第4章_高分子流体的流动分析

合集下载

第4章 高分子流体的流动分析

第4章 高分子流体的流动分析

n
1 n

1
4.1.1.4 流体在圆管中的体积流量方程
对于牛顿流体,n=1
Q
p
8KL
R
4
泊肃叶方程
p
32 L D2
L 2 p 根据流体力学,有: D 2 64 Re 阻力系数
Re D 雷诺数 (一种用来表征流体流动情况的无量纲数) 1 1 n 1 Q p 3 n 1 非牛顿流体平均流速: = n R
4.1.1.3 流体在圆管中剪切速率与半径的 关系 1
dU r p r r dr 2 KL
1 n 1 n
(或者)介于管壁与管中间任一点: 1
n = K rp r 2L
1 p n r= r 2 KL 1 n
R2
2 KL n 1
4.1.1.4 流体在圆管中的体积流量方程
某一半径流速与平均流速的关系 1 1 n 3 Q n p 2 n 平均流速 R2 = R / R
R
1 3n 2 KL
1 n 1 1 n p n R 1 3n 2 KL
1 n
R
1 1 n
r
1 1 n

1 讨论: 1 1 n n p n r 0, U R r (1) 流速最大; 1 n 2 LK (2)r R,Ur 0 流速为0; (3)对于牛顿流体,n=1,则流速方程符合 二次抛物线分布
拖曳流动(库埃特流动) ——对流体流动没有施加压力梯度,在黏性 的影响下边界的拖动使流体一起运动。 特点: 1)也是一种剪切流动; 2)流道中的压力降及流速分布受流体运动部 分的影响; 如:高分子在挤出机螺槽中的流动

高分子物理---第四章 分子量与分子量分布

高分子物理---第四章 分子量与分子量分布
i i i
T c0
n Kc n M
1 Kc Mn
(2) 气相渗透法(VPO)

通过间接测定溶 液的蒸气压降低 值而得到溶质分 子量的方法
溶液
T 溶剂
T Ax2 n2 x2 n1 n2
n2 n2 n1 n2 , x2 n m/ M n1 n2 n1

假设聚合物试样的总质量为m, 总物质的量为 n, 不同分子量分子的种类用 i 表示
第 i 种分子的分子量为Mi , 物质的量为ni , 质量为mi , 在整 个试样中所占的摩尔分数为xi , 质量分数为wi , 则有:
n
i
n,
m
i
m
ni xi , n
mi wi m
x
i
1,
P
P T
1 1 T , P P T
V G G 1 而 n n P n V1 T 1 T P T P 1 T 1
M Mn
2 n


2
2 M n M w 1 n Mn
多分散系数: Polydispersity coefficient Mw Mz d or d Mn Mw
单分散 Monodispersity
4.2 聚合物分子量的测定





化学方法 Chemical method 端基分析法 热力学方法 Thermodynamics method 沸点升高,冰点降低,蒸气压下降,渗透压法 光学方法 Optical method 光散射法 动力学方法 Dynamic method 粘度法,超速离心沉淀 及扩散法 其它方法 Other method 电子显微镜,凝胶渗透色谱法

高分子物理 第4章 聚合物的分子量和分子量分布

高分子物理 第4章  聚合物的分子量和分子量分布
◆ ◆ ◆ ◆
无须对角度和浓度外推; 可以用很稀的溶液测定,不须对浓度外推; 光散射的测定成为快速且精度很高的方法。 分子量测定范围 1×102~1×106
化学化工学院
★ 第 四 章
第二节 聚合物分子量的测定方法
六、粘度法
目前测定聚合物分子量最常用的方法。 设备简单,操作便利,精度较好 纯溶剂的液面流经两条刻度线所需 时间为流出时间 t0 ; 以溶液的流出时间为 t ;
化学化工学院
★ 第 四 章
第二节 聚合物分子量的测定方法
五、光散射法
当光束进入介质时,除了入射光方向外,其他方向 上也能看见光的现象称为光散射 。 散射光强与以下因素有关:
1)入射光波长; 2)溶液的折光指数; 3)溶液浓度; 4)溶质的分子量及溶质与溶剂之间的相互作用; 5)散射角; 6) 观察点与散射中心的距离.
奥氏 乌氏
乌氏粘度计液体流出时间与贮液球中液体体积无关, 因此可以在粘度计中将溶液逐渐稀释,测定不同浓度的粘 度而不必要更换溶液,所以又称为“稀释粘度计”。
★ 第 四 章
第二节 聚合物分子量的测定方法
六、粘度法
1、粘度表示法 相对粘度: 增比粘度: 比浓粘度:
r 0 t t0
sp r 1 t t0 t0
分布宽度指数:
Polydispersity index
试样中各个分子量与平均分子量之间差值的平方平均值.
M Mn
2 n


2
Mw M2 1 n n Mn
化学化工学院
第四章
Mn
w(M)
M
Mw
MZ
M
图4-4 分子量分布曲线和各种统计平均分子量

流体材料研究中的流动性分析

流体材料研究中的流动性分析

流体材料研究中的流动性分析引言流体材料研究是材料科学的重要分支之一,它涉及到各种液体和气体的性质研究及应用开发。

在流体材料研究中,流动性的分析是非常重要的,因为流动性直接影响着材料的加工、运输和应用性能。

本文将重点介绍流体材料研究中流动性分析的方法和技术,包括流体的黏度测量、流变学分析和计算流体力学模拟等。

一、流体的黏度测量黏度是流体材料流动性的量度,它描述了流体内部分子或分子团的内聚力和流动阻力。

黏度的测量对于流体材料的研究至关重要,它不仅可以用于判断流体的流动性,并且可以通过调整黏度来改变流体的流变性能。

在流体的黏度测量中,常用的方法包括:•粘度计法:通过测量流体在外力作用下流动的速度和阻力来计算流体的黏度。

常见的粘度计有柱体式粘度计、圆锥式粘度计和管流式粘度计等。

这些粘度计通过不同的原理来测量流体的黏度,具有测量范围广、精度高等特点。

•旋转粘度计法:通过测量流体在旋转圆柱或盘片上的剪切力和剪切速率的关系来计算流体的黏度。

旋转粘度计常用的有圆盘式粘度计、圆柱式粘度计和正交旋转粘度计等。

这些粘度计通过旋转试样和测量扭矩来得到流体的剪切应力和剪切速率,从而计算流体的黏度。

•时间-温度超越法:通过测量流体在不同温度下的粘度来得到流体的粘度随时间和温度的变化规律。

这种方法适用于高分子流体材料的研究,可以探究流体分子在不同温度下的转变和运动规律。

二、流变学分析流变学是研究流体变形和流动规律的学科,它是流体材料研究中重要的工具之一。

流变学分析可以揭示流体的流变性能、流变模型和流变参数等信息,为流体材料的设计和应用提供重要的参考。

在流变学分析中,常用的技术包括:•剪切流变学分析:通过施加剪切应力并测量剪切应变,来研究流体的流变性能。

剪切流变学分析可以通过剪切应力-剪切应变曲线来获取流体的应力-应变关系,进而得到流体的黏塑性、流变模型和流变参数等信息。

•拉伸流变学分析:通过施加拉伸应力并测量拉伸应变,来研究流体在拉伸条件下的流变性能。

第四章 聚合物流变学基础

第四章 聚合物流变学基础
速率 ,积分后可得到毛细管中牛顿流体的速度分布 v(r) 和体积流量 qv 。
三、非牛顿流体的剪切速率
由非牛顿流体的幂律方程,可得到毛细管中非牛 顿流体的剪切速率γ ,积分后可得到毛细管中非牛顿流 体的速度分布 v(r) 和体积流量 qv 。
第四节 聚合物熔体的拉伸粘度
一、拉伸流动
聚合物熔体在流动中受外力拉伸时产生的收敛流动 称为拉伸流动。在拉伸流动中,流体的速度梯度方向平 行于流动方向。
5. 二次流动
当聚合物流体在一椭圆形截面的管 子中流动时,除了轴向流动外,有可 能出现对称于椭圆两轴线的环流。它 是由第二法向应力差所引起,与大分 子链被拉伸的程度相关。
6. 应力过冲与应力松弛
对聚合物流体突然加上一个剪切 速率,其剪切应力先趋向一个最大 值,然后再减小至它的稳定值。 在稳定情况下突然停止流动,聚 合物流体的应力不会立即等于零, 而是有一个应力松弛过程。
第一节 聚合物熔体的流动
一、流动类型
1. 层流和湍流
聚合物成型时,高粘度熔体呈现层流状态,Re 1。 熔体经小浇口注射进入模腔,出现弹性湍流。
2. 稳定流动与不稳定流动
稳定流动:流体的流动状况以及影响流体流动的因素 均不随时间而变化。 不稳定流动:流体的流动状况以及影响流体流动的因 素均随时间而变化。
第二节 聚合物熔体剪切粘度 的影响因素
一、剪切速率的影响
聚合物熔体的粘度随剪切速率的增加而下降。对剪 切速率敏感性大的塑料,可采用提高剪切速率的方法来 降低熔体粘度。
二、温度的影响
聚合物熔体的粘度随温度的升高而下降。对粘流活
化能大的塑料,可采用提高温度的方法来提高成型加工 的流动性。
三、压力的影响
3. 入口效应

高分子材料流变学

高分子材料流变学

课程编号:0301106高分子材料流变学Polymer Rheology总学时:32总学分:2课程性质:专业基础课开设学期及周学时分配:第六学期,4或3学时/周适用专业及层次:高分子材料专业,本科相关课程:物理化学、高分子物理、橡胶工艺学、聚合反应工程学、塑料成型工艺学教材:《高分子材料流变学》,吴其晔编著,高等教育出版社,2002年推荐参考书:《聚合物加工流变学》,C. D. Han著,徐僖、吴大诚译,科学出版社,1985年一、课程目的及要求《高分子材料流变学》是高分子材料与工程专业本科生的必修课,课程设置的目的是:1. 使学生对高分子材料加工过程的基本原理,主要包括高分子材料在成型加工过程中的基本流变学原理有比较全面的认识。

结合高分子物理学、材料加工工艺学、加工机械及模具设计,理解高分子材料的流变性质与材料的结构、性能、制品配方、加工工艺条件、加工机械及模具的设计和应用之间的关系。

2. 掌握高分子材料的基本流变学性质;了解研究高分子材料流变性质的基本数学、力学方法;掌握测量、研究高分子材料流变性质、传热性能的基本实验方法和手段。

为进一步学习《聚合反应工程学》、《材料成型加工工艺学》、《材料成型加工机械》、《模具设计》等课程打下基础。

3. 讨论典型高分子材料成型加工过程的流变学原理,讨论多相聚合物体系(复合材料)的流变性质,为分析和改进生产工艺、指导配方设计、开发和应用高分子材料提供一定的理论基础。

本大纲遵循基本理论与生产实践相结合,既有一定广度,又有一定深度、新度,材料宏观性质与微观结构分析相结合,唯象性讨论与建立数学模型相结合的特点,按照少而精的原则,设置了七章二十节内容,教学时数为32学时。

二、课程内容及学时分配(一)课程内容第一章绪论§1-1 流变学概念§1-2 高分子流变学研究的内容和意义§1-3 高分子液体的奇异流变现象高粘度与剪切变稀;Weissenberg效应;挤出胀大现象;不稳定流动和熔体破裂现象§1-4 高聚物粘流态特征和流动机理粘流态特征;流动单元;流动机理,简介“高分子构象改变理论”及“力化学流动图象”参考书:《高分子材料流变学》第一章,第1,2,3,4节第二章基本物理量和高分子液体的基本流变性质§2-1 粘度与法向应力差函数形变(剪切形变、拉伸形变);形变率和速度梯度(剪切速率、拉伸速率);应力(切向应力、法向应力、法向应力差);剪切粘度(零剪切粘度、表观粘度、无穷剪切粘度);法向应力差函数(第一、二法向应力差函数);拉伸粘度参考书:《高分子材料流变学》第二章,第3节§2-2 非牛顿型流体的分类Bingham塑性体(屈服应力);假塑性流体(牛顿流动区、剪切变稀区、幂律定律、第二牛顿流动区);胀塑性流体(剪切变稠性);触变体和震凝体参考书:《高分子材料流变学》第二章,第4节;第一章,第3.9节第三章关于高分子液体粘弹性的讨论§3-1 关于剪切粘度的深入讨论温度的影响Arrhenius方程;粘流活化能;W-L-F方程剪切应力和剪切速度的影响流变曲线的特点;流变曲线的时温叠加性超分子结构参数的影响平均分子量的影响(Fox-Flory公式;分子链缠结对流变性的影响);分子量分布的影响;长链支化的影响配合剂的影响填充补强剂的影响(炭黑、碳酸钙);软化剂、增塑剂的影响参考书:《高分子材料流变学》第二章,第5节;第四章,第4节§3-2 关于“剪切变稀”及“液体弹性”的说明高分子构象改变说参考书:《高分子材料流变学》第二章,第6节§3-3 高分子液体的弹性效应挤出胀大效应熔体破裂现象高分子液体弹性效应的定量描述法向应力差函数;可恢复剪切形变;挤出胀大比与出口压力降参考书:《高分子材料流变学》第二章,第7节;第六章,第2.4节;第九章,第1节第四章流变学基础方程及应用§4-1 连续性方程简介质量守恒定律、连续性方程的物理意义§4-2 运动方程简介动量守恒定律、运动方程的物理意义;Navier-Stokes方程§4-3 能量方程简介能量守恒定律、能量方程的物理意义§4-4 应用举例§4-5 高聚物流变本构方程简介参考书:《高分子材料流变学》第五章,第1234节;第三章,第1节第五章剪切粘度的测量方法§5-1 流变测量的目的、意义测粘仪器的种类§5-2 落球式粘度计的测量原理§5-3 毛细管流变仪原理及数据处理完全发展区的流动分析,剪应力和剪切速率的计算,Rabinowitch修正,粘度的测量;入口区的流动分析,入口压力校正(Bagley校正)§5-4 转子式流变仪简介§5-5 Brabender-Haake转矩流变仪简介§5-6 动态粘度的测量储能模量、损耗模量、复数模量、动态粘度、复数粘度、损耗因子参考书:《高分子材料流变学》第六章,第1,2,3,4,5节第六章高聚物典型加工过程的流变分析§6-1 混炼工艺、压延工艺的流变分析§6-2 挤出成型过程的流变分析§6-3 注射成型过程的流变分析参考书:《高分子材料流变学》第七章,第1,2节;第八章,第1节第七章高分子基多相体系的加工流变行为§7-1 多相共聚-共混体系的流变行为高分子-高分子共混原则;高分子共混体系的形态;多相共混体系粘性行为的特点;多相共混体系弹性行为的特点§7-2 高聚物填充体系的流变行为填充体系的屈服现象;填充体系的粘性行为;填充体系的弹性行为三、教学重点与难点第一、二、三章:1. 前三章为本课程学习的重点和基础。

《聚合物流变学》课程教学大纲(本科)

《聚合物流变学》课程教学大纲(本科)

聚合物流变学(Rheology for Polymer)课程编号:07410156学分:2学时:32 (讲课学时:32)先修课程:高等数学,大学物理,高分子物理适用专业:高分子材料与工程教材:高分子流变学基础,史铁钧、吴德峰著.北京:化学工业出版社,2011年4 月第一版一、课程的性质与任务:(-)课程性质(需说明课程对人才培养方面的贡献)本课程是面向高分子材料与工程高年级本科生的专业基础选修课,本课程的内容与高分子成型加工、高分子工程、高分子物理等方向密切相关,是高分子材料专业学生进一步开展这些方向的深入学习和研究的基础。

本课程旨在介绍聚合物熔体流变学原理及其在加工过程中的专业应用,通过研究热和力对聚合物流体流动和变形的影响。

使学生了解聚合物熔体的粘性流动、弹性效应及其流变测定法、守恒方程和本构方程、流体在简单几何形状流道中的流动,以及挤出、注塑、压延和吹塑等成型过程中的流动。

另外,对挤出机、双辐机和密炼机的混合特性进行研究,使学生进一步掌握各种高分子材料成型工艺。

本课程的主要目的是使学生掌握相关流变学的思想,理解相关理论,并能够利用流变学相关理论知识解决工程中遇到的实际问题。

(二)课程目标(根据课程特点和对毕业要求的贡献,确定课程目标。

应包括知识目标和能力目标。

)课程目标1:掌握聚合物材料的独特流变学特征,并理解相关机理;课程目标2:掌握聚合物结构与其流变学特征之间的关系;课程目标3:掌握流变学性能的相关测试及其原理;课程目标4:掌握影响聚合物流变学特征的各种因素,能够通过调控相关因素来控制流变行为。

二、课程内容与教学要求(按章撰写)第一章绪论(一)课程内容(列出主要知识点、能力点)(1)流变学的历史和现状(2)流变学的研究对象和方法(3)高分子材料典型的流变行为(4)流变学在高分子材料加工中的应用(二)教学要求(将相关内容按照掌握、理解、了解等不同教学要求进行分类)通过学习使学生掌握聚合物流变学的基本概念、内容和意义,了解聚合物流变学的发展历史,懂得聚合物流变学的发展趋势和方向,了解聚合物流变学中的一些奇特现象以及理解产生这种特殊的行为的物理原因是什么。

第4章 聚合物流体的流变性

第4章 聚合物流体的流变性
和应变速
它们都是三维空间的二阶对称张量。 总的应变张量和应变速率张量也可以分为各向同性张量和偏张量。 各向同性张量引起体积改变, 偏张量引起形状改变。
三.材料函数和本构方程
材料函数是指在外界作用下,应力分量和应变(或应变速率)分量
之间的具体关系。
材料函数可由试验测量,并表达为实验数据或代表这些实验数据的函 数。
Eη↑
聚合物本性的影响:链刚性↑极性↑ M的影响:M>103, E η=k

T的影响:T 的影响:
E η↓ E η↑
溶剂的影响
聚合物浓度的影响:C↑
的影响:↑
E η↓
E η反映聚合物流体流动的难易程度,更重要的是反映了材料黏度 随温度变化的敏感性。 例:PLLA熔体的Eη为123kJ/mol, PET熔体的Eη为80kJ/mol. 所以PLLA熔体在纺丝过程中对温度极其敏感,应严格控制纺丝温 度.
a ↓
聚乙烯熔体的流动曲线
2.大分子链段取向效应
↑, 链段取向↑
流层间牵曳力↓
a ↓
a ↓
3.大分子链的脱溶剂化(浓溶液情况)
聚合物浓溶液: σ ↑, 脱溶剂化↑ 大分子链有效尺寸↓
(四) 切力增稠的原因

增加到某数值时,流体中有新的结构的形成。
大多数胀流型流体为多分散体系,固体含量较多,且浸润性不好。 静止时,流体中的固体粒子堆砌得很紧密,粒子间空隙小并充满了液 体。 当
lg 3.4 lg M w
17 .44 (T Tg ) 51 .6 T Tg
C
2.温度对流动曲线的影响
T↑
流动曲线下移 cr ↑ 0 ↓ a ↓
(四)溶剂性质对黏度的影响

《高分子流变学》复习资料

《高分子流变学》复习资料

第二章 流变学的基本概念
1、单位张量和对称张量:
单位张量
对称张量(������������������������������������ = ������������������������������������ )
2、无穷小位移梯度张量
������������11 σ = �������������21 ������������31
������������������������������������ ⎤ ������������������������ ⎥ ������������������������������������ ⎥ ������������������������ ⎥ ⎥ ������������������������������������ ⎥ ������������������������ ⎦
0 0 1 0� 0 1
������������12 ������������22 ∙
������������13 ������������23 �。 ∙
3、应变张量 ������������������������������������ ������������ = ������������������������������������ = ������������������������������������� ������������������������������������
������������12 ������������22 ������������32
1 ������������ = �0 0
������������13 ������������11 ������������23 � = � ∙ ������������33 ∙

高分子溶液中的流体流动特性

高分子溶液中的流体流动特性

高分子溶液中的流体流动特性引言高分子溶液是指在溶剂中溶解的高分子物质,其具有特殊的流动特性。

高分子溶液的流动特性研究对于理解高分子溶液的性质以及应用于工业生产和科学研究中具有重要意义。

本文将介绍高分子溶液中的流体流动特性,并探讨其在不同条件下的变化规律。

高分子溶液的流动行为高分子溶液中的流动行为受到多种因素的影响,包括高分子的分子量、浓度、溶剂的性质以及温度等。

在高分子溶液中,高分子链的扩展和流动引起了流变性质的变化。

高分子链的扩展高分子溶液中的高分子链存在不同的构象,包括缠绕、拉直和伸展等。

当高分子链在流动中受到剪切力时,链的构象会发生改变,并导致高分子溶液的流动特性的变化。

流变曲线高分子溶液的流变曲线描述了溶液在外力作用下的应变和应力之间的关系。

常见的流变曲线包括剪切应力-剪切速率曲线和应力-应变曲线。

通过分析流变曲线可以获得高分子溶液的黏度、弹性模量和黏弹性等流动特性。

布洛赫方程和弗拉奇方程布洛赫方程和弗拉奇方程是描述高分子溶液流动行为的数学模型。

布洛赫方程适用于低剪切应力下的流动,其中考虑了高分子链的扩展和沙龙机制。

弗拉奇方程适用于高剪切应力下的流动,其中考虑了高分子链的断裂和再组合。

高分子溶液流动特性的影响因素高分子溶液的流动特性受到多种因素的影响,以下是几个常见的影响因素:高分子的分子量高分子的分子量是影响高分子溶液流动特性的重要因素之一。

一般来说,高分子的分子量越大,溶液的粘度越高,流动性变差。

这是因为高分子链的扩展和流动需要消耗更多的能量。

高分子的浓度高分子溶液中高分子的浓度也会影响流动特性。

当高分子浓度较低时,高分子链之间的相互作用较弱,溶液较为稀薄,流动性较好。

当高分子浓度较高时,高分子链之间的相互作用增强,溶液变得较为粘稠,流动性变差。

溶剂的性质溶剂的性质对高分子溶液的流动特性也有影响。

不同的溶剂对高分子链的溶解能力不同,这会影响高分子链的构象和流动行为。

例如,极性溶剂和非极性溶剂对高分子的影响不同。

高分子流变学基本概念课件

高分子流变学基本概念课件
工业生产
高分子流变学在塑料、橡胶、涂料等工业生产中具有重要的应用价 值,可以提高产品质量和降低能耗。
生物医学
高分子流变学在生物医学领域的应用逐渐增多,如药物载体、组织 工程等,有助于推动医学研究和治疗技术的发展。
新能源领域
高分子流变学在太阳能、风能等新能源领域具有潜在的应用价值,有 助于提高能源利用效率和降低环境污染。
高分子流变学基本 概念课件
目 录
• 高分子流变学简介 • 高分子流体的基本性质 • 高分子流变学的基本理论 • 高分子流变学在工业中的应用 • 总结与展望
01
高分子流变学简介
高分子流变学的定义
01
高分子流变学是一门研究高分子 材料流动和变形的学科,主要关 注高分子材料在应力、温度、时 间等作用下的形变和流动行为。
绿色环保
发展环境友好型的高分子流变学材料和制备技术,降低对环境的 负面影响。
高分子流变学的挑战与机遇
挑战
高分子流变学研究面临实验难度 大、理论模型不完善等挑战,需 要加强基础研究和实验验证。
机遇
随着科技的不断进步和应用需求 的增加,高分子流变学将迎来更 多的发展机遇和空间。
高分子流变学的应用前景
02
它涉及到高分子物理、化学、力 学等多个领域,是高分子科学的 一个重要分支。
高分子流变学的研究内容
01
高分子流体的基本流变性质
研究高分子流体的剪切粘度、拉伸粘度、弹性等基本流变性质,以及这
些性质与高分子链结构、分子量、温度等因素的关系。
02 03
高分子加工成型过程中的流变行为
研究高分子材料在加工成型过程中的流变行为,如塑料挤出、注射成型、 压延等过程中的流动和变形,以及这些过程对高分子材料结构和性能的 影响。

高分子物理-第4章-聚合物的分子量和分子量分布

高分子物理-第4章-聚合物的分子量和分子量分布

[( M M w ) ] w
2 w 2

多分散系数

Mw Mn
Mz Mw
Polydispersity coefficient
试样是均一的,则 试样是不均一的,则 则 数值越大
=0,Mw=Mn; >0 ;并且不均一程度越大, =
如果相对摩尔质量均一,则
相对摩尔质量均一的试样, = 相对摩尔质量不均一的试样, >
T K ( ) C 0 C M
气相渗透压法测得的为数均分子量
优缺点 • 优点: 样品用量少,对溶剂纯度要求不高 测定速度快 可连续测定 测定温度选择余地大 • 缺点: 热效应小,仪器常数K低,分子量上限3~5万 (但也有文献指出已可测到10 ~20万,测温精度随 着新技术的出现提高)
4. 渗透压法——依数性 半透膜只允许溶剂分子透过而不允许溶质分子透过 纯溶剂蒸汽压>溶液 蒸汽压,纯溶剂向右 渗透,直至两侧蒸汽 压相等,渗透平衡。 此时半透膜两边的压 力差π叫做渗透压。
0

1/ a
为Mark-Houwink方程中的参数,当=1时, = 当=-1时, =
通常的数值在0.5~1.0之间,因此 介于 和 之间,更接近于 < <

,即
分子量分布的重要性在于它更加清晰而细致地表明聚合 物分子量的多分散性,便于人们讨论材料性能与微观结构的 关系。
单分散体系Monodispersity(阴离子聚合) MW /M n =1 M W / M >1或偏离1越远的体系,为多分散体系。
3. 气相渗透法(VPO) 原理:通过间接测定溶液的蒸汽压降低来测定溶质分子 量的方法 X T K 22
稀溶液
C T K M

高分子材料成型加工习题参考答案

高分子材料成型加工习题参考答案

高分子材料成型加工习题参考答案(1~5章)绪论1、高分子材料可应用于哪些方面? 有哪些特点, 答:高分子材料可应用于如下各个方面:结构材料:机械零部件、机电壳体、轴承……电器材料:电缆、绝缘版、电器零件、家用电器、通讯器材…… 建筑材料:贴面板、地贴、塑料门窗、上下水管…… 包装材料:各种瓶罐、桶、塑料袋、薄膜、绳、带、泡沫塑料…… 日用制品:家具、餐具、玩具、文具、办公用品、体育用品及器材……交通运输:道路交通设施、车辆、船舶部件……医疗器械:医疗器具、药品包装、医药附件、人造器官…… 航天航空:飞机、火箭、飞船、卫星零部件……军用器械:武器装备、军事淹体、防护器材…… 交通运输:道路交通设施、车辆、船舶部件……医疗器械:医疗器具、药品包装、医药附件、人造器官…… 航天航空:飞机、火箭、飞船、卫星零部件……军用器械:武器装备、军事淹体、防护器材…… 化纤类:布、线、服装、……高分子材料具有如下特点:优点: a.原料价格低廉; b.加工成本低; c.重量轻; d.耐腐蚀;e.造型容易;f.保温性能优良;g.电绝缘性好。

缺点: a.精度差; b.耐热性差; c.易燃烧; d.强度差; e.耐溶剂性差; f.易老化2、塑料制品生产的完整工序有哪五步组成,答:成型加工完整工序共五个1.成型前准备:原料准备:筛选,干燥,配制,混合 ?2.成型:赋预聚合物一定型样 ?3.机械加工:车,削,刨,铣等。

?4.修饰:美化制品。

?5.装配: 粘合,焊接,机械连接等。

?说明:a 并不是所有制品的加工都要完整地完成此5个工序b 五个次序不能颠倒3、学习本课程的重点是什么,答:本课程的重点是:高分子材料方面:应掌握高分子材料定义,高分子材料工程特征,高分子材料及其制品的制备方法,高分子材料的组成,添加剂的作用、机理、品种及其选择,高分子材料配方设计原则,配方分析,影响高分子材料性能的化学因素和物理因素。

成型加工方面:应掌握高分子材料制品各种成型方法,成型加工过程,成型工艺特点,成型工艺的适应性,成型工艺流程,成型设备结构及作用原理,成型工艺条件及其控制,成型工艺在橡胶、塑料、纤维加工中的共性和特殊性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0
4.1.1.2 流体在圆管中的速度分布
剪切速率与半径的关系
& d 0
dt dx 1
dy dt dx 1
dt dy dUr
dr
dUr &dr
R
R
dUr &dr
r
r
R
-UR +Ur
&dr
r
UR 0
1
& K n
r
rp 2L
1
Ur
R r
rp 2LK
n
dr
Ur
p 2KL
n
3n
1
R
1 n
1
n 1
4.1.1.4 流体在圆管中的体积流量方程
某一半径流速与平均流速的关系
1
平均流速
QR
R2
= n
1 3n
p 2KL
n
3 1
R n
/ R2
1
1
n 3n
p 2KL
n
1 1
Rn
由于
Ur
n 1 n
1
p n 2KL
R1
1 n
r
1
1 n

Ur
1 3n 1 n
1
r R
1
1 n
4.1.1.4 流体在圆管中的体积流量方程
当n=1时,Ur
2
1
r
2
R
表现为一抛物线方程;
当 n 时,Ur 3 1 r R 表现为一直线方程。
右图是长圆管中某一
半径流速与平均流速
的关系图
Ur
1 3n 1 n
1
r R
1
1 n
4.1.1.4 流体在圆管中的体积流量方程
因为影响高分子成型工艺条件的设定,所以 需要分析研究。
压力流动(泊肃叶流动) ——高分子流体在类似圆形管的流道中因受 压力作用而产生的流动。 特点: 1)流动的流道边界是刚性和静止不动的; 2)高分子流体受压力推动,受剪切作用; 3)表现稳态流动特征。 如:高分子流体在挤出机口模中的流动
拖曳流动(库埃特流动) ——对流体流动没有施加压力梯度,在黏性 的影响下边界的拖动使流体一起运动。
4.1.1.1 流体在圆管中的剪切应力分布
因为是稳定层流,所以满足
推动力=剪切阻力
即: r2p 2 r L r r :沿圆管半径r的剪切应力
r
rp 2L
(1)应力与半径呈线性关系,与流体种类无关;
(2)r=0,流动阻力最小;
r 0,Uz Max
r=R,流动阻力最大。
r
rp 2L
,U z
特点: 1)也是一种剪切流动; 2)流道中的压力降及流速分布受流体运动部 分的影响;
如:高分子在挤出机螺槽中的流动
收敛流动 ——高分子流体在截面面积逐渐变小的流道 中的流动。 特点: 流动不仅受剪切作用,还受到拉伸作用。
一维流动 高分子流体在圆管、较宽的平行板状狭缝口 模或间隙很小的圆环形口模中的流动。 二维流动 在矩形口模或椭圆形口模中的流动。 三维流动 流速不仅沿断面纵槽两向变化,还沿流动方 向变化,如收敛流动。
p 2LK
1
n
R1
1 n
rቤተ መጻሕፍቲ ባይዱ
1
1 n
4.1.1 4流体在圆管中的体积流量方程
Qr Q0
r 0
2
r
1
n
n
p 2KL
1
n
R1
1 n
r 1
1 n
dr
Qr
1
2
1
n
n
p 2KL
n
R1
1 n
r2 2
r 0
3
1
1
r
3
1 n
r
0
n
若r=R,则有
QR
n
1 3n
4.1 高分子流体在圆管中的流动
典型应用:毛细管流变仪、熔体指数测定仪、 乌氏粘度计、圆形挤出口模…… 实际流动情况非常复杂: (1)存在自由体积,流动过程中可压缩(百 分之几); (2)高剪切速率下,管壁发生流体滑移; (3)温度场不均匀,影响密度、黏度、流动 速度和体积流率等; ……
4.1.1 幂律流体在长圆管中的压力流动
p 2LK
R1
r ndr
r
Ur
n 1 n
p 2LK
1
n
R1
1 n
r1
1 n
Ur
n 1 n
p 2LK
1
n
R1
1 n
r
1
1 n
讨论: (1)r
0,U r
n 1 n
p 2LK
1
n
R1
1 n
流速最大;
(2)r R,Ur 0
流速为0;
(3)对于牛顿流体,n=1,则流速方程符合
第四章
高分子流体的流动分析
主要内容
4.1 高分子流体在圆管中的流动 4.2 平行板间的压力流动 4.3 平行板间的拖曳流动 4.4 环形圆管中的压力流动 4.5 环形圆管中的拖曳流动
为什么要研究高分子流体的流动?
——注射、挤出、吹塑、模压和压延要求不 同流变性能的高分子熔体
加工成型设备不同、加工工艺的改变,使高 分子流体表现出复杂的流变行为
p 2KL
1
n
R
3
1 n
4.1.1.4 流体在圆管中的体积流量方程
对于牛顿流体,n=1
Q p R4
8KL
泊肃叶方程
根据流体力学,有:p L 2
D2
阻力系数
64 Re
p 32L
D2
雷诺数
Re D
(一种用来表征流体流动情况的无量纲数)
1
非牛顿流体平均流速:
=
Q
R
2
对幂律流体,其最大流速
理论分析时需作一定的假设: (1)流体不可压缩; (2)流动是充分发展的稳定流动; (3)不考虑末端效应; (4)边界无滑移; (5)忽略重力作用; (6)在圆管中流动是对称的; (7)等温,忽略黏性耗散; (8)与流动垂直方向上无压力分布。
4.1.1 幂律流体在长圆管中的压力流动
对于圆管状流体 R:圆管半径 L:待分析流场长度 Δp:压强差 Uz:沿z方向的流速 流体符合幂律流体模型
&0 =0
1
rn
&r &R
=
r R
1
n
1
(2)管壁处,&R =
p 2KL
n
R
1 n
4.1.1.4 流体在圆管中的体积流量方程
在圆管中取一环形微元,则在半径为r 处,其 环形面积为 2rdr 则通过此微元的体积流量为:
dQ 2 rdr Ur
Qr dQ Q0
r
0 2 rUrdr
Ur
n 1 n
对不同设备的流道、口模或模具形状进行归 纳发现:
流动的截面形状都比较简单:如圆形、环形、 狭缝、矩形、梯形或椭圆形等等
高分子流体在经过成型加工设备中的各种流 道的会发生哪些变化?
压力降和速度变化
一方面:高分子流体层间的粘滞阻力及与管 道的摩擦阻力所致;
另一方面:流道截面形状和尺寸改变也会引 起流体中压力、流速分布和体积流量的变化。
二次抛物线分布
Ur
p 4LK
R2 r2
4.1.1.3 流体在圆管中剪切速率与半径的
关系
Ur
n 1 n
p 2LK
1
n
R1
1 n
r
1
1 n
1
&r
dUr dr
p n 2KL
1
rn
(或者)介于管壁与管中间任一点:
1
&=
K
n
&r =
r
rp 2L
(1)管中间,
1
p n 2KL
相关文档
最新文档