原生质体融合技术文献综述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XXXX学校XXXXXX学院毕业设计(论文)文献综述
学生姓名:学号:
专业:生物工程
班级:
设计(论文)题目:
指导教师:
二级学院:
2010年月日
题目
学生:学号:班级:
导师:
摘要:原生质体融合技术是细菌遗传育种的有效方法之一,发展迅速,应用广泛.文中综述了亲本菌株选择性遗传标记方法、影响原生质体制备与再生因素、原生质体融合方法和条件。介绍了原生质体融合技术在微生物遗传育种中的应用,并展望了原生质体融合技术的发展前景。
关键词:
引言:原生质体融合也称细胞杂交、细胞融合或体细胞杂交,是指细胞通过介导和培养,在离体条件下用人工方法将不同种的细胞通过无性方式融合成一个核或多核的杂合细胞的过程[1]。原生质体融合技术起源于20世纪60年代。1960年法国的Karski研究小组在两种不同类型的动物细胞混合培养中发现了自发融合现象。1974年匈牙利的Ferenczy L等[2]采用离心力诱导的方法,报道了白地霉营养缺陷型突变株的原生质体融合,从而使原生质体融合技术成为微生物育种的一项新技术,并从微生物种内融合扩展到界间的融合。路玲玲等[3]采用融合技术成功构建耐高温高产酒精酵母,至此,原生质体融合技术成为工业菌株改良的重要手段之一。原生质体融合技术已在农业、医药、环保等领域取得了开创性的研究成果,而且应用领域不断扩大[4]。
1 原生质体融合技术
微生物原生质体融合技术的整个过程包括:原生质体的制备、原生质体融合、原生质体再生[5]。
1.1 原生质体制备与再生过程中的影响因素
制备原生质体的最大障碍就是细胞壁,现在去除细胞壁的主要方法是使用酶法,使用的酶主要为蜗牛酶或溶菌酶,具体根据所用微生物的种类而定。影响原生质体制备的因素很多,不同的微生物有其较为适当的形成条件。在菌龄选择上,多采用对数生长中后期的细菌,这主要是由于对数生长期细菌的细胞壁中肽
聚糖含量最低,细胞壁对酶的作用最敏感。王燕[6]对双亲灭活米曲霉进行原生质体制备的过程中,用纤维素酶、溶壁酶、蜗牛酶混合浓度为5∶3∶1的酶液混合使用能提高去壁效果。使用微生物产生的酶复合物或商品酶的混合液比单独使用一种酶的效果好,在一定范围内,酶作用的时间和酶作用的浓度都与原生质体的形成率成正相关,而与再生率成反相关。另外,EDTA作为螯合剂,可以避免金属离子对酶的抑制作用而提高酶脱壁效果,从而提高原生质体的形成率。据报道,对大肠埃希菌来说,用EDTA洗涤后,可以除去对酶解不利的金属离子[7]。另一方面,在原生质体制备前,用适量的青霉素对菌体进行预处理,可以抑制肽聚糖合成过程中的转肽作用,有利于原生质体的形成。根据酶反应动力学原理,酶解温度直接影响酶促反应的速度,如放线菌的最适酶解温度为28℃~37℃,真菌的最适酶解温度为30℃~35℃[8]。在高渗Tris溶液中添加15 mL/L聚乙烯吡咯烷酮(PVP)等原生质体扩张剂,有利于溶液中细菌的分散,有助于制备原生质体,添加0.02 mol/L镁离子,有利于原生质体的稳定。关于原生质体的再生,吴孔兴等[9]报道在原生质体高渗再生培养基中加入0.3 mol/L的蔗糖和0.2 mol/L的丁二酸钠是合适的,王玉华等[10]报道在高渗再生培养基中加入0.5 mol/L的蔗糖是适宜的,这可能要根据不同的微生物种类而定。
1.2 原生质体融合过程中的影响因素
1974年,匈牙利的Ferenczy报道了离心力诱导法对白地霉营养缺陷型突变株的原生质体融合。随后人们相继用NaCl、KCl和Ca(NO3)2等作为诱变剂进行融合,但融合频率都很低。聚乙二醇在适量Ca2+存在下能有效地诱导植物原生质体融合,Ca2+主要是通过维持膜结构的完整性来实现原生质体的稳定性与活性。原生质体膜外在蛋白上二价阳离子的存在使膜脂流动性减慢、稳定性增强,这种维持稳定性的效果大小与膜表面分子数量的多少呈正比例关系,PEG种类对原生质体融合的影响不大。此外,其融合率还受其他诸因素的影响。影响原生质体融合的因素很多,特别是环境中的阳离子存在,融合时的pH也对原生质体融合有较明显的影响。一般来讲Ca2+、Mg2+有助于融合。如有0.01 mol/LCa2+存在时,可得到较高的融合率,但在缺乏钙离子时,若pH较低,融合频率也较高。这是因
为钙离子和带负电荷的PEG与细胞膜表面分子相互作用,使原生质体带电,彼此易于附着发生凝集所致[11]。
2 原生质体融合的方法
2.1 PEG结合高Ca2+诱导法
聚乙二醇(PEG)是一种多聚化合物,不同种类微生物对PEG分子质量的要求不尽相同。放线菌适用分子质量常为1 ku~1.5 ku,也有人使用0.4 ku~6 ku,真菌一般采用4 ku~6 ku,细菌用1.5 ku~6 ku。亲本原生质体制备好后,即可进行融合。关于促融机制,一般认为PEG本身是一种特殊的脱水剂,它以分子桥形式在相邻原生质体膜间起中介作用,进而改变质膜的流动性能,降低原生质膜表面势能,使膜中的相嵌蛋白质颗粒凝聚,形成一层易于融合的无蛋白质颗粒的磷脂双分子层区。在Ca2+存在下,引起细胞膜表面的电子分布的改变,从而使接触处的质膜形成局部融合,出现凹陷,构成原生质桥,成为细胞间通道并逐渐扩大,直到两个原生质体全部融合。
2.2 电融合
原生质体电融合起始于20世纪80年代的细胞改良新技术。陈合等[12]报道了电融合的方法,将白芝和赤芝两种大型真菌原生质体成功进行了融合,这一技术将电学与生物化学恰当结合,产生了缓和而高频率的原生质体融合效果。其原理是在短时间强电场的作用下,细胞膜发生可逆性电击穿,瞬时失去其高电阻和低通透性,然后在数分钟内恢复原状,当可逆电击穿发生在两个相邻细胞的接触区时,即可诱导它们的膜相互融合,从而导致细胞融合。近年来,该技术在微生物中的应用日渐增多。
2.3 激光诱导融合
1987年始,激光诱导融合技术迅速发展起来,并很快被应用在动物细胞及植物原生质体的融合中。激光融合是让细胞或原生质体先紧密贴在一起,再用高峰值功率密度激光对接触处进行照射,使质膜被击穿或产生微米级的微孔。由于质膜上产生微孔是可逆过程,质膜在恢复过程中细胞连接小孔的表面曲率很高,处于高张力状态,细胞逐渐由哑铃形变为圆球状时,说明细胞已融合了。该技术最