2016-2017学年天津市和平区七年级上学期数学期末试卷带答案
【真题】天津和平区2016-2017学年初一上期中数学试题及答案
和平区2016-2017学年度第一学期七年级数学学科期中质量调查试卷第I 卷 选择题一 选择题(每题2分,共24分)1.如果+160元表示增加160圆,那么-60元表示( )A.增加100元B.增加60元C.减少60元D.减少220元 2.用四舍五入法把3.8963精确到百分位得到的近似数是( )A.3.896B.3.900C.3.9D.3.903.男孩资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍,其中350万用科学记数法表示为( )A.35×105B.3.5×106C.3.5×107D.0.35×1084.在数轴上表示-5的点与原点的距离等于( )A.5B.10C.-5D.±5 5.将等式131312=+-x 边形,得:( )A.2-x+1=1B.6-x+1=3C.6-x+1=1D.2-x+1=3 6.下列去括号正确的是( )A.+(a-b+c)=a+b+cB.+(a-b+c)=-a+b-cC.-(a-b+c)=-a+b+cD.-(a-b+c)=-a+b-c 7.已知方程3x+m=3-x 的解为x=-1,则m 的值为( )A.13B.7C.-10D.-13 8.下列计算结果为0的是( )A.-42-42B.-42+(-4)2C.(-4)2+42D.-42-4×4 9.下列各组整式中,不是同类项的是( )A.3x 2y 与31-x 2yB.31-与0 C.xyz 3与-xyz 3 D.2x 3y 与2xy 310.如果x x 33--=,则x 的取值范围是( )A.x>0B.x ≥0C.x ≤0D.x<0 11.已知整式x 2+x+2的值是6,那么整式4x 2+4x-6的值是( )A.10B.16C.18D.-1212.若a<0,-1<b<0,则a,ab,ab 2按从小到大的顺序排列为( )A.a<ab<ab 2B.ab 2<a<ab C.ab<ab 2<a D.a<ab 2<ab第II 卷 非选择题二 填空题(每题3分,共18分)13.(-2)5的底数是 ,指数是 ,结果是 . 14.绝对值不大于5的整数有 个. 15.若3x 2-4x-5=7,则x x 342-= .16.若02)1(2=-++b a ,化简)()(2222xy y x b xy y x a --+的结果为 .17.大客车上原有(3a-b)人,中途下车一半人,又上车若干人,使车上共有乘客(8a-5b)人,则上车的乘客是 人,当a=10,b=8时,上车的乘客是 人. 18.观察:532322101010,101010,101010=⨯=⨯=⨯, (1)1091010⨯= ; (2)n m 1010⨯= ;运用以上所得结论计算:)105()105.2(54⨯⨯⨯= (结果用科学记数法表示)三 解答题:共7小题,共58分,解答题应写出解答过程.19.(本小题满分7分)画出数轴,且在数轴上表示出下列各数:-21,3,0,-2,2.25,-3 并解答下列问题:(1)用“<”号把这些数连接起来; (2)求这些数中 -21,0,2.25的相反数; (3)求这些数的绝对值的和.20(本小题满分16分)计算:(1))524()31()4.2()323(+--+--- (2)2714187)772438611(1÷+⨯-÷(3))241()836143()21(332-÷-+--⨯- (4)})2()]211(4.0)31[(53{)1(224-÷-⨯+---21(本小题满分6分)计算:(1))42(4)231(24x x x -+-- (2))23421()213(2222y xy x y xy x -+---+-22(本小题满分7分)我国出租车收费标准因地而异,甲城市为:起步价7元,3千米后每千米收费1.7元;乙城市为:起步价10元,3千米后每千米收费1.2元.(1)试问:在甲、乙两城市乘坐出租车x(x>3)千米各收费多少元;(2)如果在甲、乙两城市乘坐出租车的路程都为8千米,那么那个城市的收费高些?高多少?23(本小题满分8分)已知在数轴上的位置如图所示:(1)填空:a与c之间的距离为;(2)化简:1bc+ba;1-+--(3)若a+b+c=0,且b与-1的距离和c与-1的距离相等,求-2a2+2b-4c-(-a+5b-c)的值.24(本小题满分7分)将连续的奇数1、3、5、7、9、......排成如下的数表:(1)十字框的5个数的和与中间的数23有什么关系?若将十字框上下左右平移,可框住另外5个数,这5个数还有这种规律吗?(2)设十字框中中间的数为a,用含a的式子表示十字框中的5个数之和;(3)十字框中的5个数的和能等于2016吗?若能,请写出这5个数,若不能,说明理由.25(本小题满分7分)已知a、b、c、d是整数,且满足a+b=c,b+c=d,c+d=a.(1)若a与b互为相反数,求a+b+c+d的值;(2)若b是正整数,求a+b+c+d的最大值;和平区2016-2017学年度第一学期七年级数学学科期中质量调查试卷答案1.C2.D3.B4.A5.B6.D7.A8.B9.D 10.C 11.A 12.D 13.-2,5,-32 14.11 15.4 16.-3x 2y+xy 217.29),29213(b a - 18.1019,10m-n,1.25×101019.解:(1)-3<-2<-21<0<2.25<3; (2)-21的相反数为21;0的相反数为0;2.25的相反数为-2.25. (3)4310。
2017年天津市和平区七年级(上)期中数学模拟试卷与参考答案PDF
2016-2017学年天津市和平区七年级(上)期中数学模拟试卷一、选择题(每小题3分,共12小题,共计36分)1.(3分)﹣5的倒数是()A.5 B.﹣5 C.D.﹣2.(3分)单项式﹣3πxy2z3的系数和次数分别是()A.﹣π,5 B.﹣1,6 C.﹣3π,6 D.﹣3,73.(3分)如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>04.(3分)若(m﹣2)x|m|﹣1=5是一元一次方程,则m的值为()A.±2 B.﹣2 C.2 D.45.(3分)已知关于x的方程7﹣kx=x+2k的解是x=2,则k的值为()A.﹣3 B.C.1 D.6.(3分)已知2x3y2和﹣x3m y2是同类项,则式子4m﹣24的值是()A.20 B.﹣20 C.28 D.﹣287.(3分)大于﹣4.8而小于2.5的整数共有()A.7个 B.6个 C.5个 D.4个8.(3分)下列比较大小正确的是()A.﹣(﹣21)<+(﹣21) B.C.D.9.(3分)有一两位数,其十位数字为a,个位数字为b,将两个数颠倒,得到一个新的两位数,那么这个新两位数十位上的数字与个位数字的和与这个新两位数的积用代数式表示()A.ba(a+b)B.(a+b)(b+a)C.(a+b)(10a+b) D.(a+b)(10b+a)10.(3分)如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q11.(3分)小惠在纸上画了一条数轴后,折叠纸面,使数轴上表示1的点与表示﹣3的点重合,若数轴上A、B两点之间的距离为2014(A在B的左侧),且A、B两点经上述折叠后重合,则A点表示的数为()A.﹣1006 B.﹣1007 C.﹣1008 D.﹣100912.(3分)如图所示的运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2017次输出的结果为()A.3 B.6 C.4 D.2二、填空题(每小题3分,共6小题,共计18分)13.(3分)在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作.14.(3分)计算:|3.14﹣π|=.15.(3分)已知关于x的方程4x+2m=3x+1与方程3x+2m=6x+1的解相同,则方程的解为.16.(3分)已知x﹣2y+3=0,则代数式﹣2x+4y+2017的值为.17.(3分)若“★”是新规定的某种运算符号,设a★b=ab+a﹣b,则2★n=﹣8,则n=.18.(3分)观察下列算式,你发现了什么规律?12=;12+22=;12+22+32=;12+22+32+42=;…①根据你发现的规律,计算下面算式的值;12+22+32+42+52=;②请用一个含n的算式表示这个规律:12+22+32…+n2=;③根据你发现的规律,计算下面算式的值:512+522+…+992+1002=.三、综合题(共8小题,共计66分)19.(8分)计算下列各题(1)2+0.25﹣(﹣7)+(﹣2)﹣1.5﹣2.75(2)(+1﹣2.75)×(﹣24)+(﹣1)2017.20.(8分)化简下列多项式:(1)2x2﹣(﹣x2+3xy+2y2)﹣(x2﹣xy+2y2);(2)2(x﹣y)2﹣3(x﹣y)+5(x﹣y)2+3(x﹣y)21.(8分)解下列方程:(1)4x﹣3(5﹣x)=6;(2)[x﹣(x﹣1)]=(x+2).22.(8分)已知|a+2|+(b+1)2+(c﹣)2=0,求代数式5abc﹣{2a2b﹣[3abc ﹣(4ab2﹣a2b)]}的值.23.(8分)某服装店以每件82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如表所示:请你求出该服装店在售完这30套保暖内衣后,共赚了多少钱?24.(8分)已知|a﹣1|=9,|b+2|=6,且a+b<0,求a﹣b的值.25.(8分)已知当x=﹣1时,代数式2mx3﹣3mx+6的值为7.(1)若关于y的方程2my+n=11﹣ny﹣m的解为y=2,求n=的值;(2)若规定[a]表示不超过a的最大整数,例如[4.3]=4,请在此规定下求[m﹣n]的值.26.(10分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c﹣7)2=0.(1)a=,b=,c=;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=,AC=,BC=.(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.2016-2017学年天津市和平区七年级(上)期中数学模拟试卷参考答案与试题解析一、选择题(每小题3分,共12小题,共计36分)1.(3分)﹣5的倒数是()A.5 B.﹣5 C.D.﹣【解答】解:﹣5的倒数是﹣.故选:D.2.(3分)单项式﹣3πxy2z3的系数和次数分别是()A.﹣π,5 B.﹣1,6 C.﹣3π,6 D.﹣3,7【解答】解:根据单项式系数、次数的定义,单项式﹣3πxy2z3的系数和次数分别是﹣3π,6.故选:C.3.(3分)如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>0【解答】解:A、∵b<﹣1<0<a<1,∴|b|>|a|,∴a+b<0,故选项A错误;B、∵b<﹣1<0<a<1,∴ab<0,故选项B错误;C、∵b<﹣1<0<a<1,∴a﹣b>0,故选项C正确;D、∵b<﹣1<0<a<1,∴|a|﹣|b|<0,故选项D错误.故选:C.4.(3分)若(m﹣2)x|m|﹣1=5是一元一次方程,则m的值为()A.±2 B.﹣2 C.2 D.4【解答】解:根据题意,得,解得:m=﹣2.故选:B.5.(3分)已知关于x的方程7﹣kx=x+2k的解是x=2,则k的值为()A.﹣3 B.C.1 D.【解答】解:∵关于x的方程7﹣kx=x+2k的解是x=2,∴7﹣2k=2+2k,解得k=.故选:D.6.(3分)已知2x3y2和﹣x3m y2是同类项,则式子4m﹣24的值是()A.20 B.﹣20 C.28 D.﹣28【解答】解:由题意得:3m=3,解得m=1,∴4m﹣24=﹣20.故选:B.7.(3分)大于﹣4.8而小于2.5的整数共有()A.7个 B.6个 C.5个 D.4个【解答】解:根据数轴得:大于﹣4.8而小于2.5的整数有﹣4,﹣3,﹣2,﹣1,0,1,2共7个,故选:A.8.(3分)下列比较大小正确的是()A.﹣(﹣21)<+(﹣21) B.C.D.【解答】解:﹣(﹣21)=21>+(﹣21)=﹣21,故本选项错误;B、﹣|﹣7|=﹣7,﹣(﹣7)=7,故本选项错误;C、﹣=﹣<﹣=﹣,故本选项正确;D、﹣|﹣10|=﹣10<8,故本选项错误.故选:C.9.(3分)有一两位数,其十位数字为a,个位数字为b,将两个数颠倒,得到一个新的两位数,那么这个新两位数十位上的数字与个位数字的和与这个新两位数的积用代数式表示()A.ba(a+b)B.(a+b)(b+a)C.(a+b)(10a+b) D.(a+b)(10b+a)【解答】解:新两位数的数字之和是(a+b),新两位数应表示为(10b+a),所以可列代数式为(a+b)(10b+a).故选:D.10.(3分)如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q【解答】解:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选:C.11.(3分)小惠在纸上画了一条数轴后,折叠纸面,使数轴上表示1的点与表示﹣3的点重合,若数轴上A、B两点之间的距离为2014(A在B的左侧),且A、B两点经上述折叠后重合,则A点表示的数为()A.﹣1006 B.﹣1007 C.﹣1008 D.﹣1009【解答】解:∵1表示的点与﹣3表示的点重合,∴对称中心是﹣1表示的点,若数轴上A、B两点之间的距离为2014(A在B的左侧),则点A表示的数是﹣1﹣1007=﹣1008,故选:C.12.(3分)如图所示的运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2017次输出的结果为()A.3 B.6 C.4 D.2【解答】解:根据运算程序得到:除去前两个结果24,12,剩下的以6,3,8,4,2,1循环,∵(2017﹣2)÷6=335…5,则第2017次输出的结果为2,故选:D.二、填空题(每小题3分,共6小题,共计18分)13.(3分)在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作﹣0.15米.【解答】解:“正”和“负”相对,所以在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作﹣0.15.14.(3分)计算:|3.14﹣π|=π﹣3.14.【解答】解:|3.14﹣π|=π﹣3.14,故答案为:π﹣3.14.15.(3分)已知关于x的方程4x+2m=3x+1与方程3x+2m=6x+1的解相同,则方程的解为x=0.【解答】解:由题意得:4x+2m=3x+1,解得:x=﹣2m+1.由3x+2m=6x+1,解得:x=(2m﹣1),∵两个方程的解相同,∴﹣2m+1=(2m﹣1),解得:m=.∴x=﹣2m+1=0故答案是:x=0.16.(3分)已知x﹣2y+3=0,则代数式﹣2x+4y+2017的值为2023.【解答】解:由x﹣2y+3=0,得到x﹣2y=﹣3,则原式=﹣2(x﹣2y)+2017=6+2017=2023,故答案为:202317.(3分)若“★”是新规定的某种运算符号,设a★b=ab+a﹣b,则2★n=﹣8,则n=﹣10.【解答】解:利用题中的新定义化简得:2n+2﹣n=﹣8,移项合并得:n=﹣10,故答案为:﹣1018.(3分)观察下列算式,你发现了什么规律?12=;12+22=;12+22+32=;12+22+32+42=;…①根据你发现的规律,计算下面算式的值;12+22+32+42+52=;②请用一个含n的算式表示这个规律:12+22+32…+n2=;③根据你发现的规律,计算下面算式的值:512+522+…+992+1002=295425.【解答】解:(1)12+22+32+42+52=(2)12+22+32…+n2=(3∵12+22+32…+502==4292512+22+32…+512+522+…+992+1002==338350∴512+522+...+992+1002=(12+22+32...+512+522+...+992+1002)﹣(12+22+32 (502)=338350﹣42925=295425故答案为:①=;②=;③295425三、综合题(共8小题,共计66分)19.(8分)计算下列各题(1)2+0.25﹣(﹣7)+(﹣2)﹣1.5﹣2.75(2)(+1﹣2.75)×(﹣24)+(﹣1)2017.【解答】解:(1)原式=2.75﹣2.75+0.25﹣2.25+7.5﹣1.5=4;(2)原式=﹣3﹣32+66﹣1=30.20.(8分)化简下列多项式:(1)2x2﹣(﹣x2+3xy+2y2)﹣(x2﹣xy+2y2);(2)2(x﹣y)2﹣3(x﹣y)+5(x﹣y)2+3(x﹣y)【解答】解:(1)2x2﹣(﹣x2+3xy+2y2)﹣(x2﹣xy+2y2),=2x2+x2﹣3xy﹣2y2﹣x2+xy﹣2y2,=(2+1﹣1)x2+(﹣3+1)xy+(﹣2﹣2)y2,=2x2﹣2xy﹣4y2,(2)2(x﹣y)2﹣3(x﹣y)+5(x﹣y)2+3(x﹣y),=7(x﹣y)2,=7(x2﹣2xy+y2),=7x2﹣14xy+7y2.21.(8分)解下列方程:(1)4x﹣3(5﹣x)=6;(2)[x﹣(x﹣1)]=(x+2).【解答】解:(1)去括号得:4x﹣15+3x=6,移项合并得:7x=21,解得:x=3;(2)去括号得:x﹣(x﹣1)=(x+2),去分母得:6x﹣3x+3=8x+16,移项合并得:5x=﹣13,解得:x=﹣.22.(8分)已知|a+2|+(b+1)2+(c﹣)2=0,求代数式5abc﹣{2a2b﹣[3abc ﹣(4ab2﹣a2b)]}的值.【解答】解:∵|a+2|+(b+1)2+(c﹣)2=0,∴a=﹣2,b=﹣1,c=,则原式=5abc﹣2a2b+3abc﹣4ab2+a2b=8abc﹣a2b﹣4ab2=+4+8=.23.(8分)某服装店以每件82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如表所示:请你求出该服装店在售完这30套保暖内衣后,共赚了多少钱?【解答】解:7×(100+5)+6×(100+1)+7×100+8×(100﹣2)+2×(100﹣5)=735+606+700+784+190=3015,30×82=2460(元),3015﹣2460=555(元),答:共赚了555元.24.(8分)已知|a﹣1|=9,|b+2|=6,且a+b<0,求a﹣b的值.【解答】解:∵|a﹣1|=9,|b+2|=6,∴a=﹣8或10,b=﹣8或4,∵a+b<0,∴a=﹣8,b=﹣8或4,当a=﹣8,b=﹣8时,a﹣b=﹣8﹣(﹣8)=0,当a=﹣8,b=4时,a﹣b=﹣8﹣4=﹣12.综上所述,a﹣b的值为0或﹣12.25.(8分)已知当x=﹣1时,代数式2mx3﹣3mx+6的值为7.(1)若关于y的方程2my+n=11﹣ny﹣m的解为y=2,求n=的值;(2)若规定[a]表示不超过a的最大整数,例如[4.3]=4,请在此规定下求[m﹣n]的值.【解答】解:(1)把x=﹣1代入得:﹣2m+3m+6=7,解得:m=1,把m=1,y=2代入得:4+n=10﹣2n,解得:n=2;(2)把m=1,n=2代入得:m﹣n=1﹣3.5=﹣2.5,则[m﹣n]=[﹣2.5]=﹣3.26.(10分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c﹣7)2=0.(1)a=﹣2,b=1,c=7;(2)若将数轴折叠,使得A点与C点重合,则点B与数4表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=3t+3,AC=5t+9,BC=2t+6.(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【解答】解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7,∵b是最小的正整数,∴b=1;故答案为:﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4;故答案为:4.(3)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3,5t+9,2t+6.(4)不变.3BC﹣2AB=3(2t+6)﹣2(3t+3)=12.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。
2016-2017学年七年级上期末数学试卷含答案解析
2016-2017学年七年级(上)期末数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)1.﹣2的相反数是()A.﹣2 B.2 C.﹣ D.2.在﹣2,π,15,0,﹣,0.555…六个数中,整数的个数为()A.1 B.2 C.3 D.43.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.4.由四舍五入得到的近似数2.6万,精确到()A.千位B.万位C.个位D.十分位5.下列图形中,∠1和∠2互为余角的是()A.B.C.D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1 D.3x2﹣y+5xy2是二次三项式7.下列方程属于一元一次方程的是()A.﹣1=0 B.6x+1=3y C.3m=2 D.2y2﹣4y+1=08.轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A. +3=﹣3 B.﹣3=+3 C. +3=D.﹣3=二、填空题(本大题共6小题,每小题3分,满分18分)9.实数﹣5,﹣1,0,四个数中,最大的数是.10.若有理数a、b满足|a+5|+(b﹣4)2=0,则(a+b)10的值为.11.某校图书室共藏书34500册,数34500用科学记数法表示为.12.若﹣3x m+2y2017与2x2016y n是同类项,则|m﹣n|的值是.13.56°24′=°.14.某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是.三、解答题(本大题共10小题,满分70分)15.计算:﹣12﹣(﹣)÷×[﹣2+(﹣3)2].16.解方程:﹣=﹣1.17.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD 的长度.18.规定一种新运算:a*b=a﹣b,当a=5,b=3时,求(a2b)*(3ab+5a2b﹣4ab)的值.19.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.20.一张课桌包括1块桌面和4条桌腿,1m3木料可制作50块桌面或200条桌腿.现有5m3木料,用多少木料制作桌面,多少木料制作桌腿,才能使制作得的桌面和桌腿刚好配套?21.有理数a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣b|+|b+c|﹣|b|.22.已知a、b互为相反数,c、d互为倒数,|e|=5,求e2﹣+(cd)102﹣e 的值.23.入冬以来,某家电销售部以150元/台的价格购进一款烤火器,很快售完,又用相同的货款再次购进这款烤火器,因单价提高了30元,进货量比第一次少了10台.(1)家电销售部两次各购进烤火器多少台?(2)若以250元/台的售价卖完这两批烤火器,家电销售部共获利多少元?24.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102…(1)请叙述等式左边各个幂的底数与右边幂的底数之间有什么关系?(2)利用上述规律,计算:13+23+33+43+ (1003)2016-2017学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)1.﹣2的相反数是()A.﹣2 B.2 C.﹣ D.【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选B.2.在﹣2,π,15,0,﹣,0.555…六个数中,整数的个数为()A.1 B.2 C.3 D.4【考点】有理数.【分析】先判断每个数是什么数,最后得到整数的个数.【解答】解:因为﹣2、15、0是整数,π是无理数,﹣、0.555…是分数.所以整数共3个.故选C.3.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.【考点】几何体的展开图.【分析】圆锥的侧面展开图是扇形.【解答】解:根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选:B.4.由四舍五入得到的近似数2.6万,精确到()A.千位B.万位C.个位D.十分位【考点】近似数和有效数字.【分析】近似数2.6万精确到0.1万位.【解答】解:近似数2.6万精确到千位.故选A.5.下列图形中,∠1和∠2互为余角的是()A.B.C.D.【考点】余角和补角.【分析】根据对顶角的定义,邻补角的定义以及互为余角的两个角的和等于90°对各选项分析判断即可得解.【解答】解:A、∠1+∠2>90°,∠1和∠2不是互为余角,故本选项错误;B、∠1和∠2互为邻补角,故本选项错误;C、∠1和∠2是对顶角,不是互为余角,故本选项错误;D、∠1+∠2=180°﹣90°=90°,∠1和∠2互为余角,故本选项正确.故选D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1 D.3x2﹣y+5xy2是二次三项式【考点】同类项;整式;多项式.【分析】分别根据单项式、多项式、整式及同类项的定义判断各选项即可.【解答】解:A、3a2b与ba2是同类项,故本选项错误;B、是整式,故本选项错误;C、单项式﹣x3y2的系数是﹣1,故本选项正确;D、3x2﹣y+5xy2是二次三项式,故本选项错误.故选C.7.下列方程属于一元一次方程的是()A.﹣1=0 B.6x+1=3y C.3m=2 D.2y2﹣4y+1=0【考点】一元一次方程的定义.【分析】根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程进行分析即可.【解答】解:A、不是一元一次方程,故此选项错误;B、不是一元一次方程,故此选项错误;C、是一元一次方程,故此选项正确;D、不是一元一次方程,故此选项错误;故选:C.8.轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A. +3=﹣3 B.﹣3=+3 C. +3= D.﹣3=【考点】由实际问题抽象出一元一次方程.【分析】首先理解题意找出题中存在的等量关系,再列出方程即可.【解答】解:设A、B两码头间距离为x,可得:,故选B二、填空题(本大题共6小题,每小题3分,满分18分)9.实数﹣5,﹣1,0,四个数中,最大的数是.【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣5<﹣1<0<,∴实数﹣5,﹣1,0,四个数中,最大的数是.故答案为:.10.若有理数a、b满足|a+5|+(b﹣4)2=0,则(a+b)10的值为1.【考点】代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】利用非负数的性质求出a与b的值,代入原式计算即可得到结果.【解答】解:∵|a+5|+(b﹣4)2=0,∴a+5=0,b﹣4=0,解得:a=﹣5,b=4,则原式=1,故答案为:111.某校图书室共藏书34500册,数34500用科学记数法表示为 3.45×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:34500用科学记数法表示为3.45×104,故答案为:3.45×104.12.若﹣3x m+2y2017与2x2016y n是同类项,则|m﹣n|的值是3.【考点】同类项;绝对值.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得关于m 和n的方程,解出可得出m和n的值,代入可得出代数式的值.【解答】解:∵﹣3x m+2y2017与2x2016y n是同类项,∴m+2=2016,n=2017,解得:m=2014,∴|m﹣n|=3.故答案为:3.13.56°24′=56.4°.【考点】度分秒的换算.【分析】把24′化成度,即可得出答案.【解答】解:24÷60=0.4,即56°24′=56.4°,故答案为:56.4.14.某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是两点之间,线段最短.【考点】线段的性质:两点之间线段最短.【分析】根据线段的性质进行解答即可.【解答】解:某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是:两点之间,线段最短.故答案为:两点之间,线段最短.三、解答题(本大题共10小题,满分70分)15.计算:﹣12﹣(﹣)÷×[﹣2+(﹣3)2].【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:﹣12﹣(﹣)÷×[﹣2+(﹣3)2]=﹣1﹣(﹣)÷×[﹣2+9]=﹣1+×7=216.解方程:﹣=﹣1.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:2x﹣2﹣x﹣2=9x﹣3﹣6,移项合并得:﹣8x=﹣5,解得:x=.17.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD 的长度.【考点】比较线段的长短.【分析】根据已知可求得AB的长,从而可求得AC的长,已知AD的长则不难求得CD的长.【解答】解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.18.规定一种新运算:a*b=a﹣b,当a=5,b=3时,求(a2b)*(3ab+5a2b﹣4ab)的值.【考点】代数式求值;有理数的混合运算.【分析】先根据新运算展开,化简后代入求出即可.【解答】解:(a2b)*(3ab+5a2b﹣4ab)=(a2b)﹣(3ab+5a2b﹣4ab)=a2b﹣3ab﹣5a2b+4ab=﹣4a2b+ab当a=5,b=3时,原式=﹣4×52×3+5×3=﹣285.19.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.【考点】角平分线的定义.【分析】利用角平分线的定义得出∠AOD=∠BOD,∠BOE=∠COE,进而求出∠DOE的度数.【解答】解:∵OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,∴∠AOD=∠BOD,∠BOE=∠COE,∴∠DOE=∠AOC=65°.20.一张课桌包括1块桌面和4条桌腿,1m3木料可制作50块桌面或200条桌腿.现有5m3木料,用多少木料制作桌面,多少木料制作桌腿,才能使制作得的桌面和桌腿刚好配套?【考点】一元一次方程的应用.【分析】设用xm3木料制作桌面,则用(5﹣x)m3木料制作桌腿恰好配套,根据条件的数量关系建立方程求出其解即可.【解答】解:设用xm3木料制作桌面,由题意得4×50x=200(5﹣x),解得x=2.5,5﹣x=2.5m3,答:用2.5m3木料制作桌面,2.5m3木料制作桌腿,能使制作得的桌面和桌腿刚好配套.21.有理数a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣b|+|b+c|﹣|b|.【考点】整式的加减;数轴;绝对值.【分析】根据数轴先判断a+c、a﹣b、b+c、b与0的大小关系,然后即可进行化简【解答】解:由图可知:a+c<0,a﹣b>0,b+c<0,b<0,∴原式=﹣(a+c)﹣(a﹣b)﹣(b+c)+b=﹣a﹣c﹣a+b﹣b﹣c+b=﹣2a+b﹣2c22.已知a、b互为相反数,c、d互为倒数,|e|=5,求e2﹣+(cd)102﹣e 的值.【考点】代数式求值.【分析】根据相反数、绝对值、倒数得出a+b=0,cd=1,e=±5,再代入求出即可.【解答】解:∵a、b互为相反数,c、d互为倒数,|e|=5,∴a+b=0,cd=1,e=±5,当e=5时,原式=52﹣+1102﹣5=21;当e=﹣5时,原式=(﹣5)2﹣+1102﹣(﹣5)=31.23.入冬以来,某家电销售部以150元/台的价格购进一款烤火器,很快售完,又用相同的货款再次购进这款烤火器,因单价提高了30元,进货量比第一次少了10台.(1)家电销售部两次各购进烤火器多少台?(2)若以250元/台的售价卖完这两批烤火器,家电销售部共获利多少元?【考点】一元一次方程的应用.【分析】(1)设第一次购进烤火器x台,则第二次购进烤火器(x﹣10)台,根据第二次进货单价比第一次进货单价贵30元即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=销售第一批烤火器的利润+销售第二批烤火器的利润即可求出家电销售部共获利多少元.【解答】解:(1)设第一次购进烤火器x台,则第二次购进烤火器(x﹣10)台,根据题意得:150x=180(x﹣10),解得x=60,x﹣10=50.答:家电销售部第一次购进烤火器60台,第二次购进50台.(2)×60+×50=9500(元).答:以250元/台的售价卖完这两批烤火器,家电销售部共获利9500元.24.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102…(1)请叙述等式左边各个幂的底数与右边幂的底数之间有什么关系?(2)利用上述规律,计算:13+23+33+43+ (1003)【考点】规律型:数字的变化类.【分析】(1)通过观察可知:右边幂的底数等于左边各个幂的底数的和;(2)利用规律即可解决问题.【解答】解:(1)右边幂的底数等于左边各个幂的底数的和;(2)13+23+33+43+…+1003=(1+2+3+…+100)2=[×100]2=50502.。
2015-2016学年天津市和平区七年级上期末数学试卷含答案解析
2015-2016学年天津市和平区七年级上期末数学试卷含答案解析2015-2016学年天津市和平区七年级(上)期末数学试卷一、选择题(共12小题,每小题2分,满分24分)1.计算(﹣3)﹣(﹣5)=()A.2 B.﹣2 C.8 D.﹣82.数轴上的点A到原点的距离是4,则点A表示的数为()A.4 B.﹣4 C.4或﹣4 D.2或﹣23.下列作图语句中,正确的是()A.画直线AB=6cm B.延长线段AB到CC.延长射线OA到B D.作直线使之经过A,B,C三点4.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释正确的是()A.线段可以比较大小B.线段有两个端点C.两点之间线段最短D.过两点有且只有一条直线5.把方程﹣去分母,正确的是()A.3x﹣(x﹣1)=1 B.3x﹣x﹣1=1 C.3x﹣x﹣1=6 D.3x﹣(x﹣1)=66.已知m+a=n+b,根据等式性质变形为m=n,那么a,b必须符合的条件是()A.a=﹣bB.﹣a=bC.a=bD.a,b可以是任意有理数或整式7.如图,下列说法中错误的是()A.OA的方向是东北方向B.OB的方向是北偏西55°C.OC的方向是南偏西30°D.OD的方向是南偏东30°8.下列图形中,经过折叠不能围成一个立方体的是()A. B. C.D.9.已知∠1=18°18′,∠2=18.18°,∠3=18.3°,下列结论正确的是()A.∠1=∠3 B.∠1=∠2C.∠2=∠3 D.∠1=∠2=∠310.已知∠1与∠2互余,∠2与∠3互补,∠1=58°,则∠3=()A.58°B.148°C.158°D.32°11.如果线段AB=10cm,MA+MB=13cm,那么下面说法中正确的是()A.点M是线段AB上B.点M在直线AB上C.点M在直线AB外D.点M在直线AB上,也可能在直线AB外12.如图,AOB是一条直线,∠AOC=60°,OD,OE分别是∠AOC和∠BOC的平分线,则图中互补的角有()A.5对B.6对C.7对D.8对二、填空题(共6小题,每小题3分,满分18分)13.43的底数是,指数是,计算的结果是.14.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是.15.若a,b互为相反数,c,d互为倒数,m的绝对值为2,则的值为.16.已知:线段a,b,且a>b.画射线AE,在射线AE上顺次截取AB=BC=CD=a,在线段AD上截取AF=b,则线段FD=.17.把一张长方形纸片ABCD按如图所示的那样折叠后,若得到∠AEB′=56°,则∠BEF=.18.平面内有四个点A,B,C,D,过其中每两个点画直线可以画出直线的条数为.三、解答题(共7小题,满分58分)19.计算:(1);(2)﹣6+(﹣2)3×()÷()2÷(﹣3).20.解下列方程:(1)x+5=x+3﹣2x;(2).21.已知A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2.(1)化简:2B﹣A;(2)已知﹣a|x﹣2|b2与ab y的同类项,求2B﹣A的值.22.如图,将一幅直角三角板叠放在一起,使直角顶点重合于点O.(1)若∠AOC=35°,求∠AOD的度数;(2)问:∠AOC=∠BOD吗?说明理由;(3)写出∠AOD与∠BOC所满足的数量关系,并说明理由.23.列一元一次方程解应用题.某校七年级(1)班数学老师为做好期末复习,事先录制了一节复习课,准备刻成电脑光盘给每个学生回家观看.如果到电脑公司刻录光盘每张需9元;如果在学校自己刻录,除租用一台刻录机需要140元外,每张光盘还需要成本费5元.(1)问刻录多少张光盘时,到电脑公司刻录与学校自己刻录所需费用一样?(2)如果七年级(1)班共有学生36人,每人一张,那么到电脑公司刻录合算,还是在学校自己刻录合算.24.已知m,n满足等式(m﹣8)2+2|n﹣m+5|=0.(1)求m,n的值;(2)已知线段AB=m,在直线AB上取一点P,恰好使AP=nPB,点Q为PB的中点,求线段AQ的长.25.已知∠AOB为锐角,如图(1).(1)若OM平分∠AOC,ON平分∠BOD,∠MON=32°,∠COD=10°,如图(2)所示,求∠AOB的度数.(2)若OM,OD,OC,ON是∠AOB的五等分线,如图(3)所示,以射线OA,OM,OD,OC,ON,OB为始边的所有角的和为980°,求∠AOB的度数.2015-2016学年天津市和平区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题2分,满分24分)1.计算(﹣3)﹣(﹣5)=()A.2 B.﹣2 C.8 D.﹣8【考点】有理数的减法.【分析】先将减法转化为加法,然后再按照加法法则计算即可.【解答】解:(﹣3)﹣(﹣5)=﹣3+5=2.故选:A.【点评】本题主要考查的是有理数的减法,掌握有理数的减法法则是解题的关键.2.数轴上的点A到原点的距离是4,则点A表示的数为()A.4 B.﹣4 C.4或﹣4 D.2或﹣2【考点】数轴.【分析】在数轴上点A到原点的距离为4的数有两个,意义相反,互为相反数.即4和﹣4.【解答】解:在数轴上,4和﹣4到原点的距离为4.∴点A所表示的数是4和﹣4.故选:C.【点评】此题考查的知识点是数轴.关键是要明确原点的距离为4的数有两个,意义相反.3.下列作图语句中,正确的是()A.画直线AB=6cm B.延长线段AB到CC.延长射线OA到B D.作直线使之经过A,B,C三点【考点】作图—尺规作图的定义.【专题】探究型.【分析】根据各个选项中的语句,可以判断其是否正确,从而可以解答本题.【解答】解:∵直线无法测量,故选项A错误;延长线断AB到C是正确的,故选项B正确;射线OA本身是以点O为端点,向着OA方向延伸,故选项C错误;如果点A、B、C三点不在同一直线上,则直线不能同时经过这三个点,故选项D错误;故选B.【点评】本题考查作图﹣尺规作图的定义,解题的关键是明确尺规作图的方法,哪些图形可以测量,哪些不可以测量.4.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释正确的是()A.线段可以比较大小B.线段有两个端点C.两点之间线段最短D.过两点有且只有一条直线【考点】线段的性质:两点之间线段最短.【分析】根据线段的性质:两点之间线段最短进行解答即可.【解答】解:把一条弯曲的公路改成直道,可以缩短路程,其道理是两点之间线段最短,故选:C.【点评】此题主要考查了线段的性质,关键是掌握两点之间线段最短.5.把方程﹣去分母,正确的是()A.3x﹣(x﹣1)=1 B.3x﹣x﹣1=1 C.3x﹣x﹣1=6 D.3x﹣(x﹣1)=6【考点】解一元一次方程.【专题】计算题.【分析】去分母的方法是方程两边同时乘以各分母的最小公倍数6,在去分母的过程中注意分数线起到括号的作用,以及去分母时不能漏乘没有分母的项.【解答】解:方程两边同时乘以6得:3x﹣(x﹣1)=6.故选D.【点评】在去分母的过程中注意分数线起到括号的作用,并注意不能漏乘没有分母的项.6.已知m+a=n+b,根据等式性质变形为m=n,那么a,b必须符合的条件是()A.a=﹣bB.﹣a=bC.a=bD.a,b可以是任意有理数或整式【考点】等式的性质.【分析】根据等式的性质,两边都减去b,然后判断即可得解.【解答】解:m+a=n+b两边都减去b得,m+a﹣b=n,∵等式可变形为m=n,∴a﹣b=0,∴a=b.故选C.【点评】本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.7.如图,下列说法中错误的是()A.OA的方向是东北方向B.OB的方向是北偏西55°C.OC的方向是南偏西30°D.OD的方向是南偏东30°【考点】方向角.【分析】根据题意、结合方向角的概念对各个选项进行判断即可.【解答】解:OA的方向是东北方向,A正确;OB的方向是北偏西55°,B正确;OC的方向是南偏西60°,C错误;OD的方向是南偏东30°,D正确,故选:C.【点评】本题考查的是方向角的知识,在方位图中正确读懂方向角是解题的关键.8.下列图形中,经过折叠不能围成一个立方体的是()A. B. C.D.【考点】展开图折叠成几何体.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:选项A、B、C经过折叠均能围成正方体;D、有“田”字格,不能折成正方体.故选D.【点评】本题主要考查展开图折叠成几何体的知识点,注意只要有“田”字格的展开图都不是正方体的表面展开图.9.已知∠1=18°18′,∠2=18.18°,∠3=18.3°,下列结论正确的是()A.∠1=∠3 B.∠1=∠2C.∠2=∠3 D.∠1=∠2=∠3【考点】度分秒的换算.【分析】根据小单位化大单位除以进率,可化成相同单位的角,根据有理数的大小比较,可得答案.【解答】解:∠1=18°18′=18.3°=∠3<∠2,故选:A.【点评】本题考查了度分秒的换算,利用小单位化大单位除以进率化成相同单位的角是解题关键.10.已知∠1与∠2互余,∠2与∠3互补,∠1=58°,则∠3=()A.58°B.148°C.158°D.32°【考点】余角和补角.【分析】已知∠1的度数,根据余角的性质可求得∠2的度数,再根据补角的性质即可求得∠3的度数.【解答】解:∵∠1与∠2互余,∠1=65°∴∠2=90°﹣58°=32∠2与∠3互补∴∠3=180°﹣32°=148°.故选B.【点评】本题考查了余角和补角,是基础题,熟记概念是解题的关键.11.如果线段AB=10cm,MA+MB=13cm,那么下面说法中正确的是()A.点M是线段AB上B.点M在直线AB上C.点M在直线AB外D.点M在直线AB上,也可能在直线AB外【考点】直线、射线、线段.【分析】根据AB=10cm,若点M是线段AB上,则MA+MB=10cm,点M在直线AB外或点M在直线AB上都可能MA+MB=13cm.【解答】解:如图1:点M在直线AB外时,MA+MB=13cm,如图2,点M在直线AB上时,MA+MB=13cm,根据以上两个图形得出M可以在直线AB上,也可以在直线AB外,故选D.【点评】本题考查了求两点间的距离的应用,主要考查学生的画图能力和理解能力.12.如图,AOB是一条直线,∠AOC=60°,OD,OE分别是∠AOC和∠BOC的平分线,则图中互补的角有()A.5对B.6对C.7对D.8对【考点】余角和补角.【分析】根据邻补角的定义以及角平分线的定义求得图中角的度数,然后根据互补的定义进行判断.【解答】解:∠BOC=180°﹣∠AOC=180°﹣60°=120°,∵OD,OE分别是∠AOC和∠BOC的平分线,∴∠AOD=∠COD=30°,∠COE=∠BOE=60°,∴∠AOE=∠BOC=120°,∠DOE=90°,∠DOB=150°,则∠AOD+∠DOB=180°,∠COD+∠DOB=180°,∠AOC+∠BOC=180°,∠COE+∠BOC=180°,∠BOE+∠BOC=180°,∠AOE+∠BOE=180°,∠AOE+∠AOC=180°,∠AOE+∠COE=180°.总之有8对互补的角.故选D.【点评】本题考查了补角的定义以及角平分线的定义,正确求得图中角的度数是关键.二、填空题(共6小题,每小题3分,满分18分)13.43的底数是4,指数是3,计算的结果是64.【考点】有理数的乘方.【专题】计算题;实数.【分析】利用幂的意义判断即可得到结果.【解答】解:43的底数是4,指数是3,计算的结果是64,故答案为:4;3;64【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.14.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是圆柱.【考点】由三视图判断几何体.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故答案为:圆柱.【点评】考查了由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.15.若a,b互为相反数,c,d互为倒数,m的绝对值为2,则的值为4.【考点】代数式求值;相反数;绝对值;倒数.【专题】计算题;实数.【分析】利用相反数,倒数,以及绝对值的代数意义求出a+b,cd,以及m的值,代入计算即可求出值.【解答】解:根据题意得:a+b=0,cd=1,m=2或﹣2,当m=2时,原式=8﹣4=4;当m=﹣2时,原式=8﹣4=4.故答案为:4【点评】此题考查了代数式求值,相反数,倒数,以及绝对值,熟练掌握运算法则是解本题的关键.16.已知:线段a,b,且a>b.画射线AE,在射线AE上顺次截取AB=BC=CD=a,在线段AD上截取AF=b,则线段FD=3a﹣b.【考点】两点间的距离.【分析】先根据题意画出图形,然后根据线段间的和差关系进行计算即可.【解答】解:如图所示:DF=AD﹣AF=AB+CB+CD﹣AF=3a﹣b.故答案为:3a﹣b.【点评】本题主要考查的是两点间间的距离,根据题意画出图形是解题的关键.17.把一张长方形纸片ABCD按如图所示的那样折叠后,若得到∠AEB′=56°,则∠BEF=62°.【考点】角的计算;翻折变换(折叠问题).【分析】先根据平角的定义求出∠BEB′,再根据折叠的性质得出∠BEF=∠B′EF=∠BEB′,即可求出答案.【解答】解:∵把一张长方形纸片ABCD按如图所示的那样折叠后,得到∠AEB′=56°,∴∠BEB′=180°﹣∠AEB′=124°,∠BEF=∠B′EF,∵∠BEF+∠B′EF=∠BEB′,∴∠BEF=∠B′EF=∠BEB′=62°,故答案为:62°.【点评】本题考查了平角的定义和折叠的性质的应用,关键是求出∠BEB′的度数以及得出∠BEF=∠B′EF=∠BEB′.18.平面内有四个点A,B,C,D,过其中每两个点画直线可以画出直线的条数为1条、4条或6条.【考点】直线、射线、线段.【分析】由直线公理,两点确定一条直线,但题中没有明确指出已知点中,是否有3个点,(或者4个点)在同一直线上,因此要分三种情况加以讨论.【解答】解:(1)如果4个点,点A、B、C、D在同一直线上,那么只能确定一条直线,如图:(2)如果4个点中有3个点(不妨设点A、B、C)在同一直线上,而第4个点,点D不在此直线上,那么可以确定4条直线,如图:(3)如果4个点中,任何3个点都不在同一直线上,那么点A分别和点B、C、D确定3条直线,点B分别与点C、D确定2条直线,最后点C、D确定一条直线,这样共确定6条直线,如图:综上所述,过其中2个点可以画1条、4条或6条直线.故答案为:1条、4条或6条.【点评】本题考查了直线的定义.在解题过程中,注意分情况讨论,这样才能将各种情况考虑到.三、解答题(共7小题,满分58分)19.计算:(1);(2)﹣6+(﹣2)3×()÷()2÷(﹣3).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式通分并利用同分母分数的加减法则计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=+﹣+1=﹣+1=;(2)原式=﹣6﹣8××36×(﹣)=﹣6+16=10.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.解下列方程:(1)x+5=x+3﹣2x;(2).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去分母,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:2x+10=x+6﹣4x,移项合并得:5x=﹣4,解得:x=﹣0.8;(2)去分母得:5(x﹣3)﹣3(2x+7)=15(x﹣1),去括号得:5x﹣15﹣6x﹣21=15x﹣15,移项合并得:﹣16x=21,解得:x=﹣.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.已知A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2.(1)化简:2B﹣A;(2)已知﹣a|x﹣2|b2与ab y的同类项,求2B﹣A的值.【考点】整式的加减;同类项.【专题】计算题;整式.【分析】(1)把A与B代入2B﹣A中,去括号合并即可得到结果;(2)利用同类项的定义求出x与y的值,代入原式计算即可得到结果.【解答】解:(1)∵A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2,∴2B﹣A=2(2xy﹣3y2+4x2)﹣(3x2+3y2﹣5xy)=4xy ﹣6y2+8x2﹣3x2﹣3y2+5xy=5x2+9xy﹣9y2;(2)∵﹣a|x﹣2|b2与ab y的同类项,∴|x﹣2|=1,y=2,解得:x=3或x=1,y=2,当x=3,y=2时,原式=45+54﹣36=53;当x=1,y=2时,原式=5+18﹣36=﹣13.【点评】此题考查了整式的加减,以及同类项,熟练掌握运算法则是解本题的关键.22.如图,将一幅直角三角板叠放在一起,使直角顶点重合于点O.(1)若∠AOC=35°,求∠AOD的度数;(2)问:∠AOC=∠BOD吗?说明理由;(3)写出∠AOD与∠BOC所满足的数量关系,并说明理由.【考点】余角和补角.【分析】(1)把已知角的度数代入∠AOD=∠AOC+∠COD,求出即可;(2)已知∠AOB=∠COD=90°,都减去∠COB即可;(3)根据∠AOB=∠COD=90°即可求出答案.【解答】解:(1)∵∠COD=90°,∠AOC=35°,∴∠AOD=∠AOC+∠COD=35°+90°=125°;(2)∠AOC=∠BOD,理由是:∵∠AOB=∠COD=90°,∴∠AOB﹣∠COB=∠COD﹣∠COB,∴∠AOC=∠BOD;(3)∠AOD+∠BOC=180°,理由是:∵∠AOB=∠COD=90°,∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=∠COD+∠AOB=90°+90°=180°.【点评】本题考查了角的计算及余角和补角的概念,熟悉图形是解题的关键.23.列一元一次方程解应用题.某校七年级(1)班数学老师为做好期末复习,事先录制了一节复习课,准备刻成电脑光盘给每个学生回家观看.如果到电脑公司刻录光盘每张需9元;如果在学校自己刻录,除租用一台刻录机需要140元外,每张光盘还需要成本费5元.(1)问刻录多少张光盘时,到电脑公司刻录与学校自己刻录所需费用一样?(2)如果七年级(1)班共有学生36人,每人一张,那么到电脑公司刻录合算,还是在学校自己刻录合算.【考点】一元一次方程的应用.【分析】本题中到电脑公司刻录需要的总费用=单价×刻录的数量,而自刻录的总费用=租用刻录机的费用+每张的成本×刻录的数量.列出总费用与刻录数量的关系式,然后将两种费用进行比较.(1)到电脑公司刻录需要的总费用=自己刻录的总费用时,到电脑公司刻录与学校自己刻录所需费用一样;(2)分别求出到电脑公司刻录需要的总费用和自己刻录的总费用,再比较大小即可求解.【解答】解:(1)设刻录x张光盘时,到电脑公司刻录与学校自己刻录所需费用一样,依题意,得9x=140+5x,解得x=35.答:刻录35张光盘时,到电脑公司刻录与学校自己刻录所需费用一样(2)9×36=324(元),140+5×36=140+180=320(元),因为324>320,所以在学校自己刻录合算.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找到关键描述语,由费用找出合适的等量关系,列出方程,再求解.24.已知m,n满足等式(m﹣8)2+2|n﹣m+5|=0.(1)求m,n的值;(2)已知线段AB=m,在直线AB上取一点P,恰好使AP=nPB,点Q为PB的中点,求线段AQ的长.【考点】两点间的距离;非负数的性质:绝对值;非负数的性质:偶次方.【分析】(1)根据非负数的和为零,可得每个非负数同时为零,可得m,n的值;(2)根据线段的和差,可得AP,PB的长,根据线段中点的性质,可得PQ的长,根据线段的和差,可得答案.【解答】解:(1)由(m﹣8)2+2|n﹣m+5|=0,得m﹣8=0,n﹣m+5=0.解得m=8,n=3;(2)由(1)得AB=8,AP=3PB,有两种情况:①当点P在点B的左侧时,如图1,AB=AP+PB=8,AP=3PB,4PB=8,解得PB=2,AP=3PB=3×2=6.∵点Q为PB的中点,∴PQ=PB=1,AQ=AP+PQ=6+1=7;②当点P在点B的右侧时,如图2,∵AP=AB+BP,AP=3PB,∴3PB=8+PB,∴PB=4.∵点Q为PB的中点,∴BQ=PB=2,∴AQ=AB+BQ=8+2=10.【点评】本题考查了两点间的距离,利用非负数的和为零得出每个非负数同时为零是解题关键;利用线段的和差是解题关键,要分类讨论,以防遗漏.25.已知∠AOB为锐角,如图(1).(1)若OM平分∠AOC,ON平分∠BOD,∠MON=32°,∠COD=10°,如图(2)所示,求∠AOB的度数.(2)若OM,OD,OC,ON是∠AOB的五等分线,如图(3)所示,以射线OA,OM,OD,OC,ON,OB为始边的所有角的和为980°,求∠AOB的度数.【考点】角的计算;角平分线的定义.【分析】(1)根据角平分线的定义容易得到,∠MON=∠CON+∠DON﹣∠COD,根据已知条件求得∠COM+∠DON=42°,即可求得∠AOM+∠BON=42°,从而求得∠AOB=∠AOM+∠BON+∠MON=74.(2)设∠AOB被五等分的每个角为x°,则∠AOB=5x°,分别表示出以射线OA、OM、OD、OC、ON、OB为始边的所有角的度数,根据题意列出关于x的方程,解方程求得x的值,即可求得∠AOB 的度数.【解答】解:(1)∵OM平分∠AOC,ON平分∠BOD,∴∠AOM=∠COM,同理:∠BON=∠DON,∵∠MON=32°,∠COD=10°,∠MON=∠CON+∠DON﹣∠COD,∴32°=∠COM+∠DON﹣10°,∴∠COM+∠DON=42°,∴∠AOM+∠BON=42°,∵∠AOB=∠AOM+∠BON+∠MON,∴∠AOB=42°+32°=74°;(2)设∠AOB被五等分的每个角为x°,则∠AOB=5x°,以射线OA为始边的所有角的度数为x°+2x°+3x°+4x°+5x°=15x°,以射线OM、OD、OC、ON、OB为始边的所有角的度数分别为11x°,9x°,9x°11x°,15x°,由题意得15x+11x+9x+9x+11x+15x=980,解得x=14.故∠AOB=5×14°=70°.【点评】本题考查了角平分线定义,角的有关计算的应用,解此题的关键是找出角度关系.第31页(共31页)。
2016-2017年天津市和平区七年级(上)期末数学试卷和参考答案
2016-2017学年天津市和平区七年级(上)期末数学试卷一、选择题:本大题共12小题,每小题2分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2分)计算5+(﹣5)=()A.1 B.0 C.10 D.﹣102.(2分)(﹣2)3表示()A.﹣2×3 B.(﹣2)+(﹣2)+(﹣2)C.﹣2×2×2 D.(﹣2)×(﹣2)×(﹣2)3.(2分)下列说法正确的是()A.表示﹣x的平方的式子是﹣x2B.表示x、y2、3的积的式子是3xy2C.x、y两数差的平方表示为(x﹣y)2D.x2+y2的意义是x与y和的平方4.(2分)如图所示,小明家在A处,体育馆在B处,星期六小明由家去体育馆打篮球,他想尽快到达体育馆,请你帮助他选择一条最近的路线,应是()A.A→C→E→B B.A→C→D→B C.A→C→G→B D.A→C→F→E→B5.(2分)如图,点P位于点O的()A.南偏西32°B.北偏东32°C.南偏东58°D.北偏西58°6.(2分)下面给出的三个平面图形,是从前面、左面、上面看一个立体图形得到的,那么这个立体图形应是()A.B.C.D.7.(2分)如图,四个图形都是由6个大小相同的正方形组成,其中是正方体展开图的是()A.①②④B.①②③C.②④D.②③④8.(2分)如图所示,点A、B、C在直线l上,则下列说法正确的是()A.图中有2条线段B.图中有6条射线C.点C在直线AB的延长线上D.A、B两点之间的距离是线段AB9.(2分)下列方程中,解为x=﹣2的方程是()A.2x+5=1﹣x B.3﹣2(x﹣1)=7﹣x C.x﹣2=﹣2﹣x D.1﹣x=x 10.(2分)如图,下列关系式中与图不符的是()A.AD﹣CD=AC B.AB+BC=AC C.BD﹣BC=AB+BC D.AD﹣BD=AC﹣BC 11.(2分)若∠α与∠β互余,且∠α:∠β=3:2,那么∠α与∠β的度数分别是()A.36°,54°B.60°,40°C.54°,36°D.72°,108°12.(2分)如图,∠MON为锐角.下列说法:①∠MOP=∠MON;②∠MOP=∠NOP=∠MON;③∠MOP=∠NOP;④∠MON=∠MOP+∠NOP.其中,能说明射线OP一定为∠MON的平分线的有()A.1个 B.2个 C.3个 D.4个二、填空题:笨蛋那天共6小题,每小题3分,共18分.13.(3分)56.28°=°′″.14.(3分)若单项式ax2y n+1与﹣ax m y4的差仍是单项式,则m﹣2n=.15.(3分)线段AB=4cm,点C在AB的延长线上,点D在AB的反向延长线上,且点B为AC的中点,AD为BC的2倍,则线段CD=.16.(3分)已知∠AOB=3∠BOC,若∠BOC=30°,则∠AOC=度.17.(3分)若一个角的补角加上10°后,等于这个角的余角的3倍,则这个角的补角为度.18.(3分)如图,点A、B在数轴上,其对应的数分别是﹣14和10,若点C也在这个数轴上,且AC:BC=2:5,则点C对应的数是.三、解答题:本大题共7小题,共58分,解答应写出演算步骤或简单推理过程.19.(8分)计算:(1)÷(﹣2)﹣(﹣)×(﹣)+;(2){1+[﹣(﹣)2]×(﹣2)3}÷(﹣1+0.5).20.(8分)解下列方程:(1)3(2x﹣)﹣2(x+1)=2;(2)2y﹣=+3.21.(7分)已知A=3b2﹣2a2+5ab,B=4ab﹣2b2﹣a2.(1)化简:3A﹣4B;(2)已知a、b满足(a﹣1)2+|b+1|=0,求3A﹣4B的值.22.(7分)如图,已知∠AOB=155°,∠AOC=∠BOD=90°.(1)写出与∠COD互余的角;(2)求∠COD的度数;(3)图中是否有互补的角?若有,请写出来.23.(9分)列一元一次方程解应用题.某租赁公司拥有100辆轿车,当每辆轿车的月租金为3000元时,可全部租出,当每辆轿车的月租金每增加50元时,未租出的轿车将会增加一辆,租出的轿车每辆每月公司需要保养费150元,未租出的轿车每辆每月公司需要保养费50元.(1)已知10月份每辆轿车的月租金为3600元时,能租出多少辆轿车?(2)已知11月份的保养费开支为12900元,问该月租出了多少辆轿车?(3)比较10、11两月的月收益,哪个月的月收益多?多多少?24.(9分)如图,O为直线AB上一点,∠BOC=α.(1)若α=40°,OD平分∠AOC,∠DOE=90°,如图(a)所示,求∠AOE的度数;(2)若∠AOD=∠AOC,∠DOE=60°,如图(b)所示,请用α表示∠AOE的度数;(3)若∠AOD=∠AOC,∠DOE=(n≥2,且n为正整数),如图(c)所示,请用α和n表示∠AOE的度数(直接写出结果).25.(10分)已知a、b均为有理数,且关于x的方程为=+1.(1)当a=4,b=﹣时,求x的值;(2)若关于x的方程有无数个解.①求a、b的值;②设线段AB=a,CD=b,线段CD在直线AB上(A在B的左侧,C在D的左侧),且M、N分别是线段AC、BD的中点,若BC=4,求MN的值.2016-2017学年天津市和平区七年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题2分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2分)计算5+(﹣5)=()A.1 B.0 C.10 D.﹣10【解答】解:5+(﹣5)=0,故选:B.2.(2分)(﹣2)3表示()A.﹣2×3 B.(﹣2)+(﹣2)+(﹣2)C.﹣2×2×2 D.(﹣2)×(﹣2)×(﹣2)【解答】解:(﹣2)3表示(﹣2)×(﹣2)×(﹣2),故选:D.3.(2分)下列说法正确的是()A.表示﹣x的平方的式子是﹣x2B.表示x、y2、3的积的式子是3xy2C.x、y两数差的平方表示为(x﹣y)2D.x2+y2的意义是x与y和的平方【解答】解:A、错误.表示﹣x的平方的式子是(﹣x)2.B、错误.表示x、y2、3的积的式子是xy2.C、正确.x、y两数差的平方表示为(x﹣y)2.D、错误.x2+y2的意义是x与y的平方和.故选:C.4.(2分)如图所示,小明家在A处,体育馆在B处,星期六小明由家去体育馆打篮球,他想尽快到达体育馆,请你帮助他选择一条最近的路线,应是()A.A→C→E→B B.A→C→D→B C.A→C→G→B D.A→C→F→E→B【解答】解:最近的路线,应是A→C→E→B,故选:A.5.(2分)如图,点P位于点O的()A.南偏西32°B.北偏东32°C.南偏东58°D.北偏西58°【解答】解:∵OP和正北方向的夹角是58度∴点P位于点O的北偏西58°的方向上.故选:D.6.(2分)下面给出的三个平面图形,是从前面、左面、上面看一个立体图形得到的,那么这个立体图形应是()A.B.C.D.【解答】解:∵主视图和左视图都是三角形,∴此几何体为椎体,∵俯视图是一个长方形,∴此几何体为四棱锥.故选:D.7.(2分)如图,四个图形都是由6个大小相同的正方形组成,其中是正方体展开图的是()A.①②④B.①②③C.②④D.②③④【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,①,②,④选项可以拼成一个正方体,而③选项,上底面不可能有两个,故不是正方体的展开图.故选:A.8.(2分)如图所示,点A、B、C在直线l上,则下列说法正确的是()A.图中有2条线段B.图中有6条射线C.点C在直线AB的延长线上D.A、B两点之间的距离是线段AB【解答】解:∵图中有3条线段,∴选项A不正确;∵图中有6条射线,∴选项B正确;∵点C在线段AB的延长线上,∴选项C不正确;∵A、B两点之间的距离是线段AB的长度,∴选项D不正确.故选:B.9.(2分)下列方程中,解为x=﹣2的方程是()A.2x+5=1﹣x B.3﹣2(x﹣1)=7﹣x C.x﹣2=﹣2﹣x D.1﹣x=x【解答】解:将x=﹣2代入3﹣2(x﹣1)=7﹣x,∴左边=3﹣2×(﹣2﹣1)=3+6=9,右边=7﹣(﹣2)=9左边=右边,故选:B.10.(2分)如图,下列关系式中与图不符的是()A.AD﹣CD=AC B.AB+BC=AC C.BD﹣BC=AB+BC D.AD﹣BD=AC﹣BC【解答】解:A、AD﹣CD=AC,正确;B、AB+BC=AC,正确;C、由BD﹣BC=CD、AB+BC=AC知BD﹣BC=AB+BC错误;D、由AD﹣BD=AB、AC﹣BC=AB知AD﹣BD=AC﹣BC,正确;故选:C.11.(2分)若∠α与∠β互余,且∠α:∠β=3:2,那么∠α与∠β的度数分别是()A.36°,54°B.60°,40°C.54°,36°D.72°,108°【解答】解:设∠α,∠β的度数分别为3x°,2x°,则3x+2x=90,∴x=18.∴∠α=3x°=54°,∠β=2x°=36°,故选:C.12.(2分)如图,∠MON为锐角.下列说法:①∠MOP=∠MON;②∠MOP=∠NOP=∠MON;③∠MOP=∠NOP;④∠MON=∠MOP+∠NOP.其中,能说明射线OP一定为∠MON的平分线的有()A.1个 B.2个 C.3个 D.4个【解答】解:根据角平分线的定义,结合各选项得:①如果P点不在∠MON夹角内,则OP不是∠MON的平分线;②正确;③如果P点在∠MON外面,则OP不是∠MON的平分线;④如果∠MOP≠∠NOP,则OP不是∠MON的平分线;故选:A.二、填空题:笨蛋那天共6小题,每小题3分,共18分.13.(3分)56.28°=56°16′48″.【解答】解:∵0.28×60=16.8,0.8×60=48,∴56.28°=56°26′48″.故答案为:56,16,48.14.(3分)若单项式ax2y n+1与﹣ax m y4的差仍是单项式,则m﹣2n=﹣4.【解答】解:∵单项式与的差仍是单项式,∴单项式与是同类项,m=2,n+1=4,n=3,m﹣2n=2﹣2×3=﹣4,故答案为:﹣4.15.(3分)线段AB=4cm,点C在AB的延长线上,点D在AB的反向延长线上,且点B为AC的中点,AD为BC的2倍,则线段CD=16cm.【解答】解:∵AB=4cm,B为AC的中点,∴BC=AB=4cm,∵AD为BC的2倍,∴AD=8cm,∴CD=AD+AB+BC=16cm,故答案为:16cm.16.(3分)已知∠AOB=3∠BOC,若∠BOC=30°,则∠AOC=60或120度.【解答】解:∵∠BOC=30°,∠AOB=3∠BOC,∴∠AOB=3×30°=90°(1)当OC在∠AOB的外侧时,∠AOC=∠AOB+∠BOC=90°+30°=120度;(2)当OC在∠AOB的内侧时,∠AOC=∠AOB﹣∠BOC=90°﹣30°=60度.故填60或120.17.(3分)若一个角的补角加上10°后,等于这个角的余角的3倍,则这个角的补角为140度.【解答】解:设这个角的度数为x°,根据题意,得:180﹣x+10=3(90﹣x),解得:x=40,∴这个角的补角为:180°﹣40°=140°,故答案为:140.18.(3分)如图,点A、B在数轴上,其对应的数分别是﹣14和10,若点C也在这个数轴上,且AC:BC=2:5,则点C对应的数是﹣或﹣30.【解答】解:设点C表示的数为x,当点C在A、B之间时,=,解得:x=﹣;当点C在点A的左边时,=,解得:x=﹣30,故答案为:﹣或﹣30.三、解答题:本大题共7小题,共58分,解答应写出演算步骤或简单推理过程.19.(8分)计算:(1)÷(﹣2)﹣(﹣)×(﹣)+;(2){1+[﹣(﹣)2]×(﹣2)3}÷(﹣1+0.5).【解答】解:(1)原式=﹣×﹣+=﹣;(2)原式=(1﹣+)×(﹣)=﹣+﹣=﹣5.20.(8分)解下列方程:(1)3(2x﹣)﹣2(x+1)=2;(2)2y﹣=+3.【解答】解:(1)去括号得:6x﹣4﹣2x﹣2=26x﹣2x=2+4+2,4x=8,x=2;(2)去分母得:12y﹣3(y﹣3)=y+21,12y﹣3y+9=y+21,12y﹣3y﹣y=21﹣9,8y=12,y=1.5.21.(7分)已知A=3b2﹣2a2+5ab,B=4ab﹣2b2﹣a2.(1)化简:3A﹣4B;(2)已知a、b满足(a﹣1)2+|b+1|=0,求3A﹣4B的值.【解答】解:(1)3A﹣4B=3(3b2﹣2a2+5ab)﹣4(4ab﹣2b2﹣a2)=9b2﹣6a2+15ab﹣16ab+8b2+4a2=﹣2a2﹣ab+17b2(2)由题意可知:a﹣1=0,b+1=0,∴a=1,b=﹣1∴3A﹣4B=2×1﹣1×(﹣1)+17×1=﹣2+1+17=1622.(7分)如图,已知∠AOB=155°,∠AOC=∠BOD=90°.(1)写出与∠COD互余的角;(2)求∠COD的度数;(3)图中是否有互补的角?若有,请写出来.【解答】解:(1)∵∠AOC=∠BOD=90°,∴∠COD+∠AOD=90°,∠COD+∠BOC=90°,∴与∠COD互余的角是∠AOD和∠BOC;(2)∠BOC=∠AOB﹣∠AOC=65°,∴∠COD=∠BOD﹣∠BOC=25°;(3)∠COD与∠AOB、∠AOC与∠BOD互补.23.(9分)列一元一次方程解应用题.某租赁公司拥有100辆轿车,当每辆轿车的月租金为3000元时,可全部租出,当每辆轿车的月租金每增加50元时,未租出的轿车将会增加一辆,租出的轿车每辆每月公司需要保养费150元,未租出的轿车每辆每月公司需要保养费50元.(1)已知10月份每辆轿车的月租金为3600元时,能租出多少辆轿车?(2)已知11月份的保养费开支为12900元,问该月租出了多少辆轿车?(3)比较10、11两月的月收益,哪个月的月收益多?多多少?【解答】解:(1)设10月份未租出x辆轿车,依题意得,50x=3600﹣3000,解得x=12.所以,租出的轿车为100﹣12=88(辆).答:10月份能租出88辆轿车;(2)设11月份租出y辆轿车,依题意得:150y+50(100﹣y)=12900解得y=79.答:11月份租出79辆轿车;(3)10月份收益:(3600﹣150)×88﹣50×12=303000(元).11月份收益:[3000+50(100﹣79)]×79﹣12900=307050(元).因为307050﹣303000=4050(元),所以11月份收益多,多4050元.24.(9分)如图,O为直线AB上一点,∠BOC=α.(1)若α=40°,OD平分∠AOC,∠DOE=90°,如图(a)所示,求∠AOE的度数;(2)若∠AOD=∠AOC,∠DOE=60°,如图(b)所示,请用α表示∠AOE的度数;(3)若∠AOD=∠AOC,∠DOE=(n≥2,且n为正整数),如图(c)所示,请用α和n表示∠AOE的度数(直接写出结果).【解答】解:(1)∵∠BOC=40°,OD平分∠AOC,∴∠AOD=∠DOC=70°,∵∠DOE=90°,则∠AOE=90°﹣70°=20°;故答案为:20°;(2)设∠AOD=x,则∠DOC=2x,∠BOC=180﹣3x=α,解得:x=,∴∠AOE=60﹣x=60﹣=α;(3)设∠AOD=x,则∠DOC=(n﹣1)x,∠BOC=180﹣nx=α,解得:x=,∴∠AOE=﹣=.25.(10分)已知a、b均为有理数,且关于x的方程为=+1.(1)当a=4,b=﹣时,求x的值;(2)若关于x的方程有无数个解.①求a、b的值;②设线段AB=a,CD=b,线段CD在直线AB上(A在B的左侧,C在D的左侧),且M、N分别是线段AC、BD的中点,若BC=4,求MN的值.【解答】解:(1)当a=4,b=﹣时,方程变为=+1,化简,得=+1,去分母,得2x﹣1=4x﹣2+48,﹣2x=47,x=﹣;(2)①去分母,得ax+ab=8x﹣8|b|+96,(a﹣8)x=﹣8|b|﹣ab+96,∵关于x的方程有无数个解,∴a﹣8=0,﹣8|b|﹣ab+96=0,解得a=8,则﹣8|b|﹣8b+96=0,当b≥0时,得﹣16b+96=0,解得b=6,当b<0时,得8b﹣8b+96=0,无解.综上可知,a=8,b=6.②依题意有AB=8,CD=6,当点C、D都在点A的左侧,点C在点A的左侧且点D在点A的右侧时,线段CD在线段AB上时,这三种情况均有BC>CD,不合题意;当点C在点B的左侧,点D在点B的右侧时,如图所示:,有BC<CD,符合题意;∵BC=4,CD=6,∴BD=2,∵N是线段BD的中点,∴BN=1,∴CN=CB+BN=4+1=5,∵AB=8,∴CM=AC=2,∴MN=CM+CN=2+5=7;当点C、D都在点B的右侧时,符合题意,如图所示:;则AC=AB+BC=8+4=12,BD=BC+CD=4+6=10,∵M、N分别是线段AC、BD的中点,∴CM=AC=6,BN=BD=5,∴MN=CM+BN﹣BC=6+5﹣4=7.综上所述,MN的值为7.。
【名师点睛】天津市和平区2016-2017年七年级数学上册 一元一次方程章节复习题及答案(PDF版)
2016-2017学年度第一学期七年级数学一元一次方程章节复习题姓名:_______________班级:_______________得分:_______________一选择题:1.已知a=b,下列各式:a-b=b-3,a+5=b+5,a-8=b+8,2a =a+b,正确的有()A.1个 B.2个C.3个D.4个2.若5)2(1=--m xm 是一元一次方程,则m 的值为()A.±2B.-2C.2D.43.如果x=﹣1是关于x 的方程5x+2m﹣7=0的解,则m 的值是()A.﹣1B.1C.6D.﹣64.已知x=5是方程ax﹣8=20+a 的解,则a 的值是()A.2B.3C.7D.85.已知(y 2-1)x 2+(y+1)x+4=0是关于x 的一元一次方程,若a>1.则化简x a a y -+-的值是()A.3B.-3C.2a+1D.-2a-16.若7﹣2x 和5﹣x 的值互为相反数,则x 的值为()A.4B.2C.﹣12D.﹣77.已知a 2+2a=1,则代数式1﹣2a 2﹣4a 的值为()A.0B.1C.﹣1D.﹣28.某企业2015年1月份生产产值为a 万元,2月份比1月份减少了20%,3月份比2月份增加了25%,则3月份的生产产值是()A.(a﹣20%)(a+25%)万元B.a(1﹣20%+25%)万元C.(a﹣20%+25%)万元D.A(1﹣20%)(1+25%)万元9.按下面的程序计算:若输入x=100,输出结果是501,若输入x=25,输出结果是631,若开始输入的x 值为正整数,最后输出的结果为556,则开始输入的x 值可能有()A.1种B.2种C.3种D.4种10.解方程221=+--x x ,去分母正确的是()A.2x-1-x+2=2B.2x-1-x+2=12C.2x-2-x-2=6D.2x-2-x-2=1211.某班级劳动时,将全班同学分成x 个小组,若每小组11人,则余下1人;若每小组12人,则有一组少4人.按下列哪个选项重新分组,能使每组人数相同?()A.3组B.5组C.6组D.7组12.如下表从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2016个格子中的整数为()3abc﹣12…A.3B.2C.0D.﹣1二填空题:13.若关于x 的方程(a﹣2)x |a|﹣1﹣2=1是一元一次方程,则a=.14.已知当x=1时,2ax 2+bx 的值为3,则当x=2时,ax 2+bx 的值为.15.某种商品原价每件b 元,第一次降价打八折,第二次降价每件又减10元,第二次降价后的售价是16.某商品的价格标签已丢失,售货员只知道它的进价为80元,打七折售出后,仍可获利5%,你认为标签上的价格为元.17.出租车收费标准为:起步价10元(不超过3千米收费10元),3千米后每千米1.4元(不足1千米按1千米算)、小明坐车x(x 是大于3的整数)千米,应付车费元(化简).18.方程20162016...21...32121=++++++++++x x x x 的解是x=.19.如图所示是计算机程序计算,若开始输入x=﹣21,则最后输出的结果是.20.小赵和小王交流暑假中的活动,小赵说:“我参加了科技夏令营,外出一个星期,这七天的日期之和为84,你知道我是几号出去的吗?”小王想了一会说:“你是9号出去的.”小王又说:“我假期到舅舅家去住了七天,日期之和再加上月份数也是84,你能猜出我是几号回家的吗?”小王回家的日期是.21.解下列方程:(1)8725+=-x x (2)1)13()3(2=---x x (3)67121--=+-x x x(4)673422--=--x x (5)332121xx -=-+(6)38316.036.13.02+=--x x x 22.已知关于x 的方程4x-a=1与23231+=++x a x 的解相同,求a 的值.23.如果方程5(x﹣3)=4x﹣10的解与方程4x-(3a+1)=6x+2a-1的解相同,求式子-(-3a 2+7a﹣1)的值.24.红光服装厂要生产某种学生服一批,已知每3米长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的这种布料生产学生服,应分别用多少布料生产上衣和裤子,才能恰好配套?共能生产多少套?25.某机械厂为某公司生产A,B两种产品,由甲车间生产A种产品,乙车间生产B种产品,两车间同时生产。
天津市和平区2016-2017学年七年级上期中数学模拟试卷含答案解析
最大最全最精的教育资源网天津市西青区2016-2017 年七年级数学上册期末模拟试题一、选择题(本大题共12 小题,每题 3 分,共 36 分。
在每题给出的四个选项中,只有一个选项是切合题目要求的)1.以下各数精准到万分位的是()A. 0.0720B.0.072C.0.72D. 0.1762.火星和地球的距离约为34 000 000 千米,用科学记数法表示34 000 000 的结果是 ( )千米.A. 0.34 × 108B. 3.4 × 106C.34× 106D. 3.4 × 1073.若数轴上的点A、B 分别于有理数a、b 对应,则以下关系正确的选项是( )A. a<b B.﹣a<b C.|a|<|b|D.﹣a>﹣b4. 已知 2 是对于 x 的方程 3x+a=0 的解.那么 a 的值是()A.-6B.-3C.-4D.-55.下边的图形,是由 A、 B、 C、 D 中的哪个图旋转形成的 ( )A.B.C.D.6.对于 x 的方程2(x﹣ 1)﹣ a=0 的根是 3,则 a 的值为 ()A. 4B.﹣ 4C. 5D.﹣ 57.小明和小刚从相距 25 千米的两地同时相向而行, 3 小时后两人相遇,小明的速度是 4 千米/ 小时,设小刚的速度为x 千米 / 小时,列方程得()A. 4+3x=25B.12+x=25C. 3( 4+x) =25D.3( 4﹣ x)=25 8.书店、学校、食堂在平面上分别用A、B、 C 来表示,书店在学校的北偏西30°,食堂在学校的南偏东 15°,则平面图上的∠ABC的度数应当是 ()A. 65°B.35°C. 165°D. 135°9.两个锐角的和不行能是 ( )A.锐角B.直角C.钝角D.平角10.右图是“大润发”商场中“飘柔”洗发水的价钱标签,一服务员不当心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A.22元B.23元C.24元D.26元11. 给出以下判断:①若,则;②若,则;③若,则;④随意数,则是正数;⑤在数轴上,离原点越远,该点对应的数的绝对值越大,此中正确的结论的个数为()A.0B.1C.2D.312.某细胞开始有 2 个, 1 小时后分裂成 4 个并逝世 1 个, 2 小时后分裂成 6 个并逝世1 个,3 小时后分裂成10 个并逝世 1 个, ....按此规律, 5 小时后,细胞存活的个数是()A.31 个B.33个C.35个D.37个二、填空题(本大题共 6 小题,每题3 分,共 18 分)13.计算: |3.14﹣π |=.14.如图,点 C、 D 在线段 AB上,点 C为 AB中点,若 AC=5cm, BD=2cm,则 CD= cm .15.近似数 2.13× 103精准到位.16.当 x=___________ 时, 4x-4 与 3x-10 互为相反数.4322317.2a +a b ﹣ 5a b ﹣1 是 _______次 _______项式.18.假如数轴上的点 A 和点 B 分别表示数 -2 、 1,P 是到点 A 或是到点 B 的距离为 3 的点, P在数轴上,那么全部知足条件的点P 到原点的距离之和为.三、计算题(本大题共 2 小题,共8 分)19. ( 1);(2)四、解答题(本大题共8 小题,共48 分)20. ( 1) 3x-7(x-1)=3-2(x+3)(2)[x ﹣(x ﹣1)]=(x+2)(3)先化简,再求值: 3x 2y- [2xy 2- 2(xy -3x2 y) +xy] + 3xy 2,此中 x=3, y=-1. 2321. (此题 8 分)把32,( 2) 3 , 0,1 ,(2 5),( 1) 表示在数轴上,并将它2们按从小到大的次序摆列。
天津市和平区2016-2017学年七年级上期中数学模拟试卷含解析
2016-2017学年天津市和平区七年级(上)期中数学模拟试卷一、选择题(每小题3分,共12小题,共计36分)1.﹣5的倒数是()A.5 B.﹣5 C.D.﹣2.单项式﹣3πxy2z3的系数和次数分别是()A.﹣π,5 B.﹣1,6 C.﹣3π,6 D.﹣3,73.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>04.若(m﹣2)x|m|﹣1=5是一元一次方程,则m的值为()A.±2 B.﹣2 C.2 D.45.已知关于x的方程7﹣kx=x+2k的解是x=2,则k的值为()A.﹣3 B.C.1 D.6.已知2x3y2和﹣x3m y2是同类项,则式子4m﹣24的值是()A.20 B.﹣20 C.28 D.﹣287.大于﹣4.8而小于2.5的整数共有()A.7个B.6个C.5个D.4个8.下列比较大小正确的是()A.﹣(﹣21)<+(﹣21)B.C.D.9.有一两位数,其十位数字为a,个位数字为b,将两个数颠倒,得到一个新的两位数,那么这个新两位数十位上的数字与个位数字的和与这个新两位数的积用代数式表示()A.ba(a+b)B.(a+b)(b+a)C.(a+b)(10a+b)D.(a+b)(10b+a)10.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q11.小惠在纸上画了一条数轴后,折叠纸面,使数轴上表示1的点与表示﹣3的点重合,若数轴上A、B两点之间的距离为2014(A在B的左侧),且A、B两点经上述折叠后重合,则A点表示的数为()A.﹣1006 B.﹣1007 C.﹣1008 D.﹣100912.如图所示的运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2017次输出的结果为()A.3 B.6 C.4 D.2二、填空题(每小题3分,共6小题,共计18分)13.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作.14.计算:|3.14﹣π|=.15.已知关于x的方程4x+2m=3x+1与方程3x+2m=6x+1的解相同,则方程的解为.16.已知x﹣2y+3=0,则代数式﹣2x+4y+2017的值为.17.若“★”是新规定的某种运算符号,设a★b=ab+a﹣b,则2★n=﹣8,则n=.18.观察下列算式,你发现了什么规律?12=;12+22=;12+22+32=;12+22+32+42=;…①根据你发现的规律,计算下面算式的值;12+22+32+42+52=;②请用一个含n的算式表示这个规律:12+22+32…+n2=;③根据你发现的规律,计算下面算式的值:512+522+…+992+1002=.三、综合题(共8小题,共计66分)19.计算下列各题(1)2+0.25﹣(﹣7)+(﹣2)﹣1.5﹣2.75(2)(+1﹣2.75)×(﹣24)+(﹣1)2017.20.化简下列多项式:(1)2x2﹣(﹣x2+3xy+2y2)﹣(x2﹣xy+2y2);(2)2(x﹣y)2﹣3(x﹣y)+5(x﹣y)2+3(x﹣y)21.解下列方程:(1)4x﹣3(5﹣x)=6;(2) [x﹣(x﹣1)]=(x+2).22.已知|a+2|+(b+1)2+(c﹣)2=0,求代数式5abc﹣{2a2b﹣[3abc﹣(4ab2﹣a2b)]}的值.23.某服装店以每件82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为24.已知|a﹣1|=9,|b+2|=6,且a+b<0,求a﹣b的值.25.已知当x=﹣1时,代数式2mx3﹣3mx+6的值为7.(1)若关于y的方程2my+n=11﹣ny﹣m的解为y=2,求n=的值;(2)若规定[a]表示不超过a的最大整数,例如[4.3]=4,请在此规定下求[m﹣n]的值.26.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a=,b=,c=;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=,AC=,BC=.(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.2016-2017学年天津市和平区七年级(上)期中数学模拟试卷参考答案与试题解析一、选择题(每小题3分,共12小题,共计36分)1.﹣5的倒数是()A.5 B.﹣5 C.D.﹣【考点】倒数.【分析】根据倒数的定义可直接解答.【解答】解:﹣5的倒数是﹣.故选:D.2.单项式﹣3πxy2z3的系数和次数分别是()A.﹣π,5 B.﹣1,6 C.﹣3π,6 D.﹣3,7【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义,单项式﹣3πxy2z3的系数和次数分别是﹣3π,6.故选C.3.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>0【考点】实数与数轴.【分析】本题要先观察a,b在数轴上的位置,得b<﹣1<0<a<1,然后对四个选项逐一分析.【解答】解:A、∵b<﹣1<0<a<1,∴|b|>|a|,∴a+b<0,故选项A错误;B、∵b<﹣1<0<a<1,∴ab<0,故选项B错误;C、∵b<﹣1<0<a<1,∴a﹣b>0,故选项C正确;D、∵b<﹣1<0<a<1,∴|a|﹣|b|<0,故选项D错误.故选:C.4.若(m﹣2)x|m|﹣1=5是一元一次方程,则m的值为()A.±2 B.﹣2 C.2 D.4【考点】一元一次方程的定义.【分析】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的方程,继而可求出m的值.【解答】解:根据题意,得,解得:m=﹣2.故选B.5.已知关于x的方程7﹣kx=x+2k的解是x=2,则k的值为()A.﹣3 B.C.1 D.【考点】一元一次方程的解.【分析】将x=2代入已知方程,列出关于k的方程,解方程即可求得k的值.【解答】解:∵关于x的方程7﹣kx=x+2k的解是x=2,∴7﹣2k=2+2k,解得k=.故选:D.6.已知2x3y2和﹣x3m y2是同类项,则式子4m﹣24的值是()A.20 B.﹣20 C.28 D.﹣28【考点】同类项.【分析】根据同类项相同字母的指数相同可得出m的值,继而可得出答案.【解答】解:由题意得:3m=3,解得m=1,∴4m﹣24=﹣20.故选B.7.大于﹣4.8而小于2.5的整数共有()A.7个B.6个C.5个D.4个【考点】数轴.【分析】在数轴上表示出已知的范围,找出范围中的整数即可.【解答】解:根据数轴得:大于﹣4.8而小于2.5的整数有﹣4,﹣3,﹣2,﹣1,0,1,2共7个,故选A.8.下列比较大小正确的是()A.﹣(﹣21)<+(﹣21)B.C.D.【考点】有理数大小比较.【分析】根据有理数的大小比较法则求解.【解答】解:﹣(﹣21)=21>+(﹣21)=﹣21,故本选项错误;B、﹣|﹣7|=﹣7,﹣(﹣7)=7,故本选项错误;C、﹣=﹣<﹣=﹣,故本选项正确;D、﹣|﹣10|=﹣10<8,故本选项错误.故选C.9.有一两位数,其十位数字为a,个位数字为b,将两个数颠倒,得到一个新的两位数,那么这个新两位数十位上的数字与个位数字的和与这个新两位数的积用代数式表示()A.ba(a+b)B.(a+b)(b+a)C.(a+b)(10a+b)D.(a+b)(10b+a)【考点】列代数式.【分析】本题考查列代数式,要注意其中的文字语言给出的运算关系,尤其是新两位数的表示,原来两位数表示为(10a+b),所以新两位数应表示为(10b+a),新两位数的数字之和与原两位数的数字之和是相同的,都是(a+b),所以可列代数式为(a+b)(10b+a).【解答】解:新两位数的数字之和是(a+b),新两位数应表示为(10b+a),所以可列代数式为(a+b)(10b+a).故选D.10.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q【考点】有理数大小比较.【分析】先根据相反数确定原点的位置,再根据点的位置确定绝对值最小的数即可.【解答】解:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.11.小惠在纸上画了一条数轴后,折叠纸面,使数轴上表示1的点与表示﹣3的点重合,若数轴上A、B两点之间的距离为2014(A在B的左侧),且A、B两点经上述折叠后重合,则A点表示的数为()A.﹣1006 B.﹣1007 C.﹣1008 D.﹣1009【考点】数轴.【分析】若1表示的点与﹣3表示的点重合,则对称中心是﹣1表示的点,根据对应点连线被对称中心平分,则点A和点B到﹣1的距离都是2014,从而求解.【解答】解:∵1表示的点与﹣3表示的点重合,∴对称中心是﹣1表示的点,若数轴上A、B两点之间的距离为2014(A在B的左侧),则点A表示的数是﹣1﹣1007=﹣1008,故选C.12.如图所示的运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2017次输出的结果为()A.3 B.6 C.4 D.2【考点】代数式求值.【分析】由48为偶数,将x=48代入x计算得到结果为24,再代入x计算得到结果为12,依此类推得到结果为6,将x=6代入x计算得到结果为3,将x=3代入x+5计算得到结果为8,依次计算得到结果为4,将x=4代入x计算得到结果为2,归纳总结得到一般性规律,即可确定抽2017次输出的结果.【解答】解:根据运算程序得到:除去前两个结果24,12,剩下的以6,3,8,4,2,1循环,∵÷6=335…5,则第2017次输出的结果为2,故选:D.二、填空题(每小题3分,共6小题,共计18分)13.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作﹣0.15米.【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.以4.00米为标准,因为超过这个标准记为正数,所以3.85米,不足这个标准记为负数,又4.00﹣3.85=0.15,故记作﹣0.15米.【解答】解:“正”和“负”相对,所以在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作﹣0.15.14.计算:|3.14﹣π|=π﹣3.14.【考点】实数的性质.【分析】根据差的绝对值是大数减小数,可得答案.【解答】解:|3.14﹣π|=π﹣3.14,故答案为:π﹣3.14.15.已知关于x的方程4x+2m=3x+1与方程3x+2m=6x+1的解相同,则方程的解为x=0.【考点】同解方程.【分析】首先由方程4x+2m=3x+1,用m替换x,然后由第二个方程,再用m替换x,此时两个x的值相等,可得方程求出m的值.【解答】解:由题意得:4x+2m=3x+1,解得:x=﹣2m+1.由3x+2m=6x+1,解得:x=(2m﹣1),∵两个方程的解相同,∴﹣2m+1=(2m﹣1),解得:m=.答:m的值为.16.已知x﹣2y+3=0,则代数式﹣2x+4y+2017的值为2023.【考点】代数式求值.【分析】原式前两项提取﹣2变形后,将已知等式变形后代入计算即可求出值.【解答】解:由x﹣2y+3=0,得到x﹣2y=﹣3,则原式=﹣2(x﹣2y)+2017=6+2017=2023,故答案为:202317.若“★”是新规定的某种运算符号,设a★b=ab+a﹣b,则2★n=﹣8,则n=﹣10.【考点】解一元一次方程.【分析】已知等式利用题中的新定义化简,求出解即可得到n的值.【解答】解:利用题中的新定义化简得:2n+2﹣n=﹣8,移项合并得:n=﹣10,故答案为:﹣1018.观察下列算式,你发现了什么规律?12=;12+22=;12+22+32=;12+22+32+42=;…①根据你发现的规律,计算下面算式的值;12+22+32+42+52=;②请用一个含n的算式表示这个规律:12+22+32…+n2=;③根据你发现的规律,计算下面算式的值:512+522+…+992+1002=295425.【考点】规律型:数字的变化类.【分析】(1)12+22+32+42+52=(2)12+22+32…+n2=(3)先算出:12+22+32…+502与12+22+32…+512+522+…+992+1002的值,再求它们的差即可【解答】解:(1)12+22+32+42+52=(2)12+22+32…+n2=(3∵12+22+32…+502==4292512+22+32…+512+522+…+992+1002==338350∴512+522+...+992+1002=(12+22+32...+512+522+...+992+1002)﹣(12+22+32 (502)=338350﹣42925=295425故答案为:①=;②=;③295425三、综合题(共8小题,共计66分)19.计算下列各题(1)2+0.25﹣(﹣7)+(﹣2)﹣1.5﹣2.75(2)(+1﹣2.75)×(﹣24)+(﹣1)2017.【考点】有理数的混合运算.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用乘法分配律,以及乘方的意义计算即可得到结果.【解答】解:(1)原式=2.75﹣2.75+0.25﹣2.25+7.5=5.5;(2)原式=﹣3﹣32+66﹣1=30.20.化简下列多项式:(1)2x2﹣(﹣x2+3xy+2y2)﹣(x2﹣xy+2y2);(2)2(x﹣y)2﹣3(x﹣y)+5(x﹣y)2+3(x﹣y)【考点】整式的加减.【分析】(1)去括号,合并同类项;(2)先分别把(x﹣y)2和(x﹣y)看成整体后合并同类项,再利用完全平方公式展开.【解答】解:(1)2x2﹣(﹣x2+3xy+2y2)﹣(x2﹣xy+2y2),=2x2+x2﹣3xy﹣2y2﹣x2+xy﹣2y2,=(2+1﹣1)x2+(﹣3+1)xy+(﹣2﹣2)y2,=2x2﹣2xy﹣4y2,(2)2(x﹣y)2﹣3(x﹣y)+5(x﹣y)2+3(x﹣y),=7(x﹣y)2,=7(x2﹣2xy+y2),=7x2﹣14xy+7y2.21.解下列方程:(1)4x﹣3(5﹣x)=6;(2) [x﹣(x﹣1)]=(x+2).【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:4x﹣15+3x=6,移项合并得:7x=21,解得:x=3;(2)去括号得:x﹣(x﹣1)=(x+2),去分母得:6x﹣3x+3=8x+16,移项合并得:5x=﹣13,解得:x=﹣.22.已知|a+2|+(b+1)2+(c﹣)2=0,求代数式5abc﹣{2a2b﹣[3abc﹣(4ab2﹣a2b)]}的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】原式去括号合并得到最简结果,利用非负数的性质求出a,b,c的值,代入计算即可求出值.【解答】解:∵|a+2|+(b+1)2+(c﹣)2=0,∴a=﹣2,b=﹣1,c=,则原式=5abc﹣2a2b+3abc﹣4ab2+a2b=8abc﹣a2b﹣4ab2=+4+8=.23.某服装店以每件82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为【考点】正数和负数.【分析】首先由进货量和进货单价计算出进货的成本,然后再根据售价计算出赚了多少钱.【解答】解:7×+6×+7×100+8×+2×=735+606+700+784+190=3015,30×82=2460(元),3015﹣2460=555(元),答:共赚了555元.24.已知|a﹣1|=9,|b+2|=6,且a+b<0,求a﹣b的值.【考点】绝对值.【分析】根据绝对值的性质求出a、b,再根据有理数的加法运算法则判断出a、b的对应情况,然后根据有理数的减法运算法则进行计算即可得解.【解答】解:∵|a﹣1|=9,|b+2|=6,∴a=﹣8或10,b=﹣8或4,∵a+b<0,∴a=﹣8,b=﹣8或4,当a=﹣8,b=﹣8时,a﹣b=﹣8﹣(﹣8)=0,当a=﹣8,b=4时,a﹣b=﹣8﹣4=﹣12.综上所述,a﹣b的值为0或﹣12.25.已知当x=﹣1时,代数式2mx3﹣3mx+6的值为7.(1)若关于y的方程2my+n=11﹣ny﹣m的解为y=2,求n=的值;(2)若规定[a]表示不超过a的最大整数,例如[4.3]=4,请在此规定下求[m﹣n]的值.【考点】代数式求值;一元一次方程的解.【分析】(1)把x=﹣1代入代数式求出m的值,将m与y的值代入已知方程求出n的值即可;(2)把m与n的值代入原式中计算得到结果,利用题中的新定义计算即可.【解答】解:(1)把x=﹣1代入得:﹣2m+3m+6=7,解得:m=1,把m=1,y=2代入得:4+n=10﹣2n,解得:n=2;(2)把m=1,n=2代入得:m﹣n=1﹣3.5=﹣2.5,则[m﹣n]=[﹣2.5]=﹣3.26.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a=﹣2,b=1,c=7;(2)若将数轴折叠,使得A点与C点重合,则点B与数4表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=3t+3,AC=5t+9,BC=2t+6.(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【考点】数轴;两点间的距离.【分析】(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)由3BC﹣2AB=3(2t+6)﹣2(3t+3)求解即可.【解答】解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7,∵b是最小的正整数,∴b=1;故答案为:﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4;故答案为:4.(3)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3,5t+9,2t+6.(4)不变.3BC﹣2AB=3(2t+6)﹣2(3t+3)=12.2016年10月23日。
天津市七年级(上)期末数学试卷-(含答案)
.2017-2018学年天津市和平区七年级(上)期末数学试卷副标题题号一二三四总分得分一、选择题(本大题共7小题,共14.0分)1.如图所示,学校、书店、体育馆在平面图上的位置分别是A、B、C,书店在学校的正东方向,体育馆在学校的南偏西35°方向,那么平面图上的∠CAB等于()A.B.C.D.2.如图,下列说法错误的是()A. 直线AC与射线BD相交于点AB. BC是线段C. 直线AC经过点AD. 点D在直线AB上3.已知(a-1)x2y a+1是关于x、y的五次单项式,则这个单项式的系数是()A. 1B. 2C. 3D. 04.若a的相反数是2,则a的值为()A. 2B.C.D.5.关于x的方程a-3(x-5)=b(x+2)是一元一次方程,则b的取值情况是()A. B. C. D. b为任意数6.下列各数中,正确的角度互化是()A. B.C. D.7.设一个锐角与这个角的补角的差的绝对值为α,则()A. 或B.C. D.二、填空题(本大题共6小题,共18.0分)8.若3x=-,则4x=______.9.以∠AOB的顶点O为端点引射线OP,使∠AOP:∠BOP=3:2,若∠AOB=17°,∠AOP的度数为______.10.若点M是线段AB的中点,N是线段AM的中点,若图中所有线段的和是20cm,则AN的长是______cm.11.已知有理数a在数轴上的位置如图,则a+|a-1|=______.12.已知线段MN=16cm,点P为任意一点,那么线段MP与NP和的最小值是______cm.13.若x=y+3,则(x-y)2-2.3(x-y)+0.75(x-y)2+(x-y)+7等于______.三、计算题(本大题共3小题,共27.0分)14.列一元一次方程解应用题..维修16辆,乙每天维修的车辆比甲多8辆,甲单独维修完成这批共享单车比乙单独维修完多用20天,公司每天付甲80元维修费,付乙120元维修费.(1)问需要维修的这批共享单车共有多少辆?(2)在维修过程中,公司要派一名人员进行质量监督,公司负担他每天10元补助费,现有三种维修方案:①由甲单独维修;②由乙单独维修;③甲、乙合作同时维修,你认为哪种方案最省钱,为什么?15.计算:(1)25×-(-25)×+25÷(-);(2)2-23÷[()2-(-3+0.75)]×5.16.已知∠AOB=α,过点O作∠BOC=90°.(1)若α=30,则∠AOC的度数;(2)已知射线OE平分∠AOC,射线OF平分∠BOC.①若α=50°,求∠EOF的度数;②若90°<α<180°,则∠EOF的度数为______(直接填写用含α的式子表示的结果).四、解答题(本大题共4小题,共31.0分)17.解下列方程:(1)x+=6-;(2)-=.18.已知关于m的方程(m-14)=-2的解也是关于x的方程2(x-)-n=11的解.(1)求m、n的值;(2)若线段AB=m,在直线AB上取一点P,恰好使=n,点Q是PB的中点,求线段AQ的长.19.如图,直线AB与CD相交于点O,∠BOE=∠DOF=90°.(1)写出图中与∠COE互补的所有的角(不用说明理由).(2)问:∠COE与∠AOF相等吗?请说明理由;(3)如果∠AOC=∠EOF,求∠AOC的度数.20.已知,.化简:;已知与的同类项,求的值.答案和解析1.【答案】B【解析】解:从图中发现平面图上的∠CAB=∠1+∠2=90°+35°=125°.故选:B.根据方位角的概念,正确画出方位图表示出方位角,即可求解.本题考查了方向角的知识,解答此类题需要从运动的角度,正确画出方位角,找准中心是做这类题的关键.2.【答案】D【解析】解:A、直线AC与射线BD相交于点A,说法正确,故本选项错误;B、B、C是两个端点,则BC是线段,说法正确,故本选项错误;C、直线AC经过点A,说法正确,故本选项错误;D、如图所示,点D在射线BD上,说法错误,故本选项正确.故选:D.根据射线、直线与线段的定义,结合图形解答.本题考查了直线、射线、线段,注意:直线没有端点.3.【答案】A【解析】解:由题意得:a+1+2=5,解得:a=2,则这个单项式的系数是a-1=1,.根据一个单项式中所有字母的指数的和叫做单项式的次数可得a的值,然后根据单项式中的数字因数叫做单项式的系数可得答案.此题主要考查了单项式,关键是掌握单项式相关定义.4.【答案】B【解析】解:由a的相反数是2,得a=-2,故选:B.根据相反数的意义求解即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.5.【答案】A【解析】解:a-3(x-5)=b(x+2),a-3x+15-bx-2b=0,(3+b)x=a-2b+15,∴b+3≠0,b≠-3,故选:A.先把方程整理为一元一次方程的一般形式,再根据一元一次方程的定义求出b的值即可.本题考查的是一元一次方程的定义,熟知只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程是解答此题的关键.6.【答案】D【解析】解:A、63.5°=63°30′≠63°50′,故A不符合题意;B、23.48°=23°28′48″≠23°12′36″,故B不符合题意;C、18.33°=18°19′48″≠18°18′18″,故C不符合题意;D、22.25°=22°15′,故D正确,故选:D.根据大单位化小单位乘以进率,小单位化单位除以进率,可得答案.本题考查了度分秒的换算,利用大单位化小单位乘以进率,小单位化单位除以进率是解题关键.7.【答案】B【解析】解:设这个角的为x且0<x<90°,根据题意可知180°-x-x=α,∴α=180°-2x,∴180°-2×90°<α<180°-2×0°,0°<α<180°.故选:B.根据补角的定义来求α的范围即可.本题考查了余角和补角的概念.互为余角的两角的和为90°,互为补角的两角之和为180°.解此题的关键是能准确的从题意中找出这两个角之间的数量关系,从而判断出两角之间的关系.8.【答案】-【解析】.解:系数化为1,得x=-,4x=-×4=-,故答案为:-.根据系数化为1,可得答案.本题考查了解一元一次方程,利用系数化为1是解题关键.9.【答案】10.2°或51°【解析】解:如图1,当射线OP在∠AOB的内部时,设∠AOP=3x,则∠BOP=2x,∵∠AOB=∠AOP+∠BOP=5x=17°,解得:x=3.4°,则∠AOP=10.2°,如图2,当射线OP在∠AOB的外部时,设∠AOP=3x,则∠BOP=2x,∵∠AOP=∠AOB+∠BOP,又∵∠AOB=17°,∴3x=17°+2x,解得:x=17°,则∠AOP=51°.故∠AOP的度数为10.2°或51°.故答案为:10.2°或51°.分射线OP在∠AOB的内部和外部两种情况进行讨论求解即可.本题考查了角的计算,关键是分两种情况进行讨论.10.【答案】解:如图,∵点M是线段AB的中点,N是线段AM的中点,∴AN=NM=AM=BM=BN=AB,∴AM=BM=2AN,BN=3AN,AB=4AN,又∵图中所有线段的和是20cm,∴AN+MN+BM+AM+BN+AB=20,∴AN+AN+2AN+2AN+3AN+4AN=20,解得AN=cm故答案为:.依据点M是线段AB的中点,N是线段AM的中点,可得AN=NM=AM=BM=BN=AB,再根据图中所有线段的和是20cm,即可得到AN+MN+BM+AM+BN+AB=20,进而得出AN的长.本题主要考查了两点间的距离,平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度.11.【答案】1【解析】解:由数轴上a点的位置可知,a<0,∴a-1<0,∴原式=a+1-a=1.故答案为:1.先根据a在数轴上的位置确定出a的符号,再根据绝对值的性质把原式进行化简即可.本题考查的是数轴的特点及绝对值的性质,比较简单.12.【答案】16.解:如图所示:所以线段MP与NP和的最小值是16cm,故答案为;16根据线段的性质解答即可.此题考查线段的性质,关键是根据两点之间线段最短解答.13.【答案】3.7【解析】解:∵x=y+3,∴x-y=3,则原式=×32-2.3×3+0.75×3-×3+7=2.25-6.9+2.25-0.9+7=3.7,故答案为:3.7.由x=y+3得x-y=3,整体代入原式计算可得.此题考查了整式的加减-化简求值,熟练掌握整体代入思想的运用是解本题的关键.14.【答案】解:(1)设乙单独做需要x天完成,则甲单独做需要(x+20)天,由题意可得:16(x+20)=24x,解得:x=40,总数:24×40=960(套),答:乙单独做需要40天完成,甲单独做需要60天,一共有960辆共享单车;(2)方案一:甲单独完成:60×80+60×10=5400(元),方案二:乙单独完成:40×120+40×10=5200(元),方案三:甲、乙合作完成:960÷(16+24)=24(天),则一共需要:24×(120+80)+24×10=5040(元),故选择方案三合算.【解析】(1)通过理解题意可知本题的等量关系,即甲乙单独修完共享单车的数量相同,列方程求解即可;(2)分别计算,通过比较选择最省钱的方案.此题主要考查了一元一次方程的应用,正确得出等量关系是解题关键.15.【答案】解:(1)25×-(-25)×+25÷(-)=25×+25×+25×(-4)=25×()=25×(-)=-;(2)2-23÷[()2-(-3+0.75)]×5==.===-13.【解析】(1)根据有理数的乘除法和乘法分配律可以解答本题;(2)根据有理数的乘除法和加减法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.16.【答案】α或180°-α【解析】解:(1)如图1中,∠AOC=∠AOB+∠BOC=120°,如图2中,∠AOC=∠BOC-∠AOB=60°.(2)①如图1-1中,∵∠AOC=∠AOB+∠BOC=140°,∴∠EOC=∠AOC=70°,∵∠FOC=∠BOC=45°,∴∠EOF=∠EOC-∠FOC=25°,如图2-1中,∵∠AOC=∠BOC-∠AOB=40°,∴∠EOC=∠AOC=20°,∵∠FOC=∠BOC=45°,∴∠EOF=∠FOC-∠EOC=25°.②如图1-2中,∵∠AOC=∠AOB-∠BOC=α-90°,∴∠EOC=∠AOC=(α-90°),∵∠FOC=∠BOC=45°,∴∠EOF=∠EOC+∠FOC=α,如图2-2中,∵∠AOC=360°-∠AOB-∠BOC=270°-α∴∠EOC=∠AOC=(270-α),∵∠FOC=∠BOC=45°,∴∠EOF=∠EOC+∠FOC=180°-α,.故答案为α或180°-α.(1)分两种情形画出图形求解即可;(2)①分两种情形画出图形分别求解即可;③分两种情形分别画出图形分别求解即可;本题考查角的计算、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想解决问题,属于中考常考题型.17.【答案】解:(1)去分母,可得:6x+4(x-3)=36-x+7,去括号,可得:6x+4x-12=43-x,移项,合并同类项,可得:11x=55,解得x=5.(2)去分母,可得:6(4x-1.5)-150(0.5x-0.3)=2,去括号,可得:24x-9-75x+45=2,移项,合并同类项,可得:51x=34,解得x=.【解析】解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,据此求解即可.此题主要考查了解一元一次方程的方法,要熟练掌握,解答此题的关键是要明确解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.18.【答案】解:(1)(m-14)=-2,m-14=-6m=8,∵关于m的方程(m-14)=-2的解也是关于x的方程2(x-)-n=11的解.∴x=8,将x=8,代入方程2(x-)-n=11得:解得:n=4,故m=8,n=4;(2)由(1)知:AB=8,=4,①当点P在线段AB上时,如图所示:∵AB=8,=4,∴AP=,BP=,∵点Q为PB的中点,∴PQ=BQ=BP=,∴AQ=AP+PQ=+=;②当点P在线段AB的延长线上时,如图所示:∵AB=8,=4,.∴PB=,∵点Q为PB的中点,∴PQ=BQ=,∴AQ=AB+BQ=8+=.故AQ=或.【解析】(1)先求出方程(m-14)=-2的解,然后把m的值代入方程2(x-)-n=11,求出n的值;(2)分两种情况:①点P在线段AB上,②点P在线段AB的延长线上,画出图形,根据线段的和差定义计算即可;此题考查了一元一次方程的解,以及两点间的距离,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.19.【答案】解:(1)∵直线AB与CD相交于点O,∴∠COE+∠DOE=180°,又∵∠BOE=∠DOF=90°,∴∠DOE=∠BOF,∴与∠COE互补的所有的角为∠DOE,∠BOF;(2)∠COE与∠AOF相等,理由:∵∠BOE=∠DOF=90°,∴∠AOE=∠COF,∴∠AOE-∠AOC=∠COF-∠AOC,∴∠COE=∠AOF;(3)设∠AOC=x,则∠EOF=5x,∵∠COE=∠AOF,∴∠COE=∠AOF=(5x-x)=2x,∵∠AOE=90°,∴x+2x=90°,∴x=30°,∴∠AOC=30°.【解析】(1)依据直线AB与CD相交于点O,可得∠COE+∠DOE=180°,依据∠BOE=∠DOF=90°,可得∠DOE=∠BOF,即可得出与∠COE互补的所有的角;(2)依据∠AOE=∠COF,可得∠AOE-∠AOC=∠COF-∠AOC,进而得到∠COE=∠AOF;(3)设∠AOC=x,则∠EOF=5x,依据∠AOE=90°,可得x+2x=90°,进而得出∠AOC的度数.本题考查了对顶角、邻补角,余角和补角计算的应用,常常与等式的性质、等量代换相关联.20.【答案】解:(1)2B-A=2(2xy-3y2+4x2)-(3x2+3y2-5xy)=4xy-6y2+8x2-3x2-3y2+5xy=9xy-9y2+5x2;(2)∵与的同类项,∴=1,y=2,则x=1或3,y=2,当x=1,y=2时,2B-A=18-36+5=-13,当x=3,y=2时,2B-A=54-36+45=63.【解析】.本题考查的是整式的加减混合运算,掌握整式的加减混合运算法则是解题的关键.(1)根据整式的加减混合运算法则计算;(2)根据同类项的定义分别求出x、y,代入计算即可.。
天津市宝坻、宁河、蓟州、静海、武清五区2016-2017学年七年级数学上学期期末考试试题
天津市宝坻、宁河、蓟州、静海、武清五区2016-2017学年七年级数学上学期期末考试试题天津市部分区2016~2017学年度第一学期期末考试七年级数学试卷参考答案一、选择题.1.C2.D3.C4.B5.B6.A7.C8.C9.D 10.A 11. B 12. D 二、填空题.13. 5.40 14. -5 15. 3,2,1,0±±± 16. -1 17. 6cm 18. 4 三、解答题.19. (每小题3分,共6分) (1) 453()(36)964-+-⨯- =16-30+27----------------2/=13--------------3/(2)()()22215236()2-+⨯-+-÷-= 252964-+⨯-⨯ ------------------1/=251824-+- ------------------2/=-31------------------3/20.(本题8分)(1)解:原式= 2225324y y y y ---+-+ ------------------2/= 237y y +-------------------3/当y =-3时原式 = 23(3)37⨯---=17 --------------4/(2)解:原式= ()222323ab a b ab a--+-------------------1/= 222323ab a b ab a -+-+------------------2/=22a b -+------------------3/当a =6, b =-5时原式 =3625-+=-11------------------4/21. 本题8分(1)4(2)=3(1+3)12x x --解:去括号,得483912x x -=+-.------------------1/移项,得493128x x -=-+ . ------------------2/ 合并同类项,得51x -=-. ------------------3/ 系数化为1,得15x =.------------------4/(2)101720173x x--= 解:去分母,得307(1720)21x x --=.------------------1/去括号,得3011914021x x -+=.------------------2/ 移项,合并同类项,得170140x =. ------------------3/ 系数化为1,得1417x =.------------------4/22. 本题8分解:(1)0179721854'''-= 01785960721854''''''- ----------------2/= 0106416''' ---------------------4/(2)03607÷=0511807'+÷ ---------------1/=051253007'''++÷ ---------------2/512543'''≈ ------------------------4/23. 本题8分解:设∠DBA =3x ,则∠ABE =4x ,∠DBE =7x ----------------2/因为BC 平分∠DBE ,所以1722DBC DBE x ∠=∠= ----------------------3/ 所以71322ABC DBC DBA x x x ∠=∠-∠=-=. ----------5/七年级数学上学期期末考试11 又因为∠ABC =8°,所以0182x =, ----------------6/ 所以016x =. -----------------------------7/所以∠DBE=7x=1120 -----------------------------8/24. 本题8分解:设甲、乙两地间的距离为x 千米, --------------------1/ (1) 当丙地在甲、乙两地之间时,根据题意列方程,得238282x x -+=+-; ----------------3/ 解得:252x =(千米) ----------------------------5/ (2) 当丙地在甲地上游时, 根据题意列方程,得238282x x ++=+-; --------------6/ 解得:10x = (千米) -------------------------7/答:甲、乙两地间的距离是252千米或10千米 ------------8/ (注:只写一种解法的得6分)。
2016-2017年七年级上学期期末考试数学试题及答案
2015-2016学年第一学期七年级期末测试数学试题(本试题共4页,满分为120分,考试时间为90分钟)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣6的绝对值是()1A.6B.﹣6C.±6D.62.新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为()A.0.109×105B.1.09×104C.1.09×103D.109×1023.计算23-的结果是()A.9B.9-C.6D.6-4.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面与“生”相对应的面上的汉字是()A.数B.学C.活D.的5.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是()A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况6.下面合并同类项正确的是( )A .32523x x x =+B .1222=-b a b aC .0=--ab ab D.022=+-xy xy7.如图,已知点O 在直线AB 上,CO ⊥DO 于点O ,若∠1=145°,则∠3的度数为( )A .35°B .45°C .55°D .65°8. 下列说法中错误的是( )A .y x 232-的系数是32- B .0是单项式 C .xy 32的次数是1 D .x -是一次单项式 9. 方程x =+-32▲,▲处被墨水盖住了,已知方程的解x=2,那么▲处的数字是( ) A .2 B .3 C .4 D .610. 如果A 、B 、C 三点在同一直线上,且线段AB=6cm ,BC=4cm ,若M,N 分别为AB ,BC 的中点,那么M,N 两点之间的距离为( )A .5cmB .1cmC .5或1cmD .无法确定11.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(x ﹣1)+3x=13B .2(x+1)+3x=13C .2x+3(x+1)=13D .2x+3(x ﹣1)=1312.从六边形的一个顶点出发,可以画出m 条对角线,它们将六边形分成n 个三角形.则m 、n 的值分别为( )7题图A .4,3B .3,3C .3,4D .4,413.钟表在8:25时,时针与分针的夹角是( )度.A .101.5B .102.5C .120D .12514.某商品的标价为132元,若以9折出售仍可获利10%,则此商品的进价为( )A .88元B .98元C .108元D .118元15.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n (n 是正整数)的结果为( )1+8=? 1+8+16=? 1+8+16+24=?A.(2n+1)2B.(2n-1)2C.(n+2)2D.n 2二、填空题(本大题共6个小题,每小题3分,共18分.只要求填写最后结果,把答案填在题中的横线上.)16.比较大小:30.15° 30°15′(用>、=、<填空)17.若代数式123--x a 和243+x a 是同类项,则x=_______. 18.若()521||=--m x m 是一元一次方程,则m= .19.如图,将一副三角尺的直角顶点重合,摆放在桌面上,若∠BOC=35°, 则∠AOD= °.20.已知3x+1和2x+4互为相反数,则x= .21.小明与小刚规定了一种新运算△:,则a△b = b a 23-.小明计算出2△5= -4,请你帮小刚计算2△(-5)=________________.19题图三、解答题:(本大题共7小题,共57分.解答要写出必要的文字说明、证明过程或演算步骤。
天津市和平区2016年12月16日七年级数学上周测练习题及答案
2016-2017年七年级数学周练习题 12.16题号一二三四五总分得分一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1. (3分)下列说法正确的是( )A.没有最小的正数 B.﹣a表示负数C.符号相反两个数互为相反数 D.一个数的绝对值一定是正数2. (3分)下列说法中正确的是()A.整数是由正整数和负整数所组成的 B. 0没有相反数C.任意一个数的绝对值一定是一个非负数 D.单项式的系数是3. (3分)单项式的系数与次数分别是()A. ,3B. ,3C. ,2D. ,44. (3分)实数a在数轴上的位置如图所示,则化简后为()A. 7 B.-7 C.2a -15 D.无法确定5. (3分)关于x的方程2(x﹣1)﹣a=0的根是3,则a的值为( )A.4 B.﹣4 C.5 D.﹣56. (3分)将3x﹣7=2x变形正确的是()A.3x+2x=7 B.3x﹣2x=﹣7 C.3x+2x=﹣7 D.3x﹣2x=77. (3分)小明和小刚从相距25千米的两地同时相向而行,3小时后两人相遇,小明的速度是4千米/小时,设小刚的速度为x千米/小时,列方程得( )A.4+3x=25 B.12+x=25 C.3(4+x)=25 D.3(4﹣x)=258. (3分)用小正方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体最少需要正方体个数为( )A.5 B.6 C.7 D.89. (3分)如图,AC=AB,BD=AB,AE=CD,则CE=()AB.A. B. C. D.10. (3分)如图,下列说法中错误的是()A.OA的方向是东北方向 B.OB的方向是北偏西55°C.OC的方向是南偏西30° D.OD的方向是南偏东30°二、填空题(本大题共6小题,每小题3分,共18分)11. (3分)如果x、y的平均数为4,x、y、z的和为零,那么z= .12. (3分)x,y,z在数轴上的位置如图所示,则化简|x-y|+|z-y|的结果是______.13. (3分)把多项式 4a3b﹣3ab2+a4﹣5b5 按字母 b 的升幂排列是14. (3分)若关于x的方程(k+2)x2+4kx﹣5k=0是一元一次方程,则k= ,方程的解x=.15. (3分)如图,点M,N,P是线段AB的四等分点,则BM是AM的倍.16. (3分)(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1= .三、计算题(本大题共4小题,共18分)17. (4分)18. (4分)19. (4分)-20. (4分)四、解答题(本大题共6小题,共34分)21. (4分).22. (4分)x+5=x+3﹣2x;23. (6分)如图,AB=16cm,延长AB到C,使BC=3AB,D是BC的中点,求AD的长度.24. (6分)一个角的补角比它的余角的4倍还多15°,求这个角的度数.25. (6分)某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳16套,乙每天修桌凳比甲多8套,甲单独修完这些桌凳比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)问该中学库存多少套桌凳?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你认为哪种方案省时又省钱为什么?五、综合题(本大题共2小题,共18分)26. (8分)已知在纸面上有一数轴(如图),折叠纸面,经折叠后:(1)若1表示的点与-1表示的点重合,则-2表示的点与数表示的点重合;(2)若-1表示的点与3表示的点重合,回答以下问题:① 5表示的点与数表示的点重合;②若数轴上A、B两点之间的距离为9(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?27. (10分)如图,已知数轴上有A、B、C三个点,它们表示的数分别是-24,-10,10.(1)填空:AB= ,BC= ;(2)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动.设运动时间为t,用含t的代数式表示BC和AB的长,试探索:BC-AB的值是否随着时间t的变化而改变?请说明理由.(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C移动;当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向右移动,且当点P到达C点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时P、Q两点相距6个单位长度?答案1.A2.C.3.A4.B5.A.6.D7.C8.C9.C. 10.A11.-12;12.y-x+z-y=z-x;13.a4+4a3b﹣3ab2﹣5b5 14.﹣2、. 15.3 16.:2n+1;2n2+2n+1.17.-4; 18. 19.m-3n+4 20.-4a3+5a+121.﹣=1去分母得:2(2x+1)﹣(5x﹣1)=6,去括号得:4x+2﹣5x+1=6,移项、合并得:﹣x=3,系数化为1得:x=﹣3.22.去分母得:2x+10=x+6﹣4x,移项合并得:5x=﹣4,解得:x=﹣0.8;23.【解答】解:∵AB=16cm,∴BC=3AB=3×16=48cm.∵D是BC的中点,∴BD=BC=×48=24cm.∴AD=AB+BD=16+24=40cm.24.【解答】解:设这个角为x,则它的补角为(180°﹣x),余角为(90°﹣x),由题意得:180°﹣x=4(90°﹣x)+15°,解得:x=65°,即这个角的度数为65°.25.【解答】解:(1)设该中学库存x套桌凳,甲需要天,乙需要天,由题意得:﹣=20,解方程得:x=960.经检验x=960是所列方程的解,答:该中学库存960套桌凳;(2)设①②③三种修理方案的费用分别为y1、y2、y3元,则y1=(80+10)×=5400y2=(120+10)×=5200 y3=(80+120+10)×=5040综上可知,选择方案③更省时省钱.26.(1)2;(2)-3,-3.5,5.527.。
天津市-七年级(上)期末数学试卷-(含答案)
2017-2018学年天津市和平区七年级(上)期末数学试卷副标题题号一二三四总分得分一、选择题(本大题共7小题,共14.0分)1.如图所示,学校、书店、体育馆在平面图上的位置分别是A、B、C,书店在学校的正东方向,体育馆在学校的南偏西35°方向,那么平面图上的∠CAB等于()A. 145∘B. 125∘C. 55∘D. 35∘2.如图,下列说法错误的是()A. 直线AC及射线BD相交于点AB. BC是线段C. 直线AC经过点AD. 点D在直线AB上3.已知(a-1)x2y a+1是关于x、y的五次单项式,则这个单项式的系数是()A. 1B. 2C. 3D. 04.若a的相反数是2,则a的值为()A. 2B. −2C. −12D. ±25.关于x的方程a-3(x-5)=b(x+2)是一元一次方程,则b的取值情况是()A. b≠−3B. b=−3C. b=−2D. b为任意数6.下列各数中,正确的角度互化是()A. 63.5∘=63∘50′B. 23∘12′36″=23.48∘C. 18∘18′18″=18.33∘D. 22.25∘=22∘15′7.设一个锐角及这个角的补角的差的绝对值为α,则()A. 0∘<b<90∘或90∘<b<180∘B. 0∘<b<180∘C. 0∘<b<90∘D. 0∘<b≤90∘二、填空题(本大题共6小题,共18.0分)8.若3x=-13,则4x=______.9.以∠AOB的顶点O为端点引射线OP,使∠AOP:∠BOP=3:2,若∠AOB=17°,∠AOP的度数为______.10.若点M是线段AB的中点,N是线段AM的中点,若图中所有线段的和是20cm,则AN的长是______cm.11.已知有理数a在数轴上的位置如图,则a+|a-1|=______.12.已知线段MN=16cm,点P为任意一点,那么线段MP及NP和的最小值是______cm.13.若x=y+3,则14(x-y)2-2.3(x-y)+0.75(x-y)2+310(x-y)+7等于______.第 1 页三、计算题(本大题共3小题,共27.0分)14. 列一元一次方程解应用题.有一批共享单车需要维修,维修后继续投放骑用,现有甲、乙两人做维修,甲每天维修16辆,乙每天维修的车辆比甲多8辆,甲单独维修完成这批共享单车比乙单独维修完多用20天,公司每天付甲80元维修费,付乙120元维修费.(1)问需要维修的这批共享单车共有多少辆?(2)在维修过程中,公司要派一名人员进行质量监督,公司负担他每天10元补助费,现有三种维修方案:①由甲单独维修;②由乙单独维修;③甲、乙合作同时维修,你认为哪种方案最省钱,为什么?15. 计算:(1)25×34-(-25)×12+25÷(-14); (2)213-23÷[(12)2-(-3+0.75)]×5.16. 已知∠AOB =α,过点O 作∠BOC =90°.(1)若α=30,则∠AOC 的度数;(2)已知射线OE 平分∠AOC ,射线OF 平分∠BOC .①若α=50°,求∠EOF 的度数;②若90°<α<180°,则∠EOF 的度数为______(直接填写用含α的式子表示的结果).四、解答题(本大题共4小题,共31.0分)17. 解下列方程:(1)x +2(b −3)3=6-b −76; (2)4b −1.50.5-0.5b −0.30.02=23.第 3 页18. 已知关于m 的方程13(m -14)=-2的解也是关于x 的方程2(x -12)-n =11的解.(1)求m 、n 的值;(2)若线段AB =m ,在直线AB 上取一点P ,恰好使bb bb=n ,点Q 是PB 的中点,求线段AQ 的长.19. 如图,直线AB 及CD 相交于点O ,∠BOE =∠DOF =90°.(1)写出图中及∠COE 互补的所有的角(不用说明理由).(2)问:∠COE 及∠AOF 相等吗?请说明理由;(3)如果∠AOC =15∠EOF ,求∠AOC 的度数.20. 已知b =3b 2+3b 2−5bb ,b =2bb −3b 2+4b 2.(1)化简:2b −b ;(2)已知−b |b −2|b 2及13bb b 的同类项,求2b −b 的值.答案和解析1.【答案】B【解析】解:从图中发现平面图上的∠CAB=∠1+∠2=90°+35°=125°.故选:B.根据方位角的概念,正确画出方位图表示出方位角,即可求解.本题考查了方向角的知识,解答此类题需要从运动的角度,正确画出方位角,找准中心是做这类题的关键.2.【答案】D【解析】解:A、直线AC及射线BD相交于点A,说法正确,故本选项错误;B、B、C是两个端点,则BC是线段,说法正确,故本选项错误;C、直线AC经过点A,说法正确,故本选项错误;D、如图所示,点D在射线BD上,说法错误,故本选项正确.故选:D.根据射线、直线及线段的定义,结合图形解答.本题考查了直线、射线、线段,注意:直线没有端点.3.【答案】A【解析】解:由题意得:a+1+2=5,解得:a=2,则这个单项式的系数是a-1=1,故选:A.根据一个单项式中所有字母的指数的和叫做单项式的次数可得a的值,然后根据单项式中的数字因数叫做单项式的系数可得答案.此题主要考查了单项式,关键是掌握单项式相关定义.4.【答案】B【解析】解:由a的相反数是2,得a=-2,故选:B.根据相反数的意义求解即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义及倒数的意义混淆.5.【答案】A【解析】解:a-3(x-5)=b(x+2),a-3x+15-bx-2b=0,(3+b)x=a-2b+15,∴b+3≠0,b≠-3,故选:A.先把方程整理为一元一次方程的一般形式,再根据一元一次方程的定义求出b的值即可.本题考查的是一元一次方程的定义,熟知只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程是解答此题的关键.6.【答案】D【解析】解:A、63.5°=63°30′≠63°50′,故A不符合题意;B、23.48°=23°28′48″≠23°12′36″,故B不符合题意;C、18.33°=18°19′48″≠18°18′18″,故C不符合题意;D、22.25°=22°15′,故D正确,故选:D.根据大单位化小单位乘以进率,小单位化单位除以进率,可得答案.本题考查了度分秒的换算,利用大单位化小单位乘以进率,小单位化单位除以进率是解题关键.7.【答案】B【解析】解:设这个角的为x且0<x<90°,根据题意可知180°-x-x=α,∴α=180°-2x,∴180°-2×90°<α<180°-2×0°,0°<α<180°.故选:B.根据补角的定义来求α的范围即可.本题考查了余角和补角的概念.互为余角的两角的和为90°,互为补角的两角之和为180°.解此题的关键是能准确的从题意中找出这两个角之间的数量关系,从而判断出两角之间的关系.8.【答案】-49【解析】解:系数化为1,得x=-,4x=-×4=-,故答案为:-.根据系数化为1,可得答案.本题考查了解一元一次方程,利用系数化为1是解题关键.9.【答案】10.2°或51°【解析】解:如图1,当射线OP在∠AOB的内部时,设∠AOP=3x,则∠BOP=2x,∵∠AOB=∠AOP+∠BOP=5x=17°,解得:x=3.4°,则∠AOP=10.2°,如图2,当射线OP在∠AOB的外部时,设∠AOP=3x,则∠BO P=2x,∵∠AOP=∠AOB+∠BOP,又∵∠AOB=17°,∴3x=17°+2x,解得:x=17°,则∠AOP=51°.故∠AOP的度数为10.2°或51°.故答案为:10.2°或51°.分射线OP在∠AOB的内部和外部两种情况进行讨论求解即可.本题考查了角的计算,关键是分两种情况进行讨论.第 5 页10.【答案】2013【解析】解:如图,∵点M是线段AB的中点,N是线段AM的中点,∴AN=NM=AM=BM=BN=AB,∴AM=BM=2AN,BN=3AN,AB=4AN,又∵图中所有线段的和是20cm,∴AN+MN+BM+AM+BN+AB=20,∴AN+AN+2AN+2AN+3AN+4AN=20,解得AN=cm故答案为:.依据点M是线段AB的中点,N是线段AM的中点,可得AN=NM=AM=BM=BN=AB,再根据图中所有线段的和是20cm,即可得到AN+MN+BM+AM+BN+AB=20,进而得出AN的长.本题主要考查了两点间的距离,平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度.11.【答案】1【解析】解:由数轴上a点的位置可知,a<0,∴a-1<0,∴原式=a+1-a=1.故答案为:1.先根据a在数轴上的位置确定出a的符号,再根据绝对值的性质把原式进行化简即可.本题考查的是数轴的特点及绝对值的性质,比较简单.12.【答案】16【解析】解:如图所示:所以线段MP及NP和的最小值是16cm,故答案为;16根据线段的性质解答即可.此题考查线段的性质,关键是根据两点之间线段最短解答.13.【答案】3.7【解析】解:∵x=y+3,∴x-y=3,则原式=×32-2.3×3+0.75×3-×3+7=2.25-6.9+2.25-0.9+7=3.7,故答案为:3.7.由x=y+3得x-y=3,整体代入原式计算可得.此题考查了整式的加减-化简求值,熟练掌握整体代入思想的运用是解本题的关键.14.【答案】解:(1)设乙单独做需要x天完成,则甲单独做需要(x+20)天,由题意可得:16(x+20)=24x,第 7 页解得:x =40,总数:24×40=960(套),答:乙单独做需要40天完成,甲单独做需要60天,一共有960辆共享单车;(2)方案一:甲单独完成:60×80+60×10=5400(元),方案二:乙单独完成:40×120+40×10=5200(元),方案三:甲、乙合作完成:960÷(16+24)=24(天),则一共需要:24×(120+80)+24×10=5040(元),故选择方案三合算.【解析】(1)通过理解题意可知本题的等量关系,即甲乙单独修完共享单车的数量相同,列方程求解即可;(2)分别计算,通过比较选择最省钱的方案.此题主要考查了一元一次方程的应用,正确得出等量关系是解题关键.15.【答案】解:(1)25×34-(-25)×12+25÷(-14) =25×34+25×12+25×(-4) =25×(34+12−4) =25×(-114) =-2754;(2)213-23÷[(12)2-(-3+0.75)]×5 =213−8÷[14−(−214)]×5=213−8÷212×5=213−8×25×5=213−16=-1323. 【解析】(1)根据有理数的乘除法和乘法分配律可以解答本题;(2)根据有理数的乘除法和加减法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.16.【答案】12α或180°-12α 【解析】解:(1)如图1中,∠AOC=∠AOB+∠BOC=120°,如图2中,∠AOC=∠BOC -∠AOB=60°.(2)①如图1-1中,∵∠AOC=∠AOB+∠BOC=140°,∴∠EOC=∠AOC=70°,∵∠FOC=∠BOC=45°,∴∠EOF=∠EOC-∠FOC=25°,如图2-1中,∵∠AOC=∠BOC-∠AOB=40°,∴∠EOC=∠AOC=20°,∵∠FOC=∠BOC=45°,∴∠EOF=∠FOC-∠EOC=25°.②如图1-2中,∵∠AOC=∠AOB-∠BOC=α-90°,∴∠EOC=∠AOC=(α-90°),∵∠FOC=∠BOC=45°,∴∠EOF=∠EOC+∠FOC=α,如图2-2中,∵∠AOC=360°-∠AOB-∠BOC=270°-α∴∠EOC=∠AOC=(270-α),∵∠FOC=∠BOC=45°,第 9 页 ∴∠EOF=∠EOC+∠FOC=180°-α,故答案为α或180°-α.(1)分两种情形画出图形求解即可;(2)①分两种情形画出图形分别求解即可;③分两种情形分别画出图形分别求解即可;本题考查角的计算、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想解决问题,属于中考常考题型.17.【答案】解:(1)去分母,可得:6x +4(x -3)=36-x +7,去括号,可得:6x +4x -12=43-x ,移项,合并同类项,可得:11x =55,解得x =5.(2)去分母,可得:6(4x -1.5)-150(0.5x -0.3)=2,去括号,可得:24x -9-75x +45=2,移项,合并同类项,可得:51x =34,解得x =23. 【解析】解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,据此求解即可. 此题主要考查了解一元一次方程的方法,要熟练掌握,解答此题的关键是要明确解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.18.【答案】解:(1)13(m -14)=-2, m -14=-6m =8,∵关于m 的方程13(m -14)=-2的解也是关于x 的方程2(x -12)-n =11的解. ∴x =8,将x =8,代入方程2(x -12)-n =11得: 解得:n =4,故m =8,n =4;(2)由(1)知:AB =8,bbbb =4,①当点P 在线段AB 上时,如图所示:∵AB =8,bb bb =4, ∴AP =325,BP =85, ∵点Q 为PB 的中点,∴PQ =BQ =12BP =45, ∴AQ =AP +PQ =325+45=365; ②当点P 在线段AB 的延长线上时,如图所示:∵AB =8,bbbb =4,∴PB =83, ∵点Q 为PB 的中点,∴PQ =BQ =43, ∴AQ =AB +BQ =8+43=283. 故AQ =365或283. 【解析】(1)先求出方程(m-14)=-2的解,然后把m 的值代入方程2(x-)-n=11,求出n 的值;(2)分两种情况:①点P 在线段AB 上,②点P 在线段AB 的延长线上,画出图形,根据线段的和差定义计算即可;此题考查了一元一次方程的解,以及两点间的距离,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.19.【答案】解:(1)∵直线AB 及CD 相交于点O ,∴∠COE +∠DOE =180°,又∵∠BOE =∠DOF =90°,∴∠DOE =∠BOF ,∴及∠COE 互补的所有的角为∠DOE ,∠BOF ;(2)∠COE 及∠AOF 相等,理由:∵∠BOE =∠DOF =90°,∴∠AOE =∠COF ,∴∠AOE -∠AOC =∠COF -∠AOC ,∴∠COE =∠AOF ;(3)设∠AOC =x ,则∠EOF =5x ,∵∠COE =∠AOF ,∴∠COE =∠AOF =12(5x -x )=2x , ∵∠AOE =90°,∴x +2x =90°,∴x =30°,∴∠AOC=30°.【解析】(1)依据直线AB及CD相交于点O,可得∠COE+∠DOE=180°,依据∠BOE=∠DOF=90°,可得∠DOE=∠BOF,即可得出及∠COE互补的所有的角;(2)依据∠AOE=∠COF,可得∠AOE-∠AOC=∠COF-∠AOC,进而得到∠COE=∠AOF;(3)设∠AOC=x,则∠EOF=5x,依据∠AOE=90°,可得x+2x=90°,进而得出∠AOC的度数.本题考查了对顶角、邻补角,余角和补角计算的应用,常常及等式的性质、等量代换相关联.20.【答案】解:(1)2B-A=2(2xy-3y2+4x2)-(3x2+3y2-5xy)=4xy-6y2+8x2-3x2-3y2+5xy=9xy-9y2+5x2;bb b的同类项,(2)∵−b|b−2|b2及13∴|b−2|=1,y=2,则x=1或3,y=2,当x=1,y=2时,2B-A=18-36+5=-13,当x=3,y=2时,2B-A=54-36+45=63.【解析】本题考查的是整式的加减混合运算,掌握整式的加减混合运算法则是解题的关键.(1)根据整式的加减混合运算法则计算;(2)根据同类项的定义分别求出x、y,代入计算即可.第 11 页。
【名师点睛】天津市和平区2016-2017年七年级数学上册期末复习专题--有理数及答案(PDF版)
2016-2017学年度第一学期七年级数学期末复习专题有理数姓名:_______________班级:_______________得分:_______________一选择题:1.现在网购越来越多地成为人们的一种消费方式,在2014年的“双11”网上促销活动中天猫和淘宝的支付交易额突破57000000000元,将数字57000000000用科学记数法表示为()A.5.7×109B.5.7×1010C.0.57×1011D.57×1092.一袋大米的标准重量为10kg.把一袋重10.5kg的大米记为+0.5kg,则一袋重9.8kg的大米记为()A.﹣9.8kgB.+9.8kgC.﹣0.2kgD.0.2kg3.由四舍五入法得到的近似数6.8×103,下列说法中正确的是()A.精确到十分位,有2个有效数字B.精确到个位,有2个有效数字C.精确到百位,有2个有效数字D.精确到千位,有4个有效数字4.若a、b、c都是有理数,那么2a﹣3b+c的相反数是()A.3b﹣2a﹣cB.﹣3b﹣2a+cC.3b﹣2a+cD.3b+2a﹣c5.如果mn>0,且m+n<0,则下列选项正确的是()A.m<0,n<0B.m>0,n<0C.m,n异号,且负数的绝对值大D.m,n异号,且正数的绝对值大6.若m=3,n=5且m-n>0,则m+n的值是()A.-2B.-8或-2C.-8或8D.8或-27.已知数a、b、c在数轴上的位置如图所示,化简b+的结果是()-cba-A. B. C. D.8.已知x=4,|y|=5且x>y,则2x-y的值为()A.13B.3C.13或3D.-13或-39.从﹣3,﹣2,﹣1,4,5中任取2个数相乘,所得积中的最大值为a,最小值为b,则的值为()A.﹣B.﹣C. D.10.a,b,c是各不相等的有理数,它们在数轴上的对应点分别为A,B,C,如果c=+-,那么a--acbbB点()A.在点A和点C的右边B.在点A和点C的左边C.在点A和点C的中间D.以上三种位置都可能11.a为有理数,定义运算符号“※”:当a>-2时,※a=-a;当a<-2时,※a=a;当a=-2时,※a=0.根据这种运算,则※[4+※(2-5)]的值为()A.1B.-1C.7D.-712.如图,每个图形都由同样大小的矩形按照一定的规律组成,其中第①个图形的面积为6cm2,第②个图形的面积为18cm2,第③个图形的面积为36cm2,…,那么第⑥个图形的面积为()A.84cm2B.90cm2C.126cm2D.168cm2二填空题:13.某地一天下午4时的温度是6℃,过了6时气温下降了4℃,又过了2时气温下降了3℃,第二天0时的气温是________.14.某冷库的室温为-4℃,一批食品需要在-28℃冷藏,如果每小时降温3℃,经过小时后能降到所要求的温度.15.在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都等于S,则填在图中三格中的数字如图所示,若要能填成,则S=.16.如图是一数值转换机,若输出的结果为-32,则输入的x的值为.17.实数a,b,c在数轴上的对应点的位置如图所示,化简的结果是18.某商店有两个进价不同的计算器都卖64元,一个贏利60%,另一个亏本20%,在这次买卖中,你觉得这家商店__________元(填赚多少或亏多少).19.观察下列等式:,,,…则=.(直接填结果,用含n的代数式表示,n是正整数,且n≥1)20.有一列数,,,,…,从第二个数开始,每一个数都等于1与它前面那个数的倒数差,如:,则,…,请你计算当时,的值是.21.计算下列各题:(1)(-49)-90-(-6)+(-9);(2)(3)(4)(5)(6)22.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):14,﹣9,+8,﹣7,13,﹣6,+12,﹣5.(1)请你帮忙确定B地位于A地的什么方向,距离A地多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?(3)救灾过程中,冲锋舟离出发点A最远处有多远?23.某单位在五月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队管理员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有a(a>10)人,则甲旅行社的费用为元,乙旅行社的费用为元;(用含a的代数式表示)(2)假如这个单位现组织包括管理员工在内的共20名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请说明理由.(3)如果计划在五月份外出旅游七天,设最中间一天的日期为a,则这七天的日期之和为.(用含a的代数式表示,并化简.)(4)假如这七天的日期之和为63的倍数,则他们可能于五月几号出发?(写出所有符合条件的可能性,并写出简单的计算过程.)24.观察下列等式:,,,将以上三个等式两边分别相加得:.25.阅读下面材料:如图,点A、B在数轴上分别表示有理数a、b,则A、B两点之间的距离可以表示为︱a-b︱.根据阅读材料与你的理解回答下列问题:(1)数轴上表示3与-2的两点之间的距离是。
天津市和平区_七年级数学上册周测练习题1新人教版【含解析】
2016-2017学年度第一学期七年级数学周测练习题12.2姓名:_______________班级:_______________得分:_______________一选择题:1.如图是一个正方体纸盒的外表面展开图,则这个正方体可能是()2.若x=2是关于x的方程2x+3m+1=0的解,则m的值为()A.0B.C.D.-3.若关于x的方程2x-4=3m和x+2=m有相同的解,则m的值是()A.10B.-10C.8D.-84.如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cmB.6cmC.11cmD.14cm5.线段AB=12cm,点C在AB上,且AC=BC,M为BC的中点,则AM的长为()A.4.5cmB.6.5cmC.7.5cmD.8cm6.由梅州到广州的某一次列车,运行途中停靠的车站依次是:梅州---兴宁---华城---河源---惠州---东莞---广州,那么要为这次列车制作的火车票有()A.6种B.12种C.21种D.42钟7.足球比赛的积分规则为胜一场得3分,平一场得1分,负一场得0分.一个球队打了14场,负5场,共得19分,那么这个球队胜了()A.3场B.4场C.5场D.6场8.若∠1和∠2互为补角,且∠1>∠2,则∠2的余角是()A.∠1B.∠2C.(∠1+∠2)D.(∠1-∠2)9.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利20元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是()A.(1+50%)x×80%=x﹣20B.(1+50%)x×80%=x+20C.(1+50%x)×80%=x﹣20D.(1+50%x)×80%=x+2010.点M、N都在线段AB上,且M分AB为2:3两部分,N分AB为3:4两部分,若MN=2cm,则AB的长为()A.60cmB.70cmC.75cmD.80cm11.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元12.钟表在8:25时,时针与分针的夹角度数是()A.101.5B.102.5C.120D.125二填空题:13.如图,已知∠AOB=∠COD=90°,∠AOC=20°45′,∠DOE=26°58′,则∠BOE=.14.如图,C、D是线段AB上的两个点,CD=8cm,M是AC的中点,N是DB的中点,MN=12cm,那么线段AB的长等于cm.15.苹果的进价是每千克5.7元,销售中估计有5%的苹果正常损耗,为避免亏本,商家应该把售价至少定为每千克_________元.16.小赵和小王交流暑假中的活动,小赵说:“我参加了科技夏令营,外出一个星期,这七天的日期之和为84,你知道我是几号出去的吗?”小王想了一会说:“你是9号出去的.”小王又说:“我假期到舅舅家去住了七天,日期之和再加上月份数也是84,你能猜出我是几号回家的吗?”小王回家的日期是.17.京﹣沈高速铁路河北承德段通过一隧道,估计从车头进入隧道到车尾离开隧道共需45秒,整列火车完全在隧道的时间为32秒,车身长180米,设隧道长为x米,可列方程为.18.如图所示,以O为端点画六条射线OA、OB、OC、OD、OE、OF后,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线上所描的点依次记为1、2、3、4、5、6、7、8…,那么所描的第2015个点在射线上.19.如图,在锐角∠AOB的内部画一条射线,可得3个锐角;画2条不同的射线,可得6个锐角;画3条不同射线,可得10个锐角;…照此规律,画n条不同射线,可得锐角个。
2016年天津市和平区七年级(上)数学期末试卷及解析答案
2015-2016学年天津市和平区七年级(上)期末数学试卷一、选择题(共12小题,每小题2分,满分24分)1.(2分)计算(﹣3)﹣(﹣5)=()A.2 B.﹣2 C.8 D.﹣82.(2分)数轴上的点A到原点的距离是4,则点A表示的数为()A.4 B.﹣4 C.4或﹣4 D.2或﹣23.(2分)下列作图语句中,正确的是()A.画直线AB=6cm B.延长线段AB到CC.延长射线OA到B D.作直线使之经过A,B,C三点4.(2分)把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释正确的是()A.线段可以比较大小B.线段有两个端点C.两点之间线段最短D.过两点有且只有一条直线5.(2分)把方程﹣去分母,正确的是()A.3x﹣(x﹣1)=1 B.3x﹣x﹣1=1 C.3x﹣x﹣1=6 D.3x﹣(x﹣1)=6 6.(2分)已知m+a=n+b,根据等式性质变形为m=n,那么a,b必须符合的条件是()A.a=﹣bB.﹣a=bC.a=bD.a,b可以是任意有理数或整式7.(2分)如图,下列说法中错误的是()A.OA的方向是东北方向B.OB的方向是北偏西55°C.OC的方向是南偏西30°D.OD的方向是南偏东30°8.(2分)下列图形中,经过折叠不能围成一个立方体的是()A. B.C.D.9.(2分)已知∠1=18°18′,∠2=18.18°,∠3=18.3°,下列结论正确的是()A.∠1=∠3 B.∠1=∠2 C.∠2=∠3 D.∠1=∠2=∠310.(2分)已知∠1与∠2互余,∠2与∠3互补,∠1=58°,则∠3=()A.58°B.148°C.158° D.32°11.(2分)如果线段AB=10cm,MA+MB=13cm,那么下面说法中正确的是()A.点M是线段AB上B.点M在直线AB上C.点M在直线AB外D.点M在直线AB上,也可能在直线AB外12.(2分)如图,AOB是一条直线,∠AOC=60°,OD,OE分别是∠AOC和∠BOC 的平分线,则图中互补的角有()A.5对 B.6对 C.7对 D.8对二、填空题(共6小题,每小题3分,满分18分)13.(3分)43的底数是,指数是,计算的结果是.14.(3分)从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是.15.(3分)若a,b互为相反数,c,d互为倒数,m的绝对值为2,则的值为.16.(3分)已知:线段a,b,且a>b.画射线AE,在射线AE上顺次截取AB=BC=CD=a,在线段AD上截取AF=b,则线段FD=.17.(3分)把一张长方形纸片ABCD按如图所示的那样折叠后,若得到∠AEB′=56°,则∠BEF=.18.(3分)平面内有四个点A,B,C,D,过其中每两个点画直线可以画出直线的条数为.三、解答题(共7小题,满分58分)19.(8分)计算:(1);(2)﹣6+(﹣2)3×()÷()2÷(﹣3).20.(8分)解下列方程:(1)x+5=x+3﹣2x;(2).21.(8分)已知A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2.(1)化简:2B﹣A;(2)已知﹣a|x﹣2|b2与ab y的同类项,求2B﹣A的值.22.(8分)如图,将一幅直角三角板叠放在一起,使直角顶点重合于点O.(1)若∠AOC=35°,求∠AOD的度数;(2)问:∠AOC=∠BOD吗?说明理由;(3)写出∠AOD与∠BOC所满足的数量关系,并说明理由.23.(8分)列一元一次方程解应用题.某校七年级(1)班数学老师为做好期末复习,事先录制了一节复习课,准备刻成电脑光盘给每个学生回家观看.如果到电脑公司刻录光盘每张需9元;如果在学校自己刻录,除租用一台刻录机需要140元外,每张光盘还需要成本费5元.(1)问刻录多少张光盘时,到电脑公司刻录与学校自己刻录所需费用一样?(2)如果七年级(1)班共有学生36人,每人一张,那么到电脑公司刻录合算,还是在学校自己刻录合算.24.(9分)已知m,n满足等式(m﹣8)2+2|n﹣m+5|=0.(1)求m,n的值;(2)已知线段AB=m,在直线AB上取一点P,恰好使AP=nPB,点Q为PB的中点,求线段AQ的长.25.(9分)已知∠AOB为锐角,如图(1).(1)若OM平分∠AOC,ON平分∠BOD,∠MON=32°,∠COD=10°,如图(2)所示,求∠AOB的度数.(2)若OM,OD,OC,ON是∠AOB的五等分线,如图(3)所示,以射线OA,OM,OD,OC,ON,OB为始边的所有角的和为980°,求∠AOB的度数.2015-2016学年天津市和平区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题2分,满分24分)1.(2分)计算(﹣3)﹣(﹣5)=()A.2 B.﹣2 C.8 D.﹣8【解答】解:(﹣3)﹣(﹣5)=﹣3+5=2.故选:A.2.(2分)数轴上的点A到原点的距离是4,则点A表示的数为()A.4 B.﹣4 C.4或﹣4 D.2或﹣2【解答】解:在数轴上,4和﹣4到原点的距离为4.∴点A所表示的数是4和﹣4.故选:C.3.(2分)下列作图语句中,正确的是()A.画直线AB=6cm B.延长线段AB到CC.延长射线OA到B D.作直线使之经过A,B,C三点【解答】解:∵直线无法测量,故选项A错误;延长线断AB到C是正确的,故选项B正确;射线OA本身是以点O为端点,向着OA方向延伸,故选项C错误;如果点A、B、C三点不在同一直线上,则直线不能同时经过这三个点,故选项D 错误;故选B.4.(2分)把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释正确的是()A.线段可以比较大小B.线段有两个端点C.两点之间线段最短D.过两点有且只有一条直线【解答】解:把一条弯曲的公路改成直道,可以缩短路程,其道理是两点之间线段最短,故选:C.5.(2分)把方程﹣去分母,正确的是()A.3x﹣(x﹣1)=1 B.3x﹣x﹣1=1 C.3x﹣x﹣1=6 D.3x﹣(x﹣1)=6【解答】解:方程两边同时乘以6得:3x﹣(x﹣1)=6.故选D.6.(2分)已知m+a=n+b,根据等式性质变形为m=n,那么a,b必须符合的条件是()A.a=﹣bB.﹣a=bC.a=bD.a,b可以是任意有理数或整式【解答】解:m+a=n+b两边都减去b得,m+a﹣b=n,∵等式可变形为m=n,∴a﹣b=0,∴a=b.故选C.7.(2分)如图,下列说法中错误的是()A.OA的方向是东北方向B.OB的方向是北偏西55°C.OC的方向是南偏西30°D.OD的方向是南偏东30°【解答】解:OA的方向是东北方向,A正确;OB的方向是北偏西55°,B正确;OC的方向是南偏西60°,C错误;OD的方向是南偏东30°,D正确,故选:C.8.(2分)下列图形中,经过折叠不能围成一个立方体的是()A. B.C.D.【解答】解:选项A、B、C经过折叠均能围成正方体;D、有“田”字格,不能折成正方体.故选D.9.(2分)已知∠1=18°18′,∠2=18.18°,∠3=18.3°,下列结论正确的是()A.∠1=∠3 B.∠1=∠2 C.∠2=∠3 D.∠1=∠2=∠3【解答】解:∠1=18°18′=18.3°=∠3<∠2,故选:A.10.(2分)已知∠1与∠2互余,∠2与∠3互补,∠1=58°,则∠3=()A.58°B.148°C.158° D.32°【解答】解:∵∠1与∠2互余,∠1=65°∴∠2=90°﹣58°=32∠2与∠3互补∴∠3=180°﹣32°=148°.故选B.11.(2分)如果线段AB=10cm,MA+MB=13cm,那么下面说法中正确的是()A.点M是线段AB上B.点M在直线AB上C.点M在直线AB外D.点M在直线AB上,也可能在直线AB外【解答】解:如图1:点M在直线AB外时,MA+MB=13cm,如图2,点M在直线AB上时,MA+MB=13cm,根据以上两个图形得出M可以在直线AB上,也可以在直线AB外,故选D.12.(2分)如图,AOB是一条直线,∠AOC=60°,OD,OE分别是∠AOC和∠BOC 的平分线,则图中互补的角有()A.5对 B.6对 C.7对 D.8对【解答】解:∠BOC=180°﹣∠AOC=180°﹣60°=120°,∵OD,OE分别是∠AOC和∠BOC的平分线,∴∠AOD=∠COD=30°,∠COE=∠BOE=60°,∴∠AOE=∠BOC=120°,∠DOE=90°,∠DOB=150°,则∠AOD+∠DOB=180°,∠COD+∠DOB=180°,∠AOC+∠BOC=180°,∠COE+∠BOC=180°,∠BOE+∠BOC=180°,∠AOE+∠BOE=180°,∠AOE+∠AOC=180°,∠AOE+∠COE=180°.总之有8对互补的角.故选D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)43的底数是4,指数是3,计算的结果是64.【解答】解:43的底数是4,指数是3,计算的结果是64,故答案为:4;3;6414.(3分)从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是圆柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故答案为:圆柱.15.(3分)若a,b互为相反数,c,d互为倒数,m的绝对值为2,则的值为4.【解答】解:根据题意得:a+b=0,cd=1,m=2或﹣2,当m=2时,原式=8﹣4=4;当m=﹣2时,原式=8﹣4=4.故答案为:416.(3分)已知:线段a,b,且a>b.画射线AE,在射线AE上顺次截取AB=BC=CD=a,在线段AD上截取AF=b,则线段FD=3a﹣b.【解答】解:如图所示:DF=AD﹣AF=AB+CB+CD﹣AF=3a﹣b.故答案为:3a﹣b.17.(3分)把一张长方形纸片ABCD按如图所示的那样折叠后,若得到∠AEB′=56°,则∠BEF=62°.【解答】解:∵把一张长方形纸片ABCD按如图所示的那样折叠后,得到∠AEB′=56°,∴∠BEB′=180°﹣∠AEB′=124°,∠BEF=∠B′EF,∵∠BEF+∠B′EF=∠B EB′,∴∠BEF=∠B′EF=∠BEB′=62°,故答案为:62°.18.(3分)平面内有四个点A,B,C,D,过其中每两个点画直线可以画出直线的条数为1条、4条或6条.【解答】解:(1)如果4个点,点A、B、C、D在同一直线上,那么只能确定一条直线,如图:(2)如果4个点中有3个点(不妨设点A、B、C)在同一直线上,而第4个点,点D不在此直线上,那么可以确定4条直线,如图:(3)如果4个点中,任何3个点都不在同一直线上,那么点A分别和点B、C、D确定3条直线,点B分别与点C、D确定2条直线,最后点C、D确定一条直线,这样共确定6条直线,如图:综上所述,过其中2个点可以画1条、4条或6条直线.故答案为:1条、4条或6条.三、解答题(共7小题,满分58分)19.(8分)计算:(1);(2)﹣6+(﹣2)3×()÷()2÷(﹣3).【解答】解:(1)原式=+﹣+1=﹣+1=;(2)原式=﹣6﹣8××36×(﹣)=﹣6+16=10.20.(8分)解下列方程:(1)x+5=x+3﹣2x;(2).【解答】解:(1)去分母得:2x+10=x+6﹣4x,移项合并得:5x=﹣4,解得:x=﹣0.8;(2)去分母得:5(x﹣3)﹣3(2x+7)=15(x﹣1),去括号得:5x﹣15﹣6x﹣21=15x﹣15,移项合并得:﹣16x=21,解得:x=﹣.21.(8分)已知A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2.(1)化简:2B﹣A;(2)已知﹣a|x﹣2|b2与ab y的同类项,求2B﹣A的值.【解答】解:(1)∵A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2,∴2B﹣A=2(2xy﹣3y2+4x2)﹣(3x2+3y2﹣5xy)=4xy﹣6y2+8x2﹣3x2﹣3y2+5xy=5x2+9xy﹣9y2;(2)∵﹣a|x﹣2|b2与ab y的同类项,∴|x﹣2|=1,y=2,解得:x=3或x=1,y=2,当x=3,y=2时,原式=45+54﹣36=63;当x=1,y=2时,原式=5+18﹣36=﹣13.22.(8分)如图,将一幅直角三角板叠放在一起,使直角顶点重合于点O.(1)若∠AOC=35°,求∠AOD的度数;(2)问:∠AOC=∠BOD吗?说明理由;(3)写出∠AOD与∠BOC所满足的数量关系,并说明理由.【解答】解:(1)∵∠COD=90°,∠AOC=35°,∴∠AOD=∠AOC+∠COD=35°+90°=125°;(2)∠AOC=∠BOD,理由是:∵∠AOB=∠COD=90°,∴∠AOB﹣∠COB=∠COD﹣∠COB,∴∠AOC=∠BOD;(3)∠AOD+∠BOC=180°,理由是:∵∠AOB=∠COD=90°,∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=∠COD+∠AOB=90°+90°=180°.23.(8分)列一元一次方程解应用题.某校七年级(1)班数学老师为做好期末复习,事先录制了一节复习课,准备刻成电脑光盘给每个学生回家观看.如果到电脑公司刻录光盘每张需9元;如果在学校自己刻录,除租用一台刻录机需要140元外,每张光盘还需要成本费5元.(1)问刻录多少张光盘时,到电脑公司刻录与学校自己刻录所需费用一样?(2)如果七年级(1)班共有学生36人,每人一张,那么到电脑公司刻录合算,还是在学校自己刻录合算.【解答】解:(1)设刻录x张光盘时,到电脑公司刻录与学校自己刻录所需费用一样,依题意,得9x=140+5x,解得x=35.答:刻录35张光盘时,到电脑公司刻录与学校自己刻录所需费用一样(2)9×36=324(元),140+5×36=140+180=320(元),因为324>320,所以在学校自己刻录合算.24.(9分)已知m,n满足等式(m﹣8)2+2|n﹣m+5|=0.(1)求m,n的值;(2)已知线段AB=m,在直线AB上取一点P,恰好使AP=nPB,点Q为PB的中点,求线段AQ的长.【解答】解:(1)由(m﹣8)2+2|n﹣m+5|=0,得m﹣8=0,n﹣m+5=0.解得m=8,n=3;(2)由(1)得AB=8,AP=3PB,有两种情况:①当点P在点B的左侧时,如图1,AB=AP+PB=8,AP=3PB,4PB=8,解得PB=2,AP=3PB=3×2=6.∵点Q为PB的中点,∴PQ=PB=1,AQ=AP+PQ=6+1=7;②当点P在点B的右侧时,如图2,∵AP=AB+BP,AP=3PB,∴3PB=8+PB,∴PB=4.∵点Q为PB的中点,∴BQ=PB=2,∴AQ=AB+BQ=8+2=10.25.(9分)已知∠AOB为锐角,如图(1).(1)若OM平分∠AOC,ON平分∠BOD,∠MON=32°,∠COD=10°,如图(2)所示,求∠AOB的度数.(2)若OM,OD,OC,ON是∠AOB的五等分线,如图(3)所示,以射线OA,OM,OD,OC,ON,OB为始边的所有角的和为980°,求∠AOB的度数.【解答】解:(1)∵OM平分∠AOC,ON平分∠BOD,∴∠AOM=∠COM,同理:∠BON=∠DON,∵∠MON=32°,∠COD=10°,∠MON=∠CON+∠DON﹣∠COD,∴32°=∠COM+∠DON﹣10°,∴∠COM+∠DON=42°,∴∠AOM+∠BON=42°,∵∠AOB=∠AOM+∠BON+∠MON,∴∠AOB=42°+32°=74°;(2)设∠AOB被五等分的每个角为x°,则∠AOB=5x°,以射线OA为始边的所有角的度数为x°+2x°+3x°+4x°+5x°=15x°,以射线OM、OD、OC、ON、OB为始边的所有角的度数分别为11x°,9x°,9x°11x°,15x°,由题意得15x+11x+9x+9x+11x+15x=980,解得x=14.故∠AOB=5×14°=70°.赠送初中数学几何模型【模型二】半角型:图形特征:45°4321A1FB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa +b-aa45°ABE挖掘图形特征:a+bb x-aa 45°D Ba +b-a45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.DE2.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,求△AMN 的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF ,BE ,DF 之间的数量关系.ABFEDCF。
2016-2017学年天津市和平区七年级(上)期中数学试卷
故答案为:4. 【答案】 −3x2y + xy2 【考点】 整式的加减–化简求值 非负数的性质:绝对值 非负数的性质:偶次方 【解析】 首先利用非负数的性质得出a,b的值,再利用整式加减运算法则化简求出答案. 【解答】 解:∵ (a + 1)2 + |b−2| = 0, ∴ a = −1,b = 2,
我国出租车收费标准因地而异,甲城市为:起步价7元,3千米后每千米收费1.7元;乙 城市为:起步价10元,3千米后每千米收费1.2元. (1)试问:在甲、乙两城市乘坐出租车x(x > 3)千米各收费多少元;
(2)如果在甲、乙两城市乘坐出租车的路程都为8千米,那么那个城市的收费高些? 高多少?
已知在数轴上的位置如图所示:
(1)填空:a与c之间的距离为________; (2)化简:|a + 1|−|c−b| + |b−1|; (3)若a + b + c = 0,且b与−1的距离和c与−1的距离相等,求−2a2 + 2b−4c−(−a + 5b−c)的 值.
将连续的奇数1、3、5、7、9、…排成如图的数表:
试卷第 3 页,总 14 页
画出数轴,且在数轴上表示出下列各数: −12,3,0,−2,2.25,−3 并解答下列问题: (1)用“ < ”号把这些数连接起来;
(2)求这些数中−12,0,2.25的相反数;
试卷第 2 页,总 14 页
(3)求这些数的绝对值的和.
计算:
2
1
2
(1)(−33)−(−2.4) + (−3)−( + 45)
A.3x2y与−13x2y C.xyz3与−xyz3
B.−13与0 D.2x3y与2xy3
2015-2016学年天津市和平区七年级上学期数学期末试卷带答案
2015-2016学年天津市和平区七年级(上)期末数学试卷一、选择题(共12小题,每小题2分,满分24分)1.(2分)计算(﹣3)﹣(﹣5)=()A.2 B.﹣2 C.8 D.﹣82.(2分)数轴上的点A到原点的距离是4,则点A表示的数为()A.4 B.﹣4 C.4或﹣4 D.2或﹣23.(2分)下列作图语句中,正确的是()A.画直线AB=6cm B.延长线段AB到CC.延长射线OA到B D.作直线使之经过A,B,C三点4.(2分)把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释正确的是()A.线段可以比较大小B.线段有两个端点C.两点之间线段最短D.过两点有且只有一条直线5.(2分)把方程﹣去分母,正确的是()A.3x﹣(x﹣1)=1 B.3x﹣x﹣1=1 C.3x﹣x﹣1=6 D.3x﹣(x﹣1)=6 6.(2分)已知m+a=n+b,根据等式性质变形为m=n,那么a,b必须符合的条件是()A.a=﹣bB.﹣a=bC.a=bD.a,b可以是任意有理数或整式7.(2分)如图,下列说法中错误的是()A.OA的方向是东北方向B.OB的方向是北偏西55°C.OC的方向是南偏西30°D.OD的方向是南偏东30°8.(2分)下列图形中,经过折叠不能围成一个立方体的是()A. B.C.D.9.(2分)已知∠1=18°18′,∠2=18.18°,∠3=18.3°,下列结论正确的是()A.∠1=∠3 B.∠1=∠2 C.∠2=∠3 D.∠1=∠2=∠310.(2分)已知∠1与∠2互余,∠2与∠3互补,∠1=58°,则∠3=()A.58°B.148°C.158° D.32°11.(2分)如果线段AB=10cm,MA+MB=13cm,那么下面说法中正确的是()A.点M是线段AB上B.点M在直线AB上C.点M在直线AB外D.点M在直线AB上,也可能在直线AB外12.(2分)如图,AOB是一条直线,∠AOC=60°,OD,OE分别是∠AOC和∠BOC 的平分线,则图中互补的角有()A.5对 B.6对 C.7对 D.8对二、填空题(共6小题,每小题3分,满分18分)13.(3分)43的底数是,指数是,计算的结果是.14.(3分)从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是.15.(3分)若a,b互为相反数,c,d互为倒数,m的绝对值为2,则的值为.16.(3分)已知:线段a,b,且a>b.画射线AE,在射线AE上顺次截取AB=BC=CD=a,在线段AD上截取AF=b,则线段FD=.17.(3分)把一张长方形纸片ABCD按如图所示的那样折叠后,若得到∠AEB′=56°,则∠BEF=.18.(3分)平面内有四个点A,B,C,D,过其中每两个点画直线可以画出直线的条数为.三、解答题(共7小题,满分58分)19.(8分)计算:(1);(2)﹣6+(﹣2)3×()÷()2÷(﹣3).20.(8分)解下列方程:(1)x+5=x+3﹣2x;(2).21.(8分)已知A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2.(1)化简:2B﹣A;(2)已知﹣a|x﹣2|b2与ab y是同类项,求2B﹣A的值.22.(8分)如图,将一幅直角三角板叠放在一起,使直角顶点重合于点O.(1)若∠AOC=35°,求∠AOD的度数;(2)问:∠AOC=∠BOD吗?说明理由;(3)写出∠AOD与∠BOC所满足的数量关系,并说明理由.23.(8分)列一元一次方程解应用题.某校七年级(1)班数学老师为做好期末复习,事先录制了一节复习课,准备刻成电脑光盘给每个学生回家观看.如果到电脑公司刻录光盘每张需9元;如果在学校自己刻录,除租用一台刻录机需要140元外,每张光盘还需要成本费5元.(1)问刻录多少张光盘时,到电脑公司刻录与学校自己刻录所需费用一样?(2)如果七年级(1)班共有学生36人,每人一张,那么到电脑公司刻录合算,还是在学校自己刻录合算.24.(9分)已知m,n满足等式(m﹣8)2+2|n﹣m+5|=0.(1)求m,n的值;(2)已知线段AB=m,在直线AB上取一点P,恰好使AP=nPB,点Q为PB的中点,求线段AQ的长.25.(9分)已知∠AOB为锐角,如图(1).(1)若OM平分∠AOC,ON平分∠BOD,∠MON=32°,∠COD=10°,如图(2)所示,求∠AOB的度数.(2)若OM,OD,OC,ON是∠AOB的五等分线,如图(3)所示,以射线OA,OM,OD,OC,ON,OB为始边的所有角的和为980°,求∠AOB的度数.2015-2016学年天津市和平区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题2分,满分24分)1.(2分)计算(﹣3)﹣(﹣5)=()A.2 B.﹣2 C.8 D.﹣8【解答】解:(﹣3)﹣(﹣5)=﹣3+5=2.故选:A.2.(2分)数轴上的点A到原点的距离是4,则点A表示的数为()A.4 B.﹣4 C.4或﹣4 D.2或﹣2【解答】解:在数轴上,4和﹣4到原点的距离为4.∴点A所表示的数是4和﹣4.故选:C.3.(2分)下列作图语句中,正确的是()A.画直线AB=6cm B.延长线段AB到CC.延长射线OA到B D.作直线使之经过A,B,C三点【解答】解:∵直线无法测量,故选项A错误;延长线断AB到C是正确的,故选项B正确;射线OA本身是以点O为端点,向着OA方向延伸,故选项C错误;如果点A、B、C三点不在同一直线上,则直线不能同时经过这三个点,故选项D 错误;故选:B.4.(2分)把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释正确的是()A.线段可以比较大小B.线段有两个端点C.两点之间线段最短D.过两点有且只有一条直线【解答】解:把一条弯曲的公路改成直道,可以缩短路程,其道理是两点之间线段最短,故选:C.5.(2分)把方程﹣去分母,正确的是()A.3x﹣(x﹣1)=1 B.3x﹣x﹣1=1 C.3x﹣x﹣1=6 D.3x﹣(x﹣1)=6【解答】解:方程两边同时乘以6得:3x﹣(x﹣1)=6.故选:D.6.(2分)已知m+a=n+b,根据等式性质变形为m=n,那么a,b必须符合的条件是()A.a=﹣bB.﹣a=bC.a=bD.a,b可以是任意有理数或整式【解答】解:m+a=n+b两边都减去b得,m+a﹣b=n,∵等式可变形为m=n,∴a﹣b=0,∴a=b.故选:C.7.(2分)如图,下列说法中错误的是()A.OA的方向是东北方向B.OB的方向是北偏西55°C.OC的方向是南偏西30°D.OD的方向是南偏东30°【解答】解:OA的方向是东北方向,A正确;OB的方向是北偏西55°,B正确;OC的方向是南偏西60°,C错误;OD的方向是南偏东30°,D正确,故选:C.8.(2分)下列图形中,经过折叠不能围成一个立方体的是()A. B.C.D.【解答】解:选项A、B、C经过折叠均能围成正方体;D、有“田”字格,不能折成正方体.故选:D.9.(2分)已知∠1=18°18′,∠2=18.18°,∠3=18.3°,下列结论正确的是()A.∠1=∠3 B.∠1=∠2 C.∠2=∠3 D.∠1=∠2=∠3【解答】解:∠1=18°18′=18.3°=∠3<∠2,故选:A.10.(2分)已知∠1与∠2互余,∠2与∠3互补,∠1=58°,则∠3=()A.58°B.148°C.158° D.32°【解答】解:∵∠1与∠2互余,∠1=65°∴∠2=90°﹣58°=32∠2与∠3互补∴∠3=180°﹣32°=148°.故选:B.11.(2分)如果线段AB=10cm,MA+MB=13cm,那么下面说法中正确的是()A.点M是线段AB上B.点M在直线AB上C.点M在直线AB外D.点M在直线AB上,也可能在直线AB外【解答】解:如图1:点M在直线AB外时,MA+MB=13cm,如图2,点M在直线AB上时,MA+MB=13cm,根据以上两个图形得出M可以在直线AB上,也可以在直线AB外,故选:D.12.(2分)如图,AOB是一条直线,∠AOC=60°,OD,OE分别是∠AOC和∠BOC 的平分线,则图中互补的角有()A.5对 B.6对 C.7对 D.8对【解答】解:∠BOC=180°﹣∠AOC=180°﹣60°=120°,∵OD,OE分别是∠AOC和∠BOC的平分线,∴∠AOD=∠COD=30°,∠COE=∠BOE=60°,∴∠AOE=∠BOC=120°,∠DOE=90°,∠DOB=150°,则∠AOD+∠DOB=180°,∠COD+∠DOB=180°,∠AOC+∠BOC=180°,∠COE+∠BOC=180°,∠BOE+∠BOC=180°,∠AOE+∠BOE=180°,∠AOE+∠AOC=180°,∠AOE+∠COE=180°.总之有8对互补的角.故选:D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)43的底数是4,指数是3,计算的结果是64.【解答】解:43的底数是4,指数是3,计算的结果是64,故答案为:4;3;6414.(3分)从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是圆柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故答案为:圆柱.15.(3分)若a,b互为相反数,c,d互为倒数,m的绝对值为2,则的值为4.【解答】解:根据题意得:a+b=0,cd=1,m=2或﹣2,当m=2时,原式=8﹣4=4;当m=﹣2时,原式=8﹣4=4.故答案为:416.(3分)已知:线段a,b,且a>b.画射线AE,在射线AE上顺次截取AB=BC=CD=a,在线段AD上截取AF=b,则线段FD=3a﹣b.【解答】解:如图所示:DF=AD﹣AF=AB+CB+CD﹣AF=3a﹣b.故答案为:3a﹣b.17.(3分)把一张长方形纸片ABCD按如图所示的那样折叠后,若得到∠AEB′=56°,则∠BEF=62°.【解答】解:∵把一张长方形纸片ABCD按如图所示的那样折叠后,得到∠AEB′=56°,∴∠BEB′=180°﹣∠AEB′=124°,∠BEF=∠B′EF,∵∠BEF+∠B′EF=∠BEB′,∴∠BEF=∠B′EF=∠BEB′=62°,故答案为:62°.18.(3分)平面内有四个点A,B,C,D,过其中每两个点画直线可以画出直线的条数为1条、4条或6条.【解答】解:(1)如果4个点,点A、B、C、D在同一直线上,那么只能确定一条直线,如图:(2)如果4个点中有3个点(不妨设点A、B、C)在同一直线上,而第4个点,点D不在此直线上,那么可以确定4条直线,如图:(3)如果4个点中,任何3个点都不在同一直线上,那么点A分别和点B、C、D确定3条直线,点B分别与点C、D确定2条直线,最后点C、D确定一条直线,这样共确定6条直线,如图:综上所述,过其中2个点可以画1条、4条或6条直线.故答案为:1条、4条或6条.三、解答题(共7小题,满分58分)19.(8分)计算:(1);(2)﹣6+(﹣2)3×()÷()2÷(﹣3).【解答】解:(1)原式=+﹣+1=﹣+1=;(2)原式=﹣6﹣8××36×(﹣)=﹣6+16=10.20.(8分)解下列方程:(1)x+5=x+3﹣2x;(2).【解答】解:(1)去分母得:2x+10=x+6﹣4x,移项合并得:5x=﹣4,解得:x=﹣0.8;(2)去分母得:5(x﹣3)﹣3(2x+7)=15(x﹣1),去括号得:5x﹣15﹣6x﹣21=15x﹣15,移项合并得:﹣16x=21,解得:x=﹣.21.(8分)已知A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2.(1)化简:2B﹣A;(2)已知﹣a|x﹣2|b2与ab y是同类项,求2B﹣A的值.【解答】解:(1)∵A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2,∴2B﹣A=2(2xy﹣3y2+4x2)﹣(3x2+3y2﹣5xy)=4xy﹣6y2+8x2﹣3x2﹣3y2+5xy=5x2+9xy﹣9y2;(2)∵﹣a|x﹣2|b2与ab y的同类项,∴|x﹣2|=1,y=2,解得:x=3或x=1,y=2,当x=3,y=2时,原式=45+54﹣36=63;当x=1,y=2时,原式=5+18﹣36=﹣13.22.(8分)如图,将一幅直角三角板叠放在一起,使直角顶点重合于点O.(1)若∠AOC=35°,求∠AOD的度数;(2)问:∠AOC=∠BOD吗?说明理由;(3)写出∠AOD与∠BOC所满足的数量关系,并说明理由.【解答】解:(1)∵∠COD=90°,∠AOC=35°,∴∠AOD=∠AOC+∠COD=35°+90°=125°;(2)∠AOC=∠BOD,理由是:∵∠AOB=∠COD=90°,∴∠AOB﹣∠COB=∠COD﹣∠COB,∴∠AOC=∠BOD;(3)∠AOD+∠BOC=180°,理由是:∵∠AOB=∠COD=90°,∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=∠COD+∠AOB=90°+90°=180°.23.(8分)列一元一次方程解应用题.某校七年级(1)班数学老师为做好期末复习,事先录制了一节复习课,准备刻成电脑光盘给每个学生回家观看.如果到电脑公司刻录光盘每张需9元;如果在学校自己刻录,除租用一台刻录机需要140元外,每张光盘还需要成本费5元.(1)问刻录多少张光盘时,到电脑公司刻录与学校自己刻录所需费用一样?(2)如果七年级(1)班共有学生36人,每人一张,那么到电脑公司刻录合算,还是在学校自己刻录合算.【解答】解:(1)设刻录x张光盘时,到电脑公司刻录与学校自己刻录所需费用一样,依题意,得9x=140+5x,解得x=35.答:刻录35张光盘时,到电脑公司刻录与学校自己刻录所需费用一样(2)9×36=324(元),140+5×36=140+180=320(元),因为324>320,所以在学校自己刻录合算.24.(9分)已知m,n满足等式(m﹣8)2+2|n﹣m+5|=0.(1)求m,n的值;(2)已知线段AB=m,在直线AB上取一点P,恰好使AP=nPB,点Q为PB的中点,求线段AQ的长.【解答】解:(1)由(m﹣8)2+2|n﹣m+5|=0,得m﹣8=0,n﹣m+5=0.解得m=8,n=3;(2)由(1)得AB=8,AP=3PB,有两种情况:①当点P在点B的左侧时,如图1,AB=AP+PB=8,AP=3PB,4PB=8,解得PB=2,AP=3PB=3×2=6.∵点Q为PB的中点,∴PQ=PB=1,AQ=AP+PQ=6+1=7;②当点P在点B的右侧时,如图2,∵AP=AB+BP,AP=3PB,∴3PB=8+PB,∴PB=4.∵点Q为PB的中点,∴BQ=PB=2,∴AQ=AB+BQ=8+2=10.25.(9分)已知∠AOB为锐角,如图(1).(1)若OM平分∠AOC,ON平分∠BOD,∠MON=32°,∠COD=10°,如图(2)所示,求∠AOB的度数.(2)若OM,OD,OC,ON是∠AOB的五等分线,如图(3)所示,以射线OA,OM,OD,OC,ON,OB为始边的所有角的和为980°,求∠AOB的度数.【解答】解:(1)∵OM平分∠AOC,ON平分∠BOD,∴∠AOM=∠COM,同理:∠BON=∠DON,∵∠MON=32°,∠COD=10°,∠MON=∠CON+∠DON﹣∠COD,∴32°=∠COM+∠DON﹣10°,∴∠COM+∠DON=42°,∴∠AOM+∠BON=42°,∵∠AOB=∠AOM+∠BON+∠MON,∴∠AOB=42°+32°=74°;(2)设∠AOB被五等分的每个角为x°,则∠AOB=5x°,以射线OA为始边的所有角的度数为x°+2x°+3x°+4x°+5x°=15x°,以射线OM、OD、OC、ON、OB为始边的所有角的度数分别为11x°,9x°,9x°11x°,15x°,由题意得15x+11x+9x+9x+11x+15x=980,解得x=14.故∠AOB=5×14°=70°.附赠:数学考试技巧一、心理准备细心+认真=成功!1、知己知彼,百战百胜。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年天津市和平区七年级(上)期末数学试卷一、选择题:本大题共12小题,每小题2分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2分)计算5+(﹣5)=()A.1 B.0 C.10 D.﹣102.(2分)(﹣2)3表示()A.﹣2×3 B.(﹣2)+(﹣2)+(﹣2)C.﹣2×2×2 D.(﹣2)×(﹣2)×(﹣2)3.(2分)下列说法正确的是()A.表示﹣x的平方的式子是﹣x2B.表示x、y2、3的积的式子是3xy2C.x、y两数差的平方表示为(x﹣y)2D.x2+y2的意义是x与y和的平方4.(2分)如图所示,小明家在A处,体育馆在B处,星期六小明由家去体育馆打篮球,他想尽快到达体育馆,请你帮助他选择一条最近的路线,应是()A.A→C→E→B B.A→C→D→B C.A→C→G→B D.A→C→F→E→B5.(2分)如图,点P位于点O的()A.南偏西32°B.北偏东32°C.南偏东58°D.北偏西58°6.(2分)下面给出的三个平面图形,是从前面、左面、上面看一个立体图形得到的,那么这个立体图形应是()A.B.C.D.7.(2分)如图,四个图形都是由6个大小相同的正方形组成,其中是正方体展开图的是()A.①②④B.①②③C.②④D.②③④8.(2分)如图所示,点A、B、C在直线l上,则下列说法正确的是()A.图中有2条线段B.图中有6条射线C.点C在直线AB的延长线上D.A、B两点之间的距离是线段AB9.(2分)下列方程中,解为x=﹣2的方程是()A.2x+5=1﹣x B.3﹣2(x﹣1)=7﹣x C.x﹣2=﹣2﹣x D.1﹣x=x 10.(2分)如图,下列关系式中与图不符的是()A.AD﹣CD=AC B.AB+BC=AC C.BD﹣BC=AB+BC D.AD﹣BD=AC﹣BC 11.(2分)若∠α与∠β互余,且∠α:∠β=3:2,那么∠α与∠β的度数分别是()A.36°,54°B.60°,40°C.54°,36°D.72°,108°12.(2分)如图,∠MON为锐角.下列说法:①∠MOP=∠MON;②∠MOP=∠NOP=∠MON;③∠MOP=∠NOP;④∠MON=∠MOP+∠NOP.其中,能说明射线OP一定为∠MON的平分线的有()A.1个 B.2个 C.3个 D.4个二、填空题:笨蛋那天共6小题,每小题3分,共18分.13.(3分)56.28°=°′″.14.(3分)若单项式ax2y n+1与﹣ax m y4的差仍是单项式,则m﹣2n=.15.(3分)线段AB=4cm,点C在AB的延长线上,点D在AB的反向延长线上,且点B为AC的中点,AD为BC的2倍,则线段CD=.16.(3分)已知∠AOB=3∠BOC,若∠BOC=30°,则∠AOC=度.17.(3分)若一个角的补角加上10°后,等于这个角的余角的3倍,则这个角的补角为度.18.(3分)如图,点A、B在数轴上,其对应的数分别是﹣14和10,若点C也在这个数轴上,且AC:BC=2:5,则点C对应的数是.三、解答题:本大题共7小题,共58分,解答应写出演算步骤或简单推理过程.19.(8分)计算:(1)÷(﹣2)﹣(﹣)×(﹣)+;(2){1+[﹣(﹣)2]×(﹣2)3}÷(﹣1+0.5).20.(8分)解下列方程:(1)3(2x﹣)﹣2(x+1)=2;(2)2y﹣=+3.21.(7分)已知A=3b2﹣2a2+5ab,B=4ab﹣2b2﹣a2.(1)化简:3A﹣4B;(2)已知a、b满足(a﹣1)2+|b+1|=0,求3A﹣4B的值.22.(7分)如图,已知∠AOB=155°,∠AOC=∠BOD=90°.(1)写出与∠COD互余的角;(2)求∠COD的度数;(3)图中是否有互补的角?若有,请写出来.23.(9分)列一元一次方程解应用题.某租赁公司拥有100辆轿车,当每辆轿车的月租金为3000元时,可全部租出,当每辆轿车的月租金每增加50元时,未租出的轿车将会增加一辆,租出的轿车每辆每月公司需要保养费150元,未租出的轿车每辆每月公司需要保养费50元.(1)已知10月份每辆轿车的月租金为3600元时,能租出多少辆轿车?(2)已知11月份的保养费开支为12900元,问该月租出了多少辆轿车?(3)比较10、11两月的月收益,哪个月的月收益多?多多少?24.(9分)如图,O为直线AB上一点,∠BOC=α.(1)若α=40°,OD平分∠AOC,∠DOE=90°,如图(a)所示,求∠AOE的度数;(2)若∠AOD=∠AOC,∠DOE=60°,如图(b)所示,请用α表示∠AOE的度数;(3)若∠AOD=∠AOC,∠DOE=(n≥2,且n为正整数),如图(c)所示,请用α和n表示∠AOE的度数(直接写出结果).25.(10分)已知a、b均为有理数,且关于x的方程为=+1.(1)当a=4,b=﹣时,求x的值;(2)若关于x的方程有无数个解.①求a、b的值;②设线段AB=a,CD=b,线段CD在直线AB上(A在B的左侧,C在D的左侧),且M、N分别是线段AC、BD的中点,若BC=4,求MN的值.2016-2017学年天津市和平区七年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题2分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2分)计算5+(﹣5)=()A.1 B.0 C.10 D.﹣10【解答】解:5+(﹣5)=0,故选:B.2.(2分)(﹣2)3表示()A.﹣2×3 B.(﹣2)+(﹣2)+(﹣2)C.﹣2×2×2 D.(﹣2)×(﹣2)×(﹣2)【解答】解:(﹣2)3表示(﹣2)×(﹣2)×(﹣2),故选:D.3.(2分)下列说法正确的是()A.表示﹣x的平方的式子是﹣x2B.表示x、y2、3的积的式子是3xy2C.x、y两数差的平方表示为(x﹣y)2D.x2+y2的意义是x与y和的平方【解答】解:A、错误.表示﹣x的平方的式子是(﹣x)2.B、错误.表示x、y2、3的积的式子是xy2.C、正确.x、y两数差的平方表示为(x﹣y)2.D、错误.x2+y2的意义是x与y的平方和.故选:C.4.(2分)如图所示,小明家在A处,体育馆在B处,星期六小明由家去体育馆打篮球,他想尽快到达体育馆,请你帮助他选择一条最近的路线,应是()A.A→C→E→B B.A→C→D→B C.A→C→G→B D.A→C→F→E→B【解答】解:最近的路线,应是A→C→E→B,故选:A.5.(2分)如图,点P位于点O的()A.南偏西32°B.北偏东32°C.南偏东58°D.北偏西58°【解答】解:∵OP和正北方向的夹角是58度∴点P位于点O的北偏西58°的方向上.故选:D.6.(2分)下面给出的三个平面图形,是从前面、左面、上面看一个立体图形得到的,那么这个立体图形应是()A.B.C.D.【解答】解:∵主视图和左视图都是三角形,∴此几何体为椎体,∵俯视图是一个长方形,∴此几何体为四棱锥.故选:D.7.(2分)如图,四个图形都是由6个大小相同的正方形组成,其中是正方体展开图的是()A.①②④B.①②③C.②④D.②③④【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,①,②,④选项可以拼成一个正方体,而③选项,上底面不可能有两个,故不是正方体的展开图.故选:A.8.(2分)如图所示,点A、B、C在直线l上,则下列说法正确的是()A.图中有2条线段B.图中有6条射线C.点C在直线AB的延长线上D.A、B两点之间的距离是线段AB【解答】解:∵图中有3条线段,∴选项A不正确;∵图中有6条射线,∴选项B正确;∵点C在线段AB的延长线上,∴选项C不正确;∵A、B两点之间的距离是线段AB的长度,∴选项D不正确.故选:B.9.(2分)下列方程中,解为x=﹣2的方程是()A.2x+5=1﹣x B.3﹣2(x﹣1)=7﹣x C.x﹣2=﹣2﹣x D.1﹣x=x【解答】解:将x=﹣2代入3﹣2(x﹣1)=7﹣x,∴左边=3﹣2×(﹣2﹣1)=3+6=9,右边=7﹣(﹣2)=9左边=右边,故选:B.10.(2分)如图,下列关系式中与图不符的是()A.AD﹣CD=AC B.AB+BC=AC C.BD﹣BC=AB+BC D.AD﹣BD=AC﹣BC【解答】解:A、AD﹣CD=AC,正确;B、AB+BC=AC,正确;C、由BD﹣BC=CD、AB+BC=AC知BD﹣BC=AB+BC错误;D、由AD﹣BD=AB、AC﹣BC=AB知AD﹣BD=AC﹣BC,正确;故选:C.11.(2分)若∠α与∠β互余,且∠α:∠β=3:2,那么∠α与∠β的度数分别是()A.36°,54°B.60°,40°C.54°,36°D.72°,108°【解答】解:设∠α,∠β的度数分别为3x°,2x°,则3x+2x=90,∴x=18.∴∠α=3x°=54°,∠β=2x°=36°,故选:C.12.(2分)如图,∠MON为锐角.下列说法:①∠MOP=∠MON;②∠MOP=∠NOP=∠MON;③∠MOP=∠NOP;④∠MON=∠MOP+∠NOP.其中,能说明射线OP一定为∠MON的平分线的有()A.1个 B.2个 C.3个 D.4个【解答】解:根据角平分线的定义,结合各选项得:①如果P点不在∠MON夹角内,则OP不是∠MON的平分线;②正确;③如果P点在∠MON外面,则OP不是∠MON的平分线;④如果∠MOP≠∠NOP,则OP不是∠MON的平分线;故选:A.二、填空题:笨蛋那天共6小题,每小题3分,共18分.13.(3分)56.28°=56°16′48″.【解答】解:∵0.28×60=16.8,0.8×60=48,∴56.28°=56°26′48″.故答案为:56,16,48.14.(3分)若单项式ax2y n+1与﹣ax m y4的差仍是单项式,则m﹣2n=﹣4.【解答】解:∵单项式与的差仍是单项式,∴单项式与是同类项,m=2,n+1=4,n=3,m﹣2n=2﹣2×3=﹣4,故答案为:﹣4.15.(3分)线段AB=4cm,点C在AB的延长线上,点D在AB的反向延长线上,且点B为AC的中点,AD为BC的2倍,则线段CD=16cm.【解答】解:∵AB=4cm,B为AC的中点,∴BC=AB=4cm,∵AD为BC的2倍,∴AD=8cm,∴CD=AD+AB+BC=16cm,故答案为:16cm.16.(3分)已知∠AOB=3∠BOC,若∠BOC=30°,则∠AOC=60或120度.【解答】解:∵∠BOC=30°,∠AOB=3∠BOC,∴∠AOB=3×30°=90°(1)当OC在∠AOB的外侧时,∠AOC=∠AOB+∠BOC=90°+30°=120度;(2)当OC在∠AOB的内侧时,∠AOC=∠AOB﹣∠BOC=90°﹣30°=60度.故填60或120.17.(3分)若一个角的补角加上10°后,等于这个角的余角的3倍,则这个角的补角为140度.【解答】解:设这个角的度数为x°,根据题意,得:180﹣x+10=3(90﹣x),解得:x=40,∴这个角的补角为:180°﹣40°=140°,故答案为:140.18.(3分)如图,点A、B在数轴上,其对应的数分别是﹣14和10,若点C也在这个数轴上,且AC:BC=2:5,则点C对应的数是﹣或﹣30.【解答】解:设点C表示的数为x,当点C在A、B之间时,=,解得:x=﹣;当点C在点A的左边时,=,解得:x=﹣30,故答案为:﹣或﹣30.三、解答题:本大题共7小题,共58分,解答应写出演算步骤或简单推理过程.19.(8分)计算:(1)÷(﹣2)﹣(﹣)×(﹣)+;(2){1+[﹣(﹣)2]×(﹣2)3}÷(﹣1+0.5).【解答】解:(1)原式=﹣×﹣+=﹣;(2)原式=(1﹣+)×(﹣)=﹣+﹣=﹣5.20.(8分)解下列方程:(1)3(2x﹣)﹣2(x+1)=2;(2)2y﹣=+3.【解答】解:(1)去括号得:6x﹣4﹣2x﹣2=26x﹣2x=2+4+2,4x=8,x=2;(2)去分母得:12y﹣3(y﹣3)=y+21,12y﹣3y+9=y+21,12y﹣3y﹣y=21﹣9,8y=12,y=1.5.21.(7分)已知A=3b2﹣2a2+5ab,B=4ab﹣2b2﹣a2.(1)化简:3A﹣4B;(2)已知a、b满足(a﹣1)2+|b+1|=0,求3A﹣4B的值.【解答】解:(1)3A﹣4B=3(3b2﹣2a2+5ab)﹣4(4ab﹣2b2﹣a2)=9b2﹣6a2+15ab﹣16ab+8b2+4a2=﹣2a2﹣ab+17b2(2)由题意可知:a﹣1=0,b+1=0,∴a=1,b=﹣1∴3A﹣4B=2×1﹣1×(﹣1)+17×1=﹣2+1+17=1622.(7分)如图,已知∠AOB=155°,∠AOC=∠BOD=90°.(1)写出与∠COD互余的角;(2)求∠COD的度数;(3)图中是否有互补的角?若有,请写出来.【解答】解:(1)∵∠AOC=∠BOD=90°,∴∠COD+∠AOD=90°,∠COD+∠BOC=90°,∴与∠COD互余的角是∠AOD和∠BOC;(2)∠BOC=∠AOB﹣∠AOC=65°,∴∠COD=∠BOD﹣∠BOC=25°;(3)∠COD与∠AOB、∠AOC与∠BOD互补.23.(9分)列一元一次方程解应用题.某租赁公司拥有100辆轿车,当每辆轿车的月租金为3000元时,可全部租出,当每辆轿车的月租金每增加50元时,未租出的轿车将会增加一辆,租出的轿车每辆每月公司需要保养费150元,未租出的轿车每辆每月公司需要保养费50元.(1)已知10月份每辆轿车的月租金为3600元时,能租出多少辆轿车?(2)已知11月份的保养费开支为12900元,问该月租出了多少辆轿车?(3)比较10、11两月的月收益,哪个月的月收益多?多多少?【解答】解:(1)设10月份未租出x辆轿车,依题意得,50x=3600﹣3000,解得x=12.所以,租出的轿车为100﹣12=88(辆).答:10月份能租出88辆轿车;(2)设11月份租出y辆轿车,依题意得:150y+50(100﹣y)=12900解得y=79.答:11月份租出79辆轿车;(3)10月份收益:(3600﹣150)×88﹣50×12=303000(元).11月份收益:[3000+50(100﹣79)]×79﹣12900=307050(元).因为307050﹣303000=4050(元),所以11月份收益多,多4050元.24.(9分)如图,O为直线AB上一点,∠BOC=α.(1)若α=40°,OD平分∠AOC,∠DOE=90°,如图(a)所示,求∠AOE的度数;(2)若∠AOD=∠AOC,∠DOE=60°,如图(b)所示,请用α表示∠AOE的度数;(3)若∠AOD=∠AOC,∠DOE=(n≥2,且n为正整数),如图(c)所示,请用α和n表示∠AOE的度数(直接写出结果).【解答】解:(1)∵∠BOC=40°,OD平分∠AOC,∴∠AOD=∠DOC=70°,∵∠DOE=90°,则∠AOE=90°﹣70°=20°;故答案为:20°;(2)设∠AOD=x,则∠DOC=2x,∠BOC=180﹣3x=α,解得:x=,∴∠AOE=60﹣x=60﹣=α;(3)设∠AOD=x,则∠DOC=(n﹣1)x,∠BOC=180﹣nx=α,解得:x=,∴∠AOE=﹣=.25.(10分)已知a、b均为有理数,且关于x的方程为=+1.(1)当a=4,b=﹣时,求x的值;(2)若关于x的方程有无数个解.①求a、b的值;②设线段AB=a,CD=b,线段CD在直线AB上(A在B的左侧,C在D的左侧),且M、N分别是线段AC、BD的中点,若BC=4,求MN的值.【解答】解:(1)当a=4,b=﹣时,方程变为=+1,化简,得=+1,去分母,得2x﹣1=4x﹣2+48,﹣2x=47,x=﹣;(2)①去分母,得ax+ab=8x﹣8|b|+96,(a﹣8)x=﹣8|b|﹣ab+96,∵关于x的方程有无数个解,∴a﹣8=0,﹣8|b|﹣ab+96=0,解得a=8,则﹣8|b|﹣8b+96=0,当b≥0时,得﹣16b+96=0,解得b=6,当b<0时,得8b﹣8b+96=0,无解.综上可知,a=8,b=6.②依题意有AB=8,CD=6,当点C、D都在点A的左侧,点C在点A的左侧且点D在点A的右侧时,线段CD在线段AB上时,这三种情况均有BC>CD,不合题意;当点C在点B的左侧,点D在点B的右侧时,如图所示:,有BC<CD,符合题意;∵BC=4,CD=6,∴BD=2,∵N是线段BD的中点,∴BN=1,∴CN=CB+BN=4+1=5,∵AB=8,∴CM=AC=2,∴MN=CM+CN=2+5=7;当点C、D都在点B的右侧时,符合题意,如图所示:;则AC=AB+BC=8+4=12,BD=BC+CD=4+6=10,∵M、N分别是线段AC、BD的中点,∴CM=AC=6,BN=BD=5,∴MN=CM+BN﹣BC=6+5﹣4=7.综上所述,MN的值为7.附赠:数学考试技巧一、心理准备细心+认真=成功!1、知己知彼,百战百胜。