《几何图形的初步认识》单元测试

合集下载

第4章 《几何图形初步》检测题

第4章 《几何图形初步》检测题

第四章:《几何图形初步》检测题一.选择题(共10小题)1.下列图形不能围成正方体的是()A B C D 2.下列说法正确的是()A.平角是一条直线B.反向延长射线OA就得到一个平角C.周角是一条射线D.画一条射线就是一个周角3.用一个平面去截一个几何体,截面形状为四边形,则这个几何体不可能为()A.立方体B.圆柱C.圆锥D.三棱柱4.下列说法正确的是()A.直线BA与直线AB是同一条直线B.直线AB的长为2cmC.射线BA与射线AB是同一条射线D.延长直线AB5.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因为()A.两点之间线段的长度,叫做这两点之间的距离B.过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短6.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm7.下列说法中,正确的有()①角的大小随边的长度变化而变化②一个有理数不是整数就是分数③若AD是∠BAC的平分线,则∠BAD=∠DAC④若一个角既有余角又有补角,则它的补角一定比它的余角大.A.1个B.2个C.3个D.4个8.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC 的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm9.如图是一个正方体的表面展开图,则这个正方体是()A B C.D.10.如图,一个长方体木块的长、宽、高分别为5cm、4cm、3cm.有一只蚂蚁从A点出发沿着长方体的棱爬行,最后又回到A点(爬行的路线不重复),则蚂蚁最多爬行()A.24cm B.25cm C.34cm D.48cm二.填空题(共6小题)11.一个棱柱有8个面,则这个棱柱有___________条侧棱.12.从点A看点B是南偏北30°,则点B看点A是________________.13.长方形硬纸片绕它的一边所在的直线旋转一周,形成的几何体是,这说明___________.14.已知正方体的一个平面展开图如图所示,则在原正方体上“明”的对面是.15.将两个同样大小的正方体粘合成一个长方体,粘合成的长方体的表面积是60cm2,那么正方体的每个面的面积是cm2.16.如图,一个边长为2的正方形和等腰直角三角形的一边重合,组成了一个平面图形,如果将它绕AB所在直线按逆时针方向旋转180°,得到一个几何体,则这个几何体的体积为.=h)(圆锥的体积公式为:V圆锥17.如图,纸上有10个小正方形(其中5个有阴影,5个无阴影),从图中5个无阴影的小正方形中选出一个,与5个有阴影的小正方形折出一个正方体的包装盒,不同的选法有种.三.解答题(共9小题)18.如下图,第一行的图形绕虚线旋转一周,便形成第二行的某个几何体,请你用线连起来.19.如图,平面内有A、B、C、D四点.按下列语句画图.(1)画直线AB,射线BD,线段BC;(2)连接AC,交射线BD于点E.(3)点F在直线AB上.20.在一条不完整的数轴上,从左到右有A,B,C三点,若以点B为原点,则点A表示的数是﹣3;点C表示的数是2;(1)若以点C为原点,则点A对应的数是;点B对应的数是.(2)A,B两点间的距离是;B,C两点间的距离是;A,C之间的距离是.(3)当原点在处时,三个点到原点的距离之和最小,最小距离是.21.如图,在直角△ABC中,∠C=90°,AC=6,BC=8,AB=10.(1)画出AB上高CD;※(2)求CD的长.22.如图所示的是一个无盖正方体形状盒子的表面沿某些棱剪开,展成一个平面图形后,在3×5方格中,画出的一种平面展开图.请在答题卡上的方格中画出3种与此不同的展开图.23.一张长方形纸片宽为4厘米,长为6厘米.如果把这张长方形纸片绕它的长边所在直线旋转一周,得到一个几何体,请说出这个几何体的名称,并计算出它的表面积.参考答案与试题解析一.选择题(共10小题)1.如图,一个长方体木块的长、宽、高分别为5cm、4cm、3cm.有一只蚂蚁从A点出发沿着长方体的棱爬行,最后又回到A点(爬行的路线不重复),则蚂蚁最多爬行()A.24cm B.25cm C.34cm D.48cm【分析】根据长方体长、宽、高的关系,多走长宽,少走高,可得路线A﹣B﹣C﹣D1﹣C1﹣B1﹣A1﹣A,可得答案.【解答】解:如图沿着A﹣B﹣C﹣D﹣﹣D1﹣C1﹣B1﹣A1﹣A,5+4+5+3+5+4+5+3=34(cm).故选:C.【点评】本题考查了认识立方体,走四个长,三个宽,两个高,得出答案.2.有一种正方体如图所示,下列图形是该方体的展开图的是()A.B.C.D.【分析】同一个立体图形按不同的方式展开,得到的平面展开图是不一样的,依据折叠后所得到正方体,即可得到结论.【解答】解:A选项中,折叠后所得到正方体中,三个面的对角线交于一个顶点,不合题意;B选项中,折叠后所得到正方体中,三个面的对角线中一条与其它两条无公共点,不合题意;C选项中,折叠后所得到正方体中,三个面的对角线组成一个三角形,符合题意;D选项中,折叠后所得到正方体中,三个面的对角线中一条与其它两条无公共点,不合题意;故选:C.【点评】本题主要考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.3.下列图形不能围成正方体的是()A.B.C.D.【分析】依据正方体的展开图的特征,即可得到不能围成正方体的图形.【解答】解:A选项中,折叠时有2个面重合,不能围成正方体;而B,C,D选项中,能围成正方体.故选:A.【点评】本题主要考查了展开图折成几何体,解题时注意:当六个正方形组成“田”字,“凹”字状时,不能折成正方体.4.如图,是一个正方体纸盒的展开图,将它折成正方体后与“美”字相对的面上的字是()A.我B.丽C.汇D.川【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴与“美”字相对的面上的汉字是“川”.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.5.用一个平面去截一个几何体,截面形状为四边形,则这个几何体不可能为()A.立方体B.圆柱C.圆锥D.三棱柱【分析】根据圆锥、圆柱、棱柱的几何特征,分别分析出用一个平面去截该几何体时,可能得到的截面的形状,逐一比照后,即可得到答案.【解答】解:A、用一个平面去截一个立方体,得到的图形可能是四边形,故A选项不合题意;B、用一个平面去截一个圆柱,得到的图形可能是四边形,故B选项不合题意;C、用一个平面去截一个圆锥,得到的图形可能是圆、椭圆、抛物线、三角形,不可能是四边形,故C选项符合题意;D、用一个平面去截一个三棱柱,得到的图形可能是四边形,故D选项不合题意;故选:C.【点评】本题考查了截一个几何体,截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形.6.下列说法正确的是()A.直线BA与直线AB是同一条直线B.延长直线ABC.射线BA与射线AB是同一条射线D.直线AB的长为2cm【分析】依据直线的概念、线段的概念以及射线的概念进行判断即可.【解答】解:A.直线BA与直线AB是同一条直线,故本选项正确;B.延长线段AB,故本选项错误;C.射线BA与射线AB不是同一条射线,故本选项错误;D.线段AB的长为2cm,故本选项错误;故选:A.【点评】本题主要考查了直线、射线和线段的概念,射线是直线的一部分,注意:用两个字母表示时,端点的字母放在前边.7.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因为()A.两点之间线段的长度,叫做这两点之间的距离B.过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短【分析】根据两点之间,线段最短解答即可.【解答】解:现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,其原因是两点之间,线段最短,故选:D.【点评】本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.8.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm【分析】由于点A、B、C都是直线l上的点,所以有两种情况:①当B在AC之间时,AC=AB+BC,代入数值即可计算出结果;②当C在AB之间时,此时AC=AB﹣BC,再代入已知数据即可求出结果.【解答】解:∵点A、B、C都是直线l上的点,∴有两种情况:①当B在AC之间时,AC=AB+BC,而AB=5cm,BC=3cm,∴AC=AB+BC=8cm;②当C在AB之间时,此时AC=AB﹣BC,而AB=5cm,BC=3cm,∴AC=AB﹣BC=2cm.点A与点C之间的距离是8或2cm.故选:C.【点评】在未画图类问题中,正确理解题意很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.9.在直线m上顺次取A,B,C三点,使AB=10cm,BC=4cm,如果点O是线段AC的中点,则线段OB的长为()A.3cm B.7cm C.3cm或7cm D.5cm或2cm【分析】由已知条件可知,AC=10+4=14,又因为点O是线段AC的中点,可求得AO的值,最后根据题意结合图形,则OB=AB﹣AO可求.【解答】解:如图所示,AC=10+4=14cm,∵点O是线段AC的中点,∴AO=AC=7cm,∴OB=AB﹣AO=3cm.故选:A.【点评】首先注意根据题意正确画出图形,这里是顺次取A,B,C三点,所以不用考虑多种情况.能够根据中点的概念,熟练写出需要的表达式,还要结合图形进行线段的和差计算.10.下列说法中,正确的有()①角的大小随边的长度变化而变化②若AD是∠BAC的平分线,则∠BAD=∠DAC③一个有理数不是整数就是分数④若一个角既有余角又有补角,则它的补角一定比它的余角大.A.1个B.2个C.3个D.4个【分析】根据角的定义和角平分线的定义可以判断①和②的正确性,再根据有理数的概念可以判断③的正确性,由角的补角和余角的定义可判断④的正确性.【解答】解:①角的大小与边的长短无关,故角的大小随边的长度变化而变化说法错误;②根据角平分线的定义:角平分线将一个角分成大小相等的两个角,若AD是∠BAC的平分线,则∠BAD=∠DAC,说法正确;③有理数包括整数和分数;故一个有理数不是整数就是分数,③说法正确;④一个角有余角,说明这个角是锐角,所以它的补角一定比它的余角大,故④正确.故选:C.【点评】本题主要考查的是角的定义和角平分线的定义,以及理数的概念和角的补角、余角的定义,掌握概念是解题的关键.二.填空题(共6小题)11.五棱柱有7个面.【分析】据五棱柱有2个底面,5个侧面,可得五棱柱的面数.【解答】解:∵五棱柱有2个底面,5个侧面,∴五棱柱的面数为7.故答案为:7.【点评】此题主要考查了认识立体图形,关键是认识常见的立体图形,掌握棱柱、棱锥、圆柱、圆锥的特点.12.长方形硬纸片绕它的一边所在的直线旋转一周,形成的几何体是圆柱,这说明面动成体.【分析】一个长方形围绕它的一条边旋转一周,根据面动成体的原理即可求解.【解答】解:一个长方形绕着它的一条边所在的直线旋转一周,得到的几何体是圆柱,说明面动成体.故答案为:圆柱,面动成体.【点评】本题考查了平面图形旋转可以得到立体图形,体现了面动成体的运动观点,注意点动成线,线动成面,面动成体.13.将两个同样大小的正方体粘合成一个长方体,粘合成的长方体的表面积是60cm2,那么正方体的每个面的面积是6cm2.【分析】设正方体的每个面的面积为x,根据粘合后有两个面重合,在长方体的内部,然后列出方程求解即可.【解答】解:如图,设正方体的每个面的面积为x ,∵粘合后有两个面重合,∴长方体的表面积比两个正方体的表面积减少两个面,∴(6×2﹣2)x=60,解得x=6cm 2.故答案为:6.【点评】本题考查了几何体的表面积,明确粘合后减少两个面是解题的关键,作出图形更形象直观.14.如图,已知BC 是圆柱的底面直径,AB 是圆柱的高,在圆柱的侧面上,过点A 、C 嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB 剪开,若展开图中,金属丝与底面周长围成的图形的面积是5πcm 2,该圆柱的侧面积是 10π cm 2.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题. 【解答】解:如图,圆柱的侧面展开图为长方形,AC=A'C ,且点C 为BB'的中点,∵AA'∥BB',四边形ABB'A'是矩形,∴S △AA'C =S 长方形ABB'A ',又∵展开图中,S △AA'C =5πcm 2,∴圆柱的侧面积是10πcm 2.故答案为:10π.【点评】此题主要考查圆柱的展开图,以及学生的立体思维能力.解题时注意:圆柱的侧面展开图是长方形,圆锥的侧面展开图是扇形15.如图,纸上有10个小正方形(其中5个有阴影,5个无阴影),从图中5个无阴影的小正方形中选出一个,与5个有阴影的小正方形折出一个正方体的包装盒,不同的选法有2种.【分析】利用正方体的展开图即可解决问题,共2种.【解答】解:如图所示,不同的选法有2处,故答案为:2.【点评】本题主要考查了正方体的展开图.解题的关键是掌握四棱柱的特征及正方体展开图的各种情形.16.已知正方体的一个平面展开图如图所示,则在原正方体上“明”的对面是建.【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【解答】解:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以在此正方体上与“明”字相对的面上的汉字是“建”.故答案为:建.【点评】此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.三.解答题(共9小题)17.如下图,第一行的图形绕虚线旋转一周,便形成第二行的某个几何体,请你用线连起来.【分析】根据面动成体:梯形绕底边旋转得中间圆柱、上下圆锥,半圆绕直径旋转得球,矩形绕边旋转得圆柱,直角三角形绕直角边旋转得圆锥,可得答案.【解答】解:第一行的图形绕虚线转一周,能形成第二行的某个几何体,用线连起来为:【点评】本题考查了点、线、面、体,熟记各种平面图形旋转得到的立体图形是解题关键.18.一张长方形纸片宽为4厘米,长为6厘米.如果把这张长方形纸片绕它的长边所在直线旋转一周,得到一个几何体,请说出这个几何体的名称,并计算出它的表面积.【分析】点动成线,线动成面,面动成体.依据圆柱的表面积等于底面面积加侧面面积,进行计算即可.【解答】解:把长方形纸片绕它的长边所在直线旋转一周,得到一个高为6厘米,底面半径为4厘米的圆柱,∴表面积=2×π×42+6×2π×4=32π+48π=80π(平方厘米).【点评】本题主要考查了圆柱的表面积,圆柱体表面积:2πR2+2πRh (R为圆柱体上下底圆半径,h为圆柱体高).19.如图是一个棱柱形状的食品包装盒的侧面展开图.(1)请写出这个包装盒的几何体的名称:三棱柱;(2)若AC=3,BC=4,AB=5,DF=6,计算这个多面体的侧面积.【分析】(1)根据图示可知有三个长方形和2个三角形组成,故可知是三棱柱;(2)这个多面体的侧面积是三个长方形的面积和.【解答】解:(1)共有3个长方形组成侧面,2个三角形组成底面,故是三棱柱;故答案为:三棱柱;(2)∵AB==5,AD=3,BE=4,DF=6∴侧面积为3×6+5×6+4×6=18+30+24=72.【点评】主要考查了三棱柱的展开图与几何体之间的联系和侧面积的求法.从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.20.如图,平面内有A、B、C、D四点.按下列语句画图.(1)画直线AB,射线BD,线段BC;(2)连接AC,交射线BD于点E.【分析】(1)依据直线,射线以及线段的定义,即可画出直线AB,射线BD,线段BC;(2)连接AC,交射线BD于点E即可.【解答】解:(1)如图所示,直线AB,射线BD,线段BC即为所求;(2)连接AC,点E即为所求.【点评】此题主要考查了基本作图中的线段、射线、直线作法等,解答此题,要熟悉直线、射线、线段的概念,并熟悉基本工具的用法.21.在一条不完整的数轴上,从左到右有A,B,C三点,若以点B为原点,则点A表示的数是﹣3;点C表示的数是2;(1)若以点C为原点,则点A对应的数是﹣5;点B对应的数是﹣2.(2)A,B两点间的距离是3;B,C两点间的距离是2;A,C之间的距离是5.(3)当原点在点B处时,三个点到原点的距离之和最小,最小距离是5.【分析】(1)根据数轴上A、B、C三点的位置,可得A和B表示的数;(2)根据数轴上两点的距离公式=|x1﹣x2|,可得结论;(3)根据两点的距离公式分情况计算可得结论.【解答】解:(1)若以点C为原点,则点A对应的数是﹣5,点B对应的数是﹣2;故答案为:﹣5;﹣2.(2)∵点B为原点,则点A表示的数是﹣3;点C表示的数是2;∴AB=0﹣(﹣3)=3,BC=2﹣0=2,AC=2﹣(﹣3)=5,∴A,B两点间的距离是3;B,C两点间的距离是2,A,C之间的距离是5,故答案为:3;2;5.(3)①当原点在点A处时,三个点到原点的距离之和=0+3+5=8,②当原点在点B处时,三个点到原点的距离之和=3+0+2=5,③当原点在点C处时,三个点到原点的距离之和=5+2+0=7,∴当原点在点B处时,三个点到原点的距离之和最小,最小距离是5;故答案为:点B;5.【点评】本题考查了数轴和两点的距离,熟练掌握数轴上两点的距离是关键.22.已知:∠AOB及边OB上一点C.求作:∠OCD,使得∠OCD=∠AOB.要求:1.尺规作图,保留作图痕迹,不写作法;(说明:作出一个即可)2.请你写出作图的依据.【分析】(1)以点C为顶点,作∠OCD=∠COA,交AO于点D;(2)作一个角等于已知角的依据为SSS.【解答】解:(1)如图所示,∠OCD即为所求;(2)作图的依据为SSS.【点评】本题主要考查了基本作图,解决此类题目的关键是熟悉基本几何图形的性质,基本作图有:作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线.23.如图,在直角△ABC中,∠C=90°,AC=6,BC=8,AB=10.(1)画出AB上高CD;(2)求CD的长.【分析】(1)过点A作AB的垂线段CD即可;(2)依据直角△ABC中,∠C=90°,CD⊥AB,即可得到AC×BC=AB×CD,进而得出CD的长.【解答】解:(1)如图所示,CD即为AB上的高;(2)∵直角△ABC中,∠C=90°,CD⊥AB,∴AC×BC=AB×CD,即CD===4.8.【点评】本题主要考查了三角形的面积,解决问题的关键是运用面积法求得直角三角形斜边上的高.24.如图所示的是一个无盖正方体形状盒子的表面沿某些棱剪开,展成一个平面图形后,在3×5方格中,画出的一种平面展开图.请在答题卡上的方格中画出4种与此不同的展开图.【分析】由平面图形的折叠及无盖正方体的展开图就可以求出结论.【解答】解:将一个无盖正方体形状盒子的表面沿某些棱展开后得到的平面图形是:【点评】本题考查了正方体的平面展开图,解答时熟悉四棱柱的特征及无盖正方体展开图的各种情形是关键.25.用圆规、直尺作图,不写作法,但要保留作图痕迹.一个缺角的三角形残片如图所示,请你利用尺规画一个与它一样的(全等的)三角形.【分析】作∠C=∠A,作CD=AB,再作∠CDE=∠B,交于点E,依据ASA即可得到△CDE 与原三角形全等.【解答】解:如图所示,△CDE即为所求.【点评】此题考查作图﹣应用与设计作图,熟记全等三角形的判定方法和基本作图的思路与方法是解题的关键.。

人教版数学七年级上册《几何图形初步》单元综合检测卷(带答案)

人教版数学七年级上册《几何图形初步》单元综合检测卷(带答案)

人教版数学七年级上学期第四章单元测试考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.(2019·四川初一期中)有以下五种立体图形:①正方体;②三棱柱;③四棱柱;④长方体;⑤圆柱.其中有六个面的立体图形是( )A .4B .3C .2D .12.(2019·西安交通大学附属中学初一月考)用如图所示的图形,旋转一周所形成的几何体是( )A .B .C .D .3.(2019·河北初二期中)一副三角板按如图方式摆放,已知∠1=5∠2,则∠1的度数是( )A .15°B .18°C .72°D .75°4.(2019·山西初三)如图,点O 是直线AB 上的一点,AOC 40∠=,OM 平分BOC ∠,则BOM ∠等于( )A .60B .65C .70D .755.(2019·贵州省织金县第六中学初一期中)将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创“相对的字是( )A.文B.明C.城D.市6.(2019·福建聚龙外国语学校初二月考)下列说法正确的是( )A.延长线段AB和延长线段BA的含义相同B.射线AB的长度为12cmC.经过两点可以画一条直线,并且只能画一条直线D.延长直线AB7.(2019·济宁高新区第五中学初一期末)下面说法错误的是( )A.两点确定一条直线B.射线AB也可以写作射线BAC.等角的余角相等D.同角的补角相等8.(2019·广东正德中学初一月考)下列说法正确的有()①长方体、正方体都是棱柱;②圆锥和圆柱的底面都是圆;③若直棱柱的底面边长相等,则它的各个侧面的面积相等;④棱锥底面的边数与侧棱数相等;⑤直棱柱的上、下底面是形状、大小相同的多边形,侧面都是长方形.A.2个B.3个C.4个D.5个9.(2018·河北省保定市第十七中学初一期末)已知线段AB=6cm,线段BC=8cm,则线段AC 的长度为( ) A.14cm B.2cm C.14cm或2cm D.不能确定10.(2019·山东初一期中)如图,在正方形网格中,∠1+∠2+∠3=( )A.90°B.120°C.135°D.150°二、填空题(每小题4分,共24分)11.(2019·河北初一期中)如图,直线AB和CD相交于点O,OE是∠DOB的平分线,若∠AOC=76°,则∠EOB=_______.12.(2019·重庆市第一一0中学校初一期中)三条直线两两相交,它们的交点个数是________个。

《第4章几何图形初步》单元测试含答案解析

《第4章几何图形初步》单元测试含答案解析

《第4章几何图形初步》一、选择题1.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.2.下列图形中,∠1和∠2互为余角的是()A.B.C.D.3.如图,点A位于点O的()方向上.A.南偏东35°B.北偏西65°C.南偏东65°D.南偏西65°4.如图所示,一个斜插吸管的盒装饮料从正面看的图形是()A.B.C.D.5.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()A.用两个钉子就可以把木条固定在墙上B.把弯曲的公路改直,就能缩短路程C.利用圆规可以比较两条线段的大小关系D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线6.如图是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是()A.60° B.80° C.120°D.150°7.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为()A.60° B.75° C.90° D.95°8.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“崇”相对的面上写的汉字是()A.低B.碳C.生D.活二、填空题9.已知∠A与∠B互余,若∠A=70°,则∠B的度数为度.10.一个角的补角等于它的余角的6倍,则这个角的度数为.11.13°30'=°;(2)0.5°='= ″.12.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画条直线.三、解答题(共52分)13.计算:(1)40°26′+30°30′30″÷6;(2)13°53′×3﹣32°5′31″.14.在一张城市地图上,如图,有学校、医院、图书馆三地,图书馆被墨水污染,具体位置看不清,但知道图书馆在学校的东北方向,在医院的南偏东60°方向,你能确定图书馆的位置吗?15.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.16.如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.17.把一副三角板的直角顶点O重叠在一起.(1)如图(1),当OB平分∠COD时,则∠AOD和∠BOC的和是多少度?(2)如图(2),当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?《第4章几何图形初步》参考答案与试题解析一、选择题1.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.【考点】几何体的展开图.【分析】圆锥的侧面展开图是扇形.【解答】解:根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选:B.【点评】解题时勿忘记圆锥的特征及圆锥展开图的情形.2.下列图形中,∠1和∠2互为余角的是()A.B.C.D.【考点】余角和补角.【分析】根据余角、补角的定义计算.【解答】解:根据余角的定义,两角之和为90°,这两个角互余.D中∠1和∠2之和为90°,互为余角.故选D.【点评】根据余角的定义来判断,记住两角之和为90°,与两角位置无关.3.如图,点A位于点O的()方向上.A.南偏东35°B.北偏西65°C.南偏东65°D.南偏西65°【考点】方向角.【专题】应用题.【分析】根据方位角的概念,结合上北下南左西右东的规定进行判断.【解答】解:点A位于点O的北偏西65°的方向上.故选B.【点评】结合图形,正确认识方位角是解决此类问题的关键.4.如图所示,一个斜插吸管的盒装饮料从正面看的图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可.【解答】解:从正面可看到一个矩形右上角有一条线段,故选A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()A.用两个钉子就可以把木条固定在墙上B.把弯曲的公路改直,就能缩短路程C.利用圆规可以比较两条线段的大小关系D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线【考点】线段的性质:两点之间线段最短.【分析】根据直线的性质,线段的性质,以及线段的大小比较对各选项分析判断即可得解.【解答】解:A、用两个钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故本选项错误;B、把弯曲的公路改直,就能缩短路程是利用了“两点之间,线段最短”,故本选项正确;C、利用圆规可以比较两条线段的大小关系,是线段的大小比较,故本选项错误;D、植树时,只要定出两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”,故本选项错误.故选B.【点评】本题考查了线段的性质,直线的性质,是基础题,熟记各性质是解题的关键.6.如图是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是()A.60° B.80° C.120°D.150°【考点】钟面角.【专题】计算题.【分析】早上8时,时针指向8,分针指向12.钟表12个数字,每相邻两个数字之间的夹角为30°.分针与时针之间有四个格,可求解.【解答】解:根据图形,8点整分针与时针的夹角正好是(12﹣8)×30°=120度.故选C.【点评】本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.7.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为()A.60° B.75° C.90° D.95°【考点】翻折变换(折叠问题).【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等.【解答】解:∠ABC+∠DBE+∠DBC=180°,且∠ABC+∠DBE=∠DBC;故∠CBD=90°.故选C.【点评】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.8.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“崇”相对的面上写的汉字是()A.低B.碳C.生D.活【考点】专题:正方体相对两个面上的文字.【分析】根据正方形展开图相对的面应相隔一个面作答.【解答】解:和“崇”相隔一个面的面为“低”,故选A.【点评】解决本题的关键是理解正方体侧面展开图相对的面之间应相隔一个面.二、填空题9.已知∠A与∠B互余,若∠A=70°,则∠B的度数为20 度.【考点】余角和补角.【专题】计算题.【分析】根据余角定义直接解答.【解答】解:∠B=90°﹣70°=20°.【点评】本题比较容易,考查互余角的数量关系.根据余角的定义可得∠B=90°﹣70°=20度.10.一个角的补角等于它的余角的6倍,则这个角的度数为72°.【考点】余角和补角.【分析】利用题中的关系“一个角的补角等于这个角的余角的6倍”作为相等关系列方程求解即可.【解答】解:设这个角为x,则它的补角为(180°﹣x)余角为(90°﹣x),由题意得:180°﹣x=6(90°﹣x),180°﹣x=540°﹣6x,6x﹣x=540°﹣180°,5x=360°,x=72°.答:这个角的度数为72°.故答案为:72°.【点评】主要考查了利用余角和补角的定义和一元一次方程的应用.解此题的关键是能准确的从题中找出各个量之间的数量关系,找出等量关系列方程,从而计算出结果.互为余角的两角的和为90°,互为补角的两角之和为180度.11.13°30'=13.5 °;(2)0.5°=30 '= 1800 ″.【考点】度分秒的换算.【分析】(1)根据度分秒的换算,将30′换算成0.5°即可得出结论;(2)根据度分秒的换算,将0.5°换算成30′,再将30′换算成1800″即可得出结论.【解答】解:(1)13°30'=13°+()°=13.5°;(2)0.5°=(0.5×60)′=30′=(30×60)″=1800″.故答案为:(1)13.5;(2)30;1800.【点评】本题考查了度分秒的换算,熟练的掌握度分秒的进率是解题的关键.12.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画1条或4条或6条条直线.【考点】直线、射线、线段.【专题】规律型.【分析】分四点在同一直线上,当三点在同一直线上,另一点不在这条直线上,当没有三点共线时三种情况讨论即可.【解答】解:分三种情况:①四点在同一直线上时,只可画1条;②当三点在同一直线上,另一点不在这条直线上,可画4条;③当没有三点共线时,可画6条;故答案为:1条或4条或6条.【点评】本题考查了直线、射线、线段,在没有明确平面上四点是否在同一直线上时,需要运用分类讨论思想,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.三、解答题(共52分)13.计算:(1)40°26′+30°30′30″÷6;(2)13°53′×3﹣32°5′31″.【考点】度分秒的换算.【专题】计算题.【分析】(1)先进行度、分、秒的除法计算,再算加法.(2)先进行度、分、秒的乘法计算,再算减法.【解答】解:(1)40°26′+30°30′30″÷6=40°26′+5°5′5″=45°31′5″;(2)13°53′×3﹣32°5′31″=41°39′﹣32°5′31″=9°33′29″.【点评】此类题是进行度、分、秒的四则混合运算,是角度计算中的一个难点,注意以60为进制即可.14.在一张城市地图上,如图,有学校、医院、图书馆三地,图书馆被墨水污染,具体位置看不清,但知道图书馆在学校的东北方向,在医院的南偏东60°方向,你能确定图书馆的位置吗?【考点】方向角.【分析】分别建立找到图书馆在学校的东北方向,在医院的南偏东60°方向,两直线的交点即是图书馆的位置.【解答】解:在医院A处,以正南方向为始边,逆时针转60°角,得角的终边射线AO,在学校B处,以正北方向为始边,顺时针旋转45°角,得角的终边射线BO,则AO与BO的交点为点O,则点O就是图书馆的位置.【点评】此题考查了方向角的知识,注意东北方向指的是东偏北45°这个知识点,难度一般.15.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.【考点】比较线段的长短.【专题】计算题.【分析】根据已知可求得AB的长,从而可求得AC的长,已知AD的长则不难求得CD的长.【解答】解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.【点评】此题主要考查学生对比较线段的长短的掌握情况,比较简单.16.如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.【考点】角的计算.【专题】计算题.【分析】设∠COD=x,则∠AOD可表示为60°﹣x,于是∠AOB=90°+60°﹣x=150°﹣x,再根据∠AOB 是∠DOC的3倍得到150°﹣x=3x,解得x=37.5°,然后计算3x即可.【解答】解:设∠COD=x,∵∠AOC=60°,∠BOD=90°,∴∠AOD=60°﹣x,∴∠AOB=90°+60°﹣x=150°﹣x,∵∠AOB是∠DOC的3倍,∴150°﹣x=3x,解得x=37.5°,∴∠AOB=3×37.5°=112.5°.【点评】本题考查了角的计算:会利用角的倍、分、差进行角度计算.17.把一副三角板的直角顶点O重叠在一起.(1)如图(1),当OB平分∠COD时,则∠AOD和∠BOC的和是多少度?(2)如图(2),当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?【考点】角平分线的定义.【分析】已知一副三角板的直角顶点O重叠在一起,就是已知图形中的两个三角形各角的度数,这样重叠时存在的角的关系是:∠AOD=∠AOB+∠COD﹣∠COB.【解答】解:(1)∵OB平分∠COD,∴∠COB=∠BOD=45°,∴∠COA=90°﹣45°=45°,∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=45°+90°+45°=180°,∴∠AOD和∠BOC的和是180°.(2)∵∠AOC+∠BOC=90°,∠BOD+∠BOC=90°,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC∴∠AOD+∠BOC=(∠AOC+∠BOC)+(∠BOD+∠BOC)=90°+90°=180°.∴∠AOD和∠BOC的和是180°.【点评】根据角平分线定义得出所求角与已知角的关系转化求解.注意一副三角板的直角顶点O重叠在一起时角的关系.。

七年级数学上学期第四单元几何图形初步测试卷5套带答案

七年级数学上学期第四单元几何图形初步测试卷5套带答案

第4章 单元测试题(时间100分钟 满分100分)一、选择题:(每小题3分,共30分)1.如图1所示的棱柱有( )A.4个面B.6个面C.12条棱D.15条棱C(2)A DB2.如图2,从正面看可看到△的是( )3.如图3,图中有( )A.3条直线B.3条射线C.3条线段 D.以上都不对4.下列语句正确的是( )A.如果PA=PB,那么P是线段AB的中点;B.作∠AOB的平分线CDC.连接A、B两点得直线AB;D.反向延长射线OP(O为端点)5.如图4,比较∠α、∠β、∠γ 的大小得( )A. ∠γ>∠β>∠α;B. ∠α=∠β;C. ∠γ>∠α>∠β;D. ∠β>∠α>∠γ.6.5点整时,时钟上时针与分钟之间的夹角是( )A.210°B.30°C.150°D.60°7.两个角,它们的比是6:4,其差为36°,则这两个角的关系是( )A.互余B.互补C.既不互余也不互补D.不确定8.∠α=40.4°,∠β=40°4′,则∠α与∠β的关系是( )A. ∠α=∠β;B. ∠α>∠β;C. ∠α<∠β;D. 以上都不对9.如果∠α=3∠β, ∠α=2∠θ,则必有( )2310.如图5所示,已知∠AOB=64°,OA1平分∠AOB,OA2平分∠AOA1,OA3平分∠AOA2,OA4平分∠AOA3,则∠AOA4的大小为( )A.8°B.4°C.2°D.1°二、填空题:(每小题3分,共30分)11.已知线段AB=8cm,延长AB 至C,使AC=2AB,D 是AB 中点,则线段CD=______.12.如图,从城市A 到城市B 有三种不同的交通工作:汽车、火车、飞机,除去速度因素,坐飞机的时间最短是因为___________.13.57.32°=_______°_______′_______″;27°14′24″=_____°.14.已知∠a=36°42′15″,那么∠a 的余角等于________.15.∠1+∠2=180°,∠2+∠3=180°,根据________,得∠1=∠3.16.表示O 点南偏东15°方向和北偏东25°方向的两条射线组成的角等于____17.如图,∠AOC=90°,∠AOB=∠COD,则∠BOD=______°.航线铁路公路(6)A B18.102°43′32″+77°16′28″=________;98°12′25″÷5=_____.19.已知线段AB=acm,点A 1平分AB,A 2平分AA 1,A 3平分AA 2,……,____________cm.20.在平面上有任意四点,过其中任意两点画直线,能画_______条直线.三、解答题:(21、24、25、26每题6分,22、23题每题8分)21.根据下列语句画图:(1)画∠AOB=120°;(2)画∠AOB 的角平分线OC;(3)反向延长OC 得射线OD;(4)分别在射线OA、OB、OD 上画线段OE=OF=OG=2cm;(5)连接EF、EG、FG;(6)你能发现EF、EG、FG 有什么关系?∠EFG、∠EGF、∠GEF 有什么关系?22.已知线段AB=10cm,直线AB 上有一点C ,且BC=4cm,M 是线段AC 的中点,求AM 的长.23.如图,直线AB、CD 交于O 点,且∠BOC=80°,OE 平分∠BOC,OF 为OE 的反向延长线.(1)求∠2和∠3的度数.(2)OF平分∠AOD吗?为什么?24.一个角的补角与它的余角的度数之比是3:1,求这个角的度数.25.测量员沿着一块地的周围测绘.从A向东走600米到B,再从B向东南(∠ABC= 135°)走500米到C,再从C向西南(∠BCD=90°)走800米到D.用1厘米代表100米画图, 求DA的长(精确到10米)和DA的方向(精确到1°).北D CA B26.利用线段、角、三角形、圆等图形为你的学校设计一个校标,并简述你的设计思路.参考答案一、选择题1.D2.C3.C4.D5.C6.C7.B8.B9.C 10.B二、填空题11.12cm 12.两点之间,线段最短 13.57、19、12;27.2414. 53°17′45″ 15.同角的补角相等16.140° 17.90 18.180°;19°38′29″. 19. 20.1或4或6三、解答题21.(6)EF=EG=FG,∠EFG=∠EGF=∠FEG=60°22.AM=7cm或3cm23.(1)∠2=100°,∠3=40°;(2)∠AOF=40°,OF平分∠AOD24.设这个角为x0,( 180-x):(90-x)=3:1,x=45.第4章 单元测试题2检测时间:45分钟,满分:100分班级 学号 姓名 得分一、填空题:(每空2分,共46分)1.正方体有______条棱,_____个顶点, 个面.2.圆柱的侧面展开图是一个 ,圆锥的侧面展开图是一个 ,棱柱的侧面展开图是一个 。

人教版七年级上册数学《几何图形初步》单元综合检测(带答案)

人教版七年级上册数学《几何图形初步》单元综合检测(带答案)

人教版数学七年级上学期第四章单元测试满分:100分时间:90分钟一、选择题1.有以下五种立体图形:①正方体;②三棱柱;③四棱柱;④长方体;⑤圆柱.其中有六个面的立体图形是()A. B. C. D.2.用两把常用三角板不可能拼成的角度为()A. B. C. D.3. 如图,若∠AOC=∠BOD,那么∠AOD与∠BOC的关系是( )A. ∠AOD>∠BOCB. ∠AOD<∠BOC;C. ∠AOD=∠BOCD. 无法确定4.如果两个不相等的角的和为,则这两个角可能是()A. 一个小于直角,一个大于直角B. 两个大于直角的角C. 两个小于直角的角D. 以上答案都不对5.已知∠α=35°,那么∠α的余角的补角等于A. 35°B. 65°C. 125°D. 145°6.如图是一个正方体展开图,把展开图折叠成正方体后,”我”字一面的相对面上的字是( )A. 的B. 中C. 国D. 梦7.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A. 甲B. 乙C. 丙D. 丁8.如图,一副三角尺按不同的位置摆放,摆放位置中的图形有A. 1个B. 2个C. 3个D. 4个二、填空题9.如果点,,在一条直线上,线段,线段,则、两点间的距离是________.10.如图所示,把一根绳子对折成线段AB,从P处把绳子剪断,已知AP=PB,若剪断后的各段绳子中最长的一段为30cm,则绳子的原长为________ cm..11.如图,从A到B有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是.12.如图,如果在阳光下你的身影的方向北偏东60°方向,那么太阳相对于你的方向是_______13.如图所示,已知∠AOB=90°,∠COD=90°,∠AOC︰∠BOD=1︰2,则∠BOD=________.14.如图,M是线段AB的中点,N是线段BC的中点,AB=8cm,BC=6cm,则线段MN=__ cm.三、解答题15. (6分)下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC的度数.解:根据题意可画出图,∵∠AOC=∠BOA-∠BOC=70°-15°=55°,∴∠AOC=55°.若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的的错误指出,并给出你认为正确的解法.16.已知∠α=76°,∠β=41°31′.(1)求∠β的余角;(2)求∠α的2倍与∠β的的差.17.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中共有多少个小于平角的角?(2)求∠BOD的度数.(3)请通过计算说明OE是否平分∠BOC.18.如图,C,D为线段AB上的两点,M,N分别是线段AC,BD的中点.(1)如果CD=5cm,MN=8cm,求AB的长;(2)如果AB=a,MN=b,求CD的长.19.已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小;将图1中的OA绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.参考答案一、选择题1.有以下五种立体图形:①正方体;②三棱柱;③四棱柱;④长方体;⑤圆柱.其中有六个面的立体图形是()A. B. C. D.【答案】B【解析】【分析】根据五种立体图形:①正方体;②三棱柱;③四棱柱;④长方体;⑤圆柱的面数进行判断.【详解】依题意得,有六个面的立体图形为:①正方体,③四棱柱,④长方体,共有3个.故答案选:B.【点睛】本题考查的知识点是认识立体图形,解题的关键是熟练的掌握立体图形概念.2.用两把常用三角板不可能拼成的角度为()A. B. C. D.【答案】C【解析】【分析】根据两个三角板可拼出的角度有15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,180°【详解】∵三角板的度数为30°,60°,90°;45°,45°,90°∴可拼出的角度有15°,30°,45°,60°,75°,90°105°,120°,135°,150°,180°.故答案选:C.【点睛】本题考查的知识点是角的计算,解题的关键是熟练的掌握角之间的转换.3. 如图,若∠AOC=∠BOD,那么∠AOD与∠BOC的关系是( )A. ∠AOD>∠BOCB. ∠AOD<∠BOC;C. ∠AOD=∠BOCD. 无法确定【答案】C【解析】本题考查了角的大小比较根据题意∠AOC=∠BOD,再根据图得知∠COD为∠AOD与∠BOC的公共角,从而得出答案.∵∠AOC=∠BOD,∠COD为∠AOD与∠BOC的公共角,∴∠AOC+∠COD=∠BOD+∠COD,∴∠AOD=∠BOC,故选C.4.如果两个不相等的角的和为,则这两个角可能是()A. 一个小于直角,一个大于直角B. 两个大于直角的角C. 两个小于直角的角D. 以上答案都不对【答案】A【解析】【分析】根据补角定义,两个不相等的角的和为180°,则这两个角是一个锐角,一个钝角,由此选择答案即可.【详解】∵两个不相等的角的和为180°,∴这两个角是一个锐角(小于直角),一个钝角(大于直角).故答案选:A.【点睛】本题考察的知识点是余角和补角,解题的关键是熟练的掌握余角和补角的定义与计算.5.已知∠α=35°,那么∠α的余角的补角等于A. 35°B. 65°C. 125°D. 145°【答案】C【解析】【分析】根据余角和补角的概念列式计算即可.【详解】解:∵∠α=35°,∴∠α的余角为:90°-35°=55°,∴∠α的余角的补角为:180°-55°=125°,故选:C.【点睛】本题考查的是余角和补角的概念,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.6.如图是一个正方体展开图,把展开图折叠成正方体后,”我”字一面的相对面上的字是( )A. 的B. 中C. 国D. 梦【答案】D【解析】试题分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,”们”与”中”是相对面,”我”与”梦”是相对面,”的”与”国”是相对面.故选D.考点:正方体相对两个面上的文字.【此处有视频,请去附件查看】7.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A. 甲B. 乙C. 丙D. 丁【答案】D【解析】解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁.故选D.8.如图,一副三角尺按不同的位置摆放,摆放位置中的图形有A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:根据角的和差关系可得第一个图形∠α=∠β=45°,根据同角的余角相等可得第二个图形∠α=∠β,根据等角的补角相等可得第三个图形∠α=∠β,第四个图形∠α+∠β=180°,不相等,因此∠α=∠β的图形个数共有3个.故选C.点睛:此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等,等角的余角相等.二、填空题9.如果点,,在一条直线上,线段,线段,则、两点间的距离是________.【答案】或【解析】【分析】根据题意画出图形,根据点C在线段AB上和在线段AB外两种情况进行解答即可.【详解】解:当如图1所示点C在线段AB的外时,∵AB=6cm,BC=8cm,∴AC=6+8=14(cm);当如图2所示点C在线段AB上时,∵AB=6cm,BC=8cm,∴AC=8-6=2(cm).故答案为:14cm或2cm.【点睛】本题考查的是两点间的距离,解答此题时要注意进行分类讨论,不要漏解.10.如图所示,把一根绳子对折成线段AB,从P处把绳子剪断,已知AP=PB,若剪断后的各段绳子中最长的一段为30cm,则绳子的原长为________ cm..【答案】40或80【解析】解:本题有两种情形:(1)当点A是绳子的对折点时,将绳子展开如图.∵AP=PB,剪断后的各段绳子中最长的一段为30cm,∴BP=30cm,AP=10cm.∴绳子的原长=2AB=80cm;(2)当点B是绳子的对折点时,将绳子展开如图.∵AP=PB,剪断后的各段绳子中最长的一段为30cm,∴2BP=30cm,∴BP=15cm,AP=5cm.∴绳子的原长=2AB=40cm.11.如图,从A到B有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是.【答案】两点之间线段最短【解析】试题分析:根据线段的性质:两点之间线段最短填空即可.解:从A到B有多条道路,人们会走中间的直路,而不会走其他曲折的路,这是因为两点之间,线段最短.故答案为:两点之间,线段最短.考点:线段的性质——两点之间,线段最短12.如图,如果在阳光下你的身影的方向北偏东60°方向,那么太阳相对于你的方向是_______【答案】南偏西60°【解析】【分析】根据方向角的定义即可解答.【详解】由于人相对与太阳与太阳相对于人的方位正好相反,∵在阳光下你的身影的方向北偏东60°方向,∴太阳相对于你的方向是南偏西60°.故答案为:南偏西60°.【点睛】本题考查了方向角的概念,熟知方向角的概念是解答本题的关键.13.如图所示,已知∠AOB=90°,∠COD=90°,∠AOC︰∠BOD=1︰2,则∠BOD=________.【答案】120°【解析】【分析】根据周角的定义及已知条件可得∠AOC+∠BOD=180°,再由∠AOC︰∠BOD=1︰2即可求得∠BOD的度数.【详解】∵∠AOB=90°,∠COD=90°,∴∠AOC+∠BOD=360°-(∠AOB+∠COD)=180°,∵∠AOC︰∠BOD=1︰2,∴∠BOD=2∠AOC,∴∠AOC+2∠AOC=180°,即∠AOC=60°,∴∠BOD=2∠AOC=120°.故答案为:120°.【点睛】本题考查了角的计算,根据平角的定义求得∠AOC+∠BOD=180°是解决问题的关键.14.如图,M是线段AB的中点,N是线段BC的中点,AB=8cm,BC=6cm,则线段MN=__ cm.【答案】7 cm.【解析】【分析】由线段中点的定义知AM=MB=AB=4cm,BN=NC=BC=3cm.然后结合图示中的”MN=MB+BN”来求线段MN的长度.【详解】解:∵M是线段AB的中点,AB=8cm,∴MB=AB=4cm;∵N是线段BC的中点,BC=6cm,∴BN=NC=BC=3cm;∴MN=MB+BN=4+3=7cm.故答案为7.【点睛】本题考查了两点间的距离和线段中点的性质.注意”数形结合”的数学思想在本题中的应用.三、解答题15. (6分)下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC的度数.解:根据题意可画出图,∵∠AOC=∠BOA-∠BOC=70°-15°=55°,∴∠AOC=55°.若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的的错误指出,并给出你认为正确的解法.【答案】小马不会得满分的.见解析.【解析】试题分析:在同一平面内,若∠BOA与∠BOC可能存在两种情况,即当OC在∠AOB的内部或OC在∠AOB 的外部.试题解析:如图,当OC在∠AOB的内部时,∠AOC=∠BOA﹣∠BOC=55°,当OC在∠AOB的外部时,∠AOC=∠BOA+∠BOC=85°,故∠AOC的度数是55°或85°.考点:角的计算.16.已知∠α=76°,∠β=41°31′.(1)求∠β的余角;(2)求∠α的2倍与∠β的的差.【答案】(1)48°29′;(2)131°14′30″.【解析】试题分析:(1)根据余角的定义即可求解;(2)根据题意列出式子求解即可.试题解析:(1)∠β的余角=90°-∠β=90°-41°31′=48°29′.(2)∵∠α=76°,∠β=41°31′,∴2∠α-∠β=2×76°-×41°31′=152°-20°45′30″=131°14′30″.17.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中共有多少个小于平角的角?(2)求∠BOD的度数.(3)请通过计算说明OE是否平分∠BOC.【答案】(1)9;(2)155°;(3)OE平分∠BOC.理由见解析.【解析】试题分析:(1)根据角的定义即可解决;(2)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(3)根据∠COE=∠DOE-∠DOC和∠BOE=∠BOD-∠DOE分别求得∠COE与∠BOE的度数即可说明.试题解析:解:(1)图中小于平角的角有9个.它们分别是:∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)∵∠AOC=50°,OD平分∠AOC,∴∠DOC=∠AOC=25°,∠BOC=180°﹣∠AOC=130°,∴∠BOD=∠DOC+∠BOC=155°.(3)∵∠DOE=90°,∠DOC=25°,∴∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又∵∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,∴∠COE=∠BOE,即OE平分∠BOC.点睛:本题主要考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.18.如图,C,D为线段AB上的两点,M,N分别是线段AC,BD的中点.(1)如果CD=5cm,MN=8cm,求AB的长;(2)如果AB=a,MN=b,求CD的长.【答案】(1)线段AB的长为11cm;(2)2b﹣a.【解析】【分析】(1)先根据M,N分别是线段AC,BD的中点,可得MC=AC,DN=BD,再根据MC+CD+DN=MN=8cm,可得MC+DN=8﹣5=3cm,进而可得:AC+BD=2MC+2DN=2×3=6cm,所以AB=AC+CD+BD=AC+BD+CD=6+5=11(cm),(2)根据M,N分别是线段AC,BD的中点,可得CM=AM=AC,BN=DN=BD,再根据AM+BN=MC+DN=AB﹣MN,可得MC+DN=a﹣b,进而可得:CD=MN﹣(MC+DN)=b﹣(a﹣b)=2b﹣a.【详解】(1)M,N分别是线段AC,BD的中点,∴MC=AC,DN=BD,∵MC+CD+DN=MN=8cm,∴MC+DN=8﹣5=3cm,∴AC+BD=2MC+2DN=2×3=6cm,∴AB=AC+CD+BD=AC+BD+CD=6+5=11(cm),即线段AB的长为11cm,(2)M,N分别是线段AC,BD的中点,∴CM=AM=AC,BN=DN=BD,∵AM+BN=MC+DN=AB﹣MN,∴MC+DN=a﹣b,∴CD=MN﹣(MC+DN)=b﹣(a﹣b)=2b﹣a.【点睛】本题主要考查线段的中点性质和线段和差关系,解决本题的关键是要熟练掌握线段中点性质,根据线段和差关系进行求解.19.已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小;将图1中的OA绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.【答案】(1)25°;(2)①n°+25°,②n=65°;(3)m°+25°.【解析】【分析】(1)如图1,根据OM平分∠AOB,∠AOB=130°,利用角平分线的定义可得:∠AOM=∠AOB=×130°=65°,再根据ON平分∠COD,∠COD=80°,可得∠AON=∠COD=×80°=40°,进而求出∠MON=∠AOM﹣∠AON=65°﹣40°=25°,(2)①如图2中,根据图形中角的和差关系可得:∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°,②当∠MON=90°时,由于n°+25°=90°,所以n=65°,(3)如图3中,根据图中角的和差关系可得:∠MON=∠COM﹣∠CON=65°+m°﹣(80°+m°)=m°+25°. 【详解】(1)如图1,∵OM平分∠AOB,∠AOB=130°,∴∠AOM=∠AOB=×130°=65°,∵ON平分∠COD,∠COD=80°,∴∠AON=∠COD=×80°=40°,∴∠MON=∠AOM﹣∠AON=65°﹣40°=25°,(2)①如图2中,∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°,②当∠MON=90°时,n°+25°=90°,∴n=65°,(3)如图3中,∠MON=∠COM﹣∠CON=65°+m°﹣(80°+m°)=m°+25°.【点睛】本题主要考查角平分线的定义和角的和差关系,解决本题的关键是要熟练掌握角平分线的定义,并能结合图形分析角的和差关系.。

第二章 几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)

第二章 几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)

第二章几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)一、单选题(共15题,共计45分)1、如图,将三角板的直角顶点放在直尺的一边上,如果∠1=65°,那么∠2的度数为()A.10°B.15°C.20°D.25°2、下列结论中,正确的是()A.﹣7<﹣8B.85.5°=85°30′C.﹣|﹣9|=9D.2a+a 2=3a 23、嘉嘉要在墙壁上固定一根横放的木条,他至少需要钉子()A.1枚B.2枚C.3枚D.随便多少枚4、若∠α=90°-m°,∠β=90°+m°,则∠α与∠β的关系是( )A.互补B.互余C.和为钝角D.和为周角5、将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是()A.6B.5C.3D.26、下列说法正确的是()A.射线AB和射线BA是两条不同的射线B.过三点可以画三条直线C.两点之间,直线最短D.﹣a是负数7、下列说法中正确的有()个⑴一条射线上只有一个点,一条线段上有两个点;⑵一条射线把一个角分成两个角,这条射线叫这个角的平分线;⑶连结两点的线段叫做两点之间的距离;⑷20°50ˊ=20.5°;⑸互余且相等的两个角都是45°.A.1B.2C.3D.48、下列说法不正确的是()A.若点C在线段BA的延长线上,则BA=AC﹣BCB.若点C在线段AB上,则AB=AC+BC C.若AC+BC>AB,则点C一定在线段AB外 D.若A,B,C,三点不在一直线上,则AB<AC+BC9、下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过一点有且仅有一条直线与已知直线平行;④长方体是四棱柱;其中正确的有()A.1个B.2个C.3个D.4个10、如图,在4×4的网格纸中,ABC的三个顶点都在格点上,现要在这张网格纸的四个格点M,N,P,Q中找一点作为旋转中心.将ABC绕着这个中心进行旋转,旋转前后的两个三角形成中心对称,且旋转后的三角形的三个顶点都在这张4×4的网格纸的格点上,那么满足条件的旋转中心有()A.点M,点NB.点M,点QC.点N,点PD.点P,点Q11、从车站向东走400米,再向北走500米到小红家;从车站向北走500米,再向西走200米到小强家,则()A.小强家在小红家的正东B.小强家在小红家的正西C.小强家在小红家的正南D.小强家在小红家的正北12、将21.54°用度、分、秒表示为()A. B. C. D.13、下列说法中正确的是()A.旋转一定会改变图形的形状和大小B.两条直线被第三条直线所截,同位角相等C.在同一平面内,过一点有且只有一条直线与已知直线垂直 D.相等的角是对顶角14、下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()A.把弯曲的公路改直,就能缩短路程B.用两个钉子就可以把木条固定在墙上C.利用圆规可以比较两条线段的大小关系D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线15、如图,OC是∠AOB的平分线,OD平分∠AOC,且∠COD=25°,则∠AOB=( )A.100°B.75°C.50°D.20°二、填空题(共10题,共计30分)16、已知直线与直线相交于点,,垂足为.若,则的度数为________.(单位用度表示)17、如图,将矩形ABCD绕点A旋转至矩形AB'C'D'位置,此时AC'的中点恰好与D点重合,AB'交CD于点E.若DE=1,则AC的长为________.18、如图,已知△ABC中,∠C=90°,AC=BC= ,将△ABC绕点灯A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则点C′到BC的距离为________.19、如图,将线段AB绕点O顺时针旋转90°得到线段A'B',那么点A(-2,5)的对应点A'的坐标是________.20、如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM.若∠AOM=35°,则∠CON的度数为________.21、一个角的余角比这个角的补角的一半少,则这个角的度数是________.22、 ________°.23、A、B是半径为2的⊙O上不同两点,则AB的取值范围是________ .24、如图,直线,直线交,于,两点,交直线于点,若,则________.25、如图,要从B点到C点,有三条路线:①从B到A再到C;②从B到D再到C;③线段BC.要使距离最近,你选择路线________(填序号),理由是________三、解答题(共5题,共计25分)26、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?27、△ABC中,若最大角∠A等于最小角∠C的两倍,最大角又∠B比大20°,则△ABC的三个内角的度数分别是多少?28、已知,如图,AE是的平分线,.求证:.29、用如图所示的长31.4cm,宽5cm的长方形,围成一个圆柱体,求需加上的两个底面圆的面积是多少平方厘米?(π=3.14)30、一天,爸爸带着小刚到建筑工地去玩,看见有如图所示的人字架,爸爸说“小刚,我考考你,这个人字架的夹角∠1等于130°,你能求出∠3比∠2大多少吗?”小刚马上得到了正确答案,他的答案是多少?请说明理由.参考答案一、单选题(共15题,共计45分)1、D2、B3、B4、A5、B6、A8、A9、B10、C11、B12、D13、C14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、29、。

人教版七年级上学期数学《几何图形初步》单元综合测试题附答案

人教版七年级上学期数学《几何图形初步》单元综合测试题附答案
人教版七年级上册第四章单元测试卷
满分:100分 时间:90分钟
一.选择题
1.下列说法:①直线A B和直线B A是同一条直线;②平角是一条直线;③两点之间,线段最短;④如果A B=B C,则点B是线段A C的中点.其中正确的有()
A.1个B.2个C.3个D.4个
2.下列四个图形中是如图展开图的立体图的是()
A.60°B.75°C.105°D.120°
[答案]C
[解析]
[分析]
先分别求出时针和分钟转过的角度,再相减即可.
[详解]时针转过的角度是(2+ )×30°=75°,
分钟转过的角度是30×6°=180°,
所以钟表在2点半时,其时针和分针所成的角是180°-75°=105°,
故选C.
[点睛]本题考查了钟面角,能知道时针每小时转30°、分钟每分钟转6°是解此题的关键.
(1)过点P作PQ∥C D,交A B于点Q;
(2)过点P作PR⊥C D,垂足 R.
24.数学课上,李老师出示了如下框中的题目.
如图1,在∠AOB的内部有一条射线OC把∠AOB分成两个角,射线OM、ON分别平分∠AOC、∠BOC,试探究∠MON与∠AOB之间的数量关系,并说明理由.
小敏与同桌小聪讨论后,进行了如下解答:
[详解]根据只要有“田”字格的展开图都不是正方体的表面展开图,应剪去的小正方形的编号是5.
故选C.
[点睛]本题考查了展开图折叠成几何体,解题时勿忘记正方体展开图的各种情形.
11.将一张长方形纸片按如图所示的方式折叠,EC,ED为折痕,折叠后点A′,B′,E在同一直线上,则∠CED的度数为()
A.90°B.75°C.60°D.95°
A. 20Cm2B. 60Cm2C. 120Cm2D. 240Cm2

人教版七年级上册数学 第四章 几何图形初步 单元测试(含解析)

人教版七年级上册数学 第四章 几何图形初步 单元测试(含解析)

第四章几何图形初步单元测试一.选择题1.对如图所示几何体的认识正确的是()A.棱柱的底面是四边形B.棱柱的侧面是三角形C.几何体是四棱柱D.棱柱的底面是三角形2.电视剧《西游记》中,孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于()A.点动成线B.线动成面C.面动成体D.以上都不对3.下列说法正确的是()A.延长直线AB到点CB.延长射线AB到点CC.延长线段AB到点CD.射线AB与射线BA是同一条射线4.如图,C为线段AD上一点,点B为CD的中点,且AD=9,BD=2.若点E在直线AD 上,且EA=1,则BE的长为()A.4B.6或8C.6D.85.下列说法正确的是()A.两点之间的线段,叫做这两点之间的距离B.87'等于1.45°C.射线OA与射线AO表示的是同一条射线D.延长线段AB到点C,使AC=BC6.线段AB=9,点C在线段AB上,且有AC=AB,M是AB的中点,则MC等于()A.3B.C.D.7.某公司员工分别在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人,三个区在一条直线上,位置如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A、B两区之间8.如图,将一副三角板叠在一起使直角顶点重合于点O,(两块三角板可以在同一平面内自由转动),下列结论一定成立的是()A.∠BOA>∠DOC B.∠BOA﹣∠DOC=90°C.∠BOA+∠DOC=180°D.∠BOC≠∠DOA9.下列说法正确的是()A.射线比直线短B.从同一点引出的两条射线所组成的图形叫做角C.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离10.如图,O在直线AB上,OC平分∠DOA(大于90°),OE平分∠DOB,OF⊥AB,则图中互余的角有()对.A.6B.7C.8D.10二.填空题11.若一个六棱柱,则它有条棱,有个面.12.秒针旋转一周时,形成一个圆面,用数学知识可以理解为.13.已知点A、B、C在同一直线上,若AB=10cm,AC=16cm,点M、N分别是线段AB、AC中点,则线段MN的长是.14.如图,线段AB=3,延长AB到点C,使BC=2AB,则AC=.15.如图,已知CD=AD=BC,E、F分别是AC、BC的中点,且BF=40cm,则EF 的长度为cm.16.人们会把弯曲的河道改直,这样能够缩短航程.这样做的道理是.17.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有个.18.如图,已知A、B是线段EF上两点,EA:AB:BF=1:2:3,M、N分别为EA、BF 的中点,且MN=8cm,则EF长为.19.如图,C、D是线段AB上的两点,E是AC的中点,F是BD的中点,若AB=m,CD =n,则线段EF的长为.20.如图,射线OC,OD在∠AOB内,∠AOB和∠BOC互为补角,.若∠COD比∠BOD大m°(m<30),则∠AOC=°.(用含m的式子表示)三.解答题21.如图所示是一张铁皮.(1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?若能,画出来,计算它的体积;若不能,说明理由.22.如图,线段AB=20,BC=15,点M是AC的中点.(1)求线段AM的长度;(2)在CB上取一点N,使得CN:NB=2:3.求MN的长.23.如图,是小明家和学校所在地的简单地图,已知OA=2km,OB=3.5km,OP=4km,点C为OP的中点,回答下列问题:(1)图中到小明家距离相同的是哪些地方?(2)由图可知,公园在小明家东偏南30°方向2km处.请用方向与距离描述学校、商场、停车场相对于小明家的位置.24.如图,在直线AD上任取一点O,过点O做射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC=26°时,求∠BOE的度数.25.如图,C是线段AB上一点,AC=5cm,点p从点A出发沿AB以3cm/s的速度匀速向点B运动,点Q从点C出发沿CB以1cm/s的速度匀速向点B运动,两点同时出发,结果点P比点Q先到3s.(1)求AB的长;(2)设点P、Q出发时间为ts,①求点P与点Q重合时(未到达点B),t的值;②直接写出点P与点Q相距2cm时,t的值.26.线段与角的计算.(1)如图1,已知点C为AB上一点,AC=15cm,CB=AC,若D、E分别为AC、AB 的中点,求DE的长.(2)已知:如图2,∠AOB被分成∠AOC:∠COD:∠DOB=2:3:4,OM平分∠AOC,ON平分∠DOB,且∠MON=90°,求∠AOB的度数.参考答案1.解:如图所示的几何体是三棱柱,它有两个全等的三角形的底面,三个矩形的侧面,因此选项ABC均不符合题意,选项D符合题意;故选:D.2.解:孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于线动成面,故选:B.3.解:A、直线可以沿两个方向无限延伸,故不能说延长直线AB,故本选项不符合题意;B、射线可沿延伸方向无限延伸,故不能说延长射线AB,故本选项不符合题意;C、线段不能延伸,可以说延长线段AB到点C,故本选项符合题意;D、射线AB与射线BA不是同一条射线,故本选项不符合题意;故选:C.4.解:若E在线段DA的延长线,如图1,∵EA=1,AD=9,∴ED=EA+AD=1+9=10,∵BD=2,∴BE=ED﹣BD=10﹣2=8,若E线段AD上,如图2,EA=1,AD=9,∴ED=AD﹣EA=9﹣1=8,∵BD=2,∴BE=ED﹣BD=8﹣2=6,综上所述,BE的长为8或6.故选:B.5.解:A、应为:连结两点的线段的长度叫做这两点间的距离,故本选项错误;B、87'=60'+27'=1°+()°=1.45°,故本选项正确;C、射线OA的端点是点O,射线AO的端点是点A,所以,它们不是同一条射线,故本选项错误;D、延长线段AB到点C,则AC一定大于BC,不能使AC=BC,故本选项错误.故选:B.6.解:∵AB=9,∴AC=AB=3,∵M是AB的中点,∴AM=AB=∴MC=AM﹣AC=﹣3=故选:B.7.解:∵当停靠点在A区时,所有员工步行到停靠点路程和是:15×100+10×300=4500m,当停靠点在B区时,所有员工步行到停靠点路程和是:30×100+10×200=5000m,当停靠点在C区时,所有员工步行到停靠点路程和是:30×300+15×200=12000m,当停靠点在A、B区之间时,设在A区、B区之间时,设距离A区x米,则所有员工步行路程之和=30x+15(100﹣x)+10(100+200﹣x),=30x+1500﹣15x+3000﹣10x,=5x+4500,∴当x=0时,即在A区时,路程之和最小,为4500米;综上,当停靠点在A区时,所有员工步行到停靠点路程和最小,那么停靠点的位置应该在A区.故选:A.8.解:因为是直角三角板,所以∠AOC=∠BOD=90°,所以∠BOA+∠DOC=∠AOC+∠BOC+∠DOC=∠AOC=∠BOD=180°,故选:C.9.解:A.射线和直线不可以比较长短,原说法错误,故本选项不符合题意;B.从同一点引出的两条射线所组成的图形叫做角,原说法正确,故本选项符合题意;C.若点P在线段AB上,AP=BP,则P是线段AB的中点,原说法错误,故本选项不符合题意;D.两点之间的线段的长度叫做这两点之间的距离,原说法错误,故本选项不符合题意;故选:B.10.解:∵OC平分∠DOA,∴∠AOC=∠COD,∵OE平分∠DOB,∴∠DOE=∠BOE,∴∠COE=90°,∴∠AOC+∠BOE=90°,∠AOC+∠DOE=90°,∠COD+∠BOE=90°,∠COD+∠DOE =90°,∠COF+∠EOF=90°,∵OF⊥AB,∴∠AOC+∠COF=90°,∠COD+∠COF=90°,∠BOE+∠EOF=90°,∠BOD+∠DOF =90°,∠DOE+∠EOF=90°,∴互余的角有10对.故选:D.11.解:因为六棱柱上下两个底面是6边形,侧面是6个长方形,所以共有18条棱,8个面;故答案为18,8.12.解:根据点、线、面、体之间的关系可得,线动成面.13.解:(1)如图1,,∵AB=10cm,点M是线段AB的中点,∴AM=10÷2=5(cm);∵AC=16cm,点N是线段AC的中点,∴AN=16÷2=8(cm),∴MN=AM+AN=5+8=13(cm)(2)如图2,,∵AB=10cm,点M是线段AB的中点,∴AM=10÷2=5(cm);∵AC=16cm,点N是线段AC的中点,∴AN=16÷2=8(cm),∴MN=AN﹣AM=8﹣5=3(cm),综上,线段MN的长是13cm或3cm.故答案为:13cm或3cm.14.解:∵AB=3,∴BC=2AB=6,∴AC=AB+BC=3+6=9.故答案为:9.15.解:∵点F是BC的中点,且BF=40cm,∴BC=2BF=80cm,∵CD=AD=BC,∴CD=×80=16cm,AD=64cm,∴AC=AD﹣CD=48cm,∵E、F分别是AC、BC的中点,∴CE=AC=24cm,CF=BF=40cm,∴EF的长度为CE+CF=64cm,故答案为:64.16.解:由线段的性质可知,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最短,故答案为:两点之间线段最短.17.解:根据题意可知:当点P经过任意一条线段中点时会发出报警,∵图中共有线段DC、DB、DA、CB、CA、BA,∵BC和AD中点是同一个∴发出警报的可能最多有5个.故答案为5.18.解:∵EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,∴MA=EA,NB=BF,∴MN=MA+AB+BN=x+2x+x=4x ∵MN=8cm,∴4x=8,∴x=2,∴EF=EA+AB+BF=6x=12,∴EF的长为12cm,故答案为:12cm.19.解:∵AB=m,CD=n.∴AB﹣CD=m﹣n,∵E、F分别是AC、DB的中点,∴CE=AC,DF=DB,∴CE+DF=(m﹣n),∴EF=CE+DF+DC=(m﹣n)+n=m+n,故答案为:m+n.20.解:∵∠AOB和∠BOC互为补角,∴∠AOB+∠BOC=180°,∵∠BOD=,∴3∠BOD+∠BOC=180°,即∠BOC=180°﹣3∠BOD,∵∠COD+∠BOD=∠BOC,∴180°﹣3∠BOD=∠COD+∠BOD,∴∠COD+4∠BOD=180°,∵∠COD比∠BOD大m°(m<30),∴∠COD﹣∠BOD=m°,∴∠BOD=()°,∠COD=()°∴∠BOC=()°,∴∠AOB=180°﹣∠BOC=(108﹣)°,∴∠AOC=∠AOB﹣∠BOC=(108﹣)°﹣()°=(36﹣m)°.故答案为(36﹣m).21.解:(1)(1×3+2×3+1×2)×2=22(m2),(2)根据棱柱的展开与折叠,可得可以折叠成长方体的盒子,其长、宽、高分别为3cm,2cm,1cm,因此体积为:1×2×3=6(m3),22.解:(1)线段AB=20,BC=15,∴AC=AB﹣BC=20﹣15=5.又∵点M是AC的中点.∴AM=AC=×5=,即线段AM的长度是.(2)∵BC=15,CN:NB=2:3,∴CN=BC=×15=6.又∵点M是AC的中点,AC=5,∴MC=AC=,∴MN=MC+NC=,即MN的长度是.23.解:(1)因为点C为OP的中点,所以OC=2km,因为OA=2km,所以可得出距小明家距离相同的是学校和公园;(2)由图可知,学校在小明家东偏北45°方向2km处,商场在小明家西偏北60°方向3.5km处,停车场在东偏南30°方向4km处.24.解:∵OC平分∠AOB,∠BOC=26°,∴∠AOB=2∠BOC=52°.∴∠BOD=180°﹣52°=128°.∵OE平分∠DOB,∴∠BOE=∠DOB=×128°=64°.25.解:(1)设AB=xcm,根据题意可得:(x﹣5)﹣=3,解得:x=12,答:AB的长为12cm;(2)①由题意可得:3t=t+5,解得:t=,故点P与点Q重合时(未到达点B),t的值为;②当点P追上点Q前相距2cm,由题意可得:3t+2=t+5,解得:t=,当追上后相距2cm,由题意可得:3t﹣2=t+5,解得:t=,总上所述:t=或t=.26.解:(1)∵AC=15cm,CB=AC,∴CB=×15=10(cm),∴AB=15+10=25(cm).∵D,E分别为AC,AB的中点,∴AE=BE=AB=12.5cm,DC=AD=AC=7.5cm,∴DE=AE﹣AD=12.5﹣7.5=5(cm);(2)设∠AOC=2x,∠COD=3x,∠DOB=4x,则∠AOB=9x,∵OM平分∠AOC,ON平分∠DOB,∴∠MOC=x,∠NOD=2x,∴∠MON=x+3x+2x=6x,又∵∠MON=90°,∴6x=90°,∴x=15°,∴∠AOB=135°.。

七年级上册数学《几何图形初步》单元综合测试(附答案)

七年级上册数学《几何图形初步》单元综合测试(附答案)
15.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成14次变换后,骰子朝上一面的点数是_____________________.
A.一个B.两个C.三个D.四个
[答案]C
[解析]
[分析]
(1)根据线段的性质即可求解;
(2)根据直线的性质即可求解;
(3)余角和补角一定指的是两个角之间的关系,同角的补角比余角大90°;
(4)根据两点间的距离的定义即可求解.
[详解](1)两点之间线段最短是正确的;
(2)两点确定一条直线是正确的;
(3)同一个锐角的补角一定比它的余角大90°是正确的;
故选D.
[点睛]本题考查的是角平分线的定义、角的计算,掌握角平分线的定义、结合图形正确进行角的计算是解题的关键.
6.如图,已知 , ,则 的度数为( )
A. B. C. D.
[答案]B
[解析]
分析:根据∠AOC和∠BOC的度数得出∠AOB的度数,从而得出答案.
详解:∵∠AOC=70°,∠BOC=30°,∴∠AOB=70°-30°=40°,
A. B. C. D.
7.如图是某个几何体的展开图,该几何体是( )
A.三棱柱B.三棱锥C.圆柱D.圆锥
8.下列说法:
(1)两点之间线段最短;
(2)两点确定一条直线;
(3)同一个锐角的补角一定比它的余角大90°;
(4)A、B两点间 距离是指A、B两点间的线段;其中正确的有( )
A一个B. 两个C. 三个D. 四个
(2)如图②,将三板DOE绕O逆时针转动到某个位置时,若恰好满足5∠COD=∠AOE,且∠BOC=60°,求∠BOD 度数;

【2019】人教版数学七年级(上)第9章《几何图形初步》单元综合练习卷(含答案).doc

【2019】人教版数学七年级(上)第9章《几何图形初步》单元综合练习卷(含答案).doc

人教版七年级数学上册第四章几何图形初步单元测试A卷(1)一.选择题(共10小题)1.如图,下列水平放置的几何体中,左视图不是矩形的是()A.B.C.D.2.如图所示正三棱柱的主视图是()A.B.C.D.3.如图是一根空心方管,它的俯视图是()A.B.C.D.4.如图所示的几何体是由七个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.5.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A.3块B.4块C.6块D.9块6.某物体三视图如图,则该物体形状可能是()A.长方体B.圆锥体C.立方体D.圆柱体7.某同学画出了如图所示的几何体的三种视图,其中正确的是()A.①②B.①③C.②③D.②8.圆形的物体在太阳光的投影下是()A.圆形B.椭圆形C.线段D.以上都有可能9.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是()A.B.C.D.10.平行投影中的光线是()A.平行的B.聚成一点的C.不平行的D.向四面八方发散的二.填空题(共4小题)11.三视图都是同一平面图形的几何体有、.(写两种即可)12.一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,m+n=.13.一个几何体是由一些大小相同的小立方块摆成的,如下图是从正面、左面、上面看这个几何体得到的平面图形,那么组成这个几何体所用的小立方块的个数是.14.如图,是由一些大小相同的小正方体组合成的简单几何体(1)图中有块小正方体;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.三.解答题(共9小题)15.分别画出图中几何体的主视图、左视图、俯视图.16.画出如图所示的几何体的主视图、左视图、俯视图:17.如图是某工件的三视图,求此工件的全面积和体积.18.如图是由几个小正方体所搭成的几何体上面看到的图形,小正方形中的数字表示在该位置的小正方体的个数,请你画出从正面、左面可以看到的图形.19.一个几何体由几个大小相同的小立方块搭成,从上面看这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面,左侧面看到的几何体的形状图.20.如图是小强用八块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出你所看到的几何体的形状图(在答题卡上画完图后请用黑色签字笔描图)21.有两根木棒AB,CD在同一平面上直立着,其中AB这根木棒在太阳光下的影子BE如图所示,请你在图中画出这时木棒CD的影子.22.如图,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1m长的影子如图所示,已知窗框的影子DE到窗下墙脚的距离CE=3.9m,窗口底边离地面的距离BC=1.2m,试求窗口的高度.(即AB的值)23.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.2019年春人教版九年级下册数学《第29章投影与视图》单元测试题参考答案与试题解析一.选择题(共10小题)1.如图,下列水平放置的几何体中,左视图不是矩形的是()A.B.C.D.【分析】根据左视图是从左面看到的视图,对各选项分析判断后利用排除法求解.【解答】解:A、圆柱的左视图是矩形,故本选项错误;B、圆锥的左视图是等腰三角形,故本选项正确;C、三棱柱的左视图是矩形,故本选项错误;D、长方体的左视图是矩形,故本选项错误.故选:B.【点评】本题考查了简单几何体的三视图,熟练掌握常见几何体的三视图是解题的关键.2.如图所示正三棱柱的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可.【解答】解:如图所示正三棱柱的主视图是平行排列的两个矩形,故选B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.注意本题不要误选C.3.如图是一根空心方管,它的俯视图是()A.B.C.D.【分析】俯视图是从物体的上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.【解答】解:如图所示:俯视图应该是.故选:B.【点评】本题考查了作图﹣三视图,注意看到的用实线表示,看不到的用虚线表示.画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等4.如图所示的几何体是由七个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.【分析】根据俯视图的定义即可判断.【解答】解:如图所示的几何体的俯视图是D.故选:D.【点评】本题考查几何体的三视图,理解三视图的定义是正确解答的关键.5.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A.3块B.4块C.6块D.9块【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:从俯视图可得最底层有3个小正方体,由主视图可得有2层上面一层是1个小正方体,下面有2个小正方体,从左视图上看,后面一层是2个小正方体,前面有1个小正方体,所以此几何体共有四个正方体.故选:B.【点评】此题主要考查了由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.6.某物体三视图如图,则该物体形状可能是()A.长方体B.圆锥体C.立方体D.圆柱体【分析】由主视图和左视图确定是柱体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆形可判断出这个几何体应该是圆柱,故选:D.【点评】主视图和左视图的大致轮廓为长方形的几何体为柱体,俯视图为圆形就是圆柱.7.某同学画出了如图所示的几何体的三种视图,其中正确的是()A.①②B.①③C.②③D.②【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.依此即可解题.【解答】解:根据几何体的摆放位置,主视图和俯视图正确.左视图中间有一条横线,故左视图不正确.故选:B.【点评】本题考查了三种视图及它的画法,看得到的棱画实线,看不到的棱画虚线.8.圆形的物体在太阳光的投影下是()A.圆形B.椭圆形C.线段D.以上都有可能【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【解答】解:根据题意:同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变.故选:D.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.9.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是()A.B.C.D.【分析】平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.【解答】解:A、影子的方向不相同,错误;B、影子平行,且较高的树的影子长度大于较低的树的影子,正确;C、相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,错误;D、影子的方向不相同,错误;故选:B.【点评】本题考查了平行投影,灵活运用平行投影的性质是解题关键.10.平行投影中的光线是()A.平行的B.聚成一点的C.不平行的D.向四面八方发散的【分析】解答本题关键是要理解平行投影,平行投影中的光线是平行的,如阳光等.【解答】解:平行投影中的光线是平行的.故选:A.【点评】本题考查平行投影的定义,需注意与中心投影定义的区别.二.填空题(共4小题)11.三视图都是同一平面图形的几何体有正方体、球体.(写两种即可)【分析】三视图都相同的几何体是:正方体,三视图均为正方形;球体,三视图均为圆.【解答】解:依题意,主视图、左视图以及俯视图都相同的几何体是正方体或球体.故答案为:正方体、球体.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力和对立体图形的认识.12.一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,m+n=16.【分析】这种题需要空间想象能力,可以想象这样的小立方体搭了左中右三排,但最左排可以为4~6个小正方体,依此求出m、n的值,从而求得m+n的值.【解答】解:最少需要7块如图(1),最多需要9块如图(2)故m=9,n=7,则m+n=16.【点评】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力.13.一个几何体是由一些大小相同的小立方块摆成的,如下图是从正面、左面、上面看这个几何体得到的平面图形,那么组成这个几何体所用的小立方块的个数是8.【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从左视图可看出每一行小正方体的层数和个数,从而算出总的个数.【解答】解:由俯视图易得最底层小正方体的个数为6,由其他视图可知第二行第2列和第三列第二层各有一个正方体,那么共有6+2=8个正方体.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.14.如图,是由一些大小相同的小正方体组合成的简单几何体(1)图中有11块小正方体;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.【分析】(1)根据如图所示即可得出图中小正方体的个数;(2)读图可得,左视图有2列,每列小正方形数目分别为2,2;俯视图有4列,每行小正方形数目分别为2,2,1,1.【解答】解:(1)根据如图所示即可数出有11块小正方体;(2)如图所示;左视图,俯视图分别如下图:故答案为:(1)11.【点评】此题主要考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.三.解答题(共9小题)15.分别画出图中几何体的主视图、左视图、俯视图.【分析】从正面看从左往右4列正方形的个数依次为1,3,1,1;从左面看从左往右3列正方形的个数依次为3,1,1;从上面看从左往右4列正方形的个数依次为1,3,1,1.【解答】解:【点评】本题考查了三视图的画法;得到从各个方向看得到的每列正方形的个数是解决本题的关键.16.画出如图所示的几何体的主视图、左视图、俯视图:【分析】主视图有3列,每列小正方形数目分别为2,1,1;左视图有3列,每列小正方形数目分别为2,1,1;俯视图,3列,每列小正方形数目分别为3,1,1.【解答】解:作图如下:【点评】此题考查的知识点是简单组合体的三视图,关键明确主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.17.如图是某工件的三视图,求此工件的全面积和体积.【分析】由三视图可知,该工件为底面半径为10cm,高为30cm的圆锥体,然后由勾股定理得到该圆锥的母线长,再由圆锥的侧面积和圆锥的底面积相加为圆锥的全面积;根据圆锥的体积公式可求圆锥的体积.【解答】解:由三视图可知,该工件为底面半径为10cm,高为30cm的圆锥体,这圆锥的母线长为=10(cm),圆锥的侧面积为s=πrl=×20π×10=100π(cm2),圆锥的底面积为102π=100πcm2,圆锥的全面积为100π+100π=100(1+)π(cm2);圆锥的体积×π×(20÷2)2×30=1000π(cm3).故此工件的全面积是100(1+)πcm2,体积是1000πcm3.【点评】本题主要考查几何物体三视图及圆锥的面积和体积求法.三视图判断几何体的形状是难点,这就要求掌握几种常见几何体的三视图,并建立三视图与实物的对应关系.18.如图是由几个小正方体所搭成的几何体上面看到的图形,小正方形中的数字表示在该位置的小正方体的个数,请你画出从正面、左面可以看到的图形.【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为2,3,4;左视图有2列,每列小正方形数目分别为4,2.据此可画出图形.【解答】解:作图如下:【点评】考查画几何体的三视图,用到的知识点为:主视图,左视图分别是从物体的正面,左面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.19.一个几何体由几个大小相同的小立方块搭成,从上面看这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面,左侧面看到的几何体的形状图.【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为3,3,4;从左面看有3列,每列小正方形数目分别为1,4,3.据此可画出图形.【解答】解:如图所示:【点评】考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.20.如图是小强用八块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出你所看到的几何体的形状图(在答题卡上画完图后请用黑色签字笔描图)【分析】读图可得,从正面看有3列,每列小正方形数目分别为1,2,1;从左面看有3列,每列小正方形数目分别为2,1,2;从上面看有3列,每列小正方形数目分别为1,3,2,依此画出图形即可.【解答】解:三视图如下:【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.21.有两根木棒AB,CD在同一平面上直立着,其中AB这根木棒在太阳光下的影子BE如图所示,请你在图中画出这时木棒CD的影子.【分析】连接AE,过点C作AE的平行线,过点D作BE的平行线,相交于点F,DF即为所求.【解答】解:【点评】本题考查平行投影的作图,难度不大,体现了学数学要注重基础知识的新课标理念.会灵活运用性质作图.22.如图,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1m长的影子如图所示,已知窗框的影子DE到窗下墙脚的距离CE=3.9m,窗口底边离地面的距离BC=1.2m,试求窗口的高度.(即AB的值)【分析】根据阳光是平行光线,即AE∥BD,可得∠AEC=∠BDC;从而得到△AEC∽△BDC,根据比例关系,计算可得AB的数值,即窗口的高度.【解答】解:由于阳光是平行光线,即AE∥BD,所以∠AEC=∠BDC.又因为∠C是公共角,所以△AEC∽△BDC,从而有.又AC=AB+BC,DC=EC﹣ED,EC=3.9,ED=2.1,BC=1.2,于是有,解得AB=1.4(m).答:窗口的高度为1.4m.【点评】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.要求学生通过投影的知识结合图形相似的性质巧妙地求解或解直角三角形,是平行投影性质在实际生活中的应用.23.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD =2.1m,求灯泡的高.【分析】(1)连接CB延长CB交DE于O,点O即为所求.(2)连接OG,延长OG交DF于H.线段FH即为所求.(3)根据=,可得=,即可推出DE=4m.【解答】(1)解:如图,点O为灯泡所在的位置,线段FH为小亮在灯光下形成的影子.(2)解:由已知可得,=,∴=,∴OD=4m.∴灯泡的高为4m.【点评】本题考查中心投影、解题的关键是正确画出图形,记住物长与影长的比的定值,属于基础题,中考常考题型.人教版七年级上册第四章《几何图形初步》单元测试一、选择题1、如图所示几何体的左视图是()2、下列平面图形经过折叠不能围成正方体的是()3、图为某个几何体的三视图,则该几何体是()A. B. C. D.4、汽车车灯发出的光线可以看成是( )A.线段B.射线C.直线D.弧线5、如果A、B、C三点在同一直线上,且线段AB=6 cm,BC=4 cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为( )A.5 cm B.1 cm C.5或1 cm D.无法确定6、下列说法正确的有( )①两点确定一条直线;②两点之间线段最短;③∠α+∠β=90°,则∠α和∠β互余;④一条直线把一个角分成两个相等的角,这条直线叫做角的平分线.A.1个 B.2个 C.3个 D.4个7、如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是( )A.2(a﹣b) B.2a﹣b C.a+b D.a﹣b8、如果线段AB=13cm,MA+MB=17 cm,那么下面说法中正确的是 ( ).A.M点在线段AB上 B.M点在直线AB上C.M点在直线AB外 D.M点可能在直线AB上,也可能在直线AB外9、点C在线段AB上,不能判定点C是线段中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.AC=AB10、3点30分时,时钟的时针与分针所夹的锐角是( )A.70° B.75° C.80° D.90°11、已知:∠A=25°12′,∠B=25.12°,∠C=25.2°,下列结论正确的是( )A.∠A=∠B B.∠B=∠C C.∠A=∠C D.三个角互不相等12、如图,已知OC是∠AOB内部的一条射线,∠AOC=30°,OE是∠COB的平分线.当∠BOE=40°时,∠AOB的度数是A. 70°B. 80°C. 100°D. 110°13、如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°,则∠AOB等于()A.50° B.75° C.100° D.120°14、用一副三角板不能画出的角为( )A.15° B.85° C.120° D.135°15、如图所示的四条射线中,表示南偏西60°的是()A.射线OA B.射线OB C.射线OC D.射线OD二、填空题16、计算33°52′+21°54′= .17、将18.25°换算成度、分、秒的结果是__________.18、上午6点45分时,时针与分针的夹角是__________度.19、如图是由一些大小相同的小正方体搭成的几何体的主视图和俯视图,则搭成该几何体的小正方体最多是___个.20、A,B,C三点在同一条直线上,若BC=2AB且AB=m,则AC=__________.21、如图,若CB=3cm,DB=7cm,且D是AC的中点,则AC= cm.22、如图,点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,则线段MN= .23、已知线段AB=10cm,直线AB上有一点C,且BC=4cm,M是线段BC的中点,则AM的长是 cm.24、已知线段AB=4cm,延长线段AB至点C,使BC=2AB,若D点为线段AC的中点,则线段BD长为cm.25、已知 A、B、C 三点在同一条直线上,M、N 分别为线段 AB、BC 的中点,且 AB=60,BC=40,则 MN 的长为26、已知∠AOC=2∠BOC, 若∠BOC=30°,则∠AOB=27、如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有.三、简答题28、按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.29、如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB= cm.②求线段CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.30、已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.31、如图,已知数轴上的点A对应的数为6,B是数轴上的一点,且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿着数轴向左匀速运动,设运动时间为t秒(t>0).(1)数轴上点B对应的数是_______,点P对应的数是_______(用t的式子表示);(2)动点Q从点B与点P同时出发,以每秒4个单位长度的速度沿着数轴向左匀速运动,试问:运动多少时间点P可以追上点Q?(3)M是AP的中点,N是PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若有变化,说明理由;若没有变化,请你画出图形,并求出MN的长.32、(1)已知:如图,点C在线段AB上,线段AC=12,BC=4,点M、N分别是AC、BC的中点,求MN的长度.(2)根据(1)的计算过程与结果,设AC+BC=a,其它条件不变,你能猜出MN的长度吗?请用一句简洁的语言表达你发现的规律.33、如图,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,试求∠BOC的大小.34、如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)写出图中小于平角的角.(2)求出∠BOD的度数.(3)小明发现OE平分∠BOC,请你通过计算说明道理.35、如图,直线AB上有一点O,∠DOB=90°,另有一顶点在O点的直∠EOC.(1)如果∠DOE=50°,则∠AOC的度数为;(2)直接写出图中相等的锐角,如果∠DOC≠50°,它们还会相等吗?(3)若∠DOE变大,则∠AOC会如何变化?(不必说明理由)36、如图所示,OM平分∠BOC,ON平分∠AOC,(1)若∠AOB=90°,∠AOC=30°,求∠MON的度数;(2)若(1)中改成∠AOB=60°,其他条件不变,求∠MON的度数;(3)若(1)中改成∠AOC=60°,其他条件不变,求∠MON的度数;(4)从上面结果中看出有什么规律?参考答案一、选择题1、A.【解析】分析:找到从左面看所得到的图形即可.解答:解:从左面看可得到上下两个相邻的正方形,故选A2、D3、D【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:由主视图和左视图为矩形判断出是柱体,由俯视图是正方形可判断出这个几何体应该是长方体.故选D.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.4、B5、C6、C【考点】直线的性质:两点确定一条直线;线段的性质:两点之间线段最短;角平分线的定义;余角和补角.【分析】根据直线的性质可得①正确;根据线段的性质可得②正确;根据余角定义可得③正确;根据角平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线可得④错误.【解答】解:①两点确定一条直线,说法正确;②两点之间线段最短,说法正确;③∠α+∠β=90°,则∠α和∠β互余,说法正确;④一条直线把一个角分成两个相等的角,这条直线叫做角的平分线,说法错误;正确的共有3个,故选:C.【点评】此题主要考查了直线和线段的性质,以及余角和角平分线的定义,关键是熟练掌握课本基础知识.7、B【考点】比较线段的长短.【专题】计算题.【分析】由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.【解答】解:∵MN=MB+CN+BC=a,BC=b,∴MB+CN=a﹣b,∵M是AB的中点,N是CD中点∴AB+CD=2(MB+CN)=2(a﹣b),∴AD=2(a﹣b)+b=2a﹣b.故选B.【点评】本题考查了比较线段长短的知识,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.8、D9、C10、B11、C【考点】度分秒的换算.【分析】根据小单位华大单位除以进率,可得答案.【解答】解:∠A=35°12′=25.2°=∠C>∠B,故选:C.【点评】本题考查了度分秒的换算,小单位华大单位除以进率是解题关键.12、D13、C【考点】角的计算;角平分线的定义.。

第二章 几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)

第二章 几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)

第二章几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)一、单选题(共15题,共计45分)1、如图,正方形ABCD的边长为1,将其绕顶点C旋转,得到正方形CEFG,在旋转过程中,则线段AE的最小值为()A. B. -1 C.0.5 D.2、如图,直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α的余角等于()A.19°B.38°C.42°D.52°3、如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点 A顺时针旋转900得到(点B′与点B是对应点,点C′与点C是对应点),连接CC’,则∠CC’B’的度数是( )。

A.45 °B.30 °C.25 °D.15 °4、如图,直线AB与CD相交于点O,过点O作OE⊥AB,若∠1=34°,则∠2的度数是()A.68°B.56°C.65°D.43°5、如图,在△ABC中,∠ACB= ,∠B= ,AC=1,BC= ,AB=2,AC在直线l上,将△ABC绕点A顺时针转到位置①可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+ ;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+ …,按此顺序继续旋转,得到点P2016,则AP2016=( )A.2016+671B.2016+672C.2017+671D.2017+6726、在等边△ABC中,D是AC边上一点,连接BD,将△BCD绕点B逆时针旋转60°得到△BAE,连接ED,若BC=5,BD=4,有下列结论:①AE∥BC;②∠ADE=∠BDC;③△BDE是等边三角形;④△ADE的周长是9.其中正确的个数是()A.4B.3C.2D.17、如图,在∠AOB内部从O点引出两条射线OC、OD,则图中小于平角的角共有()个.A.6B.5C.4D.38、在平面直角坐标系中,有一点P绕原点旋转180°后得到点P'的坐标是(2,-5),那么点P的坐标是()A.(5,-2)B.(-2,5)C.(-5,2)D.(-2,-5)9、如图,P是等边△ABC内的一点,若将△PAB绕点A逆时针旋转得到△P′AC,则∠PAP′的度数为(A.120°B.90°C.60°D.30°.10、如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是()A.(5,2)B.(2,5)C.(2,﹣5)D.(5,﹣2)11、如图,一块等腰直角的三角板ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C 的位置,使A、C、B′三点共线,那么旋转角度的大小为()A.45°B.90°C.120°D.135°12、如图所示,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,且∠DAE=45°,将△ADC绕点A按顺时针方向旋转90°后得到△AFB,连接EF,有下列结论:①BE=DC;②∠BAF=∠DAC;③∠FAE=∠DAE;④BF=DC.其中正确的有()A.①②③④B.②③C.②③④D.③④13、下列几何体,都是由平面围成的是()A.圆柱B.三棱柱C.圆锥D.球14、如图,直线与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO'B',则点B'的坐标是( )A.(7,3)B.(4,5)C.(7,4)D.(3,4)15、如图,从A到B有3条路径,最短的路径是③,理由是()A.两点之间,线段最短B.两点确定一条直线C.两点间距离的定义 D.因为③是直的二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,抛物线与的一个交点为A,已知点A的横坐标为1,过点A作x轴的平行线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则的值为________.17、如图,在中,,将绕着点顺时针旋转后,得到,且点在上,则的度数为________.18、在时刻10:10时,时钟上的时针与分针间的夹角是________.19、如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,那么DH的长是________.20、快速旋转一枚竖立的硬币(假定旋转轴在原地不动),则可以得到一个立体图形球.这个现象我们可以说成________(请你用点线面体间的关系解释)21、下面四个等式表示几条线段之间的关系:①CE=DE;②DE= CD;③CD=2CE;④CE=DE= CD.其中能表示点E时显得CD的中点的有________.(只填序号)22、如图,0是直线AB上的一点,∠BOD=∠COE=90°.则∠3的补角是________.23、在平面直角坐标系中,A(1,0),B(0,﹣3),点B绕点A逆时针旋转90°得到点C,则点C的坐标是________.24、A、B是半径为2的⊙O上不同两点,则AB的取值范围是________ .25、如图,在△ABC中,,DE是AB的垂直平分线,∠BAD:∠CAB=1:3,则∠B=________.三、解答题(共5题,共计25分)26、计算:180°﹣34°54′﹣21°33′.27、如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.28、如图,在A、B两个营地之间有一条河(假定河岸是平行的直线).如何在河上架一座与河岸垂直的桥,并从A、B分别修路到桥,使得路的总长最短?29、下面是小马虎解的一道题.题目:在同一平面上,若∠BOA=70。

七年级上册数学单元测试卷-第二章 几何图形的初步认识-冀教版(含答案)

七年级上册数学单元测试卷-第二章 几何图形的初步认识-冀教版(含答案)

七年级上册数学单元测试卷-第二章几何图形的初步认识-冀教版(含答案)一、单选题(共15题,共计45分)1、在下列日常生活的操作中,能体现基本事实“两点之间,线段最短”的是()A.用两颗钉子固定一根木条B.把弯路改直可以缩短路程C.用两根木桩拉一直线把树栽成一排D.沿桌子的一边看,可将桌子排整齐2、能解释:“用两个钉子就可以把木条固定在墙上”,这实际问题的数学知识是( )A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直3、从3时到6时,钟表的时针旋转角的度数是()A.30°B.60°C.90°D.120°4、下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()A. B. C. D.5、如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.85°B.160°C.125°D.105°6、如图,四边形ABCD中,∠DAB=30°,连接AC,将ABC绕点B逆时针旋转60°,点C与对应点D重合,得到EBD,若AB=5,AD=4,则AC的长度为()A.5B.6C.D.7、下面四幅图中,用量角器测得∠AOB度数是40°的图是()A. B. C.D.8、如图,△ABC中,AB=AC,点P为△ABC内一点,∠APB=∠BAC=120°.若AP+BP=4,则PC的最小值为()A.2B.C.D.39、将下列平面图形绕轴旋转一周,可得到图中所示的立体图形的是()A. B. C. D.10、如图所示,OB,OC 是∠AOD 的任意两条射线,OM 平分∠AOB,ON 平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD的代数式是()A.2α﹣βB.α﹣βC.α+βD.以上都错误11、如图所示,是由8个完全相同的小正方体搭成的几何体.若小正方体的棱长为1,则该几何体的表面积是()A.16B.30C.32D.3412、围成圆柱的面有()A.1个B.2个C.3个D.4个13、如图,等腰直角△ABC中,∠ACB=90°,点E为△ABC内一点,且∠BEC=90°,将△BEC绕C点顺时针旋转90°,使BC与AC重合,得到△AFC,连接EF交AC于点M,已知BC=10,CF=6,则AM:MC的值为()A.4:3B.3:4C.5:3D.3:514、如图,小明从点A向北偏东80°方向走到B点,又从B点向南偏西25°方向走到点C,则∠ABC的度数为()A.55°B.50°C.45°D.40°15、如图,小明用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能解释这一现象的数学知识是()A.经过一点能画无数条直线B.两点之间,线段最短C.两点确定一条直线D.连接两点间的线段的长度,叫做这两点的距离二、填空题(共10题,共计30分)16、如图,将△ABC绕点A逆时针旋转65°得△ADE,若∠E=70°,AD⊥BC,则∠BAC =________.17、计算⑴5400″=________°.⑵32°49'+25°51'=________;⑶180°﹣56°23'=________.18、如图,数轴上线段AB=2,CD=4,点A在数轴上的数是-10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同事线段CD以2个单位长度/秒的速度向左匀速运动,点P是线段AB上一点,当点B运动到线段CD上,且BD=3PC+AP,则线段PC的长为________.19、角度换算:45.18度=________度________分________秒.20、在图形的平移、旋转、轴对称变换中,其相同的性质是________.21、如图1,在直线MN的异侧有A,B两点,要在直线MN上取一点C,使AC+BC最短.小明的作法是连接线段AB交直线MN于点C,如图2.这样作图得到的点C,就使得AC+BC最短,依据是________.22、如图,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转与△CBP'重合,若PB = 3,则PP' = ________23、如图,将一副直角三角板如图放置,若∠AOD=18°,则∠BOC的度数为________.24、数轴上与-2相距3个单位长度的点表示的数是________,长度为5个单位长的木条放在数轴上,最多能覆盖________个整数点.25、如图,将长方形纸片进行折叠,为折痕,与与与重合,若,则的度数为 ________三、解答题(共5题,共计25分)26、计算:(1)﹣22÷﹣(﹣)×(﹣3)2(2)16°51′+38°27′×3﹣35°29′.27、请估计下面角的大小,然后再用量角器测量.28、如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠COB的度数.29、如图,已知点M是线段AB的中点,点N在线段MB上,MN=AM,若MN=3cm,求线段AB和线段NB的长.30、如图,AD⊥BC于点D,EF⊥BC于点F,∠BDG=∠C.试说明∠1=∠2.参考答案一、单选题(共15题,共计45分)1、B2、B3、C4、B5、C6、D7、A8、B10、A11、D12、C13、A14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、30、。

七年级数学上册 第二章 几何图形的初步认识 单元测试卷(冀教版 2024年秋)

七年级数学上册 第二章 几何图形的初步认识 单元测试卷(冀教版 2024年秋)

七年级数学上册第二章几何图形的初步认识单元测试卷(冀教版2024年秋)一、选择题(每题3分,共36分)1.[2024·保定第十七中期中]如图,下列几何体中,属于柱体的有()A.1个B.2个C.3个D.4个2.下列说法中,正确的是()A.若PA=12AB,则P是线段AB的中点B.两点之间,线段最短C.直线的一半是射线D.平角就是一条直线3.已知∠1=28°24',∠2=28.24°,∠3=28.4°,则下列说法中,正确的是()A.∠1=∠2<∠3B.∠1=∠3>∠2C.∠1<∠2=∠3D.∠1=∠2>∠34.[2024·唐山丰润区期末]如图,将一个直角三角形纸板ABC绕点A 逆时针旋转50°得到△ADE,若∠BAC=40°,则∠CAD的度数为()(第4题)A.90°B.30°C.20°D.10°5.如图,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2=()(第5题)A.60°B.50°C.80°D.70°6.[情境题生活应用]某学校的学生每天上午8时45分下第一节课,此时时钟的时针与分针所成的角为()A.10°B.7°30'C.12°30'D.90°30'7.依据下列线段的长度,能确定点A,B,C不在同一直线上的是()A.AB=8cm,BC=19cm,AC=27cmB.AB=10cm,BC=9cm,AC=18cmC.AB=11cm,BC=21cm,AC=10cmD.AB=30cm,BC=12cm,AC=18cm8.[2024·保定十七中月考]如图,将一副三角板按不同的位置摆放,下列摆放方式中,∠α与∠β均为锐角且相等的是()9.[母题教材P89A组T5(2)]如图,OB是∠AOC的平分线,OD是∠COE的平分线.若∠AOB=40°,∠COE=60°,则∠BOD=()(第9题)A.50°B.60°C.65°D.70°10.[2024·石家庄四十中模拟]两根木条,一根长20cm,另一根长24 cm,将它们的一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cmB.4cmC.2cm或22cmD.4cm或44cm11.如图,射线OC平分∠AOB,射线OD平分∠BOC,则下列等式中成立的有()(第11题)①∠COD=∠AOD-∠BOC;②∠COD=∠AOD-∠BOD;③2∠COD=2∠AOD-∠AOB;④∠COD=13∠AOB.A.①②B.①③C.②③D.②④12.[2024·张家口部分学校联考]如图,C,D在线段BE上,下列说法:①直线BE上以B,C,D,E为端点的线段共有6条;②图中有两对互补的角;③若∠BAE=100°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和为340°;④若BC=3,CD=DE=4,点F是线段BE上任意一点,则点F到点B,C,D,E 的距离之和的最大值为21,最小值为15.其中正确的有()(第12题)A.1个B.2个C.3个D.4个二、填空题(每题3分,共12分)13.[2024·沧州期末]如图,小明捡到一片沿直线被折断了的银杏叶,小明发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是.(第13题)14.七棱柱有个面,个顶点.15.如图,点O在直线AB上,∠AOC=53°17'28″,则∠BOC=.(第15题)16.[2024·廊坊安次区期末]已知往返于汕头与广州东的D7150次列车,运行途中须停靠汕头、潮汕、普宁、深圳北、东莞南、东莞、广州东7个站点,那么该次列车共有种不同的车票.一列火车往返于A,B两个城市,若共有n(n≥3)个站点,则需要种不同的车票.三、解答题(第17,18题每题6分,第19~21题每题8分,第22~24题每题12分,共72分)17.[2024·保定十七中月考](1)0.75°等于多少分?等于多少秒?(2)将50°22'48″用度表示.(3)将42.34°用度、分、秒表示.18.计算:(1)143°19'42″+26°40'28″;(2)90°3″-57°21'44″.19.已知线段a,b(a<b),如图,求作线段c,使c=2b-a.(写出作法)20.[2024·邯郸永年区实验中学月考]如图,点A,B,C,O都在正方形网格的格点上,按要求画图.(1)画射线BA,直线AC,连接BC;(2)画出三角形ABC绕点O顺时针旋转90°后的三角形A’B’C’.21.[2024·唐山四中模拟]如图,线段AD=6cm,线段AC=BD=4 cm,E,F分别是线段AB,CD的中点,求线段EF的长.22.[2024·石家庄晋州期中]如图所示,点C在线段AB上,AB=30 cm,AC=12cm,M,N分别是AB,BC的中点.(1)求CN的长度;(2)求MN的长度;(3)若点P在直线AB上,且PA=2cm,点Q为BP的中点,请直接写出QN的长度,不用说明理由.23.如图,射线OC和OD把平角∠AOB三等分,OE平分∠AOC,OF平分∠BOD.(1)求∠COD的度数;(2)写出图中所有的直角;(3)写出∠COD的所有余角和补角.24.如图,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC.(1)∠MON=°.(2)将OC绕O点向下旋转,使∠BOC=2x°(0<x<45),其他条件不变,能否求出∠MON的度数?若能,求出∠MON的度数;若不能,试说明理由.(3)若∠AOB=α,∠BOC=β(0°<α+β<180°),其他条件不变,能否求出∠MON的度数?若能,求出∠MON的度数;若不能,试说明理由.答案一、1.B2.B【点拨】当点P不在线段AB上时,P不是线段AB的中点,故A不正确;两点之间,线段最短,故B正确;直线和射线都不可度量,故C不正确;平角和直线是两个不同的概念,故D不正确.3.B【点拨】∠1=28°24'=28.4°,故∠1=∠3>∠2.4.D【点拨】根据题意,可知旋转角∠BAD=50°,所以∠CAD=∠BAD-∠BAC=50°-40°=10°.故选D.5.D【点拨】因为∠1=40°,所以∠BOC=180°-∠1=140°.又因为OD平分∠BOC,所以∠2=12∠BOC=70°.6.B【点拨】时针从8时到8时45分旋转了45×0.5°=22.5°,而分针在8时45分时指向“9”,因此时针与分针所成的角为30°-22.5°=7.5°=7°30'.7.B【点拨】本题可采用排除法.8.B【点拨】A.∠α+∠β=180°-90°=90°,互余,不符合题意;B.根据同角的余角相等,得∠α=∠β,且∠α与∠β均为锐角,符合题意;C.根据等角的补角相等,得∠α=∠β,但∠α与∠β均为钝角,不符合题意;D.∠α+∠β=180°,互补,不符合题意.故选B.9.D【点拨】因为OB是∠AOC的平分线,所以∠BOC=∠AOB=40°.因为OD 是∠COE的平分线,所以∠COD=12∠COE=12×60°=30°.所以∠BOD=∠BOC+∠COD=40°+30°=70°.10.C根据题意画出图形,由于将木条的一端重合且放在同一条直线上,有两种情况,根据线段中点的定义分别求出两根木条的中点之间的距离.11.B【点拨】因为OC平分∠AOB,OD平分∠BOC,所以∠AOC=∠BOC=12∠AOB,∠COD=∠BOD=12∠COB.因为∠COD=∠AOD-∠AOC,∠AOC=∠BOC,所以∠COD=∠AOD-∠BOC.故①正确.因为∠BOD≠∠BOC,所以∠COD≠∠AOD-∠BOD.故②错误.因为∠AOD=∠AOC+∠COD,所以2∠AOD=2(∠AOC+∠COD)=∠AOB+2∠COD.所以2∠AOD-∠AOB=∠AOB+2∠COD-∠AOB=2∠COD.所以2∠COD=2∠AOD-∠AOB.故③正确.因为∠COD=12∠BOC,∠BOC=12∠AOB,所以∠COD=12×12∠AOB=14∠AOB.故④错误.故选B.12.C【点拨】①直线BE上以B,C,D,E为端点的线段有:BC,BD,BE,CD,CE,DE,共6条,故①正确;②∠ACB与∠ACD互补,∠ADC与∠ADE互补,即共有2对互补的角,故②正确;③因为∠BAE=100°,∠DAC=40°,所以∠BAC+∠DAE=60°.以A为顶点的所有小于平角的角有:∠BAC,∠CAD,∠DAE,∠BAD,∠CAE,∠BAE,所以∠BAC+∠CAD+∠DAE+∠BAD+∠CAE+∠BAE=∠BAE+∠BAE+∠CAD+∠BAE=340°,故③正确;④因为BC=3,CD=DE=4,所以当点F在线段CD上时,距离之和最小,此时点F到点B,C,D,E 的距离之和为FB+FE+FD+FC=(FB+FE)+(FC+FD)=BE+CD=(3+4+4)+4=15;当点F和点E重合时,距离之和最大,此时点F到点B,C,D,E的距离之和为FB+FE+FD+FC=(4+4+3)+0+4+(4+4)=23,故④错误.综上所述,正确的有①②③,共3个.故选C.二、13.两点之间,线段最短14.9;1415.126°42'32″16.42;n(n-1)【点拨】往返于汕头与广州东的D7150次列车,共2×(6+5+4+3+2+1)=2×21=42(种)不同的车票.若共有n(n≥3)个站点,则需要2[(n-1)+(n-2)+(n-3)+…+3+2+1]=2×(-1)2=n(n-1)(种)不同的车票.三、17.【解】(1)0.75°=60'×0.75=45',0.75°=60″×45=2700″.(2)48″×48=0.8',22'+0.8'=22.8',22.8'=0.38°.所以50°22'48″=50.38°.(3)60'×0.34=20.4',60″×0.4=24″,所以42.34°=42°20'24″.18.【解】(1)143°19'42″+26°40'28″=169°59'70″=170°10″.(2)90°3″-57°21'44″=89°59'63″-57°21'44″=32°38'19″.19.【解】如图所示.作法:①画射线OA.②在射线OA上顺次取点B,C,使OB=BC=b.③在线段CB上取点D,使CD=a.则OD就是所求作的线段c.20.【解】(1)如图所示.(2)三角形A'B'C'如图所示.21.【解】因为AD=6cm,AC=BD=4cm,所以BC=AC+BD-AD=4+4-6=2(cm).所以AB+CD=AD-BC=6-2=4(cm).又因为E,F分别是线段AB,CD的中点,所以EB=12AB,CF=12CD.所以EB+CF=12AB+12CD=12(AB+CD)=2cm.所以EF=EB+BC+CF=2+2=4(cm).即线段EF的长为4cm.22.【解】(1)因为AB=30cm,AC=12cm,所以BC=18cm.因为N是BC的中点,所以CN=12BC=9cm.(2)因为AB=30cm,M是AB的中点,所以AM=15cm.又因为AC=12cm,所以MC=3cm.所以MN=CN-MC=6cm.(3)QN=5cm或7cm.23.【解】(1)因为射线OC和OD把平角∠AOB三等分,所以∠COD=13×180°=60°.(2)∠DOE与∠COF.(3)∠COD的余角:∠AOE,∠EOC,∠DOF,∠FOB.∠COD的补角:∠AOD,∠EOF,∠BOC.24.【解】(1)45(2)能.因为∠AOB=90°,∠BOC=2x°,所以∠AOC=90°+2x°.因为OM,ON分别平分∠AOC,∠BOC,所以∠MOC=12∠AOC=12(90°+2x°)=45°+x°,∠CON=12∠BOC=x°.所以∠MON=∠MOC-∠CON=45°+x°-x°=45°.(3)能.因为∠AOB=α,∠BOC=β,所以∠AOC=α+β.因为OM,ON分别平分∠AOC,∠BOC,所以∠MOC=12∠AOC=12(α+β),∠CON=12∠BOC=12β.所以∠MON=∠MOC-∠CON=12(α+β)-12β=12α.11。

第二章几何图形的初步认识 单元测试题2024-2025学年 冀教版七年级数学上册

第二章几何图形的初步认识 单元测试题2024-2025学年 冀教版七年级数学上册

2024-2025学年第一学期七年级数学上册第二章《几何图形的初步认识》单元测试题班级: 姓名: 成绩:一、选择题(本大题共16个小题,共38分,1-6小题每题3分,7-16小题每题2分.每小题均有四个选项,其中只有一项符合题目要求) 1.下列图形中为圆柱体的是( )2.关于直线,下列说法正确的是 ( )A.可以量长度B.有两个的端点C.可以用两个小写字母来表示D.没有端点 3.下列图形绕某点旋转180°后,不能与原来图形重合的是( )A. B. C. D. 4.下列语句正确的是( )A.同角的余角和补角相等B.三条直线两两相交,必定有三个交点C.线段AB 就是点A 与点B 的距离D.两点确定一条直线5.已知线段AB ,反向延长AB 到C ,使AC=31BC ,D 为AC 中点,若CD=2cm ,则AB 等于( ) (A )4cm (B )6cm (C )8cm (D )10cm6.下列4个图形中,能用∠1,∠AOB,∠O 三种方法表示同一角的图形是( )AA1BOBA1B OCA B OCDA 1BOD7.在平面上任意画4个点,那么这4个点确定的直线共有( )A.1条或4条B.1条或6条C.4条或6条D.1条或4条或6条 8.两个锐角的和( )A .一定是锐角B 一定是直角C 一定是钝角D 可能是钝角、直角或锐角 9.平面上有三点A 、B 、C ,如果AB=8,AC=5,BC=3,则( ) A 点C 在线段AB 上 B 点B 在线段AB 的延长线上C 点C 在直线AB 外D 点C 可能在直线AB 上,也可能在直线AB 外10.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=26°50',则∠2的度数是( )A .56°50'B .33°10’C .26°50'D .63°10' 11.下列关于角的说法正确的个数是( ) ①角是由两条射线组成的图形; ②角的边越长,角越大; ③在角一边延长线上取一点D;④角可以看作由一条射线绕着它的端点旋转而形成的图形. A.1个 B.2个 C.3个 D.4个12.如图,115︒∠=,90AOC ︒∠=,点B 、O 、D 在同一直线上,则2∠的度数为( )A . 75︒B .15︒C .105︒D .165︒13.如图,是一副特制的三角板,用它们可以画出一些特殊角.在54°,60°,63°,99°,120°的角中,能借助特制三角板画出的角有( ) A .2个 B .3个 C .4个 D .5个14.如图,∠AOC= 90,ON 是锐角∠COD 的角平分线,OM 是∠AOD 的角平分线,求∠MON=( )A.∠21COD+ 45 B. 90 C.∠21AOD D. 4515.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有16个三角形,则需要( )根火柴棍A .30根B .31根C .32根D .33根16.如图,已知O 为直线AB 上一点,将直角三角板DOE 的直角顶点放在点O 处,若OC 是DOB ∠的平分线,则下结论正确的是( )A .3AOD EOC ∠=∠B .2AOD EOC ∠=∠ C .23AOD EOC ∠=∠ D .35AOD EOC ∠=∠ 二、填空题(每题2分,共30分)ABCDO121.如图,林林的爸爸只用两枚钉子就把一根木板固定 在墙上,原理的是 .2.30.6°=_____°_____′=_______”;30°6′=_______°.3.经过一点的直线可以画 条,经过两点的直线有 条.4.若线段AB=10cm,在直线AB 上有一点C,且BC=4cm,M 是线AC 的中点,则AM 的长为_ _cm.5.一个角的大小为62°21′,则这个角的余角的大小为 .6.已知:P 是线段AB 的中点,PA=3cm ,则AB=______cm.7.如图所示,在线段AB 上任取两点C 、D ,那么图中共 有 条线段.8.如图,从A 地到B 地走_____路线最近,它根据的是____________9. 一个正方形要绕它的中心至少旋转 度,才能和原来的图形重合.10.观察下列数:-2,-1,2,1,-2,-1……,从左边第一个数算起,第99个数是 。

七年级数学上册《几何图形初步》单元测试卷(含答案解析)

七年级数学上册《几何图形初步》单元测试卷(含答案解析)

七年级数学上册《几何图形初步》单元测试卷(含答案解析)一、单选题(本大题共15小题,共45分)1.如图,将正方体的平面展开图重新折成正方体后,“奋”字对面的字是()A. 者B. 乐C. 的D. 园2.一枚六个面分别标有1−6个点的骰子,将它抛掷三次得到不同的结果,看到的情形如图所示,则图中写有“?”一面上的点数是()A. 6B. 2C. 3D. 13.已知图1的小正方形和图2中所有的小正方形都全等,将图1的小正方形安放在图2中的①、②、③、④的其中某一个位置,放置后所组成的图形是不能围成一个正方体的.那么安放的位置是()A. ①B. ②C. ③D. ④4.观察下图,把左边的图形绕着给定直线旋转一周后可能形成的几何体是()A. B.C. D.5.将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A. B. C. D.6.已知A,B,C三点在同一条直线上,M,N分别为线段AB,BC的中点,且AB=80,BC=60,则MN的长为()A. 10B. 70C. 10或70D. 30或707.已知线段AB=8,延长线段AB至C,使得BC=12AB,延长线段BA至D,使得AD=14AB,则下列判断正确的是()A. BC=12AD B. BD=3BC C. BD=4AD D. AC=6AD8.下列作图语句中,正确的是()A. 画直线AB=6cmB. 延长线段AB到CC. 延长射线OA到BD. 作直线使之经过A,B,C三点9.如图给出的分别有射线,直线,线段,其中不能相交的图形是()A. B.C. D.10.如图,现实生活中有部分行人选择横穿马路而不走天桥或斑马线,用数学知识解释这一现象的原因,可以为()A. 过一点有无数条直线B. 两点之间线段的长度,叫做这两点之间的距离C. 两点确定一条直线D. 两点之间,线段最短11.若∠α=5.12°,则∠α用度、分、秒表示为()A. 5°12′B. 5°7′12′′C. 5°7′2′′D. 5°10′2′′12.下列图形中,能用∠α,∠O,∠AOB三种方式正确表示同一个角的图形是()A. B. C. D.13.按图1~图4的步骤作图,下列结论错误的是()∠AOB=∠AOP B. ∠AOP=∠BOPA. 12C. 2∠BOP=∠AOBD. ∠BOP=2∠AOP14.如图,OC是∠AOB的平分线,OD平分∠AOC,且∠COD=20°,则∠AOB=()A. 40°B. 50°C. 90°D. 80°15.如图,准确表示小岛A相对于灯塔O的位置是()A. 北偏东60°B. 距灯塔2km处C. 北偏东30°且距灯塔2km处D. 北偏东60°且距灯塔2km处二、填空题(本大题共5小题,共15分)16.如图,一个正方块的六个面分别标有A、B、C、D、E、F,从三个不同方向看到的情况如图所示,则A的对面应该是 ______.17.如图,已知点A、B、C、D、在同一条直线上,AB=5,AC=2,点D是线段BC的中点,则BD=______.18.时钟指示2点25分,它的时针与分针所成的锐角是 ______°.19.如图,点O在直线AE上,OC平分∠AOE,∠DOB是直角,若∠1=25°,那么∠AOB的度数是 ______°.20.在一次夏令营活动中,小明同学从营地A点出发,要到C地去,先沿北偏东70°方向走了500m到达B地,然后再沿北偏西20°方向走了500m到达目的地C,此时小明在营地A的______方向.三、解答题(本大题共5小题,共40分)21.如图所示的是一个长方体的表面展开图,每个面上都标注了字母(字母朝外),回答下列问题:(1)如果面A在长方体的底部放置,那么哪一个面会在它的上面?(2)如果面F在前面,从左面看是面B,那么哪一个面会在上面?(3)从右面看是面C,面E在左面,那么哪一个面会在上面?22.如图,已知线段AB=14,AP=8,P是OB的中点,求AO的长.AC,D,E分别为AC,AB的中点,求线段DE的23.如图,点C是线段AB上一点,AC=12,CB=23长.24.如图∠AOC为直角,OC是∠BOD的平分线,且∠AOB=28°,求∠BOD的度数.25.如图,点A、O、B在同一条直线上,∠AOD=∠EOC=90°,∠BOC:∠AOE=4:1,求∠COD的度数.参考答案和解析1.【答案】B;【解析】解:由题意,将正方体的平面展开图重新折成正方体后,“斗”字对面的是“的”字,“奋”字对面的字是“乐”字,“者”字对面的是“园”字,故选:B.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2.【答案】A;【解析】解:根据图形可知,与点数1相邻的面的点数有2、3、4、5,∴点数1与6是相对面,对比第一个和第三个图,可知写有“?”的面与点数1是相对面,故写有“?”一面上的点数是6.故选:A.根据与1个点数相邻的面的点数有2、3、4、5可知1个点数的对面是6个点数,再根据1与2、3相邻,从而得解.此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相邻的面上找出一个与另外4个相邻的数是解答该题的关键.3.【答案】A;【解析】解:将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体.故选:A.由平面图形的折叠及正方体的表面展开图的特点解题.此题主要考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.4.【答案】D;【解析】根据面动成体的原理以及空间想象力即可解.考查学生立体图形的空间想象能力及分析问题,解决问题的能力.解:由图形可以看出,左边的长方形的竖直的两个边与已知的直线平行,因而这两条边旋转形成两个柱形表面,因而旋转一周后可能形成的立体图形是一个管状的物体.故选D.5.【答案】D;【解析】该题考查的是点线面的认识有关知识,根据面动成体的原理:一个直角三角形绕它的最长边旋转一周,得到的是两个同底且相连的圆锥.解:A.圆柱是由一长方形绕其一边长旋转而成的;B.圆锥是由一直角三角形绕其直角边旋转而成的;C.该几何体是由直角梯形绕其下底旋转而成的;D.该几何体是由直角三角形绕其斜边旋转而成的.故选D.6.【答案】C;【解析】解:(1)当C在线段AB延长线上时,如图1,∵M、N分别为AB、BC的中点,∴BM=12AB=40,BN=12BC=30;∴MN=BM+BN=40+30=70.(2)当C在AB上时,如图2,同理可知BM=40,BN=30,∴MN=BM−BN=40−30=10;所以MN=70或10,故选:C.根据题意画出图形,再根据图形求解即可.此题主要考查线段中点的定义,比较简单,注意有两种可能的情况;解答这类题目,应考虑周全,避免漏掉其中一种情况.【解析】解:如图所示:∵AB=8,BC=12AB,∴BC=4,∵AD=14AB,∴AD=2,∴AC=AB+BC=12,BD=AD+AB=10,∴BC=2AD,BD=2.5BC,BD=5AD,AC=6AD.故选:D.根据AB=8,由线段的倍分关系求出BC,AD的长,进一步得到AC,BD的长,依此即可求解.该题考查了两点之间的距离的应用,主要考查学生的理解能力和计算能力,解此题的关键是求出BC,AD,AC,BD的长.8.【答案】B;【解析】这道题主要考查的是直线、射线、线段的特点,掌握直线、射线、线段的特点是解答该题的关键.根据直线向两端无限延伸,两点确定一条直线,射线向一端无限延伸可判断A、C、D是否正确;根据线段的特点可判断B是否正确.解:A.直线向两端无限延伸,无限长,故A错误;B.正确;C. 因为射线无限长,故C错误;D.如果A、B、C三点不在同一直线上,不能作直线使之经过A,B,C三点,过D错误.故选B.9.【答案】B;【解析】解:A.由图中直线AB和射线CD的位置以及直线、射线的意义可得,直线AB与射线CD 能相交,因此A不符合题意;B. 由图中线段AB和线段CD的位置以及线段的意义可知,线段AB与线段CD不相交,故B符合题意;C. 由图中直线a和直线b的位置以及直线的意义可得,直线a与直线b能相交,因此C不符合题意;D. 由图中直线AB和直线CD的位置以及直线的意义可得,直线AB与直线CD能相交,因此D不符合题意;故选:B.根据直线、射线、线段的意义逐项进行判断即可.此题主要考查直线、射线、线段的意义,理解直线、射线、线段的意义是解决问题的关键.【解析】解:现实生活中有部分行人选择横穿马路而不走天桥或斑马线,用数学知识解释这一现象的原因,两点之间线段最短.故选:D.根据线段的性质,直线的性质,可得答案.此题主要考查了线段的性质,熟记性质并能灵活应用是解题关键.11.【答案】B;【解析】解:∠α=5.12°=5°+0.12×60′=5°+7′+0.2×60′′=5°7′12′′.故选:B.利用度分秒之间的换算关系进行计算即可求解.此题主要考查了度分秒的换算,关键是掌握1°=60′,1′=60′′.12.【答案】C;【解析】解:A、不能表示为∠O,故本选项错误;B、不能表示为∠O,故本选项错误;C、能用∠α,∠O,∠AOB三种方式表示,故本选项正确;D、不能表示为∠O,故本选项错误.故选:C.根据角的表示方法解答即可.此题主要考查了角的概念,主要考查了角的表示方法,同一个顶点处有不止一个角时,一定不能用一个大写字母表示角.13.【答案】D;【解析】解:∵OP是∠AOB的平分线,∴∠AOB=2∠AOP=2∠BOP,∠AOP=∠BOP=12∠AOB,∴选项A、B、C均正确,选项D错误.故选:D.根据角平分线的定义对各选项进行逐一分析即可.此题主要考查的是角平分线的定义.解答该题的关键是掌握角平分线的定义,即从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.14.【答案】D;【解析】解:∵OC是∠AOB的平分线,∴∠AOC=∠COB;∵OD是∠AOC的平分线,∴∠AOD=∠COD;∵∠COD=20°,∴∠AOC=40°,∴∠AOB=80°.故选D .两次利用角平分线的性质计算.本题是角的平分线与对顶角的性质的考查,角平分线的性质是将两个角分成相等的两个角.15.【答案】D;【解析】解:由方向角的定义以及平面内位置的确定方法可知,小岛A 在灯塔O 的北偏东60°且距灯塔2km 处,故选:D.根据平面内,位置的表示方法以及方向角的定义可得答案.此题主要考查方向角,理解方向角的定义以及平面内位置的确定方法是解决问题的关键.16.【答案】C;【解析】解:由图可知,A 相邻的字母有D 、E 、B 、F ,所以A 对面的字母是C.故答案为:C.观察三个正方体,与A 相邻的字母有D 、E 、B 、F ,从而确定出A 对面的字母是C.此题主要考查了正方体相对两个面上的文字,仔细观察图形从相邻面考虑求解是解答该题的关键.17.【答案】32;【解析】解:∵AB =5,AC =2,∴BC =AB −AC =3,∵点D 是线段AC 的中点, ∴BD =12AC =32.故答案为:32. 先求出线段BC 的长,再由中点得出BD 的长.此题主要考查了两点间的距离,能计算出BC 的长是解答该题的关键.18.【答案】77.5;【解析】解:2时25分的时候,分针指向5,时针在2−3之间,周角为360°,平均分成12份,每格的度数为360°÷12=30°,时针1个小时走30°,每分钟走0.5°,25分钟走0.5°×25=12.5°,∴此时它的时针和分针所成的锐角为90°−12.5°=77.5°,故答案为:77.5.先计算出每个大格的度数是30°,再用90°减去时针走过的度数,即为时针和分针所成的锐角的度数.此题主要考查了钟面角,角度的计算,求出时针所走的度数是解答该题的关键.19.【答案】25;【解析】解:∵点O 在直线AE 上,∴∠AOE =180°.∵OC 平分∠AOE ,∴∠AOC=1∠AOE=90°.2∴∠AOB+∠BOC=90°.∵∠DOB是直角,∴∠DOB=∠BOC+∠COD=90°.∴∠AOB=∠1=25°.故答案为:25.∠AOE=90°.由∠DOB 由点O在直线AE上,得∠AOE=180°.由OC平分∠AOE,得∠AOC=12是直角,根据同角的余角相等得∠AOB=∠COD,从而解决此题.此题主要考查平角的定义、余角的性质以及角平分线的定义,熟练掌握平角的定义、余角的性质以及角平分线的定义是解决本题的关键.20.【答案】北偏东25°;【解析】解:∵小明A点沿北偏东70°的方向走到B,∴∠BAD=70°,∵B点沿北偏西20°的方向走到C,∴∠EBC=20°,又∵∠BAF=90°−∠DAB=90°−70°=20°,∴∠1=90°−20°=70°,∴∠ABC=180°−∠1−∠CBE=180°−70°−20°=90°.∴ΔABC是等腰直角三角形,∵AB=500m,BC=500m,∴∠CAB=45°,∴∠DAC=∠DAB−∠CAB=70°−45°=25°,∴小明在营地A的北偏东25°方向.故答案为:北偏东25°.先根据∠DAB=70°,∠CBE=20°判断出ΔABC的形状,求出∠DAC的度数即可.此题主要考查的是方向角的概念,解答此类题需要从运动的角度,再结合三角函数的知识求解.21.【答案】解:(1)根据“相间、Z端是对面”可知,“A”与“F”相对,“B”与“D”相对,“C”与“E“相对,所以面A在长方体的底部,那么F个面会在它的上面;(2)若面F在前面,左面是面B,则“A”在后面,“D”在右面,此时“C”在上面,“E”在下面,或“E”在上面,“C”在下面,答:如果面F在前面,从左面看是面B,那么“C”面或“E”面会在上面;(3)从右面看是面C,面E在左面,则“B”面或“D”面在上面.;【解析】根据长方体表面展开图的特征进行判断即可.此题主要考查长方体的展开与折叠,掌握长方体表面展开图的特征是解决问题的关键.22.【答案】解:因为AB=14,AP=8,所以BP=AB-AP=6.因为P是OB的中点,所以OP=BP=6,所以AO=AP-OP=8-6=2.;【解析】由线段的和差可求解BP的长,结合中点的定义可求OP的长,进而可求解.此题主要考查两点间的距离,求解OP的长是解答该题的关键.23.【答案】解:∵AC=12,CB=23AC,∴CB=AC+CB=20,∵D,E分别为AC,AB的中点,∴AD=12AC=6,AE=12AB=10,∴DE=AE-AD=10-6=4.;【解析】根据题意AC=12,CB=23AC,可得CB=AC+CB,由已知条件D,E分别为AC,AB的中点,AD=12AC,AE=12AB,即DE=AE−AD,代入计算即可得出答案.此题主要考查了两点间的距离,熟练应用两点间的距离计算方法进行求解是解决本题的关键.24.【答案】解:∵∠AOB=28°,∠AOC为直角,∴∠BOC=∠AOC-∠AOB=90°-28°=62°,∵OC是∠BOD的平分线,∴∠BOD=2∠BOC=124°.;【解析】首先由∠AOB=28°,∠AOC为直角,即可推出∠BOC=62°,然后根据角平分线的性质即可推出∠BOD=2∠BOC=124°.这道题主要考查角平分线的性质,角的计算,直角的定义,关键在于推出∠BOC的度数.25.【答案】解:设∠AOE=x,则∠BOC=4x.∵∠EOC=90°,∠EOC+∠AOE+∠BOC=180°,∴90°+x+4x=180°,∴x=18°.∴∠BOC=4x=72°.又∵∠AOD=90°,∴∠COD=180°-∠AOD-∠BOC=180°-90°-72°=18°.;【解析】根据补角的定义以及角的和差关系解决此题.此题主要考查补角的定义以及角的和差关系,熟练掌握补角的定义以及角的和差关系是解决本题额关键.。

人教版七年级上学期数学《几何图形初步》单元综合检测题(含答案)

人教版七年级上学期数学《几何图形初步》单元综合检测题(含答案)
6.下列说法中正确的有()
A.连接两点的线段叫做两点间的距离
B.过一点有且只有一条直线与已知直线垂直
C.对顶角相等
D.线段A B的延长线与射线B A是同一条射线
7.如图,A B是一条直线,OC是∠AOD的平分线,OE在∠BOD内,∠DOE= ∠BOD,∠COE=72°,则∠EOB=()
A36°B. 72°
[答案]C
[解析]
[分析]
分别利用直线的性质以及射线的定义和垂线定义分析得出即可.
[详解]A.连接两点的线段的长度叫做两点间的距离,错误;
B.在同一平面内,过一点有且只有一条直线与已知直线垂直,错误;
C.对顶角相等,正确;
D.线段A B的延长线与射线B A不是同一条射线,错误.
故选C.
[点睛]本题考查了直线的性质以及射线的定义和垂线的性质,正确把握相关定义和性质是解题的关键.
二.填空题
11.青青同学把一张长方形纸折了两次,如图,使点A,B都落在DG上,折痕分别是DE,DF,则∠EDF的度数为_____.
[答案]90°
[解析]
[分析]
结合轴对称的特点以及图形的特点进行解题.
[详解]∵长方形的纸片折叠了两次,使A、B两点都落DG上,折痕分别是DE、DF,∴∠GDF=∠B DF,∠GDE=∠A DE,∴∠GDF+∠GDE= (∠GD B+∠GD A)= ×180°=90°,即∠EDF=90°.故答案为90°.
20.如图,直线A B、C D相交于O,∠BOC=70°,OE是∠BOC的角平分线,OF是OE的反向延长线.
(1)求∠1,∠2,∠3的度数;
(2)判断OF是否平分∠AOD,并说明理由.
21.如图,已知OD平分∠AOB,射线OC在∠AOD内,∠BOC=2∠AOC,∠AOB=114°.求∠COD的度数.

七年级上册数学单元测试卷-第二章 几何图形的初步认识-冀教版(含答案)

七年级上册数学单元测试卷-第二章 几何图形的初步认识-冀教版(含答案)

七年级上册数学单元测试卷-第二章几何图形的初步认识-冀教版(含答案)一、单选题(共15题,共计45分)1、如图,将矩形ABCD绕着点A逆时针旋转得到矩形AEFG,点B的对应点E落在边CD上,且DE=EF,若AD= ,则弧CF的长为( )A. B. C. D.π2、一个角的度数比它的余角的度数大20°,则这个角的度数是()A.20°B.35°C.45°D.55°3、△ABC在如图所示的平面直角坐标系中,将△ABC向右平移3个单位长度后得△A1B1C1,再将△A1B1C1绕点O旋转180°后得到△A2B2C2.则下列说法正确的是()A.A1的坐标为(3,1) B. =3 C.B2C=2 D.∠AC2O=45°4、若∠1=20°18′,∠2=20°15′30′′,∠3=20.25°,则()A.∠1>∠2>∠3B.∠2>∠1>∠3C.∠1>∠3>∠2D.∠3>∠1>∠25、下列说法:其中正确的是()①若∠A+∠B=180°,则∠A,∠B互补;②若∠A+∠B=180°,则∠A,∠B是同旁内角;③若∠A,∠B互补,则∠A+∠B=180°;④若∠A,∠B是同旁内角,则∠A+∠B=180°.A.①②③④B.①③C.①③④D.①②③6、如图,在Rt△ACB中,∠ACB=90°,∠A=35°,将△ABC绕点C逆时针旋转α角到△A1B1C的位置,A1B1恰好经过点B,则旋转角α的度数等()A.35°B.55°C.65°D.70°7、若一个角的补角等于它的余角的3倍,则这个角为()A.75°B.60°C.45°D.30°8、将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是()A.96B.69C.66D.999、将一块木板钉在墙上,我们至少需要2个钉子将它固定,这是因为()A.两点确定一条直线B.两点确定一条线段C.两点之间,直线最短D.两点之间,线段最短10、如图,AB//CD,点E在CA的延长线上若∠BAE =50°,则∠ACD的大小为()A.120B.130C.140D.15011、已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β﹣∠γ的值等于()A.45°B.60°C.90°D.180°12、下列几何体中,可以组成如图所示的陀螺的是()A.长方体和圆锥B.长方形和三角形C.圆和三角形D.圆柱和圆锥13、如图,E,F分别是正方形ABCD的边AB,BC上的点,BE=CF,连接CE,DF.△CDF可以看作是将△BCE绕正方形ABCD的中心O按逆时针方向旋转得到.则旋转角度为()A.45°B.60°C.90°D.120°14、如图,△OCD是由△OAB绕点O顺时针旋转40°后得到的图形,若∠AOD=90°,则∠BOC的度数是()A.5°B.10°C.15°D.20°15、如果和互补,且,则下列表示的余角的式子中正确的有()①②③④A.①②③B.①②④C.①③④D.②③④二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,1),B(0,﹣2),C (1,0),点P(0,2)绕点A旋转180°得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,点P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2018的坐标为________.17、“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任何一个角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D,E可在槽中滑动,若∠BDE=78°,则∠AOB等于________度.18、如图,在中,,,,将绕点逆时针旋转得到,连接,则的长为________.19、如图,在△ABC中,∠C=90°,AC=2cm,AB=3cm,将△ABC绕点B顺时针旋转60°得到△FBE,则点E与点C之间的距离是________cm.20、如图,在△ABC中,AB=AC=4,BC=6,把△ABC绕着点B顺时针旋转,当点A与边BC上的点A′重合时,那么∠AA′B的余弦值等于________.21、在Rt△ABC中,∠C=90°,AC=1,BC= ,点O为Rt△ABC内一点,连接A0、BO、CO,且∠AOC=∠COB=BOA=120°,按下列要求画图(保留画图痕迹):以点B为旋转中心,将△AOB绕点B顺时针方向旋转60°,得到△A′O′B(得到A、O的对应点分别为点A′、O′),并回答下列问题:∠ABC=________,∠A′BC=________,OA+OB+OC=________.22、已知数轴上有A,B两点,且这两点之间的距离为,若点A表示的数为,则点B表示的数为________.23、在如图所示的网格中,每个小正方形的长度为1,点A的坐标为(﹣3,5),点B的坐标为(﹣1,1),点C的坐标为(﹣1,﹣3),点D的坐标为(3,﹣1),小强发现线段CD可以由线段AB绕着某点旋转一个角度得到,其中点A与点C对应,点B与点D对应,则这个旋转中心的坐标为________.24、把△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得到△AB′C′,即如图,∠BAB′=θ,= = =n,我们将这种变换记为[θ,n].△ABC 中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,那么θ=________,n=________.25、如图,将绕着点按顺时针方向旋转得到.若,则________ .三、解答题(共5题,共计25分)26、如图,在. 是的平分线,是边上的高,,,求的度数.27、如图,已知∠AOB=70°,∠BOC=40°,OM是∠AOC的平分线,ON是∠BOC的平分线,求∠MON的度数.28、上午9点半时,时针与分针的夹角是多少度?29、如图,已知:,OC平分,,试求的度数.30、如图,试说明△A′B′C′是由△ABC通过怎样的图形变换或变换组合(平移、旋转、轴对称)得到的?参考答案一、单选题(共15题,共计45分)1、B2、D3、D4、A5、B6、D7、C8、B9、A10、B11、C12、D13、C14、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。

第3章 图形的初步认识 单元测试(含解析)数学华师大版(2024)七年级上册

第3章 图形的初步认识  单元测试(含解析)数学华师大版(2024)七年级上册

数学华师大版(2024)七年级上册第3章图形的初步认识单元测试一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.下列现象中,属于中心投影的是()A.白天旗杆的影子B.阳光下广告牌的影子C.灯光下演员的影子D.中午小明跑步的影子2.对于如图所示的几何体,说法正确的是()A.几何体是三棱锥B.几何体有6条侧棱C.几何体的侧面是三角形D.几何体的底面是三角形3.如图是某几何体的三视图,则该几何体是()A. B. C. D.4.下列几何体中,从左面看到的图形是三角形的几何体共有()A.1B.2C.3D.45.如图,学校C 在蕾蕾家B 南偏东55︒的方向上,点A 表示超市所在的位置,90ABC ∠=︒,则超市A 在蕾蕾家B 的()A.北偏西25︒的方向上B.南偏西25︒的方向上C.北偏西35︒的方向上D.南偏西35︒的方向上6.如图,16cm AB =,10cm AD BC ==,则CD 等于()A.4cmB.6cmC.8cmD.10cm 7.下列平面图形中,经过折叠不能围成正方体的是()A. B. C. D.8.如图,点O 在直线AB 上,90COB EOD ∠=∠=°,那么下列说法错误的是()A.1∠与2∠相等B.AOE ∠与2∠互余C.AOD ∠与1∠互补D.AOE ∠与COD ∠互余9.已知线段12cm AB =,点C 是直线AB 上一点,4cm BC =,点M 是线段AB 的中点,点N 是线段BC 的中点,则线段MN 的长度是()A.4cmB.6cmC.4cm 或8cmD.6cm 或8cm10.如图,射线OC 平分AOB ∠,射线OD 平分BOC ∠,则下列等式中成立的有()①COD AOD BOC ∠=∠-∠;②COD AOD BOD ∠=∠-∠;③22COD AOD AOB ∠=∠-∠;④13COD AOB ∠=∠.A.①②B.①③C.②③D.②④二、填空题(每小题4分,共20分)11.在下列生活、生产现象中:可以用基本事实“两点确定一条直线”来解释的是________(填序号).①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.12.如图,已知点O 在直线AB 上,16515∠=︒',27830∠=︒',则12∠+∠=_________,3∠=_________.13.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是______.14.如图,已知线段16cm AB =,点M 在AB 上:1:3AM BM =,P ,Q 分别为AM 、AB 的中点,则PQ 的长为____________.15.如图,126AOB ∠=︒,射线OC 在AOB ∠外,且2BOC AOC ∠=∠,若OM 平分BOC ∠,ON 平分AOC ∠,则MON ∠=_________.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)某几何体的三视图如图所示.(1)该几何体的名称是_______;(2)根据图中的数据,求该几何体的侧面积.(结果保留π)17.(8分)如图,是一个长方体纸盒的平面展开图,已知纸盒中相对的两个面上的数互为相反数.(1)分别写出a 、b 的值;(2)先化简,再求值:()22242325a b a b ab a b ab ⎡⎤---+⎣⎦18.(10分)如图,是由一些棱长都为1的小正方体组合成的简单几何体.(1)该几何体的表面积(含下底面)为______;(2)请画出这个几何体的三视图并用阴影表示出来;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加______个小正方体.19.(10分)如图,点A ,O ,B 在同一条直线上,射线OD 和射线OE 分别平分AOC ∠和BOC ∠.(1)求DOE ∠的度数;(2)①图中BOE ∠的补角是______;②直接写出图中与COE ∠互余的角______.20.(12分)如图,点C 在线段AB 上,点M ,N 分别是AC ,BC 的中点.(1)若9cm AC =,6cm CB =,求线段MN 的长.(2)若C 为线段AB 上任一点,满足cm AC CB a +=,其他条件不变,你能猜想出MN 的长度吗?请说明理由.(3)若C 在线段AB 的延长线上,且满足cm AC BC b -=,点M ,N 分别为AC ,BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由.21.(12分)已知:AOB ∠,过点O 引两条射线OC ,OM ,且OM 平分AOC ∠.(1)如图,若120AOB ∠=︒,30BOC ∠=︒,且点C 在AOB ∠的内部.①请补全图形;②求出MOB ∠的度数;以下是求MOB ∠的度数的解题过程,请你补充完整.AOC AOB BOC ∠=∠-∠ ,120AOB ∠=︒,30BOC ∠=︒,答案以及解析1.答案:C解析:A.白天旗杆的影子为平行投影,所以A选项不合题意;B.阳光下广告牌的影子为平行投影,所以B选项不合题意;C.灯光下演员的影子为中心投影,所以C选项符合题意;D.中午小明跑步的影子为平行投影,所以D选项不合题意.故选:C.2.答案:D解析: 该几何体是三棱柱,∴底面是三角形,侧面是四边形,有3条侧棱,∴D说法正确,A、B、C说法错误,故选:D.3.答案:A解析: 该几何体的主视图与左视图都是矩形,俯视图是一个圆,∴该几何体是圆柱,故选:A.4.答案:B解析:第一个几何体从左面看到的图形是圆形;第二个几何体从左面看到的图形是三角形;第三个几何体从左面看到的图形是长方形;第四个几何体从左面看到的图形是正方形;第五个几何体从左面看到的图形是三角形;∴从左面看到的图形是三角形的几何体共有2个,故选:B.5.答案:D解析:如图所示:由题意可得:255∠=︒,90ABC ∠=︒,∴1905535∠=︒-︒=︒,∴超市A 在蕾蕾家B 的的南偏西35︒的方向上.故选:D.6.答案:A解析:因为16cm AB =,10cm AD BC ==,所以1010164(cm)CD AD BC AB =+-=+-=.7.答案:C解析:由展开图可知:A 、B 、D 能围成正方体,故不符合题意;C 、围成几何体时,有两个面重合,不能围成正方体,故符合题意:故选:C.8.答案:D解析:∵90COB EOD ∠=∠=︒,∴1290COD COD ∠+∠=∠+∠=︒,∴12∠=∠,故A 选项正确;∵190AOE ∠+∠=︒,∴290AOE ∠+∠=︒,即AOE ∠与2∠互余,故B 选项正确;∵2180AOD ∠+∠=︒,12∠=∠,∴1180AOD ∠+∠=︒,即AOD ∠与1∠互补,故C 选项正确;无法判断AOE ∠与COD ∠是否互余,例如当1230∠=∠=︒时,60COD AOE ∠∠==︒,120AOE COD ∠+∠=︒,不互余,故D 选项错误;故选:D.9.答案:C解析:当点C 在线段AB 上时,点M 是线段AB 的中点,点N 是线段BC 的中点,16cm 2AM BM AB ∴===,12cm 2CN BN BC ===,624cm MN BM BN ∴=-=-=,当点C 在线段AB 的延长线上时,点M 是线段AB 的中点,点N 是线段BC 的中点,16cm 2AM BM AB ∴===,12cm 2CN BN BC ===,628cm MN BM BN ∴=+=+=,综上所述,线段MN 的长度是4cm 或8cm ,故选C.10.答案:B解析:OC 平分AOB ∠,OD 平分BOC ∠,AOC BOC ∴∠=∠,COD BOD∠=∠COD AOD AOC ∠=∠-∠ ,AOC BOC∠=∠COD AOD BOC∴∠=∠-∠故①正确;BOD BOC∠≠∠ COD AOD BOD∴∠≠∠-∠故②错误;AOD AOC COD∠=∠+∠ ()222AOD AOC COD AOB COD∴∠=∠+∠=∠+∠222AOD AOB AOB COD AOB COD∴∠-∠=∠+∠-∠=∠22COD AOD AOB∴∠=∠-∠故③正确;12COD BOC ∠=∠ ,12BOC AOB ∠=∠111224COD AOB AOB ∴∠=⨯∠=∠故④错误;故选:B.11.答案:①④/④①解析:①用两颗钉子就可以把木条固定在墙上,可以用基本事实“两点确定一条直线”来解释;②把笔尖看成一个点,当这个点运动时便得到一条线,可以用基本事实“无数个点组成线”来解释;③把弯曲的公路改直,就能缩短路程,可以用基本事实“两点之间线段最短”来解释;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上,可以用基本事实“两点确定一条直线”来解释;综上可得:①④可以用“两点确定一条直线”来解释,故答案为:①④.12.答案:14345︒';3615︒'解析:因为16515∠=︒',27830∠=︒',所以126515783014345'''∠+=+=︒∠︒︒,所以3180(12)180143453615︒''∠=︒-∠+∠=︒-=︒.13.答案:左视图解析:如图,该几何体正视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图.故答案为左视图14.答案:6cm解析:根据已知条件得到4cm AM =.12cm BM =,根据线段中点的定义得到2cm 12AP AM ==,8cm 12AQ AB ==,从而得到答案.解析:∵16cm AB =,:1:3AM BM =,∴4cm AM =.12cm BM =,∵P ,Q 分别为AM ,AB 的中点,∴2cm 12AP AM ==,8cm 12AQ AB ==,∴6cm PQ AQ AP =-=;故答案为:6cm .15.答案:117︒解析:因为360AOB BOC AOC ∠+∠+∠=︒,所以360BOC AOC AOB ∠+∠=︒-∠.因为OM 平分BOC ∠,ON 平分AOC ∠,所以12MOC BOC ∠=∠,12CON AOC ∠=∠,所以1122MON MOC CON BOC AOC ∠=∠+∠=∠+∠()111()360180222BOC AOC AOB AOB =∠+∠=︒-∠=︒-∠11801261172=︒-⨯︒=︒,故答案为117︒.16.答案:(1)圆锥(2)()2dm 解析:(1)由三视图可知,原几何体为圆锥.故答案为:圆锥.(2)根据图中数据知,圆锥的底面半径为4,高为6,∴=,∴圆锥的侧面积为()218πdm 2⨯⨯⨯=.17.答案:(1)3a =-,5b =(2)2a b ab -+,60-解析:(1)由长方体展开图的特点可知3a =-,()55b =--=;(2)()22242325a b a b ab a b ab ⎡⎤---+⎣⎦()22242635a b a b ab a b ab =--++()2245a b a b ab =--2245a b a b ab=-+2a b ab=-+当3a =-,5b =时,原式()()23535451560=--⨯+-⨯=--=-.18.答案:(1)28(2)见解析(3)2解析:(1)()()42624211⨯+⨯+⨯⨯⨯()81281=++⨯281=⨯28=所以该几何体的表面积(含下底面)为28,(2)如图所示:(3)由分析可知,最多可以再添加2个小正方体19.答案:(1)90DOE ∠=︒(2)COD ∠和AOD∠解析:(1) 点A ,O ,B 在同一条直线上,180AOC BOC ∴∠+∠=︒,射线OD 和射线OE 分别平分AOC ∠和BOC ∠,12COD AOC ∴∠=∠,12COE BOC ∠=∠,()11190222COD COE AOC BOC AOC BOC ∴∠+∠=∠+∠=∠+∠=︒,90DOE ∴∠=︒;(2)①图中BOE ∠的补角是AOE ∠;②直接写出图中与COE ∠互余的角COD ∠和AOD ∠,故答案为:COD ∠和AOD ∠.20.答案:(1)7.5cm(2)1cm 2a ,理由见解析(3)能,1cm 2MN b =,理由见解析解析:(1)因为9cm AC =,点M 是AC 的中点,所以1 4.5cm 2CM AC ==.因为6cm BC =,点N 是BC 的中点,所以13cm 2CN BC ==,所以7.5cm MN CM CN =+=,所以线段MN 的长度为7.5cm .(2)1cm 2MN a =.理由:因为C 为线段AB 上一点,且M ,N 分别是AC ,BC 的中点,所以11()cm 22MN MC CN AC BC a =+=+=.(3)能.当点C 在线段AB 的延长线上时,如图,1cm 2MN b =.理由:因为点M 是AC 的中点,所以12CM AC =.因为点N 是BC 的中点,所以12CN BC =,所以11()cm 22MN CM CN AC BC b =-=-=.②AOC AOB BOC ∠=∠-∠ ,90AOC ∴∠=︒.AOC BOC AOB ∴∠=∠+∠12AOM AOC ∴∠=∠=AOC BOC AOB ∴∠=∠-∠1β。

人教版七年级上册数学《几何图形初步》单元综合测试卷(带答案)

人教版七年级上册数学《几何图形初步》单元综合测试卷(带答案)
【答案】A
【解析】
【分析】
根据圆柱的特点:圆柱由一个曲面,两个平面(底面)围成的;圆柱两个面之间距离叫做高,圆柱的侧面打开,得到一个长方形,这个长方形的长就是圆柱的底周长观察所给图形,观察图形用排除法可做出判断.
【详解】A选项:有一个曲面,两个平面围成的,最接近圆柱,故本选项正确;
B选项:有两个平面,但圆柱的母线没有垂直于底面,故本选项错误;
A. S3<S1<S2B. S1<S2<S3C. S2<S1<S3D. S1=S2=S3
9.下列七个图形中是正方体的平面展开图的有( )
A.1个B.2个C.3个D.4个
10.如图是一个棱长为1 正方体的展开图,点A,B,C是展开后小正方形的顶点,连接AB,BC,则∠ABC的大小是( )
A.60°B.50°C.45°D.30°
【答案】2或8
【解析】
【分析】
由于线段BC与线段AB的位置关系不能确定,故应分C在线段AB内和AB外两种情况进行解答.
【详解】解:①如图1所示,
∵AB=10,BC=6,
∴AC=AB-BC=10-6=4,
∵D是线段AC的中点,
∴AD= AC= ×4=2;
②如图2所示,
∵AB=10,BC=6,
4.如图,图中共有线段( )
A. 7条B. 8条C. 9条D. 10条
【答案】B
【解析】
【分析】
根据线段的定义找出所有的线段即可解答.
【详解】由图可知,线段有AD,DB,BC,CE,EA,DE,AB,AC,一共八条,所以答案选择B.
【点睛】明白线段 定义是解题的关键.
5.如图,C为线段AB上一点,D为线段BC的中点,AB=20,AD=14,则AC的长为( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《几何图形的初步认识》单元测试
一、选择题
1.下列说法正确的是( )。

①教科书是长方形②教科书是长方体,也是棱柱③教科书的表面是长方形
A .①②
B .①③
C .②③
D .①②③
2.将一个直角三角形绕它的最长边(斜边)旋转一周,得到的几何体是( )
A .
B .
C .
D .
3.左边的图形绕着虚线旋转一周形成的几何体是由右边的( )。

A .
B .
C .
D .
4.下列图形经过折叠不能围成三棱柱的是( )。

5.下列平面图形不能够围成正方体的是( )。

6.右面的立体图形从上面看到的图形是( )。

7.用平面去截下列几何体,不能截出三角形的是( )。

A .长方体
B .三棱锥
C . 圆柱
D .圆锥
8.分别从正面、左面、上面看下列立体图形,得到的平面图形都一样的是(
)。

A .
B . D .
图3.1-
34
A
B C
D
A B C D
二、填空题
9.观察图中的立体图形,分别写出它们的名称。

10.图中的几何体由 个面围成,面和面相交形 成 条线,线与线相交形成 个点。

11.如图,六个大小一样的小正方形的标号分别是
A ,
B , …,F ,它们拼成如图的形状,则三对对面的标号分别
是 、 、 。

12.笔尖在纸上快速滑动写出了一个又一个的英文字母,这说明了 ;车轮旋转时,看起来像一个整体的圆面,这说明了 ;直角三角形绕它的直角边旋转一周,开成一个圆锥体,这说明了 。

13.观察图中的几何体,指出右面的三幅,分别是从哪个方向看得到。

(1)是 ,
(2)是 ,(3)是 。

14. 课桌上按照右图的位置放着一个暖水瓶、一只水杯和一个乒乓球.小明从课桌前走过(图中虚线箭头的方向),图3.1.-13描绘的是他在不同时刻看到的情况,请对这些图片按照看到的先后顺序进行排序:正确的顺序是: 、 、 、 .
15.在桌面上摆有一些大小一样的正方木块,从正南方向看如图①,从正东方向看如图②,要摆出这样的图形至多能用______正方体木块,至小需要_______块正方体木块。

甲 丙 丁 乙 水杯 乒乓球
暖水瓶
10题 F A B C D E 11题
正面
上面
(1) (2) (3)
16.下面三个图形中,图形 可以用平面截长方体得到,图形 可以用平面截圆锥得到,图形 可以用平面截圆柱得到。

17.一个物体的外形是长方体,其内部构造不详。

用一组水平的平面截这个物体时,得到了一组(自下而上)截面,截面形状如图所示,这个长方体的内部构造可能是 。

三、画图解答题
18.如图六个平面图形中,有圆柱、圆锥、三棱柱(它的底面是三边相等的三角形)的表面展开图,请你把立体图形与它的表面展开图用线连起来。

19.如图所示由四个小立方体构成的立体图形请你分别画出从它的正面、
左面、上面三个方向看所得到的平面图形。

20.图中的立体图形是由哪个平面图形旋转后得到?请用线连起来。

(1)
(2) (
3)
左面正面上面
21.如图,左面的几何体叫三棱柱,它有五个面,9条棱,6个顶点,中间和右边的几何体分别是四棱柱和五棱柱。

(1)四棱柱有 个顶点, 条棱, 个面;
(2)五棱柱有 个顶点, 条棱, 个面;
(3)你能由此猜出,六棱柱、七棱柱各有几个顶点,几条棱,几个面吗?
(4)n 棱柱有几个顶点,几条棱,几个面吗?。

相关文档
最新文档