晶体管共射输出特性曲线

合集下载

晶体管的输出特性曲线分为三个工作区

晶体管的输出特性曲线分为三个工作区

0.75
0.75
20
IC
Q2
0M
0
0
t
3
6
9
u / 12 CE V
电压放大倍数 0
3
6
9
uCE /V
Au =
Uom Uim =
Uo Ui t
UCE
uce (uo)
25
2. 用图解法分析非线性失真
iC / mA
iC / mA (1)静态工作点偏高引起饱和失真
ic正半周变平3
Q1
80 A
Q
IB = 60 A
0
t1 t2
t
0 0
Q2
uBE / V
t1
u uBE / V be
t2
t
27
(b)工作点偏低引起 ic 、 uce (uo)失真
iC = iB
iC / mA
80
iC / mA
3
2.25
2.25
60
1.5
1. 5
0.75
0.75
ic
0.25
0.25
0
t0
uo波形 0
t
3
6
截止失真
40
Q1
20
Q IB = 5 µA
60
2
40
1
20µA
IB=0 UCE/V
0 3 69
第10章 交流放大电路
10.1 基本放大电路的组成 10.2 放大电路的静态分析 10.3 放大电路的动态分析 10.4 静态工作点的稳定 10.5 射极输出器 10.6 差动放大器 10.7 功率放大电路
放大的概念(放大的对象是变化量) 放大的目的是将微弱的变化信号放大成较大的信号。

晶体管共射极接法的伏安特性曲线

晶体管共射极接法的伏安特性曲线

i 饱和区 4 C / mA
a. UCE ≤ UBE
3
b. IC<βIB
2
c. UCE 增大Байду номын сангаас IC 增大。
1 (2) 截止区
a. UBE<死区电压
0
b. IB ≈ 0 c. IC ≈ 0
24 截止区
iB= 100 μA
80 60
40 20 0
6 8 uCE / V
模拟电子技术
2. 晶体管及放大电路基础
硅管0.7 V 锗管0.3V
(3) 锗管的 ICBO 比硅管大
模拟电子技术
谢 谢!
模拟电子技术
2. 晶体管及放大电路基础
2.1 晶体管
2.1.1 晶体管的结构 2.1.2 晶体管的放大状态及工作原理 2.1.3 晶体管共射极接法的伏安特性曲线
模拟电子技术
2. 晶体管及放大电路基础
2.1.3 晶体管共射极接法的伏安特性曲线
三极管共射极接法
iB
uBE
iC
iE
uCE
共射极输入特性
iB μA
2. 晶体管及放大电路基础
NPN管与PNP型管的区别
NPN管电路
iB
iC
uBE
iE
uCE
PNP管电路
iB
iC
uBE
iE
uCE
iB、uBE、iC、 iE 、uCE 的极性二者相反
模拟电子技术
2. 晶体管及放大电路基础
硅管与锗管的区别: (1) 死区电压约为
硅管0.5 V 锗管0.1V
(2) 导通压降|uBE|
(3) 放大区
i 饱和区 4 C / mA
iB= 100 μA

共射、共集、共基

共射、共集、共基
ri=hie+(1+hfe) Re
Ui
hie
ri
Re
hfeIb
Uo
r i'
ro
ro '
ri'=Rb1//Rb2//[hie+(1+hfe) Re]
输出电阻 电压增益
ro=∞ ro'=Rc
AU =
-hfeRL'
hie+(1+hfe) Re
放大电路的分析步骤
1. 作静态分析 画出电路的直流通路→
计算法 图解法
hie=Ube/ IbUce=C hre=Ube/ UceIb=c hfe=Ic/ IbUce=C hoe=Ic/ UceIb=c
共射h参数模型
等效电路分析
ΔU be hieΔI b hreΔU ce
ΔI c hfeΔI b hoe ΔU ce
Ic
+
Ib
Ec ( Rc Re ) I EQ
UE IEQ
工作点稳定 射极偏置电路的分析 2. 动态分析
Ec
Ui Uo Re UE U0
I1
Ui
Re IEQ
Ui
hie
ri
Re
hfeIb
Uo
r i'
ro
ro '
工作点稳定 射极偏置电路的分析 2. 动态分析
电压增益
Ui
hie
ri
Re
hfeIb
Uo
-hfeIbRL' Uo AU = U i Ibhie+(1+hfe)IbRe
共射h参数模型
等效电路分析
U be U be U be U ce I b I b U ce I b U ce I c Ic I c U ce I b I b U ce I b U ce

晶体管的输入输出特性曲线详解

晶体管的输入输出特性曲线详解

晶体管的输入输出特性曲线详解届别系别专业班级姓名指导老师二零一二年十月晶体管的输入输出特性曲线详解学生姓名:指导老师:摘要:晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。

根据晶体管的结构进行分类,晶体管可以分为:NPN型晶体管和PNP 型晶体管。

依据晶体管两个PN结的偏置情况,晶体管的工作状态有放大、饱和、截止和倒置四种。

晶体管的性能可以有三个电极之间的电压和电流关系来反映,通常称为伏安特性。

生产厂家还给出了各种管子型号的参数也能表示晶体管的性能。

利用晶体管制成的放大电路的可以是把微弱的信号放大到负载所需的数值晶体管是一种半导体器件,放大器或电控开关常用。

晶体管是规范操作电脑,手机,和所有其他现代电子电路的基本构建块。

由于其响应速度快,准确性,晶体管可用于各种各样的数字和模拟功能,包括放大,开关,稳压,信号调制和振荡器。

晶体管可独立包装或在一个非常小的的区域,可容纳一亿或更多的晶体管集成电路的一部分。

关键字:晶体管、输入输出曲线、放大电路的静态分析和动态分析。

【Keywords】The transistor, the input/output curve, amplifying circuit static analysis and dynamic analysis.一、晶体管的基本结构晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。

三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,如图1-1(a)、(b)所示。

从三个区引出相应的电极,发射极,基极,集电极,各用“E”(或“e”)、“B”(或“b”)、“C”(或“c”)表示。

发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。

基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。

第4章 双极型晶体管工作原理

第4章  双极型晶体管工作原理

b I
BN
IB+
15V
RB IE I e
IE
U CC
UBB
4.4.2
晶体管伏安特性曲线及参数
晶体管有三个电极,通常用其中两个分别作输入, 晶体管有三个电极 , 通常用其中两个分别作输入 , 输出端,第三个作公共端, 输出端 , 第三个作公共端 , 这样可以构成输入和输出两 个回路.实际中有共发射极 共集电极和共基极三种基 共发射极, 个回路 . 实际中有 共发射极 , 共集电极和共基极 三种基 本接法,如图所示. 本接法,如图所示.
一定而u 增大时,曲线仅略有上翘( 略有增大). 一定而 CE增大时,曲线仅略有上翘(iC略有增大). 原因: 原因: 基区宽度调制效应(Early效应) 基区宽度调制效应(Early效应) 效应 或简称基调效应
UCE
由于基调效应很微弱,uCE 由于基调效应很微弱, 在很大范围内变化时I 在很大范围内变化时 C基本不 一定时, 变.因此,当IB一定时, 因此, 集电极电流具有恒流特性. 集电极电流具有恒流特性.
4.4 双极性晶体管
双极型晶体管是由三层杂质半导体构成的器件.它有 双极型晶体管是由三层杂质半导体构成的器件. 三个电极,所以又称为半导体三极管,晶体三极管等,以 三个电极,所以又称为半导体三极管,晶体三极管等, 后我们统称为晶体管.常见的晶体管其外形如图示. 后我们统称为晶体管.常见的晶体管其外形如图示. 晶体管其外形如图示
共发射极 共基极 共集电极 其中, 共发射极接法更具代表性, 其中 , 共发射极接法更具代表性 , 所以我们主要讨 论共发射极伏安特性曲线. 论共发射极伏安特性曲线.
晶体管共发射极特性曲线
晶体管特性曲线包括输入和输出两组特性曲线. 晶体管特性曲线包括输入和输出两组特性曲线 . 这 两组曲线可以在晶体管特性图示仪的屏幕上直接显示出 也可以用图示电路逐点测出. 来,也可以用图示电路逐点测出. 一,共发射极输出特性曲线 共发射极输出特性曲线 共射输出特性曲线是以 iB为参变量时,iC与uCE间的 为参变量时, 关系曲线,即 关系曲线,

晶体管的共射特性曲线电子技术

晶体管的共射特性曲线电子技术

晶体管的共射特性曲线 - 电子技术晶体管的特性曲线是描述晶体管各个电极之间电压与电流关系的曲线,它们是晶体管内部截流子运动规律在管子外部的表现,用于对晶体管的性能、参数和晶体管电路的分析估算。

1、输入特性曲线输入特性曲线描述了在管压降UCE保持不变的前提下,基极电流IB和放射结压降UBE之间的函数关系,即(1) 由图1可见,NPN型晶体管的输入特性曲线的特点如下:图1 晶体管输入特性曲线(1)输入特性曲线有一个开启电压,只有当UBE的值大于开启电压后,IB的值与二极管一样随UBE的增加按指数规律增大,电流IB 有较大的变化,UBE的变化却很小,可以近似认为导通后放射结的电压基本保持不变。

硅管的开启电压为0.5V,放射结的导通电压UON 为0.6~0.7V;锗管的开启电压为0.2V,放射结的导通电压UON为0.2~0.3V;(2)当UCE=0时,集电极与放射极短路,即集电结与放射结并联,相当于两个二极管并联,输入特性曲线与二极管特性曲线相像。

当UCE=1V时,集电结处于反向偏置,内电场加强,放射区注入基区的电子绝大多数被拉到集电区,只有少数电子与基区的空穴复合形成基极电流IB。

在相同UBE下,基极电流比UCE=0V时削减,从而使曲线右移。

UCE1V以后,输入特性曲线基本上与UCE=1V时的特性曲线重合,这是因这UCE1V后,集电极将放射区放射过来的电子几乎全部收集走,对基区电子与空穴的复合影响不大,IB的转变也不明显。

所以通常UCE1时只画一条曲线。

2、输出特性曲线(2) 特性曲线如图2所示,当IB转变时,IC和UCE的关系是一组平行的曲线簇,并有截止、放大和饱和3个工作区。

图2 晶体管输出特性曲线(1)截止区IB=0特性曲线以下的区域称为截止区。

此时晶体管的集电结处于反偏,放射结电压ubeUON,也处于反偏。

集电极电流IC=0。

在电路中犹如一个断开的开关。

三极管工作在截止区时,三个电极之间的关系为:对于NPN型,VBVE;对于PNP型,VBVE;实际上处于截止状态下的晶体管集电极有很小的电流ICEO,该电流称为晶体管的穿透电流,它是在基极开路时测得的集电极-放射极间的电流,它不受IB的把握,但受温度的影响。

用晶体管特性图示仪测试晶体管主要参数

用晶体管特性图示仪测试晶体管主要参数

用晶体管特性图示仪测试晶体管主要参数一.实验目的掌握晶体管特性图示仪测试晶体管的特性和参数的方法。

二.实验设备(1)XJ4810晶体管特性图示仪(2)QT 2晶体管图示仪(3)3DG6A 3DJ7B 3DG4三.实验原理1.双极型晶体(以3DG4NPN 管为例)输入特性和输出特性的测试原理(1)输入特性曲线和输入电阻i R ,在共射晶体管电路中,输出交流短路时,输入电压和输入电流之比为i R ,即=常数CE V B BEi I V R ∂∂= (1.1)它是共射晶体管输入特性曲线斜率的倒数。

例如需测3DG 4在V CE =10时某一作点Q 的R 值,晶体管接法如图1.1所示。

各旋扭位置为峰值电压%80% 峰值电压范围0~10V 功耗电阻50Ω X 轴作用基极电压1V/度 Y 轴作用 阶梯选择μ20A/极 级/簇10 串联电阻10K 集电极极性 正(+)把X 轴集电极电压置于1V/度,调峰值电压为10V ,然后X 轴作用扳回基极电压0.1V/度,即得CE V =10V 时的输入特性曲线。

这样可测得图1.2:V CE V B BEi I V R 10=∆∆= (1.2)根据测得的值计算出i R 的值图1.1晶体管接法 图1.2输入特性曲线 (2)输出特性曲线、转移特性曲线和β、FE h在共射电路中,输出交流短路时,输出电流和输入电流增量之比为共射晶体管交流电流放大系数β。

在共射电路中,输出端短路时,输出电流和输入电流之比为共射晶体管直流电流放大系数FE h 。

晶体管接法如图1.1所示。

旋扭位置如下:峰值电压范围10V 峰值电压%80% 功耗电阻250Ω X 轴集电极电压1V/度 Y 轴集电极电流2mA/度 阶梯选择μ20A/度 集电极极性 正(+)得到图1.3所示共射晶体管输出特性曲线,由输出特性曲线上读出V V CE 5=时第2、4、6三根曲线对应的C I ,B I 计算出交流放大系数BC I I ∆∆=β (1.3) FE h >β主要是因为基区表面复合等原因导致小电流β较小造成的,β、FE h 也可用共射晶体管的转移特性(图1.4)进行测量只要将上述的X 轴作用开关拨到“基极电流或基极源电压”即得到共射晶体管的转移特性。

第2章双极型晶体管及其特性

第2章双极型晶体管及其特性
(2)当uCE =0时,晶体管相当于两个并联的二极管, 所以b,e间加正向电压时,iB很大。对应的曲线明显左移, 见图2–6。
现在你正浏览到当前第二十七页,共一百九十九页。
(3)当uCE在0~1V之间时,随着uCE的增加,曲线右 移。特别在0< uCE ≤UCE(sat)的范围内,即工作在饱和区 时,移动量会更大些。
确定了 值之后,由式(2–1)、(2–2)可得
ICIB(1)ICBO IBICEO
(2–3a)
IE(1)IB(1)ICBO (1)IBICEO(2–3b)
IBIEIC
(2–3c)
式中:
ICEO(1)ICBO
(2–4)
称为穿透电流。因ICBO很小,在忽略其影响时,则有
IC IB IE (1 )IB 式(2–5)是今后电路分析中常用的关系式。
现在你正浏览到当前第八页,共一百九十九页。
2–1–2 由以上分析可知,晶体管三个电极上的电流与内部
载流子传输形成的电流之间有如下关系:
IE IEN IBN ICN IB ICN ICBO IC ICN ICBO
(2–1a) (2–1b)
(2–1c)
现在你正浏览到当前第九页,共一百九十九页。
IC
IE
uB常数
(2–11)
现在你正浏览到当前第三十页,共一百九十九页。
由于ICBO、ICEO都很小,在数值上β≈ ,α≈
应当指出,β值与测量条件有关。一般来说,在iC 很大或很小时,β值较小。只有在iC不大、不小的中间 值范围内,β值才比较大,且基本不随iC而变化。因此, 在查手册时应ห้องสมุดไป่ตู้意β值的测试条件。尤其是大功率管更

现在你正浏览到当前第二十三页,共一百九十九页。

晶体管共射输出特性曲线

晶体管共射输出特性曲线

作者: 尹顺云
作者机构: 云南玉溪师专物理系 玉溪653100
出版物刊名: 玉溪师范学院学报
页码: 10-11页
主题词: 输出特性曲线;晶体管;发射电子;函数关系;晶体三极管;共射;线性增长;恒流特性;集电极电流;共发射极
摘要: 晶体三极管共发射极输出特性曲线是指基极电流i_B一定时,集电极电流i_C和集电极——发射极间压v_CE的函数关系曲线。

函数关系为ic=f(v_CE) IB=常数 v_CE∠1伏以下——ic 受控于v_CE线性增长陡,漂移过C结的电子随v_CE相应场力增大而增大。

i_C失控于i_B如图OA 段。

v_CE∠1伏以上——i_C授控于i_B线性增长,v_CF的电场力够强,e区发射电子在B区复合形成I_B少,场力吸过C结形成I_C的多,其比例固定为p,v_BE稍增,复合的I_B增大,I_C也正比地增大。

i_C失控于v_CE如图AB段,v_CE在1伏以上增大,i_C几乎不变,曲线近平行于v_CE轴——恒流特性。

模拟电子线路习题习题答案解析

模拟电子线路习题习题答案解析

第一章1.1 在一本征硅中,掺入施主杂质,其浓度D N =⨯21410cm 3-。

(1)求室温300K 时自由电子和空穴的热平衡浓度值,并说明半导体为P 型或N 型。

(2 若再掺入受主杂质,其浓度A N =⨯31410cm 3-,重复(1)。

(3)若D N =A N =1510cm 3-,,重复(1)。

(4)若D N =1610cm 3-,A N =1410cm 3-,重复(1)。

解:(1)已知本征硅室温时热平衡载流子浓度值i n =⨯5.11010 cm3-,施主杂质D N =⨯21410cm 3->> i n =⨯5.11010 cm 3-,所以可得多子自由浓度为0n ≈D N =⨯21410cm 3-少子空穴浓度0p =02n n i =⨯125.1610cm 3-该半导体为N 型。

(2)因为D A N N -=14101⨯cm 3->>i n ,所以多子空穴浓度 0p ≈14101⨯cm 3-少子电子浓度0n =02p n i =⨯25.2610cm 3-该半导体为P 型。

(3)因为A N =D N ,所以0p = 0n = i n =⨯5.11010cm 3-该半导体为本征半导体。

(4)因为A D N N -=10-161014=99⨯1014(cm 3-)>>i n ,所以,多子自由电子浓度0n =⨯991410 cm 3-空穴浓度0p =02n n i =142101099)105.1(⨯⨯=2.27⨯104(cm 3-)该导体为N 型。

1.3 二极管电路如图1.3所示。

已知直流电源电压为6V ,二极管直流管压降为0.7V 。

(1) 试求流过二极管的直流电流。

(2)二极管的直流电阻D R 和交流电阻D r 各为多少?解:(1)流过二极管的直流电流也就是图1.3的回路电流,即 D I =A 1007.06-=53mA (2) D R =AV310537.0-⨯=13.2Ω D r =D T I U =AV3310531026--⨯⨯=0.49Ω1.4二极管电路如题图1.4所示。

《模拟电子技术基础》第3章 双极型晶体管及其基本放大电路

《模拟电子技术基础》第3章 双极型晶体管及其基本放大电路

3.2 双极型晶体管
3.2.4 晶体管的共射特性曲线
2.输出特性曲线—— iC=f(uCE) IB=const
以IB为参变量的一族特性曲线
(1)当UCE=0V时,因集电极无收集
作用,IC=0;
(2)随着uCE 的增大,集电区收集电
子的能力逐渐增强,iC 随着uCE 增加而
增加;
(3)当uCE 增加到使集电结反偏电压
电压,集电结应加反向偏置电压。
3.2 双极型晶体管
3.2.3 晶体管的电流放大作用
1. 晶体管内部载流子的传输
如何保证注入的载流
子尽可能地到达集电区?
P
N
IE=IEN + IEP
IEN >> IEP
IC= ICN +ICBO
ICN= IEN – IBN
IEN>> IBN
ICN>>IBN
N
IEP
IE
3. 晶体管的电流放大系数
(1) 共基极直流电流放大系数
通常把被集电区收集的电子所形成的电流ICN 与发射极电流
IE之比称为共基电极直流电流放大系数。

I CN

IE
由于IE=IEP+IEN=IEP+ICN+IBN,且ICN>> IBN,ICN>>IEP。通常ത
的值小于1,但≈1,一般

为0.9-0.99。

3.2 双极型晶体管
3.2.3 晶体管的电流放大作用
3. 晶体管的电流放大系数
(2) 共射极直流电流放大系数
I C I CN I CBO I E I CBO ( I C I B ) I CBO

模拟电路习题解答

模拟电路习题解答

第一章晶体二极管及其大体电路1—1 半导体二极管伏安特性曲线如图N—l所示,求图中A、B点的直流电阻和交流电阻。

解:从图中量得A、B点坐标别离为A(0.6V,5mA), B(0.58V,2mA),故得1—2 二极管整流电路如图P1—2所示,已知ui=200sinωt(V),试画出uo的波形。

解:因变压器的匝数比为10:1,因此次级端电压为20 V,即u2=10 slnωt (V)。

当u2为正半周且大于等于0.7V时,Vl导通,V2截止,u。

=u2一0.7。

而u2为负半周且小于等于一0.7V时,那么V2导通,Vl截止,uo=|u2|一0.7。

当|u2|<0.7V时,V一、V2均截止,现在uo=0.由此画出的uo波形如图P1-2’所示,1—3 二极管电路如图P1—3所示,设二极管均为理想二极管(1)画出负载RL两头电压uo的波形(2)假设V3开路,试重画uo的波形。

(3)假设V3被短路,会显现什么现象?解:(1)u2为正半周时,V一、V2导通,V3、V4截止,uo=u2; u2为负半周时,V一、V2截止,V3、V4导通,uo=-u2即uo=-u2。

uo波形如图P1—3’(a)所示。

(2)假设V3开路,那么u2的为负半周时,uo=0,即uo变成半波整流波形,如图Pl—3’(b)所示。

(3)假设V3短路,那么u2为正半周时,将V1短路烧坏。

1—4 在图P1—4所示各电路中,设二极管均为理想二极管。

试判定各二极管是不是导通,并求Uo的值。

解:(1)在图(a)中,V2导通,V1截止,Uo=5V。

(2)在图(b)中,V1导通,V2截止,Uo=0V。

(3)在图(c)中,v一、v2均导通,现在有1—5 二极管限幅电路如图Pl—5(a)、(b)所示。

假设ui=5sinωt(V),试画出uo的波形。

解:(1)在图(a)中:当ui>一2.7V时,V管截止,uo=一2V;当ui≤一2.7V时,V管导通,u。

=ui。

当ui=5sinωt(V)时,对应的uo波形如图P1—5’(a)所示。

晶体管简介及特性

晶体管简介及特性

晶体管简介及特性一、BJT的结构简介BJT又常称为晶体管,它的种类很多。

按照频率分,有高频管、低频管;按照功率分,有小、中、大功率管;按照半导体材料分,有硅管、锗管;根据结构不同,又可分成NPN型和PNP型等等。

但从它们的外形来看,BJT都有三个电极。

它是由两个 PN结的三层半导体制成的。

中间是一块很薄的P型半导体(几微米~几十微米),两边各为一块N型半导体。

从三块半导体上各自接出的一根引线就是BJT的三个电极,它们分别叫做发射极e、基极b和集电极c,对应的每块半导体称为发射区、基区和集电区。

虽然发射区和集电区都是N型半导体,但是发射区比集电区掺的杂质多。

在几何尺寸上,集电区的面积比发射区的大,这从图3.1也可看到,因此它们并不是对称的。

二、BJT的电流分配与放大作用1、BJT内部载流子的传输过程BJT工作于放大状态的基本条件:发射结正偏、集电结反偏。

在外加电压的作用下, BJT内部载流子的传输过程为:(1)发射极注入电子由于发射结外加正向电压VEE,因此发射结的空间电荷区变窄,这时发射区的多数载流子电子不断通过发射结扩散到基区,形成发射极电流IE,其方向与电子流动方向相反。

(2)电子在基区中的扩散与复合由发射区来的电子注入基区后,就在基区靠近发射结的边界积累起来,右基区中形成了一定的浓度梯度,靠近发射结附近浓度最高,离发射结越远浓度越小。

因此,电子就要向集电结的方向扩散,在扩散过程中又会与基区中的空穴复合,同时接在基区的电源VEE的正端则不断从基区拉走电子,好像不断供给基区空穴。

电子复合的数目与电源从基区拉走的电子数目相等,使基区的空穴浓度基本维持不变。

这样就形成了基极电流IB,所以基极电流就是电子在基区与空穴复合的电流。

也就是说,注基区的电子有一部分未到达集电结,如复合越多,则到达集电结的电子越少,对放大是不利的。

所以为了减小复合,常把基区做得很薄 (几微米),并使基区掺入杂质的浓度很低,因而电子在扩散过程中实际上与空穴复合的数量很少,大部分都能能到达集电结。

晶体管特性曲线的测量

晶体管特性曲线的测量

课程名称:电路与电子技术实验Ⅱ指导老师:成绩:__________________实验名称:晶体管特性曲线的测量类型:___________________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1.复习三极管的输入特性曲线2.掌握三极管输入输出特性曲线的实验设计方法3.通过分析特性曲线,求取三极管主要参数二、实验内容和原理1.三极管的输入特性曲线三极管在共射连接情况下,保持U CE不变,通过不断增加U BE,测得U BE与i B之间的伏安特性曲线,即为三极管的输入特性曲线。

在输入特性曲线中,U CE=0的曲线与PN结的伏安特性曲线相类似。

当U CE增大至1V的过程中,曲线逐渐右移。

当U CE从1V起继续增大,曲线近似与U CE=1V保持不变,可用任何一条曲线代替所有曲线。

2.三极管的输出特性曲线三极管在共射连接情况下,保持i B不变,通过不断增加U CE,测得U CE与i C之间的伏安特性曲线,即为三极管的输出特性曲线。

在输出特性曲线中分为三个区:截止区、放大区、饱和区。

截止区:发射结反偏,集电结反偏,i C≤I CEO,I C近似认为为0。

放大区:发射结正偏,集电结反偏。

对于硅管,UCE>0.7,对于锗管,UCE>0.3。

iC仅决定于iC,与UCE无关。

理想情况下,放大区的曲线是一族横轴的等距离平行线,iC=βiB,△iC=β△iB。

饱和区:发射结正偏,集电结正偏。

当深度饱和的时候,对于硅管,UCE=0.3,对于锗管,UCE=0.1。

三、主要实验仪器DP832A 可编程线性直流电源;MY61数字万用表;综合实验箱四、操作方法和实验步骤1.测量输入特性曲线①将三极管插入万用表的测量三极管增益系数的插口中,大致测量β的近似值。

模拟电子线路A中国大学mooc课后章节答案期末考试题库2023年

模拟电子线路A中国大学mooc课后章节答案期末考试题库2023年

模拟电子线路A中国大学mooc课后章节答案期末考试题库2023年1.随着温度升高,晶体管的共射输出特性曲线间隔将增大。

参考答案:正确2.在共源组态和共漏组态两种放大电路中,共漏组态的输出电阻比较小。

参考答案:正确3.场效应管栅极电流几乎等于零,所以共源放大电路的输入电阻通常比共射放大电路的输入电阻大。

参考答案:正确4.已知图示中晶体管V1、V2的特性相同,β=200,UBE(on)=0.7V。

则UCEQ1= 。

【图片】参考答案:0.7V5.理想乙类互补推挽功放电路如下图所示,设 UCC =15V, UEE =-15V, RL=4Ω,UCE(sat) =0,输入为正弦信号。

(1)输出最大信号功率时,集电极功耗(单管)为()A.14.06W B.3.85W C.7.7 W D.12.83W(2) 输出最大信号功率时,电路能量转换效率为()A.78.5% B.25% C.75% D.50%【图片】参考答案:BA6.电路如图所示,试问(1)晶体管的参数ICM应选取为>()A。

A、1.05 B、1.06 C、0.5 D、2.08(2)晶体管的参数U(BR)CEO应选取为>()V。

A、8.5 B、9 C、18 D、17.5(3)如果要求输出电压为8V,输入信号为()mV。

A、 75.2B、60.5C、79.2D、80.6【图片】参考答案:BDC7.已知某直流稳压电源电路如图所示。

设三极管的发射结导通电压UBE(on)=0.7V,变压器副边绕组电压有效值为20V。

(1) 求输出电压UO 的调节范围( ):A. 3【图片】6V; B. 6【图片】9V; C. 7.95【图片】15.9V; D.9【图片】18V;(2) 当电位器RW 调至中间位置时,估算UA 的数值为():A. 28V;B. 24V;C. 14V;D.56V;(3) 当电位器RW 调至中间位置时,估算UO 的数值为():A. 24V; B. 18V; C. 12V; D.10.6V;【图片】参考答案:DBC8.N型半导体是在纯净半导体中掺入____。

晶体管的输入输出特性曲线详解解读

晶体管的输入输出特性曲线详解解读

晶体管的输入输出特性曲线详解届别系别专业班级姓名指导老师二零一二年十月晶体管的输入输出特性曲线详解学生姓名:指导老师:摘要:晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。

根据晶体管的结构进行分类,晶体管可以分为:NPN型晶体管和PNP 型晶体管。

依据晶体管两个PN结的偏置情况,晶体管的工作状态有放大、饱和、截止和倒置四种。

晶体管的性能可以有三个电极之间的电压和电流关系来反映,通常称为伏安特性。

生产厂家还给出了各种管子型号的参数也能表示晶体管的性能。

利用晶体管制成的放大电路的可以是把微弱的信号放大到负载所需的数值晶体管是一种半导体器件,放大器或电控开关常用。

晶体管是规范操作电脑,手机,和所有其他现代电子电路的基本构建块。

由于其响应速度快,准确性,晶体管可用于各种各样的数字和模拟功能,包括放大,开关,稳压,信号调制和振荡器。

晶体管可独立包装或在一个非常小的的区域,可容纳一亿或更多的晶体管集成电路的一部分。

关键字:晶体管、输入输出曲线、放大电路的静态分析和动态分析。

【Keywords】The transistor, the input/output curve, amplifying circuit static analysis and dynamic analysis.一、晶体管的基本结构晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。

三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,如图1-1(a)、(b)所示。

从三个区引出相应的电极,发射极,基极,集电极,各用“E”(或“e”)、“B”(或“b”)、“C”(或“c”)表示。

发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。

基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。

演示实验:用晶体管特性图示仪测得的共射输入和输出特性曲线

演示实验:用晶体管特性图示仪测得的共射输入和输出特性曲线

演示实验:用晶体管特性图示仪测得的共射输入和输出特性曲线1.共射输入特性曲线当U CE 为某一定值时,基极电流i B 和发射结电压 u BE 之间的关系曲线入下图所示。

当U CE =0时,输入特性曲线与二极管的正向伏安特性相似,存在死区电压U on (也称开启电压),硅管U on ≈0.5V ,锗管约0.1V 。

只有当U BE 大于U on 时,基极电流i B 才会上升,三极管正常导通。

硅管导通电压约0.7V ,锗管约0.3V 。

随着U CE 的增大输入特性曲线右移,但当U CE 超过一定数值(U CE >1)后,曲线不再明显右移而基本重合。

2.共射输出特性曲线在基极电流I B 为一常量的情况下,集电极电流i C 和管压降u CE 之间的关系曲线入下图所示。

1)截止区 I B =0曲线以下的区域称为截止区。

2)饱和区 u CE 较小的区域称为饱和区。

三极管饱和时的u CE 值称为饱和电压降U CES ,BE 040 输入特性曲线小功率硅管约为0.3V ,锗管约为0.1V 。

3)放大区 一族与横轴平行的曲线,且各条曲线距离近似相等的区域称为放大区。

此时,表现出三极管放大时的两个特性:①电流受控,即Δi C =βΔi B ;②恒流特性,只要I B 一定,i C 基本不随u CE 变化而变化。

例:如图说示是某三极管的输出特性曲线,从曲线上可以大致确定该三极管在U CE =6.5V ,I B =60µA (b 点)附近的β和β值。

解:在图示的输出特性曲线上作U CE =6.5V 的垂线,与I B =60µA 的输出特性曲线交于 b点,由此可得该点对应的4160105.23B C =⨯==I I β 402010)7.15.2(3B C =⨯-=∆∆=i i βΔi BΔi CA A /V1 2 34。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档