椭圆双曲线专题离心率

合集下载

椭圆、双曲线的离心率问题值得关注

椭圆、双曲线的离心率问题值得关注

椭圆、双曲线的离心率问题值得关注江西临川二中 何泉清解几是高考重点考查的内容,故椭圆、双曲线的离心率问题依然是高考数学的热点和重点.一、求离心率的值 求解椭圆、双曲线离心率的值的方法:一是直接利用其定义;二是利用直线与其位置关系,转化到一个关于离心率e 的方程来求解.例1 已知P 是以F 1、F 2为焦点的双曲线2222by a x -=1上的一点,1PF ·2PF =0,且tan ∠P F 1F 2=21,则此双曲线的离心率e = . 解:如图1,∵1PF ·2PF =0,∴△P F 1F 2为直角三角形.∵tan ∠P F 1F 2=21,∴12PF PF =21,即| P F 1|=2| P F 2|. 又| PF 1|-| PF 2|=2a ,| PF 1|2+| PF 2|2=(2c )2, 图1∴| PF 2|=2a ,5| PF 2|2=4c 2,20a 2=4c 2, ∴22ca =5,则e =c a =5.例2 已知椭圆的短轴长为 6,F 1、F 2分别为它的左、右焦点,CD 是过F 1的弦,且与x 轴成α角(0<α<)π,若△F 2CD 的周长为20,则椭圆的离心率e =.解:如图2,∵| CF 1|+| CF 2|=2a ,|DF 1|+|DF 2|=2a ,∴两式相加,得:| CF 1|+| CF 2|+|DF 1|+|DF 2|=20=4a .∴a =5,又b =3,∴c =4, 则e =a c =54. 图2 点评:例1、例2是直接利用双曲线、椭圆的一义来求离心率的.例3 设双曲线2222by a x -=1(0<a <b =的半焦距为c ,直线l 过(a ,0),(b ,0)两点.已知原点到直线l 的距离为43c ,则双曲线的离心率为( ) A .2 B .3 C .2 D .2或332 解:由l : by a x -=1,得bx +a -yab =0 原点到直线l 的距离为22b a ab+-=43c ,又a 2+b 2=c 2, ∴ab =43c 2,∴a 2b 2= 163c 4,即a 2c 2-a 4=163c 4,两边同除以a 4,则e 2-1=163e 4,解得e =2或e =332. 又b >a >0,∴ab >1,即e 2-1>1,e 2>2. ∴e =2.故选A .例4 已知椭圆C 的方程为2222x y a b+=1(a >b >0),若直线y =22x 与椭圆的一个交点M 在x 轴上的射影恰好是椭圆的右焦点F 2,则椭圆的离心率e 的( )A .21B .22C .23D .2-1解:设半焦距为c ,则F 2(c ,0).∵M 在轴上的射影恰好是右焦点F 2,∴M (c , 22c ). ∴22a c +22)22(bc =1,又a 2-c 2=b 2, ∴22ac +)(2222c a c -=1, 整理得,2c 4-52a c 2+2a 4=0,即2e 4-5e 2+2=0.∴e 4=21,故选B . 点评:例3、例4求离心率的方法是有相同的特点:先根据条件得到一个关于a 、c 的齐次等式,然后等式两边同除以a 的方幂,得到一个关于离心率的方程,解出e 并注意条件即得到所求.二、求离心率的取值范围其方法可以利用椭圆、双曲线的变化范围,直线与椭圆、双曲线的三种位置关系建立的一元二次方程存在实根的条件,图形的直观性,实数的非负性或已知变量的取值范围(隐含条件的不等关系)等来确立含离心率e 的不等式,从而获解.例5 已知椭圆2222x y a b+=1(a >b >0)的左、右顶点分别为A 、B ,如果椭圆上存在点P ,使得∠APB =1200,求椭圆的离心率e 的取值范围.解法一:设P (x 0,y 0),由椭圆的对称性,不妨令0≤x 0<a , 0<y 0≤b .∵A (-a ,0),B (a ,0), ∴PA k =a x y +00,PB k =ax y -00. ∵∠APB =1200,∴tan ∠APB =-3,又tan ∠APB =1PB PA PB PA k k k k -+=2202002a y x ay -+, ∴2202002a y x ay -+=-3,……① 而点P 在椭圆上,∴b 2x 02+a 2y 02=a 2b 2……②由①、②得 y 0=)(32222b a ab -.∵0<y 0≤b ,∴0<)(32222b a ab -≤b .∵a >b >0,∴2ab ≤3(a 2-b 2),即4 a 2b 2≤3 c 4,整理得,3e 4+4e 2-4≥0.考虑0<e <1,可解得36≤e <1. 解法二:以AB 为弦,含0120的角且在x 轴上方的弓形弧与上半椭圆的交点除A 、B外至多有两个,至少有一个,所以上顶点D (0,b )在弓形内,即∠ADB ≥0120, ∴∠ODB ≥600(点O 为坐标原点),∴ba ≥3,即a 2≥3b 2=3(a 2-c 2), 则e 2≥32. ∴33≤e ≤1. 点评:椭圆、双曲线上点的横、纵坐标的取值范围往往可以确立含离心率e 的不等式.解法二是考虑到几何性质运用数形结合的思想方法建立了含e 的不等式,简化了求解过程.下面再看例6对这一方法漂亮的应用.例6 已知椭圆2222by a x +=1(a >b >0)上有点P ,使∠F 1PF 2为直角,求椭圆离心率的取值范围.解:依题意知,以F 1F 2为直径的圆C与椭圆必有公共点P ,则椭圆短轴上端点B 必在圆C的内部或圆上,即|OB |≤r =c (r 为圆C的半径),∴b ≤c ,∴a 2- c 2≤c 2, 即2 c 2≥a 2,则22≤e <1. 点评:本题还有其他多种解法,请同学们试试.例7 过双曲线2222by a x -=1(a >0,b >0)的右焦点F 且倾斜角为045的直线与双曲线的右支交于A 、B 两点.求双曲线离心率的取值范围.解:设F (c ,0),则直线AB 的方程为y =x -c ,且c 2= a 2+ b 2 由⎪⎩⎪⎨⎧-==-c x y b y a x 12222,消去y ,得2222)(b c x a x --=1, 即(a 2- b 2)x 2-2 a 2cx + a 2 (b 2 -c 2)=0.∵直线AB 与双曲线有两个交点,∴a 2- b 2≠0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2222b a c a -,x 1x 2=22222)(ba cb a -+. 又∵A 、B 分别在双曲线的右支上, ∴⎪⎩⎪⎨⎧〉-+=≠-0)(022*******b a c b a x x b a ,即a 2> b 2,a 2>c 2- a 2, ∴e 2<2,则1<e <2.点评:本题是以直线与双曲线的位置关系来确立含e 的不等式,亦可由图形上根据角度的大小关系确立含e 的不等式来求解.例8 已知梯形ABCD 中,|AB |=2|CD |,点E 满足=λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点,当32≤λ≤43时,求双曲线e 的取值范围. 解:以AB 为x 轴,线段AB 的中垂线为y 轴建立直角坐标系,如图3,由双曲线的对称性知C 、D 关于y 轴对称.设A (-c ,0), C (2c ,h ), E (x 0,y 0),其中c =21|AB |,h 是梯形的高. ∵=λ, 图3∴(x 0+c ,y 0)=λ(2c -x 0,h -y 0), ∴x 0=)1(2)2(+-λλc ,y 0=λλ+1h . 设双曲线方程为2222by a x -=1, ∵C 、E 在双曲线上,并考虑e =a c , ∴222222221,(1)42()() 1.(2)411e h b eh b λλλλ⎧-=⎪⎪⎨-⎪-=⎪++⎩ 由(1)得22bh =42e -1,代入(2),得42e (4-4λ)=1+2λ, ∴λ=1-132+e ,由32≤λ≤43,得32≤1-132+e ≤43, 解得7≤e ≤10. 故双曲线离心率的取值范围为[7,10].点评:本题依据已知变量的范围来确立含e不等式从而获解.―――原载《广东教育》2005年第18期。

椭圆和双曲线的离心率的求值及范围问题

椭圆和双曲线的离心率的求值及范围问题

椭圆和双曲线的离心率的求值及范围求解问题【重点知识温馨提示】1.e=ca=1-b2a2(0<e<1),e=ca=1+b2a2(e>1)2.确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,c的方程或不等式,进而得到关于e的方程或不等式,3.【典例解析】例1.(2015·新课标全国Ⅱ,11)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为( )A. 5 B.2 C. 3 D. 2例2.【2016高考新课标3文数】已知O为坐标原点,F是椭圆C:22221(0)x y a b a b +=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13(B )12(C )23(D )34例3 (2015·福建)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A.⎝⎛⎦⎤0,32 B.⎝⎛⎦⎤0,34 C.⎣⎡⎭⎫32,1 D.⎣⎡⎭⎫34,1例4.(2014·江西)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________. 【跟踪练习】1. (2015·浙江)椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c ,0)关于直线y =b c x 的对称点Q 在椭圆上,则椭圆的离心率是________.2. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),若c 是a 、m 的等比中项,n 2是2m 2与c 2的等差中项, 则椭圆的离心率是( ) A.33 B.22 C.14 D.123.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0)、F 2(c,0),若椭圆上存在点P 使a sin ∠PF 1F 2=csin ∠PF 2F 1,则椭圆的离心率的取值范围为______.4.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点F 作一条渐近线的垂线,垂足为点A ,与另一条渐近线交于点B ,若FB →=2F A →,则此双曲线的离心率为( ) A. 2B. 3 C .2D. 55.(2015·山东)过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为________.6.(2015·湖北)将离心率为e 1的双曲线C 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线C 2,则( )A .对任意的a ,b ,e 1<e 2B .当a >b 时,e 1<e 2;当a <b 时,e 1>e 2C .对任意的a ,b ,e 1>e 2D .当a >b 时,e 1>e 2;当a <b 时,e 1<e 27、(2016年山东高考)已知双曲线E :22x a–22y b =1(a >0,b >0).矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______.8(2015年高考)过双曲线C :22221x y a a-=0,0a b >>()的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为 .9、(齐鲁名校协作体2016届高三上学期第二次调研联考)设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|P A |=|PB |,则该双曲线的离心率是()(A)(B)(C) (D) 10、(东营市、潍坊市2016届高三高三三模)已知1F 、2F 为椭圆()222210x y a b a b+=>>的左、右焦点,以原点O 为圆心,半焦距长为半径的圆与椭圆相交于四个点,设位于y 轴右侧的两个交点为A 、B ,若1ABF ∆为等边三角形,则椭圆的离心率为( )A 1B 1-C D11、(济宁市2016届高三上学期期末)已知抛物线2y =-的焦点到双曲线()222210,0x y a b a b -=>>A.3B.3C.D.3912、(莱芜市2016届高三上学期期末)已知双曲线()222210,0x y a b a b-=>>的左焦点是(),0F c -,离心率为e ,过点F 且与双曲线的一条渐近线平行的直线与圆222x y c y +=在轴右侧交于点P ,若P 在抛物线22y cx =上,则2e =A.5B.51+ C.51-D.213,(烟台市2016届高三上学期期末)设点F 是抛物线()2:20x py p τ=>的焦点,1F 是双曲线()2222:10,0x y C a b a b-=>>的右焦点,若线段1FF 的中点P 恰为抛物线τ与双曲线C 的渐近线在第一象限内的交点,则双曲线C 的离心率e 的值为 A.322B.334C.98D.3241,4、(青岛市2016高三3月模拟)已知点12,F F 为双曲线()2222:10,0x y C a b a b-=>>的左,右焦点,点P 在双曲线C 的右支上,且满足21212,120PF F F F F P =∠=,则双曲线的离心率为_________.15、(日照市2016高三3月模拟)已知抛物线28y x =的准线与双曲线222116x y a -=相交于A,B 两点,点F 为抛物线的焦点,ABF ∆为直角三角形,则双曲线的离心率为 A.3B.2C.6D.316. (2015·重庆)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程;(2)若|PQ |=λ|PF 1|,且34≤λ<43,试确定椭圆离心率e 的取值范围.答案部分:例1【解析】 如图,设双曲线E 的方程为x 2a 2-y 2b2=1(a >0,b >0),则|AB |=2a ,由双曲线的对称性,可设点M (x 1,y 1)在第一象限内,过M 作MN ⊥x 轴于点N (x 1,0),∵△ABM 为等腰三角形,且∠ABM =120°,∴|BM |=|AB |=2a ,∠MBN =60°,∴y 1=|MN |=|BM |sin ∠MBN =2a sin 60°=3a ,x 1=|OB |+|BN |=a +2a cos 60°=2a .将点M (x 1,y 1)的坐标代入x 2a 2-y 2b 2=1,可得a 2=b 2,∴e =c a =a 2+b 2a 2=2,选D.例2【答案】A例3如图,设左焦点为F 0,连接F 0A ,F 0B ,则四边形AFBF 0为平行四边形.∵|AF |+|BF |=4, ∴|AF |+|AF 0|=4, ∴a =2.设M (0,b ),则4b 5≥45,∴1≤b <2.离心率e =ca =c 2a 2=a 2-b 2a 2=4-b 24∈⎝⎛⎦⎤0,32, 故选A.例4.直线AB :x =c ,代入x 2a 2+y 2b 2=1,得y =±b 2a .∴A (c ,b 2a ),B (c ,-b 2a ).∴kBF 1=-b 2a -0c -(-c )=-b 2a 2c =-b 22ac .∴直线BF 1:y -0=-b 22ac (x +c ).令x =0,则y =-b 22a,∴D (0,-b 22a ),∴k AD =b 2a +b 22ac =3b 22ac .由于AD ⊥BF 1,∴-b 22ac ·3b 22ac =-1,∴3b 4=4a 2c 2,∴3b 2=2ac ,即3(a 2-c 2)=2ac , ∴3e 2+2e -3=0,∴e =-2±4-4×3×(-3)23=-2±423.∵e >0,∴e =-2+423=223=33.【跟踪练习】1,答案 方法一 设椭圆的另一个焦点为F 1(-c,0),如图,连接QF 1,QF ,设QF 与直线y =bcx 交于点M .由题意知M 为线段QF 的中点,且OM ⊥FQ .又O 为线段F 1F 的中点, ∴F 1Q ∥OM ,∴F 1Q ⊥QF ,|F 1Q |=2|OM |.在Rt △MOF 中,tan ∠MOF =|MF ||OM |=bc ,|OF |=c ,可解得|OM |=c 2a ,|MF |=bca,故|QF |=2|MF |=2bc a ,|QF 1|=2|OM |=2c 2a .由椭圆的定义得|QF |+|QF 1|=2bc a +2c 2a =2a ,整理得b =c ,∴a =b 2+c 2=2c ,故e =c a =22.方法二 设Q (x 0,y 0),则FQ 的中点坐标⎝⎛⎭⎫x 0+c 2,y 02,k FQ=y0x 0-c ,依题意⎩⎨⎧y 02=b c ·x 0+c 2,y 0x 0-c ·bc =-1,解得⎩⎨⎧x 0=c (2c 2-a 2)a 2,y 0=2bc2a 2,又因为(x 0,y 0)在椭圆上,所以c 2(2c 2-a 2)2a 6+4c 4a 4=1,令e =c a ,则4e 6+e 2=1,∴离心率e =22. 2解析 在双曲线中m 2+n 2=c 2,又2n 2=2m 2+c 2,解得m =c2,又c 2=am ,故椭圆的离心率e =c a =12.3依题意及正弦定理,得|PF 2||PF 1|=a c (注意到P 不与F 1,F 2共线), 即|PF 2|2a -|PF 2|=a c , ∴2a |PF 2|-1=c a ,∴2a |PF 2|=c a +1>2a a +c,即e +1>21+e ,∴(e +1)2>2.又0<e <1,因此2-1<e <1.4解析 (1) 如图,∵FB →=2F A →,∴A 为线段BF 的中点, ∴∠2=∠3.又∠1=∠2,∴∠2=60°, ∴ba=tan 60°=3, ∴e 2=1+(ba )2=4,∴e =2. 答案 C5.把x =2a 代入x 2a 2-y 2b 2=1得y =±3b .不妨取P (2a ,-3b ).又∵双曲线右焦点F 2的坐标为(c,0), ∴kF 2P =3b c -2a .由题意,得3b c -2a =ba.∴(2+3)a =c .∴双曲线C 的离心率为e =ca =2+ 3.6. e 1=1+b 2a2,e 2=1+(b +m )2(a +m )2.不妨令e 1<e 2,化简得b a <b +m a +m (m >0),得bm <am ,得b <a .所以当b >a 时,有b a >b +m a +m ,即e 1>e 2;当b <a 时,有b a <b +ma +m ,即e 1<e 2.故选B.7、【答案】2 【解析】试题分析:依题意,不妨设6,4AB AD ==作出图像如下图所示则2124,2;2532,1,c c a DF DF a ===-=-==故离心率221c a == 8、【答案】23+考点:1.双曲线的几何性质;2.直线方程. 9、【答案】B【解析】双曲线的渐近线为y =±bax ,易求得渐近线与直线x -3y +m =0的交点为A ⎝ ⎛⎭⎪⎫-am a +3b ,bm a +3b ,B ⎝ ⎛⎭⎪⎫-am a -3b ,-bm a -3b .设AB 的中点为D .由|P A |=|PB |知AB 与DP 垂直,则D ⎝ ⎛⎭⎪⎫-a 2m (a +3b )(a -3b ),-3b 2m (a +3b )(a -3b ),k DP=-3,解得a 2=4b 2,故该双曲线的离心率是52.10B,11.B 12.D 13 D 14. 15.A16.解 (1)由椭圆的定义,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2, 因此2c =|F 1F 2|=|PF 1|2+|PF 2|2 =(2+2)2+(2-2)2=23, 即c =3,从而b =a 2-c 2=1. 故所求椭圆的标准方程为x 24+y 2=1.(2)如图,连接F 1Q ,由PF 1⊥PQ ,|PQ |=λ|PF 1|,得 |QF 1|=|PF 1|2+|PQ |2 =1+λ2|PF 1|.由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a , 进而|PF 1|+|PQ |+|QF 1|=4a ,高中数学 于是(1+λ+1+λ2)|PF 1|=4a ,解得|PF 1|=4a 1+λ+1+λ2, 故|PF 2|=2a -|PF 1|=2a (λ+1+λ2-1)1+λ+1+λ2. 由勾股定理得|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2=4c 2,从而⎝ ⎛⎭⎪⎫4a 1+λ+1+λ22+⎝ ⎛⎭⎪⎫2a (λ+1+λ2-1)1+λ+1+λ22=4c 2. 两边除以4a 2,得4(1+λ+1+λ2)2+(λ+1+λ2-1)2(1+λ+1+λ2)2=e 2. 若记t =1+λ+1+λ2,则上式变成e 2=4+(t -2)2t 2=8⎝⎛⎭⎫1t -142+12. 由34≤λ<43,并注意到t =1+λ+1+λ2关于λ的单调性,得3≤t <4,即14<1t ≤13. 进而12<e 2≤59,即22<e ≤53.。

求椭圆及双曲线的离心率的习题

求椭圆及双曲线的离心率的习题

求椭圆的离心率1、已知F 1,F 2分别为椭圆的左,右焦点,椭圆上点M 的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的23,求椭圆的离心率. e =53.2、已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF =2FD ,则C 的离心率为________.解析:答案:333、已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF=2FD ,则C 的离心率为________.如图,设椭圆的标准方程为22x a +22y b=1(a >b >0)不妨设B为上顶点,F 为右焦点,设D (x ,y ).由BF =2FD ,得(c ,-b )=2(x -c ,y ),即2()2c x c b y =-⎧⎨-=⎩,解得322c x by ⎧=⎪⎪⎨⎪=-⎪⎩,D (32c ,-2b ).由D 在椭圆上得:22223()()22b c a b -+=1, ∴22c a=13,∴e =ca.4、设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o,2AF FB =.椭圆C 的离心率 ;解:设1122(,),(,)Ax y B x y ,由题意知1y <0,2y>0.直线l 的方程为)y x c =-,其中c =联立2222),1y x c x y ab ⎧=-⎪⎨+=⎪⎩得22224(3)30a b y cy b ++-=解得12y y ==因为2AFFB =,所以122y y -=. 即2= 得离心率 23c e a ==.5.已知椭圆E 的短轴长为6,焦点F 到长轴的一个端点的距离等于9,则椭圆E 的离心率等于________.6、在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点为A ,上顶点为B ,M为线段AB 的中点,若∠MOA =30°,则该椭圆的离心率为________. 答案:637.已知F 1,F 2是椭圆C 的两个焦点,焦距为4.若P 为椭圆C 上一点,且△PF 1F 2的周长为14,则椭圆C 的离心率e 为( )A.15B.25C.45D.215,故选B. 8、设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________.e =33.9.椭圆22221x y a b+=(0a b >>)的两个焦点分别为F 、2F ,以1F 、2F 为边作正三角形,若椭圆恰好平分三角形的另两边,则椭圆的离心率e 为 ( B )A B 1 C .4(2- D 10、已知F 是椭圆的左焦点,A ,B 分别是其在x 轴正半轴和y 轴正半轴上的顶点,P 是椭圆上一点,且PF ⊥x 轴,OP ∥AB ,那么该椭圆的离心率为( )A.22B.24C.12D.3211、如图所示,椭圆的中心在坐标原点O ,顶点分别是A 1,A 2,B 1,B 2,焦点分别为F 1,F 2,延长B 1F 2与A 2B 2交于P 点,若∠B 1P A 2为钝角,则此椭圆的离心率的取值范围为________.易知直线B 2A 2的方程为bx +ay -ab =0,直线B 1F 2的方程为bx -cy -bc =0.联立可得P ⎝ ⎛⎭⎪⎫2ac a +c ,b (a -c )a +c .又A 2(a ,0),B 1(0,-b ),所以PB 1→=⎝ ⎛⎭⎪⎫-2ac a +c ,-2ab a +c ,P A 2→=⎝ ⎛⎭⎪⎫a (a -c )a +c ,-b (a -c )a +c . 因为∠B 1P A 2为钝角,所以P A 2→·PB 1→<0, 即-2a 2c (a -c )(a +c )2+2ab 2(a -c )(a +c )2<0.化简得b 2<ac ,即a 2-c 2<ac ,故⎝⎛⎭⎫c a 2+c a -1>0即e 2+e -1>0,. 而0<e <1,所以5-12<e <1求双曲线的离心率1、已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为________.由三角形相似或平行线分线段成比例定理得26=a c ,∴ca =3,即e =32、已知F 1,F 2分别是双曲线的两个焦点,P 为该双曲线上一点,若△PF 1F 2为等腰直角三角形,则该双曲线的离心率为( )A.3+1B.2+1 C .2 3 D .22 选B 3、设双曲线的焦点在x 轴上,两条渐近线为y =±12x ,则该双曲线的离心率e 等于( )A .5 B.5 C.52 D.54选C 2.过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =,则双曲线的离心率是 ( )A B C D 【解析】对于(),0A a ,则直线方程为0x y a +-=,直线与两渐近线的交点为B ,C ,22,,(,)a ab a ab B C a b a b a b a b ⎛⎫- ⎪++--⎝⎭,22222222(,),,a b a b ab ab BC AB a b a b a b a b ⎛⎫=-=- ⎪--++⎝⎭,因此222,4,ABBC a b e =∴=∴= C4、设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 是C上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为30°,则C 的离心率为( )A. 3 B .2 C. 5 D .2 3 如图,设P 为右支上一点,则|PF 1|-|PF 2|=2a ,|PF 1|+|PF 2|=6a ,得|PF 1|=4a ,|PF 2|=2a ,最小角∠PF 1F 2=30°, 由余弦定理得:(2a )2=(4a )2+(2c )2-2×4a ×2c ·cos 30°, 解得e =ca= 3.5、过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率为________. 解析:由题意知,a +c =b 2a,即a 2+ac =c 2-a 2,∴c 2-ac -2a 2=0,∴e 2-e -2=0,。

椭圆双曲线离心率范围问题 专题讲义--高三数学一轮复习备考

椭圆双曲线离心率范围问题 专题讲义--高三数学一轮复习备考

椭圆双曲线离心率范围问题离心率的范围问题:在寻找不等关系时通常可从以下几个方面考虑:(1)题目中某点的横坐标(或纵坐标)是否有范围要求:例如椭圆与双曲线对横坐标的范围有要求。

如果问题围绕在“曲线上存在一点”,则可考虑该点坐标用,,a b c 表示,且点坐标的范围就是求离心率范围的突破口如:椭圆(以()222210x y a b a b+=>>为例),则[],x a a ∈-,[],y b b ∈-双曲线:(以()22221,0x y a b a b-=>为例),则(],x a ∈-∞-(左支)[),a +∞(右支)(2)若题目中有一个核心变量,则可以考虑离心率表示为某个变量的函数,从而求该函数的值域即可(3)通过一些不等关系得到关于,,a b c 的不等式,进而解出离心率注:在求解离心率范围时要注意圆锥曲线中对离心率范围的初始要求:椭圆:()0,1e ∈,双曲线:()1,+e ∈∞典例讲解例1:已知12,F F 是椭圆()2222:10x y E a b a b+=>>的左右焦点,若椭圆上存在点P ,使得12PF PF ⊥,则椭圆离心率的取值范围是( )A. 55⎫⎪⎪⎣⎭B. 22⎫⎪⎪⎣⎭C. 50,5⎛ ⎝⎦D. 22⎛ ⎝⎦解:在椭圆上的点P 与焦点连线所成的角中,当P 位于椭圆短轴顶点位置时,12F PF ∠达到最大值。

所以若椭圆上存在12PF PF ⊥的点P ,则短轴顶点与焦点连线所成的角90θ≥,考虑该角与,,a b c 的关系,由椭圆对称性可知,2452OPF θ∠=≥,所以22tan 1OF c OPF OP b∠==≥,即22222c b c b c a c ≥⇒≥⇒≥-,进而2212c a ≥即212e ≥,解得22e ≥,再由()0,1e ∈可得22e ⎫∈⎪⎪⎣⎭例2:已知双曲线)0,0(12222>>=-b a by a x 上有一点A ,它关于原点的对称点为B ,点F 为双曲线的右焦点,且满足BF AF ⊥,设α=∠ABF ,且]6,12[ππα∈,则该双曲线 离心率e 的取值范围为( )A .]32,3[+B .]13,2[+C .]32,2[+D .]13,3[+解:BF AF ⊥可得ABF 为直角三角形,且22AB OF c ==,结合α=∠ABF 可得2sin ,2cos AF c BF c αα==,因为,A B 关于原点对称,所以AF 即为B 的左焦半径。

第11讲 椭圆、双曲线焦点三角形下的离心率公式

第11讲  椭圆、双曲线焦点三角形下的离心率公式

第11讲椭圆、双曲线焦点三角形下的离心率公式知识与方法1.如图1所示,在焦点三角形背景下求椭圆的离心率,一般结合椭圆的定义,关键是运用已知条件研究出12PF F 的三边长之比或内角正弦值之比.公式:1212121221sin 22sin sin F F F PF c ce a a PF PF PF F PF F ∠====+∠+∠2.如图2所示,在焦点三角形背景下求双曲线的离心率,一般结合双曲线的定义,关键是运用已知条件研究出12PF F 的三边长之比或内角正弦值之比.公式:1212122112sin 22sin sin F F F PF c ce a a PF F PF F PF PF ∠====∠-∠-.典型例题【例1】(2018·新课标Ⅱ卷)已知1F 、2F 是椭圆C 的两个焦点,P 是椭圆C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为()A.1B.21【解析】解法1:如图,12PF PF ⊥,2160PF F ∠=︒,故可设122F F =,则1PF =,21PF =,所以C的离心率12121F F e PF PF ==+.解法2:如图,2112126030PF F PF F PF PF ∠=︒⎧⇒∠=︒⎨⊥⎩121221sin sin 901sin sin sin 30sin 60F PF e PF F PF F ∠︒⇒===∠+∠︒+︒.【答案】D 变式1设1F 、2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点,P 在C 上且1PF x ⊥轴,若1230F PF ∠=︒,则椭圆C 的离心率为_______.【解析】如图,1230F PF ∠=︒且1PF x ⊥,故可设22PF =,则13PF =,121F F =,所以椭圆C 的离心率121212323F F e PF PF ===-++.解法2:如图,12211123060F PF PF F PF F F ∠=︒⎧⇒∠=︒⎨⊥⎩121221sin sin 3023sin sin sin 90sin 60F PF e PF F PF F ∠︒⇒===-∠+∠︒+︒【答案】23变式2在ABC 中,AB AC ⊥,1tan 3ABC ∠=,则以B 、C 为焦点,且经过点A 的椭圆的离心率为_______.【解析】如图,不妨设3AB =,1AC =,则10BC =104BC e AB AC ==+.解法2:如图,110310tan sin sin 31010ABC ABC ACB ∠=⇒∠=∠=sin 10sin sin 4BAC e ABC ACB ∠⇒==∠+∠.【答案】变式3过椭圆()222210x y a b a b+=>>的左焦点1F 作x 轴的垂线交椭圆于A 、B 两点,椭圆的右焦点为2F ,若2ABF 是等腰直角三角形,则椭圆的离心率为_______.【解析】解法1:如图,2ABF 是等腰直角三角形12AF F ⇒ 也是等腰直角三角形,不妨设1121AF F F ==,则2AF =所以椭圆的离心率12121F F e AF AF ==+.解法2:如图,由题意,121245F AF F F A ∠=∠=︒,所以椭圆的离心率121221sin 1sin sin F AF e AF F AF F ∠==∠+∠.【答案】1-变式4过椭圆()222210x y a b a b+=>>的左焦点1F 作x 轴的垂线交椭圆于A 、B 两点,椭圆的右焦点为2F ,若21cos 8AF B ∠=,则椭圆的离心率为_______.【解析】解法1:如图,122212121211cos cos 212sin sin 88AF AF B AF F AF F AF F AF ∠=∠=⇒-∠=⇒∠∠==不妨设1AF =24AF =,则123F F =,所以1212F F e AF AF ==+.解法2:如图,2211cos cos 28AF B AF F ∠=∠=221211712sin sin 84AF F AF F ⇒-∠=⇒∠=12213sin cos 4F AF AF F ⇒∠=∠=1212213sin 474sin sin 3F AF e AF F AF F ∠∠==∠+∠.变式5在ABC 中,2AB =,1BC =,且6090ABC ︒≤∠≤︒,若以B 、C 为焦点的椭圆经过点A ,则该椭圆的离心率的取值范围为_______.【解析】解析:如图,设()6090ABC θθ∠=︒≤≤︒则2222cos 54cos AC AB BC AB BC ABC θ=+-⋅⋅∠=-,160900cos 2AC θθ︒≤≤︒⇒≤≤⇒≤而12BC e AB AC AC==++22e ≤≤-.【答案】2,2-【反思】从上面几道题可以看出,焦点三角形下求椭圆的离心率,要么研究焦点三角形的三边长之比,要么研究焦点三角形的内角正弦值之比.【例2】已知1F 、2F 是双曲线2222:1x y C a b -=的左、右焦点,点P 在C 上,12PF PF ⊥,且1230PF F ∠=︒,则双曲线C 的离心率为_______.【解析】解法1:如图,由题意,不妨设21PF =,则1PF =,122F F =,所以12121F FePF PF==-.解法2:如图,由题意,2160PF F∠=︒,1290F PF∠=︒,所以121221sin1sin sinF PFePF F PF F∠==∠-∠.【答案】1+变式1(2016·新课标Ⅱ卷)已知1F、2F是双曲线2222:1x yEa b-=的左、右焦点,点M在E上,1MF与x轴垂直,211sin3MF F∠=,则E的离心率为()B.32D.2【解析】解法1:如图,不妨设11MF=,23MF=,则12F F=,所以1212222F FePF PF===-.解法2:21121sin sin33MF F F MF∠=⇒∠=12122122sin31sin sin13F MFeMF F MF F∠⇒===∠-∠-.【答案】A变式2已知1F、2F是双曲线2222:1x yCa b-=的左、右焦点,过1F且与x轴垂直的直线与双曲线C交于A、B两点,若2ABF是等腰直角三角形,则双曲线C的离心率为_______.【解析】解法1:2ABF 是等腰直角三角形12AF F ⇒ 也是等腰直角三角形,不妨设1121AF F F ==,则2AF =双曲线C的离心率12211F F e AF AF ==-.解法2:2ABF 是等腰直角三角形12AF F ⇒ 也是等腰直角三角形,所以121221sin sin 451sin sin sin 90sin 45F AF e AF F AF F ∠︒===∠-∠︒-︒.【答案】1+变式3在ABC 中,AB AC ⊥,1tan 3ABC ∠=,则以B 、C 为焦点,且经过点A 的双曲线的离心率为_______.【解析】如图,不妨设1AC =,则3AB =,BC =所以双曲线的离心率1010312BC e AB AC ===--.【答案】变式4已知1F 、2F 是双曲线2222:1x y C a b-=的左、右焦点,点P 在C 上,1230PF F ∠=︒,212PF F F =,则双曲线C 的离心率为_______.【解析】如图,由题意,121230PF F F PF ∠=∠=︒,12120F PF ∠=︒,所以121221sin sin sin F PF e PF F PF F ∠==∠-∠.【答案】12+强化训练1.(★★★)在PAB 中,PA AB ⊥,12tan PBA ∠=,则以A 、B 为焦点,且经过点P 的椭圆的离心率为_______.【解析】如图,由题意,不妨设1PA =,则2AB =,PB =512AB e PA PB-===+.2.(★★★)设1F 、2F 是椭圆()2222:10x y C a b a b +=>>的左、右焦点,点P 在C 上,且1245PF F ∠=︒,214cos 5PF F ∠=,则椭圆C 的离心率为_______.【解析】如图,212143cos sin 55PF F PF F ∠=⇒∠=,12122121180135F PF PF F PF F PF F ∠=︒-∠-∠=︒-∠,所以()1221212172sin sin 135sin135cos cos135sin 10F PF PF F PF F PF F ∠=︒-∠=︒∠-︒∠=,故121221sin 5sin sin F PF e PF F PF F ∠==-∠+∠【答案】5-3.(★★★)已知1F 、2F 是双曲线2222:1x y C a b-=的左、右焦点,点P 在C 上,1PF x ⊥轴,且211tan 2PF F ∠=,则双曲线C 的离心率为_______.【解析】如图,不妨设11PF =,122F F =,则2PF =双曲线C的离心率122112F F e PF PF +==-.4.(★★★)在ABC 中,30ABC ∠=︒,AB =,1BC =,若以B 、C 为焦点的椭圆经过点A ,则该椭圆的离心率为_______.【解析】2222cos 1AC AB BC AB BC ABC =+-⋅⋅∠=1AC ⇒=⇒椭圆的离心率12BC e AB AC ==+.【答案】312-5.(★★★)过椭圆()2222:10x y C a b a b+=>>的左焦点F 作x 轴的垂线交椭圆C 于A 、B 两点,若ABO 是等腰直角三角形,则椭圆C 的离心率为_______.【解析】如图,设椭圆C 的右焦点为1F ,ABO 是等腰直角三角形AFO ⇒ 也是等腰直角三角形,不妨设1AF OF ==,则12FF =,1AF =,所以椭圆C的离心率121F F e AF AF ==+.解法2:ABO 是等腰直角三角形AFO ⇒ 也是等腰直角三角形,⇒22b AF OF c b ac a=⇒=⇒=2222210102a c ac c ac a e e e ⇒-=⇒+-=⇒+-=⇒=.6.(★★★)已知1F 、2F 是双曲线2222:1x y C a b-=的左、右焦点,过1F 且与x 轴垂直的直线与双曲线C 交于A 、B 两点,若2ABF 是正三角形,则双曲线C 的离心率为_______.【解析】解法1:如图,2ABF 是正三角形,不妨设11AF =,则22AF =,12F F =离心率1221F F e AF AF ==-.解法2:如图,2ABF 是正三角形1260F AF ⇒∠=︒,2130AF F ∠=︒,1290AF F ∠=︒,所以双曲线C的离心率121221sin sin sin F AF e AF F AF F ∠==∠-∠.7.(★★★)过双曲线2222:1x y C a b-=的左焦点1F 作x 轴的垂线交C 于A 、B 两点,C 的右焦点为2F ,若21cos 8AF B ∠=,则双曲线C 的离心率为_______.【解析】如图,2221211cos cos 22cos 18AF B AF F AF F ∠=∠=∠-=1221233cos 44F F AF F AF ⇒∠=⇒=,不妨设123F F =,24AF =,则1AF ==所以离心率1221F F e AF AF ==-.8.(★★★)过双曲线2222:1x y C a b-=的左焦点F 作x 轴的垂线交C 于A 、B 两点,若ABO是等腰直角三角形,则双曲线C 的离心率为_______.【解析】如图,设双曲线C 的右焦点为1F ,ABO 是等腰直角三角形AFO ⇒ 也是等腰直角三角形,不妨设1AF FO ==,则12FF =,1AF =,所以C的离心率1112FF e AF AF+==-.【答案】5129.(★★★)设1F 、2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点,过1F且斜率为的直线l 与椭圆C 交于A 、B 两点,212AF F F ⊥,则椭圆C 的离心率为_______.【解析】解法l :如图,直线AB的斜率为1260AF F ⇒∠=︒,又212AF F F ⊥,所以2190AF F ∠=︒,1230F AF ∠=︒,不妨设121F F =,则12AF =,2AF =,所以椭圆C的离心率12122F F e AF AF ==-+解法2:如图,直线AB1260AF F ⇒∠=︒,又212AF F F ⊥,所以2190AF F ∠=︒,1230F AF ∠=︒,故椭圆C的离心率121221sin 2sin sin F AF e AF F AF F ∠==-∠+∠【答案】210.(★★★)设1F 、2F 是椭圆()2222:10x y E a b a b+=>>的左、右焦点,以12F F 为直径的圆与椭圆的4个交点和1F 、2F 恰好构成一个正六边形,则椭圆E 的离心率为_______.【解析】如图,由题意,21ABF CDF 是正六边形,所以1260AF F ∠=︒,2130AF F ∠=︒,1290F AF ∠=︒,故椭圆E的离心率121221sin 1sin sin F AF e AF F AF F ∠==∠+∠.【答案】1-11.(★★★★)已知P 、Q 为椭圆()2222:10x y C a b a b+=>>上关于原点对称的两点,点P 在第一象限,1F 、2F 是椭圆C 的左、右焦点,2OP OF =,若1133QF PF ≥,则椭圆C 的离心率的取值范围为_______.【解析】如图,2121212OP OF OP F F PF PF =⇒=⇒⊥显然四边形12PF QF 是矩形,所以12QF PF =,由题意,1133QF PF ≥,所以2133PF PF ≥,设12PF F α∠=,则21tan PF PF α=≥30α≥︒,又点P 在第一象限,所以21PF PF <,故tan 1α<,即45α<︒,所以3045α︒≤<︒,椭圆C 的离心率()121221sin 11sin sin sin sin 90sin cos F PF e PF F PF F αααα∠====∠+∠+︒-+,由3045α︒≤<︒可得754590α︒≤+︒<︒,所以()62sin 4514α≤+︒<,故212e <≤-.【答案】212⎤-⎥⎝⎦。

2022年高考复习 椭圆、双曲线的离心率

2022年高考复习  椭圆、双曲线的离心率

过关检测
2.已知 A,B 为双曲线 E 的左、右顶点,点 M 在 E 上,△ABM 为等腰三角形,且顶
角为 120°,则 E 的离心率为 (
(A) 2
(B)2
A
)
(C) 3
(D) 5
x2 y2
设双曲线方程为 2 - 2 =1(a>0,b>0) ,如图所示,|AB|=|BM|,∠ABM=120°,
a b
2022
高考复习
椭圆、双曲线的离心率


核心
考点
>>
常考
题型
>>
跟踪
检测
核心考点
离心率是描述圆锥曲线“扁平程度”或“张口大小”的一个重要数据
椭圆标准方程中 a,b,c 的关系是 b2=a2-c2,离心率 e=
c
∈(0,1),
a
双曲线标准方程中 a,b,c 的关系是 b2=c2-a2,离心率 e=
a
b
对称,且满足 FA ·FB =0,|FB|≤|FA|≤ 3 |FB|,则椭圆 C 的离心率的取值范围为(
(A)[
2
,1)
2
化简得到 c=
所以 α+
(B)[
2
, 3 -1]
2
(C)[ 3 -1,1)
(D)[
故 sin(α+
3
2
,
]
2
2
a
a
c
π π
,故椭圆离心率为 e= =
.因为 α∈[ , ],
π
a b
则 A(a,0)到直线 bx-ay=0 的距离为
又∠MAN=60°,故 d=
ab
a 2 b2

椭圆、双曲线另一组离心率公式及其应用

椭圆、双曲线另一组离心率公式及其应用

椭圆、双曲线另一组离心率公式及其应用作者:方志平来源:《数学教学通讯(教师阅读)》2009年第04期摘要:椭圆、双曲线的离心率是解析几何中非常重要的知识点之一,也是高考常考的热点. 对于某一类求椭圆、双曲线离心率问题,利用另一组离心率公式求解,会带来意想不到的“神奇”效果!本文以4个定理和4个相应例题分别进行阐述.关键词:定理;椭圆;双曲线;离心率求椭圆、双曲线离心率一般涉及解析几何、平面几何、代数等多个知识点,综合性强方法灵活,解题关键是挖掘题中的隐含条件,可先找出含a,b,c的等式关系,再求离心率. 在教学过程中,笔者发现椭圆、双曲线另一组离心率公式给我们解决某一类离心率问题会带来意想不到的“神奇”效果!现用定理的形式叙述并证明.离心率公式定理1(如图1)设椭圆+=1(a>b>0)的两个焦点为F1,F2,P是椭圆上异于长轴端点的任意一点,在△PF1F2中,记∠PF1F2=α,∠PF2F1=β,∠F1PF2=γ,e是椭圆的离心率,则有=e.图1证明在△PF1F2中,==,则=.所以=?圯==e.定理2(如图2)设双曲线-=1(a>0,b>0)的两个焦点为F1,F2,P是双曲线上异于实轴端点的任意一点,在△PF1F2中,记∠PF1F2=α,∠PF2F1=β,∠F1PF2=γ,e是双曲线的离心率,则有=e.图2证明在△PF1F2中,==,则=.=,所以=?圯==e.定理3(如图3)设A,B是椭圆+=1(a>b>0)的长轴两端点,P是椭圆上异于A,B的任意一点,∠PAB=α,∠PBA=β,e是椭圆的离心率,则tanαtanβ=1-e2.证明设P(x0,y0),又A(-a,0),B(a,0),tanα=kPA=,tan(π-β)=kPB=,所以tanβ=-,所以tanα•tanβ=-•= -.(1)又+=1,所以y=b21-=(a2-x),代入(1),所以tanα•tanβ=-•(a2-x)===1-e2.定理4(如图4)设A,B是双曲线-=1(a>b>0)的实轴两端点,P是双曲线上异于A,B的任意一点,∠PAB=α,∠PBA=β,e是双曲线的离心率,则tanαtanβ=1-e2.证明设P(x0,y0),又A(-a,0),B(a,0),tanα=kPA=,tan(π-β)=kPB=,所以tanβ=-,所以tanα•tanβ= -•=-.?摇(2)又-=1,y=b2-1=(x-a2),代入(2),所以tanα•tanβ=-•(x-a2)= -=-=1-e2.注:若椭圆、双曲线的焦点在y轴,或中心不在原点,同样得到相应的结论.公式应用例1如图5,正六边形ABCDEF的顶点A,D为一椭圆的两个焦点,其余四个顶点B,C,E,F均在椭圆上,求椭圆的离心率.图5分析本题关键是从正六边形ABCDEF中找出一个内角都已知的椭圆的焦点三角形,如△EAD,这样可利用定理1直接求解.解析如图5,连结AE,易知∠AED=90°,∠DAE=30°,∠ADE=60°.由定理1得e====-1.点评:本题也可设出正六边形的边长,利用椭圆的定义进行求解.例2(2007安徽)如图6,F1和F2分别是双曲线-=1(a>0,b>0)的两个焦点,A和B是以O为圆心,以OF1为半径的圆与该双曲线左支的两个交点,且△F2AB是等边三角形,则双曲线的离心率为()A. B.C. ?摇D. 1+图6分析解本题的关键是寻找一个内角都已知的双曲线的焦点三角形,如△AF1F2,这样可利用定理2直接求解.解析如图6,连结AF1,由于△ABF2是正三角形,利用对称性得∠AF2F1=30°. 又因为F1F2是圆O的直径,所以∠F1AF2=90°,∠AF1F2=60°. 由定理2得e====1+,故选D.点评本题也可求出A点坐标-c,c,再将此坐标代入双曲线方程,且利用b2=c2-a2进行求解,比较麻烦.例3(东北区三省四市2008年第一次联合考试)椭圆的长轴为A1A2,B为短轴一端点,若∠A1BA2=120°,则椭圆的离心率为()解析由椭圆的对称性可知△A1BA2是等腰三角形. 又∠A1BA2=120°,所以∠BA1A2=∠BA2A1=30°. 由定理3得tan∠BA1A2•tan∠BA2A1=1-e2,即tan30°•tan30°=1-e2?圯•=1-e2,e2=,所以e=,故选B.点评本题也可由tan30°=,再利用e=求解.例4设△ABC是等腰三角形,∠ABC=120°,则以A,B为顶点且过点C的双曲线的离心率为 .解析因为△ABC是等腰三角形,且∠ABC=120°,所以∠BAC=30°. 由定理4得tan∠BAC•tan∠ABC=1-e2?圯tan30°•tan120°=1-e2?圯•(-)=1-e2,?圯e2=2,所以e=.点评本题也可设AB=BC=2a,求出C点坐标(2a,a),而后代入双曲线方程-=1(a>0,b>0),再利用e=求解.由于椭圆、双曲线有着统一的内在规律,所以它们之间还存在着很多类似的对偶性质. 只要我们在教学中细心观察和认真总结,有些有用、有趣的性质一定会被发现. 以上是我教学中的一点体验,仅供参考.。

离心率问题的7种题型15种方法(教师版)

离心率问题的7种题型15种方法(教师版)

目录题型一:椭圆离心率的求值 2方法一:定义法求离心率 2方法二:运用通径求离心率 3方法三:运用e=e=1+k2λ-1λ+1求离心率 4方法四:运用e=c a=sin(α+β)sinα+sinβ求离心率 4方法五:运用k OM⋅k AB=-b2a2求离心率 5方法六:运用正弦定理、余弦定理、三角函数求离心率 6方法七:运用相似比求离心率 6方法八:求出点的坐标带入椭圆方程建立等式 7方法九:运用几何关系求离心率 7题型二:双曲线离心率的求解 9方法一:定义法关系求离心率 10方法二:运用渐近线求离心率 10方法三:运用e=1+k2λ-1λ+1求离心率 11方法四:运用e=c a=sin(α+β)sinα-sinβ求离心率 11方法五:运用结论k OM•k AB=b2a2求离心率 12方法六:运用几何关系求离心率 13题型三:椭圆、双曲线离心率综合运用 15题型四:根据已知不等式求离心率的取值范围 17题型五:根据顶角建立不等式求离心率范围 18题型六:根据焦半径范围求离心率范围 19题型七:题型七根据渐近线求离心率的取值范围 21离心率问题的7种题型15种方法1离心率问题的7种题型15种方法求离心率常用公式椭圆公式1:e =ca 公式2:e =1-b 2a2证明:e =c a=c 2a 2=a 2−b 2a 2=1-b 2a 2公式3:已知椭圆方程为x 2a 2+y 2b2=1(a >b >0),两焦点分别为F 1,F 2,设焦点三角形PF 1F 2,∠PF 1F 2=α,∠PF 2F 1=β,则椭圆的离心率e =sin (α+β)sin α+sin β证明:∠PF 1F 2=α,∠PF 2F 1=β,由正弦定理得:F 1F 2 sin (180o −α−β)=PF 2 sin α=PF 1sin β由等比定理得:F 1F 2 sin (α+β)=PF 1 +PF 2 sin α+sin β,即2c sin (α+β)=2a sin α+sin β∴e =c a =sin (α+β)sin α+sin β。

椭圆的三种离心率公式

椭圆的三种离心率公式

椭圆的三种离心率公式
椭圆的离心率(偏心率)(eccentricity),是指动点到焦点的距离和动点到准线的距离之比。

计算方法
偏心率,离心率
eccentricity
离心率统一定义是动点到左(右)焦点的距离和动点到左(右)准线的距离之比。

椭圆扁平程度的一种量度,离心率定义为椭圆两焦点间的距离和长轴长度的比值,用e表示,即e=c/a (c,半焦距;a,长半轴)
椭圆的离心率可以形象地理解为,在椭圆的长轴不变的前提下,两个焦点离开中心的程度。

离心率=(ra-rp)/(ra+rp),ra指远点距离,rp指近点距离。

圆的离心率=0
椭圆的离心率:e=c/a(0,1)(c,半焦距;a,半长轴(椭圆)/半实轴(双曲线) )
抛物线的离心率:e=1
双曲线的离心率:e=c/a(1,+∞) (c,半焦距;a,半长轴(椭圆)/半实轴(双曲线) )
在圆锥曲线统一定义中,圆锥曲线(二次非圆曲线)的统一极坐标方程为
ρ=ep/(1-e×cosθ),其中e表示离心率,p为焦点到准线的距离。

椭圆上任意一点到两焦点的距离等于a±ex。

曲线形状
且离心率和曲线形状对照关系综合如下:
e=0, 圆
0<e<1, 椭圆
e=1, 抛物线
e>1, 双曲线。

双曲线离心率计算公式

双曲线离心率计算公式

双曲线离心率计算公式
双曲线是一种广泛应用于几何学、力学和物理学等领域的曲线。

它的形状是一条“双弯曲”的曲线,其中有一条长轴和一条短轴。

双曲线的离心率(eccentricity) 是衡量其“弯曲程度”的重要参数。

离心率的值越大,则双曲线的形状越“扁”;离心率的值越小,则双曲线的形状越“圆”。

离心率的计算公式为:e = √(a^2 - b^2) / a
其中a 为双曲线的长轴长度,b 为双曲线的短轴长度。

当e = 0 时,双曲线是一个圆;当0 < e < 1 时,双曲线是一个椭圆;当e = 1 时,双曲线是一个双曲线;当e > 1 时,双曲线是一个狭缝。

在物理学中,双曲线离心率常用来描述物体运动轨迹的形状,如行星运动轨道,卫星运动轨道等。

离心率公式大全

离心率公式大全

离心率公式大全:e=c/a。

圆的离心率=0;抛物线的离心率:e=1;0<e<1, 椭圆;e>1, 双曲线
双曲线的离心率:e=c/a(1,+∞) (c,半焦距;a,半长轴(椭圆)/半实轴(双曲线) )在圆锥曲线统一定义中,圆锥曲线(二次非圆曲线)的统一极坐标方程为
ρ=ep/(1-e×cosθ),其中e表示离心率,p为焦点到准线的距离。

扩展资料
在椭圆的标准方程X^2/a^2+Y^2/b^2=1中,如果a>b>0焦点在X轴上;如果b>a>0焦点在Y轴上。

这时,a代表长轴b代表短轴c代表两焦点距离的一半,存在a^2=c^2+b^2。

偏心率e=c/a (0<e<1)中,当e越大,椭圆越扁平。

椭圆的离心率(偏心率)(eccentricity)。

离心率统一定义是动点到焦点的距离和动点到准线的距离之比。

求椭圆、双曲线离心率

求椭圆、双曲线离心率
2
2
2 2 c c ,
2
e 2e 1 0
2
e 2 -1
5、离心率 c 双曲线的焦距与实轴长 的比e ,叫做 (1)定义: a 双曲线的 离心率。
(2)e的范围:
c>a>0
2 2
e >1
2
(3)e的含义:
e
c 2 a
2
a b b 1 2 2 a a
椭圆的离心率
离心率:椭圆的焦距与长轴长的比: c 叫做椭圆的离心率。 e [1]离心率的取值范围: 因为 a > c > 0,所以0<e<1 [2]离心率对椭圆形状的影响:
c e a a 2 b2 a b 2 1 ( ) , a
4、椭圆的离心率
a
y
O
x
1)e 越接近 1,c 就越接近 a,从而 b就越小,椭圆就 越扁 2)e 越接近 0,c 就越接近 0,从而 b就越大,椭圆就 越圆 3)特例:e =0,则 a = b,则 c=0,两个焦点重合, 椭圆方程变为(?)
x 2 y2 B. 1 9 8 y2 x 2 D. 1 9 8
【解析】选C.由于c=1,所以离心率最大即为长轴最小. 点F1(-1,0)关于直线x-y+3=0的对称点为F′(-3,2),设点P为直 线与椭圆的公共点,则2a=|PF1|+|PF2|=|PF′|+|PF2|≥|F′F2|
双曲线的一个焦点到一条渐近 线的距离等于其虚半轴长
x y 1、过双曲线 2 2 1的一个焦点F作它的渐近线 a b 的垂线,垂足为 A,延长FA交y轴于点B, 若A为 FB的中点,则双曲线的离 心率是
2

2014届椭圆与双曲线的离心率专题——经典

2014届椭圆与双曲线的离心率专题——经典
15.双曲线 ( , )的左、右焦点分别是 ,过 作倾斜角为 的直线交双曲线右支于 点,若 垂直于 轴,则双曲线的离心率为
16.已知双曲线 的左,右焦点分别为 ,点P在双曲线的右支上,且 ,则此双曲线的离心率e的最大值为
17.双曲线 (a>0,b>0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PF2|,则双曲
12.设 和 为双曲线 ( )的两个焦点,若 , 是正三角形的三个顶点,则双曲线的离心率为
13.设双曲线的一个焦点为 ,虚轴的一个端点为 ,如果直线 别是双曲线 的左、右焦点。若双曲线上存在点A,使 ,且
|AF1|=3|AF2|,则双曲线离心率为
线离心率的取值范围为
18.如图, 和 分别是双曲线 的两个焦点,
和 是以 为圆心,以 为半径的圆与该双曲线左支的两个
交点,且△ 是等边三角形,则双曲线的离心率为
19.已知双曲线 (a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是
8.已知F1、F2是双曲线 的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是
9.设 ,则双曲线 的离心率 的取值范围是
10.已知双曲线的渐近线方程为 ,则双曲线的离心率为
11.过双曲线 (a>0,b>0)的左焦点且垂直于x轴的直线与双曲线相交于M、N两点,以MN为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.
2014届高考复习——离心率
在椭圆中,0〈 〈1,
在双曲线中, >1,
1.已知F1为椭圆的左焦点,A、B分别为椭圆的右顶点和上顶点,P为椭圆上的点,当PF1⊥F1A,PO∥AB(O为椭圆中心)时,椭圆的离心率为 。

椭圆及双曲线的离心率 专题

椭圆及双曲线的离心率 专题

圆锥曲线离心率专题离心率问题有三种思路,一是求出,,a b c 三个量中的任何两个,然后利用离心率的计算公式求解;二是求出,a c 或,a b 或,c b 之间关系,然后利用离心率的计算公式求解;三是构造出关于离心率e 的方程来求解.此题中关键是灵活的应用椭圆和双曲线的定义构造出方程即可求解,一般是依据题设寻求一个关于,,a b c 的等量关系,再利用,,a b c 的关系消去b ,得到关于,a c 的等式,再转化为关于离心率e 的方程,解方程求出e 的值,最后根据椭圆或双曲线的离心率的取值范围,给出离心率的值.已知双曲线:E 22221x y a b-=()0,0a b >>,若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且23AB BC =,则E 的离心率是_______.【解析】 由题意,2BC c =,又因为23AB BC =,则3AB c =,于是点3,2c c ⎛⎫⎪⎝⎭在双曲线E 上,代入方程22221x y a b -=,得2222914c c a b -=,再由2c b a =+22得E 的离心率为2ce a==. 考点1.利用题设条件求出,a c 的值【例1】已知双曲线22219x y b-=(0)b >,过其右焦点F 作圆229x y +=的两条切线,切点记作C ,D ,双曲线的右顶点为E ,0150CED ∠=,其双曲线的离心率为( ) 23 B.32323 【解析】由题意3a =,易得OD OE =,075CEO OCE ∠=∠=,所以030=∠COE ,在Rt OCF ∆中,⇒=+=0230cos 93bOF OC 33212322==⇒=⇒=a c e c b 【例2】已知抛物线24y x =的准线与双曲线22214x y a -=交于,A B 两点,点F 为抛物线的交点,若FAB ∆为正三角形,则双曲线的离心率是 .【解析】根据已知条件画出图形(如右图),FAB ∆Rt AKF ∆中,30,2,AFK KF ∠=︒=2323tan 30,1,33AK KF A ⎛⎫∴=︒=∴- ⎪ ⎪⎝⎭22233114a ⎛⎫⎪⎝⎭∴-=,解得234a =,又24b =,19,4=故双曲线离心率19357223c e a ==÷=.考点2.根据题设条件直接列出,,a b c 的等量关系【例3】已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线与圆22(3)9x y -+=相变于A.B两点,若||2AB =,则该双曲线的离心率为( ) A.8 B. 22 C 3 D.4考点3.借助直角三角形的边角关系【例4】【2012全国新课标,理4】设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P为直线32ax =上一点,12F PF ∆是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34 ()D 45【解析】12F PF ∆是底角为30的等腰三角形,22132()22PF F F a c c ⇒==-=, 则34c e a ==【例5】设1F ,2F 分别是椭圆()222210x y a b a b +=>>的左、右焦点,过2F 的直线交椭圆于P ,Q 两点,若160F PQ ∠=︒,1PF PQ =,则椭圆的离心率为( )A.13B.23C.233D.33【解析】由条件1PF PQ =,则PQ ⊥x 轴,而0160F PQ ∠=,∴1F PQ ∆为等边三角形,而周长为4a ,∴ 等边三角形的边长为43a ,焦点在直角三角形12PF F ∆中,14||3aPF =,22||3a PF =,12||2F F c =, ∴22242()()(2)33a a c -=,即223a c =,∴22213c e a ==, 考点4. 借助与其它曲线的关系求离心率【例6】点A 是抛物线21:2(0)C y px p =>与双曲线22222:1(0,0)x y C a b a b-=>>的一条渐近线的交点(异于原点),若点A 到抛物线1C 的准线的距离为p ,则双曲线2C 的离心率等于( )A .2B .2C .5D .4【解析】 点A 到抛物线C 1的准线的距离为p ,∴⎪⎭⎫⎝⎛p p A ,2适合x a b y =,∴422=a b ,∴5=e【例7】如图,已知抛物线y 2=2px (p >0)的焦点恰好是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点F ,且这两条曲线交点的连线过点F ,则该椭圆的离心率为________.【解析】如图,设F ′为椭圆的左焦点,椭圆与抛物线在x 轴上方的交点为A ,连接AF ′,所以|FF ′|=2c =p ,因为|AF |=p ,所以|AF ′|=2p .因为|AF ′|+|AF |=2a ,所以2a =2p +p ,所以e =c a=2-1.考点5. 利用椭圆或双曲线的定义求离心率【例8】椭圆)0(12222>>=+b a by a x 上一点A 关于原点的对称点为B ,F 为其左焦点,若AF ^BF ,设6π=∠ABF ,则该椭圆的离心率为 ( )A .22 B .13- C .33 D .231- 【解析】取椭圆右焦点M ,连接BM AM ,,由椭圆对称性以及AF ^BF 知四边形AFBM 为矩形,由6π=∠ABF 得c AF =,c AM 3=,由椭圆定义知a AM AF 2=+,32c c a +=,13-=∴e .【例9】设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P 是C 上一点,若216,PF PF a +=且12PF F ∆的最小内角为30,则C 的离心率为___.【例10】 F 1,F 2是双曲线2222:1(,0)x y C a b b a b-=>>的左、右焦点,过左焦点F 1的直线l 与双曲线C 的左、右两支分别交于A ,B 两点,若22||:||:||3:4:5AB BF AF =,则双曲线的离心率是( )A 3B 15C .2D 13【解析】画出图形,在2ABF ∆中,根据题意可设223,4,5(0)AB t BF t AF t t ===>,222222,AB BF AF ABF +=∴∆为直角三角形.设1AF m =,由双曲线的定义知1221BF BF AF AF -=-,即345t m t t m +-=-,∴3m t =,∴212532a AF AF t t t =-=-=.在12Rt BF F ∆中, 22221212(6)(4)213F F BF BF t t t =+=+=,∴13ce a==,故选D . 考点6. 借助双曲线的渐近线求离心率【例11】已知双曲线)0,0(1:2222>>=-b a by a x E 的两条渐近线分别为x y l x y l 2:,2:21-==.则双曲线E 的离心率为_______________.【解析】因为双曲线E 的渐近线分别为y =2x ,y =-2x ,所以b a =2,所以c 2-a 2a=2,故c =5a ,从而双曲线E 的离心率e =ca= 5.【例12]已知双曲线22221x y a b-=的一条渐近线的倾斜角的余弦值为31010,该双曲线上过一个焦点且垂直于实轴的弦长为3,则双曲线的离心率等于( )A .3 D . 3【解析】双曲线22221x y a b-=所以110e =,即3e =, 故选C. 考点7. 利用弦中点坐标,代点相减求离心率【例13】过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B ,若M 是线段AB 的中点,则椭圆C 的离心率为。

巧解双曲线的离心率

巧解双曲线的离心率

巧解双曲线的离心率离心率是双曲线的重要性质,也是高考的热点。

经常考查:求离心率的值,求离心率的取值范围,或由离心率求参数的值等。

下面就介绍一下常见题型和巧解方法。

1、求离心率的值(1)利用离心率公式ace =,先求出c a ,,再求出e 值。

(2)利用双曲线离心率公式的变形: 2)(1a b a c e +==,先整体求出ab,再求出e 值。

例1 已知双曲线)0,0(12222>>=-b a b y a x 的一条渐近线方程为x y 34=,则双曲线的离心率为__________.分析:双曲线)0,0(12222>>=-b a b y a x 的渐近线方程为x a b y ±=,由已知可得34=a b解答:由已知可得34=a b ,再由2)(1a b a c e +==,可得35=e .(3)构造关于c a ,的齐次式,再转化成关于e 的一元二次方程,最后求出e 值,即“齐次化e ”。

例如:010222=-+⇒=-+e e a ac c例2 设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为____________. 分析:利用两条直线垂直建立等式,然后求解。

解答:因为两条直线垂直,011)(2222=--⇒-=⋅=⇒-=-⋅e e a c c a b c ba b所以215+=e (负舍) 2、求离心率的取值范围求离心率的取值范围关键是建立不等关系。

(1)直接根据题意建立c b a ,,的不等关系求解e 的取值范围。

例3 若双曲线22221x y a b-=(0>>b a ),则双曲线离心率的取值范围是_________.分析:注意到0>>b a 的条件 解答:),(21)(10102∈+=⇒>>⇒>>ab e a b b a(2)利用平面几何性质建立c a ,不等关系求解e 的取值范围。

椭圆与双曲线中离心率有关问题——一堂高三复习课的感悟

椭圆与双曲线中离心率有关问题——一堂高三复习课的感悟
方 法 二 :AB・B F =0
本节课重点 : 构 建 基 本量 的齐 次方 程 、 齐 次 不等 式 求 离 心率 的 值 和范 围 。 以上 习题 通 过 学 生 的详 细 解 答 来 理 出下 面 知 识 点 ,
方 面让 学 生 掌握 本 节 课 的 基 本 知识 , 另 一 方 面 把 本 节 课 的 核 心 问题 以简单 题 的形 式 引 出 , 让 学 生 由浅 入 深 的 形 成 本 节
2 双 曲线 离 心 率 :
r———1 可 _
方法五 : 射 影定 理 : 正 j D = A O・ O F 设计意图 : 该 例 题 以学 生 回答 为 主 , 他们集思广益 , 把 他 们 垂 直条 件 的利 用 归 纳 为 以上 几 种 , 使 学生 学 会 由形 的特 征 , 转 化 为代 数 式 , 一 方 面掌 握 求离 心 率 的 值 的 方 法 — — 构 造 基 本 量 的齐 次 方程 。 另 一 方 面让 学 生体 会 解 析 几何 的核 心 : 用 代 数 的方 法 解 决几 何 问 题 。 求 出 之 后 我 又 引 导 学 生 观 察 这个 结 果

课 的学 习 目标 。 2 相 关 基 础知 识 回 顾
厂——
方法三 : AB + B F = A F
方法四 : 凡 越 ( )
R t & 4 0 B
1 椭圆离心率: 从代数角度: P =÷ =^ / 1 一 一 棚
(0 是 特征 三 角 形 中 的 O A B) 离 心 率 范 围 :( O , 1 ) 从几何角度 : 描 述椭圆 的圆扁程度 的量 , e 越小 , 椭 圆 越 圆; 越 大 , 椭 圆越 扁 ( 结 合 图形 说 明理 由)

8.2 圆锥曲线的方程与性质 题型2 椭圆、双曲线的离心率讲义-2024届高三数学二轮复习

8.2 圆锥曲线的方程与性质 题型2 椭圆、双曲线的离心率讲义-2024届高三数学二轮复习

考点8.2圆锥曲线的方程与性质题型2椭圆、双曲线的离心率母题模型已知椭圆2222:1(0)x y C a b a b +=>>的离心率为32,2=a 过右焦点F 且斜率为(0)k k >的直线与C 相交于,A B 两点,若3AF FB =uuu r uur,则k =()A B .1C .2拆题解读:椭圆离心率公式推理:由离心率可求得c 值联想:向量的坐标运算得出坐标间的关系.k >方法总结:一、椭圆,双曲线离心率的正弦口算公式(1)在椭圆()222210+=>>x y a b a b中,焦点分别为12,F F ,点P 为椭圆上一点,在12△F PF 中,12α∠=F PF ,12β∠=PF F ,21γ∠=PF F ,则椭圆的离心率为sin sin sin αβγ=+e .(2)在双曲线()222210,0-=>>x y a b a b中,焦点分别为12,F F ,点P 为椭圆上一点,在12△F PF 中,12α∠=F PF ,12β∠=PF F ,21γ∠=PF F ,则双曲线的离心率为sin sin sin αβγ=-e .二、椭圆离心率的最大张角公式如图在椭圆()222210+=>>x y a b a b中,(1)焦点三角形的顶角为θ,当点P 位于椭圆的上、下顶点时,张角θ有最大值,进而可得2cos 12θ≥-e ,即离心率满足sin12θ≤<e .(2)顶点三角形的顶角为α,当点Q 位于椭圆的上、下顶点时,张角α有最大值,进而可得离心率满足211tan 2α≥-e .三、椭圆,双曲线离心率的焦比弦公式(1)经过椭圆()222210+=>>x y a b a b的焦点F 且倾斜角为θ的直线与椭圆中交于A ,B 两点,且λ=uuu r uurAF FB ,则1cos 1λθλ-=+e .(2)经过双曲线()222210,0-=>>x y a b a b的焦点F 且倾斜角为θ的直线与双曲线中交于A ,B 两点,且λ=uuu r uur AF FB ,则1cos 1λθλ-=+e .(2)经过抛物线()220=>y px p 的焦点F 且倾斜角为θ的直线与抛物线中交于A ,B 两点,且λ=uuu r uurAF FB ,则1cos 1λθλ-=+.四、由双曲线()222210,0-=>>x y a b a b 的渐近线求离心率双曲线()222210,0-=>>x y a b a b 的渐近线斜率为(),0->k k k ,渐近线对应的倾斜角为,0,2παπαα⎛⎫⎛⎫-∈ ⎪ ⎪⎝⎭⎝⎭,那么21cos 1α⎧=⎪⎨⎪=+⎩e e k ,双曲线为()222210,0-=>>y x a b a b 时,21sin 11α⎧=⎪⎪⎨⎪=+⎪⎩e e k 子题变式1.(难度★★)(2023春·云南昆明·高三校考阶段练习)已知双曲线()222102x y a a -=>的一条渐近线的倾斜角为π6,则此双曲线的离心率e 为()A .33B 26C 3D .2【答案】A【解析】∵双曲线()222102x y a a -=>的一条渐近线的倾斜角为π6,π3tan 6=的方程为33y x =,∴22233a ⎛= ⎝⎭,解得6a =6-,∴2222c a b =+=,∴双曲线的离心率为222336c e a ==.故选A .大招快解:双曲线()222210,0-=>>x y a b a b 的离心率为1cos α=e ,133cos 62π===e .2.(难度★★)(2023春·浙江·高三开学考试)已知抛物线24y x =,过焦点F 的直线与抛物线交于A 、B 两点,若16||,(1)3AB AF FB λλ==>,则λ=()A .3B .4C .5D .6【答案】A【解析】设()()1122,,,,:(1)A x y B x y AB y k x =-,联立24(1)y x y k x ⎧=⎨=-⎩,得204ky y k --=,12124,4y y y y k ∴+==-圆锥曲线弦长公式解得23k =,(1)AF FB λλ=> ,12y y λ∴=-,12224y y y y kλ+=-=,21224y y y λ=-=-,消去2y 整理可得231030λλ-+=,又1λ>,3λ∴=.故选A .大招快解:经过抛物线()220=>y px p 的焦点F 且倾斜角为θ的直线与抛物线中交于A ,B 两点,且λ=uuu r uur AF FB ,则1cos 1λθλ-=+.若2162||3sin θ==pAB ,解得sin 2θ=,(1)AF FB λλ=> ,故3πθ=,所以1cos 31πλλ-=+,解得3λ=.3.(挑战题)(难度★★)过双曲线()222210,0x y a b a b -=>>的右焦点F 作倾斜角为60︒的直线交双曲线右支于A ,B 两点,若5AF FB =,则双曲线的离心率为()A .65B C .2D .43【答案】D【解析】过右焦点F 的直线的倾斜角60︒,不妨设直线方程为:3x y c =+,联立方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆、双曲线离心率问题1.已知)0,(),0,(21c F c F -为椭圆12222=+by a x 的两个焦点,P 为椭圆上221c PF PF =⋅,此椭圆离心率的取值范围是( ) A .3[,1)3 B .11[,]32C .32[,]32D .2(0,]2 2.椭圆1322=+ky x 的一个焦点坐标为)10(,,则其离心率等于 ( )A. 2B. 21C. 332D. 233.已知椭圆1C 与双曲线2C 有共同的焦点)0,2(1-F ,)0,2(2F ,椭圆的一个短轴端点为B ,直线B F 1与双曲线的一条渐近线平行,椭圆1C 与双曲线2C 的离心率分别为21,e e ,则21e e +取值范围为( )A.),2[+∞B. ),4[+∞C.),4(+∞D. ),2(+∞4.已知双曲线22219y x a-=的两条渐近线与以椭圆221259y x +=的左焦点为圆心、半径为165的圆相切,则双曲线的离心率为( ) A .54B .53 C .43 D .655.ABC ∆是等腰三角形,B ∠=︒120,则以B A ,为焦点且过点C 的双曲线的离心率为( )A. 221+B. 231+ C. 21+ D. 31+6.已知F 1,F 2是椭圆22221(0)x y a b a b+=>>的左、右焦点,点P 在椭圆上,且122F PF π∠=记线段PF 1与y 轴的交点为Q ,O 为坐标原点,若△F 1OQ 与四边形OF 2PQ 的面积之比为1: 2,则该椭圆的离心率等于 ( ) A .23-B .233-C .423-D .31-7.已知抛物线22(0)y px p =>的焦点恰好是椭圆22221(0)x y a b a b +=>>的右焦点F ,且两条曲线的交点连线也过焦点F ,则椭圆的离心率为 ( )A.21- B .2(21)-C .512- D .228.设O 为坐标原点,12,F F 是椭圆22221(0)x y a b a b+=>>的左、右焦点,若在椭圆上存在点P 满足123F PF π∠=,且3||2OP a =,则该椭圆的离心率为( ) A、12 B、14 C、312- D、22 9.椭圆)0(12222>>=+b a b y a x 的左右焦点分别为21,F F ,过焦点1F 的倾斜角为 30直线交椭圆于A,B 两点,弦长8=AB ,若三角形ABF2的内切圆的面积为π,则椭圆的离心率为( )A .22B .63C .21D .3310.与椭圆1422=+y x 共焦点且过点P (2,1)的双曲线方程是( )A .1422=-y xB .1222=-y x C .13322=-y xD .1222=-y x11.已知双曲线的顶点与焦点分别是椭圆)0(12222>>=+b a by ax 的焦点与顶点,若双曲线的两条渐近线与椭圆的交点构成的四边形恰为正方形,则椭圆的离心率为( )A .31B .21C .33D .2212.已知椭圆C :12222=+by a x ,以抛物线216y x =的焦点为椭圆的一个焦点,且短轴一个端点与两个焦点可组成一个等边三角形,则椭圆C 的离心率为A .23 B . 21C . 33D .4313.已知椭圆222a x +222b y =1(a >b >0)与双曲线22a x -22b y =1有相同的焦点,则椭圆的离心率为 A .22B .21C .66D .3614.直线220x y -+=经过椭圆22221(0)x y a b a b +=>>的一个焦点和一个顶点,则该椭圆的离心率为A .255B .12C .55 D . 2315.已知F 为双曲线C :22221(0,0)x y a b a b -=>>的右焦点,P 为双曲线C 右支上一点,且位于x 轴上方,M 为直线2a x c =-上一点,O 为坐标原点,已知OP OF OM =+, 且OM OF=,则双曲线C 的离心率为(A ) 2 (B ) 152+(C )2(D )416.椭圆的长轴为A1A2,B 为短轴的一个端点,若∠A1BA2=120°,则椭圆的离心率为A .36B .21C .33D .2317.设双曲线以椭圆221259x y +=长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的离心率为( )A .2B .52 C .32D .62 18.设A 1、A 2为椭圆)0(12222>>=+b a by a x 的左右顶点,若在椭圆上存在异于A 1、A 2的点P ,使得02=⋅PA PO ,其中O 为坐标原点,则椭圆的离心率e 的取值范围是 A 、)21,0( B 、 )22,0( C 、)1,21( D 、)1,22(19.已知焦点在x 轴上、中心在原点的椭圆上一点到两焦点的距离之和为4,若该椭圆的离心率32,则椭圆的方程是( ) A .2214x y += B .2214y x += C .22143x y += D .22134x y += 20.已知椭圆22221(0)x y a b a b+=>>的左焦点分别为12,F F ,过1F 作倾斜角为030的直线与椭圆的一个交点P ,且2PF x ⊥轴,则此椭圆的离心率e 为A .33B .32C .22D .2321.已知)0,(),0,(21c F c F -为椭圆12222=+b y a x 的两个焦点,P 为椭圆上一点且221c PF PF =⋅,则此椭圆离心率的取值范围是 ( )A .3[,1)3 B .11[,]32 C .32[,]32 D .2(0,]222.过椭圆2222:1x y C a b +=的左焦点作直线l x ⊥轴,交椭圆C 于A ,B 两点,若△OAB (O 为坐标原点)是直角三角形,则椭圆C 的离心率e 为( )A .312- B .312+ C .512- D .512+23.过椭圆22221x y a b+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于P 、Q 两点,2F 为右焦点,若2PQF ∆为等边三角形,则椭圆的离心率为( )A .22B .33C .12D .1324.已知以椭圆)0(12222>>=+b a by a x 的右焦点F 为圆心,a 为半径的圆与直线l :2a x c=(其中22c a b =-)交于不同的两点,则该椭圆的离心率的取值范围是( )A .)1,215(-B .)1,213(-C .)213,0(-D .)215,0(-25.设12F F ,分别是椭圆22221x y a b +=(0a b >>)的左、右焦点,P 是其右准线上纵坐标为3c (c 为半焦距)的点,且122||||F F F P =,则椭圆的离心率是( )A .312-B .12C .512-D .2226.已知A 、B 是椭圆22221(0)x y a b a b+=〉〉长轴的两个端点,M ,N 是椭圆上关于x 轴对称的两点,直线AM ,BN 的斜率分别为k1,k2,且22110+k k k k ≠ 若的最小值为1,则椭圆的离心率( ) A .12B .22C .32D .2327.直线220x y -+=经过椭圆22221(0)x y a b a b +=>>的一个焦点和一个顶点,则该椭圆的离心率为.( )A .255 B .12 C .55 D .2328.直线220x y -+=经过椭圆22221(0)x y a b a b+=>>的一个焦点和一个顶点,则该椭圆的离心率为. A.255 B. 12 C. 55 D. 2329.已知椭圆的中心在坐标原点,焦点在x 轴上,且长轴长为12,离心率为31,则椭圆方程A .1442x +1282y =1B .362x +202y =1C .322x +362y =1 D .362x +322y =130.已知(0,)2πα∈,方程22sin cos 1x y αα+=表示焦点在y 轴上的椭圆,则α的取值范围是() A .(0,)4πB .(0,]4πC .[,]42ππD .(,)42ππ31.已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F(2,0),设A ,B 为双曲线上关于原点对称的两点,AF 的中点为M ,BF 的中点为N ,若原点O 在以线段MN 为直径的圆上,直线AB 的斜率为377,则双曲线的离心率为( ) A .3 B .5 C .2 D .432.已知双曲线)0,0(12222>>=-b a by a x 的右焦点F ,直线c a x 2=与其渐近线交于A ,B 两点,且△ABF 为钝角三角形,则双曲线离心率的取值范围是( ) A. (∞+,3) B. (1,3)C. (∞+,2)D.(1,2)33.已知A B P 、、是双曲线22221x y a b -=上的不同三点,且A B 、连线经过坐标原点,若直线PA PB 、的斜率乘积23PA PB k k ⋅=,则该双曲线的离心率e =( )A .52B .62C .2D .15334.双曲线C 的左右焦点分别为12,F F ,且2F 恰为抛物线24y x =的焦点,设双曲线C与该抛物线的一个交点为A ,若12AF F ∆是以1AF 为底边的等腰三角形,则双曲线C 的离心率为( )A .2B .12+C .13+D .23+35.双曲线22221(0,0)x y a b a b-=>>过其左焦点F 1作x 轴的垂线交双曲线于A ,B 两点,若双曲线右顶点在以AB 为直径的圆内,则双曲线离心率的取值范围为 A .(2,+∞) B .(1,2) C .(32,+∞) D .(1,32)36.已知双曲线2222x y 1a b-= (a>0,b>0)的一条渐近线方程是y=3x,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )A.22x y 136108-= B.22x y 1927-= C.22x y 110836-= D.22x y 1279-= 37. 已知双曲线M :22221x y a b -=和双曲线:22221y x a b-=,其中b >a >0,且双曲线M与N 的交点在两坐标轴上的射影恰好是两双曲线的焦点,则双曲线M 的离心率为( ) A 、5+12 B 、5-12 C 、5+32 D 、3-5238.已知双曲线)0,0(12222>>=-b a by a x 的离心率为62,则双曲线的渐近线方程为( )A .2y x =±B .x y 2±=C .x y 22±= D .12y x =± 39.二次曲线2214x y m+=,当[2,1]m ∈--时,该曲线的离心率e 的取值范围是( )A .23[,]22B .35[,]22C .56[,]22D .36[,]2240.已知双曲线22221(0,0)x y a b a b-=>>的两个焦点分别为12,F F ,过作垂直于x 轴的直线,与双曲线的一个交点为P,且01230PF F ∠=,则双曲线的离心率为( )A .2B .2C .3D .341.以双曲线两焦点为直径的端点的圆交双曲线于四个不同点,顺次连接这四个点和两个焦点,恰好围成一个正六边形,那么这个双曲线的离心率等于A .31+B .31-C .3D .312-42.双曲线22221x y a b-=的渐近线与圆22(2)1x y +-=相切,则双曲线离心率为(A )2 (B )3 (C )2(D )343.设F 1, F 2分别为双曲线2221x a b2y -=(a>0,b>0)的左、右焦点,P 为双曲线右支上任一点。

相关文档
最新文档