现在数量关系上,图中黑三角形的个数从左到右依次增多,从(2)起,每一个格比前面一个格多两个黑三角形,所以,第(4)个方框中应填七个黑三角形.【例 3】观察图形变化规律,在右边补上一幅,使它成为一个完整系列。

【解析】观察发现,乌龟的顺序是:头、身→一只脚、背上一个点→两只脚、背上两个点→两只脚、一条尾、背上三个点→三只脚、一条尾、背上四个点,根据这个规律,最后一幅图应该是:→四只脚、一条尾、背上五个点.即:【例 4】观察图形变化规律,在右边再补上一幅,使它们成为一个完整的系列.【解析】第一格有8个圆圈,第二格有4个圆圈,第三格有2个圆圈,第四格有1个圆圈,第五格有半个圆圈.由此发现,前一格中的图减少一般,正好是后一格的图.所以第六格的图应该是第五格图的一半,即:板块二旋转、轮换型规律【例 5】相传古时候一位老人留在人间很多宝盒,里面装着世界上最宝贵的财富,但是并不是拥有宝盒都可以得到这笔财富,在宝盒的上面设置了密码,只有写出密码的人才会真正拥有这笔财富,聪明的你你能找出密码吗?○□☆△○□☆△△○□☆△○□☆☆△○□☆△○□()()()()()()()()【解析】有几种方法可以找出密码:(方法一)后面一排和前面一排比,上排的第一个图形移到最后,其他每个图形都向前移动了一格,变成了下一排.(方法二)斜着看,每一斜列的图形是一样的.所以密码就是:□☆△○□☆△○【例 6】 观察下图的变化规律,画出丙图.DC BA丙乙甲DCB A【解析】ABCD【总结】旋转是数学中的重要概念,掌握好这个概念,可以提高观察能力,加快解题速度,对于许多问题的解决,也有事半而功倍的效果.【例 7】 下面各种各样的娃娃头好看吗?认真观察你能找到它们排列的规律吗?根据规律把最后一个画出来.【解析】【例 8】 观察图中所给出图形的变化规律,然后在空白处填画上所缺的图形.【解析】【例 9】 琪琪特别喜欢蝴蝶,她用直尺和圆规在纸上画了9幅蝴蝶图,并用剪刀将它们一一剪下来.她将这9只纸蝴蝶摆在桌上,见下图1,她发现这些纸蝴蝶排列挺有规律,突然一阵风来,吹走了3只纸蝴蝶,见下图2.你能找出蝴蝶的排列规律,将图2的3只蝴蝶放入图1的空缺处吗?图1987654321图2B CA【解析】 从已摆好的第一行和第一列来看,无论横看或竖看,同一行中3只蝴蝶的翅膀形状各不相同,翅膀上的斑点的形状也各不相同.根据这个规律,剩下的3只蝴蝶图案的排列应该是:6号位置放图案C ;8号位置放图案B ;9号位置放图案A.【例 10】 观察下列各组图的变化规律,并在“?”处画出相关的图形.(1)丁丙乙甲?【解析】 (1)这四个图形的变化规律是:每一个图形都是由其前一个图形顺时针旋转90°而得到的.见下面左图;(2)甲乙丙丁四个图形变化规律也类似,注意因为图形是由旋转而得到的,所以其中三角形、菱形的方向随旋转而变化,作图的时候要注意到这一点.丁图处的图形应是下面右图:丁【例 11】请你认真仔细观察,按照下面图形的变化规律,在“"”处画出合适的图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、一块长方形地,长是80米,宽是45米。如果把 宽增加5米,要使面积不变,长应减少多少米?
例2 、一个长方形,如果宽不变,长增加6米, 那么它的面积增加54平方米;如果长不变,宽 减少3米,那么它的面积减少36平方米。这个长 方形原来的面积是多少平方米?
分析 :由“宽不变,长增加6米,面积增加54平方米” 可知,它的宽为 54÷6=9米; 由“长不变,宽减少3米,面积减少36平方米”可知, 它的长为 36÷3=12米。 所以,这个长方形原来 五 1、一个正方形一条边减少6分米,另一条边减少10 分米后变为一个长方形,这个长方形的面积比正方 形的面积少260平方米,求原来正方形的边长。
2、一个长方形的木板,如果长减少5分米,宽减少2 分米,那么它的面积就减少66平方分米,这时剩下 的部分恰好是一个正方形。求原来长方形的面积。
练 习 三
3,用15米长的栅栏沿着围墙围一个种植花草 的长方形苗圃,其中一面利用着墙。如果每边 的长度都是整数,怎样才能使围成的面积最大?
例4 、街心花园中一个正方形的花坛四周有1米宽的 水泥路,如果水泥路的总面积是12平方米,中间花 坛的面积是多少平方米?
分析 :把水泥路分成四个同样大小的长方形(如上图)。因 此,一个长方形的面积是: 12÷4=3平方米。 因为水泥路宽1米,所以小长方形的长是:3÷1=3米。 从图中可以看出正方形花坛的边长是小长方形长与宽的差,所 以小正方形的边长是: 3-1=2米。 中间花坛的面积是 2×2=4平方米。
专题简析: 1、细心观察,把握图形特点,合理地进行切拼,
解答有关“图形面积”问题时,应注意以下几点: 从而使问题得以顺利地解决;
2、从整体上观察图形特征,掌握图形本质,结
合必要的分析推理和计算,使隐蔽的数量关系明
朗化。
例1 、人民路小学操场长90米,宽45米。改造 后,长增加10米,宽增加5米。现在操场面积比 原来增加了多少平方米?
分析 :根据题意,因为一面利用着墙,所以两条长 加一条宽等于16米。而宽是4米,那么长是: (16-4)÷2=6米, 占地面积是: 6×4=24平方米。
练 习 三 1、右图是某个养禽专业户用一段长13米的篱笆围成 的一个长方形养鸡场,求养鸡场的占地面积。
2、用56米长的木栏围成长或宽是20米的长方形,其 中一边利用围墙,怎样才能使围成的面积最大?
分析与解答:用操场现在的面积减去操场原来的面积, 就得到增加的面积。操场现在的面积是:
(90+10)×(45+5)=5000平方米,
操场原来的面积是: 90×45=4050平方米。 所以,现在的面积比原来增加; 5000-4050=950平方米。
练 习 一 1、有一块长方形的木板,长22分米,宽8分米。如 果长和宽分别减少10分米、3分米,面积比原来减少 多少平方分米?
例5 、一块正方形的钢板,先截去宽5分米的长方形, 又截去宽8分米的长方形(如图),面积比原来的正方 形减少181平方分米。原正方形的边长是多少?
分析:把阴影部分剪下来,并把剪下的两个小长方形拼起来 (如图),再被上长、宽分别是8分米、5分米的小长方形, 这个拼合成的长方形的面积是: 181+8×5=221平方分米, 长是原来正方形的边长,宽是: 8+5=13分米。 所以,原来正方形的边长是: 221÷13=17分米。
练 习 四 1、有一个正方形的水池,如下图的阴影部分,在它 的周围修一个宽8米的花池,花池的面积是480平方 米,求水池的边长。
2、四个完全相同的长方形和一个小正方形拼成了一 个大正方形(如上图),大正方形的面积是64平方 米,小正方形的面积是4平方米,长方形的短边是多 少米?
练 习 四 3、已知大正方形比小正方形的边长多4厘米,大正 方形的面积比小正方形面积大96平方厘米(如下 图)。问大小正方形的面积各是多少?
练 习 二 1、一个长方形,如果宽不变,长减少3米,那么它 的面积减少24平方米;如果长不变,宽增加4米,那 么它的面积增加60平方米。这个长方形原来的面积 是多少平方米?
2、一个长方形,如果它的长减少3米,或它的宽减 少2米,那么它的面积都减少36平方米。求这个长方 形原来的面积。
例3、下图是一个养禽专业户用一段16米的篱笆围 成的一个长方形养鸡场,求它的占地面积。
相关文档
最新文档