ABAQUS-BAT帮助
(完整版)Abaqus帮助文档整理汇总,推荐文档
Abaqus 使用日记Abaqus标准版共有“部件(part)”、“材料特性(propoterty)”、“装配(assemble)”、“计算步骤(step)”、“交互(interaction)”、“加载(load)”、“单元划分(mesh)”、“计算(job)”、“后处理(visualization)”、“草图(sketch)”十大模块组成。
建模方法:一个模型(model)通常由一个或几个部件(part)组成,“部件”又由一个或几个特征体(feature)组成,每一个部分至少有一个基本特征体(base feature),特征体可以是所创建的实体,如挤压体、切割挤压体、数据点、参考点、数据轴,数据平面,装配体的装配约束、装配体的实例等等。
1.首先建立“部件”(1)根据实际模型的尺寸决定部件的近似尺寸,进入绘图区。
绘图区根据所输入的近似尺寸决定网格的间距,间距大小可以在edit菜单sketcher options选项里调整。
(2)在绘图区分别建立部件中的各个特征体,建立特征体的方法主要有挤压、旋转、平扫三种。
同一个模型中两个不同的部件可以有同名的特征体组成,也就是说不同部件中可以有同名的特征体,同名特征体可以相同也可以不同。
部件的特征体包括用各种方法建立的基本特征体、数据点(datum point)、数据轴(datum axis)、数据平面(datum plane)等等。
(3)编辑部件可以用部件管理器进行部件复制,重命名,删除等,部件中的特征体可以是直接建立的特征体,还可以间接手段建立,如首先建立一个数据点特征体,通过数据点建立数据轴特征体,然后建立数据平面特征体,再由此基础上建立某一特征体,最先建立的数据点特征体就是父特征体,依次往下分别为子特征体,删除或隐藏父特征体其下级所有子特征体都将被删除或隐藏。
××××特征体被删除后将不能够恢复,一个部件如果只包含一个特征体,删除特征体时部件也同时被删除×××××2.建立材料特性(1)输入材料特性参数弹性模量、泊松比等(2)建立截面(section)特性,如均质的、各项同性、平面应力平面应变等等,截面特性管理器依赖于材料参数管理器(3)分配截面特性给各特征体,把截面特性分配给部件的某一区域就表示该区域已经和该截面特性相关联3.建立刚体(1)部件包括可变形体、不连续介质刚体和分析刚体三种类型,在创建部件时需要指定部件的类型,一旦建立后就不能更改其类型。
ABAQUS帮助文档
初始损伤对应于材料开始退化,当应力或应变满足于定义的初始临界损伤准则,则此时退化开始。
Abaqus 的Damage for traction separation laws 中包括:Quade Damage、Maxe Damage、Quads Damage、Maxs Damage、Maxpe Damage、Maxps Damage 六种初始损伤准则,其中前四种用于一般复合材料分层模拟,后两种主要是在扩展有限元法模拟不连续体(比如crack 问题)问题时使用。
前四种对应于界面单元的含义如下:Maxe Damage 最大名义应变准则:Maxs Damage 最大名义应力准则:Quads Damage 二次名义应变准则:Quade Damage 二次名义应力准则最大主应力和最大主应变没有特定的联系,不同材料适用不同准则就像强度理论有最大应力理论和最大应变理论一样~ABAQUS帮助文档10.7.1 Modeling discontinuities as an enriched feature using the extended finite element method 看看里面有没有你想要的Defining damage evolution based on energy dissipated during the damage process根据损伤过程中消耗的能量定义损伤演变You can specify the fracture energy per unit area, , to be dissipated during the damage process directly.您可以指定每单位面积的断裂能量,在损坏过程中直接消散。
Instantaneous failure will occur if is specified as 0.瞬间失效将发生However, this choice is not recommended and should be used with care because it causes a sudden drop in the stress at the material point that can lead to dynamic instabilities.但是,不推荐这种选择,应谨慎使用,因为它会导致材料点的应力突然下降,从而导致动态不稳定。
用Abaqus所遇到问题汇总
用Abaqus 所遇到问题汇总(持续更新)2011-02-17 02:45:26 转载▼ 标签:分类:好好学习abaqus杂谈问题1:当Verification 所有都pass 的时候,仍然提示Problem during compilation - ifort.exe not found in PATH解决办法:找到ABAQUS 安装目录下的Commands 文件夹例如D:SIMULIAAbaqusCommands下的abq6101.bat,右键,编辑此文件,插入下面这行使之成为第一行:8 P O2 b W R4 y6 U5ucallquotX:yourdirIntelCompilerFortranversionIA32Binifortvar s.batquot,例如我的是:- k q V/ : EcallquotC:ProgramFilesIntelCompiler11.1070binia32ifortvars_ia32. batquot f9 G9 R C0 Lamp quot d/ Y d问题2:当使用UMAT 子程序是出现以下错误Error in job Job-line44: 630 elements have been defined with zero hourglass stiffness. You may use hourglass stiffness or change the elementtype. The elements have been identified in element setErrElemZeroHourGlassStiffness.解决办法:由于设置了减缩积分,所以出现沙漏现象,将其改成全积分或imcompatible 可解决,详细解析在《基于ABAQUS 的有限元分析和应用》的第510页。
问题3:提交作业后模型出现问题,standard.exe 停止工作,只生成dat 文件而没有找到msg 文件解决办法:黄色图标的文件即msg 文件,但文件类型显示为outlook,用记事本打开即可。
ABAQUS用户子程序设置及错误代码解决1073741819方法
ABAQUS用户子程序设置及错误代码解决1073741819方法1.我的测试CPU Intel i5-4590 haswell架构支持指令集AVX /高級矢量擴展AVX2 /高級矢量擴展2.0测试1测试环境ABAQUS 6.14-3ABAQUS 2016Windows10 ,version_1511_updated_feb_2016_x64_dvd_8380088Intel® Visual Fortran Composer XE 2013 SP1 for Windows* Update 1Microsoft visual studio2013结果最容易出现错误,rename the file mkl_avx2.dll to this: mkl_avx2.dll.11.0.0.1无效。
某次运行usdfld代码(1,简单),我的计算机(A)运行有错误,显示1073741819错误。
但是在另外一台电脑(B)运行则没有错误,该电脑软件环境一样,但CPU为i7-2600k,sandy bridge架构。
测试2测试环境ABAQUS 6.14-3Windows7 sp1Intel® Visual Fortran Composer XE 2013 SP1 for Windows* Update 1Microsoft visual studio2013运行usdfld代码(1,简单),计算机(A)和(B)运行均不显示1073741819错误。
运行稍微复杂的usdfld代码(2),计算机(A)和(B)运行均显示1073741819错误。
测试3测试环境ABAQUS 6.14-3Windows7 sp1Intel® Visual Fortran Composer XE 2011 Update 5Microsoft visual studio2010运行usdfld代码(1)和(2),计算机(A)运行不显示1073741819错误。
ABAQUS批处理
在dos下输入以下命令
path=%path%;d:\ABAQUS\Commands
3)想多cpu运算(比如4cpus):
提交任务:abaqus job=jobname1 int
恢复运算:abaqus resume job=jobname1 int (从上次分析结束的地方重新开始分析)
杀死任务:abaqus terminate job=jobname1 int (一般不可恢复)
杀死任务不可恢复,但是如果有restart文件的话,可以restart继续计算:
restart重启计算: abaqus job=xnewx oldjob=xoldx int
abaqus job=jobname.inp. 去掉inp后缀即可。即使不去掉,软件也自动忽略这个后缀,这个只是告示说明,不影响计算。
3 批处理1)如果有大批的inp文件需要提交,如何节省时间让它们自动连续运算? 一定要看garethz斑竹的精华帖:[原创总结]Windows 系统下实现input文件批处理/viewthread.php?tid=775346&highlight=%C5%FA%B4%A6%C0%ED这里还介绍了算完自动关机的命令,我个人非常喜欢,向大家推荐。
2 几点说明:
1) Old job files exist. Overwrite?<y/n>问是否可以覆盖。如果是文件重名,应该键入n;把现有inp改名,重新提交,以免覆盖以前的文件。如果可以覆盖,键入y。
2)经常被问的问题:
abaqus不是内部命令,也不算可以运行的程序或者批处理文件。
总结Abaqus操作技巧总结(个人)
Abaqus操作技巧总结打开abaqus,然后点击file——set work directory,然后选择指定文件夹,开始建模,建模完成后及时保存,在进行运算以前对已经完成的工作保存,然后点击job,修改inp文件的名称进行运算。
切记切记!!!!!!1、如何显示梁截面(如何显示三维梁模型)显示梁截面:view->assembly display option->render beam profiles,自己调节系数。
2、建立几何模型草绘sketch的时候,发现画布尺寸太小了1)这个在create part的时候就有approximate size,你可以定义合适的(比你的定性尺寸大一倍);2)如果你已经在sketch了,可以在edit菜单--sketch option ——general--grid更改3、如何更改草图精度可以在edit菜单--sketch option ——dimensions--display——decimal更改如果想调整草图网格的疏密,可以在edit菜单--sketch option ——general——grid spacing中可以修改。
4、想输出几何模型part步,file,outport--part5、想导入几何模型?part步,file,import--part6、如何定义局部坐标系Tool-Create Datum-CSYS--建立坐标系方式--选择直角坐标系or柱坐标系or球坐标7、如何在局部坐标系定义载荷laod--Edit load--CSYS-Edit(在BC中同理)选用你定义的局部坐标系8、怎么知道模型单元数目(一共有多少个单元)在mesh步,mesh verify可以查到单元类型,数目以及单元质量一目了然,可以在下面的命令行中查看单元数。
Query---element 也可以查询的。
9、想隐藏一些part以便更清楚的看见其他part,edge等view-Assembly Display Options——instance,打勾10、想打印或者保存图片File——print——file——TIFF——OK11、如何更改CAE界面默认颜色view->Grahphic options->viewport Background->Solid->choose the wite colour!然后在file->save options.12、如何施加静水压力hydrostaticload --> Pressure, 把默认的uniform 改为hydrostatic。
ABAQUS软件的基本操作
ABAQUS
四. ABAQUS图形用户界面
基 本 操 作
应用菜单
工具栏
ABAQUS
快捷键
基
本
操
模型树和结 果树
信息提示及命令输入区
作
ABAQUS
注意点:
1. 模型树和结果树可以使你对所建立的模型有直观的认识,你所做的操作, 都可以在模型树和结果树上找到响应的“痕迹”,右击模型树或者结果树上 的特征可以对其进行编辑。
基 本 操 作
ABAQUS
实例讲解与练习:
为大家实例演示set 的创建,分组显示,色彩编码,而后大家独自完成 案例中练习!
基 本 操 作
ABAQUS
.odb 输出数据库文件,即结果文件,需要由Visuliazation打开
.log 日志文件:包含了 ABAQUS执行过程的起止时间等
.rpy 记录一次操作中几乎所有的ABAQUS/CAE命令
.msg 是ABAQUS/standard计算过程的详悉记录,分析计算中的平衡迭代次数, 计算时间,警告信息等等可由此文件获得。
ABAQUS
2.直接进入草绘模块。
基 本 操 作
模块直接选择草绘模块
基 本 操 作
ABAQUS
基 本 操 作
ABAQUS
基 本 操 作
ABAQUS
基 本 操 作
ABAQUS
基 本 操 作
ABAQUS
ABAQUS
实例讲解与练习:
在此我将为大家仔细演示与讲解ABAQUS草绘模块中各个命令的使 用方法,并重点讲解构造元素与3D投影的使用,而后大家独立完 成案例中草绘部分的练习。
ABAQUS
(1) 在ABAQUS/CAE图标上右击,
Abaqus帮助文档整理汇总
feature)组成,每一个部分至少有一个基
base feature),特征体可以是所创建的实体,如挤压体、
.首先建立“部件”
1)根据实际模型的尺寸决定部件的近似尺寸,进入绘图区。绘图
edit菜
sketcher options选项里调整。
(比如奇异)。 接触刚度的值决
当默认罚刚度设置用于罚函数
拉格朗日乘子默认不使用。如果用于罚函数
1000倍时,则默
-过
1000倍时,默认拉格朗日乘
:设置主面名2 v* c. b: S8 s) l
:设置允许违反接触条件的最大点数。这个条件由perrmx和
:使standard自动计算过盈容差和分离压力
以防止接触中的振荡。该参数不能与maxchp、perrmx和uerrmx
onset:设置其=immediate(默认)则在接触发生时在增量步
=delayed则延迟摩擦的应用。 G) P# q/ q7
:设置其=yes则强迫接触约束为拉格朗日乘子
=no则不使用拉格朗日乘子法。对于高刚度问题不推荐no,因为
3)分配截面特性给各特征体,把截面特性分配给部件的某一区域
.建立刚体
1)部件包括可变形体、不连续介质刚体和分析刚体三种类型,在
一旦建立后就不能更改其类型。采
在绘制轴对称部件的外形轮廓时不能超过其对
2)刚体是不能够施加质量、惯性轴等特性的,建立刚体后必须给
reference point)。在加载模块里对参考点施
solid element)只有平动自由度,没有转动自由度,所
ABAQUS将边界条件传递给其后的每一个分析步。对
ABAQUS帮助文档翻译
节选-ABAQUS帮助文档翻译 reference to: user manual 18.62008-10-10 12:5918.6 理解自适应网格(adaptive meshing)自适应网格可以通过移动独立的材料网格(allowing the mesh to move independently of the material),让你在整个分析过程中即使发生大变形,也能保持高质量的网格。
通常自适应网格只移动节点,网格的拓扑并不改变。
注意:通常自适应网格多用在Dynamic (动态分析),Explicit and Dynamic(显示动态分析), Temp-disp, Explicit 中。
定义模型中某个区域采用自适应网格的设置:other-->Adaptive Mesh Domain 自适应网格的选项控制设置:Other--〉Adaptive Mesh Controls 通常,在每一个step中只能有一个自适应网格区域。
21.2.1 ABAQUS/Standard defines contact between two bodies in terms of two surfaces that may interact; these surfaces are called a “contact pair.”ABAQUS/Standard defines “self-contact,” which is available only in two-dimensional analysis, in terms of a single surface. [if gte vml 1]><![endif][if !vml][endif]Figure 21.2.1–1 Contact and interaction discretization. 从the first surface (the “slave” surface)的节点向the second surface (the “master” surface)做垂线,寻找最近的垂线的垂足,The interaction is then discretized between the point on the master surface and the slave node. Strict master-slave contact 在这种关系下,主面的节点可以穿入从面(副面),但副面不可以穿入主面。
ABAQUS帮助-用户分析手册目录---在帮助文件中查找相关信息
ABAQUS Analysis User’s Manual目录第1章介绍1.1 介绍1.1.1 介绍:概要1.2 ABAQUS构造和约定1.2.1 Input构造规则1.2.2 约定1.3 定义一个ABAQUS模型1.3.1 在ABAQUS中定义一个模型1.4 参数模型1.4.1 参数输入第2章空间模型2.1 定义节点2.1.1 节点定义2.1.2 外形参数变量2.1.3 节点厚度2.1.4 节点的法线定义2.1.5 坐标系统的转换2.2 定义单元2.2.1 单元定义2.2.2 单元建立2.2.3 定义加筋2.2.4 定义钢筋作为一个单元属性2.2.5 方向2.3 定义表面2.3.1 表面:概述2.3.2 定义基于单元的表面2.3.3 定义基于节点的表面2.3.4 定义解析刚体表面2.3.5 对表面进行操作2.4 定义刚体2.4.1 刚体定义2.5 定义积分输出项2.5.1 积分输出项的定义2.6 定义不做结构材料的质量2.6.1 不做结构材料的质量定义2.7 定义分布2.7.1 分布的定义2.8 定义显示体2.8.1 显示体的定义2.9 定义一个装配2.9.1 定义一个装配2.10 定义矩阵2.10.1 定义矩阵第3章执行程序3.1 执行程序:概述3.1.1 执行ABAQUS程序:概述3.2 执行程序3.2.1 用于获得信息的执行程序3.2.2 用于ABAQUS/Standard和ABAQUS/Explicit的执行程序3.2.3 用于ABAQUS/CAE的执行程序3.2.4 用于ABAQUS/Viewer的执行程序3.2.5 用于Python的执行程序3.2.6 用于参数研究的执行程序3.2.7 用于ABAQUS HTML文件的执行程序3.2.8 用于许可证有效性的执行程序3.2.9 用于结果文件(.fil)的ASCII转化的执行程序3.2.10 用于连接结果文件(.fil)的执行程序3.2.11 用于查询关键词/问题数据库的执行程序3.2.12 用于获取例子input文件的执行程序3.2.13 用于用户自定义执行和子程序的执行程序3.2.14 用于input文件和输出数据库升级效用的执行程序3.2.15 用于生成输出数据报告的执行程序3.2.16 用于重启动分析连接输出数据库(.odb)的执行程序3.2.17 用于结合子结构输出的执行程序3.2.18 用于网络输出数据库文件连接器的执行程序3.2.20 用于将NASTRAN大批数据文件转化为ABAQUS中input文件的执行程序3.2.21 用于将PAM-CRASH输入文件转化为部分ABAQUS中input文件的执行程序3.2.22 用于将ABAQUS输出数据库文件转为NASTRAN Output2结果文件的执行程序3.2.23 用于和ZAERO交换ABAQUS数据的执行程序3.2.24 加密和解密ABAQUS输入数据的执行程序3.2.25 用于job执行控制的执行程序3.3 环境文件设置3.3.1 使用ABAQUS环境文件设置3.4 管理内存和硬盘资源3.4.1 在ABAQUS中管理内存和硬盘资源3.5 文件扩展定义3.5.1 通过ABAQUS使用文件扩展定义3.6 FORTRAN单位数3.6.1 通过ABAQUS使用的FORTRAN单位数第4章输出4.1 输出4.1.1 输出4.1.2 数据和结果文件的输出4.1.3 输出数据库的输出4.2 输出变量4.2.1 ABAQUS/Standard输出变量符4.2.2 ABAQUS/Explicit输出变量符4.3 后处理器4.3.1 后处理器第5章文件输出格式5.1 访问结果文件5.1.1 访问结果文件:概述5.1.2 结果文件输出格式5.1.3 访问结果文件信息5.1.4 用于访问结果文件的增效程序第6章分析程序6.1 介绍6.1.1 程序:概述6.1.2 一般的和线性扰动的程序6.1.3 多重荷载情况分析6.1.4 直接线性方程求解6.1.5 迭代线性方程求解6.2 静态应力/位移分析6.2.1 静态应力分析程序:概述6.2.2 静态应力分析6.2.3 特征值崩溃预测6.2.4 不稳定的崩塌和崩溃后分析6.2.5 准静态分析6.2.6 直接循环分析(已译)6.3 动态应力/位移分析6.3.1 动态分析程序:概述6.3.2 使用直接积分的隐式动态分析6.3.3 显示动态分析6.3.4 直接求解的稳定状态动态分析6.3.5 自然频率的提取6.3.6 复杂特征值的提取6.3.7 瞬时模态动态分析6.3.8 基于范数的稳定状态动态分析6.3.9 基于子空间的稳定状态动态分析6.3.10 响应谱分析6.3.11 随机响应分析6.4 稳定状态的运输分析6.4.1 稳定状态的运输分析6.5 热传播和温度-应力分析6.5.1 热传播分析程序:概述6.5.2 非耦合的热传播分析6.5.3 连续耦合的温度-应力分析6.5.4 全耦合的温度-应力分析6.5.5 绝热分析6.6 电分析6.6.1 电分析程序:概述6.6.2 耦合温度-电分析6.6.3 压电分析6.7 耦合多孔流体流动和应力分析6.7.1 耦合多孔流体扩散和应力分析(已译)6.7.2 地应力状态(已译)6.8 质量扩散分析6.8.1 质量扩散分析6.9 声学和振动分析6.9.1 声学、振动和耦合声(波)-结构分析6.10 ABAQUS/Aqua分析6.10.1 ABAQUS/Aqua分析6.11 退火6.11.1 退火程序第7章分析求解和控制7.1 求解非线性问题7.1.1 求解非线性问题7.1.2 接触迭代7.2 分析的收敛控制7.2.1 收敛和时间积分准则:概述7.2.2 普遍使用的控制参数7.2.3 非线性问题的收敛准则7.2.4 瞬态问题中的时间积分精度第8章分析技术:介绍8.1 介绍8.1.1 分析技术:概述第9章连续分析的技术9.1 重启动一个分析9.1.1 重启动一个分析9.2 输入和传递结果9.2.1 在ABAQUS分析中传递结果:概述9.2.2 在ABAQUS/Explicit和ABAQUS/Standard中传递结果9.2.3 将ABAQUS/Standard分析中的结果传递给另一个第10章模型提取10.1 子结构10.1.1 使用子结构10.1.2 定义子结构10.2 子模型10.2.1 子模型10.3 对称模型的生成,结果传递,循环对称模型的分析10.3.1 对称模型的生成10.3.2 将一个对称网格或一个部分三维网格的结果传递到完全三维网格10.3.3 分析存在循环对称的模型10.4 梁横截面网格划分10.4.1 梁横截面网格划分第11章特定目标的技术11.1 惯量解除11.1.1 惯量解除11.2 网格修改或置换11.2.1 单元和接触对的移除和重新激活(弹塑性理论)11.3 几何不完整11.3.1 在模型中引入一个几何不完整11.4 断裂力学11.4.1 断裂力学:概述(已译)11.4.2 围道积分评价11.4.3 裂缝扩展分析11.5 静水力学的流动模型11.5.1 模拟充满流体的空穴11.6 基于表面的流动模型11.6.1 基于表面的流体空穴:概述11.6.2 定义流体空穴11.6.3 定义流体的交换11.6.4 定义充气机11.7 质量数标度11.7.1 质量数标度11.8 稳定状态的探测11.8.1 稳定状态的探测11.9 平行执行11.9.1 ABAQUS中的平行执行11.9.2 ABAQUS/Standard中的平行执行11.9.3 ABAQUS/Explicit中的平行执行第12章自适应技术12.1 自适应技术:概述12.1.1 自适应技术12.2 ALE自适应网格划分12.2.1 ALE自适应网格划分:概述12.2.2 在ABAQUS/Explicit中定义ALE自适应网格划分区域12.2.3 ABAQUS/Explicit中的ALE自适应网格划分和重新绘图12.2.4 ABAQUS/Explicit中Eulerian自适应网格划分区域的模型技术12.2.5 ABAQUS/Explicit中ALE自适应网格划分的输出和诊断12.2.6 在ABAQUS/Standard中定义ALE自适应网格划分区域12.2.7 ABAQUS/Standard中的ALE自适应网格划分和重新绘图12.3 自适应重新网格划分12.3.1 自适应重新网格划分:概述12.3.2 误差指示器12.3.3 基于求解的网格划分尺寸12.4 网格划分置换后的连续分析12.4.1 网格-网格求解映射第13章扩展ABAQUS分析的功能13.1 联合仿真13.1.1 联合仿真:概述13.1.2 为联合仿真准备一个ABAQUS分析13.1.3 使用MpCCI联合仿真13.1.4 含有MADYMO的联合仿真13.2 用户子程序和增效程序13.2.1 用户子程序:概述13.2.2 可用的用户子程序13.2.3 可用的增效程序第14章设计敏感度分析14.1 设计敏感度分析14.1.1 设计敏感度分析第15章参数的研究15.1 脚本参数的研究15.1.1 脚本参数的研究15.2 参数的研究:命令15.2.1 为参数研究结合参数样本15.2.2 在参数研究中约束联合的参数值15.2.3 为参数研究定义参数15.2.4 执行参数研究设计分析15.2.5 聚集参数研究的结果15.2.6 为一个参数研究生成分析任务数据15.2.7 指定参数研究结果的来源15.2.8 创建一个参数研究15.2.9 报告参数研究的结果15.2.10 参数研究的样本参数第16章材料:介绍16.1 介绍16.1.1 材料库:概述(已译)16.1.2 材料数据的定义16.1.3 材料的结合行为16.2 一般属性16.2.1 密度第17章弹性力学性质(可以看看)17.1 概述17.1.1 弹性行为:概述(已译)17.2 线弹性17.2.1 线弹性行为17.2.2 无压缩或无拉伸17.2.3 平面应力各向正交异性失效测量17.3 多孔弹性17.3.1 多孔材料的弹性行为17.4 亚弹性17.4.1 亚弹性行为17.5 超弹性17.5.1 橡胶类材料的超弹性行为17.5.2 泡沫胶的超弹性行为17.6 Mullins效果17.6.1 橡胶类材料的Mullins效果17.6.2 泡沫胶的能量消散17.7 粘弹性17.7.1 时域粘弹性17.7.2 频域粘弹性17.8 滞后作用17.8.1 弹性体(人造橡胶)的滞后作用17.9 状态方程17.9.1 状态方程第18章非弹性力学性质18.1 概述18.1.1 非弹性行为(已译)18.2 金属塑性18.2.1 经典金属塑性(已译)18.2.2 承受循环荷载下的金属的模型(已译)18.2.3 率相关屈服18.2.4 率相关塑性:蠕变和膨胀18.2.5 退火和融化18.2.6 各向异性的屈服/蠕变18.2.7 Johnson-Cook塑性18.2.8 动态失效模型18.2.9 多孔金属塑性18.2.10 灰铸铁塑性18.2.11 两层粘塑性18.2.12 ORNL(Oak Ridge National Laboratory)本构模型18.2.13 变形塑性18.3 其他塑性模型18.3.1 扩展的Drucker-Prager模型18.3.2 修正的Drucker-Prager/CAP模型18.3.3 Mohr-Coulomb塑性18.3.4 临界状态(粘土)塑性模型18.3.5 可压碎的泡沫塑性模型18.4 有接缝的材料18.4.1 有接缝的材料模型18.5 混凝土18.5.1 混凝土涂抹开裂18.5.2 混凝土开裂模型18.5.3 混凝土塑性损伤(已译)第19章累积损伤和失效19.1 累积损伤和失效:概述19.1.1 累积损伤和失效(已译)19.2 延性金属的损伤和失效19.2.1 延性金属的损伤和失效:概述19.2.2 延性金属的损伤开始19.2.3 延性金属的损伤演化和单元移除19.3 加筋复合物的损伤和失效19.3.1 加筋复合物的损伤和失效:概述(已译)19.3.2 加筋复合物的损伤开始(已译)19.3.3 加筋复合物的损伤演化和单元移除(已译)第20章其他材料性质20.1 力学属性20.1.1 材料阻尼20.1.2 热膨胀20.2 热传播属性20.2.1 温度属性:概述20.2.2 传导性20.2.3 比热20.2.4 潜伏热20.3 声属性20.3.1 声媒介20.4 静水力学的流体属性20.4.1 静水力学的流体模型20.5 质量扩散属性20.5.1 扩散能力20.5.2 溶解性20.6 电属性20.6.1 电导率20.6.2 压电行为20.7 多孔流体流动属性20.7.1 多孔流体流动属性(已译)20.7.2 渗透性(已译)20.7.3 多孔体积模量(已译)20.7.4 吸附作用20.7.5 膨胀凝胶体20.7.6 湿度膨胀20.8 用户定义材料20.8.1 用户定义的材料力学行为20.8.2 用户定义的材料温度行为第21章单元:介绍21.1 介绍21.1.1 单元库:概述21.1.2 选择单元的维度21.1.3 对一个分析类型选择合适的单元21.1.4 截面控制21.1.5 根据单元-单元原理分配单元属性第22章连续单元22.1 多用途的连续单元22.1.1 固体(连续)单元22.1.2 一维固体(链接)单元库22.1.3 二维固体单元库22.1.4 三维固体单元库22.1.5 圆柱固体单元库22.1.6 轴对称固体单元库22.1.7 含有非线性、不均匀变形的轴对称固体单元22.2 无限单元22.2.1 无限单元22.2.2 无限单元库22.3 翘曲单元22.3.1 翘曲单元22.3.1 翘曲单元库第23章结构单元23.1 膜单元23.1.1 膜单元23.1.2 一般的膜单元库23.1.3 圆柱膜单元库23.1.4 轴对称膜单元库23.2 杆单元23.2.1 杆单元23.2.2 杆单元库23.3 梁单元23.3.1 梁模型:概述23.3.2 选择一个梁横截面23.3.3 选择一个量单元23.3.4 梁单元横截面的方向23.3.5 梁截面的行为23.3.6 在分析中使用一个梁截面积分来定义截面行为23.3.7 使用一个一般的梁截面来定义截面行为23.3.8 梁单元库23.3.9 梁横截面库23.4 框架单元23.4.1 框架单元23.4.2 框架截面属性23.4.3 框架单元库23.5 弯头单元23.5.1 有变形横截面的管和管弯头:弯头单元23.5.2 弯头单元库23.6 壳单元23.6.1 壳单元:概述23.6.2 选择一个壳单元23.6.3 定义传统壳单元的初始尺寸23.6.4 壳截面行为23.6.5 在分析中使用一个壳截面积分来定义截面行为23.6.6 使用一个一般壳截面来定义截面行为23.6.7 三维传统的壳单元库23.6.8 连续壳单元库23.6.9 轴对称壳单元库23.6.10 含有非线性、非轴对称变形的轴对称壳单元第24章惯性单元、刚体单元和电容单元24.1 点质量单元24.1.1 点质量24.1.2 质量单元库24.2 旋转惯量单元24.2.1 旋转惯性24.2.2 旋转惯性单元库24.3 刚体单元24.3.1 刚体单元24.3.2 刚体单元库24.4 电容单元24.4.1 点电容24.4.2 电容单元库第25章连接器单元25.1 连接器单元25.1.1 连接器:概述25.1.2 连接器单元25.1.3 连接器驱动25.1.4 连接器单元库25.1.5 连接类型库25.2 连接器单元行为25.2.1 连接器的行为25.2.2 连接器的弹性行为25.2.3 连接器的阻尼行为25.2.4 用于耦合行为的连接器功能25.2.5 连接器的摩擦行为25.2.6 连接器的塑性行为25.2.7 连接器的损伤行为25.2.8 连接器的停止和锁定25.2.9 连接器的失效模型第26章特定目标的单元26.1 弹簧单元26.1.1 弹簧26.1.2 弹簧单元库26.2 阻尼器单元26.2.1 阻尼器26.2.2 阻尼器单元库26.3 柔性接头单元26.3.1 柔性接头单元26.3.2 柔性接头单元库26.4 分布耦合单元26.4.1 分布耦合单元26.4.2 分布耦合单元库26.5 粘结单元26.5.1 粘结单元:概述26.5.2 选择一个粘结单元26.5.3 含有粘结单元的模型26.5.4 定义粘结单元的初始尺寸26.5.5 使用连续方法定义粘性单元的本构响应26.5.6 使用牵引-分离描述定义粘性单元的本构响应26.5.7 在粘结单元的缺口内定义流体的本构响应26.5.8 两维的粘结单元库26.5.9 三维的粘结单元库26.5.10 轴对称粘结单元库26.6 垫圈单元26.6.1 垫圈单元:概述26.6.2 选择一个垫圈单元26.6.3 在一个模型中包含垫圈单元26.6.4 定义垫圈单元的初始尺寸26.6.5 使用一个材料模型定义垫圈行为26.6.6 直接使用一个垫圈行为模型定义垫圈行为26.6.7 两维垫圈单元库26.6.8 三维垫圈单元库26.6.9 轴对称垫圈单元库26.7 表面单元26.7.1 表面单元26.7.2 一般的表面单元库26.7.3 圆柱表面单元库26.7.4 轴对称表面单元库26.8 静水力学的流体单元26.8.1 静水力学的流体单元26.8.2 静水力学的流体单元库26.8.3 流体链接单元26.8.4 静水力学的流体连接库26.9 管座单元26.9.1 管座单元26.9.2 管座单元库26.10 线弹簧单元26.10.1 模拟壳中部分贯通裂缝的线弹簧单元26.10.2 线弹簧单元库26.11 弹-塑性接头26.11.1 弹-塑性接头26.11.2 弹-塑性接头单元库26.12 拉链单元26.12.1 拉链26.12.2 拉链单元库26.13 桩-土单元26.13.1 桩-土相互作用单元26.13.2 桩-土相互作用单元库26.14 声学的界面单元26.14.1 声学界面单元26.14.2 声学界面单元库26.15 用户自定义的单元26.15.1 用户自定义的单元26.15.2 用户自定义的单元库第27章施加条件27.1 概述27.1.1 施加条件:概述27.1.2 幅值曲线27.2 初始条件27.2.1 初始条件27.3 边界条件27.3.1 边界条件27.4 荷载27.4.1 施加荷载:概述27.4.2 集中荷载27.4.3 分布荷载27.4.4 温度荷载27.4.5 声荷载27.4.6 多孔流体流动27.5 指定装配荷载27.5.1 指定装配荷载27.6 预先确定场27.6.1 预先确定场第28章约束28.1 概述28.1.1 运动约束:概述28.2 多点约束28.2.1 线性约束方程28.2.2 一般多点约束28.2.3 运动的耦合约束28.3 基于表面的约束28.3.1 网格打结约束28.3.2 耦合约束28.3.3 壳-固体耦合28.3.4 不依赖网格的扣件28.4 植入单元28.4.1 植入单元28.5 单元释放终点28.5.1 单元释放终点28.6 过约束检查28.6.1 过约束检查第29章定义接触的相互作用29.1 概述29.1.1 接触相互作用分析:概述29.2 在ABAQUS/Standard中定义接触29.2.1 在ABAQUS/Standard中定义接触对29.2.2 ABAQUS/Standard接触对的接触公式29.2.3 ABAQUS/Standard接触对的强制约束方法29.2.4 在ABAQUS/Standard中模拟接触的干涉配合29.2.5 在ABAQUS/Standard接触对中调整初始面的位置和指定初始清空29.2.6 移除/重新激活ABAQUS/Standard接触对29.2.7 在ABAQUS/Standard中定义打结接触29.2.8 延伸主面和滑移线29.2.9 如果子结构存在的接触模拟29.2.10 如果不均匀-对称单元存在的接触模拟29.2.11 在ABAQUS/Standard中模拟接触时普遍存在的困难29.2.12 在ABAQUS/Standard中调整接触控制29.3 在ABAQUS/Explicit中定义一般接触29.3.1 定义一般接触的相互作用29.3.2 一般接触的表面属性29.3.3 一般接触的接触属性29.3.4 一般接触的接触公式29.3.5 一般接触的初始过闭合的分解和指定初始清空29.3.6 一般接触的接触控制29.4 在ABAQUS/Explicit中定义接触对29.4.1 在ABAQUS/Explicit中定义接触对29.4.2 ABAQUS/Explicit接触对的表面属性29.4.3 ABAQUS/Explicit接触对的接触属性29.4.4 ABAQUS/Explicit接触对的接触公式29.4.5 在ABAQUS/Explicit接触对中调整初始面的位置和指定初始清空29.4.6 在ABAQUS/Explicit中使用接触对算法模拟接触时普遍存在的困难第30章接触属性模型30.1 接触力学属性30.1.1 接触力学属性:概述30.1.2 接触的压力-过闭合关系30.1.3 接触阻尼30.1.4 接触阻塞30.1.5 摩擦行为30.1.6 用户自定义的界面本构行为30.1.7 贯入式压力荷载30.1.8 松解面的相互作用30.1.9 易碎的结合30.2 温度接触属性30.2.1 温度接触属性30.3 电接触属性30.3.1 电接触属性30.4 多孔流体接触属性30.4.1 多孔流体接触属性第31章ABAQUS/Standard中的接触单元31.1 模拟接触的单元31.1.1 模拟接触的单元31.2 缺口接触单元31.2.1 缺口接触单元31.2.2 缺口单元库31.3 管-管接触单元31.3.1 管-管接触单元31.3.2 管-管接触单元库31.4 滑动线接触单元31.4.1 滑动线接触单元31.4.2 轴对称滑动线接触单元库31.5 刚体表面接触单元31.5.1 刚体表面接触单元31.5.2 轴对称刚体表面接触单元库第32章在ABAQUS/Standard中定义空腔辐射32.1 定义空腔辐射32.1.1 空腔辐射。
ABAQUS帮助里关键字(keywords)翻译
节点约束其空间位置。设置 REGION TYPE=EULERIAN 施加集中载荷到一个节点,它能移 动而不依赖于材料。 对特定自由度定义集中载荷的数据行 第一行 1、节点号或节点集名称 2、自由度 3、参考幅值曲线 基本形式: *CLOAD 节点编号或节点集,自由度编号,载荷值 *CONDUCTIVITY:指定热传导系数 *Contact:定义通用接触,只用于 explicit 中 该选项表明通用接触定义的开始。每个 step 只能用一次,通用接触定义的变化可以通过下 面的一些选项指定。 可选参数: OP:设置 OP=MOD(默认),更改已有的通用接触定义。设置 OP=NEW 删除以前定义的接触 并定义新的。 该选项没有数据行。 *Contact Clearance:定义接触间隙属性,用于 explicit 该选项用来创建接触间隙属性定义。接触间隙属性将通过*Contact clearance assignment 选项 付给相应的接触对。 必需参数: Name:定义属性名 可选参数: Adjust:设置 adjust=yes(默认),是通过调整节点坐标而无需创建约束来解决间隙问题。 adjust=yes 只能用在第一个 step 定义间隙。 设置 adjust=no 则存储接触偏移以使不需调整节 点坐标间隙就能被满足。 Clearance: 设置该参数等于从节点整个集的初始间隙值或等于节点分布的名字。 对于实体单 元表面上的从节点间隙值必须是非负的,默认是 0.0。 Search above:设置该参数等于表面上的距离,该距离将作为搜索从节点的距离。对于实体 单元,默认距离是与某从节点关联的单元尺寸的 1/10。对结构单元(比如壳单元),默认是与 从节点相关的厚度。 Search below:设置该参数等于表面下的距离,该距离将作为搜索从节点的距离。对于实体 单元,默认距离是与从节点关联的单元尺寸的 1/10。对结构单元,默认是与从节点相关的厚 度。 该选项没有数据行。 *Contact clearance assignment:在通用接触区域的表面间付给接触间隙属性,用于 explicit 该选项用来在接触面间定义初始接触间隙, 并控制通用接触算法算法初始接触过盈如何得到 解决。 该选项没有参数。 定义非默认接触间隙值的数据行:
ABAQUS常用技巧归纳图文并茂
ABAQUS常用技巧归纳图文并茂ABAQUS常用技巧归纳一、背景介绍ABAQUS是一款广泛应用于工程领域的有限元分析软件,具备强大的功能和丰富的工具包,被工程师广泛使用。
然而,在使用ABAQUS的过程中,我们经常会遇到一些技巧和问题,本文将针对一些常见的ABAQUS技巧进行归纳总结,帮助读者更好地应用ABAQUS进行工程分析。
二、常用技巧1. 单元类型选择在使用ABAQUS进行有限元分析时,选择合适的单元类型是非常重要的。
根据具体的分析对象和问题类型,可以选择不同的单元类型,如线性单元、非线性单元或复合单元。
合理的单元选择可以提高计算效率和分析精度。
2. 网格划分优化合理的网格划分对计算结果的准确性和计算效率至关重要。
在ABAQUS中,提供了多个网格划分工具和算法,可以帮助用户进行网格优化。
例如,使用网格生成工具可以自动生成符合几何形状和尺寸要求的网格,使用网格划分工具可以调整网格的密度和精度。
3. 材料模型选择在ABAQUS中,提供了多种材料模型,用于描述材料的力学行为。
根据具体的分析对象和材料性质,可以选择合适的材料模型,如线性弹性模型、塑性模型或粘弹性模型。
合理的材料模型选择可以更好地模拟材料的本构行为。
4. 边界条件设置在有限元分析中,正确设置边界条件是保证结果准确性的关键。
在ABAQUS中,可以通过节点约束、荷载施加和接触定义等方式来设置边界条件。
应根据具体的分析问题和工况设置合理的边界条件,以确保计算结果的可靠性。
5. 后处理及结果分析ABAQUS提供了强大的后处理和结果分析功能,可以帮助用户深入理解计算结果。
通过后处理工具,可以对计算结果进行可视化分析、曲线绘制和云图展示等,帮助用户对结果进行全面的评估和解读。
6. 自定义脚本开发除了使用ABAQUS内置的工具和功能,用户还可以通过编写脚本来定制化分析过程。
ABAQUS支持Python脚本的开发和调用,用户可以利用脚本进行批处理、参数化分析和复杂算法实现等。
Abaqus 批处理技巧
Abaqus 批处理技巧如何实现input文件处理,一直是广大ABAQUS使用者关心的问题。
在ABAQUS软件中好像并没有提供一个界面来实现这个功能,(好像在帮助里有一个实现的方法,但看了半天没看明白),因而不得不自己想办法来实现。
在其他的一些有限元商业软件中,据笔者所知Dynaform就单独有一个程序来实现多个job的计算,非常方便用户计算多个文件。
自力更生,丰衣足食!现在我们来看看自己如何实现ABAQUS计算文件批处理吧。
1. DOS批处理文件实现方法由于可以在命令行窗口启动计算,于是采用dos批处理文件实现是网上盛传的一种方法,这里主要有两个版本。
版本1:call abaqus job=jobname1call abaqus job=jobname2call abaqus job=jobname3call abaqus job=jobname4试运行后发现,这些job是同时进行计算的,并不是一个接一个进行计算,这显然有违我们的初衷。
那问题出在哪里呢?问题就在于abaqus job=jobname1完成后,计算工作也许并没有完成,但这条命令已经完成,批处理文件直接转到下一个job的运行。
这样运行的结果可能是(大部分情况都是如此),你要运行的job在同时计算。
有没有其他办法了呢?网上别一个版本告诉我们答案。
版本2:call abaqus job=jobname1 intcall abaqus job=jobname2 intcall abaqus job=jobname3 intcall abaqus job=jobname4 int这里的int其实就是计算执行中的命令参数interactive。
在加上int后,只有在当前计算完成后,才会转入下一个模型的计算。
2. 计算机自动关闭在学习使用python实现批处理之前,我们先简要介绍一下,dos中如何实现计算机的自动关闭。
在dos命令行关闭计算机的命令是:shutdown –s –f –t 60-s关闭本地计算机。
ABAQUS有限元软件基本操作说明
Abaqus仿真分析操作说明1.单位一致性(未列出参照国际单位)长度:米(m)力:牛(N)质量:千克(kg)时间:秒(s)强度(压力):帕(Pa)能量:焦耳(J)密度:千克/立方米(kg/m3)加速度:米/平方秒(m/s2)2.模型(part)的建立首先用三维绘图软件(CAD、PROE、SOLIDEDGE、SOLIDWORKS等)将模型画好。
3.模型(part)导入ABAQUS软件①将模型另存为sat或stp(step),示意图如下;文件名最好存为英文字母。
②模型另存为sat或stp(step)格式后,到“选项”进行设置,设置完成后将模型另存好(存放位置自设,能找到就好),示意图如下;③打开已经安装好的ABAQUS 软件,选中左上角“文件→导入→部件”,示意图如下;4. 模型(part)的参数设置和定义导出模型单位由mm 改为m 。
选中后隐藏的部件不能导入ABAQUS 软件。
版本设为ABAQUS 软件版本。
双击所有参数均为默认,确定就好。
到上面这一步骤,模型导入已经完成,接下来就是一些参数的设置和分析对象的定义。
具体的分析步骤按照下图所示一步一步完成即可。
(1)“属性”步完成材料的定义。
具体参数设置见下图:(1)(2)(3)(4)(5)(7)(6)1.双击“创建材料”2.自定义名称4.在“通用”下双击“密度”进行参数设置5.输入材料密度,单位kg/m3。
6.在“力学”下双击“弹性”进行参数设置。
7.输入材料杨氏模量(Pa)和泊松比(无单位),单击“确定”完成参数设置。
8.双击“创建截面”,“类别”和“类型”默认。
9.单击“继续”。
10.参数默认,单击“确定”。
11.双击“指定截面”。
(2)“装配”步完成分析对象的选定。
具体操作见下图:12.单击模型指定截面。
13.单击“完成”,完成截面指定。
14.模型变绿,指定截面成功;同时“属性”步参数定义结束。
1.切换到下一步(装配)。
3.选中要分析的部件,单击“确定”,完成“装配”步。
Abaqus选项内容讲解
总规则1、关键字必须以*号开头,且关键字前无空格2、**为注释行,它可以出现在文件中的任何地方3、当关键字后带有参数时,关键词后必须采用逗号隔开4、参数间都采用逗号隔开5、关键词可以采用简写的方式,只要程序能识别就可以了6、不需使用隔行符,如果参数比较多,一行放不下,可以另起一行,只要在上一行的末尾加逗号便可以*AMPLITUDE:定义幅值曲线amplitude这个选项允许任意的载荷、位移和其它指定变量的数值在一个分析步中随时间的变化(或者在ABAQUS/Standard分析中随着频率的变化)。
必需的参数:NAME:设置幅值曲线的名字可选参数:DEFINITION:设置definition=Tabular(默认)给出表格形式的幅值-时间(或幅值-频率)定义。
设置DEFINITION=EQUALL Y SPACED/PERIODIC/MODULATED/DECAY/SMOOTH STEP/SOLUTION DEPENDENT或BUBBLE来定义其他形式的幅值曲线。
INPUT:设置该参数等于替换输入文件名字。
TIME:设置TIME=STEP TIME(默认)则表示分析步时间或频率。
TIME=TOTAL TIME表示总时间。
V ALUE:设置V ALUE=RELATIVE(默认),定义相对幅值。
V ALUE=ABSOLUTE表示绝对幅值,此时,数据行中载荷选项内的值将被省略,而且当温度是指定给已定义了温度TEMPERA TURE=GRADIENTS(默认)梁上或壳单元上的节点,不能使用ABSOLUTE。
对于DEFINITION=TABULAR的可选参数:SMOOTH:设置该参数等于DEFINITION=TABULAR的数据行第一行1、时间或频率2、第一点的幅值(绝对或相对)3、时间或频率4、第二点的幅值(绝对或相对) 等等基本形式:*Amplitude,name=Amp-10.,0.,0.2,1.5,0.4,2.,1.,1.*BEAM SECTION:当需要数值积分时定义梁截面beamsection*BOND:定义绑定和绑定属性*BOUNDARY:定义边界条件用来在节点定义边界条件或在子模型分析中指定被驱动的节点。
ABAQUS软件的基本操作
基 本 操 作
ABAQUS
4.1 定制工具栏与快捷键 基 本 操 作
基 本 操 作
ABAQUS
ABAQUS中常用键位:
平移:CTRL+ALT+中键
ABAQUS
放大缩小:CTRL+ALT+中键或滚动鼠标中键
旋转: CTRL+ALT+左键
ABAQUS
(1) 在ABAQUS/CAE图标上右击,
基
选择“属性”,修改起始位置的
本
路径为工作文件夹路径。
操
(2)在界面中选择 File 》set
作
work directory
ABAQUS
3.3 关于数据的保存
ABAQUS在每一个命令执行过程中可以对此命令后退,但是一旦命令 执行之后就不可以再后退恢复到以前状态了,所以我们要养成勤于备 份的好习惯,以便在误操作时可以比较快速的恢复数据(不备份也有 办法恢复数据,但是勤于备份是最方便的一种方法也是一种好习惯!)
基 本 操 作
ABAQUS
实例讲解与练习:
为大家实例演示,分区的创建和对分区赋予不同材料,而后大家独自完 成案例中练习!
基 本 操 作
ABAQUS
表面和纵梁:
基 本 操 作
基 本 操 作
ABAQUS
基 本 操 作
ABAQUS
4.2.4 Assembly(装配)模块简介
ABAQUS
(1)装配件,部件实体,部件的概念区分:
基 本
定
操
注意:
作
1.若截面与几何类型不对应,则造成定义的截面显示不出来!
2.各种类型的截面属性在这里不细讲,大家在这里主要学会定义的流 程,针对各种类型,以后我们有专题介绍!
abaqus安装方法详解
***防火墙英文存放位置及安装路径,系统组件……第一部分Abaqus的安装问题(不含子程序)1)用虚拟光驱加载DVD2,安装Document,直接运行根目录下的setup.exe即可,安装过程比较简单。
(完成1后不要急着安装啊!因为你需要做一些事情来使得你的电脑可以破解abaqus。
做什么呢!需要做两项,分别是:1.1.设置一个环境变量,变量名为:LM_LICENSE_FILE;变量值为:27011@127.0.0.1。
这个时候有人会问,这是咋回事啊!因该是27011@自己的电脑名称。
我要告诉你这个127.0.0.1就是指你的电脑。
所以不用再写你的电脑名字了,要是万一你的电脑名字是汉语的,那么还不好使呢!这个步骤的目的在于在你的电脑里面建立了一个解码系统,可以明目张胆地使用abaqus。
1.2.修改abaqus安装盘中SHooTERS文件夹中的abaqus69.dat,打开它,将“this_host”修改为127.0.0.1。
保存。
)根据个人安装经验,上述方法有时可能会失效,自己调整如下。
因为我下载的版本的license文件第一行为:SERVER THIS_host ID=20111111 27011 而不是SERVER THIS_host ID=20111111 27003第4步:变量名LM_LICENSE_FILE,值为27011@hostname (hostname为你的计算机名字)第8步:27003@hostname 更改为27011@hostname (hostname为你的计算机名字)2)设置环境变量:鼠标右键点击桌面“我的电脑”图标,通过路径“属性->高级->环境变量”,然后在系统变量栏新建一个环境变量,变量名LM_LICENSE_FILE,值为27011@hostname。
(以前版本的为27003等现为27011,hostname为你的计算机名)3)用虚拟光驱加载DVD1,先安装License,运行X:\win86_32\license\Windows\Disk1\InstData\VM\install.exe。
Abaqus常用DOS命令总结
Abaqus常用DOS命令总结
(2015-07-03 11:27:46)
转载▼
标签:
杂谈
1)abaqus help:可以显示所有ABAQUS命令的语法规则
2)abaqus cae:启动ABAQUS/CAE
3)abaqus job=job_name:提交分析作业
注:提交的*.inp必须要在ABAQUS默认的工作目录下
4)abaqus python script_file:运行脚本文件。
script_file是脚本文件名称
注:如果没有给出脚本文件名称,则进入脚本语言界面
5)abaqus findkeyword:在帮助文档中找到包含所需关键词的INP文件。
如包含重启动
*RESTART的INP文件
6)abaqus fetch job=job name:提取帮助文档中所提供的INP文件、用户子程序和JNL文件等。
提取后的文件保存在ABAQUS默认工作目录下
注:可以利用5)查找所需INP文件,然后利用6)将其提取出来
7)abaqus doc:打开ABAQUS的帮助文档
8)abaqus viewer:进入ABAQUS/CAE的Vissualization模块
9)abaqus append:将两个结果文件*.fil合并到一起。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主要功能
更新(2007-5-15):
1支持多cpu批处理文件的生成。
2可以加入自己需要的命令行参数。
3可以对软件生成的文件进行更个性的编辑处理。
4加入查看计算目录内容的功能。
5可以检查是否存在最新版本。
6增加进入Simwe论坛的链接。
使用方法
使用说明:
1首先将需要进行批处理的文件放到指定的文件夹。
2按图示序号的步骤进行操作。
3图中1,5,7是必需的步骤,其他根据需要选择。
4如果在目录内已经存在结果文件,软件会提示您删除结果文件,请在确认目录内容后清除结果文件。
因为如果存在结果文件,在批处理文件执行过程中,ABAQUS会提示您是否要覆盖结果文件,这样就不能自动全部执行input文件了。
5在步骤6对批处理文件进行自己需要的更改后,不能再单击“生成批处理文件”按钮,否则更改全部丢失。
6如何加入参数,以及参数在批处理文件中的位置。
只要试一下加入参数后,查看生成的文件就知道了。
设置
最新版本见:
/forum/viewthread.php?tid=775346&highlight=%2Bzengguo823。