切线长定理专题
切线长定理—知识讲解
切线长定理—知识讲解【学习目标】1.了解切线长定义,掌握切线长定理;2.了解圆外切四边形定义及性质;3. 利用切线长定理解决相关的计算和证明.【要点梳理】要点一、切线长定理1.切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释:切线长定理包含两个结论:线段相等和角相等.要点二、圆外切四边形的性质1.圆外切四边形四边形的四条边都与同一个圆相切,那这个四边形叫做圆的外切四边形.2.圆外切四边形性质圆外切四边形的两组对边之和相等.【典型例题】类型一、切线长定理1.(2015秋•湛江校级月考)已知PA、PB分别切⊙O于A、B,E为劣弧AB上一点,过E点的切线交PA于C、交PB于D.(1)若PA=6,求△PCD的周长.(2)若∠P=50°求∠DOC.【答案与解析】解:(1)连接OE,∵P A、PB与圆O相切,∴PA=PB=6,同理可得:AC=CE,BD=DE,△PCD的周长=PC+PD+CD=PC+PD+CE+DE=PA+PB=12;(2)∵PA PB 与圆O 相切,∴∠OAP=∠OBP=90°∠P=50°,∴∠AOB=360°﹣90°﹣90°﹣50°=130°,在Rt△AOC 和Rt△EOC 中,,∴Rt△AOC≌Rt△EOC(HL ),∴∠AOC=∠COE,同理:∠DOE=∠BOD, ∴∠COD=∠AOB=65°.【总结升华】本题考查的是切线长定理和全等三角形的判定和性质,掌握切线长定理是解题的关键.2. 如图,△ABC 中,∠ACB=90°,以AC 为直径的⊙O 交AB 于D ,E 为BC 中点.求证:DE 是⊙O 切线.【答案与解析】连结OD 、CD ,AC 是直径,∴OA=OC=OD ,∴∠OCD=∠ODC ,∠ADC=90°,∴△CDB 是直角三角形.∵E 是BC 的中点,∴DE=EB=EC ,∴∠ECD=∠EDC ,∠ECD+∠OCD=90°,∴∠EDC+∠ODC=90°,即OD ⊥ED ,∴DE 是⊙O 切线.【总结升华】自然连接OD ,可证OD ⊥DE.举一反三:【变式】已知:如图,⊙O 为ABC ∆的外接圆,BC 为⊙O 的直径,作射线BF ,使得BA 平分CBF ∠,过点A 作AD BF ⊥于点D .求证:DA 为⊙O 的切线. O FDC B A3421O F D CB A【答案】连接AO .∵ AO BO∠=∠.=,∴ 23∵ BA CBF∠平分,∴ 12∠=∠. ∴ 31∠=∠ .∴ DB∥AO.∵ AD DB⊥,∴ 90∠=︒.DAOBDA∠=︒.∴ 90∵ AO是⊙O半径,∴ DA为⊙O的切线.3.如图,正方形ABCD边长为4cm,以正方形的一边BC为直径在正方形ABCD内作半圆,过A作半圆的切线,与半圆相切于F点,与DC相交于E点,则△ADE的面积()A.12B.24C.8D.6【答案】D;【解析】∵AE与圆O切于点F,显然根据切线长定理有AF=AB=4cm,EF=EC,设EF=EC=xcm,则DE=(4﹣x)cm,AE=(4+x)cm,在三角形ADE中由勾股定理得:(4﹣x)2+42=(4+x)2,∴x=1cm,∴CE=1cm,∴DE=4﹣1=3cm,∴S△ADE=AD•DE÷2=3×4÷2=6cm2.【总结升华】此题主要考查圆的切线长定理,正方形的性质和勾股定理等知识,解答本题关键是运用切线长定理得出AB=AF,EF=EC.类型二、圆外切四边形4.(西青区二模)已知四边形ABCD中,AB∥CD,⊙O为内切圆,E为切点.(Ⅰ)如图1,求∠AOD的度数;(Ⅱ)如图1,若AO=8cm,DO=6cm,求AD、OE的长;(Ⅲ)如图2,若F是AD的中点,在(Ⅱ)中条件下,求FO的长.【答案与解析】解:(Ⅰ)∵⊙O为四边形ABCD的内切圆,∴AD、AB、CD为⊙O的切线,∴OD平分∠ADC,OA平分∠BAD,即∠ODA=∠ADC,∠OAD=∠BAC,∵AB∥CD,∴∠ADC+∠BAC=180°,∴∠ODA+∠OAD=90°,∴∠AOD=90°;(Ⅱ)在Rt△AOD中,∵AO=8cm,DO=6cm,∴AD==10(cm),∵AD切⊙O于E,∴OE⊥AD,∴OE•AD=OD•OA,∴OE==(cm);(Ⅲ)∵F是AD的中点,∴FO=AD=×10=5(cm).【总结升华】本题考查了三角形的内切圆与内心,也考查了切线长定理.举一反三:【变式】在圆外切四边形ABCD中,AB:BC:CD:AD只可能是().A.2:3:4:5B.3:4:6:5C.5:4:1:3D.3:4:2:5【答案】B.。
切线长定理及
点到圆的切线长。 4、什么叫三角形的外接圆和外心?外心是三角形什么的交点?
外切圆的半径:交点到三角形任意一个顶点的距离。
A
O
P
B
• 切线是直线,不能度量; • 切线长是线段的长,这条线段的两个端
切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量。
内切圆圆心:三角形三个内角平分线的交点。
∴PA = PB ,∠OPA=∠OPB
2、如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=30°.
O 如图,四边形ABCD的边 AB、BC、CD、DA和⊙O分别相切于L、M、N、P。
外切圆圆心:三角形三边垂直平分线的交点。 PA、PB分别切⊙O于A、B
点分别是圆外一点和切点,可以度量。
探究: 从⊙O外的一点引两条切线PA,PB,切点 分别是A、B,连结OA、OB、OP,你能发现什么结 论?并证明你所发现的结论。
B
PA = PB
∠OPA=∠OPB
。
O
P
A 证明:∵PA,PB与⊙O相切,点A,B是切点
∴OA⊥PA,OB⊥PB 即∠OAP=∠OBP=90°
c b
r.
练习:直角三角形的两直角边分 别是5cm,12cm 则其内切圆的 半径为2_c_m____。
C aB
小 结:
1、切线长的定义
2、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和 这一点的连线平分两条切线的夹角。
B
∵PA、PB分别切⊙O于A、B
E
。
OC
D
∴PA = PB ,∠OPA=∠OPB
3.7 切线长定理(练习)(解析版)
第三章 圆第七节 切线长定理精选练习一、单选题1.(2021·北京九年级专题练习)如图,PA ,PB 为⊙O 的两条切线,点A ,B 是切点,OP 交⊙O 于点C ,交弦AB 于点D .下列结论中错误的是( )A .PA =PBB .AD =BDC .OP ⊥ABD .∠PAB =∠APB【答案】D【分析】利用切线长定理、等腰三角形的性质即可得出答案.【详解】解:由切线长定理可得:∠APO =∠BPO ,PA =PB ,从而AB ⊥OP ,AD =BD .因此A .B .C 都正确.无法得出∠PAB =∠APB ,可知:D 是错误的.综上可知:只有D 是错误的.故选:D .【点睛】本题考查了切线长定理、等腰三角形的性质,关键是利用切线长定理、等腰三角形的性质解答.2.(2021·全国九年级课时练习)如图,AB 是⊙O 的直径,点P 在BA 的延长线上,PA =AO ,PD 与⊙O 相切于点D ,BC ⊥AB 交PD 的延长线于点C ,若⊙O 的半径为1,则BC的长是( )A .1.5B .2CD 【答案】D【分析】连接OD ,根据切线的性质求出∠ODP =90°,根据勾股定理求出PD ,证明BC 是⊙O 的切线,根据切线长定理得出C D =BC ,再根据勾股定理求出BC 即可.【详解】连接OD ,如图所示∵PC 切⊙O 于D ∴∠ODP =90°∵⊙O 的半径为1,PA =AO ,AB 是⊙O 的直径 ∴PO =1+1=2,PB =1+1+1=3,OD =1∴由勾股定理得:PD ==∵BC ⊥AB ,AB 过O ∴BC 切⊙O 于B ∵PC 切⊙O 于D ∴CD =BC设CD =CB =x 在Rt △PBC 中,由勾股定理得:PC 2=PB 2+BC 2即222)3x x +=+ 解得:x 即BC故选:D【点睛】本题考查了切线的性质和判定,及切线长定理,切线的性质定理为:圆的切线垂直于过切点的半径,切线长定理为:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.同时考查了利用勾股定理解直角三角形.3.(2021·湖北武汉市·九年级一模)如图,经过A 、C 两点的⊙O 与△ABC 的边BC 相切,与边AB 交于点D ,若∠AD C =105°,BC =CD =3,则AD 的值为( )A .B .CD 【答案】A【分析】连接OC 、OD ,作OE AB ^于点E .易求出75CBD CDB Ð=Ð=°,30BCD Ð=°.再由切线的性质,即可求出60OCD Ð=°,即三角形OCD 为等边三角形.得出结论60ODC Ð=°,3OC OD CD ===.从而即可求出45ADO Ð=°,即三角形OED 为等腰直角三角形,由此即可求出DE 的长,最后根据垂径定理即可求出AD 的长.【详解】如图,连接OC 、OD ,作OE AB ^于点E .∵BC CD =,∴CBD CDB Ð=Ð,∵105ADC Ð=°,∴75CBD CDB Ð=Ð=°,∴18027530BCD Ð=°-´°=°.由题意可知OC BC ^,即90OCB Ð=°,∴903060OCD OCB BCD Ð=Ð-Ð=°-°=°,∵OD =OC ,∴三角形OCD 为等边三角形.∴60ODC Ð=°,3OC OD CD ===.∴1056045ADO ADC ODC Ð=Ð-Ð=°-°=°,∴三角形OED 为等腰直角三角形,∴3DE ===∴22AD DE ===故选:A .本题考查切线的性质,等腰三角形的性质,三角形外角的性质,等腰直角三角形与等边三角形的判定和性质以及垂径定理,综合性强.正确的连接辅助线是解答本题的关键.4.如图,直线AB,BC,CD分别与⊙O相切于E,F,G,且AB//CD,若OB=3cm,OC=4cm,则四边形EBCG的周长等于( )A.5cm B.10cm C.745cm D.625cm【答案】C【分析】连接OF,利用切线性质和切线长定理可证明BE=BF,CG=CF,∠OBE=∠OBF,∠OCG=∠OCF,OF⊥BC,再根据平行线的性质证得∠BOC=90°,进而由勾股定理求得BC长,根据三角形的面积公式求得OF,进而可求得四边形的周长.【详解】解:连接OF,∵直线AB,BC,CD分别与⊙O相切于E,F,G,∴BE=BF,CG=CF,∠OBE=∠OBF,∠OCG=∠OCF,OF⊥BC,∵AB∥CD,∴∠ABC+∠DCB=180°,∴∠OBF+∠OCF=90°,即∠BOC=90°,∴在Rt△BOC中,OB=3cm,OC=4cm,由勾股定理得:BC==,由1122OB OC BC OF××=××得:OF=341255´=cm,∴OE=OG=OF= 125cm,∴四边形EBCG的周长为BE+BC+CG+EG=2OE+2BC=2×125+2×5=745cm,【点睛】本题考查切线的性质、切线长定理、平行线的性质、勾股定理、三角形的面积公式,熟练掌握切线长定理的运用,证得∠BOC =90°和利用等面积法求出OF 是解答的关键.5.(2021·山西吕梁市·九年级月考)如图,四边形ABCD 内接于⊙O ,AB =BC .AT 是⊙O 的切线,∠BAT =55°,则∠D 等于( )A .110°B .115°C .120°D .125°【答案】A【分析】连接AC ,OA ,OB ,先结合切线的性质以及圆的性质求得ACB BAT Ð=Ð,再结合等腰三角形的性质以及圆的内接四边形的性质求得2D ACB Ð=Ð即可.【详解】如图所示,连接AC ,OA ,OB ,则()11802AOB OBA OAB =°-ÐÐÐ=,∵2AOB ACB Ð=Ð,∴90ACB OAB =°-ÐÐ,∴90ACB OAB Ð=°-Ð,∵AT 是⊙O 的切线,∴90BAT OAB Ð=°-Ð,∴55ACB BAT Ð=Ð=°,∵AB BC =,∴1802ABC ACB Ð=°-Ð,根据圆的内接四边形可得:180D ABC Ð=°-Ð,∴2110D ACB Ð=Ð=°,故选:A .【点睛】本题考查圆的综合问题,理解圆的切线的性质以及内接四边形的性质是解题关键.6.(2021·浙江九年级专题练习)如图,⊙O 的弦AB =8,M 是弦AB 上的动点,若OM 的最小值是3,则⊙O 的半径是( )A .4B .5C .6D .7【答案】B【分析】过O 点作OH ⊥AB 于H ,连接OA ,如图,根据垂径定理得到AH =BH =4,利用垂线段最短得到OH =3,然后利用勾股定理计算出OA 即可.【详解】解:过O 点作OH ⊥AB 于H ,连接OA ,如图,∵OH ⊥AB ,∴AH =BH =12AB =12×8=4,∵OM 的最小值是3,∴OH =3,在Rt △OAH 中,OA =5,即⊙O 的半径是5.故选:B .【点睛】本题考查了垂径定理:直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.7.(2020·聊城市茌平区实验中学九年级月考)如图,P 为O 外一点,PA 、PB 分别切O 于点A 、B ,CD 切O 于点E 且分别交PA 、PB 于点C ,D ,若PA =4,则△PCD 的周长为( )A .5B .7C .8D .10【答案】C【分析】根据切线长定理求解即可【详解】解:∵PA 、PB 分别切O 于点A 、B ,CD 切O 于点E ,PA=4,∴PA=PB=4,AC=CE ,BD=DE ,∴△PCD 的周长为PC+CE+DE+PD=PC+AC+BD+PD=PA+PB=4+4=8,故选:C .【点睛】本题考查切线长定理,熟练掌握切线长定理及其应用是解答的关键.8.(2021·北京九年级专题练习)如图,ABC D 的内切圆O e 与A B ,BC ,CA 分别相切于点D ,E ,F ,且2AD =,ABC D 的周长为14,则BC 的长为( )A .3B .4C .5D .6【答案】C 【分析】根据切线长定理得到AF =AD =2,BD =BE ,CE =CF ,由△ABC 的周长为14,可求BC 的长.【详解】解:O Qe 与A B ,BC ,CA 分别相切于点D ,E ,F2AF AD \==,BD BE =,CE CF =,ABC D Q 的周长为14,14AD AF BE BD CE CF \+++++=2()10BE CE \+=5BC \=故选:C .【点睛】本题考查了三角形的内切圆与内心,切线长定理,熟练掌握切线长定理是解题的关键.二、填空题9.如图,PA 、PB 、CD 是⊙O 的切线,A 、B 、E 是切点,CD 分别交PA 、PB 于C 、D 两点,若∠COD =70°,则∠AP B =_______.【答案】40°【分析】先利用切线长定理,得出∠BDO =∠CDO ,∠ACO =∠DCO ,再利用三角形内角和求出∠CDO +∠DCO 后得到∠BDC+∠A CD 的值,最后利用三角形外角的性质得到关于∠P 的方程,解方程即可得出答案.【详解】解:∵PA 、PB 、CD 是⊙O 的切线,∴∠BDO =∠CDO ,∠ACO =∠DCO ,∵∠COD =70°,∴∠CDO +∠DCO =180°-70°=110°,∴∠BDC +∠ACD =2(∠CDO +∠DCO )=2 ×110°=220°,∵∠BDC =∠DCP +∠P ,∠ACD =∠CDP +∠P ,∴∠DCP +∠P +∠CDP +∠P =220°,即180°+∠P =220°,∴∠P =40°,即∠APB =40°,故答案为:40°.【点睛】本题综合考查了圆的切线长定理、三角形的内角和定理、三角形外角的性质等,解决本题的关键是要牢记各定理与性质的内容,能灵活运用它们进行不同的角之间的转化,考查了学生推理分析的能力.10.(2021·浙江九年级其他模拟)如图,已知AD 是BAC Ð的平分线,以线段AB 为直径作圆,交BAC Ð和角平分线于C ,D 两点.过D 向AC 作垂线DE 垂足为点E .若24DE CE ==,则直径AB =_______.【答案】10【分析】连接CD 、OD 、OC 、BD ,运用勾股定理求得CD 的长,再证明DE 是圆O 的切线,运用全等三角形的判定与性质以及余角的性质得出∠CDE =∠BAD ,易得BD =CD ,然后再根据正切函数求得AD ,最后根据勾股定理解答即可.【详解】解:如图:连接CD 、OD 、OC 、BD∵AE ⊥DE , 24DE CE ==∴CD =∵OA =OD∴∠OAD =∠ODA∴∠BOD =∠OAD +∠ODA = 2∠OAD∵∠ODA =∠OAD∴∠EAD =∠ODA∴OD //AE∴OD ⊥DE ,即DE 是圆O 的切线∴∠CDE +∠ODC =90°∵AB是直径∴∠BAD+∠B=90°在△BOD和△DOC中OC=OB,DO=DO,BD=CD ∴△BOD≌△DOC∴∠ODC=∠OBD∴∠CDE=∠BAD∵∠BAD=∠DAC∴∠COD=∠BOD∴BD=CD=∵tan∠BAD=BDAD= tan∠CDE=12CEDE=,∴AD=∴AB10=.故填10.【点睛】本题主要考查了三角形的性质、圆的切线的判定与性质、勾股定理、三角函数等知识点,灵活应用相关知识成为解答本题的关键.11.(2020·湖北孝感市·九年级月考)如图,PA、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=108°,则∠B+∠D=_____.【答案】216°【分析】连接AB,根据切线得出PA=PB,求出∠PBA=∠PAB=36°,根据圆内接四边形的对角互补得出∠D+∠CBA=180°,再求出答案即可.【详解】解:连接AB,∵PA、PB是⊙O的切线,A、B为切点,∴PA=PB,∴∠PAB=∠PBA,∵∠APB=108°,∴∠PBA=∠PAB=12×(180°﹣∠APB)=36°,∵A、D、C、B四点共圆,∴∠D+∠CBA=180°,∴∠PBC+∠D=∠PBA+∠CBA+∠D=36°+180°=216°,故答案为:216°.【点睛】本题考查了切线长定理,圆周角定理,等腰三角形的性质,三角形内角和定理,圆内接四边形等知识点,能综合运用知识点进行推理和计算是解此题的关键.12.(2021·河北石家庄市·石家庄外国语学校九年级月考)已知△ABC中,⊙I为△ABC的内切圆,切点为H,若B C=6,AC=8,AB=10,则点A到圆上的最近距离等于_____.-【答案】2【分析】连接IA,IA与⊙I半径的差即为点A到圆上的最近距离,只需求出IA和⊙I半径即可得答案.【详解】解:连接IA,设AC、BC分别切⊙I于E、D,连接IE、ID,如图:∵BC=6,AC=8,AB=10,∴BC2+AC2=AB2∴∠C=90°∵⊙I为△ABC的内切圆,∴∠IEC=∠IDC=90°,IE=ID,∴四边形IDCE是正方形,设它的边长是x,则IE=EC=CD=ID=IH=x,∴AE=8﹣x,BD=6﹣x,由切线长定理可得:AH=8﹣x,BH=6﹣x,而AH+BH=10,∴8﹣x+6﹣x=10,解得x=2,∴AH=6,IH=2,∴IA,∴点A到圆上的最近距离为﹣2,故答案为:﹣2.【点睛】本题考查勾股定理、切线长定理、三角形的内切圆等知识,是重要考点,难度较易,掌握相关知识是解题关键.三、解答题13.(2021·浙江温州市·九年级一模)如图,点C ,D 在以AB 为直径的半圆O 上, AD BC=,切线DE 交AC 的延长线于点E ,连接OC .(1)求证:∠ACO =∠ECD .(2)若∠CDE =45°,DE =4,求直径AB 的长.【答案】(1)证明见详解;(2)【分析】(1)由 AD BC=,可得∠A =∠B ,内接四边形可得出∠ECD=∠B ,进而得出∠ACO =∠ECD ;(2))连接OD ,由切线的性质可得出∠ODE =90°,进而得出∠CDO =∠DCO=45°,再根据已知条件计算出∠E=∠ECD ,得到CD=DE =4,再利用勾股定理求出半径,进而得出答案;【详解】(1)证明:∵ AD BC=,∴∠A =∠B ;∵ABDC 是内接四边形∴∠ECD=∠B∴∠ECD=∠A∵AO =CO ;∴∠ACO =∠A∴∠ACO =∠ECD(2)连接OD∵DE 是圆的切线∴∠ODE =90°,∵∠CDE =45°,OC=OD∴∠CDO =∠DCO =45°,∴∠COD =90°,∵ AD BC=,∴ AC DC=,∴∠AOC =∠DOB=45°,∴AO =OC ,∴∠ACO =∠A=1804567.52°-°=° ;∵∠DCO =45°,∴∠ECD =180°-45°-67.5°=67.5°,∵∠E=180°-∠CDE -∠ECD =180°-45°-67.5°=67.5°,∴∠E=∠ECD∴CD=DE =4,∵∠COD =90°,∴222CD OC OD =+∴2216OC OD +=,即28OC =∴OC= 故⊙O 的半径为∴直径AB 的长,【点睛】本题属于圆综合题,考查了圆周角定理,内接四边形,切线性质定理,等腰三角形的判定与性质,勾股定理等知识,熟练掌握性质及定理是解决本题的关键.14.(2021·江苏无锡市·九年级期中)如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,与BA 的延长线交于点D ,DE ⊥P O 交PO 延长线于点E ,连接PB ,∠EDB =∠EPB .(1)求证:PB 是⊙O 的切线.(2)若PB =3,tan ∠PDB =34,求⊙O 的半径.【答案】(1)见解析;(2)32【分析】(1)根据三角形的内角和定理可证E PBO Ð=Ð,然后根据垂直定义可得90E Ð=°,从而得出半径CB PB ^,根据切线的判定定理即可证出结论;(2)连接OC ,根据题意求出45BD PD ==,,再结合切线长定理得到3PC =,2CD =,从而设O e 的半径是r ,利用勾股定理求解即可.【详解】(1),EDB EPB DOE POB Ð=ÐÐ=ÐQ ,E PBO \Ð=Ð,DE PO ^Q ,90E \Ð=°,90PBO \Ð=°,\半径CB PB ^,PB \是O e 的切线.(2)如图,连接OC ,33tan 904PB PDB PBD =Ð=Ð=°Q ,,tan 45BD PB PDB PD \=Ð===g ,.PB Q 和PC 是O e 的切线,3PC PB \==,2CD PD PC \=-=,设O e 的半径是r ,则4OD DB OB r =-=-,PD Q 切O e 于点C ,OC PD \^,222CD OC OD \+=,()22224r r \+=-,32r \=.【点睛】本题考查圆的综合问题,理解切线的判定与性质定理以及正切函数的定义是解题关键.15.(2021·天津九年级学业考试)已知AB 为O e 的直径,点C ,D 为O e 上的两点,AD 的延长线于BC 的延长线交于点P ,连接CD ,30CAB Ð=°.(Ⅰ)如图①,若 2=CBCD ,4AB =,求AD 的长;(Ⅱ)如图②,过点C 作O e 的切线交AP 于点M ,若6CD AD ==,求CM 的长.【答案】(1)AD =;(2)CM = .【分析】(1)根据弧、圆周角之间的关系可求得∠BAD =45°,连接BD ,可得△ABD 为等腰直角三角形,求解即可;(2)根据弦、圆心角之间关系、等边对等角以及三角形外角的性质可求得∠PDM =60°,OC //AP ,再根据切线的性质定理易得△CDM 为直角三角形,解直角三角形即可.【详解】解:(1)∵ 2=CBCD ,30CAB Ð=°,∴1152CAD CAB Ð=Ð=°,∴∠BAD =45°,连接BD ,∵AB 为直径,∴∠BDA =90°,∴cos45AD AB =×°=(2)连接OD 、OC ,∵30CAB Ð=°,∴∠COB =60°,∠AOC =120°,∵6CD AD ==,∴∠AOD =∠COD =60°,∴∠ACD =∠CAD =30°,∠BAP =∠CAD +∠CAB =60°=∠COB ,∴OC //AP ,∠CDP =∠ACD +∠CAD =60°,∵CM 为O e 的切线,∴∠OCM =90°,∴∠AMC =180°-∠OCM =90°,在Rt △CDM 中,sin 60CM CD =×°=.【点睛】本题考查切线的性质定理,等腰三角形等边对等角,弧、圆心角、圆周角、弦之间的关系,解直角三角形.正确作出辅助线是解题关键.。
切线长定理—知识讲解(基础)
切线长定理—知识讲解(基础)【学习目标】1.了解切线长定义;理解切线的判定和性质;理解三角形的内切圆及内心的定义;2.掌握切线长定理;利用切线长定理解决相关的计算和证明.【要点梳理】要点一、切线的判定定理和性质定理1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.要点诠释:切线的判定方法:(1)定义:直线和圆有唯一公共点时,这条直线就是圆的切线;(2)定理:和圆心的距离等于半径的直线是圆的切线;(3)判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.(切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可).2.切线的性质定理:圆的切线垂直于过切点的半径.要点诠释:切线的性质:(1)切线和圆只有一个公共点;(2)切线和圆心的距离等于圆的半径;(3)切线垂直于过切点的半径;(4)经过圆心垂直于切线的直线必过切点;(5)经过切点垂直于切线的直线必过圆心.要点二、切线长定理1.切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释:切线长定理包含两个结论:线段相等和角相等.3.圆外切四边形的性质:圆外切四边形的两组对边之和相等.要点三、三角形的内切圆1.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.2.三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S 为三角形的面积,P 为三角形的周长,r 为内切圆的半径).(3) 三角形的外心与内心的区别:名称 确定方法 图形性质外心(三角形外接圆的圆心)三角形三边中垂线的交点(1)OA=OB=OC ;(2)外心不一定在三角形内部内心(三角形内切圆的圆心)三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA 、OB 、OC 分别平分 ∠BAC 、∠ABC 、∠ACB ; (3)内心在三角形内部.【典型例题】类型一、切线长定理1.如图,PA 、PB 、DE 分别切⊙O 于A 、B 、C ,⊙O 的半径长为6 cm ,PO =10 cm ,求△PDE 的周长.【答案与解析】连结OA ,则OA ⊥AP .在Rt △POA 中,PA =22OA OP -=22610-=8(cm ). 由切线长定理,得EA =EC ,CD =BD ,PA =PB , ∴ △PDE 的周长为PE +DE +PD =PE +EC +DC +PD ,=PE +EA +PD +DB =PA +PB =16(cm ).【总结升华】本题考查切线长定理、切线的性质、勾股定理.注意:在有关圆的切线长的计算中,往往利用切线长定理进行线段的转换.【高清ID 号: 356967 关联的位置名称(播放点名称):方法总结及例题1-2】2. 如图,△ABC 中,∠ACB=90°,以AC 为直径的⊙O 交AB 于D ,E 为BC 中点.求证:DE 是⊙O 切线.【答案与解析】连结OD 、CD ,AC 是直径,∴OA=OC=OD ,∴∠OCD=∠ODC , ∠ADC=90°,∴△CDB 是直角三角形.∵E 是BC 的中点,∴DE=EB=EC ,∴∠ECD=∠EDC ,∠ECD+∠OCD=90°, ∴∠EDC+∠ODC=90°,即OD ⊥ED , ∴DE 是⊙O 切线.【总结升华】自然连接OD ,可证OD ⊥DE. 举一反三:【变式】已知:如图,⊙O 为ABC ∆的外接圆,BC 为⊙O 的直径,作射线BF ,使得BA 平分CBF ∠,过点A 作AD BF ⊥于点D .求证:DA 为⊙O 的切线.OFD CBA3421OFD CBA【答案】连接AO .∵ AO BO =,∴ 23∠=∠.∵ BA CBF ∠平分,∴ 12∠=∠. ∴ 31∠=∠ . ∴ DB ∥AO .∵ AD DB ⊥,∴ 90BDA ∠=︒.∴ 90DAO ∠=︒. ∵ AO 是⊙O 半径,∴ DA 为⊙O 的切线.类型二、三角形的内切圆3.已知:如图,△ABC的三边BC=a,CA=b,AB=c,它的内切圆O的半径长为r.求△ABC的面积S.【答案与解析】设内切圆与三角形的三边AB、AC、BC分别交于D、E、F,连接OE、 OF、OD、AO、BO、CO.∴△ABC=△AO B+△AO C+△BO C=12r(a+b+c).【总结升华】考虑把△ABC的面积分割成3个以圆的半径为高的三角形面积的和,从而求出△ABC的面积.举一反三:【高清ID号:356967 关联的位置名称(播放点名称):切线长定理及例3】【变式】已知如图,△ABC中,∠C=90°,BC=4,AC=3,求△ABC的内切圆⊙O的半径r.【答案】连结OA、OB、OC,∵△ABC中,∠C=90°,BC=4,AC=3,∴AB=5.则S△AOB+S△COB+S△AOC=S△ABC,即11115+4+3=34=1 2222r r r r ⨯⨯⨯⨯⨯,类型三、与相切有关的计算与证明4.如图,平行四边形ABCD中,以A为圆心,AB为半径的圆交AD于F,交BC于G,延长BA交圆于E.(1)若ED与⊙A相切,试判断GD与⊙A的位置关系,并证明你的结论;(2)在(1)的条件不变的情况下,若GC=CD=5,求AD的长.G FEDCBA【答案与解析】(1)结论:GD 与O 相切证明:连接AG ∵点G 、E 在圆上, ∴AG AE =∵四边形ABCD 是平行四边形, ∴AD BC ∥ ∴123B ∠=∠∠=∠,∵AB AG =,∴3B ∠=∠,∴12∠=∠ 在AED ∆和AGD ∆12AE AGAD AD =⎧⎪∠=∠⎨⎪=⎩∴AED AGD ∆∆≌,∴AED AGD ∠=∠ ∵ED 与A 相切∴90AED ∠=︒,∴90AGD ∠=︒ ∴AG DG ⊥∴GD 与A 相切(2)∵5GC CD ==,四边形ABCD 是平行四边形 ∴AB DC =,45∠=∠,5AB AG ==∵AD BC ∥,∴46∠=∠,∴1562B ∠=∠=∠∴226∠=∠ ,∴630∠=︒ ∴10AD =.【总结升华】本题虽然是圆和平行四边形的位置关系问题,但是依然考察的是如何将所有条件放在最基本的三角形中求解的能力.判断出DG 与圆相切不难,难点在于如何证明.第二问则不难,重点在于如何利用角度的倍分关系来判断直角三角形中的特殊角度,从而求解.654321GF EDCBA。
九年级数学 切线长定理 专题练习(含解析)
∴梯形对边和为:8+8=16, 则这个等腰梯形的上底与下底长的和为 16. 故选:D. 分析:直接利用圆外切四边形对边和相等,进而求出即可. 6.如图,⊙O 是△ABC 的内切圆,点 D、E 分别为边 AB、AC 上的点,且 DE 为⊙O 的切 线,若△ABC 的周长为 25,BC 的长是 9,则△ADE 的周长是( ) A.7 B.8 C.9 D.16
答案:C
解析:解答: ∵AB、AC 是⊙O 的两条切线,B、C 是切点, ∴∠B=∠C=90°,∠BOC=180°-∠A=110°. 故选 C. 分析:利用切线的性质可得,∠B=∠C=90°,再用四边形的内角和为 360 度可解. 10.如图,PA、PB 是⊙O 的两条切线,切点是 A、B.如果 OP=4,PA= 2 3 ,那么∠AOB 等于( ) A.90° B.100° C.110° D.120°
答案:B 解析:解答:∵PA、PB 都是⊙O 的切线, ∴PA=PB, 又∵∠P=60°, ∴△PAB 是等边三角形,即 AB=PA=8, 故选 B. 分析: 根据切线长定理知 PA=PB,而∠P=60°,所以△PAB 是等边三角形,由此求得弦 AB 的长. 8.如图,PA、PB 分别是⊙O 的切线,A、B 为切点,AC 是⊙O 的直径,已知∠BAC=35°, ∠P 的度数为( ) A.35° B.45° C.60° D.70°
答案:D 解析:解答: 根据切线的性质定理得∠PAC=90°, ∴∠PAB=90°-∠BAC=90°-35°=55°. 根据切线长定理得 PA=PB, 所以∠PBA=∠PAB=55°, 所以∠P=70°. 故选 D. 分析: 根据切线长定理得等腰△PAB,运用内角和定理求解. 9.如 图 , AB、 AC 是 ⊙O 的 两 条 切 线 , B、 C 是 切 点 , 若 ∠A=70°, 则 ∠BOC 的 度 数 为 ( ) A.130° B.120° C.110° D.100°
课题:切线的性质与判定及切线长定理专题
切线的性质与判定、切线长定理专题班级:姓名:1、切线的性质例1:(1)AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C;连接BC,若∠P=40°,则∠B等于 . (2).如图,在矩形ABCD中,AB=6,AD=10,AD,AB,BC分别与⊙O相切于E、F、G三点,过点D作⊙O的切线交BC于点M,且点为N,则DM的长为()A. B.8 C. D.2(1)(2)练习:1、如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=115°,过D点的切线PD与射线BA交于点P,则∠ADP的度数为;2.如图,AB是⊙的直径,CD是∠ACB的平分线交⊙O于点D,过D作⊙O的切线交CB的延长线于点E.若AB=4,∠E=75°,则CD的长为;3.如图,在平面直角坐标系xOy中,⊙P的圆心是(2,a)(a>0),半径是2,与y轴相切于点C,直线y=x被⊙P截得的弦AB的长为,则a的值是()A. B. C. D.(1)(2)(3)4.如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=AB.⊙O经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线交于另一点F,且EG:EF=:2.当⊙O与边BC所在的直线与相切时,则AB的长是.5.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ的最小值() A.5 B.4 C.4.75 D.4.82、切线的判定例2:(1)如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,E为AB上的一点,DE=DC,以D 为圆心,DB长为半径作⊙D,AB=10,EB=6.(1)求证:AC是⊙D的切线;(2)求线段AC的长.(2)如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C 作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.练习:1.已知:如图,四边形ABCD为菱形,△ABD的外接圆⊙O与CD相切于点D,交AC于点E.(1)判断⊙O与BC的位置关系,并说明理由;(2)若CE=2,求⊙O的半径r.3、切线长定理例3:(P102,第11题)若AB、BC、CD分别与⊙O相切于E、F、G 三点,且AB∥CD,BO=6,CO=8.(1)求∠BOC的度数;(2)求BC的长;(3)求半径OF的长;(4)E、O、G共线吗?说明理由.(5)连接G、F,求证OB∥FG(6)连接EF 、GF 分别交OB 于P ,交OC 于Q,求证:四边形OPFQ 为矩形.(7)若延长CO 交⊙O 于点M ,过点M 作MN ∥OB 交CD 于点N ,求MN 的长.变式1.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC=90°,AB=12cm ,AD=8cm ,BC=22cm ,AB 为⊙O 的直径,动点P 从点A 开始沿AD 边向点D 以1cm/s 的速度运动,动点Q 从点C 开始沿CB 边向点B 以2cm/s 的速度运动.P 、Q 分别从点A 、C 同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t (s ).(1)当t 为何值时,四边形PQCD 为平行四边形?(2)当t 为何值时,PQ 与⊙O 相切?变式2.如图,四边形ABCD 中,AD 平行BC ,∠ABC=90°,AD=2,AB=6,以AB 为直径的半⊙O 切CD 于点E ,F 为弧BE 上一动点,过F 点的直线MN 为半⊙O 的切线,MN 交BC 于M ,交CD 于N ,则△MCN 的周长为( )A .9B .10C .3D .2(变式2) (变式3) (变式4) (变式5) 变式3.如图,正方形ABCD 边长为4cm ,以正方形的一边BC 为直径在正方形ABCD 内作半圆,过A 作半圆的切线,与半圆相切于F 点,与DC 相交于E 点,则△ADE 的面积( )A .12B .24C .8D .6变式4.如图,PA 、PB 、分别切⊙O 于A 、B 两点,∠P=40°,则∠C 的度数为 ;变式5.如图,PA 、PB 、CD 分别切⊙O 于A 、B 、E ,CD 交PA 、PB 于C 、D 两点,若∠P=40°,则∠PAE+∠PBE 的度数为PQ变式6.如图,在平面直角坐标系xOy中,直线AB经过点A(6,0)、B(0,6),⊙O的半径为2(O为坐标原点),点P是直线AB上的一动点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A.B.3 C.3 D.(变式6) (例4)4、动态问题例4:如图,直线AB、CD相交于点O,∠AOC=30°,半径为1cm的⊙P的圆心在射线OA上,且与点O的距离为6cm,如果⊙P以1cm/s的速度沿由A向B的方向移动,那么⊙P与直线CD相切时运动时间是 s.练习:1.如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,则l沿OC所在直线平移后与⊙O相切,则平移的距离是 cm.(1题) (2题)2.如图,∠AOB=60°,点M是射线OB上的点,OM=4,以点M为圆心,2cm为半径作圆.若OA绕点O按逆时针方向旋转,当OA和⊙M相切时,OA旋转的角度是.变式:如2题图,已知∠AOB=60°,M为OB边上一点,以M为圆心、2cm为半径作⊙M.若⊙M在OB边上运动,则当OM= cm时,⊙M与OA相切.3.如图,P为正比例函数y=x图象上的一个动点,⊙P的半径为3,设点P的坐标为(x,y).则⊙P与直线x=2相切时点P的坐标为.4.如图,已知⊙P的半径为2,圆心P在抛物线y=﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为.。
部编数学九年级上册专题24.7切线长定理及三角形的内切圆【七大题型】(人教版)(解析版)含答案
专题24.7 切线长定理及三角形的内切圆【七大题型】【人教版】【题型1 利用切线长定理求周长】 (1)【题型2 三角形内切圆中求角度】 (5)【题型3 三角形内切圆中求面积】 (9)【题型4 三角形内切圆中求线段长度】 (13)【题型5 三角形内切圆中求半径】 (17)【题型6 三角形内切圆中求最值】 (20)【题型7 外接圆和内切圆的综合运用】 (25)【题型1 利用切线长定理求周长】【例1】(2022秋•宜兴市校级期中)如图,△ABC 是一张三角形的纸片,⊙O 是它的内切圆,点D 是其中的一个切点,已知AD =10cm ,小明准备用剪刀沿着与⊙O 相切的任意一条直线MN 剪下一块三角形(△AMN ),则剪下的△AMN 的周长为 20cm .【分析】利用切线长定理得出DM =MF ,FN =EN ,AD =AE ,进而得出答案.A B C I【解答】解:∵△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,AD=10cm,∴设E、F分别是⊙O的切点,故DM=MF,FN=EN,AD=AE,∴AM+AN+MN=AD+AE=10+10=20(cm).故答案是:20cm.【变式1-1】(2022秋•莒南县期末)如图,PA、PB切⊙O于A、B两点,CD切⊙O于点E,分别交PA、PB于点C、D.若PA、PB的长是关于x的一元二次方程x2﹣mx+m﹣1=0的两个根,求△PCD的周长.【分析】由PA、PB切⊙O于A、B两点,CD切⊙O于点E,根据切线长定理,可得PA=PB,又由PA、PB的长是关于x的一元二次方程x2﹣mx+m﹣1=0的两个根,根据根与系数的关系,可求得PA与PB的长,又由CD切⊙O于点E,即可得△PCD的周长等于PA+PB.【解答】解:∵PA、PB的长是关于x的一元二次方程x2﹣mx+m﹣1=0的两个根,∴PA+PB=m,PA•PB=m﹣1,∵PA、PB切⊙O于A、B两点,∴PA=PB=m2,即m2•m2=m﹣1,即m2﹣4m+4=0,解得:m=2,∴PA=PB=1,∵PA、PB切⊙O于A、B两点,CD切⊙O于点E,∴AD=ED,BC=EC,∴△PCD的周长为:PD+CD+PC=PD+DE+EC+PC=PD+AD+BC+PC=PA+PB=2.【变式1-2】(2022•雨花区校级三模)如图,△ABC中,∠C=90°,BC=5,⊙O与△ABC的三边相切于点D、E、F,若⊙O的半径为2,则△ABC的周长为( )A.14B.20C.24D.30【分析】设AD=x,由切线长定理得AE=x,根据题意可得四边形OECF为正方形,则CE=CF=2,BD=BF=3,在直角三角形ABC中,利用勾股定理求出x,然后求其周长.【解答】解:连接OE、OF,设AD=x,由切线长定理得AE=x,∵⊙O与Rt△ABC的三边分别点D、E、F,∴OE⊥AC,OF⊥BC,∴四边形OECF为正方形,∵⊙O的半径为2,BC=5,∴CE=CF=2,BD=BF=3,∴在Rt△ABC中,∵AC2+BC2=AB2,即(x+2)2+52=(x+3)2,解得x=10,∴△ABC的周长为12+5+13=30.故选:D.【变式1-3】(2022秋•崇川区月考)如图,P是⊙O外一点,PA、PB分别和⊙O相切于点A、B,C是劣弧AB上任意一点,过C作⊙O切线DE,交PA、PB于点D、E,已知PA的长为5cm,∠DOE=65°,点M、N分别在PA、PB的延长线上,MN与⊙O相切于点F,已知DN、EM的长是方程x2﹣10x+k=0的两根.(1)求∠P的度数;(2)求△PDE的周长;(3)求四边形DEMN的周长.【分析】(1)只要证明∠AOB=130°,∠PAO=∠PBO=90°,再利用四边形内角和定理即可解决问题;(2)利用切线长定理即可解决问题;(3)因为DN、EM的长是方程x2﹣10x+k=0的两根.可得DN+EM=10,再利用切线长定理即可解决问题;【解答】解:(1)连接OA、OB、OC.∴PA、PB、DE是⊙O的切线,∴PA⊥OA,OB⊥PB,∠DOA=∠DOC,∠EOB=∠EOC,∵∠DOE=65°,∴∠AOB=130°,∠PAO=∠PBO=90°,∴∠P=360°﹣90°﹣90°﹣130°=50°.(2)∵PA、PB、DE是⊙O的切线,∴DA=DC,EC=EB,PA=PB=5,∴△PDE的周长=PD+DE+PE=PD+DA+PE+EB=PA+PB=10.(3)∵DN、EM的长是方程x2﹣10x+k=0的两根.∴DN+EM=10,∴PN,PM,MN是⊙O的切线,∴AN=NF,MF=MB,DA=DC,EC=EB,∴四边形EMND的周长=EM+MN+DN+DE=EM+BM+NA+DA+EB+DN=2(DN+EM)=20.【题型2 三角形内切圆中求角度】【例2】(2022•温州模拟)如图,在Rt△ABC中,∠A=90°,⊙O是它的内切圆,与AB,BC,CA分别切于点D,E,F,若∠ACB=40°,则∠DOE= 130° .【分析】利用直角三角形性质求出∠ABC=50°,再利用切线性质求出∠BDO=∠BEO=90°,再利用四边形内角和为360°,即可求得答案.【解答】解:在Rt△ABC中,∵∠A=90°,∠ACB=40°,∴∠ABC=90°﹣∠ACB=90°﹣40°=50°,∵⊙O是Rt△ABC的内切圆,与AB,BC,CA分别切于点D,E,F,∴AB、BC是⊙O的切线,∴∠BDO=∠BEO=90°,∴∠DOE=360°﹣∠BDO﹣∠BEO﹣∠ABC=130°,故答案为:130°.【变式2-1】(2022秋•昌平区期末)如图,⊙O是△ABC的内切圆,切点分别为D,E,F,已知∠A=40°,连接OB,OC,DE,EF,则∠BOC= 110 °,∠DEF= 70 °.【分析】连接OD和OF,根据内切圆的性质可得OB,OC平分∠ABC,∠ACB,再根据三角形内角和定理即可求出角BOC的度数;根据切线的性质可得∠DOF的度数,进而根据圆周角定理可得∠DEF的度数.【解答】解:如图,连接OD和OF,∵⊙O是△ABC的内切圆,切点分别为D,E,F,∠A=40°,∴OB,OC平分∠ABC,∠ACB,∴∠BOC=180°﹣∠OBC﹣∠OCB(∠ABC+∠ACB)=180°−12×140°=180°−12=110°,∵OD⊥AB,OF⊥AC,∴∠ADO=∠AFO=90°,∴∠DOF=360°﹣90°﹣90°﹣40°=140°,∠DOF=70°.∴∠DEF=12故答案为:110,70.【变式2-2】(2022•万年县校级模拟)如图,△ABC中,内切圆I与AB,BC,CA分别切于F,D,E,连接BI,CI,再连接FD,ED,(1)若∠A=40°,求∠BIC与∠FDE的度数.(2)若∠BIC=α;∠FDE=β,试猜想α,β的关系,并证明你的结论.(∠ABC+∠ACB),求出∠ABC+∠ACB 【分析】(1)根据圆I是△ABC的内切圆求出∠IBC+∠ICB=12的度数,求出∠IBC+∠ICB即可;连接IF、IE,求出∠FIE,即可求出∠FDE;(2)由(1)得出∠BIC=180°﹣(∠IBC+∠ICB),∠FDE=180°﹣2∠A,根据三角形的内角和定理求出∠BIC =90°+12∠A ,代入即可求出答案.【解答】解:(1)∵圆I 是△ABC 的内切圆,∴∠IBC =12∠ABC ,∠ICB =12∠ACB ,∴∠IBC +∠ICB =12(∠ABC +∠ACB ),∵∠ABC +∠ACB =180°﹣∠A =140°,∴∠IBC +∠ICB =70°,∴∠BIC =180°﹣(∠IBC +∠ICB )=110°,如图,连接IF 、IE ,∵圆I 是△ABC 的内切圆,∴∠IFA =∠IEA =90°,∵∠A =40°,∴∠FIE =360°﹣∠IFA ﹣∠IEA ﹣∠A =140°,∴∠EDF =12∠EIF =70°,答:∠BIC =110°,∠FDE =70°;(2)解:α=180°﹣β,证明:由圆周角定理得:∠FIE =2∠FDE ,由(1)知:2∠FDE =180°﹣∠A ,即∠A =180°﹣2∠FDE ,∴∠A =180°﹣∠EIF ,由(1)知:2∠FDE =180°﹣∠A ,∴∠A =180°﹣2∠FDE =180°﹣2β,∠BIC =180°﹣(∠IBC +∠ICB )=180°−12(∠ABC +∠ACB )=180°−1(180°﹣∠A)2∠A,=90°+12(180°﹣2β),∴∠BIC=α=90°+12即α=180°﹣β.【变式2-3】(2022秋•邗江区期中)如图,在△ABC中,AB=AC,AD⊥BC于点D,点M是△ABC内一点,连接BM交AD于点N,已知∠AMB=108°,若点M是△CAN的内心,则∠BAC的度数为( )A.36°B.48°C.60°D.72°【分析】过点M作ME⊥AD于点E,根据已知条件可得△ABC是等腰三角形,AD是BC边的中垂线,证明ME∥BC,可得∠NME=∠NBD,由点M是△CAN的内心,可得点M在∠NAC和∠ANC的角平分线上,设∠NAM=x,∠NBD=y,所以∠BAC=4x,∠NBD=∠NCD=∠NME=y,∠ENM=∠CNM=2y,然后利用∠AMB=108°,列出方程组y−x=18°2y+x=72°,求解即可得结论.【解答】解:如图,过点M作ME⊥AD于点E,∵AB=AC,AD⊥BC,∴△ABC是等腰三角形,AD是BC边的中垂线,∴NB=NC,∠BAD=∠CAD,∴∠NBD=∠NCD,∵ME⊥AD,AD⊥BC,∴ME∥BC,∴∠NME=∠NBD,∵点M是△CAN的内心,∴点M在∠NAC和∠ANC的角平分线上,∴∠NAM=∠CAM,∠ANM=∠CNM,设∠NAM=x,∠NBD=y,∴∠BAC=4x,∠NBD=∠NCD=∠NME=y,∴∠ENM=∠CNM=∠NBC+∠NCB=2y,∵∠AMB=108°,∴∠AME=∠AMB﹣∠EMN=108°﹣y,在△AEM中,∠EAM+∠AME=90°,∴x+108°﹣y=90°,∴y﹣x=18°,在△ANM中,∠NAM+∠ANM=180°﹣108°,∴x+2y=72°,y−x=18°2y+x=72°,解得x=12°y=30°,∴∠BAC=4x=48°.故选:B.【题型3 三角形内切圆中求面积】【例3】(2022秋•黄冈期中)如图,边长为1的正方形ABCD的边AB是⊙O的直径,CF是⊙O的切线,E 为切点,F点在AD上,BE是⊙O的弦,求△CDF的面积.【分析】设AF=x,由切线长定理可得EF=AF=x,则FD=1﹣x,CF=CE+EF=CB+EF=1+x,利用勾股定理建立方程求出x的值,再根据三角形的面积公式即可求出问题的答案.【解答】解:设AF=x,∵四边形ABCD是正方形,∴∠DAB=90°,∴DA⊥AB,∴AD是圆的切线,∵CF是⊙O的切线,E为切点,∴EF=AF=x,∴FD=1﹣x,∵CB⊥AB,∴CB为⊙O的切线,∴CB=CE,∴CF=CE+EF=CB+EF=1+x.∴在Rt△CDF中由勾股定理得到:CF2=CD2+DF2,即(1+x)2=1+(1﹣x)2,解得x=14,∴DF=1﹣x=34,∴S△CDF =12×1×34=38.【变式3-1】(2022•武汉模拟)如图,AB是⊙O的直径,C是⊙O上一点,E是△ABC的内心,OE⊥EB.若AE=ABE的面积为( )A .B .2CD .1【分析】延长BE 交⊙O 于点F ,连接AF ,OF ,根据AB 是⊙O 的直径,可得∠AFB =∠C =90°,证明△FEA 是等腰直角三角形,可得AF =EF =2,根据垂径定理可得EF =BE =2,进而可得△ABE 的面积.【解答】解:如图,延长BE 交⊙O 于点F ,连接AF ,OF ,∵AB 是⊙O 的直径,∴∠AFB =∠C =90°,∴∠CAB +∠CBA =90°,∵E 是△ABC 的内心,∴∠EAB =12∠CAB ,∠EBA =12∠CBA ,∴∠EAB +∠EBA =12(∠CAB +∠CBA )=45°,∴∠FEA =45°,∴△FEA 是等腰直角三角形,∴AE ==,∵AE =∴AF =EF =2,∵OE ⊥EB ,∴EF =BE =2,∴△ABE 的面积为:12BE •AF =12×2×2=2.故选:B .【变式3-2】(2022春•海曙区校级期中)如图,花边带上正三角形的内切圆半径为1cm .如果这条花边带有100个圆和100个正三角形,则这条花边的面积为( )A .150πB .C .D .200【分析】画出图形,连接AD ,OB ,则AD 过O ,求出∠OBD =30°,求出OB ,根据勾股定理求出BD ,同法求出CD ,求出BC 的长后求得一个三角形的面积即可求得花边的面积.【解答】解:从中选择一个等边三角形和其内接圆如图,⊙O 是△ABC 的内切圆,⊙O 切AB 于F ,切AC 于E ,切BC 于D ,连接AD ,OB ,则AD 过O (因为等边三角形的内切圆的圆心再角平分线上,也在底边的垂直平分线上),∵△ABC 是等边三角形,∴∠ABC =60°,∵⊙O 是△ABC 的内切圆,∴∠OBC =12∠ABC =30°,∵⊙O 切BC 于D ,∴∠ODB =90°,∵OD =1,∴OB =2,由勾股定理得:BD ==∴BC =∴S △ABC =12BC •AD =12××3=∴这条花边的面积=100S △ABC =故选:C .【变式3-3】(2022•齐齐哈尔一模)如图,正方形ABCD 边长为4cm ,以正方形的一边BC 为直径在正方形ABCD 内作半圆,过A 作半圆的切线,与半圆相切于F 点,与DC 相交于E 点,则△ADE 的面积( )cm2A.12B.24C.8D.6【分析】由于AE与圆O切于点F,根据切线长定理有AF=AB=4cm,EF=EC;设EF=EC=xcm.则DE=(4﹣x)cm,AE=(4+x)cm,然后在三角形BCE中由勾股定理可以列出关于x的方程,解方程即可求出,然后就可以求出△ADE的面积.【解答】解:∵AE与圆O切于点F,显然根据切线长定理有AF=AB=4cm,EF=EC,设EF=EC=xcm,则DE=(4﹣x)cm,AE=(4+x)cm,在三角形ADE中由勾股定理得:(4﹣x)2+42=(4+x)2,∴x=1cm,∴CE=1cm,∴DE=4﹣1=3cm,=AD•DE÷2=3×4÷2=6cm2.∴S△ADE故选:D.【题型4 三角形内切圆中求线段长度】【例4】(2022秋•乌兰察布期末)如图,⊙O分别切△ABC的三条边AB、BC、CA于点D、E、F、若AB =5,AC=6,BC=7,求AD、BE、CF的长.【分析】由切线长定理,可知:AF =AD ,CF =CE ,BE =BD ,用未知数设AD 的长,然后表示出BD 、CF 的长,即可表示出BE 、CE 的长,根据BE +CE =7,可求出AD 的长进而求出BE 、CF 的长.【解答】解:假设AD =x ,∵⊙O 分别切△ABC 的三条边AB 、BC 、CA 于点D 、E 、F ;∴根据切线长定理得出AD =AF ,BD =BE ,EC =FC ,∴AF =x ,∵AB =5,AC =6,BC =7,∴BE =BD =AB ﹣AD =5﹣x ,FC =EC =AC ﹣AF =6﹣x ,∴BC =BE +EC =5﹣x +6﹣x =7,解得:x =2,∴AD =2,BE =BD =5﹣2=3,CF =AC ﹣AF =6﹣2=4.【变式4-1】(2022秋•崇川区月考)如图,已知△ABC 的内切圆O 与三边分别切于D 、E 、F ,∠A =60°,CB =6cm ,△ABC 的周长为16cm ,则DF 的长等于( )A .2cmB .3cmC .4cmD .6cm【分析】利用三角形内切圆的性质以及切线长定理得出BD =BE ,CE =CF ,AD =AF ,进而得出△ADF 是等边三角形,即可得出答案.【解答】解:∵△ABC 的内切圆O 与三边分别切于D 、E 、F ,CB =6cm ,△ABC 的周长为16cm ,∴BD =BE ,CE =CF ,AD =AF ,∵BE +EC =BD +FC =6,∴AD =AF =12(AB +AC +BC ﹣BC ﹣BD ﹣CF )=12(16﹣6﹣6)=2,∵∠A =60°,∴△ADF 是等边三角形,∴DF =2.故选:A .【变式4-2】(2022秋•龙凤区期末)如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,⊙O 是△ABC的内切圆,点D是斜边AB的中点,则OD的长度是 .【分析】如图连接OE、OF、OQ,设⊙O的半径是r,由勾股定理求出AB=5,根据△ABC的内切圆,得到OE⊥AC,OF⊥BC,OE=OF,推出四边形CFOE是正方形,得到CE=CF=OF=OE,根据3﹣r+4﹣r=5求出r、AQ、OQ的长求出AD、DQ的长【解答】解:如图连接OE、OF、OQ,设⊙O的半径是r,由勾股定理得:AB=5,∵⊙O是三角形ABC的内切圆,∴OE⊥AC,OF⊥BC,OE=OF,AE=AQ,BF=BQ,∵∠C=90°,∴∠C=∠CFO=∠CEO=90°,∴四边形CFOE是正方形,∴CE=CF=OF=OE,∴3﹣r+4﹣r=5,r=1,AQ=AE=3﹣1=2,OQ=1,∵D是AB的中点,,∴AD=52,∴DQ=AD﹣AQ=12∴OD2=OQ2+DQ2,∴OD=【变式4-3】(2022•永定区模拟)如图,已知在矩形ABCD中,AB=12,BC=16,⊙O1和⊙O2分别是△ABC和△ADC的内切圆,点E、F为切点,则EF的长是 4 cm.【分析】根据矩形的性质得到AC=20,△ABC≌△CDA,则⊙O1和⊙O2的半径相等.如图,过O1作AB、BC的垂线分别交AB、BC于N、P,过O2作BC,CD、AD的垂线分别交BC,CD、AD于Q,G、H,由∠B=90°,推出四边形O1NBP是正方形,设圆的半径为r,根据切线长定理12﹣r+16﹣r=20,解得r=4,过O1作O1M⊥FO2于M,则O1M=PQ=8,QM=BN=4,同法可得DG=4,根据EF=AC﹣AE﹣CF计算即可.【解答】解:∵矩形ABCD中,AB=12,BC=16,∴AC=20,△ABC≌△CDA,则⊙O1和⊙O2的半径相等.如图,过O1作AB、BC的垂线分别交AB、BC于N、P,过O2作BC,CD、AD的垂线分别交BC,CD、AD于Q,G、H,∵∠B=90°,∴四边形O1NBP是正方形,设圆的半径为r,根据切线长定理12﹣r+16﹣r=20,解得r=4,∴BP=BN=4,同法可得DG=4,∴AN=AE=CG=CF=8,∴EF=AC﹣AE﹣CF=20﹣16=4故答案为:4.【题型5 三角形内切圆中求半径】【例5】(2022•定安县二模)如图,在矩形ABCD中,AD<AB,AD=9,AB=12,则△ACD内切圆的半径是( )A.1B.2C.3D.4【分析】根据矩形性质和勾股定理可得AC=15,设△ACD内切圆的圆心为O,△ACD内切圆的半径为r,连接OE,OF,OG,得四边形DFOG是正方形,然后根据切线长定理即可解决问题.【解答】解:在矩形ABCD中,∠B=90°,AD=BC=9,AB=12,根据勾股定理,得AC==15,设△ACD内切圆的圆心为O,△ACD内切圆的半径为r,如图,连接OE,OF,OG,得四边形DFOG是正方形,∴DF=DG=r,∴AG=AE=AD﹣DG=9﹣r,CF=CE=CD﹣DF=AB﹣DF=12﹣r,∵AE+CE=AC,∴9﹣r+12﹣r=15,解得r=3.∴△ACD内切圆的半径是3.故选:C.【变式5-1】(2022秋•张店区期末)如图,在Rt△ABC中,∠C=90°,BC=3,AB=5,⊙O是Rt△ABC 的内切圆,则⊙O的半径为( )A .1BC .2D .【分析】根据三角形内切圆与内心的性质和三角形面积公式解答即可.【解答】解:∵∠C =90°,BC =3,AB =5,∴AC ==4,如图,分别连接OA 、OB 、OC 、OD 、OE 、OF ,∵⊙O 是△ABC 内切圆,D 、E 、F 为切点,∴OD ⊥BC ,OE ⊥AC ,OF ⊥AB 于D 、E 、F ,OD =OE =OF ,∴S △ABC =S △BOC +S △AOC +S △AOB =12BC •DO +12AC •OE +12AB •FO =12(BC +AC +AB )•OD ,∵∠C =90°,∴12×AC •BC =12(BC +AC +AB )•OD ,∴OD =3×4345=1.故选:A .【变式5-2】(2022秋•虎丘区校级期中)若四边形ABCD 有内切圆(与四边形四边均相切),四边形面积为S ,各边长分别为a ,b ,c ,d ,则该圆的直径为( )A .a b c d SB .S a cC .c−d S(a b)D .2S a b c d【分析】连接OA 、OB 、OC 、OD .由S 四边形ABCD =S △OAB +S △OBC +S △OCD +S △AOD ,由S 四边形ABCD =12AB •r +12BC •r +12CD •r +12AD •r =12(a +b +c +d )•r =S ,即可推出r =2S a b c d .【解答】解:如图,连接OA 、OB 、OC 、OD .∵S 四边形ABCD =S △OAB +S △OBC +S △OCD +S △AOD又∵S △OAB =12AB •r ,S △OBC =12BC •r ,S △OCD =12CD •r ,S △AOD =12AD •r ,∴S 四边形ABCD =12AB •r +12BC •r +12CD •r +12AD •r =12(a +b +c +d )•r =S ,∴r =2S a b c d .故选:D .【变式5-3】(2022秋•南丹县期末)如图,△ABC 的内切圆⊙O 分别与AB ,AC ,BC 相切于点D ,E ,F .若∠C =90°,AC =6,BC =8,则⊙O 的半径等于 2 .【分析】连结OD ,OE ,OF ,设⊙O 半径为r ,根据勾股定理可得AB =10,证明四边形OECF 是正方形,可得CF =CE =OF =r ,然后根据切线长定理可得AE =AE =AC ﹣CE =6﹣r ,BF =BD =BC ﹣CF =8﹣r ,进而可以解决问题.【解答】解:如图,连结OD ,OE ,OF ,设⊙O 半径为r ,∵∠C =90°,AC =6,BC =8,∴AB ==10,∵△ABC 的内切圆⊙O 与AB ,BC ,AC 分别相切于点D ,F ,E ,∴AC ⊥OE ,AB ⊥OD ,BC ⊥OE ,且OF =OD =OE =r ,∴四边形OECF 是正方形,∴CF =CE =OF =r ,∴AE =AE =AC ﹣CE =6﹣r ,BF =BD =BC ﹣CF =8﹣r ,∵AD +BD =AB =10,∴6﹣r +8﹣r =10,∴r =2.∴⊙O 的半径等于2.故答案为:2.【题型6 三角形内切圆中求最值】【例6】(2022春•长兴县月考)如图,矩形ABCD ,AD =6,AB =8,点P 为BC 边上的中点,点Q 是△ACD 的内切圆圆O 上的一个动点,点M 是CQ 的中点,则PM +1 .【分析】由矩形性质和勾股定理可得AC =10,设△ADC 内切圆半径为r ,由面积法可得r =2,连接BQ ,易证PM 为△BCQ 的中位线,得出PM =12BQ ,当BQ 经过圆心O 时,BQ 最长,则此时PM 最大,作OE ⊥AD 与点E ,OF ⊥AB 与点F ,则BF =AB ﹣AF =8﹣2=6,OF =AE =AD ﹣DE =6﹣2=4,由勾股定理可得BO =BQ =BO +OQ =2,从而可得PM 的结果.【解答】解:∵四边形ABCD 为矩形,∴∠D =90°,CD =AB =8,∴AC ==10,设△ADC 的内切圆半径为r ,则有12r(AC +AD +DC)=12×6×8,即12r(10+6+8)=24,解得:r =2.连接BQ ,∵P为BC中点,M为CQ中点,∴PM为△BQC的中位线,BQ,∴PM=12当BQ经过圆心O时,BQ最长,则此时PM最大,作OE⊥AD与点E,OF⊥AB与点F,则BF=AB﹣AF=8﹣2=6,OF=AE=AD﹣DE=6﹣2=4,∴BO=∴BQ=BO+OQ=+2,BQ=1.∴PM=12+1.【变式6-1】(2022秋•扬州月考)如图是一块△ABC余料,已知AB=20cm,BC=7cm,AC=15cm,现将余料裁剪成一个圆形材料,则该圆的最大面积是 4πcm2. .r 【分析】当该圆为三角形内切圆时面积最大,设内切圆半径为r,则该三角形面积可表示为:12•BC•AD,利用勾股定理可得AD,易得三角形(AB+AC+BC)=21r,利用三角形的面积公式可表示为12ABC的面积,可得r,求得圆的面积.【解答】解:如图1所示,S △ABC =12•r •(AB +BC +AC )=12r ×42=21r ,过点A 作AD ⊥BC 交BC 的延长线于点D ,如图2,设CD =x ,由勾股定理得:在Rt △ABD 中,AD 2=AB 2﹣BD 2=400﹣(7+x )2,在Rt △ACD 中,AD 2=AC 2﹣x 2=225﹣x 2,∴400﹣(7+x )2=225﹣x 2,解得:x =9,∴AD =12,∴S △ABC =12BC ×AD =12×7×12=42,∴21r =42,∴r =2,该圆的最大面积为:S =πr 2=π•22=4π(cm 2),故答案为:4πcm 2.【变式6-2】(2022•温州自主招生)设等边△ABC 的内切圆半径为2,圆心为I .若点P 满足PI =1,则△ABC 与△APC 的面积之比的最大值为 6 .【分析】P 满足PI =1,则P 在以I 为圆心,以1位半径的圆上,当P 是⊙O 和BE 的交点时,△ACP 的面积最小,即△ABC 与△APC 的面积之比最大.此时PE =2﹣1=1,则△ABC 与△APC 的面积的比值是BE 与PE 的比值,据此即可求解.【解答】解:点P 满足PI =1,则P 在以I 为圆心,以1位半径的圆上.作BE ⊥AC ,则BE 一定过点I ,连接AI .∵在直角△AIE 中,∠IAE =12∠BAC =12×60°=30°,IE =2,∴AI =2IE =4,∴BE =IE +BI =IE +AI =2+4=6.当P是⊙I和BE的交点时,△ACP的面积最小,即△ABC与△APC的面积之比最大.此时PE=2﹣1=1,则△ABC与△APC的面积的比值是BEPE =61=6.故答案是:6.【变式6-3】(2022秋•滨湖区期末)已知点C是⊙O上一动点,弦AB=6,∠ACB=120゜.(1)如图1,若CD平分∠ACB,求证:AC+BC=CD;(2)如图2,△ABC内切圆半径为r.①用含r的代数式表示AC+BC;②求r的最大值.【分析】(1)在CD上截取CE=BC,由∠ACD=∠BCD=60°得到△BCE为等边三角形,根据圆周角定理得∠ABD=∠ACD=60°,则BE=BC=CE,∠1+∠ABE=60°,∠ABE+∠2=60°,所以∠1=∠2,于是可根据“AAS”判断△ACB≌△DEB,得到AC=DE,由此得到CD=CE+DE=BC+AC;(2)①作弦CD平分∠ACB,设△ABC的内心为P点,作PQ⊥AB于Q,PH⊥BC于H,PF⊥AC于F,根据内心的性质得PF=PQ=PH=r,由∠ACD=∠BCD=60°得到∠CPF=∠CPH=30°,根据含30度的直角三角形三边的关系得到CF,CH==,然后根据切线长定理得到AF=AQ=AC﹣CF=AC,BH=BQ=BC﹣CH=BC,而AB=AQ+BQ,所以AC+BC=6,整理得AC+BC=6+;②由于AC+BC=CD得到CD=6,所以当CD为直径时,r最大;当CD为直径,根据垂径定理的推论得CD⊥AB,AM=BM=12AB=3,AC=BC,可计算出CD=AC=2CD=+=6+,可解得r=6﹣【解答】(1)证明:在CD上截取CE=BC,如图1,∵CD平分∠ACB,∠ACB=120゜,∴∠ACD=∠BCD=60°,∴△BCE为等边三角形,∠ABD=∠ACD=60°,∴BE=BC=CE,∠1+∠ABE=60°,∠ABE+∠2=60°,∴∠1=∠2,在△ACB和△DEB中∠A=∠D∠1=∠2,BC=BE∴△ACB≌△DEB,∴AC=DE,∴CD=CE+DE=BC+AC;(2)解:①作弦CD平分∠ACB,设△ABC的内心为P点,作PQ⊥AB于Q,PH⊥BC于H,PF⊥AC 于F,如图,则PF=PQ=PH=r,∵CD平分∠ACB,∠ACB=120゜,∴∠ACD=∠BCD=60°,∴∠CPF=∠CPH=30°,∴CF=,CH==,∴AF=AQ=AC﹣CF=AC,BH=BQ=BC﹣CH=BC,而AB=AQ+BQ,∴AC+BC=6,∴AC+BC=6+;②∵AC+BC=CD,∴CD=6+,∴当CD为直径时,r最大,如图3,当CD为直径,∴CD⊥AB,垂足为M,AB=3,AC=BC,∴AM=BM=12∵∠ACD=60°,∴∠CAM=30°,∴CD∴AC=2CD=∴+6,∴r=6﹣即r的最大值为6﹣【题型7 外接圆和内切圆的综合运用】【例7】(2022秋•滨湖区期末)设两直角边分别为3、4的直角三角形的外接圆和内切圆的半径长分别为R 和r,则R﹣r= 1.5 .【分析】利用三角形的外心与内心的性质即可进行计算.【解答】解:因为直角三角形的外接圆半径等于斜边长的一半,所以R==2.5;如图,若Rt △ABC 的边AC =3,BC =4,根据勾股定理,得AB =5,其内切圆⊙O 分别切AB 、BC 、AC 于D 、E 、F .设OE =OF =OD =r ,∴S △ABC =S △AOB +S △BOC +S △AOC ,即12AC •BC =12AB •OD +12BC •OE +12AC •OF ,12×3×4=12×5×r +12×4×r +12×3×r ,6=12r (5+4+3),6=6r ,∴r =1,则R ﹣r =2.5﹣1=1.5.故答案为:1.5.【变式7-1】(2022•鞍山模拟)如图,⊙O 内切于Rt △ABC ,切点分别为D 、E 、F ,∠C =90°.已知∠AOC =120°,则∠OAC = 15 °,∠B = 60 °.已知AC =4cm ,BC =3cm ,则△ABC 的外接圆的半径为 52 cm ,内切圆的半径为 1 cm .【分析】由三角形内心的性质得到OC 平分∠ACB ,求得∠ACO =12∠ACB =45°,根据三角形的内角和得到结论;根据勾股定理得到AB ==5,于是得到结论.【解答】解:∵⊙O 内切于Rt △ABC ,∠C =90°,∴OC 平分∠ACB ,∴∠ACO =12∠ACB =45°,∵∠AOC =120°,∴∠OAC =180°﹣45°﹣120°=15°,∵AO 平分∠BAC ,∴∠BAC =2∠OAC =30°,∴∠B =90°﹣30°=60°;∵AC =4cm ,BC =3cm ,∠C =90°,∴AB ==5,∴△ABC 的外接圆的半径为52;设内切圆的半径为r ,∴r =34−52=1,故答案为:15,60,52,1.【变式7-2】(2022•游仙区模拟)如图,在△ABC 中,∠BAC =60°,其周长为20,⊙I 是△ABC 的内切BIC 的外接圆直径为 .【分析】设△BIC 的外接圆圆心为O ,连接OB ,OC ,作CD ⊥AB 于点D ,在圆O 上取点F ,连接FB ,FC ,作OE ⊥BC 于点E ,设AB =c ,BC =a ,AC =b ,根据三角形内心定义可得S △ABC =12lr =12×20×=12AB •CD ,可得bc =40,根据勾股定理可得BC =a =7,再根据I 是△ABC 内心,可得IB 平分∠ABC ,IC 平分∠ACB ,根据圆内接四边形性质和圆周角定理可得∠BOC =120°,再根据垂径定理和勾股定理即可求出OB 的长.【解答】解:如图,设△BIC 的外接圆圆心为O ,连接OB ,OC ,作CD ⊥AB 于点D ,在圆O 上取点F ,连接FB ,FC ,作OE ⊥BC 于点E ,设AB =c ,BC =a ,AC =b ,∵∠BAC =60°,∴AD =12b ,CD ,∴BD =AB ﹣AD =c −12b ,∵△ABC 周长为l =20,△ABC 的内切圆半径为r∴S △ABC =12lr =12×20×12AB •CD ,∴=•c ,∴bc =40,在Rt △BDC 中,根据勾股定理,得BC 2=BD 2+CD 2,即a 2=(c −12b )2+)2,整理得:a 2=c 2+b 2﹣bc ,∵a +b +c =20,∴a 2=c 2+b 2﹣bc =(b +c )2﹣3bc =(20﹣a )2﹣3×40,解得a =7,∴BC =a =7,∵I 是△ABC 内心,∴IB 平分∠ABC ,IC 平分∠ACB ,∵∠BAC=60°,∴∠ABC+∠ACB=120°,∴∠IBC+∠ICB=60°,∴∠BIC=120°,∴∠BFC=180°﹣120°=60°,∴∠BOC=120°,∵OE⊥BC,,∠BOE=60°,∴BE=CE=72÷∴OB=72【变式7-3】(2022秋•鄞州区校级月考)如图,在Rt△ABC中,AC=8,BC=6,∠C=90°.⊙I分别切AC,BC,AB于点D,E,F,求Rt△ABC的内心I与外心O之间的距离.【分析】连接ID、IE、IF,如图,由AC=8,BC=6,∠C=90°,根据圆周角定理的推论和勾股定理AB=5,连接OI,设⊙I的得到AB为△ABC的外接圆的直径,AB=10,则外心O为AB的中点,BO=12半径为r,根据切线的性质和切线长定理得ID⊥AC,IE⊥BC,IF⊥AB,AD=AF,BE=BF,易得四边形IDCE为正方形,则DC=CE=r,所以AD=AC﹣DC=8﹣r,BE=BC﹣CE=6﹣r,即AF=8﹣r,BF=6﹣r,利用AF+BF=AB得8﹣r+6﹣r=10,解得r=2,所以BF=4,则OF=OB﹣BF=1,在Rt△IOF中,根据勾股定理得IO【解答】解:连接ID、IE、IF,如图,∵AC=8,BC=6,∠C=90°,∴AB为△ABC的外接圆的直径,AB=10,∴外心O为AB的中点,AB=5,∴BO=12连接OI,如图,设⊙I的半径为r,∵⊙I分别切AC,BC,AB于点D,E,F,∴ID⊥AC,IE⊥BC,IF⊥AB,AD=AF,BE=BF,而∠C=90°,∴四边形IDCE为正方形,∴DC=CE=r,∴AD=AC﹣DC=8﹣r,BE=BC﹣CE=6﹣r,∴AF=8﹣r,BF=6﹣r,而AF+BF=AB,∴8﹣r+6﹣r=10,解得r=2,∴BF=6﹣r=4,∴OF=OB﹣BF=5﹣4=1,在Rt△IOF中,IF=2,OF=1,∴IO=即Rt△ABC的内心I与外心O。
3.7 切线长定理及其推论
E
。
OC
D
P
OP垂直平分AB
切线长定理为证明线段相等,
A
角相等,弧相等,垂直关系提供了理 论依据,必须掌握并能灵活应用。
2.圆的外切四边形的两组对边的和相等
课后作业
完成课堂点睛第71-72页
谁在装束和发型上用尽心思, 谁就没有精力用于学习;谁只注 意修饰外表的美丽,谁就无法得 到内在的美丽。 —— 杨尊田
关系.
OA⊥PA,OB ⊥PB,AB ⊥OEP O C D
P
(2)写出图中与∠OAC相等的角. B ∠OAC=∠OBC=∠APC=∠BPC
(3)写出图中所有的全等三角形. △AOP≌ △BOP, △AOC≌ △BOC, △ACP≌ △BCP
例1 PA、PB是⊙O的两条切线,
典例精析 A、B为切点,直线OP交于⊙O于点
∴r=4 即⊙O半径为4
r 12(102426) r 12(abc)
例3 如图,PA、PB是⊙O的切线,CD切⊙O于点
E,△PCD的周长为12,∠APB=60°.求: (1)PA的长; (2)∠COD的度数.
解:(1)∵CA,CE都是圆O的切线, ∴CA=CE 同理DE=DB,PA=PB
∴三角形PDE的周长 =PD+CD+PC=PD+PC+CA+BD =PA+PB =2PA =12,
过⊙O外一点作⊙O的切线
A
OO
P
B
获取新知
一、切线长定义:
A
经过圆外一点做圆
的切线,这点和切点之间
的线段的长叫做这点到
O
P
圆的切线长。
切线与切线长的区别与联系: B
(1)切线是一条与圆相切的直线; (2)切线长是指切线上某一点与切点间的线段的长。
初中数学中考专题复习之圆专题01切线长定理
专题01切线长定理切线长定理(Theorem of length of tangent),是初等平面几何的一个定理。
它指出,从圆外一点引圆的两条切线,它们的切线长相等。
即如图,AB、AC切圆O于B、C,切线长AB=AC。
1.如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为1,△PCD的周长等于2,则线段AB的长是()A.B.3 C.2D.3解析:∵PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D,∴AC=EC,DE=DB,PA=PB,∵△PCD的周长等于2,∴PA+PB=2,∴PA=PB=,连接PA和AO,∵⊙O的半径为1,∴tan∠APO===,∴∠APO=30°,∴∠APB=60°,∴△APB是等边三角形,∴AB=PA=PB=.选A.2.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E且分别交PA、PB于点C,D,若PA=4,则△PCD的周长为()A.5 B.7 C.8 D.10解析:∵PA、PB分别切⊙O于点A、B,∴PB=PA=4,∵CD切⊙O于点E且分别交PA、PB于点C,D,∴CA=CE,DE=DB,∴△PCD的周长=PC+PD+CD=PC+CA+PD+DB=PA+PB=8,选C.3.如图,PA、PB、CD与⊙O相切于点为A、B、E,若PA=7,则△PCD的周长为()A.7 B.14 C.10.5 D.10解析:∵PA、PB、CD与⊙O相切于点为A、B、E,∴PB=PA=7,CA=CE,DE=DB,∴△PCD的周长=PC+CD+PB=PC+CE+DE+PD=PC+CA+DB+PD=PA+PB=14,选B.4.如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,若⊙O 的半径为r,△PCD的周长为3r,连接OA,OP,则的值是()A.B.C.D.解析:∵PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,∴CA=CF,DF=DB,PA=PB,∴PC+CF+DF+PD=PA=PB=2PA=3r,∴PA=r,则的值是:=.选D.5.如图,PA、PB切⊙O于点A、B,PA=8,CD切⊙O于点E,交PA、PB于C、D 两点,则△PCD的周长是()A.8 B.18 C.16 D.14解析:∵PA,PB切⊙O于A、B两点,CD切⊙O于点E,∴PB=PA=8,CA=CE,DB=DE,∴△PCD的周长=PC+CE+PD=PC+CE+DE+PC=PC+CA+DB+PD=PA+PB=16.选C.6.如图,P为⊙O外一点,PA,PB分别切⊙O于A,B,CD切⊙O于点E,分别交PA,PB于点C,D.若PA=5,则△PCD的周长和∠COD分别为()A.5,(90°+∠P)B.7,90°+C.10,90°﹣∠P D.10,90°+∠P解析:∵PA、PB切⊙O于A、B,CD切⊙O于E,∴PA=PB=10,ED=AD,CE=BC;∴△PCD的周长=PD+DE+PC+CE=2PA,即△PCD的周长=2PA=10,;如图,连接OA、OE、OB.由切线性质得,OA⊥PA,OB⊥PB,OE⊥CD,DB=DE,AC=CE,∵AO=OE=OB,易证△AOC≌△EOC(SAS),△EOD≌△BOD(SAS),∴∠AOC=∠EOC,∠EOD=∠BOD,∴∠COD=∠AOB,∴∠AOB=180°﹣∠P,∴∠COD=90°﹣∠P.选C.7.P是⊙O外一点,PA、PB分别与⊙O相切于点A、B,点C是劣弧AB上任意一点,经过点C作⊙O的切线,分别交PA、PB于点D、E.若PA=4,则△PDE的周长是()A.4 B.8 C.12 D.不能确定解析:根据题意画出图形,如图所示,由直线DA和直线DC为圆O的切线,得到AD=DC,同理,由直线EC和直线EB为圆O的切线,得到EC=EB,又直线PA和直线PB为圆O的切线,所以PA=PB=4,则△PDE的周长C=PD+DE+PE=PD+DC+EC+PE=PD+DA+EB+PE=PA+PB=4+4=8.选B.8.如图,AE、AD和BC分别切⊙O于点E、D、F,如果AD=20,则△ABC的周长为()A.20 B.30 C.40 D.50解析:据切线长定理有AD=AE,BE=BF,CD=CF;则△ABC的周长=AB+BC+AC=AB+BF+CF+AC=AB+BE+AC+CD=AD+AE=2AD=40.选C.9.如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC =35°,∠P的度数为()A.35°B.45°C.60°D.70°解析:根据切线的性质定理得∠PAC=90°,∴∠PAB=90°﹣∠BAC=90°﹣35°=55°.根据切线长定理得PA=PB,所以∠PBA=∠PAB=55°,所以∠P=70°.选D.10.如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P=°.解析:∵PA,PB是⊙O的切线,∴PA=PB,PA⊥OA,∴∠PAB=∠PBA,∠OAP=90°,∴∠PBA=∠PAB=90°﹣∠OAB=90°﹣38°=52°,∴∠P=180°﹣52°﹣52°=76°;故答案为:76.11.如图,直角梯形ABCD中,以AD为直径的半圆与BC相切于E,BO交半圆于F,DF的延长线交AB于点P,连DE.以下结论:①DE∥OF;②AB+CD=BC;③PB=PF;④AD2=4AB•DC.其中正确的是()A.①②③④B.只有①②C.只有①②④D.只有③④解析:∵BA,BE是圆的切线.∴AB=BE,BO是△ABE顶角的平分线.∴OB⊥AE∵AD是圆的直径,∴DE⊥AE,∴DE∥OF,故①正确;∵CD=CE,AB=BE,∴AB+CD=BC,故②正确;∵OD=OF,∴∠ODF=∠OFD=∠BFP若PB=PF,则有∠PBF=∠BFP=∠ODF而△ADP与△ABO不一定相似,故PB=PF不一定成了,故③不正确;连接OC.可以证明△OAB∽△CDO∴,即:OA•OD=AB•CD∴AD2=4AB•DC,故④正确.故正确的是:①②④.选C.12.一个菱形的周长是20cm,两对角线之比是4:3,则该菱形的内切圆的半径是cm.解析:如图所示:菱形ABCD,对角线AC,BD,可得菱形内切圆的圆心即为对角线交点,设AB与圆相切于点E,可得OE⊥AB,∵一个菱形的周长是20cm,两对角线之比是4:3,∴AB=5cm,设BO=4x,则AO=3x,故(4x)2+(3x)2=25,解得:x=1,则AO=3,BO=4,故EO•AB=AO•BO,解得:EO=.13.如图,四边形ABCD是⊙O的外切四边形,且AB=10,CD=12,则四边形ABCD 的周长为.解析:∵四边形ABCD是⊙O的外切四边形,∴AD+BC=AB+CD=22,∴四边形ABCD的周长=AD+BC+AB+CD=44,故答案为:44.14.如图,PA、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知△PCD的周长等于10cm,则PA=cm.解析:如图,设DC与⊙O的切点为E;∵PA、PB分别是⊙O的切线,且切点为A、B;∴PA=PB;同理,可得:DE=DA,CE=CB;则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm);∴PA=PB=5cm,故答案为:5.15.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC 以及腰AB均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是.解析:根据切线长定理,得AD=AE,BC=BE,所以梯形的周长是5×2+4=14,故答案为:14.16.如图,在Rt△ABC中,∠C=90°,BC=5,⊙O与Rt△ABC的三边AB、BC、AC 分别相切于点D、E、F,若⊙O的半径r=2,则Rt△ABC的周长为.解析:连接OE、OF,设AD=x,由切线长定理得AF=x,∵⊙O与Rt△ABC的三边AB、BC、AC分相切于点D、E、F,∴OE⊥BC,OF⊥AC,∴四边形OECF为正方形,∵r=2,BC=5,∴CE=CF=2,BD=BE=3,∴由勾股定理得,(x+2)2+52=(x+3)2,解得,x=10,∴△ABC的周长为12+5+13=30,故答案为30.17.如图,AB、BC、CD分别与⊙O相切于点E、F、G,若∠BOC=90°,(1)求证:AB∥CD;(2)若OB=3,OC=4,求由BE、BC、CG、及弧EFG围成图形的面积(即图中阴影部分).解析:(1)∵∠BOC=90°,∴∠OBC+∠OCB=90°,又BE与BF为圆O的切线,∴BO为∠EBF的平分线,∴∠OBC=∠OBF,同理可得∠OCB=∠OCG,∴∠OBF+∠OCG=90°,∴∠OBC+∠OCB+∠OBE+∠OCG=180°,即∠ABF+∠DCF=180°,∴AB∥CD;(2)连接OE,OF,OG,如图所示:由BE和BF为圆的切线,可得OE⊥AB,OF⊥BC,即∠OEB=∠OFB=90°,∴BE=BF,又OB=OB,∴Rt△OEB≌Rt△OFB(HL),∴∠BOE=∠BOF,S△OEB=S△OFB,∴S扇形OEM=S扇形OFM,∴S△OEB﹣S扇形OEM=S△OFB﹣S扇形OFM,即S阴影BEM=S阴影BFM,同理S阴影NFC=S阴影NCG,由∠BOC=90°,OB=3,OC=4,根据勾股定理得:BC=5,∵BC为圆的切线,∴OF⊥BC,∴OB•OC=BC•OF,即OF=,∴S△BOC=OB•OC=6,S扇形OMN==,则阴影部分面积S=2(S阴影BFM+S阴影NFC)=2(S△BOC﹣S扇形OMN)=12﹣18.如图,PA,PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=60°.(1)求∠BAC的度数;(2)当OA=2时,求AB的长.解析:(1)∵PA,PB是⊙O的切线,∴AP=BP,∵∠P=60°,∴∠PAB=60°,∵AC是⊙O的直径,∴∠PAC=90°,∴∠BAC=90°﹣60°=30°.(2)连接OP,则在Rt△AOP中,OA=2,∠APO=30°,∴OP=4,由勾股定理得:,∵AP=BP,∠APB=60°,∴△APB是等边三角形,∴.19.如图,已知AB为⊙O的直径,PA,PC是⊙O的切线,A,C为切点,∠BAC=30°.(Ⅰ)求∠P的大小;(Ⅱ)若AB=2,求PA的长(结果保留根号).解析:(Ⅰ)∵PA是⊙O的切线,AB为⊙O的直径,∴PA⊥AB,∴∠BAP=90°;∵∠BAC=30°,∴∠CAP=90°﹣∠BAC=60°.又∵PA、PC切⊙O于点A、C,∴PA=PC,∴△PAC为等边三角形,∴∠P=60°.(Ⅱ)如图,连接BC,则∠ACB=90°.在Rt△ACB中,AB=2,∠BAC=30°,∵c o s∠BAC=,∴AC=AB•c o s∠BAC=2c o s30°=.∵△PAC为等边三角形,∴PA=AC,∴PA=.20.如图所示,在梯形ABCD中,AD∥BC,AB⊥BC,以AB为直径的⊙O与DC相切于E.已知AB=8,边BC比AD大6.(1)求边AD、BC的长;(2)在直径AB上是否存在一动点P,使以A、D、P为顶点的三角形与△BCP相似?若存在,求出AP的长;若不存在,请说明理由.解析:(1)方法1:过D作DF⊥BC于F在Rt△DFC中,DF=AB=8,FC=BC﹣AD=6∴DC2=62+82=100,即DC=10设AD=x,则DE=AD=x,EC=BC=x+6∴x+(x+6)=10.∴x=2.∴AD=2,BC=2+6=8方法2:连OD、OE、OC,由切线长定理可知∠DOC=90°,AD=DE,CB=CE设AD=x,则BC=x+6,由射影定理可得:OE2=DE•EC,即:x(x+6)=16,解得x1=2,x2=﹣8,(舍去)∴AD=2,BC=2+6=8(2)存在符合条件的P点设AP=y,则BP=8﹣y,△ADP与△BCP相似,有两种情况①△ADP∽△BCP时,∴y=②△ADP∽△BPC时,∴y=4故存在符合条件的点P,此时AP=或4。
切线长定理—知识讲解
切线长定理—知识讲解责编:常春芳【学习目标】1.了解切线长定义,掌握切线长定理;2.了解圆外切四边形定义及性质;3. 利用切线长定理解决相关的计算和证明.【要点梳理】要点一、切线长定理1.切线长: 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.要点诠释: 切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点诠释: 切线长定理包含两个结论:线段相等和角相等.要点二、圆外切四边形的性质1.圆外切四边形四边形的四条边都与同一个圆相切,那这个四边形叫做圆的外切四边形.2.圆外切四边形性质圆外切四边形的两组对边之和相等.【典型例题】类型一、切线长定理1.(2015秋•湛江校级月考)已知PA、PB分别切⊙O于A、B,E为劣弧AB上一点,过E点的切线交PA于C、交PB于D.(1)若PA=6,求△PCD的周长.(2)若∠P=50°求∠DOC.【答案与解析】解:(1)连接OE,∵PA、PB与圆O相切,∴PA=PB=6,同理可得:AC=CE,BD=DE,△PCD的周长=PC+PD+CD=PC+PD+CE+DE=PA+PB=12;(2)∵PA PB与圆O相切,∴∠OAP=∠OBP=90°∠P=50°,∴∠AOB=360°﹣90°﹣90°﹣50°=130°,在Rt△AOC和Rt△EOC 中,,∴Rt△AOC≌Rt△EOC(HL),∴∠AOC=∠COE,同理:∠DOE=∠BOD,∴∠COD=∠AOB=65°.【总结升华】本题考查的是切线长定理和全等三角形的判定和性质,掌握切线长定理是解题的关键.2.如图,△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于D,E为BC中点.求证:DE是⊙O切线.【答案与解析】连结OD、CD,AC是直径,∴OA=OC=OD,∴∠OCD=∠ODC,∠ADC=90°,∴△CDB是直角三角形.∵E是BC的中点,∴DE=EB=EC,∴∠ECD=∠EDC,∠ECD+∠OCD=90°,∴∠EDC+∠ODC=90°,即OD⊥ED,∴DE是⊙O切线.【总结升华】自然连接OD,可证OD⊥DE.举一反三:【变式】已知:如图,⊙O为ABC∆的外接圆,BC为⊙O的直径,作射线BF,使得BA平分CBF∠,过点A作AD BF⊥于点D.求证:DA为⊙O的切线.FCFC【答案】连接AO.∵AO BO=,∴23∠=∠.∵ BA CBF ∠平分,∴ 12∠=∠. ∴ 31∠=∠ .∴ DB ∥AO .∵ AD DB ⊥,∴ 90BDA ∠=︒.∴ 90DAO ∠=︒.∵ AO 是⊙O 半径,∴ DA 为⊙O 的切线. 3.如图,正方形ABCD 边长为4cm ,以正方形的一边BC 为直径在正方形ABCD 内作半圆,过A 作半圆的切线,与半圆相切于F 点,与DC 相交于E 点,则△ADE 的面积( )A.12B.24C.8D.6【答案】D ;【解析】∵AE 与圆O 切于点F ,显然根据切线长定理有AF=AB=4cm ,EF=EC ,设EF=EC=xcm ,则DE=(4﹣x)cm ,AE=(4+x )cm ,在三角形ADE 中由勾股定理得:(4﹣x)2+42=(4+x )2,∴x=1cm,∴CE=1cm,∴DE=4﹣1=3cm,∴S △ADE =AD•DE÷2=3×4÷2=6cm 2.【总结升华】此题主要考查圆的切线长定理,正方形的性质和勾股定理等知识,解答本题关键是运用切线长定理得出AB=AF ,EF=EC .类型二、圆外切四边形 4.(2015•西青区二模)已知四边形ABCD 中,AB∥CD,⊙O 为内切圆,E 为切点.(Ⅰ)如图1,求∠AOD 的度数;(Ⅱ)如图1,若AO=8cm ,DO=6cm ,求AD 、OE 的长;(Ⅲ)如图2,若F 是AD 的中点,在(Ⅱ)中条件下,求FO 的长.【答案与解析】解:(Ⅰ)∵⊙O为四边形ABCD的内切圆,∴AD、AB、CD为⊙O的切线,∴OD平分∠ADC,OA平分∠BAD,即∠ODA=∠ADC,∠OAD=∠BAC,∵AB∥CD,∴∠ADC+∠BAC=180°,∴∠ODA+∠OAD=90°,∴∠AOD=90°;(Ⅱ)在Rt△AOD中,∵AO=8cm,DO=6cm,∴AD==10(cm),∵AD切⊙O于E,∴OE⊥AD,∴OE•AD=OD•OA,∴OE==(cm);(Ⅲ)∵F是AD的中点,∴FO=AD=×10=5(cm).【总结升华】本题考查了三角形的内切圆与内心,也考查了切线长定理.举一反三:【变式】在圆外切四边形ABCD中,AB:BC:CD:AD只可能是().A.2:3:4:5B.3:4:6:5C.5:4:1:3D.3:4:2:5【答案】B.。
16切线长定理—知识讲解及其练习
切线长定理一知识讲解【学习目标】1.了解切线长立义,掌握切线长定理:2.了解圆外切四边形泄义及性质;3.利用切线长泄理解决相关的计算和证明.【要点梳理】要点一、切线长定理1.切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段.2.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释:切线长定理包含两个结论:线段相等和角相等.要点二、圆外切四边形的性质1.圆外切四边形四边形的四条边都与同一个圆相切,那这个四边形叫做圆的外切四边形.2.圆外切四边形性质圆外切四边形的两组对边之和相等.【典型例题】类型一、切线长定理CP 1.(秋•湛江校级月考)已知PA、PB分别切00于A、B, E为劣弧AB上一点,过E点的切线交PA 于C、交PB 于D.(1)若PA二6.求ZkPCD的周长.(2)若ZP=50°求ZD0C.【答案与解析】解:(1)连接0E,VPA. PB与圆0相切,•••PA 二PB二6,同理可得:AC=CE, BD二DE,APCD 的周长二PC+PD+CD二PC+PD-CE+DE二PA丄PB二12:(2) VPA PB与圆0相切,•••ZOAP二ZOBP二90° ZP=50° ,A ZA0B=360o -90° - 90° - 50°二130° ,在RtAAOC 和RtAEOC 中,/OA=OE'OC二OC ■ARtAAOC^RtAEOC (HL),••• ZA0C=ZC0E,同理:ZDOE二ZBOD.••• ZC0D)ZA0B二65°・2【总结升华】本题考査的是切线长泄理和全等三角形的判左和性质.掌握切线长龙理是解题的关键.W 2・如图,AABC中.ZACB二90° ,以AC为直径的00交AB于D, E为BC中点. 求证:DE是00切线.【答案与解析】连结0D、CD, AC 是直径,•••0A二0C二0D,化Z0CD二Z0DC,ZADC二90° , •••△CDB是直角三角形.TE 是BC 的中点,•'•DE二EB二EC, A ZECD=ZEDC, ZECD+ZOCD二90° ,A ZEDC+Z0DC=90° ,即0D丄ED,•••DE是00切线.【总结升华】自然连接0D,可证0D丄DE.举一反三:【变式】已知:如图,00为SABC的外接圆,3C为的直径,作射线BF,使得84平分乙CBF , 过点A作AP丄于点£>・求证:ZM为00的切线.【答兴】连接40.•/ AO = BO 9 :. Z2 = Z3.•/ 必平分ZCBF, :. Z1 = Z2 ・•: Z3 = Z1 ・••• DB// A O.•/ AD 丄DB、:• ZBDA = 90°. A ZDAO = 90°.I AO是O0半径,••• DA为G>0的切线.P 3.如图,正方形ABCD边长为4cm,以正方形的一边BC为直径在正方形ABCD内作半圆,过A作半圆的切线,与半圆相切于F点,与DC相交于E点,则AADE的而积( )A.12B. 24C.8D. 6【答案】D;【解析】•••AE与圆0切于点F,显然根据切线长左理有AF二AB二4cm, EF二EC,设EF二EC二xcm,则DE二(4・x) cm, AE= (4+x) cm,在三角形ADE中由勾股泄理得:(4 -X):+42= (4+x) 1/. x=lcm,/. CE 二lcm,•'•DE二4 - 1=3cm,•:S AADE=AD • DE 宁2二3 X 4 宁2=6cm:・【总结升华】此题主要考查圆的切线长定理,正方形的性质和勾股左理等知识,解答本题关键是运用切线长左理得出AB二AF, EF二EC.类型二、圆外切四边形4.(•西青区二模)已知四边形ABCD中,AB〃CD, 00为内切圆,E为切点.(I )如图1,求ZA0D的度数;(II )如图1,若A0=8cm, DO二6cm,求AD、0E 的长:(III)如图2,若F是AD的中点,在(II)中条件下,求F0的长.【答案与解析】解:(I ) 为四边形ABCD的内切圆,•••AD、AB、CD 为00 的切线,•••0D 平分ZADC, 0A 平分ZBAD, 即ZODA=1ZADC. Z0AD)ZBAC,2 2VAB/7CD,•••ZADC+ZBAC二180° ,A Z0DA+Z0AD=90° ,A ZA0D=90o :(II )在RtAAOD 中,TAO二8cm, DO二6cm,•"•AD 二J § 2 + g 2=10 (cm),TAD 切©0 于E,AOEXAD, •••2)E・AD4)D・OA,2 2A0E=6X^-2^ (cm);10 5(III) vF是AD的中点, AFO^-AD^X 10=5 (cm).2 2【总結升华】本题考査了三角形的内切圆与内心,也考査了切线长定理. 举一反三:【变式】在圆外切四边形ABCD中,AB:BC:CD:AD只可能是( )・A. 2:3:4:5B. 3:4:6:5C. 5:4:1:3D. 3:4:2:5【答案】B.A. — (a+b+c ) rB.C. — (a+b+c) r D ・C. 155°D. 135°O0的外切梯形ABCD 5.为第5题图 如图,PA 、PBA. 35°B. 45°C. 65°D. 70°切线长定理一巩固练习(基础)【巩固练习】一、选择题1. 下列说法中,不正确的是()A. 三角形的内心是三角形三条内角平分线的交点B. 锐角三角形、直角三角形、钝角三角形的内心都在三角形内部3.如图所示, 4.C 第4题图 C. 60°2. C.垂直于半径的直线是圆的切线D.三角形的内心到三角形的三边的距离相等△磁的三边长分别为扒b、6它的内切圆的半径为「则△遊的而积为()6.已知如图所示,等边AABC的边长为273 cm,下列以A为圆心的各圆中,半径是3cm的圆是()二、填空题7.如图,OI 是ZkABC 切点分别为点D 、E 、第7题图 第8题图 第9题图8. ___________________________________________________________________________ 如图,一圆内切于四边形ABCD,且AB 二16, CD=10,则四边形ABCD 的周长为 ____________________________9. ________________________________________________________________ 如图,已知00是AABC 的内切圆,ZBAC=50\则ZB0C 为 _______________________________________________ 度.10. 如图,PA.阳 分别切。
切线长及弦切角
切线长定理与弦切角定理一、切线长定理 1、切线长:我们把圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长 2、切线长定理:如图:因为PA 、PB 是O ⊙的切线,A 、B 是切点,所以,PA=PB二、弦切角定理及其推论1、弦切角:________________________________________________________________。
问题: 以下各图中的角哪个是弦切角?2、弦切角定理:________________________________________________________3、弦切角定理的推论:___________________________________________________ 【运用举例】例1. 如图,PA 、PB 是⊙O 的切线,切点分别是A 、B ,直线EF 也是⊙O 的切线,切点为Q ,交PA 、PB 为E 、F 点,已知12PA cm ,求△PEF 的周长.例2.如图,AD是ΔABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB,AC 分别相交于E,F. 求证:EF∥BC.拓展提升已知:如图,P为⊙O外一点,PA,PB为⊙O的切线,A和B是切点,BC是直径.求证:AC∥OP.课后训练学案1.在△ABC中,AB=5cm BC=7cm AC=8cm,⊙O与BC、AC、AB分别相切于D、E 、F,则AF=_____, BD=_______ 、CF=________2.已知PA、PB切⊙O于A、B,∠APB=60º,PA=4,则⊙O的半径为。
3.已知⊙O的半径为3,点P到圆心O的距离为23,则过点P的两条切线的夹角为度,切线长为。
4.BC是⊙O的弦,P是BC延长线上一点,PA与⊙O相切于点A,∠ABC=25°,∠ACB=80,则∠P的度数为_______.★5.已知⊙O1和⊙O2外切于点B,PB是两圆公切线,PA、PB分别与⊙O1、⊙O2相切于A、C,如果AP=2X-3,PC=X+3,则x= 。
【2021中考数学】切线长定理专题含答案
切线长定理一.选择题1.如图,P A、PB分别切⊙O于A、B,P A=10cm,C是劣弧AB上的点(不与点A、B重合),过点C的切线分别交P A、PB于点E、F.则△PEF的周长为()A.10cm B.15cm C.20cm D.25cm2.如图,圆O的圆心在梯形ABCD的底边AB上,并与其它三边均相切,若AB=10,AD =6,则CB长()A.4B.5C.6D.无法确定3.图,在矩形ABCD中,AB=3,BC=2,以BC为直径在矩形内作半圆,自点A作半圆的切线AE,则sin∠CBE=()A.B.C.D.4.如图,P A、PB、分别切⊙O于A、B两点,∠P=40°,则∠C的度数为()A.40°B.140°C.70°D.80°5.如图,在▱ABCD中,过A、B、C三点的圆交AD于E,且与CD相切.若AB=4,BE =5,则DE的长为()A.3B.4C.D.6.如图,P A、PB、CD分别切⊙O于A、B、E,CD交P A、PB于C、D两点,若∠P=40°,则∠P AE+∠PBE的度数为()A.50°B.62°C.66°D.70°7.如图,在等腰三角形△ABC中,O为底边BC的中点,以O为圆心作半圆与AB,AC相切,切点分别为D,E.过半圆上一点F作半圆的切线,分别交AB,AC于M,N.那么的值等于()A.B.C.D.18.如图,四边形ABCD中,AD平行BC,∠ABC=90°,AD=2,AB=6,以AB为直径的半⊙O切CD于点E,F为弧BE上一动点,过F点的直线MN为半⊙O的切线,MN交BC于M,交CD于N,则△MCN的周长为()A.9B.10C.3D.29.如图,在平面直角坐标系xOy中,直线AB经过点A(6,0)、B(0,6),⊙O的半径为2(O为坐标原点),点P是直线AB上的一动点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A.B.3C.3D.10.如图中,CA,CD分别切圆O1于A,D两点,CB、CE分别切圆O2于B,E两点.若∠1=60°,∠2=65°,判断AB、CD、CE的长度,下列关系何者正确()A.AB>CE>CD B.AB=CE>CD C.AB>CD>CE D.AB=CD=CE 二.填空题11.如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,则此光盘的直径是cm.12.已知:P A切⊙O于点A,PB切⊙O于点B,点C是⊙O上异于A、B的一点,过点C 作⊙O的切线分别交P A和PB于点D、E,若P A=10cm,DE=7cm,则△PDE的周长为cm.13.已知直角梯形ABCD的四条边长分别为AB=2,BC=CD=10,AD=6,过B、D两点作圆,与BA的延长线交于点E,与CB的延长线交于点F,则BE﹣BF的值为.14.已知:P A、PB、EF分别切⊙O于A、B、D,若P A=15cm,那么△PEF周长是cm.若∠P=50°,那么∠EOF=.15.如图,△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,已知AD=10cm,小明准备用剪刀沿着与⊙O相切的任意一条直线MN剪下一块三角形(△AMN),则剪下的△AMN的周长为.三.解答题16.如图,P A、PB、CD是⊙O的切线,切点分别为点A、B、E,若△PCD的周长为18cm,∠APB=60°,求⊙O的半径.17.如图,在梯形ABCD中,AB∥CD,⊙O为内切圆,E为切点.(1)求证:AO2=AE•AD;(2)若AO=4cm,AD=5cm,求⊙O的面积.18.如图,AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,BO=6,CO=8.(1)判断△OBC的形状,并证明你的结论;(2)求BC的长;(3)求⊙O的半径OF的长.参考答案一.选择题1.解:∵P A、PB分别切⊙O于A、B,∴PB=P A=10cm,∵EA与EC为⊙的切线,∴EA=EC,同理得到FC=FB,∴△PEF的周长=PE+EF+PF=PE+EC+FC+PF=PE+EA+FB+PF=P A+PB=10+10=20(cm).故选:C.2.解:方法1、设圆O的半径是R,圆O与AD、DC、CB相切于点E、F、H,连接OE、OD、OF、OC、OH.设CD=y,CB=x.设S梯形ABCD=S则S=(CD+AB)R=(y+10)R﹣﹣﹣﹣(1)S=S△BOC+S△COD+S△DOA=xR+yR+×6R﹣﹣﹣﹣(2)联立(1)(2)得x=4;方法2、连接OD.OC∵AD,CD是⊙O的切线,∴∠ADO=∠ODC,∵CD∥AB,∴∠ODC=∠AOD,∴∠ADO=∠AOD∴AD=OA∵AD=6,∴OA=6,∵AB=10,∴OB=4,同理可得OB=BC=4,故选:A.3.解:取BC的中点O,则O为圆心,连接OE,AO,AO与BE的交点是F ∵AB,AE都为圆的切线∴AE=AB∵OB=OE,AO=AO∴△ABO≌△AEO(SSS)∴∠OAB=∠OAE∴AO⊥BE在直角△AOB里AO2=OB2+AB2∵OB=1,AB=3∴AO=易证明△BOF∽△AOB∴BO:AO=OF:OB∴1:=OF:1∴OF=sin∠CBE==故选:D.4.解:∵P A是圆的切线.∴∠OAP=90°,同理∠OBP=90°,根据四边形内角和定理可得:∠AOB=360°﹣∠OAP﹣∠OBP﹣∠P=360°﹣90°﹣90°﹣40°=140°,∴∠ACB=∠AOB=70°.故选:C.5.解:连接CE;∵,∴∠BAE=∠EBC+∠BEC;∵∠DCB=∠DCE+∠BCE,由弦切角定理知:∠DCE=∠EBC,由平行四边形的性质知:∠DCB=∠BAE,∴∠BEC=∠BCE,即BC=BE=5,∴AD=5;由切割线定理知:DE=DC2÷DA=,故选:D.6.解:∵P A、PB、CD分别切⊙O于A、B、E,CD交P A、PB于C、D两点,∴CE=CA,DE=DB,∴∠CAE=∠CEA,∠DEB=∠DBE,∴∠PCD=∠CAE+∠CEA=2∠CAE,∠PDC=∠DEB+∠DBE=2∠DBE,∴∠CAE=∠PCD,∠DBE=∠PDC,即∠P AE=∠PCD,∠PBE=∠PDC,∵∠P=40°,∴∠P AE+∠PBE=∠PCD+∠PDC=(∠PCD+∠PDC)=(180°﹣∠P)=70°.故选:D.7.解:连OM,ON,如图∵MD,MF与⊙O相切,∴∠1=∠2,同理得∠3=∠4,而∠1+∠2+∠3+∠4+∠B+∠C=360°,AB=AC∴∠2+∠3+∠B=180°;而∠1+∠MOB+∠B=180°,∴∠3=∠MOB,即有∠4=∠MOB,∴△OMB∽△NOC,∴=,∴BM•CN=BC2,∴=.故选:B.8.解:作DH⊥BC于H,如图,∵四边形ABCD中,AD平行BC,∠ABC=90°,∴AB⊥AD,AB⊥BC,∵AB为直径,∴AD和BC为⊙O切线,∵CD和MN为⊙O切线,∴DE=DA=2,CE=CB,NE=NF,MB=MF,∵四边形ABHD为矩形,∴BH=AD=2,DH=AB=6,设BC=x,则CH=x﹣2,CD=x+2,在Rt△DCH中,∵CH2+DH2=DC2,∴(x﹣2)2+62=(x+2)2,解得x=,∴CB=CE=,∴△MCN的周长=CN+CM+MN=CN+CM+NF+MF=CN+CM+NF+MB=CE+CB=9.故选:A.9.解:连接OP、OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2﹣OQ2,∵当PO⊥AB时,线段PQ最短;又∵A(﹣6,0)、B(0,6),∴OA=OB=6,∴AB=6∴OP=AB=3,∵OQ=2,∴PQ==,故选:D.10.解:∵∠1=60°,∠2=65°,∴∠ABC=180°﹣∠1﹣∠2=180°﹣60°﹣65°=55°,∴∠2>∠1>∠ABC,∴AB>BC>AC,∵CA,CD分别切圆O1于A,D两点,CB、CE分别切圆O2于B,E两点,∴AC=CD,BC=CE,∴AB>CE>CD.故选:A.二.填空题11.解:∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC,∴∠OAB=∠CAB=60°∵AB=3cm,∴OA=6cm,∴由勾股定理得OB=3cm,∴光盘的直径6cm.故答案为:6.12.解:分两种情况:①点C在劣弧AB上时,如图,当根据切线长定理得:AD=CD,BE=CE,P A=PB,则△PDE的周长=PD+DE+PE=PD+CD+CE+PE=PD+AD+PE+BE=P A+PB=2P A=20cm.②点C在优弧AB上时,如图,当根据切线长定理得:AD=CD,BE=CE,P A=PB,则△PDE的周长=PD+DE+PE=2P A+2DE=20+2×7=34cm.综上,△PDE的周长为20或34cm.故答案为:20或34.13.解:延长CD交⊙O于点G,设BE,DG的中点分别为点M,N,则易知AM=DN,∵BC=CD=10,由割线定理得,CB•CF=CD•CG,∵CB=CD,∴BF=DG,∴BE﹣BF=BE﹣DG=2(BM﹣DN)=2(BM﹣AM)=2AB=4.故答案为:4.14.解:∵P A、PB、EF分别切⊙O于A、B、D,∴P A=PB=15cm,ED=EA,FD=DB,∴PE+EF+PF=PE+ED+PF+FD=P A+PB=30(cm)即△PEF周长是30cm;∵P A、PB为⊙O的切线,∴∠P AO=∠PBO=90°,而∠P=50°,∴∠AOB=360°﹣90°﹣90°﹣50°=130°;连OD,如图,∴∠ODE=∠ODF=90°,易证得Rt△OAE≌Rt△ODE,Rt△OFD≌Rt△OFB,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠AOB=65°,则∠EOF=65°.15.解:∵△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,AD =10cm,∴设E、F分别是⊙O的切点,故DM=MF,FN=EN,AD=AE,∴AM+AN+MN=AD+AE=10+10=20(cm).故答案是:20cm.三.解答题16.解:连接OA,OP,则OA⊥P A,根据题意可得:CA=CE,DE=DB,P A=PB,∵PC+CE=DE+PD=18,∴PC+CA+DB+PD=18,∴P A=×18=9(cm),∵P A、PB是⊙O的切线,∴∠APO=∠APB=30°,在Rt△AOP中,PO=2AO,AO>0,故OA2+92=(2AO)2,解得:OA=3,故⊙O的半径为:3cm.17.(1)证明:根据切线长定理可知:∵∠OAE+∠ODA=(∠BAD+∠ADC)=90°,∴∠AOD=90°,∵∠OAE=∠OAE,∠AOD=∠AEO=90°,∴△AOE∽△ADO,∴=,即AO2=AE•AD;(2)解:在Rt△AOD中,OD==3(cm),∵S△AOD=×AD×EO=×AO×OD即5×EO=4×3,∴EO=(cm),∵OE是⊙O的半径,∴S圆O=πr2=π(cm2).18.(1)答:△OBC是直角三角形.证明:∵AB、BC、CD分别与⊙O相切于E、F、G,∴∠OBE=∠OBF=∠EBF,∠OCG=∠OCF=∠GCF,∵AB∥CD,∴∠EBF+∠GCF=180°,∴∠OBF+∠OCF=90°,∴∠BOC=90°,∴△OBC是直角三角形;(2)解:∵在Rt△BOC中,BO=6,CO=8,∴BC==10;(3)解:∵AB、BC、CD分别与⊙O相切于E、F、G,∴OF⊥BC,∴OF===4.8.。
切线长定理-三角形的内切圆(基础篇)-2022-2023学年九年级数学下册基础知识专项讲练(浙教版)
专题2.8 切线长定理三角形的内切圆(基础篇)(专项练习)一、单选题1.用尺规作图作三角形的内切圆,用到了哪个基本作图()A.作一条线段等于已知线段B.作一个角等于已知角C.作一个角的平分线D.作一条线段的垂直平分线2.一个等腰直角三角形的内切圆与外接圆的半径之比为()A2B2C21D213.已知三角形的周长为12,面积为6,则该三角形内切圆的半径为()A.4B.3C.2D.14.如图,PA、PB是O的切线,AC是O的直径,62P∠=,则BOC∠的度数为()A.60B.62C.31D.705.如图,从⊙O外一点P引圆的两条切线P A,PB,切点分别是A,B,若⊙APB=60°,P A=5,则弦AB的长是()A.52B532C.5D.36.如图,P A和PB是⊙O的两条切线,A,B为切点,点D在AB上,点E,F分别在线段P A和PB上,且AD=BF,BD=AE.若⊙P=α,则⊙EDF的度数为()A .90°﹣αB .32αC .2αD .90°﹣12α7.如图,已知PA 、PB 是O 的两条切线,A 、B 为切点,连接OP 交AB 于C ,交O 于D ,连接OA 、OB ,则图中等腰三角形、直角三角形的个数分别为( )A .1,2B .2,2C .2,6D .1,68.若Rt ABC 的外接圆半径为R ,内切圆半径为r ,则其内切圆的面积与Rt ABC 的面积比为( )A .22rr Rπ+ B .2rR rπ+ C .42rR rπ+ D .4rR rπ+9.已知⊙ABC 中,⊙ACB =90°,CD 、CE 分别是⊙ABC 中线和高线,则( )A .D 点是⊙ABC 的内心B .D 点是⊙ABC 的外心 C .E 点是⊙ABC 的内心D .E 点是⊙ABC 的外心10.如图,点E 是⊙ABC 的内心,AE 的延长线和⊙ABC 的外接圆相交于点D ,连接BD ,CE ,若⊙CBD =32°,则⊙BEC 的大小为( )A .64°B .120°C .122°D .128°二、填空题11.如图,已知点O 是ABC ∆的内心,若120BOC ∠=,则A ∠=__________.12.如图,Rt ⊙ABC 中,⊙C =90°,若AC =4,BC =3,则⊙ABC 的内切圆半径r =_____.13.如图,P 是⊙O 外一点,P A 、PB 分别和⊙O 切于A 、B ,C 是弧AB 上任意一点,过C 作⊙O 的切线分别交P A 、PB 于D 、E ,若△PDE 的周长为20cm ,则P A 长为__________.14.如图,AB 是⊙O 的直径,弦BC=2cm ,⊙ABC=60°.若动点P 以2cm/s 的速度从B 点出发沿着B→A 的方向运动,点Q 以1cm/s 的速度从A 点出发沿着A→C 的方向运动,当点P 到达点A 时,点Q 也随之停止运动.设运动时间为t (s ),当⊙APQ 是直角三角形时,t 的值为_________.15.如图所示,AB 、AC 为⊙O 的切线,B 和C 是切点,延长OB 到D ,使BD =OB ,连接AD .∠DAC =78°,那么∠AOD 等于_____度.16.如图,AB AC 、是O 的切线,B C 、为切点,连接BC .若50A ∠=︒,则ABC ∠=__________.17.在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8、BD =6,则菱形ABCD 的内切圆半径为 ________.18.如图,四边形ABCD 为O 的内接四边形,I 是BCD △的内心,点O 与点I 关于直线BD 对称,则A ∠的度数是__________.三、解答题19.如图,ABC 中,50,75ABC ACB ∠=︒∠=︒,点O 是ABC 的内心.求BOC ∠的度数.20.如图,Rt ABC 中,90ABC ∠=︒,O 为BC 上一点,以O 为圆心,OB 长为半径的圆恰好与AC 相切于点D ,交BC 于点E ,连接DO ,并延长交于O 点F .(1)求证:BAO F ∠=∠;(2)若3AD =,2CD =,求O 的半径及EF 的长.21.如图,线段AB 经过O 的圆心O ,交圆O 于点A ,C ,1BC =,AD 为O 的弦,连接BD ,30BAD ABD ∠=∠=︒,连接DO 并延长交O 于点E ,连接BE 交O 于点M .(1)求证:直线BD 是O 的切线; (2)求线段BM 的长.22.如图,点E 是ABC 的内心,AE 的延长线和ABC 的外接圆O 相交于点D ,过D 作直线DG ∥B C .(1)若80ACB ∠=︒,则ADB =∠______;AEB ∠= ______. (2)求证:DE CD =;(3)求证:DG 是O 的切线C .23.如图,在ABC 中,AB AC =,以AB 为直径的O 交BC 于点P ,交CA 的延长线于点D ,连接BD .(1)求作O的切线PQ,PQ交AC于点Q;(要求:尺规作图,不写作法,保留作图迹).(2)在(1)的条件下,求证:QC DQ24.如图,四边形ABCD是⊙O的内接四边形,AB = 6,BC = 8,⊙ABC = 90°,弧AD = 弧DC.(1)求边CD的长;(2)已知⊙ABE与⊙ABD关于直线AB对称.⊙尺规作图:作⊙ABE;(保留作图痕迹,不写作法)⊙连接DE,求线段DE的长.参考答案1.C【分析】根据三角形内心的定义解答.解:三角形的内切圆的圆心叫三角形的内心,是三角形三个角平分线的交点,⊙用尺规作图作三角形的内切圆,用到了作角的平分线的作法,故选:C.【点拨】此题考查了三角形内心的定义,正确理解定义是解题的关键.2.D【分析】设等腰直角三角形的直角边是12条直角边的和与斜边的差的一半,22-其外接圆半径是斜边的一半,22222-21.解:设等腰直角三角形的直角边是12;⊙22-外接圆半径是22,⊙2222-21.故选:D.【点拨】本题考查三角形的内切圆与外接圆的知识,解题的关键是熟记直角三角形外接圆的半径和内切圆的半径公式:直角三角形的内切圆半径等于两条直角边的和与斜边的差的一半;直角三角形外接圆的半径是斜边的一半.3.D【分析】设内切圆的半径为r,根据公式:12rC S三角形三角形,列出方程即可求出该三角形内切圆的半径.解:设内切圆的半径为r11262r解得:r=1故选D.【点拨】此题考查的是根据三角形的周长和面积,求内切圆的半径,掌握公式:1 2rC S三角形三角形是解决此题的关键.4.B【分析】(1)根据切线长定理推出AP=BP,根据等腰三角形性质和三角形的内角和定理求出⊙PAB=59°,求出⊙BAC⊙BOC即可.解:PA,PB是⊙O的切线,∴AP=BP,⊙P=62°,∴⊙PAB=o o180-622=59°,AC是⊙O的直径,∴⊙PAC=90°,∴⊙BAC=90°-59°=31°,∴∠BOC=2⊙BAC=62°,故选B.【点拨】本题考查了等腰三角形的性质,切线长定理,切线的性质,圆周角定理等知识点的应用,题型较好,综合性比较强,通过做此题培养了学生分析问题和解决问题的能力.5.C【分析】先利用切线长定理得到P A=PB,再利用⊙APB=60°可判断⊙APB为等边三角形,然后根据等边三角形的性质求解.解:⊙P A,PB为⊙O的切线,⊙P A=PB,⊙⊙APB=60°,⊙⊙APB为等边三角形,⊙AB=P A=5.故选:C.【点拨】本题考查了切线长定理以及等边三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.6.D 【分析】根据切线性质,证得DAE △⊙FBD ,通过等量代换得出EDF DAE ∠=∠,再根据等腰三角形的性质,由⊙P =α,求得DAE ∠即可.解: ⊙P A 和PB 是⊙O 的两条切线,A ,B 为切点,⊙P A =PB ,⊙PAB PBA ∠=∠,即DAE DBF ∠=∠ 在DAE △与FBD 中, ⊙AD BF DAE DBF AE BD =⎧⎪∠=∠⎨⎪=⎩⊙DAE △⊙FBD (SAS ), ⊙DEA FDB ∠=∠, 在DAE △中,180DAE AED EDA ∠+∠+∠=︒,⊙DEA FDB ∠=∠,⊙180DAE FDB EDA ∠+∠+∠=︒, ⊙180EDF FDB EDA ∠+∠+∠=︒, ⊙EDF DAE ∠=∠, ⊙⊙P =α,P A =PB , ⊙PAB PBA ∠=∠⊙在PAB △中,1902BAP α∠=︒-,即1902DAE α∠=︒-,⊙EDF DAE ∠=∠, ⊙1902EDF α∠=︒-故选:D .【点拨】本题考查了切线的性质,全等三角形的性质以及等腰三角形的性质,通过全等证明,等量代换求得EDF DAE ∠=∠是解题关键.7.C 【分析】根据切线长定理及半径相等得,⊙APB 为等腰三角形,⊙AOB 为等腰三角形,共两个;根据切线长定理和等腰三角形三线合一的性质,直角三角形有:⊙AOC ,⊙AOP ,⊙APC ,⊙OBC ,⊙OBP ,⊙CBP ,共6个.解:因为OA 、OB 为圆O 的半径,所以OA =OB ,所以⊙AOB 为等腰三角形,根据切线长定理,PA =PB ,故⊙APB 为等腰三角形,共两个,根据切线长定理,PA =PB ,⊙APC =⊙BPC ,PC =PC ,所以⊙PAC⊙⊙PBC ,故AB⊙PE ,根据切线的性质定理⊙OAP =⊙OBP =90°,所以直角三角形有:⊙AOC ,⊙AOP ,⊙APC ,⊙OBC ,⊙OBP ,⊙CBP ,共6个.故选C .【点拨】此题综合考查了切线的性质和切线长定理及等腰三角形的判定,有利于培养同学们良好的思维品质.8.B【分析】画好符合题意的图形,由切线长定理可得:,,,CE CF r AE AG m BF BG n ======结合勾股定理可得:22,mn Rr r =+再求解直角三角形的面积()()21==22ACB S m r n r Rr r +++,从而可得直角三角形的内切圆的面积与直角三角形的面积之比.解:如图,由题意得:902ACB AB R ∠=︒=,,111O E O F O G r ===,由切线长定理可得:,,,CE CF r AE AG BF BG ====设,,AE AG m BF BG n ====()()()222m r n r m n ∴+++=+,2,m n R += ()2mn m n r r ∴=++,22,mn Rr r ∴=+而()()()211=+22ACB S m r n r mn mr nr r ++=++ ()221=222Rr r Rr r +++ 2=2Rr r +122.22O ABC Sr r S Rr r R r ππ∴==++故选B .【点拨】本题考查的是三角形的内切圆与三角形的外接圆,切线长定理,勾股定理的应用,掌握以上知识是解题的关键.9.B【分析】根据直角三角形斜边上的中线等于斜边的一半,可得D 是⊙ABC 的外心,据此即可求解.解:在△ABC 中,⊙ACB =90°,⊙CD 是△ABC 中线,⊙D 点是△ABC 的外心.故选:B .【点拨】本题考查了三角形的外心,直角三角形斜边上的中线等于斜边的一半,掌握以上知识是解题的关键.10.C【分析】根据圆周角定理可求⊙CAD=32°,再根据三角形内心的定义可求⊙BAC ,再根据三角形内角和定理和三角形内心的定义可求⊙EBC+⊙ECB ,再根据三角形内角和定理可求⊙BEC 的度数.解:在⊙O 中,⊙⊙CBD=32°,⊙⊙CAD=32°,⊙点E 是⊙ABC 的内心,⊙⊙BAC=64°,⊙⊙EBC+⊙ECB=(180°-64°)÷2=58°,⊙⊙BEC=180°-58°=122°.故选:C.【点拨】本题考查了三角形的内心,圆周角定理,三角形内角和定理,关键是得到⊙EBC+⊙ECB的度数.11.60【分析】先利用120BOC∠=,可求出⊙OBC+⊙OCB,再利用三角形的内心即为三个内角角平分线的交点,可求出⊙ABC+⊙ACB,然后就可求出⊙A.解:⊙120BOC∠=⊙⊙OBC+⊙OCB=180°-⊙BOC=60°∆的内心又⊙点O是ABC⊙BO、CO分别平分⊙ABC和⊙ACB⊙⊙ABC+⊙ACB=2(⊙OBC+⊙OCB)=120°⊙⊙A=180°-(⊙ABC+⊙ACB)=60°故答案为60【点拨】此题考查的是三角形内心的定义和三角形内角和定理.12.1解:如图,设⊙ABC的内切圆与各边相切于D,E,F,连接OD,OE,OF,则OE⊙BC,OF⊙AB,OD⊙AC,设半径为r,CD=r,⊙⊙C=90°,AC=4,BC=3,⊙AB=5,⊙BE=BF=3﹣r,AF=AD=4﹣r,⊙4﹣r+3﹣r=5,⊙r=1,⊙⊙ABC的内切圆的半径为1,故答案为1.13.10cm【分析】根据切线长定理,可将△PDE的周长转化为两条切线长的和,已知了△PDE的周长,即可求出切线的长.解:根据切线长定理得:AD=CD,CE=BE,P A=PB,则△PDE的周长=PD PE DE PD PE DC EC PA PB++=+++=+=2P A=20,∴P A=10.故答案为:10.cm【点拨】本题考查的是切线长定理,三角形的周长的计算,掌握切线长定理是解题的关键14.或3-解:因为AB是⊙O的直径,所以⊙ACB=90°,又因为BC=2,⊙ABC=60°;所以AB=2BC=4cm;因为运动时间为t(s),所以AQ=t,BP=2t,所以AP=4-2t,⊙当⊙AQP=90°时,因为⊙A=30°,AP=4-2t,所以PQ=2-t,AQ=3PQ,所以t=3(2-t),所以t=3-;⊙当⊙APQ=90°时,PQ=12AQ,AP=3PQ,所以4-2t=32t,解得t=,综上所述,当t的值为或3-时,⊙APQ是直角三角形.【点拨】1.圆的性质;2.直角三角形的判定与性质.15.64【分析】由已知条件推导出⊙CAO=⊙OAB=⊙BAD,⊙ABD=90°,由此根据⊙DAC=78°,能求出⊙AOD的大小.解:⊙AB、AC为⊙O的切线,B和C是切点,BD=OB,AB∴垂直平分OD,⊙CAO=⊙OABAO AD∴=∴⊙OAB=⊙BAD,⊙⊙CAO=⊙OAB=⊙BAD,⊙ABD=90°,⊙⊙DAC=78°,⊙⊙BAO=13⊙DAC=26°,⊙∠AOD=90°-26°=64°.故答案为:64.【点拨】本题考查角的大小的求法,解题时要认真审题,注意切线性质的灵活运用是解题的关键.16.65°【分析】根据切线长定理即可得出AB=AC,然后根据等边对等角和三角形的内角和定理即可求出结论.解:⊙AB AC、是O的切线,⊙AB=AC⊙⊙ABC=⊙ACB=12(180°-⊙A)=65°故答案为:65°.【点拨】此题考查的是切线长定理和等腰三角形的性质,掌握切线长定理和等边对等角是解决此题的关键.17.125##2.4【分析】根据菱形的性质,可得AC⊙BD,11,22AO AC DO BD==,再由勾股定理可得5AD=,然后设菱形ABCD的内切圆半径为r,根据三角形的面积,即可求解.解:在菱形ABCD中,AC⊙BD,11,22AO AC DO BD==,⊙AC=8、BD=6,⊙AO=4,DO=3,⊙225 AD AO DO+,设菱形ABCD 的内切圆半径为r ,⊙12AOD SAD r =⨯ , ⊙12AODS AO DO =⨯, ⊙1153422r ⨯=⨯⨯ ,解得:125r = , 即菱形ABCD 的内切圆半径为125. 故答案为:125【点拨】本题主要考查了菱形的性质,内切圆,熟练掌握菱形的性质是解题的关键. 18.72︒【分析】连接OB 、OD 、BI 、DI ,利用轴对称的性质证得四边形OBID 是菱形,得到⊙BOD =⊙BID ,⊙OBD =⊙BDO =⊙IBD =⊙IDB ,根据圆周角定理得到⊙BOD =2⊙A ,由圆内接四边形性质得到180A C ∠+∠=︒,求出⊙BID =180°-12A ∠,由此得到2⊙A =180°-12A ∠,求出⊙A =72︒. 解:连接OB 、OD 、BI 、DI ,⊙点O 与点I 关于直线BD 对称,⊙OB =BI ,OD =DI ,⊙OB =OD ,⊙OB =BI =OD =DI ,⊙四边形OBID 是菱形,⊙⊙BOD =⊙BID ,⊙OBD =⊙BDO =⊙IBD =⊙IDB ,⊙⊙BOD =2⊙A ,⊙BID =180°-(⊙IBD +⊙IDB ),⊙⊙IBD +⊙IDB =()11802C ︒-∠,180A C ∠+∠=︒, ⊙ ⊙IBD +⊙IDB =12A ∠,⊙⊙BID =180°-12A ∠, ⊙2⊙A =180°-12A ∠, 解得⊙A =72︒,故答案为:72︒.【点拨】此题考查了圆内接四边形对角互补的性质,三角形内心定义,菱形的判定及性质,三角形内角和定理,轴对称的性质,熟记各知识点是解题的关键.19.117.5°【分析】由点O 是ABC ∆的内心,50ABC ∠=︒,75ACB ∠=︒,根据三角形的内心是三角形三条角平分线的交点,即可求得OBC ∠与OCB ∠的度数,又由三角形内角和定理,即可求得BOC ∠的度数.解:点O 是ABC 的内心,50ABC ∠=︒,75ACB ∠=︒,11502522OBC ABC ∴∠=∠=⨯︒=︒,117537.522OCB ACB ∠=∠=⨯︒=︒, 1801802537.5117.5BOC OBC OCB ∴∠=︒-∠-∠=︒-︒-︒=︒.【点拨】此题考查了三角形内心的性质.此题难度不大,解题的关键是掌握三角形的内心是三角形三条角平分线的交点.20.(1)见分析(2)O 的半径为1.5,65EF =【分析】(1)连接DE ,根据切线长定理可得⊙BAO =⊙DAO ,⊙PDC =90°,从而得到⊙BAO =12⊙BAD ,从而得到⊙BAO =12()1902C COD ︒-∠=∠=⊙F ,即可求证; (2)根据切线长定理可得AB =AD =3,再由勾股定理可得BC =4,设O 的半径为x ,则OD =x ,OC =4-x ,在Rt COD 中,由勾股定理可得O 的半径为1.5,由(1)可得1tan tan 2F BAO =∠=,在Rt DEF △中,由勾股定理,即可求解. (1)证明:如图,连接DE ,⊙90ABC ∠=︒,⊙AB 与O 相切,⊙AD 与O 相切,⊙⊙BAO =⊙DAO ,⊙PDC =90°,⊙⊙BAO =12⊙BAD ,⊙⊙BAD =90°-⊙C ,⊙C =90°-⊙COD , ⊙⊙BAO =12()1902C COD ︒-∠=∠=⊙F ; (2)解:⊙AB 与O 相切,AD 与O 相切,⊙AB =AD =3,⊙CD =2,⊙AC =5,⊙BC =4,设O 的半径为x ,则OD =x ,OC =4-x ,在Rt COD 中,由勾股定理得:222OD CD OC +=,⊙()222x 24x +=-,解得:x =1.5,⊙O 的半径为1.5,即OB =1.5,⊙DF 为直径,DF =3,⊙⊙DEF =90°,⊙BAO F ∠=∠,⊙ 1.51tan tan 32OB F BAO AB =∠===, ⊙EF =2DE ,在Rt DEF △中,由勾股定理得:222DF DE EF =+,⊙222132EF EF ⎛⎫=+ ⎪⎝⎭,解得:65EF =65EF =(舍去).【点拨】本题主要考查了切线长定理,圆周角定理,勾股定理,熟练掌握切线长定理,圆周角定理是解题的关键.21.(1)见分析37 【分析】(1)根据圆周角定理可得260BOD BAD ∠=∠=︒,从而得到90ODB ∠=︒ ,即可求证; (2)连接DM ,Rt ⊙BOD 中,根据直角三角形的性质可得 BO =2OD ,从而得到1OD OC ==,3BD =DE O 为的直径,可得2DE =,90DME ∠=︒,从而得到7BE =,再由1122BDE S BD DE BE DM =⋅=⋅△,可得221DM =解.(1)证明:⊙⊙BOD =2⊙BAD ,⊙260BOD BAD ∠=∠=︒,又⊙30ABD ∠=︒,⊙90ODB ∠=︒ ,即OD BD ⊥,又⊙OD 为O 的半径,⊙直线BD 是O 的切线;(2)解:如图,连接DM ,Rt ⊙BOD 中,30DBO ∠=︒,⊙2BO OD OC BC ==+,又1BC =,OD OC =,⊙1OD OC ==,⊙3BD =⊙DE O 为的直径,⊙2DE =,90DME ∠=︒,在Rt ⊙BDE 中,227BE DE BD +⊙1122BDE S BD DE BE DM =⋅=⋅△, ⊙221BD DE DM BE ⋅= 在Rt ⊙BDM 中,2237BM BD DM =- 【点拨】本题主要考查了切线的判定,圆周角定理,直角三角形的性质,勾股定理等知识,熟练掌握切线的判定,圆周角定理,直角三角形的性质,勾股定理是解题的关键.22.(1)80°,130°;(2)见分析过程;(3)见分析过程.【分析】(1)由圆周角定理可得∠ACB =∠ADB =70°,由三角形的内心的性质可得∠AEB =125°;(2)由三角形的内心的性质可得AE 平分∠BAC ,BE 平分∠ABC ,可得∠BAE =∠CAE ,∠ABE =∠CBE ,由外角的性质可得∠BED =∠DBE ,可证DE =CD ;(3)由垂径定理可得OD ⊥BC ,由平行线的性质可得OD ⊥DG ,可得结论.(1)解:如图,连接BD ,OD ,∵AB AB =,∴∠ACB =∠ADB =80°,∴∠ABC +∠BAC =100°,∵点E 是△ABC 的内心,∴AE 平分∠BAC ,BE 平分∠ABC ,∴∠BAE =∠CAE ,∠ABE =∠CBE ,∴∠BAE +∠ABE =50°,∴∠AEB =130°,故答案为:80°,130°;(2)证明:∵∠BAE =∠CAE ,∴BD =CD ,∴BD =CD ,∵∠BAE =∠CAE =∠CBD ,∠ABE =∠CBE ,∴∠BED =∠BAE +∠ABE =∠CBD +∠CBE =∠DBE ,∴BD =DE ,∴DE =CD ;(3)证明:∵BD =CD ,∴OD ⊥BC ,∵DG ∥BC ,∴OD ⊥DG ,又∵OD 是半径,∴DG 是⊙O 的切线.【点拨】本题考查了三角形的内心,圆的有关性质,切线的判定和性质,灵活运用这些性质解决问题是解题的关键.23.(1)见详解;(2)见详解.【分析】(1)作射线OP ,以点P 为圆心,任意长为半径画弧交射线于M ,N ,以点M ,N 为圆心,大于12MN 为半径画弧,两弧交于点E ,作直线PE ,交AC 于点Q ,则直线PQ 即为所求;(2)如图,连接AP ,则BP =PC ,根据中位线的性质证得OP AC ∥,由切线的性质,平行线的性质证PQ AC ⊥,根据直径所对的圆周角是直角,得90D ∠=︒,证得PQ BD ∥问题得证.(1)解:如图所示,直线PQ 即为所求;(2)证明:如图,连接AP ,AB AC =,BP PC ∴=,OA OB =,OP AC ∴∥,OP 是O 的切线,OP PQ ∴⊥,PQ AC ∴⊥,AB 是O 的直径,90D ∴∠=︒ ,BD AC ⊥,BD DC ∴∥,1CQ PC DQ BP∴==, DQ CQ ∴=.【点拨】本题考查了圆的综合题、圆的半径相等、切线的判定和性质、直径所对的圆周角是直角、三角形中位线的判定和性质、平行线的判定和性质、等腰三角形的性质等知识,作辅助线是解决本题的关键.24.(1)52图见分析⊙14【分析】(1)先求出直径AC,再得到⊙ADC是等腰直角三角形,利用勾股定理即可求解;(2)⊙以B点为圆心,BD为半径,和以A点为圆心,AD为半径画弧,交点为E点,再顺次连接即可;⊙过A点作AH⊙BD,先求出BD的长,再证明⊙BDE是等腰直角三角形,故可求出DE 的长.解:(1)⊙AB = 6,BC = 8,⊙ABC = 90°,⊙AC22+=,AC是⊙O的直径6810⊙⊙ADC=90°⊙弧AD = 弧DC⊙AD=CD⊙⊙ADC是等腰直角三角形⊙AD2+CD2=AC2解得CD=52(2)⊙如图,⊙ABE为所求;⊙过A点作AH⊙BD,⊙弧AD = 弧DC⊙ABC=45°⊙⊙ABD=⊙CBD=12⊙⊙ABH是等腰直角三角形⊙AB2=BH2+AH2,AH=BH⊙AH=BH2⊙AD=CD2⊙在Rt⊙ADH中,DH2242-=AD AH⊙BD=BH+DH=2⊙⊙ABE与⊙ABD关于直线AB对称⊙⊙EBD=2⊙ABD=90°,BE=BD=2⊙⊙BDE是等腰直角三角形⊙DE2214+.BE BD【点拨】此题主要考查圆内的线段长度求解、尺规作图,解题的关键是熟知圆周角的性质、等腰直角三角形的判定与性质及对称性的应用.。
小专题(十四) 切线长定理的变式与应用
小专题(十四) 切线长定理的变式与应用类型1 “单个”切线长定理方法归纳:通常利用切线长相等以及圆外这点与圆心的连线平分两切线的夹角解决问题.1.如图,PA ,PB 是⊙O 的切线,切点为A 、B ,若OP =4,PA =23,则∠APB 的度数为(A )A .60°B .90°C .120°D .无法确定类型2 “两个”切线长定理方法归纳:常常利用圆心与圆外两点构成直角三角形解决问题.2.已知:如图,AB ,BC ,CD 分别与⊙O 相切于E ,F ,G ,且AB ∥CD ,BO =6,CO =8,求OF 的长.解:∵AB ,BC ,CD 分别与⊙O 相切于E ,F ,G ,∴∠EOB =∠BOF ,∠COF =∠COG ,OF ⊥BC.∵AB ∥CD ,∴∠BOF +∠COF =90°.又∵BO =6,CO =8,∴BC =10.∵S △BOC =12OB·OC =12BC·OF , ∴OF =245.类型3 “三个”切线长定理方法归纳:如图1中,有结论△PDE 的周长=2PA =2PB.如图2中,有结论AE =AF =b +c -a 2;BF =BD =a +c -b 2;CD =CE =a +b -c 2. 特殊的,如图3,当∠C =90°时,r =a +b -c 2(或ab a +b +c).3.如图,AD,AE分别是⊙O的切线,D,E为切点,BC切⊙O于F,交AD,AE于点B,C.若AD=8,则△ABC的周长是(C)A.8 B.10C.16 D.不能确定4.如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D、E,过劣弧DE(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为4 cm,则Rt△MBN的周长为8_cm.5.如图,Rt△ABC的内切圆⊙O与AB,BC,AC分别切于点D,E,F,且AC=13,AB=12,∠ABC=90°,求⊙O的半径长.解:在Rt△ABC中,∵AC=13,AB=12,∴BC=132-122=5.∵Rt△ABC的内切圆⊙O与AB,BC分别切于点D,E,∴OD⊥AB,OE⊥BC,OD=OE.又∵∠ABC=90°,∴四边形BEOD为正方形.∴BD=BE=OD.设⊙O的半径长为r,则BE=BD=r,AD=AB-BD=12-r,CE=BC-BE=5-r,∵Rt△ABC的内切圆⊙O与AB,BC,AC分别切于点D,E,F,∴AF=AD=12-r,CF=CE=5-r.∴12-r+5-r=13.解得r=2.即⊙O的半径长为2.类型4“四个”切线长定理方法归纳:圆的外切四边形的两组对边的和相等.6.如图,⊙O内切于四边形ABCD,AB=10,BC=7,CD=8,则AD的长度为(D)A.8 B.9 C.10 D.11。
2020年中考数学提优专题:《圆:切线长定理》(含答案)
《圆:切线长定理》知识梳理:(1)圆的切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.(4)切线长定理包含着一些隐含结论:①垂直关系三处;②全等关系三对;③弧相等关系两对,在一些证明求解问题中经常用到.综合练习:一.选择题1.如图,已知AB为⊙O的直径,CB切⊙O于B,CD切⊙O于D,交BA的延长线于E,若AB=3,ED=2,则BC的长为()A.2 B.3 C.3.5 D.42.既有外接圆,又有内切圆的平行四边形是()A.矩形B.菱形C.正方形D.矩形或菱形3.如图所示,已知PA、PB切⊙O于A、B两点,C是上一动点,过C作⊙O的切线交PA于点M,交PB于点N,已知∠P=56°,则∠MON=()A.56°B.60°C.62°D.不可求4.已知四边形ABCD是梯形,且AD∥BC,AD<BC,又⊙O与AB、AD、CD分别相切于点E、F、G,圆心O在BC上,则AB+CD与BC的大小关系是()A.大于B.等于C.小于D.不能确定5.如图,在平行四边形ABCD中,AB=15,过点D作一圆与AB、BC分别相切于G、H,与边AD、CD相交于点E、F,且5AE=4DE,8CF=DF,则BH等于()A.5 B.6 C.7 D.86.如图,PA,PB分别切⊙O于点A和点B,C是上任一点,过C的切线分别交PA,PB于D,E.若⊙O的半径为6,PO=10,则△PDE的周长是()A.16 B.14 C.12 D.107.如图△ABC内接于⊙O,PA,PB是⊙O的两条切线,已知AC=BC,∠ABC=2∠P,则∠ACB的弧度数为()A.B.C.D.8.PA、PB、CD分别切⊙O于A、B、E,∠APB=54°,则∠COD=()A.36°B.63°C.126°D.46°9.如图,P A、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为()A.35°B.45°C.60°D.70°10.已知:如图,AB为⊙O的直径,CD、CB为⊙O的切线,D、B为切点,OC交⊙O 于点E,AE的延长线交BC于点F,连接AD、BD.以下结论:①AD∥OC;②点E为△CDB的内心;③FC=FE;④CE•FB=AB•CF.其中正确的只有()A.①②B.②③④C.①③④D.①②④二.填空题11.如图,PA,PB分别为⊙O的切线,切点分别为A、B,PA=6,在劣弧AB上任取一点C,过C作⊙O的切线,分别交PA,PB于D,E,则△PDE的周长是.12.如图,AB为⊙O的直径,点C在AB的延长线上,CD、CE分别与⊙O相切于点D、E,若AD=2,∠DAC=∠DCA,则CE=.13.如图,四边形ABCD是正方形,以BC边为直径在正方形内作半圆O,再过顶点A作半圆O的切线(切点为F)交CD边于E,则sin∠DAE=.14.如图,AC是⊙O的直径,PA,PB是⊙O的切线,A,B为切点,AB=6,PA=5.则⊙O的半径.15.如图,PA,PB分别是⊙O的切线,A,B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为.16.如图,PA、PB、EF分别切⊙O于A、B、D,若PA=10cm,则△PEF的周长是cm,若∠P=35°,则∠AOB=(度),∠EOF=(度).17.如图,正方形ABCD的边长为4,以AB为直径向正方形内作半圆,CE与DF是半圆的切线,M,N为切点,CE,DF交于点P.则AE=,△PMN的面积是.三.解答题18.如图,∠APB=52°,PA、PB、DE都为⊙O的切线,切点分别为A、B、F,且PA=6.(1)求△PDE的周长;(2)求∠DOE的度数.19.如图,P是半径为cm的⊙O外一点,PA,PB分别和⊙O切于点A,B,PA=PB =3cm,∠APB=60°,C是弧AB上一点,过C作⊙O的切线交PA,PB于点D,E.(1)求△PDE的周长;(2)若DE=cm,求图中阴影部分的面积.20.已知:AB为⊙O的直径,∠A=∠B=90°,DE与⊙O相切于E,⊙O的半径为,AD=2.①求BC的长;②延长AE交BC的延长线于G点,求EG的长.参考答案一.选择题1.解:由切割线定理,得DE2=EA•EB,∵AB=3,ED=2,∴4=AE(AE+3),解得AE=1或﹣4(舍去),∵CB切⊙O于B,∴∠B=90°,∴根据勾股定理得,BC2+42=(BC+2)2,∴BC=3.故选:B.2.解:A、矩形只有外接圆,没有内切圆,故本选项不符合题意;B、菱形只有内切圆,没有外接圆,故本选项不符合题意;C、正方形既有外接圆,也有内切圆,故本选项符合题意;D、矩形只有外接圆,没有内切圆,菱形只有内切圆,没有外接圆,故本选项不符合题意;故选:C.3.解:∠PMN+∠PNM=180°﹣∠P=124°,∠AMN+∠BNM=360°﹣124°=236°,∵MA、MC是⊙O的切线,∴∠AMO=∠CMO,∵NB、NC是⊙O的切线,∴∠BNO=∠CNO,∴∠CMO+∠CNO=(∠AMN+∠BNM)=118°,∴∠MON=180°﹣118°=62°,故选:C.4.解:连接OF,OA,OE,作AH⊥BC于H.∵AD是切线,∴OF⊥AD,易证四边形AHOF是矩形,∴AH=OF=OE,∵S△AOB=•OB•AH=•AB•OE,∴OB=AB,同理可证:CD=CO,∴AB+CD=BC,故选:B.5.解:由8CF=DF,得CF=15×=,则CH2=CF×DC,故CH=5,设BC=x,则BH=x﹣5=BG,故AG=20﹣x,又∵5AE=4DE,∴DE=x,AE=x,则AG2=AE×AD,则(20﹣x)2=x2,解得:x=12,故BH=BC﹣CH=7.故选:C.6.解:连接OA,∵PA切⊙O于A,∴∠OAP=90°,∴在Rt△OAP中,OP=10,OA=6,由勾股定理得:PA=8,∵PA,PB分别切⊙O于点A和点B,DE切⊙O于C,∴PA=PB=8,DA=DC,EB=EC,∴△PDE的周长是:PD+DE+PE=PD+DC+CE+PE=PD+DA+EB+PE=PA+PB=8+8=16,故选:A.7.解:连接OA,OB.则OA⊥AP,OB⊥PB,∴在四边形APBO中,∠P+∠AOB=180°,又∵∠AOB=2∠ACB,∠ABC=2∠P,设∠ACB=180°﹣2∠ABC=180°﹣4∠P,∴∠AOB=360°﹣8∠P,∴∠P+∠AOB=∠P+(360°﹣8∠P)=180°,∴∠P=,∴∠ACB=180﹣4×=,∴∠ACB的弧度数为.故选:A.8.解:如图,连接OA,OB,OE,∵PA、PB、CD分别切⊙O于A、B、E,∴∠AOC=∠EOC,同理∠BOD=∠DOE,∴∠COD=∠COE+∠DOE=∠AOB,∵∠APB=54°,∴∠AOB=126°,∴∠COD=63°.故选:B.9.解:根据切线的性质定理得∠PAC=90°,∴∠PAB=90°﹣∠BAC=90°﹣35°=55°.根据切线长定理得PA=PB,所以∠PBA=∠PAB=55°,所以∠P=70°.故选:D.10.解:连接OD,DE,EB,CD与BC是⊙O的切线,∠ODC=∠OBC=90°,OD=OB,∵OC=OC∴Rt△CDO≌Rt△CBO,∴∠COD=∠COB,∴∠COB=∠DAB=∠DOB,∴AD∥OC,故①正确;∵CD是⊙O的切线,∴∠CDE=∠DOE,而∠BDE=∠BOE,∴∠CDE=∠BDE,即DE是∠CDB的角平分线,同理可证得BE是∠CBD的平分线,因此E为△CBD的内心,故②正确;若FC=FE,则应有∠OCB=∠CEF,应有∠CEF=∠AEO=∠EAB=∠DBA=∠DEA,∴弧AD=弧BE,而弧AD与弧BE不一定相等,故③不正确;设AE、BD交于点G,由②可知∠EBG=∠EBF,又∵BE⊥GF,∴FB=GB,由切线的性质可得,点E是弧BD的中点,∠DCE=∠BCE,又∵∠MDA=∠DCE(平行线的性质)=∠DBA,∴∠BCE=∠GBA,而∠CFE=∠ABF+∠FAB,∠DGE=∠ADB+∠DAG,∠DAG=∠FAB(等弧所对的圆周角相等),∴∠AGB=∠CFE,∴△ABG∽△CEF,∴CE•GB=AB•CF,又∵FB=GB,∴CE•FB=AB•CF故④正确.因此正确的结论有:①②④.故选:D.二.填空题(共7小题)11.解:∵PA,PB分别为⊙O的切线,∴PA=PB,同理,DA=DC,EB=EC.∴△PDE的周长=PD+DE+PE=PD+DC+CE+PE=PD+AD+PE+BE=PA+PB=2PA=2×6=12.故答案是:12.12.解:∵CD、CE分别与⊙O相切于点D、E,∴CD=CE,∵∠DAC=∠DCA,∴AD=CD,∴AD=CE,∵AD=2,∴CE=2.故答案为:2.13.解:设正方形ABCD的边长为4a,EC=x,∵AF为半圆O的切线,∴AF=AB=4a,EC=EF=x,在Rt△ADE中,DE=4a﹣x,AE=4a+x,∴AE2=AD2+DE2,即(4a+x)2=(4a)2+(4a﹣x)2,解得x=a,∴AE=5a,DE=3a,在Rt△ADE中,sin∠DAE===.故答案为.14.解:连接OP,OB,∵AP为⊙O切线,PB为⊙O切线,∴PA=PB,∵∠APO=∠BPO,PG=PG,∴△APG≌△BPG,∴∠PGA=90°,∵△APO为直角三角形,∠APG=∠APG,∴△PGA∽△PAO,根据垂径定理,得到AG=GB,在R t△PAG中,PG==4,∵△PGA∽△AGO,∴=,∴=,∴AO=.故答案为:.15.解:∵OA=OB,∴∠OAB=∠OBA,∵∠BAC=35°,∴∠AOB=110°,∵PA,PB分别是⊙O的切线,∴∠PAO=∠PBO=90°,∵∠P+∠AOB+∠PAO+∠PBO=360°,∴∠P=70°.故答案为:70°.16.解:∵PA、PB、EF分别切⊙O于A、B、D,∴PA=PB=10cm,ED=EA,FD=DB,∴PE+EF+PF=PE+ED+PF+FD=PA+PB=20(cm);∵PA、PB为⊙O的切线,∴∠PAO=∠PBO=90°,而∠P=35°,∴∠AOB=360°﹣90°﹣90°﹣35°=145°;连OD,如图,∴∠ODE=∠ODF=90°,易证得Rt△OAE≌Rt△ODE,Rt△OFD≌Rt△OFB,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠AOB=72.5°,∠EOF=72.5°.故答案为20;145;72.5.17.解:(1)由切线长定理知:AE=EM,CM=CB;∵CD=CB,∴CM=CD=4.设AE=EM=x,则DE=4﹣x,CE=CM+EM=4+x;在Rt△CDE中,由勾股定理得:(4﹣x)2+42=(4+x)2,解得x=1;故AE=1.(2)同(1)可求得BF=FN=1,则DF=CE=5,DE=CF=3;则可证得Rt△CDE≌Rt△DCF;∴∠DCP=∠CDP,即DP=CP,∴PM=PN;故△DPC∽△NPM,且MN∥CD;设MN所在直线与AD、BC的交点为R、T,则MR⊥AD,NT⊥BC;在Rt△MRE中,ME=1,则ER=ME•cos∠DEC=,MR=ME•sin∠DEC=;过P作PG⊥MN于G,则RG=GT=2,MG=2﹣RM=;易知RE∥PG,则△REM∽△GPM,∴=()2=;∵S△REM=MR•RE=××=,∴S△PMG=×=,故S△PMN=2S△PMG=.三.解答题(共3小题)18.解:(1)∵PA、PB、DE都为⊙O的切线,∴DA=DF,EB=EF,PA=PB=6,∴DE=DA+EB,∴PE+PD+DE=PA+PB=12,即△PDE的周长为12;(2)连接OF,∵PA、PB、DE分别切⊙O于A、B、F三点,∴OB⊥PB,OA⊥PA,∠BOE=∠FOE=∠BOF,∠FOD=∠AOD=∠AOF,∵∠APB=52°,∴∠AOB=360°﹣90°﹣90°﹣52°=128°,∴∠DOE=∠FOE+∠FOD=(∠BOF+∠AOF)=∠BOA=64°.19.解:(1)∵PA、PB、DE是⊙O的切线,∴PA=PB=3cm,CE=BE,AD=DC,∴△PDE的周长=PE+DE+PD=PE+CE+CD+PD=PE+BE+AD+PD=PA+PB=3cm+3cm=6cm;(2)连接OB、OA、OE,OD,如图,∵PA、PB、OC是⊙O的切线,∴OB⊥PB,OA⊥PA,OC⊥DE,∴∠OBP=∠OPA=90°,∵∠APB=60°,∴∠BOA=120°,∵BE=CE,DC=DA,∴S△OCE=S△OBE,S△OCD=S△ODA,∴S五边AOBED=2S△ODE=2×××=4,∴图中阴影部分的面积=S五边AOBED﹣S扇形AOB=4﹣=(4﹣π)cm2.20.解:①过点D作DF⊥BC于点F,∵AB为⊙O的直径,∠A=∠B=90°,∴四边形ABFD是矩形,AD与BC是⊙O的切线,∴DF=AB=2,BF=AD=2,∵DE与⊙O相切,∴DE=AD=2,CE=BC,设BC=x,则CF=BC﹣BF=x﹣2,DC=DE+CE=2+x,在Rt△DCF中,DC2=CF2+DF2,即(2+x)2=(x﹣2)2+(2)2,解得:x=,即BC=;②∵AB为⊙O的直径,∠A=∠B=90°,∴AD∥BC,∴△ADE∽△GCE,∴AD:CG=DE:CE,AE:EG=AD:CG,∵AD=DE=2,∴CG=CE=BC=,∴BG=BC+CG=5,∴AE:EG=4:5,在Rt△ABG中,AG==3,∴EG=AG=.。
切线长定理典型练习题
切线长定理典型练习题一、填空题1、如图AB 为⊙O 的直径,CA 切⊙O 于点A ,CD=1cm ,DB=3cm ,那么AB=______cm 。
2、三角形的三边分别为3、4、5,那么这个三角形的内切圆半径是 。
3、三角形的周长是12,面积是18,那么这个三角形的内切圆半径是 。
二、选择题1、△ABC 内接于圆O ,AD ⊥BC 于D 交⊙O 于E ,假设BD=8cm ,CD=4cm ,DE=2cm ,那么△ABC 的面积等于〔 〕A.248cmB.296cmC.2108cmD.232cm2、正方形的外接圆与内切圆的周长比为〔 〕 A. 1:2 B. 2:1 C. 4:1 D. 3:13、在三角形内,与三角形三条边距离相等的点,是这个三角形的 〔 〕A.三条中线的交点,B.三条角平分线的交点,C.三条高的交点,D.三边的垂直平分线的交点。
4、△ABC 中,内切圆I 和边BC 、CA 、AB 分别相切于点D 、E 、F ,那么∠FDE 与∠A 的关系 是 〔 〕A. ∠FDE=21∠A B . ∠FDE+21∠A=180° C . ∠FDE+21∠A=90° D . 无法确定 三、解答题:1、如图,AB 、CD 分别与半圆O 切于点A 、D ,BC 切⊙O 于点E ,假设AB =4,CD =9,求⊙O 的半径。
2、等腰三角形的腰长为13cm ,底边长为10 cm ,求它的内切圆的半径。
3、如图,在△ABC 中,∠C=90°,以BC 上一点O 为圆心,以OB 为半径的圆交AB 于点M ,交BC 于点N 。
〔1〕求证:B A ·BM=BC ·BN ;〔2〕如果CM 是⊙O 的切线,N 为OC 的中点。
当AC=3时,求AB 的值。
N MOCP C B AA 4、.5、如图,两圆内切于点A,PA 既是大圆的切线,又是小圆的切线,PB 、PC 分别切两圆于B 、C 。
专题34 切线长定理-中考数学二轮复习之难点突破+热点解题方法
专题34 切线长定理一、单选题1.如图,AD,AE,BC分别切⊙O于点D,E,F,若⊙ABC的周长为24,则AD的长是()A.24B.16C.12D.10【答案】C【分析】根据AD,AE,BC分别是圆的切线,得到AD=AE,BD=BF,CE=CF,再根据⊙ABC的周长为24,进行线段代换得到2AD=24,即可求出AD,问题得解【详解】解:⊙AD,AE,BC分别是圆的切线,⊙AD=AE,BD=BF,CE=CF;则⊙ABC的周长=AB+BC+AC=AB+BF+CF+AC=AB+BD+AC+CE=AD+AE=2AD=24,⊙AD=12,故答案为:C.【点睛】本题考查了切线长定理,熟知切线长定理“从圆外一点可以引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角”是解题关键.2.如图.P A,PB是⊙O的两条切线,切点分别为A,B,连接OA,OB,OP,AB.若OA=1,⊙APB=60°,则⊙P AB的周长为()A.B.4C.D.【答案】C【分析】根据切线的性质和切线长定理证明⊙P AB是等边三角形,P A⊙AO,根据直角三角形性质求出P A,问题得解.【详解】解:⊙P A,PB是⊙O的两条切线,⊙APB=60°,⊙P A=PB,⊙APO=12⊙APB=30°,P A⊙AO,⊙⊙P AB是等边三角形,⊙P A⊙AO,⊙APO==30°,⊙OP=2OA=2,⊙PA==⊙⊙P AB的周长为故选:C【点睛】本题考查了切线长定理,切线的性质,等边三角形的判定,含30°角直角三角形性质,勾股定理等知识,考查知识点较多,熟知相关定理并能熟练运用是解题关键.3.如图,P是⊙O外一点,射线P A、PB分别切⊙O于点A、点B,CD切⊙O于点E,分别交P A、PB于点D、点C,若PB=4,则⊙PCD的周长()A.4B.6C.8D.10【答案】C【分析】由切线长定理可求得PA=PB,BC=CE,AD=ED,则可求得答案.【详解】解:⊙PA、PB分别切⊙O于点A、B,CD切⊙O于点E,⊙PA=PB=4,BC=EC,AD=ED,⊙PC+CD+PD=PC+CE+DE+PD=PC+BC+PD+AD=PB+PA=4+4=8,即⊙PCD的周长为8,故选:C.【点睛】本题考查了切线长定理以及三角形的周长,熟练掌握切线长定理是解题的关键;4.如图,⊙O与正方形ABCD的两边AB.AD都相切,且DE与⊙O相切于点E,若正方形ABCD的边长为4,3DE=,则OD的长为()A.B C.72D.4【答案】B【分析】设⊙O与AB、AD相切于点M、N.连接OM、ON,证明四边形AMON是正方形.根据切线长定理,可得DE=DN=3,从而求解,,AN ON再根据勾股定理计算即可;【详解】解:设⊙O与AB、AD相切于点M、N.连接OM、ON,90,,AMO ANO OM ON∴∠=∠=︒=正方形ABCD,90,A∴∠=︒∴ 四边形AMON 是正方形.,AN ON ∴=⊙DE 、DA 是⊙O 的切线,⊙DE=DN=3,⊙4,AD =⊙431,AN ON ==-=在Rt⊙OND 中,OD ===故选:B .【点睛】本题考查正方形的判定与性质,勾股定理的应用,切线的性质,切线长定理,掌握以上知识是解题的关键. 5.如图,PA PB ,分别切O 与点A B MN ,,切O 于点C ,分别交PA PB ,于点M N ,,若PMN ∆的周长8cm =,则PA 是( )A .4cmB .10cmC .8cmD .12cm【答案】A【分析】 根据切线长定理得MA=MC ,NC=NB ,PA=PB ,然后根据三角形周长的定义进行计算.【详解】⊙直线PA 、PB 、MN 分别与⊙O 相切于点A 、B 、C ,⊙MA=MC ,NC=NB ,PA=PB ,⊙⊙PMN 的周长=PM+PN+MC+NC=PM+MA+PN+NB=PA+PB=8(cm ), ⊙PA=PB=1842⨯=(cm ). 故选:A .【点睛】本题考查了切线长定理,解决本题的关键是掌握切线长定理.6.如图,PA ,PB 是O 的切线,A ,B 为切点,AC 是O 的直径,25.5BAC ∠=︒,则P ∠的度数为( )A .52°B .51°C .61°D .64.5°【答案】B【分析】 根据切线的性质和切线长的性质定理,即可求解.【详解】⊙PA ,PB 是O 的切线,AC 是O 的直径,⊙⊙CAP=90°,PA=PB ,⊙⊙PAB=⊙PBA ,⊙25.5BAC ∠=︒,⊙⊙PAB=⊙CAP -BAC ∠=64.5°,⊙P ∠=180°-64.5°-64.5°=51°.故选:B .【点睛】本题主要考查切线的性质和切线长的性质定理,掌握上述定理是解题的关键.7.如图,PA ,PB 为⊙O 的两条切线,点A ,B 是切点,OP 交⊙O 于点C ,交弦AB 于点D .下列结论中错误的是( )A .PA PB =B .AD BD =C .OP AB ⊥D .PAB APB ∠=∠【答案】D【分析】 PA ,PB 为⊙O 的两条切线,PA=PB ,可以判断A ,连结OA ,OB 则OA=OB ,由垂直平分线的逆定理确定OP 为AB 的垂直平分线AD=BD ,OP⊙AB ,可判断B ,可判断 C 点P 在圆外是变化的,可以大于60º,⊙APB >⊙PAB ,也可小于60º⊙APB <⊙PAB ,当⊙PAB=60º时,⊙APB=⊙PAB=60º可判断D .【详解】⊙PA ,PB 为⊙O 的两条切线,⊙PA=PB ,A 正确,连结OA ,OB ,则OA=OB ,⊙OP 为AB 的垂直平分线,⊙AD=BD ,B 正确,⊙OP⊙AB ,C 正确,⊙⊙PAB=⊙PBA ,⊙⊙APB+2⊙PAB=180º,当⊙PAB=60º时,⊙APB=⊙PAB=60º,⊙点P 在圆外是变化的,可以大于60º,⊙APB >⊙PAB ,也可小于60º⊙APB <⊙PAB ,所以D 不正确,故选择:D .【点睛】本题考查切线的性质,切线长,垂直平分线,等腰三角形的性质,掌握切线的性质切线长,垂直平分线,等腰三角形的性质是解题关键.8.如图AB、BC、CD分别与⊙O相切于E、F、G 三点且AB//DC,则下列结论:⊙CG=CF;⊙BE=BF;⊙⊙BOC=90°;⊙⊙BEO~⊙BOC~⊙OGC中正确的个数是()A.4B.3C.2D.1【答案】A【分析】连结OF,⊙⊙利用切线长定理即可判断正确性,⊙先推导⊙OEB=⊙OFB=⊙OFC=⊙OGC=90º,再证⊙EBO=⊙FBO,⊙FCO=⊙GCO,可证⊙BEO⊙⊙BFO(AAS),⊙FCO⊙⊙GCO(AAS),可推出⊙FOB+⊙FOC=90º,即⊙BOC=90°⊙正确;⊙由⊙OBC、⊙BEO、⊙CGO都是直角三角形,再证⊙GOC=⊙EBO=⊙OBC,可得⊙BEO⊙⊙BOC⊙⊙OGC⊙正确.【详解】连结OF,⊙AB、BC、CD分别与⊙O相切于E、F、G,又因为CG与CF为切线长,BE与BF也为切线长,⊙CG=CF,BE=BF,⊙⊙CG=CF,⊙BE=BF正确;⊙AB、BC、CD分别与⊙O相切于E、F、G,⊙OE⊙AB,OF⊙BC,OG⊙CD,⊙⊙OEB=⊙OFB=⊙OFC=⊙OGC=90º,⊙OB平分⊙EBF,OC平分⊙FCG,⊙⊙EBO=⊙FBO,⊙FCO=⊙GCO,⊙⊙BEO⊙⊙BFO(AAS),⊙FCO⊙⊙GCO(AAS),⊙⊙EOB=⊙FOB,⊙FOC=⊙GOC,⊙⊙EOB+⊙FOB+⊙FOC+⊙GOC=180º,⊙2⊙FOB+2⊙FOC=180º,⊙⊙FOB+⊙FOC=90º,⊙⊙BOC=⊙FOB+⊙FOC=90º,⊙⊙⊙BOC=90°正确;;由⊙OBC、⊙BEO、⊙CGO都是直角三角形,⊙⊙EOB+⊙EBO=90º,⊙EOB+⊙EBO=90º,⊙⊙GOC=⊙EBO=⊙OBC,⊙BEO⊙⊙BOC⊙⊙OGC,⊙⊙⊙BEO~⊙BOC~⊙OGC正确,⊙CG=CF;⊙BE=BF;⊙⊙BOC=90°;⊙⊙BEO~⊙BOC~⊙OGC中正确的个数有4个,故选择:A.【点睛】本题考查切线的性质,三角形全等,三角形相似,掌握切线的性质,三角形全等的证明方法与性质,三角形相似的判定定理与判定方法的选择是解题关键.9.如图,已知PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,射线PO交圆O于点D、点E.下列结论不一定成立的是()A .点E 是⊙BPA 的内心B .AB 与PD 相互垂直平分C .点A 、B 都在以PO 为直径的圆上D .PC 为⊙BPA 的边AB 上的中线【答案】B【分析】 根据切线长定理、切线性质、等腰三角形性质和三角形全等的判定和性质可以得到解答 .【详解】解:如图,作EG⊙PA 于G ,EH⊙PB 于H ,作PO 的中点F ,并连结FB 、FA 、EB 、EA 、OB 、OA ,由切线长定理可知PA=PB ,⊙BPO=⊙APO ,⊙⊙BPA 为等腰三角形,且PC 为⊙BPA 的边AB 上的中线,D 不符合题意;由切线的性质可知⊙OBP 、⊙OAP 为直角三角形,⊙F 为PO 的中点,⊙FB=FA=12PO FO =, ⊙点A 、B 都在以PO 为直径的圆上,C 不符合题意;在⊙PBE 和⊙PAE 中,PB PA BPO APO PE PE =⎧⎪∠=∠⎨⎪=⎩,⊙⊙PBE⊙⊙PAE ,⊙EB=EA ,⊙⊙EBA=⊙EAB ,⊙PA 是⊙O 的切线,⊙⊙PAE=⊙EBA ,⊙⊙PAE=⊙EAB ,⊙EG=EC ,⊙PO 平分⊙BPA ,⊙EH=EG ,⊙EH=EG=EC ,⊙点E 是⊙BPA 的内心,A 不符合题意;⊙PC=CD 不一定成立,AB 与PD 不一定相互垂直平分,B 符合题意;故选B .【点睛】本题考查直线与圆相切的应用,综合运用切线长定理、切线性质、等腰三角形性质和三角形全等的判定和性质是解题关键.10.如图,PA 切O 于点,A PB 切O 于点B PO ,交O 于点C ,下列结论中不一定成立的是( )A .PA PB = B .PO 平分APB ∠C .AB OP ⊥D .2PAB APO∠=∠ 【答案】D【分析】利用切线长定理证明⊙PAG⊙⊙PBG 即可得出.【详解】解:连接OA ,OB ,AB ,AB 交PO 于点G ,由切线长定理可得:⊙APO =⊙BPO ,PA =PB ,又⊙PG=PG ,⊙⊙PAG⊙⊙PBG ,从而AB⊙OP .因此A .B .C 都正确.无法得出AB =PA =PB ,可知:D 是错误的.综上可知:只有D 是错误的.故选:D.【点睛】本题考查了切线长定理、全等三角形的判定和性质,关键是利用切线长定理解答.11.如图,从半径为5的⊙O外一点P引圆的两条切线P A,PB(A,B为切点),若⊙APB=60°,则四边形OAPB的周长等于()+A.30B.40C.1)D.1)【答案】D【分析】连接OP,根据切线长定理得到P A=PB,再得出⊙OP A=⊙OPB=30°,根据含30°直角三角形的性质以及勾股定理求出PB,计算即可.【详解】解:连接OP,⊙P A,PB是圆的两条切线,⊙P A=PB,OA⊙P A,OB⊙PB,又OA=OB,OP=OP,⊙⊙OAP⊙⊙OBP(SSS),⊙⊙OP A=⊙OPB=30°,⊙OP=2OB=10,⊙PB=P A,⊙四边形OAPB的周长=10+1),故选:D.【点睛】本题考查的是切线的性质、切线长定理、勾股定理以及全等三角形的性质等知识,作出辅助线构造直角三角形是解题的关键.12.如图,,PA PB 切O 于,A B 两点,CD 切O 于点E ,交,PA PB 于,C D .若PCD ∆的周长为3,则PA 的值为( )A .32B .23C .12D .34【答案】A【分析】利用切线长定理得出,,PA PB CA CE DE DB === ,然后再根据PCD ∆的周长即可求出PA 的长.【详解】⊙,PA PB 切O 于,A B 两点,CD 切O 于点E ,交,PA PB 于,C D,,PA PB CA CE DE DB ∴===⊙PCD ∆的周长为23PC CA PD DB PA +++== ⊙32PA = 故选:A .【点睛】本题主要考查切线长定理,掌握切线长定理是解题的关键.13.如图,PA 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,下列结论不一定成立的是( )A .PA =PBB .⊙BPD =⊙APDC .AB⊙PD D .AB 平分PD【答案】D【分析】 先根据切线长定理得到PA =PB ,⊙APD =⊙BPD ;再根据等腰三角形的性质得OP⊙AB ,根据菱形的性质,只有当AD⊙PB ,BD⊙PA 时,AB 平分PD ,由此可判断D 不一定成立.【详解】⊙PA ,PB 是⊙O 的切线,⊙PA =PB ,所以A 成立;⊙BPD =⊙APD ,所以B 成立;⊙AB⊙PD ,所以C 成立;⊙PA ,PB 是⊙O 的切线,⊙AB⊙PD ,且AC =BC ,只有当AD⊙PB ,BD⊙PA 时,AB 平分PD ,所以D 不一定成立,故选D .【点睛】本题考查了切线长定理,垂径定理,等腰三角形的性质等,熟练掌握相关知识是解题的关键.14.如图,,AB AC 为O 的切线,B 和C 是切点,延长OB 到点D ,使BD OB =,连接AD ,若78DAC ∠=,则ADO ∠等于( )A .70B .64C .62D .51【答案】B【分析】 根据等腰三角形三线合一与切线长定理即可求解.⊙B 是切点,使BD OB =,⊙⊙ABO⊙⊙ABD ,故⊙DAB=⊙OAB ,⊙B 和C 是切点,⊙⊙OAB=⊙OAC ,故⊙DAB=13DAC ∠=26°, ⊙ADO ∠=90°-⊙DAB=64,故选B【点睛】此题主要考查切线长定理,解题的关键是熟知等腰三角形的性质.15.如图,从圆O 外一点P 引圆O 的两条切线PA ,PB ,切点分别为A ,B ,如果60APB ∠=, 8PA =,那么弦AB 的长是( )A .4B .C .8D .【答案】C【分析】 先利用切线长定理得到PA PB =,再利用60APB ∠=可判断APB 为等边三角形,然后根据等边三角形的性质求解.【详解】解:PA ,PB 为O 的切线,PA PB ∴=,60APB ∠=,APB ∴为等边三角形,8AB PA ∴==.故选C .本题考查切线长定理,掌握切线长定理是解题的关键.16.如图,AB是⊙O的直径,点C为⊙O外一点,CA、CD是⊙O的切线,A、D为切点,连接BD、AD.若⊙ACD=48°,则⊙DBA的大小是()A.32°B.48°C.60°D.66°【答案】D【分析】根据切线长定理可知CA=CD,求出⊙CAD,再证明⊙DBA=⊙CAD即可解决问题.【详解】解:⊙CA、CD是⊙O的切线,⊙CA=CD,⊙⊙ACD=48°,⊙⊙CAD=⊙CDA=66°,⊙CA⊙AB,AB是直径,⊙⊙ADB=⊙CAB=90°,⊙⊙DBA+⊙DAB=90°,⊙CAD+⊙DAB=90°,⊙⊙DBA=⊙CAD=66°,故选D.【点睛】本题考查切线长定理和切线的性质、等腰三角形的性质、直径所对的圆周角是直角等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.如图所示,⊙O的外切梯形ABCD中,如果AD⊙BC,那么⊙DOC的度数为( )A.70°B.90°C.60°D.45°【答案】B【分析】由于AD、DC、CB都是⊙O的切线,根据切线长定理知:⊙ADO=⊙CDO,⊙DCO=⊙BCO;而AD⊙BC,则2⊙ODC和2⊙OCD互补,由此可求得⊙DOC的度数.【详解】⊙DA、CD、CB都与⊙O相切,⊙⊙ADO=⊙ODC,⊙OCD=⊙OCB;⊙AD⊙BC,⊙⊙ADC+⊙BCD=180°;⊙⊙ODC+⊙OCD=90°,即⊙DOC=90°;故选B.【点睛】此题主要考查的是切线长定理及平行线的性质,准确的确定角的关系是解题关键.18.如图,一把直尺,60︒的直角三角板和光盘如图摆放,A为60︒角与直尺交点,3AB=,则光盘的直径是( )A.3B.C.6D.【答案】D【解析】⊙分析】设光盘圆心为O,连接OC⊙OA⊙OB,由AC⊙AB都与圆O相切,利用切线长定理得到AO平分⊙BAC,且OC垂直于AC⊙OB垂直于AB,可得出⊙CAO=⊙BAO=60°,得到⊙AOB=30°,利用30°所对的直角边等于斜边的一半求出OA的长,再利用勾股定理求出OB的长,即可确定出光盘的直径.【详解】如图,设光盘圆心为O,连接OC⊙OA⊙OB⊙⊙AC⊙AB都与圆O相切,⊙AO平分⊙BAC⊙OC⊙AC⊙OB⊙AB⊙⊙⊙CAO=⊙BAO=60°⊙⊙⊙AOB=30°⊙在Rt⊙AOB中,AB=3cm⊙⊙AOB=30°⊙⊙OA=6cm⊙根据勾股定理得:=⊙则光盘的直径为⊙故选D.【点睛】本题考查了切线的性质,切线长定理,含30°角的直角三角形的性质,以及勾股定理,熟练掌握切线的性质是解本题的关键.19.如图⊙⊙ABC是一张周长为17 cm的三角形纸片⊙BC⊙5 cm⊙⊙O是它的内切圆⊙小明准备用剪刀在⊙O 的右侧沿着与⊙O相切的任意一条直线MN剪下⊙AMN⊙则剪下的三角形的周长为()A.12 cmB.7 cmC.6 cmD.随直线MN的变化而变化【答案】B【详解】试题解析:设,E F分别是O的切点,ABC 是一张三角形的纸片,17cm AB BC AC ++=,O 是它的内切圆,点D 是其中的一个切点,5cm BC =,5cm BD CE BC ∴+==,则7cm AD AE +=, 故DM MF FN EN AD AE ===,,,()7cm .AM AN MN AD AE ∴++=+=故选B.二、填空题20.如图,PA 、PB 切⊙O 于A 、B ,点C 在AB 上,DE 切⊙O 于C 交PA 、PB 于D 、E ,已知PO =13cm ,⊙O 的半径为5cm ,则⊙PDE 的周长是_____.【答案】24cm【分析】连接OA 、OB ,由切线长定理可得:PA=PB ,DA=DC ,EC=EB ;由勾股定理可得PA 的长,⊙PDE 的周长=PD+DC+CE+PE=PD+DA+PE+EB=PA+PB ,即可求得⊙PDE 的周长.【详解】解:连接OA 、OB ,如图所示:⊙PA 、PB 为圆的两条切线,⊙由切线长定理可得:PA=PB ,同理可知:DA=DC ,EC=EB ;⊙OA⊙PA ,OA=5cm ,PO=13cm ,⊙在Rt⊙POA 中,由勾股定理得:12==cm ,⊙PA=PB=12cm ;⊙⊙PDE 的周长=PD+DC+CE+PE ,DA=DC ,EC=EB ;⊙⊙PDE 的周长=PD+DA+PE+EB=PA+PB=24cm ,故答案为:24cm.【点睛】本题考查的是切线长定理,切线长定理图提供了很多等线段,分析图形时关键是要仔细探索,找出图形的各对相等切线长.21.如图,PA ,PB 为⊙O 的切线,A ,B 为切点,⊙OAB=25°,则⊙P=______.【答案】50︒.【分析】利用切线长定理可得,PA PB OA PA =⊥,由等边对等角得到PAB PBA ∠=∠,90OAP ∠=︒,再根据互余的性质解得PAB ∠的度数,最后由三角形内角和180°解题.【详解】解:PA PB 、是O 的切线,A B 、为切点,,PA PB OA PA ∴=⊥,90PAB PBA OAP ∴∠=∠∠=︒90902565PAB OAB ∠=︒-∠=︒-︒=︒65PBA ∴∠=︒180656550P ∴∠=︒-︒-︒=︒故答案为:50︒.【点睛】本题考查切线的性质、切线长定理等知识,是重要考点,难度较易,掌握相关知识是解题关键. 22.如图,在矩形ABCD 中,CD 是⊙O 直径,E 是BC 的中点,P 是直线AE 上任意一点,AB =4,BC =6,PM 、PN 相切于点M 、N ,当⊙MPN 最大时,PM 的长为__________.【分析】 连接OP ,OM ,根据切线长定理可知12MPO MPN ∠=∠,因为122OM DC ==,故当OP 最小(即OP 垂直AC 时),sin OM MPO OP ∠=最大,此时MPN ∠最大,由此得到P 点,再求出OP 长,在Rt ⊙PMO 中求出PM 即可解答.【详解】解:连接OP ,OM ,⊙PM 、PN 相切于点M 、N , ⊙12MPO MPN ∠=∠,90PMO ∠=︒, ⊙sin OM MPO OP ∠=, 又⊙在矩形ABCD 中,CD =AB =4,CD 是⊙O 直径, ⊙122OM CD ==, ⊙故当OP 最小(即OP 垂直AC 时),sin OM MPO OP ∠=最大, 延长DC 交直线AE 于点G ,⊙E 是BC 的中点,BC =6,⊙BE =EC =3,⊙在矩形ABCD 中,90ABC ∠=︒,⊙5AE =,⊙在矩形ABCD 中,//AB CD ,⊙BAE G ∠=∠, ⊙3sin sin 5BAE G ∠=∠=, ⊙EG =5,CG =3, ⊙OG =OC +CG =2+4=6,又⊙OP 垂直AC 时,MPN ∠最大, ⊙318sin 655OP OG G =∠=⨯=,在Rt ⊙PMO 中,PM =【点睛】 本题主要考查了几何的最值问题,综合性强,涉及了圆的切线性质,矩形性质、解三角形、点到直线的距离垂线段最小等知识,解题关键是切线长定理可知12MPO MPN ∠=∠,然后关键在Rt ⊙PMO 中sin OM MPO OP∠=最大,此时MPN ∠最大,得出OP 垂直AC 时,MPN ∠最大. 23.如图,四边形ABCD 是O 的外切四边形,且9AB =,15CD =,则四边形ABCD 的周长为__________.【答案】48【分析】根据切线长定理得到AE=AH ,BE=BF ,CF=CG ,DH=DG ,得到AD+BC=AB+CD=24,根据四边形的周长公式计算,得到答案.【详解】解:⊙四边形ABCD 是⊙O 的外切四边形,⊙AE=AH ,BE=BF ,CF=CG ,DH=DG ,⊙AD+BC=AB+CD=24,⊙四边形ABCD 的周长=AD+BC+AB+CD=24+24=48,故答案为:48.【点睛】本题考查了切线长定理,掌握从圆外一点引圆的两条切线,它们的切线长相等是解题的关键.24.如图,ABC 是一张周长为18cm 的三角形纸片,5BC cm ,O 是它的内切圆,小明准备用剪刀在O 的右侧沿着与O 相切的任意一条直线MN 剪下AMN ,则剪下的三角形的周长为______cm .【答案】8【分析】根据切线长定理得到BD =BG ,CP =CG ,MH =MD ,NH =NP ,根据三角形的周长公式计算即可得出结论.【详解】解:由切线长定理得,BD =BG ,CP =CG ,MH =MD ,NH =NP ,⊙BD +CP =BG +CG =5,⊙AD +AP =18−10=8,⊙⊙AMN 的周长=AM +MN +AN =AM +MD +AN +NP =AD +AP =8(cm ),故答案为:8.【点睛】本题考查的是三角形的内切圆,掌握切线长定理是解题的关键.25.如图,在Rt⊙ABC 中,⊙ABC =90°,⊙O 的圆心在AB 边上,且分别与AC 、BC 相切于点D 、B ,若AB =6cm ,AC =10cm ,则⊙O 的半径为________cm .【答案】83【分析】连接OD ,由勾股定理求出BC=8cm ,设⊙O 的半径为rcm ,由切线长定理得CD=BC=2cm ,AD=2cm ,根据勾股定理求出答案.【详解】连接OD ,设⊙O 的半径为rcm ,在Rt⊙ABC 中,⊙ABC =90°,222AB BC AC +=,⊙8BC =(cm ), ⊙CD 、CB 分别且⊙O 于点D 、B ,⊙CD=BC=2cm ,OD⊙AC ,⊙AD=AC -CD=2cm ,在Rt⊙AOD 中,222AD OD OA ,⊙2222(6)r r +=-, 解得r=83, 故答案为:83. .【点睛】此题考查圆的切线的性质定理,切线长定理,勾股定理,熟记各定理并运用解决问题是解题的关键. 26.如图,O 是Rt ABC ∆的内切圆,切点分别为D 、E 、F ,90C ∠=︒,3AC =,4BC =,则AF =___.【答案】2【分析】由90C ∠=︒,OD AC ⊥,OE BC ⊥可证四边形ODCE 是正方形,再根据切线长定理可得AD AF =,BE BF =,DC CE =.设OD =OE =r ,利用各线段之间的数量关系构建关于r 的方程解决问题即可.【详解】解:如图,连接OD ,OE ,⊙O 是Rt ABC ∆的内切圆,切点分别为D 、E 、F ,⊙OD AC ⊥,OE BC ⊥.⊙90C ∠=︒,OD OE =,⊙四边形ODCE 是正方形.设OD OE DC CE r ====,则根据切线长定理,得3AD AF AC r r ==-=-,4BE BF BC r r ==-=-.⊙3AC =,4BC =,由勾股定理得:5AB =.⊙345r r -+-=.解得1r =.⊙32AF r =-=.故答案为:2.【点睛】本题主要考查了切线长定理,熟练掌握切线性质、切线长定理、正方形的判定、勾股定理等基本知识点,并能灵活运用所学知识是解题的关键.27.如图,PA ,PB 分别与O 相切于点A 、B ,O 切线EF 分别交PA ,PB 于E ,F ,切点C 在弧AB 上,若PA 的长为5,则PEF ∆的周长是___.【答案】10【分析】根据切线长定理得:AE=CE ,FB=CF ,由此得到⊙PEF 的周长等于PA+PB 得到答案.【详解】解:PA 、PB 分别与O 相切于点A 、B , O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在弧AB 上,AE CE ∴=,FB CF =,5PA PB ==,PEF ∴∆的周长10PE EF PF PA PB =++=+=.故答案为:10.【点睛】此题考查切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,熟记定理是解题的关键. 28.如图,Rt⊙ABC 的内切圆⊙I 分别与斜边AB 、直角边BC 、CA 切于点D 、E 、F ,AD =3,BD =2,则Rt⊙ABC 的面积为_______.【答案】6【分析】直接利用切线长定理得出AD=AF=3,BD=BE=2,FC=EC ,再结合勾股定理得出FC 的长,进而得出答案.【详解】解:⊙Rt⊙ABC 的内切圆⊙I 分别与斜边AB 、直角边BC 、CA 切于点D 、E 、F ,AD=3,BD=2, ⊙AD=AF=3,BD=BE=2,FC=EC ,设FC=EC=x ,则(3+x )2+(2+x )2=52,解得:x 1=1,x 2=-6(不合题意舍去),则AC=4,BC=3,故Rt⊙ABC 的面积为:12×4×3=6. 故答案为:6.【点睛】此题主要考查了切线长定理以及勾股定理,正确得出FC 的长是解题关键.29.如图,PA 、PB 、DE 分别切O 于A 、B 、C ,O 的半径为5cm ,OP 的长为13cm ,则PDE△的周长是______cm .【答案】24【分析】连接AO ,根据切线长定理得到AE=CE ,BD=CD ,PA=PB ,得到PDE △的周长等于PA PB +,再用勾股定理求出PA 的长,就可以算出周长.【详解】解:如图,连接AO ,⊙PA 、PB 是O 的切线,⊙PA=PB ,AO PA ⊥,同理,AE=CE ,BD=CD ,PDE C PE PD DE =++PE EC PD DC =+++PE EA PD DB =+++PA PB =+,在Rt APO 中,12PA cm ==, ⊙121224PDE C cm =+=.故答案是:24.【点睛】本题考查切线长定理,解题的关键是掌握切线长定理并能够熟练运用.三、解答题30.如图,O 的直径4AB cm =,AM 和BN 是它的两条切线,DE 与O 相切于点E ,并与AM ,BN 分别相交于D ,C 两点,设AD x =,BC y =,求y 关于x 的函数表达式,并在坐标系中画出它的图像.【答案】4y x=(x >0);作图见解析; 【分析】 做辅助线构造直角三角形,运用勾股定理及切线的性质定理可求出y 关于x 的函数解析式,再运用描点法做出函数图像即可;【详解】如图,过点D 作DF BC ⊥,⊙AD 、BC 分别是圆O 的切线,⊙90OAD OBF ∠=∠=︒,又⊙DF BC ⊥,⊙四边形ABFD 是矩形,⊙4DF AB cm ==,BF AD =,⊙AD 、BC 、DC 分别是圆O 的切线,⊙DE DA x ==,CE CB y ==,CF y x =-,⊙DC x y =+,由勾股定理得:222DC DF CF =+, 即()()2224x y y x +=-+,整理得:4xy =, ⊙4y x=, ⊙y 关于x 的函数解析式为4y x =(x >0); 如图,做图像:当1x =时,4y =;2x =时,2y =;4x =时,1y =;过点()1,4,()2,2,()4,1,在平面直角坐标系内连线可得函数图像,【点睛】本题主要考查了切线的性质和反比例函数的解析式求解和作图,准确分析判断是解题的关键.31.如图,PA 、PB 是⊙O 的切线,A 、B 为切点,⊙P =44°.(1)如图⊙,若点C为优弧AB上一点,求⊙ACB的度数;(2)如图⊙,在(1)的条件下,若点D为劣弧AC上一点,求⊙PAD+⊙C的度数.【答案】(1)68°;(2)248°【分析】(1)根据切线的性质得到⊙OAP=90°,⊙OBP=90°,根据圆周角定理即可得到结论;(2)连接AB,根据切线长的性质得到PA=PB,得到⊙PAB=⊙PBA=68°,再根据圆内接四边形定理可求.【详解】解:(1)⊙PA、PB是⊙O的切线,⊙⊙OAP=90°,⊙OBP=90°,⊙⊙AOB=360°﹣⊙OAP﹣⊙OBP﹣⊙P=360°﹣90°﹣90°﹣44°=136°,⊙⊙ACB=12AOB=68°;(2)连接AB,⊙PA、PB是⊙O的切线,⊙PA=PB,⊙⊙P=44°,⊙⊙PAB=⊙PBA=12(180°﹣44°)=68°,⊙⊙DAB+⊙C=180°,⊙⊙PAD+⊙C=⊙PAB+⊙DAB+⊙C=180°+68°=248°.【点睛】本题考查了切线长定理、切线的性质和圆周角定理,解题关键是熟练运用圆的有关知识,恰当的连接辅助线,建立角与角之间的联系.32.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为顶点的ABC ∆,且90B ∠=︒.(1)将ABC ∆绕点O 顺时针旋转90°后得到EFG ∆(其中,,A B C 三点旋转后的对应点分别是,,E F G ),画出EFG ∆.(2)设EFG ∆的内切圆的半径为r ,EFG ∆的外接圆的半径为R ,则r R=__________.【答案】(1)见解析;(2)25【分析】 (1)根据旋转的性质,作出点A 、B 、C 的对应点,依次连接即可(2)结合图形,EG 为外接圆的直径,用勾股定理求出EG ,则可求R ,根据三角形内切圆的性质,和切线长定理可求得r ,进而可求得答案【详解】解(1)EFG ∆如图所示,(2)EFG ∆的内切圆的半径为r ,2EF FG EG r +-∴=4,3EF FG ==,5EG ===43512r +-∴== EFG ∆的外接圆的半径为R1522R EG ∴== 25r R ∴= 【点睛】本题考查了旋转图形的画法,勾股定理,三角形内心性质,切线长定理,解题关键是熟练掌握基本知识,是中考常考题.33.如图1,AB 是⊙O 的直径,BC 是⊙O 的切线,CE 切⊙O 于点E ,D 是CE 延长线上一点,DE=DA . (1)求证:AD 与⊙O 相切;(2)若直径AB=12,BC=x ,AD=y ,求y 与x 之间的函数关系式;(3)如图2,过点E 作EH ⊙AB 于点H ,已知AD =4,BC =9,求EH 的长.【答案】(1)见解析;(2)36y x =;(3)7213; 【分析】 (1)先证明⊙AOD ⊙⊙EOD ,可得⊙OAD =⊙OED ,由切线的性质可证⊙OED =90°,然后根据切线的判定方法证明即可;(2)证明⊙EOD ⊙⊙ECO ,可得OE 2=DE·CE =AD·BC ,由切线长定理可得DE=AD=y ,CE=BC=x ,代入整理即可;(3)作DF⊙BC 于F ,由切线长定理可证DE=AD =4,CE=CB =9,由EG //CF ,求出GE 的长,进而可求出EH 的长.【详解】解:(1)证明:如图,连接OE ,OD ,在⊙AOD 和⊙EOD 中,OA OE OD OD AD ED =⎧⎪=⎨⎪=⎩,⊙⊙AOD ⊙⊙EOD ,⊙⊙OAD =⊙OED ,⊙CE 切⊙O 于点E ,⊙⊙OED =90°,⊙⊙OAD =90°,⊙AD 与⊙O 相切;.(2)如图,连接OC ,OD ,OE ,⊙⊙AOD⊙⊙EOD,⊙⊙AOD=⊙DOE,同理可证⊙BOC=⊙COE,⊙⊙DOE+⊙COE=90°,⊙CE切⊙O于点E,⊙⊙CEO=⊙DEO=90°,⊙⊙OCE+⊙COE=90°,⊙⊙OCE=⊙DOE,⊙⊙EOD⊙⊙ECO,⊙OE DE CE OE=,⊙OE2=DE·CE=AD·BC,⊙AD,CE,BC是圆的切线,⊙DE=AD=y,CE=BC=x,⊙AB=12,⊙OE=6,⊙xy=36,即36yx =;(3)如图,作DF⊙BC于F,设DF交EH于点G,则四边形ABFD、四边形AHGD是矩形,⊙HG=AD=BF=4,CF=CB-BF=CB-AD=5,AD//HG//BC.⊙AD ,CE ,BC 是圆的切线,⊙DE=AD =4,CE=CB =9,⊙CD=CE+DE=CB+AD =13,⊙EG //CF , ⊙GE DE CF DC =, GE =2013, ⊙EH=GH+GE =4+2013=7213; 【点睛】本题考查了全等三角形的判定与性质,相似三角形的判定与性质,平行线分线段成比例定理,矩形的判定与性质,切线的证明方法,以及切线长定理等知识,难度较大,属中考压轴题.34.如图1,ABC 与ADE 均为等腰直角三角形,90BAC DAE ∠=∠=︒,CE 的延长线与BD 交点P ,CP 与BA 相交于点F ,现将ADE 绕点A 旋转.(1)如图1,求证:BP CP ⊥:(2)如图2,若AF BF =,猜想BP 与CP 的数量关系,并证明你猜想的结论;(3)若2AC ==,在将ADE 绕点A 旋转的过程中,请直接写出点P 运动路径的长度;【答案】(1)证明见解析;(2)3CP BP =,证明见解析;(3).3【分析】 (1)由ABC 与ADE 均为等腰直角三角形,90BAC DAE ∠=∠=︒,证明,,AD AE AB AC DAB EAC ==∠=∠,可得,DAB EAC ≌ 可得,DBA ECA ∠=∠ 再利用三角形的内角和定理可得结论;(2)如图,过F 作FG BC ⊥于G , 设=,AF a 求解2BG FG a ==,,BC = 再求解CG , 可得1tan ,3FG FCG CG ∠==从而可得结论;(3)如图,作ABC 的外接圆O ,以A 为圆心,AE 为半径作A , 过C 作A 的切线,CH CG , 切点为,H G , CH 交O 于N ,CG 交O 于,M 连接,,,AH OM ON 先求解60MCN ∠=︒, 120MON ∠=︒, O再证明P 在MN 上运动,从而可得答案. 【详解】证明:(1) ABC 与ADE 均为等腰直角三角形,90BAC DAE ∠=∠=︒,,,90AD AE AB AC DAB BAE BAE EAC ∴==∠+∠=∠+∠=︒,,DAB EAC ∴∠=∠(),DAB EAC SAS ∴≌,DBA ECA ∴∠=∠,BFP AFC ∠=∠90BPF BAC ∴∠=∠=︒,.BP CP ∴⊥(2)3CP BP =,理由如下:如图,过F 作FG BC ⊥于G ,设=,AF a ,AF BF = ∴ ,BF a =,90AB AC BAC =∠=︒,45GBF GFB ∴∠=∠=︒,2,AB AC a ==cos 4522BG FG BF BF a ∴==︒==,,BC ===,22CG BC BG a ∴=-==1tan ,3FG FCG CG ∴∠=== 1tan ,3BP BCP CP ∴∠==3.CP BP ∴=(3)如图,作ABC 的外接圆O ,以A 为圆心,AE 为半径作A , 过C 作A 的切线,CH CG , 切点为,H G , CH 交O 于N ,CG 交O 于,M 连接,,,AH OM ON 90,AHC ∴∠=︒ O 为BC 的中点, 22AC DE ==,DE ∴=cos 451,2AH AE DE ∴==︒== 1sin ,2AH ACH AC ∴∠== 30ACH ∴∠=︒,,CH CG 为A 的切线,60MCN ∴∠=︒,120MON ∴∠=︒,2AB AC ==,BC ∴==O ∴的半径为12BC = ,BP CP ⊥P ∴在O 上,P ∴在MN 上运动,120222.1803MN l π∴==∴ P 运动路径的长度为.3【点睛】本题考查的是三角形全等的判定与性质,解直角三角形,圆周角定理,切线的性质,切线长定理,弧长的计算,掌握以上知识是解题的关键.35.О直径12,AB cm AM =和BN 是О的切线,DC 切О于点E 且交AM 于点,D 交BN 于点C ,设,AD x BC y ==.()1求y 与x 之间的关系式;()2,x y 是关于t 的一元二次方程22300t t m -+=的两个根,求,x y 的值;()3在()2的条件下,求COD ∆的面积.【答案】(1)y 与x 的函数关系式是36y x =;(2)312x y =⎧⎨=⎩,或122x y =⎧⎨=⎩;(3)45COD S =.【分析】(1)作DF BN ⊥交BC 于F ,可知=FC y x -,DF=AB=12.由题意AM BN 、与O 切于点A B 、,DE 切O 于E ,可知DE DA x CE CB y ====,.即可求出DC x y =+.再在Rt DFC ∆中,利用勾股定理即可求出x 、y 的关系.(2)根据(1)可知36xy =,再根据韦达定理即可求出m 的值.即得到一元二次方程,求出该一元二次方程的两个根即可.(3)连接OD OE OC ,,.根据切线可知AOD ODE OBC COE S S S S ∆∆∆∆==,,即1=2COD COE ODE ABCD S S S S ∆∆∆=+梯形即可求出. 【详解】(1)如图,作DF BN ⊥交BC 于F ;AM BN 、与O 切于点A B 、AB AM AB BN ∴⊥⊥,.又DF BN ⊥,⊙90BAD ABC BFD ∠=∠=∠=︒,∴四边形ABFD 是矩形,12BF AD x DF AB ∴====,,BC y =,FC BC BF y x ∴=-=-; DE 切O 于E ,DE DA x CE CB y ∴====,,则DC DE CE x y =+=+,在Rt DFC ∆中,222CD FC DF =+,即222()()12y y x x =-++, 整理为:36y x=, y ∴与x 的函数关系式是36y x =.(2)由(1)知36xy =,⊙x y ,是方程22300t t m -+=的两个根,∴根据韦达定理知,2m xy =,即72m =; ∴原方程为215360t t -+=,解得:12123t t ==,.即312x y =⎧⎨=⎩或123x y =⎧⎨=⎩. (3)如图,连接OD OE OC ,,,AD BC CD ,,是O 的切线,OE CD AD DE BC CE ∴⊥==,,,AOD ODE OBC COE S S S S ∆∆∆∆∴==,,111==312124522)2(COD COE ODE ABCD S S S S ∆∆∆∴=+⨯⨯+⨯=梯形. 【点睛】本题考查切线的性质,勾股定理,一元二次方程的根与系数的关系和解一元二次方程.作出常用的辅助线是解答本题的关键.36.如图,在Rt ABC △中,90,C AD ︒∠=平分BAC ∠,交BC 于点D ,以点D 为圆心,DC 长为半径画D .(1)补全图形,判断直线AB 与D 的位置关系,并证明; (2)若5,2BD AC DC ==,求D 的半径.【答案】(1)补全图形见解析,AB 与⊙D 相切,证明见解析;(2)⊙D 的半径为3.【分析】(1)根据要求画出图形,结论AB 与⊙D 相切.过点D 作DE⊙AB 于E .证明DE=DC 即可.(2)设DE=DC=r ,BE=x .利用勾股定理构建方程组求解即可.【详解】解:(1)图形如图所示,结论AB 与⊙D 相切.理由:过点D 作DE⊙AB 于E .⊙AD 平分⊙BAC ,DC⊙AC ,DE⊙AB ,⊙DE=DC ,⊙DE 为⊙D 的半径,⊙⊙D 与AB 相切;(2)设DE=DC=r ,BE=x .⊙AC⊙BC ,DC 为半径,⊙AC 是⊙D 的切线,⊙AB 是⊙D 的切线,⊙AC=AE=2CD=2r ,⊙⊙ACB=⊙BED=90°,则有2222225(2)(5)(2)r x r r x r ⎧+=⎨++=+⎩,解得34r x =⎧⎨=⎩, ⊙⊙D 的半径为3.【点睛】本题考查角平分线的性质,切线的性质和判定,勾股定理,角平分线的性质等.解题的关键是,学会利用参数构建方程组解决问题,属于中考常考题型.37.如图.已知ABC ∆的周长为2p ,在AB 、AC 上分别取点M 和N ,使//BC MN ,且MN 与ABC ∆的内切圆相切.求MN 的最大值.【答案】最大值为4p 【分析】 由切线长性质定理可得BE+CF=BG+CG=BC=m ,ME+NF=MH+NH=NM=n .即可得AMN MN n ABC BC m ∆==∆,⊙n=m (1-2)m k,根据二次函数最值问题处理方法求解即可. 【详解】解:如图,设切点分别为E ,H ,F ,G .⊙BE=BG ,CF=CG ,ME=MH ,NH=NF ,设BE+CF=BG+CG=BC=m ,ME+NF=MH+NH=NM=n .⊙⊙ABC 的周长为2p ,⊙⊙AMN 的周长为AM+MH+AN+NH=AE+AF=2p -2m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
《切线长定理》专题
班级 姓名
(一)温故知新:
1.直线和圆有哪几种位置关系?切线的判定定理和性质定理是什么?
(二)探究新知:
探究一:如图所示,已知⊙O 及圆外一点P ,过点P 作⊙O 的切线,可以作几条? ☆ 从⊙O 外一点P 可以引⊙O 的 条切线, ☆ 切线长:经过圆外一点作圆的切线,这点与 的线段的长,叫做这点到圆的 。
问题:如图,已知⊙O 及圆外一点P ,PA 、PB 是⊙O 的切线,A 、B 是切点,连接PO ,图中有哪些相等线段,相等的角?为什么?
总结归纳: ☆ 切线长定理:从圆外一点引圆的两条切线,它们的 ,圆心和这一点的连线 两条切线的夹角. 用符号语言表示定理:
(三)学以致用:
1.填空:如图,PA 、PB 分别与⊙O 相切于点A 、B , (1)若PB=12,PO=13,则AO=___. (2)若PO=10,AO=6,则PB=___; (3)若PA=4,AO=3,则PO=___; 例 1 如图,PA 、PB 分别与⊙O 相切于点A 、B ,PO
PA=4cm,PD=2cm. 求半径OA 的长.⑵如果∠APB=50°,C 是⊙O 上异于A 、B 的任意一点,求∠ACB 的度数?
P P
探究二:如图,是一块三角形铁皮,怎样才能从中剪裁一个“最大的圆”?
作法:
总结归纳:
☆三角形的内切圆:与三角形各边都的圆叫做三角形的.内切圆的圆心是的交点,叫做三角形的。
内心到的距离相等
1.已知:如图,⊙O是△ABC的内切圆,切点分别为D、E、F,图中共有几对相等线段?
⑴若AD=4,BC=5,CF=2,则△ABC的周长是__;⑵如果∠A=70°,则∠BOC= ;
⑶若AB=4,BC=5,AC=6,求AD,BE,CF的长?
例2 如图,⊙I是Rt△ABC的内切圆,切点分别为D、E、F,已知∠C=90°,AC=3,BC=4,求⊙I的半径?
直线和圆的位置关系习题课
A
2
3
1.如图1,⊙O 内切Rt △ABC ,切点分别是D 、E 、F ,则四边形OECF 是_______.
2.如图2,PA 、PB 分别切⊙O 于A 、B ,并与⊙O 的切线分别相交于C 、D ,•已知PA=7cm ,则△PCD 的周长等于_________
3.如图3,已知AB 为O ⊙的直径,
PA PC ,是O ⊙的切线,A C ,为切点,30BAC ∠=°. 则∠APC= ;
4.一个钢管放在V 形架内,右图是其截面图,O 为钢管的圆心.如果钢管的半径为25cm ,∠MPN =60︒,则OP =( ) A .50cm B .253cm C .3
3
50cm D .503cm
5.如图(1),Rt △ABC 中,∠C=90°,AC=6,BC=8,则△ABC 的内切圆半径r= 。
如图(2),AD 、DC 、BC 都与⊙O 相切,且AD ∥BC ,则∠DOC= 。
如图(3),AB 、AC 与⊙O 相切于B.C 两点,∠A=50°,点P 是圆上异于B 、C 的一动点,则∠BPC= 。
6.如图(4),点O 为△ABC 的外心,点I 为△ABC 的内心,若∠BOC=140°,则∠BIC= 。
(4)
(3)
(2
)
(1
)
C A
C
B
C
7.如图,求边长为4的正三角形的内切圆半径?
图1
图4
P
图2
图3
B
C
A
4
P
8.如图,⊙O 是Rt △ABC 的外接圆,∠ABC=90°,点P 是圆外一点,PA 切⊙O 于点A ,且PA=PB ,求证:PB 是⊙O 的切线。
9已知:如图,四边形ABCD 的边AB 、BC 、CD 、DA 和⊙O 分别相切于点L 、M 、N 、P.想求证: AB+CD=AD+BC
10.如图所示,已知E 是△ABC 的内心,∠A 的平分线交BC 于点F ,且与△ABC 的外接圆相交于点D .求证:⑴ DB =DE ; ⑵ DE 2=DF·DA
11.如图所示,已知在△ABC 中,∠B=90°,O 是AB 上一点,以O 为圆心,OB •为半径的圆与AB 交于点E ,与AC 切于点D .问DE ∥OC 是否成立?请说明你的理由。
B
5。