数字信号处理实验1认识实验

合集下载

数字信号处理实验报告

数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。

2、熟悉离散信号和系统的时域特性。

3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。

4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。

二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。

2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。

信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。

根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。

三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。

(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。

数字信号处理实验一实验报告

数字信号处理实验一实验报告

实验一离散时间信号与系统时域分析一、实验目的1、学习MATLAB语言编程和调试技巧。

2、学会简单的矩阵输入和图形表示法3、掌握简单的绘图命令。

二、实验原理本实验主要为了熟悉MATLAB环境,重点掌握简单的矩阵(信号)输入和绘图命令,特别是绘图命令stem()和plot()。

实验内容中涉及到信号的无失真采样、离散卷积运算和差分方程求解这三个主要的问题。

其基本原理分别如下:对一个模拟信号x(t)进行采样离散化x(n),为了不失真地从采样信号x(n)中恢复原始信号x(t),采样时必须满足采样定理,即采样频率必须大于等于模拟信号中最高频率分量的2备。

一个离散时间系统,输入信号为x(n),输出信号为y(n),运算关系用T【.】表示,则输入与输出的关系可表示为y(n)=T[x(n)]。

三、实验结果实验一x=[3 1 2 0 -4 2 -3];n=-3:1:3;stem(n,x);xlabel('n');ylabel('x(n)');axis([-4 4 -5 5]);grid;n x (n )实验二n=0:9;x=0.5.^n;stem(n,x);xlabel('n');ylabel('x(n)');grid;n x (n )实验三x=[-2 0 1 -1 3];h=[1 2 0 -1];c=conv(x,h);M=length(c)-1;n=0:1:M;stem(n,c);xlabel('n');ylabel('幅度’);n 幅度实验四t=0:1/256:2;x=3*cos(2*pi*t)-2*cos(6*pi*t)+cos(10*pi*t); plot(t,x);grid;实验五T=0.2;t=0:T:2;x=3*cos(2*pi*t)-2*cos(6*pi*t)+cos(10*pi*t); stem(t,x);grid;实验六N=41;a=[0.8 -0.44 0.36 0.22];b=[1 0.7 -0.45 -0.6];x=[1 zeros(1,N-1)];n=0:1:N-1;y=filter(a,b,x);stem(n,y);xlabel('n');ylabel('幅度');n 幅度实验七n=0:1:40;x=[5+3*cos(0.2*pi*n)+4*sin(0.6*pi*n)]; plot(n,x);N=41;a=[0.8 -0.44 0.36 0.22];b=[1 0.7 -0.45 -0.6];x=[5+3*cos(0.2*pi*n)+4*sin(0.6*pi*n)]; n=0:1:40;y=filter(a,b,x);stem(n,y);xlabel('n');ylabel('幅度 ');n 幅度。

数字信号处理实验报告_五个实验

数字信号处理实验报告_五个实验

实验一 信号、系统及系统响应一、 实验目的1、熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解;2、熟悉时域离散系统的时域特性;3、利用卷积方法观察分析系统的时域特性;4、掌握序列傅立叶变换的计算机实现方法,利用序列的傅立叶变换对连续信号、离散信号及系统响应进行频域分析。

二、 实验原理及方法采样是连续信号数字处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生变化以及信号信息不丢失的条件,而且可以加深对傅立叶变换、Z 变换和序列傅立叶变换之间关系式的理解。

对一个连续信号)(t x a 进行理想采样的过程可用下式表示:)()()(^t p t t xx aa=其中)(^t x a 为)(t x a 的理想采样,p(t)为周期脉冲,即∑∞-∞=-=m nT t t p )()(δ)(^t x a的傅立叶变换为)]([1)(^s m a m j X T j a XΩ-Ω=Ω∑∞-∞=上式表明^)(Ωj Xa为)(Ωj Xa的周期延拓。

其延拓周期为采样角频率(T /2π=Ω)。

只有满足采样定理时,才不会发生频率混叠失真。

在实验时可以用序列的傅立叶变换来计算^)(Ωj X a 。

公式如下:Tw jw ae X j X Ω==Ω|)()(^离散信号和系统在时域均可用序列来表示。

为了在实验中观察分析各种序列的频域特性,通常对)(jw e X 在[0,2π]上进行M 点采样来观察分析。

对长度为N 的有限长序列x(n),有:n jw N n jw k ke m x eX--=∑=)()(1其中,k Mk πω2=,k=0,1,……M-1 时域离散线性非移变系统的输入/输出关系为 ∑∞-∞=-==m m n h m x n h n x n y )()()(*)()(上述卷积运算也可在频域实现)()()(ωωωj j j e H e X eY =三、 实验程序s=yesinput(Please Select The Step Of Experiment:\n 一.(1时域采样序列分析 s=str2num(s); close all;Xb=impseq(0,0,1); Ha=stepseq(1,1,10);Hb=impseq(0,0,3)+2.5*impseq(1,0,3)+2.2*impseq(2,0,3)+impseq(3,0,3); i=0;while(s);%时域采样序列分析 if(s==1) l=1; k=0;while(1)if(k==0)A=yesinput('please input the Amplitude:\n',...444.128,[100,1000]); a=yesinput('please input the Attenuation Coefficient:\n',...222.144,[100,600]); w=yesinput('please input the Angle Frequence(rad/s):\n',...222.144,[100,600]); end k=k+1;fs=yesinput('please input the sample frequence:\n',...1000,[100,1200]); Xa=FF(A,a,w,fs); i=i+1;string+['fs=',num2str(fs)]; figure(i)DFT(Xa,50,string); 1=yesinput 1=str2num(1); end%系统和响应分析else if(s==2)kk=str2num(kk);while(kk)if(kk==1)m=conv(Xb,Hb);N=5;i=i+1;figure(i)string=('hb(n)');Hs=DFT(Hb,4,string);i=i+1;figure(i)string('xb(n)');DFT(Xb,2,string);string=('y(n)=xb(n)*hb(n)');else if (kk==2)m=conv(Ha,Ha);N=19;string=('y(n)=ha(n)*(ha(n)');else if (kk==3)Xc=stepseq(1,1,5);m=conv(Xc,Ha);N=14;string=('y(n)=xc(n)*ha(n)');endendendi=i+1;figure(i)DFT(m,N,string);kk=yesinputkk=str2num(kk);end卷积定理的验证else if(s==3)A=1;a=0.5;w=2,0734;fs=1;Xal=FF(A,a,w,fs);i=i+1;figure(i)string=('The xal(n)(A=1,a=0.4,T=1)'); [Xa,w]DFT(Xal,50,string);i=i+1;figure(i)string =('hb(n)');Hs=DFT(Hb,4,string);Ys=Xs.*Hs;y=conv(Xal,Hb);N=53;i=i+1;figure(i)string=('y(n)=xa(n)*hb(n)');[yy,w]=DFT(y,N,string);i=i+1;figure(i)subplot(2,2,1)plot(w/pi,abs(yy));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title(FT[x(n)*h(n)]');subplot(2,2,3)plot(w/pi,abs(Ys));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title('FT[xs(n)].FT[h(n)]');endendend子函数:离散傅立叶变换及X(n),FT[x(n)]的绘图函数function[c,l]=DFT(x,N,str)n=0:N-1;k=-200:200;w=(pi/100)*k;l=w;c=x*Xc=stepseq(1,1,5);子函数:产生信号function c=FF(A,a,w,fs)n=o:50-1;c=A*exp((-a)*n/fs).*sin(w*n/fs).*stepseq(0,0,49); 子函数:产生脉冲信号function [x,n]=impseq(n0,n1,n2)n=[n1:n2];x=[(n-n0)==0];子函数:产生矩形框信号function [x,n]=stepseq(n0,n1,n2) n=[n1:n2];x=[(n-n0>=0)];四、 实验内容及步骤1、认真复习采样理论,离散信号与系统,线性卷积,序列的傅立叶变换及性质等有关内容,阅读本实验原理与方法。

数字信号处理实验实验一

数字信号处理实验实验一

数字信号处理实验报告实验名称:离散时间系统的时域特性分析学生姓名:z学生学号:学生班级:上课时间:周二上午指导老师:一、实验目的线性时不变离散时间系统在时域中可以通过常系数线性差分方程来描述,冲激响应序列可以刻画其时域特性。

本实验通过使用MATLAB函数研究离散时间系统的时域特性,以加深对离散时间系统的差分方程、冲激响应和系统的线性和时不变特性的理解。

二、实验原理1.线性系统满足叠加原理的系统称为线性系统,即若某一输入是由N个信号的加权和组成的,则输出就是系统对这几个信号中每一个输入的响应的加权和。

即:如果系统在x1(n)和x2(n)输入时对应的输出分别为y1(n)和y2(n),当对任意常数a1和a2,式T[a1x1(n)+a2x2(n)]=a1T[x1(n)]+a2[x2(n)]=a1y1(n)+a2y2(n)成立,则该系统是线性系统。

2.时不变系统若输入x(n)的输出为y(n),则将输入序列移动任意位后,其输出序列除了跟着位移外,数值应保持不变。

即:当T[x(n)]=y(n),满足T[x(n-m)]=y(n-m) (m为任意整数)时,则该系统就称为时不变系统。

3.常系数线性差分方程线性时不变离散系统的输入、输出关系可以用以下常系数线性差分描述: y(n)=- ∑aky(n-k)+ ∑brx(n-r)当输入x(n)为单位冲激序列时,输出y(n)即为系统的单位冲击响应h(n)。

三、实验内容考虑如下差分方程描述的两个离散时间系统:系统1:y(n)=0.5x(n)+0.27x(n-1)+0.77x(n-2)系统2:y(n)=0.45x(n)+0.5x(n-1)+0.45x(n-2)+0.53y(n-1)-0.46y(n-2)输入想x(n)=cos(20n/256)+cos(200n/256)(1)编程求上述两个系统的输出,并分别画出系统的输入与输出波形。

(2)编程求上述两个系统的冲激响应序列,并画出其波形。

数字信号处理实验报告_完整版

数字信号处理实验报告_完整版

实验1 利用DFT 分析信号频谱一、实验目的1.加深对DFT 原理的理解。

2.应用DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境 计算机、MATLAB 软件环境 三、实验基础理论1.DFT 与DTFT 的关系有限长序列 的离散时间傅里叶变换 在频率区间 的N 个等间隔分布的点 上的N 个取样值可以由下式表示:212/0()|()()01N jkn j Nk N k X e x n eX k k N πωωπ--====≤≤-∑由上式可知,序列 的N 点DFT ,实际上就是 序列的DTFT 在N 个等间隔频率点 上样本 。

2.利用DFT 求DTFT方法1:由恢复出的方法如下:由图2.1所示流程可知:101()()()N j j nkn j nN n n k X e x n eX k W e N ωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑ 由上式可以得到:IDFTDTFT( )12()()()Nj k kX e X k Nωπφω==-∑ 其中为内插函数12sin(/2)()sin(/2)N j N x eN ωωφω--= 方法2:实际在MATLAB 计算中,上述插值运算不见得是最好的办法。

由于DFT 是DTFT 的取样值,其相邻两个频率样本点的间距为2π/N ,所以如果我们增加数据的长度N ,使得到的DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。

如果没有更多的数据,可以通过补零来增加数据长度。

3.利用DFT 分析连续信号的频谱采用计算机分析连续时间信号的频谱,第一步就是把连续信号离散化,这里需要进行两个操作:一是采样,二是截断。

对于连续时间非周期信号,按采样间隔T 进行采样,阶段长度M ,那么:1()()()M j tj nT a a a n X j x t edt T x nT e ∞--Ω-Ω=-∞Ω==∑⎰对进行N 点频域采样,得到2120()|()()M jkn Na a M kn NTX j T x nT eTX k ππ--Ω==Ω==∑因此,可以将利用DFT 分析连续非周期信号频谱的步骤归纳如下: (1)确定时域采样间隔T ,得到离散序列(2)确定截取长度M ,得到M 点离散序列,这里为窗函数。

数字信号处理实验实验说明(1)

数字信号处理实验实验说明(1)

数字信号处理实验实验说明(1)《数字信号处理实验》实验说明(1)实验名称:常用序列及序列运算的MATLAB 实现(1)实验目的:(1)通过本实验熟悉MATLAB 平台的基本操作。

(2)学会简单的M 文件程序设计。

(3)使用MATLAB 实现常用的离散序列并进行简单的序列运算。

实验要求:请按照本实验说明的实验内容部分的信息独立完成本实验,并提交实验报告,实验报告请参照实验报告模板的格式。

实验内容:(可参考教材2.9.1节的内容完成本实验)(1)单位抽样序列(建立并使用M 函数文件)单位抽样序列的定义为:≠==0n 00n 1)(n δ在MATLAB 中,函数zeros(1,N)可以产生一个包含N 个零的行向量,在给定的区间上,可以用这个函数来产生)(n δ。

在MATLAB 的命令行窗口输入:>>delta=[1,zeros(1,N)]%>>是提示符启动MATLAB,新建一个M 文件,并输入以下内容,则该MATLAB 函数可以实现序列?≠==?000n n 0 n n 1)(n n δ。

f unction [x,n]=impseq(n0,n1,n2) %Generates x(n)=delta(n-n0);n1<=n0,n0<=n2%-----------------------------------------------------------------%[x,n]=impseq(n0,n1,n2)n=[n1:n2];x=[(n-n0)==0];%x=[zeros(1,(n0-n1)),1,zeros(1,(n2-n0))];注意:该M 文件的文件名应和函数名impseq 一致,%开始的内容是注释。

在MATLAB 的命令窗口输入以下命令:>>n0=>>n0=00%设置n0的值,后面的n1和n2也是一样,可自行改变>>n1=-3>>n2=3%n1和n2其实决定了n 的取值范围>>[x,n]=impseq(n0,n1,n2)%调用函数并产生输入>>stem(n,x)%显示序列的图形【要求】改变上面的相关参数,显示出移位序列的图形。

数字信号处理实验报告1

数字信号处理实验报告1

《数字信号处理》实验报告实验一:数字低通、高通滤波器实验实验二:数字带通、带阻滤波器实验系别:信息科学与技术系专业班级:电子信息工程0902班学生姓名:王俊知(053)同组学生:成绩:指导教师:刘海龙(实验时间:20年月日——20年月日)华中科技大学武昌分校实验一数字低通、高通滤波器实验1、实验目的使学生了解和熟悉软件Matlab的使用,了解数字低通、高通滤波器零极点的作用及数字低通、高通滤波器的幅频特性和相频特性。

使学生熟悉整数型滤波器的设计。

2、实验内容与步骤1、在计算机上运行Matlab软件,根据滤波器的参数,用Matlab软件设计出数字低通、高通滤波器、画出数字低通、高通滤波器的幅频特性和相频特性的程序,或按照范例程序进行修改,运行程序,观察滤波器的零极点分布图、幅频特性和相频特性图。

2、改变滤波器的零极点分布,再运行程序,观察幅频特性和相频特性的不同,滤波器的通带有什么改变。

3、再次修改程序,输入数字信号,使其通过滤波器,并画出输入、输出滤波器的数字信号波形,运行程序。

观看输入、输出滤波器的数字信号波形,仔细观察其区别。

3、实验设备1、实验场所:信息科学与技术系实验室机房。

2、硬件设备:计算机若干(由学生人数定)。

3、实验软件:Matlab。

整系数低通滤波器程序如下:clear all;clc;close all;m=10;for i=1:m+1if i==1B(i)=1;elseif i==m+1B(i)=-1;else B(i)=0;endendendA=[1,-1];N=8192;[H,f]=freqz(B,A,N);plot(f*25/pi,abs(H));grid;figure,plot(f*25/pi,angle(H));grid;figure,zplane(B,A);k=0:N-1;f=2*k/N;load('C:\MATLAB7\work\RawData.mat');x=rawdata(1,1:N);w=filter(B,A,x);figure;plot(x);title('输入信号');figure;plot(w);title('输出信号');滤波器的幅频特性和相频特性曲线、零极点分布、输入、输出滤波器的数字信号波形图:整系数高通滤波器程序如下:clear all;clc;close all;m=10;for i=1:m+1if i==1B(i)=1;elseif i==m+1B(i)=-1;else B(i)=0;endendendA=[1,1];N=8192;[H,f]=freqz(B,A,N);plot(f*25/pi,abs(H));grid;figure,plot(f*25/pi,angle(H));grid;figure,zplane(B,A);k=0:N-1;f=2*k/N;load('C:\MATLAB7\work\RawData.mat');x=rawdata(1,1:N);w=filter(B,A,x);figure;plot(x);title('输入信号');figure;plot(w);title('输出信号');滤波器的幅频特性和相频特性曲线、零极点分布、输入、输出滤波器的数字信号波形图:改变参数clear all;clc;close all;m=11;for i=1:m+1if i==1B(i)=1;elseif i==m+1B(i)=1;else B(i)=0;endendendA=[1,1];N=8192;[H,f]=freqz(B,A,N);plot(f*25/pi,abs(H));grid;figure,plot(f*25/pi,angle(H));grid; figure,zplane(B,A);k=0:N-1;f=2*k/N;load('C:\MATLAB7\work\RawData.mat'); x=rawdata(1,1:N);w=filter(B,A,x);figure;plot(x);title('输入信号'); figure;plot(w);title('输出信号');正负120度零点抵消程序如下:clear all;clc;close all;m=24;for i=1:m+1if i==1B(i)=1;elseif i==m+1B(i)=-1;else B(i)=0;endendendA=[1,1,1];N=8192;[H,f]=freqz(B,A,N);plot(f*25/pi,abs(H));grid;figure,plot(f*25/pi,angle(H));grid;figure,zplane(B,A);k=0:N-1;f=2*k/N;load('C:\MATLAB7\work\RawData.mat');x=rawdata(1,1:N);w=filter(B,A,x);figure;plot(x);title('输入信号');figure;plot(w);title('输出信号');滤波器的幅频特性和相频特性曲线、零极点分布、输入、输出滤波器的数字信号波形图:正负60度零点抵消程序如下:clear all;clc;close all;m=24;for i=1:m+1if i==1B(i)=1;elseif i==m+1B(i)=-1;else B(i)=0;endendendA=[1,-1,1];N=8192;[H,f]=freqz(B,A,N);plot(f*25/pi,abs(H));grid;figure,plot(f*25/pi,angle(H));grid;figure,zplane(B,A);k=0:N-1;f=2*k/N;load('C:\MATLAB7\work\RawData.mat');x=rawdata(1,1:N);w=filter(B,A,x);figure;plot(x);title('输入信号');figure;plot(w);title('输出信号');滤波器的幅频特性和相频特性曲线、零极点分布、输入、输出滤波器的数字信号波形图:实验二数字带通、带阻滤波器实验1、实验目的使学生了解数字带通、带阻滤波器设计原理及数字带通、带阻滤波器的幅频特性和相频特性。

数字信号处理实验报告

数字信号处理实验报告

一、实验目的1. 理解数字信号处理的基本概念和原理。

2. 掌握离散时间信号的基本运算和变换方法。

3. 熟悉数字滤波器的设计和实现。

4. 培养实验操作能力和数据分析能力。

二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。

本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。

2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。

3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。

4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。

三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。

(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。

2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。

(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。

3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。

(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。

4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。

(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。

四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。

数字信号处理实验报告一二

数字信号处理实验报告一二

数字信号处理课程实验报告实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。

对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。

()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。

也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。

因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号ˆ()()()a a xt x t p t =1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()n P t t nT δ∞=-∞=-∑计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。

已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。

数字信号处理实验一

数字信号处理实验一

数字信号处理实验一实验目的:掌握利用Matlab产生各种离散时间信号,实现信号的相加、相乘及卷积运算实验函数:参考课本77-19页,注意式(2.11.1)的表达与各matlab子函数间的关系。

1、stem(x,y) % 绘制以x为横轴,y为纵轴的离散序列图形2、[h ,t] = impz(b, a) % 求解数字系统的冲激响应h,取样点数为缺省值[h, t] = impz(b, a, n) % 求解数字系统的冲激响应h,取样点数为nimpz(b, a) % 在当前窗口用stem(t, h)函数出图3、[h ,t] = dstep(b, a) % 求解数字系统的阶跃响应h,取样点数为缺省值[h, t] = dstep (b, a, n) % 求解数字系统的阶跃响应h,取样点数为ndstep (b, a) % 在当前窗口用stairs(t, h)函数出图4、y = filter(b,a,x) % 在已知系统差分方程或转移函数的情况下求系统输出实验原理:一、常用的时域离散信号及其程序1、产生单位抽样函数δ(n)n1 = -5;n2 = 5;n0 = 0;n = n1:n2;x = [n==n0]; % x在n=n0时为1,其余为0stem(n,x,'filled'); %filled:序列圆心处用实心圆表示axis([n1,n2,0,1.1*max(x)])title('单位抽样序列')xlabel('time(n)')ylabel('Amplitude:x(n)')2、产生单位阶跃序列u(n)n1 = -2;n2 = 8;n0 = 0;n = n1:n2;x = [n>=n0]; % x在n>=n0时为1,其余为0stem(n,x,'filled');axis([n1,n2,0,1.1*max(x)])title('单位阶跃序列')xlabel('time(n)')ylabel('Amplitude:x(n)')3、复指数序列复指数序列的表示式为()(),00,0j n e n x n n σω+⎧≥⎪=⎨<⎪⎩,当0ω=时,()x n 为实指数序列;当0σ=时,()x n 为虚指数序列,即()()cos sin j n e n j n ωωω=+,即其实部为余弦序列,虚部为正弦序列。

数字信号处理实验报告实验一

数字信号处理实验报告实验一

实验一:系统响应及系统稳定性1 实验目的(1)掌握求系统响应的方法。

(2)掌握时域离散系统的时域特性。

(3)分析、观察及检验系统的稳定性。

2 实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。

已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。

在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB语言的工具箱函数filter函数。

也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。

系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。

重点分析系统的稳定性,包括观察系统的暂态响应和稳态响应。

系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。

或者系统的单位脉冲响应满足绝对可和的条件。

系统的稳定性由差分方程的系数决定。

实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件,可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的,系统的稳态输出是指当n→∞时,系统的输出。

如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n的加大,幅度趋于稳定,达到稳态输出。

注意在以下实验中均假设系统的初始状态为零。

3 实验内容及步骤(1)编制程序,包括产生输入信号、单位脉冲响应序列的子程序,用filter函数或conv 函数求解系统输出响应的主程序。

程序中要有绘制信号波形的功能。

(2)给定一个低通滤波器的差分方程为y(n) = 0.05x(n) + 0.05x(n-1) + 0.9y(n-1)输入信号x1(n) = R8(n) , x8 = u(n)①分别求出x1 = R8(n) 和x8 = u(n) 的系统响应,并画出其波形。

数字信号处理实验一

数字信号处理实验一

实验一 离散时间信号分析一、实验目的1.熟悉MATLAB 应用环境,常用窗口的功能和使用方法。

2.掌握各种常用的序列,理解其数学表达式和波形表示。

3.掌握在计算机中生成及绘制数字信号波形的方法。

4.掌握序列的相加、相乘、移位、反褶、卷积等基本运算及计算机实现。

5.通过编程,上机调试程序,进一步增强使用计算机解决问题的能力。

二、实验原理1.序列的基本概念离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。

离散时间信号在数学上可用时间序列)}({n x 来表示,其中)(n x 代表序列的第n 个数字,n 代表时间的序列,n 的取值范围为∞<<∞-n 的整数,n 取其它值)(n x 没有意义。

离散时间信号可以是由模拟信号通过采样得到,例如对模拟信号)(t a x 进行等间隔采样,采样间隔为T ,得到一个有序的数字序列)}({nT x a 就是离散时间信号,简称序列。

2.常用序列常用序列有:单位脉冲序列(单位抽样))(n δ、单位阶跃序列)(n u 、矩形序列)(n R N 、实指数序列、复指数序列、正弦型序列等。

3.序列的基本运算序列的运算包括移位、反褶、和、积、点乘、累加、差分运算、卷积等。

4.序列的卷积运算)()()()()(n h n x m n h m x n y m *=-=∑∞-∞=上式的运算关系称为卷积运算,式中*代表两个序列卷积运算。

两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。

其计算的过程包括以下4个步骤(1)反褶:先将)(n x 和)(n h 的变量n 换成m ,变成)(m x 和)(m h ,再将)(m h 以纵轴为对称轴反褶成)(m h -。

(2)移位:将)(m h -移位n ,得)(m n h -。

当n 为正数时,右移n 位;当n 为负数时,左移n 位。

(3)相乘:将)(m n h -和)(m x 的对应点的值相乘。

数字信号处理实验一

数字信号处理实验一

实验一:熟悉MATLAB环境一、思考题:1、比较实验内容第2题中的第4和第5小题的结果,试说明对于周期性信号应当如何采样才能保证周期扩展后与原信号保持一致?答:对于周期性信号,在进行采样时,其采样周期必须满足采样定理,即采样频率应该大于信号最高频率的两倍,这样才能避免迭混,以便采样后仍能准确的恢复原信号。

2、对于有限长序列,如何用MATLAB计算其DTFT?答:用函数freqz可以计算序列在给定的离散频率点上的DTFT,该变换序列是以形如式的有理函数来描述的。

这个函数的表达形式有H=freqz(num,den,w)、[H,w]=freqz(num,den,k)。

函数freqz返回的频率响应值为向量H。

在H=freqz(num,den,w)中,0到&#960;之间指定的频率集由向量w给出。

freqz函数的自变量k就是频率点的总数。

3、对于由两个子系统级联或并联的系统,如何用MATLAB计算他们的幅频响应与相频响应?答:系统的级联或并联实现涉及到了因式分解。

在MATLAB中,我们可以用函数roots来实现多项式的因式分解。

例如,函数r=roots(h)会返回多项式向量h 的根向量。

向量h是以的升幂表示的多项式的系数。

通过计算所得的根向量,可以求出二次因式的系数。

更简单的方法是用从以给定的传输函数H(z)直接求出二阶因式的函数zp2sos。

函数sos=zp2sos(z,p,k)产生以零&#8212;极点形式确定的等效传输函数H(z)的每个二阶部分系数的矩阵sos。

二、实验内容:第一到四题源程序:第二题图:第五题:%函数命名:function [x1]=stepshift(n0,n1,n2) n=[n1:n2];x1=[(n-n0)>=0];%源程序:>> [x1]=stepshift(2,1,10);>> n=1:10;>> stem(n,x1);第六题:>> b=[1,sqrt(2),1];>> a=[1,-0.67,0.9];>> [h,w]=freqz(b,a);>> am=20*log10(abs(h)); %求幅频特性>> subplot(2,1,1);plot(w,am);>> xlabel('w');ylabel('am');>> ph=angle(h); %求相频特性>> subplot(2,1,2);plot(w,ph);>> xlabel('w');ylabel('ph');第七题:源程序:>> a=[8 -2 -1 2 3];>> b=[2 3 -1 -3];>> c=conv(a,b); %求a、b的线性卷积>> m=length(c)-1;>> n=0:1:m;>> stem(n,c);>> xlabel('n');ylabel('幅度');第八题:源程序:>> n=50;>> a=[1 -2];>> b=[1 0.1 -0.06];>> x=[1 zeros(1,n-1)];>> k=0:1:n-1;>> y=filter(a,b,x);>> stem(k,y);>> xlabel('n');ylabel('幅度');三、实验总结:通过本次实验,熟悉并掌握MATLAB的主要命令操作,比如序列的简单运算、矩阵的输入和计算等,能熟练编写绘图程序,在计算卷积和绘制幅频响应和相频响应的过程中,充分地巩固了数字信号处理学的理论知识,总之,收获颇多。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告郑州航空工业管理学院《数字信号处理》实验报告专业电子信息工程学号姓名实验一 数字滤波器的结构一、 实验目的(1) 加深对数字滤波器分类与结构的了解;(2) 明确数字滤波器的基本结构及其相互间的转换方法;(3) 掌握用MATLAB 进行数字滤波器各种结构相互间转换的子函数及程序编写方法。

二、 实验原理一个离散LSI 系统可用系统函数来表示;()()()12001212120z 11M m M m m M N N kN k k b z Y b b z b z b z H z X z a z a z a za z ----=----=++++===+++++∑∑ 也可用差分方程来表示:()()()10N Mk m k m y n a y n k b x n m ==+-=-∑∑当k a 至少有一个不为0时,则在有限z 平面上存在极点,表示一个IIR 数字滤波器;当k a 全都为0时,系统不存在极点,表示一个FIR 系统。

IIR 数字滤波器的基本结构分为直接Ⅰ型、直接Ⅱ型、级联型和并联型。

FIR 数字滤波器的基本结构分为横截型、级联型、并联型、、线性相位型和频率抽样型。

三、 实验仪器微型计算机、MATLAB四、 实验内容(1) 已知一个IIR 系统的系统函数为()1231230.10.40.40.110.30.550.2z z z H z z z z -------+-=+++ 将其从直接型转换为级联型和并联型结构,并画出各种结构的流程图。

(2) 已知一个FIR 系统的系统函数为()12340.20.8850.212+0.212+0.885H z z z z z ----=++for i=1:2:N-1Brow=r(i:1:i+1,:); %取出一对留数Arow=p(i:1:i+1,:); %取出一对对应的极点%二个留数极点转为二阶子系统分子分母系数[Brow,Arow]=residuez(Brow,Arow,[]);B(fix((i+1)/2),:)=real(Brow);%取Brow的实部,放入系数矩阵B的相应行A(fix((i+1)/2),:)=real(Arow);%取Arow的实部,放入系数矩阵A的相应行endendnum =[8 -4 11 -2];den =[1 -1.25 0.75 -0.125];[C,B,A]=dir2par(num,den)C =16B =-16.0000 20.00008.0000 0A =1.0000 -1.0000 0.50001.0000 -0.2500 0五、试验结果分析实验二 用冲激响应不变法设计IIR 数字滤波器一、 实验目的(1) 加深对冲激响应不变法设计IIR 数字滤波器的基本原理的理解;(2) 掌握用冲激响应不变法设计数字低通、带通滤波器的设计;(3) 了解MATLAB 有关冲激响应不变法的常用子函数。

数字信号处理实验一报告

数字信号处理实验一报告

实验一:用FFT 对信号作频谱分析1.实验目的学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析 误差及其原因,以便正确应用FFT 。

2. 实验原理用FFT 对信号作频谱分析是学习数字信号处理的重要内容。

经常需要进行谱分析的信号是模拟信号和时域离散信号。

对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。

频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是N /2π,因此要求D N ≤/2π。

可以根据此式选择FFT 的变换区间N 。

误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。

周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。

如果不知道信号周期,可以尽量选择信号的观察时间长一些。

对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。

如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。

3.实验步骤及内容(1)对以下序列进行谱分析。

⎪⎩⎪⎨⎧≤≤-≤≤-=⎪⎩⎪⎨⎧≤≤-≤≤+==其它nn n n n n x 其它nn n n n n x n R n x ,074,330,4)(,074,830,1)()()(3241选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论。

(2)对以下周期序列进行谱分析。

4()cos4x n n π=5()cos(/4)cos(/8)x n n n ππ=+选择FFT 的变换区间N 为8和16 两种情况分别对以上序列进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论。

(3)对模拟周期信号进行谱分析6()cos8cos16cos20x t t t t πππ=++选择 采样频率Hz F s 64=,变换区间N=16,32,64 三种情况进行谱分析。

数字信号处理基础实验报告

数字信号处理基础实验报告

中南大学《数字信号处理》实验报告课程名称数字信号处理指导教师李宏学院信息科学与工程学院专业班级学号姓名实验一 常见离散时间信号的产生和频谱分析一、 实验目的(1) 熟悉MATLAB 应用环境,常用窗口的功能和使用方法; (2) 加深对常用离散时间信号的理解; (3) 掌握简单的绘图命令;(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号进行频域分析。

二、实验内容及要求(1)复习常用离散时间信号的有关内容;常用离散时间信号a )单位抽样序列⎩⎨⎧=01)(n δ00≠=n n 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ≠=n kn b )单位阶跃序列⎩⎨⎧=01)(n u00<≥n n c )矩形序列 ⎩⎨⎧=01)(n R N 其他10-≤≤N nd )正弦序列)sin()(ϕ+=wn A n xe )实指数序列f )复指数序列()()jw n x n e σ+=(2) 用MATLAB 编程产生上述任意3种序列(长度可输入确定,对(d) (e) (f)中的参数可自行选择),并绘出其图形;()()n x n a u n =程序如下: 1)单位阶跃序列: n=-20:20; xn=heaviside(n); xn(n==0)=1;plot(n,xn);stem(n,xn);axis([-20 20 0 1.2]);title('单位阶跃序列');xlabel('n');ylabel('u(n)');box on得到图像如下:2)单位抽样序列: n=-20:20;xn=heaviside(n)-heaviside(n+1); xn(n==0)=1;plot(n,xn);stem(n,xn);axis([-20 20 0 1.2]);title('单位抽样序列');xlabel('n');ylabel('\delta(n)');box on得到图像如下:-20-15-10-50510152000.20.40.60.81单位阶跃序列nu (n )3)矩阵序列: n=-20:20; N=5;xn=heaviside(n)-heaviside(n-N); xn(n==0)=1;xn(n==N)=0;plot(n,xn);stem(n,xn);axis([-20 20 0 1.2]);title('矩阵序列');xlabel('n');ylabel('R_{N}(n)');box on 得到图像如下:-20-15-10-50510152000.20.40.60.81单位抽样序列n(n )-20-15-10-50510152000.20.40.60.81矩阵序列nR N (n )4)正弦序列:n=-40:40;A=2;w=pi/8;f=pi/4; xn=A*sin(w.*n+f);plot(n,xn);stem(n,xn);axis([-40 40 -4.2 4.2]) title('正弦序列');xlabel('n');ylabel('x(n)');box on得到图像如下:(3) 混叠现象对连续信号01()sin(2***)x t pi f t =其中,01500f Hz =进行采样,分别取采样频率2000,1200,800s f Hz Hz Hz =,观察|)(|jw e X 的变化,并做记录(打印曲线),观察随着采样频率降低频谱混叠是否明显存在,说明原因。

实验一 数字信号处理

实验一  数字信号处理

实验一系统响应及系统稳定性一、实验目的(1)掌握求系统响应的方法。

(2)掌握时域离散系统的时域特性。

(3)分析、观察及检验系统的稳定性。

二实验内容及步骤1、给定一个低通滤波器的差分方程为y(n)=0.05x(n)+0.05x(n-1)+0.9y(n-1),输入信号x1(n)=R8(n)x2(n)=u(n)a)分别求出系统对x1(n)=R8(n)和x2(n)=u(n)的响应序列,并画出其波形。

b)求出系统的单位冲响应,画出其波形。

xn1=[1 1 1 1 1 1 1 1 zeros(1,50)];xn2=ones(1,128);xn3=[1,zeros(1,50)];B=[0.05,0.05];A=[1,-0.9];yn1=filter(B,A,xn1);yn2=filter(B,A,xn2);yn3=filter(B,A,xn3);figure(1);n1=0:length(yn1)-1;subplot(2,2,1);stem(n1,yn1,'.');xlabel('n');ylabel('yn1');title('yn1');n2=0:length(yn2)-1;subplot(2,2,2);stem(n2,yn2,'.');xlabel('n');ylabel('yn2');title('yn2');n3=0:length(yn3)-1;subplot(2,2,3);stem(n3,yn3,'.');xlabel('n');ylabel('yn3');title('yn3');2、给定系统的单位脉冲响应为h1(n)=R10(n),h2(n)=δ(n)+2.5δ(n-1)+δ(n-2)+δ(n-3)用线性卷积法分别求系统h1(n)和h2(n)对x1(n)=R8(n)的输出响应,并画出波形。

哈工程数字信号处理实验报告1

哈工程数字信号处理实验报告1

数字信号处理实验实验一:基本信号班级:姓名:学号:指导教师:2012年10月实验一:基本信号一:实验原理:本节专注于用MATLAB产生一些基本离散信号的问题。

主要是有那个MATLAB内部向量程序来产生信号。

用MATLAB的stem指令会出离散时间信号。

依据MATLAB的编址约定,标号n=0必须对应nn(1);必须给指定向量的第一个参数以得到正确的n轴。

二:实验内容:1.冲击信号产生并绘出下面的序列。

在每种情况下,水平n轴应该只在指定的区间上展开并应该相应标注。

使用stem指令使每个序列显示成离散时间信号。

x[n]=0.9δ[n-5] 1<=n<=20x[n]=0.8δ[n] -15<=n<=15x[n]=1.5δ[n-333] 300<=n<=350x[n]=4.5δ[n+7] -10<=n<=0L=20;nn=1:(L);imp=zeros(L,1);imp(5)=0.9;stem(nn,imp))L=31;nn=-15:(L-16);imp=zeros(L,1);imp(16)=0.8;stem(nn,imp))L=51;nn=300:350;imp=[zeros(L,1)]'; imp(34)=1.5 stem(nn,imp)L=11;nn=-10:(L-11);imp=zeros(L,1);imp(4)=4.5;stem(nn,imp)实验分析:所得4个图形均符合题目要求3、指数信号衰减的指数信号是数字信号是数字信号处理的基本信号。

因为它是线性常系数差分方程的解。

A.使用函数在区间n=0,1,2,。

,20上绘出信号x[n]=(0.9)ⁿ。

B.在许多推导中,指数信号序列aⁿu[n]须在有限区间上求和。

使用(a)中的函数产生一个指数信号然后对其求和并比较结果。

C.指数序列在信号处理中常常出现的一个原因是,时移并不改变其信号特征。

证明一有限长指数信号满足移位关系:y[n]=ay[n-1], 1<=n<=L-1比较向量y(2:L)和a*y(1:L-1)。

数字信号处理实验报告s实验一和实验二

数字信号处理实验报告s实验一和实验二

实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。

而要研究离散时间信号,首先需要产生出各种离散时间信号。

使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。

通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。

二、实验原理离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。

离散序列通常用x(n)来表示,自变量必须是整数。

常见的离散信号如下:(1)单位冲激序列δ(n)如果δ(n)在时间轴上延迟了k个单位,得到δ(n-k),即长度为N的单位冲激序列δ(n)可以通过下面的MATLAB命令获得。

n=-(N-1):N-1x=[zeros(1,N-1) 1 zeros(1,N-1)];stem(n,x)延迟K个采样点的长度为N的单位冲激序列δ(n-k)(k<N)可以用下面命令获得:n=0:N-1y=[zeros(1,M) 1 zeros(1,N-M-1)];stem(n,y)(2)单位阶跃序列u(n)如果u(n)在时间轴上延迟了k个单位,得到u(n-k),即长度为N的单位阶跃序列u(n)可以通过下面的MATLAB命令获得。

n=-(N-1):N-1x=[zeros(1,N-1) ones(1,N)];stem(n,x)延迟的单位阶跃序列可以使用类似于单位冲激序列的方法获得。

(3)矩形序列矩形序列有一个重要的参数,就是序列的宽度N。

矩形序列与u(n)之间的关系为矩形序列等= u(n)— u(n-N)。

因此,用MATLAB表示矩形序列可利用上面的单位阶跃序列组合而成。

(4)正弦序列x(n)这里,正弦序列的参数都是实数。

与连续的正弦信号不同,正弦序列的自变量n 必须为整数。

数字信号处理实验报告

数字信号处理实验报告

实验一:频谱分析与采样定理 subplot(3,1,1),stem(t,x2);title('指数信号'); subplot(3,1,2),stem(f1,y2);title('指数信号频谱'); subplot(3,1,3),plot(f2,y21);title('指数信号频谱'); %%%%%%%%%%%%%%%%%%%%%%%%% x3=x1.*x2; y3=T*abs(fft(x3)); y31=fftshift(y3); figure(3), subplot(3,1,1),stem(t,x3);title('两信号相乘'); subplot(3,1,2),stem(f1,y3);title('两信号相乘频谱'); subplot(3,1,3),plot(f2,y31);title('两信号相乘频谱'); 实验结果: T=1/10000,������������ =10000,L=0.10
1/ 5
实验二:卷积定理 Y2=fft(y2); Z2=X2.*Y2; z2=ifft(Z2); figure(3), subplot(321),stem(x2);title('x2'); subplot(322),stem(real(X2));title('X2'); subplot(323),stem(y2);title('y2'); subplot(324),stem(real(Y2));title('Y2'); subplot(325),stem(z2);title('z2'); subplot(326),stem(real(Z2));title('Z2'); N=6; x3=[x zeros(1,N-length(x))]; y3=[y zeros(1,N-length(y))]; X3=fft(x3); Y3=fft(y3); Z3=X3.*Y3; z3=ifft(Z3); figure(4), subplot(321),stem(x3);title('x3'); subplot(322),stem(real(X3));title('X3'); subplot(323),stem(y3);title('y3'); subplot(324),stem(real(Y3));title('Y3'); subplot(325),stem(z3);title('z3'); subplot(326),stem(real(Z3));title('Z3'); N=8; x4=[x zeros(1,N-length(x))]; y4=[y zeros(1,N-length(y))]; X4=fft(x4); Y4=fft(y4); Z4=X4.*Y4; z4=ifft(Z4); figure(5), subplot(321),stem(x4);title('x4'); subplot(322),stem(real(X4));title('X4'); subplot(323),stem(y4);title('y4'); subplot(324),stem(real(Y4));title('Y4'); subplot(325),stem(z4);title('z4'); subplot(326),stem(real(Z4));title('Z4'); %N=6 时
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验1认识实验-MATLAB语言上机操作实践
一、实验目的
㈠了解MATLAB语言的主要特点、作用。

㈡学会MATLAB主界面简单的操作使用方法。

㈢学习简单的数组赋值、运算、绘图、流程控制编程。

二、实验原理
㈠简单的数组赋值方法
MATLAB中的变量和常量都可以是数组(或矩阵),且每个元素都可以是复数。

在MATLAB指令窗口输入数组A=[1 2 3;4 5 6;7 8 9],观察输出结果。

然后,键入:A(4,2)= 11
键入:A (5,:) = [-13 -14 -15]
键入:A(4,3)= abs (A(5,1))
键入:A ([2,5],:) = [ ]
键入:A/2
键入:A (4,:) = [sqrt(3) (4+5)/6*2 –7]
观察以上各输出结果。

将A式中分号改为空格或逗号,情况又如何?请在每式的后面标注其含义。

2.在MATLAB指令窗口输入B=[1+2i,3+4i;5+6i ,7+8i], 观察输出结果。

键入:C=[1,3;5,7]+[2,4;6,8]*i,观察输出结果。

如果C式中i前的*号省略,结果如何?
键入:D = sqrt (2+3i)
键入:D*D
键入:E = C’, F = conj(C), G = conj(C)’
观察以上各输出结果, 请在每式的后面标注其含义。

3.在MATLAB指令窗口输入H1=ones(3,2),H2=zeros(2,3),H3=eye(4),观察输出结果。

㈡、数组的基本运算
1.输入A=[1 3 5],B= [2 4 6],求C=A+B,D=A-2,E=B-A
2.求F1=A*3,F2=A.*B,F3=A./B,F4=A.\B, F5=B.\A, F6=B.^A, F7=2./B, F8=B.\2
*3.求B',Z1=A*B’,Z2=B’*A
观察以上各输出结果,比较各种运算的区别,理解其含义。

㈢、常用函数及相应的信号波形显示
例1:显示曲线f(t)=2sin(2πt),(t>0)
ⅰ点击空白文档图标(New M-file),打开文本编辑器。

ⅱ键入:t=0:0.01:3; (1)
f=2*sin(2*pi*t); (2)
plot(t,f);
title(‘f(t)-t曲线’);
xlabel(‘t’),ylabel(‘f(t)’);
ⅲ点击保存图标(SAVE),键入文件名L1(扩展名缺省值.M)。

ⅳ在MATLAB指令窗口上键入L1(回车),程序将运行,打开图形窗,将观察到相应的波形曲线。

ⅴ保留⑴⑵条程序,键入下列程序段,观察其结果:
subplot(2,2,1),plot(t,f);
title(‘plot(t,f)’);
subplot(2,2,2),stem(t,f);
title(‘stem(t,f)’);
subplot(2,2,3),stairs(t,f);
title(‘stairs(t,f)’);
subplot(2,2,4),bar(t,f);
title(‘bar(t,f)’);
在读懂上述例题程序的基础上,请描绘下列函数波形:
1.f(t)= 3e-2t ,(t>0)
2. f(t)= 5cos(2πt), (0<t<3)
3. f(t)= t, (0<k<10)
4. f(k)= ksink, (-20<k<20)
㈣、简单的流程控制编程
例3:
按第三项任务中例题操作步骤进行。

在文本编辑器中输入:
X=0;
for n=1:32
X=X+n^2;
end
在命令窗口输入x(回车),观察其结果,并自行编写下列程序:
(五)、综合练习
1.熟悉MATLAB的使用环境和方法。

2.练习使用基本的向量生成、矩阵运算、绘图等语句。

(做以上(一)至(四)练习)
3.利用冒号(:)生成向量
X1=[1 2 3 4 5]
X2=[1.000 1.500 2.000 2.500]
X3=[5 4 3 2 1]
4.分别生成3*3,3*4的全0矩阵,全1矩阵和随机矩阵
5.分别输入矩阵
6.分别计算A+B,A-B,A+3,A-4,A*B,A.*B,C=inv(A),A/B,A./B
7.分别计算sin(x1),cos(x1),exp(x1),lg(x2),sqrt(x2)
8.完成教材第一章例题程序并说明每句程序的含义
三、实验预习
认真阅读第五章有关MATLAB语言使用的介绍,明确以下问题:
MATLAB语言与其它计算机语言相比,有何特点?
MATLAB的工作环境主要包括几个窗口,这些窗口的主要功能是什么?
MATLAB如何进行数组元素的寻访和赋值?在赋值语句中,各种标点符号的作用如何?
数组运算有哪些常用的函数?MATLAB中如何处理复数?
数组运算与矩阵运算有何异同?重点理解数组运算中点乘(.*)和点除(./或.\)的用法。

初步了解MATLAB的基本流程控制语句及使用方法。

通过例题,初步了解MATLAB进行二维图形绘制的方法和常用子函数。

四、实验设备
微型计算机(已安装MATLAB系统软件包)一台。

相关文档
最新文档