煤的发热量测定方法

合集下载

《煤的发热量测定方法》

《煤的发热量测定方法》

1.2、恒温式热量计 (1)外筒温度在试验过程中始终保持恒定,内外
筒间存在温差,即存在热交换,需要进行冷却校 正。 (2)操作和计算复杂,但仪器结构简单,容易维 护。 (3)保持外筒恒温方法有两种,一是采用大容量 的外筒并加绝热层,使其少受室温变化影响,称 为静态式。国家标准规定,盛满水的外筒容量应 不小于热容量的5倍(通常12.5L的水量可以满足 外筒恒温的要求);二是使用自动控制装置,称 为自动恒温式。自动控温装置的灵敏度应能达到 使点火前和终点后内筒温度保持稳定(5min内温 度变化平均不超过0.0005 K/min);在一次试验的 升温过程中,内外筒间热交换量应不超过20J。
2、手动、半自动和全自动热量计 根据热量计控制方式不同,热量计可分为
三类:经典(手动)热量计、半自动热量 计和全自动热量计。经典(手动)热量计 采用精密水银温度计测温,实验过程中所 有操作包括数据记录和结果计算均由人工 完成。半自动热量计采用数字量热温度计 测温,热量计自动记录和计算。全自动热 量计采用数字温度计,除样品称量和氧弹 安装由人工完成外,其它所有操作均自动 完成。
第二节、发热量的三种状态及其相 互关系
一 、燃烧条件与发热量的关系 燃料在氧弹内燃烧的发热量与燃料在空气中或 在工业锅炉内燃烧的发热量是不同的。 在下氧:弹内,燃料可燃元素的燃烧产物及其状态如 C液在—)空;C气ON2中—(,H气N燃)O料3;(稀完H—溶全H液燃2)O烧。(后液,)燃;料S可—燃H2元SO素4(稀的溶燃 烧产物及其状态如下: CN在——工CN业O2(2锅气(炉)气。内),;燃H—料H可2O燃(元液素)的;燃S烧—产SO物2(及气其)状; 态如下: CN——CNO22((气气)。);H—H2O(气);S—SO2(气);
第一节、发热量测定基本原理

煤的发热量测定

煤的发热量测定

煤的发热量测定方法GB/T213-2008代替GB/T213-2003 (2008-07-29发布、2009-05-01实施)适用于泥煤、褐煤、烟煤、无烟煤、焦炭、碳质页岩等固体矿物燃料及水煤浆1.发热量的测定原理是什么?答:将单位质量的试样放在充有过量氧气的氧弹内燃烧,放出的热量被一定量的水吸收,根据水温的升高来计算试样的发热量。

要准确测得发热量需要解决两个问题:①、要预知仪器热容量;即量热系统温度升高1℃所吸收的热量,一般用基准物苯甲酸标定仪器来解决;即试样燃烧后释放出的热量不仅被水吸收,还会被氧弹本身、水筒、搅拌器和温度计吸收。

②、量热系统与外界的热交换问题,可通过控制水套温度或校正量热系统与外界的热交换来解决。

③、测定过程中引入额外热量校正问题。

主要有搅拌热、点火热、添加热。

发热量的测定由两个独立的试验组成:①热容量标定,②试样的燃烧试验;试验过程分初期、主期(燃烧反应期)和末期。

对于绝热式热量计,初期和末期是为了确定开始点火的温度和终点的温度,对于恒温式热量计,初期和末期作用是确定热量计的热交换特性,以便在燃烧反应主期内对热量计内筒和外筒的热交换进行正确的校正。

2.什么是弹筒发热量?什么是高位发热量?什么是低位发热量?答:①弹筒发热量:单位质量的试样在充有过量氧气的氧弹内燃烧,其燃烧后的物质组成氧气、氮气、二氧化碳、硝酸和硫酸、液态水以及固态灰时放出的热量成为弹筒发热量。

②恒容高位发热量:单位质量的试样在充有过量氧气的氧弹内燃烧,其燃烧后的物质组成为氧气、氮气、二氧化碳、二氧化硫、液态水以及固态灰时放出的热量。

恒容高位发热量是由弹筒发热量减去硝酸形成热和硫酸校正热后得到的发热量。

③恒容低位发热量:单位质量的试样在恒容条件下,在有过量氧气中燃烧,其燃烧后的物质组成为氧气、氮气、二氧化碳、二氧化硫、气态水以及固态灰时放出的热量。

恒容低位发热量是由恒容高位发热量减去水(煤中原有的水和煤中氢燃烧生成的水)的气化热后得到的发热量。

煤的发热量测定方法

煤的发热量测定方法

煤的发热量测定方法
1煤的发热量测定方法
煤是一种重要的可再生能源,主要用于冶炼钢铁和发电,因此煤的发热量是它的重要性质。

一般来说,发热量越大,煤的热值就越高。

由于它具有高热量和低灰分以及便宜和容易获取等特点,使煤被广泛应用于金属冶炼,蒸汽动力和建筑等行业。

煤的发热量测定主要是根据标准《煤炭分析仪器通则》归定的,主要有大气循环法、灼烧法、发泡法和重量法等。

第一种,大气循环法,也称大容积法,是根据热力学法则完成热量测定的方法,它可以测出煤的发热量和灰分的含量。

它的特点是测定快速准确,广泛应用于煤、矿、炭、大自然煤及煤粉中的发热量测定。

第二种,灼烧法,也称容积燃烧法,是一种特殊的燃烧测试方法,通过煤碳灼烧计算煤的发热量。

由于有量热容较大,所测出的发热量参差不齐,数值普遍比实际的低20%至30%。

第三种,发泡法,也称祁灯法,是一种发热量测定法,是根据热量对有机物发生变化来测定发热量的方法,是近年来开发的较新的煤热值测试机。

它的特点是测定结果准确,使用费用低,实验周期短,主要被应用在介观物料中的发热量测试中。

第四种,重量法,它是根据煤热值,通过重量法得到煤热值的一种测定方法,它可以测得煤热值极大、极小及多样化煤样本。

它利用特定煤质量、特定密度发热量精度高,可用于大量样品同时处理,操作简单,但需要比较多的仪器。

以上就是煤的发热量测定的方法,各种测定方法具有不同的特点,其中有较高的准确率。

但是,无论使用哪种测定方法,都要遵循一定的操作规程,小心检查数据,控制误差,以保证测定结果的准确性。

5.4 煤质分析--煤的发热量的测定方法

5.4 煤质分析--煤的发热量的测定方法
K0 ′
——系数。 系数。 系数
2.烟煤空气干燥基低位发热量的计算式 .
3.褐煤空气干燥基低位发热量的计算式 .
• Qnet,ad = 100 K2′-(K2′+6)( )(Mad + Aad )′ ( ′ )( 3Vad - 40Mad 系数。 • 式中 K2′——系数。 系数 • 我国主要褐煤矿区的K2′:
5.4.5 自动量热仪法
• 1. 仪器及测定原理
• 自动量热仪基本原理:将对温度变化有敏感作用的铂电阻探头 插入量热仪内,因温度变化引起铂电阻的阻值变化,使精密电 桥输出一模拟电压信号,此信号经放大器放大后,又经A/D 转 换器转换成数字信号,再将数字信号用微机进行处理。它与热 量计配套使用,整个测试过程能自动点火、自动测温、自动显 示及打印出内筒温度变化、计算冷却校正值(恒温式)和最终 结果。 • 自动量热仪的操作步骤中,称样,装氧弹,称量内筒水均与上 述要求相同。然后按照说明书要求安装热量计,输入必要的参 数,测试自动开始。测试结束并打印结果后,核对输入的参数, 确定无误后即可报计算式 . Qnet,ad = K 0′ - 86Mad - 92Aad - 24Vad 式中: 式中: Qnet,ad—— 煤 的 空 气 干 燥 基 低 位 发 热 量 , kcal/kg (1cal = 4.1816 J); ) Mad——煤的空气干燥基水分; 煤的空气干燥基水分; 煤的空气干燥基水分 Aad——煤的空气干燥基灰分; 煤的空气干燥基灰分; 煤的空气干燥基灰分 Vad——煤的空气干燥基挥发分; 煤的空气干燥基挥发分; 煤的空气干燥基挥发分
5.4.3 发热量的种类
• 弹筒发热量:是指单位质量的煤样在充有 弹筒发热量: 过量的氧弹内燃烧,其燃烧产物为氧气、 过量的氧弹内燃烧,其燃烧产物为氧气、 氮气、二氧化碳、硝酸和硫酸、 氮气、二氧化碳、硝酸和硫酸、液态水以 及固态灰时放出的热量。 及固态灰时放出的热量。 • 煤中原有的水和氢元素燃烧生成的水冷凝 在弹筒中,氮被氧化为NO 在弹筒中,氮被氧化为NO2或N2O5,硫被氧 化为SO 它们溶于水也会产生热量。 化为SO3,它们溶于水也会产生热量。因此 煤在弹筒中燃烧要比在空气中燃烧时产生 的热量多,所以又称为“最高发热量” 的热量多,所以又称为“最高发热量”。

煤的发热量-氧弹式热量计法.

煤的发热量-氧弹式热量计法.

《典型工业原料与产品分析》课程组
实验步骤
⑦接上点火电极插头,装好搅拌器和量热温 度计,并盖上外筒盖。温度计的水银球应与 氧弹主提的中部在同一水平线上。在靠近量 热温度计的露出水银柱的部位,应另悬一支 普通温度计,用以测定露出柱的温度。
《典型工业原料与产品分析》课程组
实验步骤
(2)点火燃烧及测定 ① 开动搅拌器,5min后开始计时和读取 内筒温度(t),并立即通电点火。随后记下外 筒温度和露出柱温度(t)。外筒温度读至0.05K, 内筒温度借助放大镜读至0.001K。每次读数钱, 应开动振动器振动3~5s。 ② 注意观察内筒温度,如在30s内温度急 剧上升,则表明点火成功.点火后100s时读一次 内筒温度(t),读准至精度0.01K即可。
《典型工业原料与产品分析》课程组
实验步骤
⑤准确称取一定质量的水加入到内筒里(一奖氧弹 完全侵没的水量为准),所加入的水量 与标定仪器的热容量时所用的水量一致(偏差在+1 g以内)。先调节好外筒水温使之与室温相差在1 ℃ 以内。而内筒温度的调节以终点时内筒温度高1 ℃左 右为宜。 ⑥将装好一定质量的水的内筒小心臵入外筒的绝缘 支架上,再将氧弹小心放入内筒,同时检漏。如有气 泡出现,表明氧弹气密性不良,应查出原因,及时排 除,重新充氧。
《典型工二)测定步骤 (1)试样称取及燃烧前的准备 ①称取粒度为0.2mm以下的空气干燥煤样 1~1.1g(精确至0.0002g)于燃烧皿中。对 于让燃烧时易飞溅的煤,可用已知质量的擦镜 纸包紧,或先用压饼机将煤样压成饼状,再将 其切成2~4mm的小块。对于不易燃烧完全 的煤样,可先在燃烧皿底铺上一层石棉垫,
《典型工业原料与产品分析》课程组
实验步骤
但注意不能是煤样漏入石棉垫底部,否则燃烧不完全。若加 入了石棉垫仍燃烧不完全,则可提高充氧压力促进燃烧。采 用石英燃烧皿时,不必加石棉垫。 ② 取一段已知质量的点火丝,两端接在氧弹内的来年各 个电极柱上,注意是使火四与试样保持接触或保持有一小段 距离。对易飞溅的煤样要特别注意点火丝不能接触燃烧皿, 两电极之间或燃烧皿与另一电极之间不能接触,以免发生短 路,造成点火失败至烧毁燃烧皿。

煤的发热量测定方法

煤的发热量测定方法

煤的发热量测定方法煤是一种常见的化石燃料,其燃烧过程是将化学能转化为热能的过程。

煤的发热量(也称为热值)是煤燃烧时单位质量煤所释放的热量。

了解煤的发热量对于煤的有效利用、燃烧设备的设计和能源装备的选型至关重要。

本文将介绍常见的煤的发热量测定方法。

1.露点温度法露点温度法是一种常见的测定煤的发热量的方法。

该方法需要使用一台露点温度仪器,该仪器可以准确测量燃料燃烧时水蒸气的饱和蒸气压。

方法如下:首先,将待检煤样煤粉样本装入定量容器内,按照一定的温度和湿度条件进行燃烧。

然后,使用露点温度仪器测量燃烧过程中产生的水蒸气的饱和蒸气压。

最后,根据煤的燃烧过程中产生的水蒸气压与温度之间的关系,计算得到煤的发热量。

2.热卡计法热卡计法是一种直接测定煤的发热量的方法。

该方法需要使用一台热卡计仪器,该仪器可以准确测量燃料在完全燃烧过程中所释放的热量。

方法如下:首先,将待检煤样煤粉样本装入定量容器内,然后将该容器放入热卡计仪器中进行燃烧。

燃烧过程中,煤产生的热量将通过传导、辐射和对流的方式传递给热卡计仪器。

热卡计仪器会记录下所释放的热量。

最后,根据所释放的热量和煤样的质量,计算得到煤的发热量。

3.耐量燃烧法耐量燃烧法是一种间接测定煤的发热量的方法,该方法通过测量煤燃烧产生的化学反应产物(如二氧化碳、水蒸气等)在大气压下的体积变化来间接测量煤的发热量。

方法如下:首先,将待检煤样煤粉样本装入定量容器内,然后通过一系列的燃烧反应使煤样完全燃烧,并记录下燃烧过程中所产生的化学反应产物的体积变化。

最后,根据所产生的化学反应产物的体积变化,结合煤样的质量和相关物理化学性质,计算得到煤的发热量。

以上所述的方法只是测定煤的发热量的一些常见方法,不同的方法有其适用的条件和精度。

在实际应用中,应结合具体的实验条件和目的选择适合的方法进行煤的发热量测定。

同时,为了保证测量结果的准确性,还需要注意实验中的操作细节、仪器的校准和环境的控制等因素。

《煤的发热量测定方法》课件

《煤的发热量测定方法》课件

3.热容量的标定
(1)定义
用一种已知热值的物质来测量整个量热体系温度升高1℃ 所需的热量,即测得量热仪的热容量。 已知热值的物质,现在常用的是一种由权威机构已经定值
的叫做苯甲酸的基准量热物质,二等或二等以上。
(2)操作
标定热容量时,是将一定量已知热值的二级苯甲酸臵于密 封的氧弹中,在充足的氧气条件下,令试样完全燃烧,燃烧所
(3)温度单位
开尔文是热力学温标的温度单位,是统一的法定计量单位。 符号为K。
摄氏温度不是法定计量单位,不过目前还允许使用。符号
为℃。
水的三相点 273.16K T(开尔文)=273.15+t(摄氏度)
即摄氏温度的0℃,对应热力学温标的温度为273.15K。而 热力学温标的0K,对应摄氏温度的-273.15℃。
恒压低位发热量是恒压高位发热量减去水的气化热(恒压)
(4)燃烧条件与燃烧产物种类及其相态关系
燃烧条 件 燃烧产物种类及其相态 C H S N 热力学状 态
和煤中氢燃烧生成的水)的气化热后得到的发热量。
低位发热量常用于标准煤耗的计算中。
d.恒压低位发热量:单位质量的试样在恒压条件下,在过量氧
气中燃烧,其燃烧后的物质组成为氧气、氮气、二氧化碳、气 态水和固态的灰时放出的热量。其符号为Qnet,p,ar。 后得到的发热量。 恒压高位发热量为恒容高位发热量减去体积膨胀功所得的 热量。
a.弹筒发热量:单位质量的试样在充有过量氧气的氧弹内燃烧,
其燃烧后的物质组成为氧气、氮气、二氧化碳、硝酸、硫酸、 液态水和固态的灰时放出的热量。其符号为Qb.ad。 弹筒发热量也就是实验室内用氧弹热量计直接测得的发热 量。
弹筒发热量要高于煤在实际燃烧时发出的热量。

GB213煤的发热量测定方法

GB213煤的发热量测定方法

煤的发热量测定方法煤的发热量测定方法GB213—87代替GB213—79Determination of calorific value of coal国家标准局1987-03-30 批准1988-02-01 实施本标准规定了煤的高位发热量的测定方法和低位发热量的计算方法,适用于泥炭、褐煤、烟煤、无烟煤和炭质页岩的发热量测定。

1 定义1.1 热量单位热量的单位为J〔焦(耳)〕。

1J〔焦(耳)〕=1N·m(牛顿·米)=107erg(尔格)。

我国过去惯用的热量单位为20℃卡,以下简称卡(cal)。

1cal(20℃)=4.1816J。

1.2 发热量的表示方法发热量测定结果以kJ/g(千焦/克)或MJ/kg(兆焦/千克)表示。

1.2.1 弹筒发热量在氧弹中,在有过剩的氧的情况下〔氧气初始压力2.6~3.0MPa(26~30atm)〕,燃烧单位质量的试样所产生的热量称为弹筒发热量。

燃烧产物为二氧化碳、硫酸、硝酸、呈液态的水和固态的灰。

注:任何物质(包括煤)的燃烧热,随燃烧产物的最终温度而改变,温度越高,燃烧热越低。

因此,一个严密的发热量定义,应对烧烧产物的温度有所规定。

但在实际测定发热量时,由于具体条件的限制,把终点温度限定在一个特定的温度或一个很窄的范围内都是不现实的。

温度每升高1K,煤和苯甲酸的燃烧热约降低0.4~1.3J/g。

当按规定在相近的温度下标定热容量和测定发热量时,温度对燃烧热的影响可近于完全抵销,而无需加以考虑。

1.2.2 恒容高位发热量煤在工业装置的实际燃烧中,硫只生成二氧化硫,氮则成为游离氮,这是同氧弹中的情况不同的。

由弹筒发热量减掉稀硫酸生成热和二氧化硫生成热之差以及稀硝酸的生成热,得出的就是高位发热量。

因为弹筒发热量的测定是在恒定容积(即弹筒的容积)下进行的,由此算出的高位发热量也相应地称为恒容高位发热量,它比工业上的恒压(即大气压力)状态下的发热量约低8~16J/g,一般可忽略不计。

煤炭发热量测定

煤炭发热量测定

煤炭发热量测定1. 简介煤炭是一种重要的能源资源,其发热量是衡量煤炭能源价值的重要指标之一。

煤炭发热量测定是通过实际测试来确定煤炭每单位质量产生的热量。

本文档将介绍煤炭发热量的测定方法和步骤,并提供一些注意事项。

2. 测定原理煤炭的发热量主要与其含碳量有关。

碳是煤炭主要的化学成分,燃烧时与氧气反应生成二氧化碳,同时释放能量。

通过在良好的氧气传递条件下,将煤炭在特定的温度下燃烧完全,可以测定煤炭发热量。

3. 测定方法3.1 实验器材和试剂•试验装置:包括煤气灯、燃烧器、恒温水槽、热量计等。

•煤炭样品:样品应具有代表性,并经过干燥、粉碎等预处理。

•清洁干燥空气:用于提供燃烧所需的氧气。

3.2 实验步骤1.预热热量计:将热量计安装在恒温水槽中,使用清洁干燥空气进行预热。

2.校正热量计:根据热量计的特性曲线进行校正,确保准确度。

3.准备样品:将经过预处理的煤炭样品称取一定质量,并记录质量值。

4.燃烧样品:将煤炭样品放入燃烧器中,并点燃。

5.记录实验数据:记录燃烧时间、热量计示数等相关数据。

6.数据计算:根据热量计示数和燃烧时间等数据,计算出煤炭的发热量。

3.3 计算公式煤炭发热量的计算公式如下:发热量 = (热量计示数 / 煤炭样品质量) * 1004. 注意事项•实验过程中应注意安全,避免烧伤和误操作造成事故。

•煤炭样品选取应具有代表性,以提高测定结果的准确性。

•热量计的校正应在测定前进行,以消除仪器误差。

•实验过程中要控制好燃烧温度和氧气供应,避免煤炭未完全燃烧或过度燃烧导致测定结果偏差。

5. 结论通过本文档介绍的煤炭发热量测定方法,可以准确地测定煤炭每单位质量产生的热量。

煤炭发热量是评价煤炭能源价值的重要指标,对于煤炭的应用和利用具有重要意义。

在实际应用中,可以根据煤炭的发热量来选择合适的燃料,以提高能源利用效率。

注意:本文档仅用于煤炭发热量测定的理论介绍,具体实验操作请严格按照实验室操作规程进行。

煤的发热量测定步骤

煤的发热量测定步骤

煤的发热量测定步骤直接测热法是直接将煤样进行燃烧,通过测量煤燃烧所产生的热量来确定煤的发热量。

具体步骤如下:1. 实验前准备:选取代表性的煤样,将其破碎成均匀的颗粒状样品,一般要求煤样粒径在3mm以内。

同时,准备好所需的工具和设备,包括燃烧器、天平、实验室温度计等。

2.燃烧器装置:将煤样放入燃烧器中,确定燃烧器的氧气和煤气输入量。

根据煤样的不同,可以选择不同的燃烧方式,如全燃烧、半燃烧等。

同时,需要保证燃烧器具有良好的密封性,以防止热量的散失。

3.保持燃烧平衡:在进行实验时,需要确保煤样的燃烧处于平衡状态。

可以通过调节燃烧器的输入量和调整煤样的布置来实现平衡燃烧。

同时,需要注意排除外部因素的干扰,如风力、湿度等。

4.热量测量:运用实验室测量仪器,如温度计、热量计等,对煤燃烧产生的热量进行精确测量。

可以根据所使用的仪器的原理和测量方法来选择合适的测量方式,如测量燃烧前后的温度差、通过测定燃烧过程中释放的热量等。

5.数据处理:根据实验所得的数据,进行计算和处理,得出煤的发热量值。

通常将测得的热量值除以煤样的质量,得到单位质量煤的发热量。

间接测热法是通过测量煤的一些性质来间接估算煤的发热量,常用的有全水分和灰分法、挥发分和灰分法、全碳和灰分法等。

具体步骤如下:1.实验前准备:选取代表性的煤样,将其破碎成均匀的颗粒状样品。

根据所要测定的性质,对煤样进行预处理,如去除水分、灰分等。

2.全水分和灰分法:将煤样置于特定温度下,并保持恒温一段时间,使其达到平衡状态。

然后测定煤样的湿重和干重,计算出煤的水分含量。

同时,将煤样进行加热,将其燃烧至完全燃尽,测定残渣的质量,计算出煤的灰分含量。

3.挥发分和灰分法:将煤样置于特定温度下,借助仪器对样品进行加热。

在一定温度范围内,测定煤样挥发分的质量变化,从而得知煤的挥发分含量。

同时,将煤样进行加热,将其燃烧至完全燃尽,测定残渣的质量,计算出煤的灰分含量。

4.全碳和灰分法:将煤样进行加热,进行煤的氧化炉燃烧反应,使其完全燃烧。

煤的发热量测定方法

煤的发热量测定方法

煤的发热量测定方法煤是一种重要的能源资源,其发热量是衡量煤质优劣的重要指标之一、下面将介绍煤的发热量测定方法。

直接燃烧法是将待测煤样直接燃烧,通过测定生成烟气的温度和体积来计算煤的发热量。

这种方法测定简单、操作方便,但对设备要求较高,且易受其他因素干扰,不太精确。

间接燃烧法是将待测煤样进行失水处理,然后在控制的条件下进行煤气化,测定产生的燃气中的一氧化碳浓度,并通过计算燃气热量来推算煤的发热量。

具体操作步骤如下:1.样品制备:将待测煤样研磨成颗粒较小的粉末,然后通过筛网筛选出均匀的颗粒。

粉末的大小及分布应根据具体实验要求进行调整。

2.试样取量:取一定质量的煤样,称量并记录准确质量。

3.预处理:待测煤样需要进行事先处理。

常见的处理方法有干燥、失水、灼烧等。

这些处理方法的选择取决于实验要求以及待测煤样的特性。

4.燃烧装置设置:根据实验要求,设计并设置燃烧试验装置。

装置需要满足燃烧条件和温度、压力等控制要求。

5.试验测定:将经过预处理的煤样放入燃烧试验装置中,在控制的条件下进行燃烧。

6.数据处理:根据实验过程中测量到的温度、压力以及气体成分等数据,通过相应的计算方法来推算煤的发热量。

常见的推算方法有热量平衡法、热传导法等。

需要注意的是,煤的发热量与其含水率、灰分、挥发分和固定碳等成分有关。

因此,在测定煤的发热量时,还需要对煤样的成分进行分析,并在计算过程中进行相应的修正。

总结起来,煤的发热量测定方法主要有直接燃烧法和间接燃烧法。

这些方法在具体的实验过程中需要注意样品制备、预处理、燃烧装置设置和数据处理等步骤。

通过这些方法可以较为准确地测定煤的发热量,为煤的综合利用提供了重要的参考信息。

煤的发热量测定方法

煤的发热量测定方法

煤的发热量测定方法煤是一种重要的能源资源,其发热量是衡量煤质优劣的重要指标之一。

因此,煤的发热量测定方法对于煤炭生产和利用具有重要意义。

本文将介绍几种常见的煤的发热量测定方法,希望对相关领域的研究和生产工作有所帮助。

一、热值仪法。

热值仪法是通过热值仪来测定煤的发热量的方法。

热值仪是一种专门用于测定煤的热值的仪器,其原理是将煤样在氧气流动条件下燃烧,通过测定燃烧释放的热量来计算煤的发热量。

这种方法测定简便,结果准确,广泛应用于煤炭生产和研究领域。

二、热量计法。

热量计法是通过热量计来测定煤的发热量的方法。

热量计是一种用于测定物质热值的仪器,其原理是将煤样在氧气流动条件下燃烧,通过测定燃烧释放的热量来计算煤的发热量。

这种方法操作简单,结果准确,适用于小样品的测定。

三、热量计算法。

热量计算法是通过煤的元素成分和热值之间的关系来计算煤的发热量的方法。

根据煤的元素成分(如碳、氢、氧、硫等)和热值之间的经验关系,可以通过化学计算的方法来估算煤的发热量。

这种方法不需要特殊的仪器,但是结果的准确性受到煤样成分分析的影响。

四、综合法。

综合法是将多种方法结合起来进行煤的发热量测定的方法。

通过比较不同方法得到的结果,可以提高测定的准确性,降低误差。

这种方法需要综合考虑实际情况和测定要求,选择合适的方法进行煤的发热量测定。

总结:煤的发热量测定是煤炭生产和利用中的重要工作,不同的测定方法各有特点,可以根据实际情况和要求选择合适的方法进行测定。

在进行煤的发热量测定时,需要注意仪器的使用和维护,样品的准备和处理,以及测定过程中的环境条件等因素,以确保测定结果的准确性和可靠性。

希望本文介绍的煤的发热量测定方法对相关领域的研究和生产工作有所帮助。

实验一 煤的发热量的测定

实验一 煤的发热量的测定

实验一煤的发热量的测定一、实验目的1、掌握“氧弹法”法测定煤的发热量的原理及方法。

2、掌握本法测定煤的发热量的条件。

取一定量的分析煤样在充满高压氧气的弹筒(浸没在装一定质量的水的容器——俗称内筒)内完全燃烧,生成的热被水吸收,水温升高,由水升高的温度,计算样品的发热量。

二、实验原理三、仪器及设备测定发热量的仪器称为“量热计”,其结构如图1所示。

量热计型号很多,根据水套温度的不同控制方式,可分成两种类型的量热计。

恒温式:以适当方式使外筒温度保持恒定不变,以便用较简便的计算公式来校正热交换的影响;绝热式:以适当方式使外筒温度在试验过程申始终与内筒保持一致,因而消除热交换。

11震荡器量热计应安置在完全不受阳光直射的单独房间内,室温稳定在15~35℃之间。

试验时应尽量保持温度恒定,每次测定的室温变化不应超过1℃。

量热计主要部件如下:1、氧弹:用优质不锈钢制成(其结构见图2)。

弹筒容积为250~300mL,经9.81×106Pa 水压试验证明无问题后方能使用。

氧弹针形阀不仅供充氧、抽气、排气用,同时又是点火电极一端,另一电极为弹体本身,两电极间采用聚四氟乙烯绝缘。

2、内筒:用优质不锈钢板制成,结构如图3所示。

内筒的装水量为2000~3000mL,应能浸没氧弹。

内筒内侧的半圆形竖筒为搅拌器室。

内筒置于外筒内,与外筒间距10mm,底部有绝缘支柱支撑。

内筒外表面应光亮,避免与外筒间的辐射作用。

3、外筒:由不锈钢板制成的夹层筒,外壁呈圆形。

夹层中充水并使水温保持恒定。

内表面也应光亮,避免辐射作用。

外筒有两个半圆形的胶木盖,盖上有孔,以插入温度计、搅拌器等。

设用自动恒温装置,控制水温在测试过程中稳定不变(0.1℃)。

4、搅拌器:搅拌内筒中的水,使样品燃烧生成的热尽快、均匀地分散。

搅拌器是螺旋浆式,用马达带动,转速一般为400~600转/分。

螺旋浆与马达之间用绝热材料连接,避免传热。

搅拌热不应超过125J。

煤的发热量测定方法

煤的发热量测定方法

煤的发热量测定方法煤是一种重要的能源资源,其发热量是衡量煤炭燃烧性能的重要指标。

正确测定煤的发热量对于煤炭的生产、加工和利用具有重要意义。

本文将介绍几种常用的煤的发热量测定方法,以供参考。

首先,煤的发热量可以通过热量计测定法来进行测定。

这种方法是将煤样放入热量计中,然后在氧气气氛下进行燃烧,通过燃烧释放出的热量来计算煤的发热量。

这种方法操作简单,结果准确可靠,是目前较为常用的测定方法之一。

其次,煤的发热量还可以通过热值仪测定法来进行测定。

热值仪是一种专门用于测定煤的发热量的仪器,其原理是将煤样放入燃烧室中,在一定的条件下进行燃烧,通过测量燃烧释放的热量来计算煤的发热量。

这种方法操作简便,结果准确可靠,广泛应用于煤炭生产和利用领域。

另外,煤的发热量还可以通过热量计算法来进行估算。

这种方法是根据煤的元素组成和热值特性参数,通过一定的计算公式来估算煤的发热量。

这种方法虽然不需要进行实际的燃烧实验,但是需要准确的煤样成分分析数据作为基础,因此在实际应用中需要注意数据的准确性和可靠性。

最后,煤的发热量还可以通过热量传导法来进行测定。

这种方法是将煤样放入热量传导仪中,在一定的条件下进行加热,通过测量传导过程中释放的热量来计算煤的发热量。

这种方法操作简单,结果准确可靠,适用于一些特殊的煤样测定。

总的来说,煤的发热量测定是煤炭燃烧性能评价的重要手段,不同的测定方法各有特点,可以根据具体的实际情况选择合适的方法进行测定。

在进行测定时,需要注意操作规程,确保实验数据的准确性和可靠性。

希望本文介绍的几种煤的发热量测定方法能够为相关领域的工作者提供一定的参考价值。

GB213煤的发热量测定方法

GB213煤的发热量测定方法

煤的发热量测定方法煤的发热量测定方法GB213—87代替GB213—79Determination of calorific value of coal国家标准局1987-03-30 批准1988-02-01 实施本标准规定了煤的高位发热量的测定方法和低位发热量的计算方法,适用于泥炭、褐煤、烟煤、无烟煤和炭质页岩的发热量测定。

1 定义1.1 热量单位热量的单位为J〔焦(耳)〕。

1J〔焦(耳)〕=1N·m(牛顿·米)=107erg(尔格)。

我国过去惯用的热量单位为20℃卡,以下简称卡(cal)。

1cal(20℃)=4.1816J。

1.2 发热量的表示方法发热量测定结果以kJ/g(千焦/克)或MJ/kg(兆焦/千克)表示。

1.2.1 弹筒发热量在氧弹中,在有过剩的氧的情况下〔氧气初始压力 2.6~3.0MPa(26~30atm)〕,燃烧单位质量的试样所产生的热量称为弹筒发热量。

燃烧产物为二氧化碳、硫酸、硝酸、呈液态的水和固态的灰。

注:任何物质(包括煤)的燃烧热,随燃烧产物的最终温度而改变,温度越高,燃烧热越低。

因此,一个严密的发热量定义,应对烧烧产物的温度有所规定。

但在实际测定发热量时,由于具体条件的限制,把终点温度限定在一个特定的温度或一个很窄的范围内都是不现实的。

温度每升高1K,煤和苯甲酸的燃烧热约降低0.4~1.3J/g。

当按规定在相近的温度下标定热容量和测定发热量时,温度对燃烧热的影响可近于完全抵销,而无需加以考虑。

1.2.2 恒容高位发热量煤在工业装置的实际燃烧中,硫只生成二氧化硫,氮则成为游离氮,这是同氧弹中的情况不同的。

由弹筒发热量减掉稀硫酸生成热和二氧化硫生成热之差以及稀硝酸的生成热,得出的就是高位发热量。

因为弹筒发热量的测定是在恒定容积(即弹筒的容积)下进行的,由此算出的高位发热量也相应地称为恒容高位发热量,它比工业上的恒压(即大气压力)状态下的发热量约低8~16J/g,一般可忽略不计。

煤的发热量的测量方法

煤的发热量的测量方法

煤的发热量的测量方法一名词解释1 弹筒发热量单位质量的试样在充有过量氧气的氧弹内燃烧,其燃烧产物组成为氧气、氮气、二氧化碳、硝酸和硫酸、液态水以及固态灰时放出的热量称为弹筒发热量。

2 恒容高位发热量单位质量的试样在充有过量氧气的氧弹内燃烧,其燃烧产物组成为氧气、氮气、二氧化碳、二氧化硫、液态水以及固态灰时放出的热量。

恒容高位发热量即由弹简发热量减去硝酸生成热和硫酸校正热后得到的发热量。

3 恒容低位发热量单位质量的试样在恒容条件下,在过量氧气中燃烧,其燃烧产物组成为氧气、氮气、二氧化碳、二氧化硫,气态水以及固态灰时放出的热量。

恒容低位发热量即由高位发热量减去水(煤中原有的水和煤中氢燃烧生成的水)的气化热后得到的发热量。

4 恒压低位发热量单位质量的试样在恒压条件下,在过量氧气中燃烧,其燃烧产物组成为氧气、氮气、二氧化碳、二氧化硫.、气态水以及固态灰时放出的热量。

5 热量计的有效热容量量热系统产生单位温度变化所需的热量(简称热容量)。

通常以焦耳每开尔文(J/K)表示。

二试验原理1 高位发热量煤的发热量在氧弹热量计中进行测定。

一定量的分析试样在氧弹热量计中,在充有过量氧气的氧弹内燃烧,氧弹热量计的热容量通过在相近条件下燃烧一定量的基准量热物苯甲酸来确定,根据试样燃烧前后量热系统产生的温升,并对点火热等附加热进行校正后即可求得试样的弹筒发热量。

从弹筒发热量中扣除硝酸生成热和硫酸校正热(硫酸与二氧化硫形成热之差)即得高位发热量。

2 低位发热量煤的恒容低位发热量和恒压低位发热量可以通过分析试样的高位发热量计算。

计算恒容低位发热量需要知道煤样中水分和氢的含量,原则上计算恒压低位发热量还需知道煤样中氧和氮的含量。

三试验室条件1 进行发热量测定的试验室,应为单独房间,不得在同一房间内同时进行其他试验项目。

2 室温应保持相对稳定,每次测定室温变化不应超过1℃,室温以不超过15-30℃范围为宜,3 室内应无强烈的空气对流,因此不应有强烈的热源、冷源和风扇等,试验过程中应避免开启门窗。

煤的发热量测定方法

煤的发热量测定方法

煤的发热量测定方法煤是一种重要的能源资源,其发热量是衡量其能源价值的重要指标。

因此,准确测定煤的发热量对于煤炭的开发利用具有重要意义。

本文将介绍煤的发热量测定方法,希望能为相关研究和生产工作提供一定的参考。

首先,煤的发热量测定方法主要有干燥热量法和燃烧热量法两种。

干燥热量法是通过将煤样在一定温度下干燥,然后利用热量计测定其干燥后的重量损失,从而计算出煤的发热量。

而燃烧热量法则是将煤样完全燃烧,利用热量计测定燃烧释放的热量,从而计算出煤的发热量。

这两种方法各有其适用的情况,需要根据具体的实验要求进行选择。

在进行煤的发热量测定时,需要注意以下几点。

首先,煤样的选择要representative,即要能够代表煤矿或煤炭的整体情况。

其次,在测定过程中需要严格控制温度、湿度等环境因素,以确保实验数据的准确性。

此外,还需要注意煤样的制备和处理过程,以避免外界因素对实验结果的影响。

最后,在实验数据的处理和计算过程中,需要严格按照标准方法进行,避免出现误差和偏差。

除了上述方法外,还可以利用热值仪器进行煤的发热量测定。

热值仪器是一种专门用于测定燃料热值的仪器,其操作简便、准确性高,广泛应用于煤炭生产和研究领域。

通过热值仪器可以快速、准确地测定煤的发热量,为煤炭的利用提供了便利。

总的来说,煤的发热量测定是煤炭研究和生产中的重要内容,准确的发热量数据对于评价煤炭品质、指导燃烧利用具有重要意义。

因此,在进行煤的发热量测定时,需要选择合适的方法,并严格控制实验条件,以确保实验数据的准确性和可靠性。

希望本文所介绍的方法能够为相关工作提供一定的帮助,推动煤炭研究和生产工作的发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

煤的发热量测定方法GB/T213-2003代替GB/T213-19961 范围本标准规定了煤的高位发热量的测定方法和低位发热量的计算方法。

本标准适用于泥炭、褐煤、烟煤、无烟煤、焦炭及碳质页岩。

2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。

凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。

凡是不注日期的引用文件,其最新版本适用于本标准。

GB/T211 煤中全水分的测定方法GB/T212 煤的工业分析方法(GB/T 212-2001,eqv ISO 11722:1999;eqv ISO 1171:1997;eqv ISO 562:1998)GB/T214 煤中全硫的测定方法(GB/T 214-1996,eqv ISO 334:1992)GB/T476 煤的元素分析方法(GB/T 476-2001,eqv ISO 625:1996;eqv ISO 333:1996)GB/T 483 煤炭分析试验方法一般规定GB/T 15460 煤中碳和氢的测定方法电量-重量法3 单位和定义3.1 热量单位heat unit热量的单位为焦耳(J)。

1焦耳(J)=1牛顿(N)×1米(m)=1牛·米(N·m)发热量测定结果以兆焦每千克(MJ/kg)或焦耳每克(J/g)表示。

3.2 弹筒发热量bomb calorific value单位质量的试样在充有过量氧气的氧弹内燃烧,其燃烧产物组成为氧气、氮气、二氧化碳、硝酸和硫酸、液态水以及固态灰时放出的热量称为弹筒发热量。

注:任何物质(包括煤)的燃烧热,随燃烧产物的最终温度而改变,温度越高,燃烧热越低。

因此,一个严密的发热量定义,应对燃烧产物的最终温度有所规定(ISO 1928规定为25℃)。

但在实际发热量测定时,由于具体条件的限制,把燃烧产物的最终温度限定在一个特定的温度或一个很窄的范围内都是不现实的。

温度每升高1K,煤和苯甲酸的燃烧热约降低(0.4J/g~1.3J/g)。

当按规定在相近的温度下标定热容量和测定发热量时,温度对燃烧热的影响可近于完全抵消,而无需加以考虑。

3.3 恒容高位发热量gross calorific value at constant volume单位质量的试样在充有过量氧气的氧弹内燃烧,其燃烧产物组成为氧气、氮气、二氧化碳、二氧化硫、液态水以及固态灰时放出的热量。

恒容高位发热量即由弹筒发热量减去硝酸生成热和硫酸校正热后得到的发热量。

3.4 恒容低位发热量net calorific value at constant volume单位质量的试样在恒容条件下,在过量氧气中燃烧,其燃烧产物组成为氧气、氮气、二氧化碳、二氧化硫,气态水以及固态灰时放出的热量。

恒容低位发热量即由高位发热量减去水(煤中原有的水和煤中氢燃烧生成的水)的气化热后得到的发热量。

3.5 恒压低位发热量net calorific value at constant pressure单位质量的试样在恒压条件下,在过量氧气中燃烧,其燃烧产物组成为氧气、氮气、二氧化碳、二氧化硫、气态水以及固态灰时放出的热量。

3.6 热量计的有效热容量effective heat capacity of the calorimeter量热系统产生单位温度变化所需的热量(简称热容量)。

通常以焦耳每开尔文(J/K)表示。

4 原理4.1 高位发热量煤的发热量在氧弹热量计中进行测定。

一定量的分析试样在氧弹热量计中,在充有过量氧气的氧弹内燃烧,氧弹热量计的热容量通过在相近条件下燃烧一定量的基准量热物苯甲酸来确定,根据试样燃烧前后量热系统产生的温升,并对点火热等附加热进行校正后即可求得试样的弹筒发热量。

从弹筒发热量中扣除硝酸生成热和硫酸校正热(硫酸与二氧化硫形成热之差)即得高位发热量。

4.2 低位发热量煤的恒容低位发热量和恒压低位发热量可以通过分析试样的高位发热量计算。

计算恒容低位发热量要知道煤样中水分和氢的含量。

原则上计算恒压低位发热量还需知道煤样中氧和氮的含量。

5 试验室条件——进行发热量测定的试验室,应为单独房间,不得在同一房间内同时进行其他试验项目。

——室温应保持相对稳定,每次测定室温变化不应超过1℃,室温以不超过15℃~30℃范围为宜。

——室内应无强烈的空气对流,因此不应有强烈的热源、冷源和风扇等,试验过程中应避免开启门窗。

——试验室最好朝北,以避免阳光照射,否则热量计应放在不受阳光直射的地方。

6 试剂和材料6.1 氧气(GB 3863)99.5%纯度,不含可燃成分,不允许使用电解氧。

6.2 氢氧化钠标准溶液c(NaOH)≈0.1 mol/L称取优级纯氢氧化钠(GB/T 629)4g,溶解于1000mL,经煮沸冷却后的水中,混合均匀,装入塑料瓶或塑料筒内,拧紧盖子。

然后用优级纯苯二甲酸氢钾(GB/T 1257)进行标定。

6.3 甲基红指示剂2g/L称取0.2g甲基红(HG 3-958-76),溶解在100mL水中。

6.4 苯甲酸基准量热物质,二等或二等以上,经权威计量机关检定或授权检定并标明标准热值。

6.5 点火丝直径0.1mm左右的铂、铜、镍丝或其他已知热值的金属丝或棉线,如使用棉线,则应选用粗细均匀,不涂蜡的白棉线。

各种点火丝点火时放出的热量如下:铁丝:6700 J/g镍铬丝:6000 J/g铜丝:2500 J/g棉线:17500 J/g6.6 酸洗石棉绒使用前在800 ℃下灼烧30 min。

6.7 擦镜纸使用前先测出燃烧热:抽取3张~4张纸,团紧,称准质量,放入燃烧皿中,然后按常规方法测定发热量。

取3次结果的平均值作为擦镜纸热值。

7 仪器设备7.1 热量计7.1.1 总则热量计是由燃烧氧弹、内筒、外筒、搅拌器、温度传感器和试样点火装置、温度测量和控制系统以及水构成。

通用热量计有两种,恒温式和绝热式,它们的量热系统被包围在充满水的双层夹套(外筒)中,它们的差别只在于外筒及附属的自动控温装置,其余部分无明显区别。

无水热量计的内筒、搅拌器和水被一个金属块代替。

氧弹为双层金属构成,其中嵌有温度传感器,氧弹本身组成了量热系统。

自动氧弹热量计原则上应按照本标准第7章和8章中的原理和规定设计和构造,并按照9。

3的规定计算分析试样的弹筒发热量和恒容高位发热量。

发热量的结果应以焦耳每克(J/g)或兆焦每千克(MJ/kg)单位报出。

自动氧弹热量计在每次试验中必须详细给出规定的参数,打印的或以另外方式记录的各次试验的信息包括温升,冷却校正值(恒温式)、有效热容量、样品质量、点火热和其他附加热;由此进行的所有计算都能人工验证,所用的计算公式应在仪器操作说明书中给出。

计算中用到的附加热应清楚地确定,所用的点火热,副反应热的校正应该明确说明。

本标准也允许使用其他氧弹热量计,只要它们的标定条件,标定和发热量测定时条件的相似性,试样质量与氧弹的容积,充氧压力,氧弹中加水量,以及测定的精密度和准确度等方面符合本标准的基本要求均可使用。

热量计的精密度和准确度要求为,测试精密度:5次苯甲酸测试结果的相对标准差不大于0.20%;准确度:标准煤样测试结果与标准值之差都在不确定度范围内,或者用苯甲酸作为样品进行5次发热量测定,其平均值与标准热值之差不超过50J/g。

注:除燃烧不完全的结果外,所有的测试结果不能随意舍弃。

7.1.2 氧弹由耐热、耐腐蚀的镍铬或镍铬钼合金钢制成,需要具备3个主要性能:a)不受燃烧过程中出现的高温和腐蚀性产物的影响而产生热效应;b)能承受充氧压力和燃烧过程中产生的瞬时高压;c)试验过程中能保持完全气密。

弹筒容积为250mL~350mL,弹头上应装有供充氧和排气的阀门以及点火电源的接线电极。

新氧弹和新换部件(弹筒、弹头、连接环)的氧弹应经20.0MPa的水压试验,证明无问题后方能使用。

此外,应经常注意观察与氧弹强度有关的结构,如弹筒和连接环的螺纹、进气阀、出气阀和电极与弹头的连接处等,如发现显著磨损或松动,应进行修理,并经水压试验合格后再用。

氧弹还应定期进行水压试验,每次水压试验后,氧弹的使用时间一般不应超过2年。

当使用多个设计制作相同的氧弹时,每一个氧弹都必须作为一个完整的单元使用。

氧弹部件的交换使用可能导致发生严重的事故。

7.1.3 内筒用紫铜、黄铜或不锈钢制成,断面可为椭圆形、菱形或其他适当形状。

筒内装水2000mL~3000mL,以能浸没氧弹(进、出气阀和电极除外)为准。

内筒外面应高度抛光,以减少与外筒间的辐射作用。

7.1.4 外筒为金属制成的双壁容器,并有上盖。

外壁为圆形,内壁形状则依内筒的形状而定;外筒应完全包围内筒,内外筒间应有10mm~12mm的间距,外筒底部有绝缘支架,以便放置内筒。

a) 恒温式外筒:恒温式热量计配置恒温式外筒。

自动控温的外筒在整个试验过程中,外筒水温变化应控制在±0.1K之内或更低;非自动控温式外筒——静态式外筒,盛满水后其热容量就不小于热量计热容量的5倍,以便保持试验过程中外筒温度基本恒定。

外筒的热容量应该是:当冷却常数约为0.002min-1时,从试样点火到末期结束时的外筒温度变化小于0.16K;当冷却常数约为0.0030min-1时,此温度变化应小于0.11K。

外筒外面可加绝缘保护层,以减少室温波动的影响。

用于外筒的温度计应有0.1K的最小分度值。

b) 绝热式外筒:绝热式热量计配置绝热式外筒。

外筒中装有加热装置,通过自动控温装置,外筒水温能紧密跟踪内筒的温度。

外筒的水还应在特制的双层盖中循环。

自动控温装置的灵敏度应能达到使点火前和终点后内筒温度保持稳定(5 min内温度变化平均不超过0.0005K/min);在一次试验的升温过程中,内外筒间热交换量应不超过20J。

7.1.5 搅拌器螺旋桨式或其他形式。

转速(400~600)r/min为宜,并应保持恒定。

搅拌器轴杆与外界应采用有效的隔热措施,以尽量减少量热系统与外界的热交换。

搅拌器的搅拌效率应能使热容量标定中由点火到终点时间不超过10min,同时又要避免产生过多的搅拌热(当内、外筒温度和室温一致时,连续搅拌10min所产生的热量不应超过120J)。

7.1.6 量热温度计用于内筒温度测量的量热温度计至少应有0.001K的分辨率,以便能以0.002K或更好的分辨率测定2K到3K的温升;它代表的绝对温度应能达到近0.1K。

量热温度计在它测量的每个温度变化范围内应是线性的或线性化的。

它们均应经过计量部门的检定,证明已达到上述要求,有两种类型的温度计可用于此目的。

a)玻璃水银温度计常用的玻璃水银温度计有两种:一种是固定测温范围的精密温度计;一种是可变测温范围的贝克曼温度计。

相关文档
最新文档