平行线的性质
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:5.3.1平行线的性质
七年级数学备课组主备人:张永军授课人:
教学目标:1、理解平行线的性质,能结合图形用符号语言表示平行线的性质.
2、掌握平行线的三个性质,能运用它们进行简单的推理。
教学重点:平行线的性质及简单应用。
教学难点:平行线性质和判定的区别。
课时安排:1课时
教学过程:
一、课前预习:
自学课本18—19页内容,完成自学指导:
1、利用18页探究,结合图5.3-1,度量8个角的度数,思考探究结果。
2、结合图5.3-2,尝试用符号语言表示平行线的三个性质。
3、自学19页例1,写出解答的根据。
4、尝试完成20页练习1、2题。
二、检查反馈:
(一)预习评价:
(二)存在问题:
三、课堂展示:
(一)自主学习展示:
1、复习平行线的判定(文字语言,图形语言,符号语言)。
2、如图,如果a∥b,画一条直线c与它们相交,∠1和∠2
有怎样的大小关系?请大家自己画出图形度量结果。
3、展示18页探究结果,猜想结论。
(设计意图:学生经历画图、度量、猜想、说理的过程,既培养学生动手操作能力,又能展示预习效果,激发学生学习的积极性,唤起学生探究两直线平行的求知欲。)
1.实验观察,发现平行线性质1(基本事实):两直线平行,同位角相等。
符号语言:∵ a∥b, ∴∠1=∠2(两直线平行,同位角相等)
(设计意图:数学中的文字、图形、符号语言相互依存,有利于培养学生的几何直观。)
2、演绎推理,发现平行线的其它性质
问题(1)如图,直线AB,CD被直线EF所截,AB∥CD,求证:∠1= ∠2 证明:∵AB∥CD(已知)
∴∠3=∠2(两直线平行,同位角相等)
∵∠1= ∠3(对顶角相等)
∴∠1= ∠2(等量代换)
平行线性质2:两直线平行,内错角相等。
符号语言:∵AB∥CD,∴∠1= ∠2(两直线平行,内错角相等)
(2)已知:如图3,直线AB,CD被直线EF所截,AB∥CD.求证:∠1+∠2=180°证明: ∵AB∥CD(已知)
∴∠3=∠2(两直线平行,同位角相等)
∵∠1+∠3=180°(邻补角的定义)
∴∠1+∠2=180°(等量代换)
平行线性质3:两直线平行,同旁内角互补。
符号语言:∵AB∥CD,∴∠1+∠2=180°(两直线平行,同旁内角互补)
(设计意图:问题2、3变教材的思考为问题,既直观,又具体,同时为下节课的命题、定理、证明埋下伏笔,培养学生几何推理能力。)
3、例题教学,运用平行线的性质推理。
例1、如图是一块梯形铁片的残余部分,量得∠A=100°,
∠B=115°,梯形的另外两个角分别是多少度?
师生合作探究:梯形的另外两个角与已知的∠A、∠B有怎
样的位置关系?如何利用平行线的性质解答?
解:∵AB∥CD,∴∠A+∠D=180°,∵∠A=100°,∴∠D=180°—100°=80°启发学生用同样的方法解答∠C的度数。
4、课堂练习:18页练习1、2.
四、回顾反思:
(一)知识梳理:①平行线的性质1、2、3(文字语言和符号语言)
②平行线的性质与判定的区别。
(二)学习评价:
五、当堂检测:
1、如图,a∥b,∠1=50°,那么∠2的度数为()
A、130°
B、100°
C、80°
D、40°
2、如图,AB∥CD,DE∥BC,若∠1=120°,则∠2=
3、如图所示,a∥b,c∥d,试探究∠1与∠2的关系,并说明理由.
1题图 2题图 3题图
六、布置作业:
1、课堂作业:22-23页3、4题。
2、预习作业:内容详见下节“课前预习”。
七、板书设计:
5.3.1平行线的性质
判定:1…… 1、两直线平行,同位角相等。推理过程2…… 2、两直线平行,内错角相等。…………
3…… 3、两直线平行,同旁内角互补。…………八、课后反思: