详解电网无功补偿与电压调节
电力系统无功功率的平衡和电压的调整
(1)调节发电机励磁电流以改变发电机机端电压UG;
(2)适当选择变压器的变比K;
(3)改变网络参数R和X(主要是X),改变电压损耗 △U (4)改变功率分布P+jQ(主要是Q),使电压损耗△U 变化
22
第三节
电力系统的几种主要调压措施
一.改变发电机端电压调压
• 根据运行情况调节励磁电流来改变机端电压。
20
二、电压调整的基本原理
Ub
略去电力线路的电容功率,变压器的励磁功率和 网络的功率损耗
PR QX U b (U G k1 U ) / k2 U k k G 1 2 U G k1
21
电压调整的措施:
PR QX U b U k k2 G 1 U G k1
A
ห้องสมุดไป่ตู้DF
发电机的P-Q极限
10
2. 同期调相机
•同步调相机相当于只能发出无功功率的发电机。
•在过励磁运行时,它向系统供给感性无功功率而起无功
电源的作用,能提高系统电压; •在欠励磁运行时(欠励磁最大容量只有过励磁容量的
(50% ~65%)),它从系统吸取感性无功功率而起无功
负荷作用,可降低系统电压。 •它能根据装设地点电压的数值平滑改变输出(或吸取) 的无功功率,进行电压调节。因而调节性能较好。
以滞后功率因素运行的用电设备所吸收的无功功率。 • 照明、电热,消耗感性无功QL小。
• 同步电动机,有励磁绕组,通过励磁电流的调节, 可以调节其输出无功的大小。过激运行,发QL ; 欠激运行,吸收QL 。在综合负荷中比例小。 • 异步电动机,消耗QL ,在综合负荷中比例很大。 • 综合负荷功率因素,0.6~0.9,滞后(感性无功)
无功补偿对电力系统电压的影响与调节
无功补偿对电力系统电压的影响与调节无功补偿在电力系统中扮演着重要的角色。
它对电力系统的电压稳定性和功率因数的调节起着关键作用。
本文将探讨无功补偿对电力系统电压的影响以及相应的调节方法。
一、无功补偿对电力系统电压的影响无功补偿是用于对抗电力系统中无功负荷而引起的电压波动现象的一种方法。
随着无功负荷的增加,电网中的无功功率需求也会增加。
由于无功功率的存在,电力系统的电压会出现波动和不稳定的现象。
1.1 电压降低与电流上升无功功率引起的电压降低现象会导致电力系统中的电流上升。
当无功功率过多时,电网电压会下降,从而影响到系统中各个设备的正常运行。
如果不及时采取措施进行补偿,电力系统可能会发生电压崩溃等严重故障。
1.2 电压波动与电气设备损坏无功功率的不稳定会导致电网电压的波动。
电压的快速升降会对电气设备产生冲击,从而损坏设备,缩短其使用寿命。
特别是对于对电压要求较高的设备,如半导体器件等,电压波动可能会造成不可逆转的损坏。
1.3 电压不平衡与谐波扩散无功功率引起的电压不平衡会导致电力系统中各相电流的不平衡。
这种不平衡会产生谐波电流,扩散到电网中的其他设备,增加了电力系统的谐波污染问题。
谐波电流会引起额外的能量损耗,导致电网效率降低。
二、无功补偿的调节方法为了消除或减轻无功功率对电网电压的影响,需要采取相应的无功补偿措施。
以下是几种常见的无功补偿调节方法:2.1 静态无功补偿装置静态无功补偿装置是一种通过改变电容和电抗的连接方式来实现无功功率的补偿调节。
其中,串联电容可以用来补偿无功功率,提高电网电压;并联电抗则用于吸收无功功率,降低电网电压。
2.2 动态无功补偿装置动态无功补偿装置是通过控制电容和电抗的导纳值来实现无功功率的补偿调节。
该装置可以实时监测电力系统的电压和电流,通过对电容和电抗进行调节,及时平衡电力系统的无功功率,以保持电压的稳定。
2.3 SVC(静止无功补偿器)SVC是一种在高压电力系统中广泛应用的无功补偿装置。
电力系统无功功率和电压调整-PPT课件
V VV
imax max
min
电力系统分析
35
例
简单电力网电压损耗
电力系统分析
36
电力系统分析
37
只满足i节点负荷时,中枢点电压VO应维持的电压为
0~ 8h
VO Vi VOi
(0.95~1.0)5VN0.0V 4N (0.99~1.0)9VN
8 ~ 24h
VO Vi VOi
电力系统分析
25
5.静止无功发生器(SVG)
SVG的优点:响应速度快,运行范围宽,谐波电 流含量少,尤其重要的是,电压较低时仍可向系 统注入较大的无功。
电力系统分析
26
5.2.3 无功功率平衡
电力系统无功功率平衡的基本要求:系统中的无功 电源可以发出的无功功率应该大于或至少等于负荷 所需的无功功率和网络中的无功损耗。
(1)大型发电厂的高压母线; (2)枢纽变电所的二次母线; (3)有大量地方性负荷的发电厂母线。
电力系统分析
32
5.3 电力系统中枢点的电压管理
例:
中枢点
中枢点
图5-16 电力系统的电压中枢点
电力系统分析
33
5.3.2 中枢点电压允许变化范围
中枢点i的电压满足Vimin≤Vi ≤ Vimax 图5-17 负荷电压与中枢点电压
电力系统分析
4
5.1 电压调整的一般概念
(5)系统电压降低,发电机定子电流将因其功率角的增大
而增大。增大到额定值后,使发电机过热,不得不降低出力。
(6)系统电压过低会使电网的电压损耗和功率损耗增加,
影响系统的经济运行;过低的电压甚至严重影响电力系统的
稳定性。
系统无功功率不足,电压 水平低下时,某些枢纽变 电所母线电压在微小扰动 下会迅速大幅度下降,产 生电压崩溃,从而导致电 厂之间失步,系统瓦解, 大面积停电的灾难性事故。
无功补偿在电力系统的电压调节中的应用
无功补偿在电力系统的电压调节中的应用电力系统中的电压调节是确保稳定供电的重要环节之一,而无功补偿则是电力系统中常用的一种电压调节手段。
本文将介绍无功补偿在电力系统的电压调节中的应用,并探讨其原理和效果。
一、无功补偿的定义和原理无功补偿是一种通过在电力系统中引入适当的无功电流来调节电压的方法。
在电力系统中,负载的无功功率消耗会导致系统电压下降,而无功补偿可以通过增加无功功率来抵消负载的无功功率消耗,从而提高电压水平。
无功补偿可以通过静态无功补偿装置(SVC)或静态同步补偿装置(STATCOM)来实现。
这些装置可以根据电网电压的变化迅速调节出相应的无功功率,由此来改善电力系统的电压品质。
二、无功补偿的应用1. 提高电力系统的电压稳定性由于电力系统中的负载变化不定,无功功率的需求也会随之变化。
当负载发生频繁变化时,无功补偿可以通过及时调节无功功率,使系统的电压维持在稳定水平,避免因电压下降而引起的供电不稳定或设备损坏。
2. 减少输电损耗在长距离输电中,由于电缆电抗和电容的存在,无功功率的损耗会导致电压下降,从而增加了输电的损失。
通过在输电线路中增加无功补偿,可以提高电压水平,减少电缆电抗和电容对电压的影响,从而降低输电损耗。
3. 提高电力质量无功补偿装置可以通过调节无功功率,改善电力系统的功率因数,减少谐波和电压波动,提高电力质量,防止谐波对设备的损害,并降低用户的用电成本。
4. 改善电力系统的可靠性在电力系统中,无功补偿可以通过调节电压水平,提高电力系统的可靠性。
例如,在短路故障发生时,无功补偿装置可以快速响应,通过调节电压水平来提高系统的稳定性,防止短路故障扩大,从而保障电力系统的正常运行。
三、无功补偿的效果评价无功补偿的效果主要通过以下几个指标来评价:1. 电压稳定性:通过无功补偿装置调节电压,使得电力系统的电压维持在合理的范围内,避免因电压下降而引起的电力系统故障。
2. 功率因数改善:无功补偿装置可以改善电力系统的功率因数,减少无功功率的消耗,提高能源利用效率。
浅析变电站无功补偿设备投退及电压控制调整
浅析变电站无功补偿设备投退及电压控制调整电力系统衡量电能质量的重要指标之一就是电压。
电压的质量保障,是通过对系统的无功平衡来完成的。
电压和无功功率通过互相调整和平衡,得到安全稳定的负荷。
在调节的同时,实现对损耗的降低,也使电费得到了节约。
同时,也降低了设备运行的维护周期,维护费用也随之节约下来。
电网系统中,无功电源会产生负荷,电网系统也会产生一定的网络损耗,无功电源的无功出力,只有满足这些需求,才能让电压稳定在额定值。
通过无功补偿设备的投退和对电压的合理调节,可以保障得到的电能质量,让得到的电压合乎生产要求。
标签:变电站;无功补偿;投退;电压控制调整引言电网中的重要设备,例如变压器、电动机等,都需要电力负荷,而且在运行中正常运行的前提就是要有一定的无功功率。
在电网中运用无功补偿设备,可以为电网提供无功功率,而且还要对电压进行调整,让其稳定在额定值,才能让电网的利用效率有所提高。
一、无功补偿概述一般,我们将无功功率补偿简称为无功补偿。
我们在电网中设置了各种无功功率补偿装置,是因为电网中带有感性负荷的设备必须由电源提供一定的感性负荷,从而导致电网线路产生一定的无功功率,使得电气设备的利用率降低。
通过无功补偿装置提供的无功功率,可以弥补线路的无功功率,可以让电气设备的利用率大幅度升高,从而增加系统的抗干扰能力,对电压进行合理调整。
目前,传统的无功补偿方式在我国的电力系统中得到广泛使用,这些无功补偿方式,并不具有实时性,运行人员需要对系统中的电压的无功功率进行监视,还要随时对电压进行调整,有时候对电压的无功功率调整过度了,还会导致比较大的电压波动。
这种无功补偿方式不能保障电压的稳定,也不能保障电压的连续性,而且无功设备的运行,并不代表电网的真实情况。
对电网进行无功补偿的初衷是让供电功率进一步提高,而且要将线路的损耗降到最低,从而使供电环境得到改善。
现代电网中多采用VQC,即电压无功综合自动控制器,实现对电压无功的自动调节。
第四章 电力系统无功平衡与电压调整
另外,发电机还有一些特殊运行方式。 发电机作调相机运行,是指发电机不发有功功率,专 门发无功功率的状态。该方式,水电机组在枯水期时可以 采用。 发电机进相运行,是指发电机欠励磁运行,即从电 网中吸收无功功率。进相运行时,要受到系统稳定性、发 电机定子端部发热等因素的限制,故发电机如要进相运行, 必须符合以下条件:具备进相运行能力的发电机在进行了 进相运行试验后方可进相运行。
二、城网无功补偿 在城市电网建设中,无功补偿应遵循以下原则: ①无功补偿应根据就地平衡和便于调整电压的原则进行配置, 可采用分散和集中补偿相结合的方式,接近用电端的分散 补偿可取得较好的经济效益,集中安装在变电所内有利于 控制电压水平。 ②无功补偿设施应便于投切,装设在变电所和大用户处的电 容器应能自动投切。
据此可作发电机运行极限图:
P ③ C φ δ O' φ O
B ① ② D A Q
④
①定子绕组温升约束; 定子绕组温升取决于发电机定子电流,即取决于发电机 视在功率,当以发电机额定视在功率为限时,图中表现为 不能超出以O为圆心OB为半径的圆弧①。 ②励磁绕组温升约束; 励磁绕组温升取决于发电机励磁电流,而励磁电流正比 与发电机空载电势Eq,当以发电机额定空载电势为限时, 图中表现为不能超出以O’为圆心O’B为半径的圆弧②。 ③原动机功率约束; 发电机能够发出的有功功率受制于原动机的功率,如以 额定有功功率为限,图中表示为直线BC(直线③)之下。 ④发电机进相运行约束; 约束条件需通过计算和试验得到,图中以曲线④示意。
无功补偿设施的安装地点及其容量,可按下列原则考虑: ①220kV变电所应有较多的无功调节能力,使高峰负荷时功 率因数达到0.95以上,电容器容量应经计算,一般取主变 容量的1/6~1/4; ②当变电所带有的容量的无功设施时,如长距离架空线或电 缆,应考虑装设并联电抗器以补偿由线路电容产生的无功 功率;
电力系统无功功率平衡和电压调整
无功补偿装置的应用场景和效果
高峰负荷时段
提高电压稳定性,减少电压波动和闪变现象。
电网故障时
快速响应无功功率变化,维持系统电压稳定。
风电、光伏等新能源接入
平滑新能源发电的功率输出波动,提高并网性能。
工业园区和大型建筑物
降低能耗,提高供电质量。
电力系统无功功率平衡和电 压调整
目 录
• 电力系统无功功率平衡 • 电压调整的原理和方法 • 电力系统无功补偿装置 • 电力系统无功管理和优化 • 电力系统电压稳定性和控制 • 电力系统无功功率平衡和电压调整的未来发展
01
电力系统无功功率平衡
无功功率的产生和影响
无功功率的产生
在电力系统中,电动机、变压器等感 性负载需要消耗无功功率来建立磁场 ,以实现能量的转换和传输。
Байду номын сангаас谢您的观看
THANKS
06
电力系统无功功率平衡和 电压调整的未来发展
新能源并网对无功功率平衡和电压调整的影响
01
新能源并网将增加电力系统的复杂性和不确定性,对无功功率 平衡和电压调整带来挑战。
02
新能源并网将促进无功功率平衡和电压调整技术的发展,推动
电力系统向更加智能化、高效化的方向发展。
新能源并网将促进电力系统的优化配置,提高电力系统的可靠
电压波动可能导致电力设备过载或欠载,影响 其正常运行和寿命。
对用户设备的影响
电压波动可能导致用户设备工作异常,影响生 产和生活。
对系统稳定性的影响
电压波动可能导致电力系统不稳定,甚至引发系统崩溃。
电压调整的原理
根据电力系统的无功功率平衡原理, 电压水平取决于无功功率的分布和平 衡情况。
电力系统分析:第06章 电力系统无功功率平衡与电压调整
jB T
励磁支路损耗的百分值基本上等于空载电流I0的百分值,约为1% ~ 2%不随负荷大小的改变而变化,称之为不变损耗;绕组漏抗中损耗
与所带负荷的大小有关,称为可变损耗。在变压器满载时,基本上等于
短路电压Uk的百分值,约为10%。 但对多电压级网络。变压器中的无 功功率损耗就相当可观。变压器的无功损耗是感性的
(三)无功储备
无功平衡的前提是系统的电压水平正常。和有功一样,系统中也应该保 持一定的无功储备。一般取最大负荷的7~8%。
12
例6-1
T-1 110kV
T-2
S% =
G
2 ×100kM
40LD+ j30MVA
某输电系统各元件参数如下:
发电机: 变压器T-1
P每N =台50SMN=W31,.5McVoAs,△= P0.=80358.5kWU,N =
= 42.27 + j37.618(MVA)
若发电机在满足有功需求时按额定功率因数运行,其输出功率
SG = 42.27 + j42.27×tg =42.27+j26.196 (MVA )
此时无功缺额达到
37.618 26.196=11.422(Mvar)
根据以上对无功功率缺额的初步估算,拟在变压器T-2的低压 侧设置10Mvar补偿容量,补偿前负荷功率因数为0.8,补偿后 可提高到0.895.计及补偿后线路和变压器绕组损耗还会减少, 发电机将能在额定功率因数附近运行
(c)饱和电抗器型SR
电容和电感组成滤波电路,滤去高次谐波,以免产生电流和电压的畸变 运行维护简单,损耗较小,对冲击负荷有较强的适应性,可装于枢纽变 电所进行电压控制,也可装于大的冲击负荷侧,如轧钢厂做无功补偿
浅谈电网的无功补偿与电压调整
浅谈电网的无功补偿与电压调整电网的无功补偿与电压调整在电力系统中起着非常重要的作用。
无功功率是指在交流电路中,既不做功也不产生热量的电能。
它是一种必须存在于交流电路中的功率,它的存在使得交流电路的电压和电流存在相位差。
而无功功率补偿则是通过无功功率补偿装置对电网中的无功功率进行调整,以维持电网的稳定运行。
对于电能系统来说,为了使系统能够正常稳定运行,需要保持电网中的功率平衡,即有功功率和无功功率的平衡。
而无功功率的产生和补偿在电网中具有重要的地位。
无功功率主要是由感性负载和容性负载所引起的,感性负载使得电网中存在导致电压下降的无功功率,而容性负载则使得电网中存在导致电压升高的无功功率。
对于电网来说需要通过无功功率补偿来对电网中的无功功率进行控制,以保持电网的电压稳定和功率平衡。
无功功率在电力系统中的作用非常重要,它直接关系到电力系统的供电质量和稳定性。
在电力系统中,无功功率补偿主要有两种方式,即静态无功功率补偿和动态无功功率补偿。
静态无功功率补偿是通过静止补偿设备(如无功功率补偿电容器、电感器等)来对电网中的无功功率进行补偿,从而改善电网的功率因数和电压质量。
而动态无功功率补偿则是通过动态稳态补偿设备(如静止无功功率补偿装置、电力电子器件等)来对电网中的无功功率进行动态调节,从而对电网中的无功功率进行精确调节,以保持电网的稳定运行。
对于电力系统来说,电压的稳定性是电力系统正常运行的关键指标之一。
当电网中出现大的无功功率波动或负载变化时,往往会导致电网中的电压下降或者电压上升,从而引起电网中的电压质量下降,甚至导致电力系统的不稳定运行。
由于大部分电力负载是动态变化的,在电力系统中不可避免地会出现无功功率的变化,因此需要通过无功功率补偿来对电网中的无功功率进行调节,以保持电网中的电压稳定。
电网的无功补偿与电压调整在电力系统中具有非常重要的作用。
通过对电网中的无功功率进行补偿,可以有效地提高电网的电压稳定性和功率平衡,保障电力系统的正常运行。
浅谈电网的无功补偿与电压调整
浅谈电网的无功补偿与电压调整电网是指由输电线路、变电设备和配电设备等组成的供电系统,其主要功能是将发电厂产生的电能传输到用户所在地。
电网的稳定运行对于保障电力系统的安全、可靠、经济运行具有重要意义。
而无功补偿和电压调整则是电网中一个重要的问题,它们对于电网的稳定运行起着至关重要的作用。
一、电网无功补偿的作用在电网中,无功功率是指交流电路中发生的能量的来回转移,并不执行有用功。
它是一种虚拟功率,对电网的稳定性和效率产生重要影响。
为了保证电网的稳定运行,需要对无功功率进行补偿,以提高电网的功率因数。
无功功率的产生主要有两种情况:一是由于电感负载产生的感性无功功率,二是由于电容补偿设备的损耗产生的容性无功功率。
感性负载导致电压的下降和线路的过热,降低了电网的输电效率;而容性负载会使电网电压升高,在负载端压降过大,影响电网的电压稳定性。
通过增加或减少无功功率的产生,可以有效地提高电网的稳定性和效率,减小输电损耗。
为了进行无功功率的补偿,通常采用无功功率补偿装置,如静态无功补偿装置(如无功电容器、无功电感器)、静止无功发生器(STATCOM)等。
这些装置能够快速调整电网的无功功率,提高电网的功率因数,减小电网运行中的不稳定因素。
从而保证电网的正常运行,提高电网的运行效率和经济性。
二、电网电压调整的重要性在电网运行中,电压的稳定性是保障电网正常运行的重要指标之一。
电网的电压稳定性受多种因素影响,如负荷变化、发电量变化、故障短路等。
为了保持电网的电压稳定,需要对电网进行电压调整。
电压调整主要是通过调节电压的大小和波形来保持电网的电压稳定。
电网中,通常采用自动电压调整装置和无功功率控制装置来进行电压调整。
自动电压调整装置通过控制变压器的绕组变化,使其变比按需调整,来调节电压的大小;而无功功率控制装置则通过控制无功功率的产生,来调节电网的电压。
这些装置可以根据电网的负载变化和故障情况,快速地进行电压调节,以保证电网的电压稳定性。
电网无功补偿和电压调节详解
无功对于电网系统设计来说,肯定是非常非常重要的了,这块其实内容很多,就做一个简单的梳理总结,有一些工程实践中的认识,希望可以互相印证。
无功对应电压,有功对应频率,应该是一个比较普遍大概的认识,当然没错。
所以无功补偿和电压调节是密不可分的,也是调度考核的重要指标。
一、无功补偿概述和原则无功功率比较抽象,它是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。
它不对外作功,而是转变为其他形式的能量。
凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率。
比如40瓦的日光灯,除需40多瓦有功功率(镇流器也需消耗一部分有功功率)来发光外,还需80乏左右的无功功率供镇流器的线圈建立交变磁场用。
由于它不对外做功,才被称之为“无功”。
电力系统的无功补偿与无功平衡是保证电压质量的基本条件,首先是一些重要原则当然很多是国网的原则,虽说要摆脱国网思路束缚,但是有些好东西还是要保留。
分层分区补偿原则:有鉴于经较大阻抗传输无功功率所产生的很大无功功率损耗和相应的有功功率损耗,电网无功功率的补偿安排宜实行分层分区和就地平衡的原则。
所谓的分层安排,是指作为主要有功功率大容量传输即220--500 kV电网,宜力求保持各电压层间的无功功率平衡,尽可能使这些层间的无功功率串动极小,以减少通过电网变压器传输无功功率时的大量消耗;而所谓分区安排、是指110k V及以下的供电网,宜于实现无功功率的分区和就地平衡。
电压合格标准:500kV母线:正常运行方式时,最高运行电压不得超过系统额定电压的+10%;最低运行电压不应影响电力系统同步稳定、电压稳定、厂用电的正常使用及下一级电压调节。
发电厂和500kV变电所的220kV母线:正常运行方式时,电压允许偏差为系统额定电压0~+10%;事故运行方式时为系统额定电压的的-5%~+10%。
发电厂和220kV变电所的110kV~35kV母线:正常运行方式时,电压允许偏差为相应系统额定电压-3%~+7%;事故后为系统额定电压的的±10%。
电力系统中的无功补偿和电压稳定性分析
电力系统中的无功补偿和电压稳定性分析无功补偿和电压稳定性分析在电力系统中起着至关重要的作用。
电力系统中的无功补偿是指通过调节无功功率来控制电网的电压,以确保系统的稳定运行。
而电压稳定性分析则是评估电力系统在面临各种干扰和负荷变化时,系统电压是否能够保持在合理的范围内。
本文将重点讨论电力系统中的无功补偿和电压稳定性分析的原理和应用。
一、无功补偿的原理和作用1.1 无功功率与无功补偿在电力系统中,无功功率是由电容器和电感器组成的无功负载所消耗的功率。
典型的无功负载包括电动机、电焊机、变压器和放电灯等。
正常运行的电力系统需要同时提供有功功率和无功功率,而无功功率没有明显的功率损耗效果,但会对电力系统的稳定性产生负面影响。
1.2 无功补偿的作用无功补偿的主要作用是控制电网的电压,以保持系统的稳定运行。
当电力系统中存在较大的无功功率时,电压将不稳定,可能导致设备运行故障、线路过载等问题。
通过无功补偿,可以减少系统中的无功功率,从而提高系统的功率因数和电压质量,确保电力系统的稳定运行。
二、无功补偿的应用2.1 无功补偿装置为了实现对电力系统中无功功率的控制和补偿,需要使用无功补偿装置。
常见的无功补偿装置包括电容器和STATCOM(静止同步补偿器)等。
电容器主要用于提供感性无功补偿,而STATCOM则通过控制发电机调节器的开闭状态,提供容性和感性无功补偿。
2.2 无功补偿方法无功补偿方法主要有静态无功补偿和动态无功补偿两种方式。
静态无功补偿主要利用电容器和电感器的组合来达到无功功率调整的目的,可以快速响应电力系统对无功功率的需求。
而动态无功补偿则是通过控制发电机的励磁电流或调整发电机调节器的开闭状态,并结合系统自动化控制来实现无功功率的调整。
三、电压稳定性分析的原理和方法3.1 电压稳定性的概念电压稳定性是指系统在承受各种外界干扰和负荷变化时,电压能够保持在合理的范围内,不发生明显的波动和剧烈变化。
电压稳定性是电力系统稳定运行的重要指标,对于保证设备正常运行、减少故障发生具有重要意义。
无功功率补偿与电压调整
电压管理和调压方法
三种电压调节方式:
(1)逆调整——高峰负荷时升高中枢点母线电压, 低谷时降低中枢点母线电压。适用于供电线路较长, 负荷变动较大的中枢点; (2)顺调整——高峰负荷时允许中枢点母线电压略低, 低谷时允许中枢点母线电压略高。适用于供电线路 不长,负荷变动不大的中枢点; (3)恒调整——中枢点母线电压基本不变,适用于 线路长度、负荷变动情况介于上述两者之间的情况。
无功功率的平衡与补偿
3)SR型补偿器是用直流电流控制的饱和电
抗器(D.C. Control Saturable Reaction) 与固定电容器的并联组合。
SR
C Lf
C
CSC
无功功率的平衡与补偿
高压输电线路的充电功率
高压及超高压线路是一种数量可观的无功 功率电源,其充电功率与线路电压的平方成 正比。
无功功率的平衡与补偿
1)TCR-FC型补偿器
TCR
C
C Lf
1 2 1 B sin 2 L
无功功率的平衡与补偿
2)TSC型补偿器是用可控硅投切的电容器组
(Thyristor Switched Capacitor)。
TSC
过激运行时向电网发出滞后的无功功率,欠
激时从电网吸收滞后的无功功率,成为无功 功率用户 ,有正常激磁、过激与欠激三种不 Eq U I CK xd 同运行状态 1 I CK Eq U xd EqU U 2 QCK UI CK xd xd
无功功率的平衡与补偿
静电电容器
无功功率负荷-电压机制
U AU B P sin X 2 U U U A B Q cos B X X
电网的无功补偿与电压调整
电网的无功补偿与电压调整摘要:目前,随着我国电力企业的快速发展,我国电网的管理也需要进一步的加强,电压是确保电力系统的安全经济运行,电压的合格率是考核电力企业的一个重要标准,无功补偿也是提高电压合格率的一种方式。
为了保证电网的稳定运行,本文就对电网的无功补偿与电压调整措施进行探讨。
关键词:电网;无功补偿;电压;调整近些年来,我国电力行业的规模随着经济的发展不断扩大,当然,科技水平的发展也是电力需求量增加的一大助力,随着电力的广泛应用,电力系统的安全性至关重要,直接影响到人类正常的生产生活,而电力系统的电压是电能质量评价体系的重要指标,由于用电量的不断增加,电力结构和电力负荷都发生了变化,所以,现在对电网电压管理和无功补偿措施进行了深刻的分析及探究。
1 电网无功电压管理过程中的问题1.1 电网无功电压技术问题这种技术问题的出现,主要的原因是无功补偿的容量过小导致的。
通过查看国家制定的《电网系统技术原则》中的一些要求和规定,通常情况下,以220kV为分界点,小于分界点的电压需以0.3倍大小对设备进行无功补偿。
从现在的情况进行分析,发现我国电压整体趋势偏高,只有很少的电容器能被应用,这种情况,不但影响对电压的管理能力,也会对其他高档设备的运行产生阻碍作用。
除此之外,还有一个显而易见的问题存在,就是电容器配置不到位的情况。
究其原因,大多是因为超负荷所引起的,直接影响了我国的电力系统的正常运行。
1.2 对于设备管理责任意识不明对于电网无功电压设备保護[B1]的过程中,往往偏重于对自身的保护,却很少重视数据系统的完善和安全,对于设备装置进行调度的过程中,会常常因为保护不周全,设计方案缺乏合理性能,无法建立整套的电网保护方案。
不仅如此,保护电网和进行调度的员工,往往因为疏忽或者是其他原因,对设备的管理达不到使用标准,一旦出现问题,找不到相关人员进行解决,责任制度模糊;最主要的原因是,调度工作者自身的综合素质和专业技术有待提升,大多数只是按照以往的工作经验进行事故处理,很少进行科学的核查;当然,还有许多问题需要进一步完善和解决,这些原因严重制约了我国电网建设的规范性和真实性,不利于电力事业的持续健康发展。
无功补偿对电网电压稳定性的影响与调节
无功补偿对电网电压稳定性的影响与调节无功补偿在电力系统中起着重要的作用,它对电网的电压稳定性具有显著的影响。
本文将探讨无功补偿对电网电压稳定性的影响,并介绍无功补偿的调节方法。
一、无功补偿对电网电压稳定性的影响无功补偿是通过在电力系统中注入或吸收无功功率来调节电网的电压水平。
无功功率是指电网中既不产生有用功率,也不吸收有用功率的功率。
它是电网中运行的电感元件(如感性负载)或电容元件(如电容器)导致的。
1.1 电压稳定性的重要性电压稳定性是电力系统正常运行的关键指标。
电力设备和用户设备对电压的稳定性有一定的要求。
在电压超过或低于一定范围时,电力设备可能受到损坏或无法正常工作,使用户设备无法正常运行。
1.2 无功补偿的影响无功补偿对电网电压稳定性的影响主要表现在两个方面:电压调节和电压损耗。
电压调节:无功补偿可以通过调节电网的无功功率来调整电网的电压水平。
当电网负载发生变化时,无功补偿装置可以快速补偿或吸收无功功率,使电网的电压保持稳定。
电压损耗:电力系统中的传输损耗主要包括有功损耗和无功损耗。
无功补偿可以通过补偿或吸收无功功率来减少无功损耗,从而降低电网的总损耗。
二、无功补偿的调节方法无功补偿的调节方法主要包括静态无功补偿和动态无功补偿。
静态无功补偿主要通过调节并联在电网中的电容器或电感器的容量来实现;动态无功补偿则通过调节电力电子器件(如静止无功补偿器STATCOM)来完成。
2.1 静态无功补偿静态无功补偿采用固定参数的电容器或电感器,并联在电网上。
其容量可以通过开关控制,以实现无功功率的补偿或吸收。
静态无功补偿可以快速响应电网的无功功率需求,提高电网的电压稳定性。
常见的静态无功补偿设备包括静态无功补偿器(SVC)和静态无功发生器(SVG)等。
2.2 动态无功补偿动态无功补偿利用电力电子器件实现对电网的无功补偿。
它可以实时控制无功功率的注入或吸收,更加灵活地调节电网的电压水平。
常用的动态无功补偿设备有静止无功补偿器(STATCOM)和静止同步补偿器(STATCOM)等。
电力系统无功功率以及电压调整
随着科技的进步,电力系统无功功率与电压调整技术也在不断发展。未来技术发展的趋势包括:采用先进的传感 技术和智能算法实现无功功率和电压的快速、准确检测与控制;发展基于电力电子技术的动态无功补偿装置和有 源滤波器;利用大数据和云计算技术实现电网无功功率与电压的优化调度等。
THANKS FOR WATCHING
通过投切无功补偿设备, 如并联电容器、静止无功 补偿器等,来调整系统无 功功率,进而稳定电压。
有载调压
通过调整变压器分接头档 位来改变电压,以满足系 统电压要求。
串联电容器补偿
通过在输电线路中串联电 容器来补偿线路的感抗, 提高线路的电压水平。
电压调整的优化目标与原则
经济性
电压调整应尽量降低系统运行 成本,提高经济效益。
实施效果
无功补偿装置的应用显著减少了该工业园区在生产高峰期的无功功率 消耗,稳定了电压,降低了电能损耗,提高了生产效率。
05 结论与展望
电力系统无功功率与电压调整的重要性和挑战
重要性
电力系统无功功率与电压调整是保障电力系统的稳定运行和电能质量的关键环节。通过合理的无功功 率补偿和电压调整,可以有效降低线路损耗、提高设备利用率、增强系统稳定性,满足用户对电能质 量的需求。
挑战
随着电力系统的规模不断扩大和运行方式的复杂化,无功功率与电压调整面临诸多挑战。例如,无功 功率的合理分布和补偿、电压波动与闪变的抑制、动态无功补偿装置的性能优化等,需要不断研究和 改进。
未来研究方向与技术发展
研究方向
未来电力系统无功功率与电压调整的研究方向将主要集中在以下几个方面:一是无功功率补偿与电压调节的协调 优化;二是智能电网下的无功功率与电压控制策略;三是新能源并网对电力系统无功功率与电压的影响及其应对 措施。
浅析配网无功补偿和电压自动调节技术
在高压配 电线路上分散安装并联电容器 ,主要补偿配电线路 的无功 功率 ,以提 高配 电网功率因数 ,达到降损升压的 目的。适用 于功率因数 较低 ,公变较 多,负荷较重 的长配电线路 , 具有投资小 ,回收快 ,补偿 率较高等优点 ,但容易出现保护不易配置 ,控制成本高 , 难 以维护和管 理 ,受安装环境和空间等客观条件限制 , 适应能力差等问题 ,这种补偿 方式 目 前较少采用。
【 关键 词】配电网 无功补偿 电压调节 中图分类号 :V2 4 2 _ 3文献标识码:B 文章编号 :1 0 0 9 — 4 0 6 7 ( 2 0 1 3 ) 1 1 . 8 2 . O 1
无功补偿 在供 电系统中起 到提高功率因数 的作用 ,能够降低供 电设 备和送 电线路的损耗 ,提高电压质量 。从我国经济发展现状来看 ,电力 供需矛盾逐步加深 ,接人配电系统 的客户对电能质量的要求也在不断提 高,越来越体现出无功补偿 合理优化 、配置的重要性。无功补偿是配电 网建设与改造的重要 内容 , 无 功补偿点的合理选择 、补偿 方式 的合理确
定 ,能够有效地维持配电网的电压水平 , 提高电压稳定性 , 是降低网损 、 提高 电压的一种投资少 、回报高的方案 ,直接决定和影响了供 电企业的 经济效益 , 规划 、 实施无功补偿势在必行 。
一
、
配电网中无功补偿分类
( 3 ) 力 Ⅱ 强对低频振荡的阻尼以及抑制次同步振荡 ; ( 4 ) 改善系统的动态和静态品质 ; ( 5 ) 改善 电压调整 , 维持或控制节点 电压 ,提高电压稳定性 ,增强供 电可靠性 ; ( 6 ) 改善功率因数 ,降低 网损 ; ( 7 ) 筠 ; 合治理 电压波动! 闪变和不平衡以及谐波等 , 提高 电能质量 ; ( 8 ) 改善直流输电系统的性能。 由此可见 , 有效 的电压控制与合理 的无功补偿 , 不仅能保证电压质 量 ,而且能提高电力系统运行的稳定性 、 安全 陛和经济效益。
电力系统的无功功率和电压调整
UL
U L k2
(UGk1
PR QX UN
)
/
k2
要改变负荷点电压: ➢改变 UG-借改变发电机机端电压调压 ➢改变k1, k2 -借改变变压器变比调压 ➢改变Q-借无功补偿设备调压 ➢改变X-借串联电容调压 ➢组合调压
29
第三节 电力系统的电压调整
调压手段之一:借改变发电机端电压调压
实施:调节发电机的励磁 方式:机端无负荷时,调节范围95%~105%;
电力系统的电压调整 保证中枢点电压偏移不越 限
22
第三节 电力系统的电压调整
中枢点电压曲线的编制
目的:确定中枢点的电压允许变动范围 编制方法:根据各负荷点的负荷曲线和电压要求,
计及中枢点到负荷点的电压损耗,从而确定对中 枢点电压的要求。
举例说明
中枢点 i
U ij U ik
负荷点
j
k 负荷点
静止调相机(Statcom)
11
第一节 电力系统中无功功率的平衡
静止补偿器
可吸可发感性无功; 只能发感性无功;
连续调节
不能连续调节
可吸可发无功; 连续调节
12
第一节 电力系统中无功功率的平衡
静止调相机
A
.
R<<X
I k:1
a
. . UA
I
jX L
逆变器
理想变 k:1
.
C
Ua
.
I
.
kUa
.
U A
电压调整的必要性 电压波动和电压管理 电压调整的手段
18
第三节 电力系统的电压调整
3.1电压调整的必要性
电压调整的含义:在正常运行状态下,随着负 荷变动及运行方式的变化,使各节点电压在允 许的偏移范围内而采取的各种技术措施
关于电力调度对电网无功及电压的调整方式分析
关于电力调度对电网无功及电压的调整方式分析摘要:电网无功补偿在电力系统中起到很重要的宏观调节作用,可以提高电网的功率因数,增加变电设备的效率,减少高压输电线路无用功,从而提高供电效率。
如果某个供电区域能合理地配备无功补偿装置并采取合理的补偿方案,就能最大限度地减少线损,提高供电可靠性;反之,如果设备选择不当,则会造成区域性电压波动,产生较大的谐波,导致事故的发生。
关键词:电力调度;电网;无功;电压一、无功调整基本原则1)电网无功功率在保证电压质量、降低电能损耗的前提下,实行分层、分区就地平衡的原则。
应尽可能使无功功率就地供应,避免通过长距离线路输送无功功率。
局部电网无功功率不足时,应先就地调整,无法调整时,再由电网调整。
2)发电机运行功率因数应按电网要求进行调整。
3)新投运发电机组应具备在有功功率额定时,功率因数进相0.95运行的能力。
对已投运的发电机组,有计划地进行进相运行的试验。
4)由市调直接调度的具有进相运行能力的发电机组,其运行方式的改变按值班调度员的命令执行。
5)无功补偿设备应按照电网无功功率优化计算结果优化配置,提高无功补偿设备的最优运行能力。
6)220 k V及以下电网的无功电源总容量应大于最大自然无功负荷,一般按1.15倍计算。
7)200 k V及以下电网在主变压器最大负荷时,其二次侧功率因数或由电网发出的无功功率与有功功率比值的正常范围。
8)直供变电站,当供电线路距离较近时,功率因数应该取自表中低值,其他情况应取高值。
9)无功补偿设备应视需要投入运行,以主变压器高压侧不向电网倒送无功功率为原则,只有当母线电压超出正常范围,且已无法调整时才能停运。
10)各级调度应根据电网的负荷、潮流变化及设备的技术状况及时调整运行方式,缩短供电半径,减少迂回供电,降低线损,实现电网经济运行。
二、电压调整基本原则电网电压调整实行逆调压:用电高峰时将区域各个母线电压调到电压越限范围的最大值,以保证供电线路末端的供电可靠性;用电低谷时将区域母线电压调到电压越限范围的最小值,以确保供电线路前端线路的供电可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
详解电网无功补偿与电压调节无功对于电网系统设计来说,肯定是非常非常重要的了,这块其实内容很多,就做一个简单的梳理总结,有一些工程实践中的认识,希望可以互相印证。
无功对应电压,有功对应频率,应该是一个比较普遍大概的认识,当然没错。
所以无功补偿和电压调节是密不可分的,也是调度考核的重要指标。
一、无功补偿概述和原则无功功率比较抽象,它是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。
它不对外作功,而是转变为其他形式的能量。
凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率。
比如40瓦的日光灯,除需40多瓦有功功率(镇流器也需消耗一部分有功功率)来发光外,还需80乏左右的无功功率供镇流器的线圈建立交变磁场用。
由于它不对外做功,才被称之为“无功”。
电力系统的无功补偿与无功平衡是保证电压质量的基本条件,首先是一些重要原则当然很多是国网的原则,虽说要摆脱国网思路束缚,但是有些好东西还是要保留。
分层分区补偿原则:有鉴于经较大阻抗传输无功功率所产生的很大无功功率损耗和相应的有功功率损耗,电网无功功率的补偿安排宜实行分层分区和就地平衡的原则。
所谓的分层安排,是指作为主要有功功率大容量传输即220--500 kV电网,宜力求保持各电压层间的无功功率平衡,尽可能使这些层间的无功功率串动极小,以减少通过电网变压器传输无功功率时的大量消耗;而所谓分区安排、是指110k V 及以下的供电网,宜于实现无功功率的分区和就地平衡。
电压合格标准:500kV母线:正常运行方式时,最高运行电压不得超过系统额定电压的+10%;最低运行电压不应影响电力系统同步稳定、电压稳定、厂用电的正常使用及下一级电压调节。
发电厂和500kV变电所的220kV母线:正常运行方式时,电压允许偏差为系统额定电压0~+10%;事故运行方式时为系统额定电压的的-5%~+10%。
发电厂和220kV变电所的110kV~35kV母线:正常运行方式时,电压允许偏差为相应系统额定电压-3%~+7%;事故后为系统额定电压的的±10%。
带地区供电负荷的变电站和发电厂(直属)的10(6)kV母线:正常运行方式下的电压允许偏差为系统额定电压的0~+7%。
无功补偿配置原则:各电压等级变电站无功补偿装置的分组容量选择,应根据计算确定,最大单组无功补偿装置投切引起所在母线电压变化不宜超过电压额定值的2.5%,并满足主变最大负荷时,功率因数不低于0.95。
以上只是大概的比例估计,具体工程的变电站的无功配置是需要通过计算的,计算分不同运行方式(针对容性和感性),无功计算一般是有无功交换的整个区域一起计算,主要与区域负荷、电厂和外部无功输入、区域内变电站进出线充电功率有关。
无功不足应采取的措施:要求各类用户将负荷的功率因数提高到现行规程规定的数值。
挖掘系统的无功潜力。
例如将系统中暂时闲置的发电机改作调相机运行;动员用户的同步电动机过励磁运行等。
根据无功平衡的需要,增添必要的无功补偿容量,并按无功功率就地平衡的原则进行补偿容量的分配。
小容量的、分散的无功补偿可采用静电容电器;大容量的、配置在系统中枢点的无功补偿则宜采用同步调相机或静止补偿器。
电压中枢点:指那些能够反映和控制整个系统电压水平的节点(母线)。
中枢点的无功电压控制至关重要,一般根据实际情况选择以下作为中枢点:(1)大型发电厂的高压母线;(2)枢纽变电所的二次母线; (3)有大量地方性负荷的发电厂母线。
二、无功补偿来源和电压调节设备1)同步发电机:同步发电机是电力系统中最重要的无功补偿设备。
往往依照不同系统条件和不同的安装位置,根据需要选择不同的发电机额定功率因数。
位于负荷中心附近的发电机组,宜于有较大的送出无功功率的能力,可以供应正常负荷的部分无功功率需求外,还可以在正常时保留一部分作为事故紧急储备,非常重要。
至于送端电厂的发电机组,特别是远方电厂,由于无功功率不宜远送的规律,它发出的无功功率主要用以补偿配出线路在重负荷期间的部分无功功率损耗,实现超高压网无功功率的分层平衡。
功率因数一般都较高。
例如,巴西伊泰普水电.站中,有9台765MW的机组接在交流侧,经900k m ,765kV交流线路到受端,机组的额定功率因数选为0. 95,另9台7机通过直流线路到受端,其额定功率因数选为0. 85 ,因为前者只需要补偿线路,后者还需要补偿换流站的无功(换流站的无功需求相当大)。
反过来说,接到超高压电网特别是位于远方的发电机组需要具有适当的进相运行能力(吸收无功),使能在系统低负荷期间,吸收配出的超高压线路的部分多余无功功率,以保持电厂送电电压不超标。
这点在工程实践中往往是一个后备方案,即机组的进相运行来调整电压。
我国一般现在机组都会做进相运行试验。
2)输电线路:输电线路既能产生无功功率(由于分布电容)又消耗无功功率(由于串联阻抗)。
当沿线路传送某一固定有功功率,线路上的这两种无功功率适能相互平衡时,这个有功功率,叫做线路的“自然功率”。
这点应该是较为基本的认识,所以有功潮流大的线路,无功消耗也大,自然产生较少无功;空载线路也最容易贡献无功,从而抬升电压。
尤其是500kV层面小负荷方式下容易无功剩余。
3)变压器:变压器是消耗无功功率的设备。
除空载无功损耗外,当传输功率时,又通过串联阻抗产生无功损耗。
依前所述理由,通过变压器传送大量的无功功率在运行中应当是力求避免的,当变压器短路阻抗大时更当如此。
通过变压器传送功率产生的电压降,可以适当选择变压器的电压抽头予以补偿。
电压器主要分为三类:供电变压器、电厂升压变、电网联络变。
供电变压器:不但向负荷提供有功功率,也往往同时提供无功功率,而且一般短路阻抗也较大。
对于直接向负荷中心供电的变压器,宜于配置带负荷调压分接头,在实现无功功率分区就地平衡的前提下,随着地区负荷的增减变化,配合地区无功补偿设备并联电容器及低压电抗器的投切,以随时保证对用户的供电电压质量,这点国网电力系统导则中有规定。
对这类变压器是否要采用随电压而自动调压分接头,国际上并无统一做法。
因为变压器自动调压的作用不总是积极的,如果在系统无功功率缺倾很大的时候,也一定要保持负荷的电压水平而调整电压分接头,势必将无功功率缺额全部转嫁到主电网,从而可能引起重大系统事故。
如19 78年12月19日法国大停电事故,1983年12月27日的瑞典大停电事故和1987年7月23日日本东京系统大停电事故的起因,都直接与供电变压器自动调电压分接头有关。
本质上原因在于这只是一种间接手段,但不能改变系统的无功需求平衡状态。
发电机升压变:这一类变压器是否配电压分接头和是否带负荷调节电压分接头,没有定论,发电机本身已经是很方便的无功调节设备,在升压变压器上配电压分接头似乎并没有什么特殊必要。
当然,各个系统有各自的传统习惯和做法。
主网联络变压器:这一类变压器的特点是容量大,如500 /220/35主变。
在研究这一类变压器是否应当装设带负荷调节的电压分接头时,有两个特点值得考虑,第一,无功功率补偿和调节能力的分层平衡,决定了作分连接两大主电网的联络变压器,原则上不应承担层间交换大量无功功率的任务,而单纯因有功负荷变化所造成的电压变化则较小,第二,一般地说,因为连接的是主电网,每一侧到变压器母线的短路电流水平都相当高,都将远大于变压器本身的容量,调节变压器的电压分接头已经失去了可以有效调节母线电压的作用。
1982年国际大电网会议变压器委员会提出过一份报告,特别指出了有了带负荷调节电压分接头,不仅它本身不可靠,同时还增加了变压器整体设计的复杂性。
当然这也不是绝对的,也需要视具体情况而定。
4)并联电容器:并联电容器早已广泛地用于较低电压的供配电网和用户,又称低容,用于补充无功。
最大特点是价格便宜而又易于安装维护。
国际上,各大电力系统都是逐年不断地大且增加采用并联电容器,大多数是为了控制负荷功率因数,也有一些接到主变压器三次侧作为无功补偿调节的手段。
并联电容器的性能缺陷是,它的输出功率随母线电压降低而成平方地降低,这在电压低的情况下将可能导致恶性循环。
5)并联电杭器:并联电抗器是吸收无功功率的设备。
500kV线路直接接到线路上,称为高抗,之前过电压部分已经提到过它的作用(限制工频和操作过电压,避免自励磁、与中性点小电抗相配合,可以帮助超高压长距离线路在单相重合闸过程中易于消弧,从而保证单相重合闸成功);220kV线路一般装在变压器绕组三次侧,为低抗。
6)串联电容器:又称串补,用于补偿线路的部分串联阻抗,从而降低输送功率时的无功损耗,因而也是一种无功补偿设备。
但串联电容更是电力系统经远距离输电时比较普遍采用的提高系统稳定和送电能力的重要手段。
南网运用相当多。
串联电容器提升的末端电压的数值QXC/V(即调压效果)随无功负荷增大而增大、无功负荷的减小而减小,恰与调压的要求一致。
这是串联电容器调压的一个显著优点。
但对负荷功率因数高(cosφ>0.95)或导线截面小的线路,由于PR/V分量的比重大,串联补偿的调压效果就很小。
在高压系统中采用串联补偿,也有一些困难。
一是补偿站本身的复杂性,要求能在故障切除后即时再投入串联电容和对串联电容器本身的保护。
近年来开发的氧化锌非线性电阻保护系统,有助于解决这方面的困难,其次是增加了继电保护的困难,传统的距离保护用在串联补偿线路上遇到一些特殊的问题;第三,要解决汽轮发电机组配出串联补偿线路可能产生的次同步谐振问题(这块是一个独立课题,出现过不少事故)。
7)同步调相机:同步调相机是最早采用的一种无功补偿设备,现在基本不采用。
但为了适应电网稳定以及直流输电的需要,在一些情况下仍然具有它的特定作用。
8)静止补偿器SVC: 静止补偿器有电力电容器和可调电抗并联组成。
电容器可发出无功功率,电抗器可吸收无功功率,根据调压需要,通过可调电抗器吸收电容器组中的无功功率,来调节静止补偿其输出的无功功率的大小和方向。
静止补偿器能快速平滑的调节无功功率,以满足无功补偿装置的要求。
这样就克服了电容器作为无功补偿装置只能做电源不能作负荷且不能连续调节的缺点。
但其也不适用于一个受端系统很弱的电网中,因为其容量将随母线电压下降而成平方地降低。
从本质上来说静止补偿器主要是一种反应迅速的无功功率调节手段。
和同步调相机比较,虽然造价相当,但静止补偿器的调节远为快速,’这是一个突出的优点。
而为了能发挥它在需要时的无功功率快速调节能力,至于因正常负荷变动引起的电压变化,过程比较缓慢,用一般的便宜得多的电容器与电抗器投切等,完全可以满足要求,没有必要选用这种高性能的设备。
所以一般用于负荷冲击大的节点、电压枢纽节点、功率容易波动的联络线两侧以及事故紧急备用节点。
至于更为先进的TCSC、STATCOM等设备放在以后的柔性电力系统里面提及。