1.2 第2课时 数的开方与二次根式

合集下载

1.2数的开方与二次根式

1.2数的开方与二次根式

教学内容:1.2 数的开方与二次根式第 课时 总第 课时主备人:陈志军教学目标:1.理解平方根、立方根、算术平方根的概念,会用根号表示数的平方根、立方根和算术平方根。

会求实数的平方根、算术平方根和立方根2.了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式。

掌握二次根式的性质,会化简简单的二次根式,能根据指定字母的取值范围将二次根式化简;3.掌握二次根式的运算法则,能进行二次根式的加减乘除四则运算,会进行简单的分母有理化。

教学重点:使学生掌握二次根式的有关概念、性质及根式的化简.教学难点:二次根式的化简与计算.教学方法与手段: 讲练结合; 多媒体课件教学准备:多媒体教学过程:一:课前预习(一):知识梳理1.平方根与立方根(1)如果x 2=a ,那么x 叫做a 的 。

一个正数有 个平方根,它们互为 ;零的平方根是 ; 没有平方根。

(2)如果x 3=a ,那么x 叫做a 的 。

一个正数有一个 的立方根;一个负数有一个 的立方根;零的立方根是 ;2.二次根式(1)(2)(3)(4)二次根式的性质①20,a ≥=若则 ;③= (0,0)a b ≥≥()()a a a ⎧==⎨-⎩0,0)a b =≥ (5)二次根式的运算①加减法:先化为 ,在合并同类二次根式;0,0)a b ≥≥;0,0)a b =≥ ④二次根式的运算仍满足运算律,也可以用多项式的乘法公式来简化运算。

(二):课前练习1.填空题2. 判断题3. 那么x 取值范围是()A 、x ≤2 B. x <2 C. x ≥2 D. x >24. 下列各式属于最简二次根式的是( )A5. ) A .①和③ B .②和③ C .①和④ D .③和④二:经典考题剖析1. 已知△ABC 的三边长分别为a 、b 、c, 且a 、b 、c 满足a 2 -|5|0c -=,试判断△ABC 的形状.2. x 为何值时,下列各式在实数范围内有意义(1; (2(33.找出下列二次根式中的最简二次根式:222x y + 4.判别下列二次根式中,哪些是同类二次根式:0),3b - 5. 化简与计算2)x 7)2m -⑤22-;⑥( 三:课后训练1. 当x ≤2时,下列等式一定成立的是( )A 2x =-B 3x =-C 、= D2. 那么x 取值范围是()A 、x ≤2 B. x <2 C. x ≥2 D. x >23. 当a 则实数a 在数轴上的对应点在( )A .原点的右侧B .原点的左侧C .原点或原点的右侧D .原点或原点的左侧 4. 有下列说法:①有理数和数轴上的点—一对应;②不带根号的数一定是有理数;③负是17的平方根,其中正确的有( )A .0个B .1个C .2个D .3个5. ______.6. 当a ≥0=7.计算(1); (2)、))20032(3)、(2; (4)8. 已知:x y、为实数,,求3x+4y 的值。

数的开方、二次根式复习

数的开方、二次根式复习

值范围常转化为不等式(组).
二 二次根式的非负性的应用
1.已知: x 4 + 2x y =0,求 x-y 的值.
解:由题意,得 x-4=0 且 2x+y=0 解得 x=4,y=-8
x-y=4-(-8)= 4+ 8 =12 2.已知x,y为实数,且 x 1 +3(y-2)2 =0,则x-y的值为( D )
方法:分母有理化
4.二次根式的运算 a b =___a_b__(a≥0,b≥0);
a b
a =__b__(a≥0,b>0).
二次根式加减时,可以先将二次根式化成_最__简__二__次__根__式__, 再将__被__开__方__数__相__同____的二次根式进行合并.
考点分类
一 确定二次根式中被开方数所含字母的取值范围
∵16﹤17﹤25
∴4﹤ 17 ﹤5
则 - 5﹤ 17 ﹤- 4 所以b = - 4
∴a – b = 5 - ( - 4 ) = 9 a – b的平方根为±3
知识梳理
二 次 根 式
二次根式
三个概念 最简二次根式
两个公式
两个性质 四种运算
同类二次根式
1. ab a ba 0,b 0
4、实数与数轴:
知 识
无限不循环小数叫做无理数。
如:2,3,5,,3 2,3 3 ,2.030030003……等。
要 5.有理数与无理数统 有理数有限小数或无限循环小数
实数
负有理数
无理数负正无无理理数数无限不循环小数
A.3
B.-3
C.1
D.-1
二 二次根式的非负性的应用
4. 若实数 x,y,m 满足等式 3x 5y 3 m +(2x+3y﹣m)2=

第2节 数的开方与二次根式

第2节 数的开方与二次根式

1.当 x 取何值时,二次根式有意义. (1) 3+x :__x_≥__-__3____;
x-1 (2) 3-x :__x_≥__1_且__x_≠__3_____;
2.(1)8 的立方根是__2__,3 -8 =___-__2__;
(2)若 x 的平方根是±8,则 x 的立方根是_4___;
(3)(易错题) 16 的平方根是__±__2__,
(8) 14 × 7 =_7___2____.
4.若|a-1|+(b+2)2+ c-3 =0,则 a=_1___,b=_-__2_,c=_3___.
二次根式及其性质(北部湾5年3考)
例 1 (2024 南宁模拟)如果二次根式 a 有意义,那么 a 的值可以是( D ) A.-3 B.-2.5 C.-1 D.1
例 6 (2024 南宁模拟)计算:9+(-3)+ 4 ×(5-2). 解:原式=9-3+2×3=9-3+6=12.
二次根式的估值(2024.14)
例 7 估算 7 的值是在( B ) A.1 到 2 之间 B.2 到 3 之间 C.3 到 4 之间 D.4 到 5 之间
例8
(2024 广西)写出一个比 3 大的整数,可以是
__2_(_答__案__不__唯__一__)_____.
(2020 桂林)若 x-1 =0,则 x 的值是( C ) A.-1 B.0 C.1 D.2
例 2 (2021 桂林)下列根式中,是最简二次根式的是( D )
A.
1 9
B. 4
C. a2
D. a+b
(2024 钦州一模)下列二次根式中,化简后能与 2 进行合并的二次根式 是( C )
A. 4 B. 6 C. 8 D. 12 例 3 (2023 广西) 9 =__3__.

数的开方与二次根式

数的开方与二次根式

数的开方及二次根式
哎,说起数的开方跟二次根式,这事儿咱们得扯扯清楚。

在数学里头,数的开方,就好比是把一个数儿,咔嚓一下,劈成好多相等的部分,看能劈成几份儿,每份儿是多少。

比如说,9的开方,那就是3嘛,因为3乘3等于9,简单得很。

二次根式呢,听起来有点儿玄乎,其实也不难。

就是把个平方根摆在那儿,再跟其他数儿一起搅和搅和,搞出些新花样来。

比如说,根号下面有个4,再加上个5,写成式子就是√4+5,结果就是2+5,等于7。

当然,这只是个简单的例子,实际运用起来,可能要复杂得多。

在计算二次根式的时候,咱们得注意点儿,根号下面的数儿得是非负的,要不然就没得解了。

还有啊,根号跟根号之间不能直接相加,得想办法把它们变成同类项,才能相加或者相减。

比如说,√2跟√8,看着不一样,其实√8可以变成2√2,这样一来,它们就能相加了。

总的来说,数的开方跟二次根式,都是数学里头挺重要的东西。

虽然刚开始接触的时候,可能会觉得有点儿难,但是只要多练练,多琢磨琢磨,慢慢地就能掌握其中的窍门了。

毕竟,数学这东西,还是得靠多练,才能熟能生巧嘛。

所以,大家伙儿,要是遇到了数的开方或者二次根式的问题,别怕,大胆地去做,相信你们一定能行的!。

2024年中考数学复习课件---第2讲+数的开方与二次根式

2024年中考数学复习课件---第2讲+数的开方与二次根式





+
+
+…+
+
=
+ + +
+ +

.

4
5
6
第2讲
数的开方与二次根式— 真题试做
返回命题点导航
返回栏目导航
命题点 3 二次根式的估值(遵义6年1考)
7.(2022·遵义5题4分)估计 的值在( C )
A.2和3之间
(2)找出与平方后所得数字相邻的两个开得尽方的整数,如4和9
(3)对以上两个整数开方,如 = , =3
(4)确定这个二次根式的值在两个整数开方后所得的
之间,如2< <3
(1)先确定 在哪两个整数(或小数)之间,如3< <
确定与
最接
近的整

(2)取这两个连续整数(或小数)的平均数,如
与非负
数的性

平方根
ห้องสมุดไป่ตู้
算数平方根
立方根
概念
a>0

质 a=0
a<0
相反
互为①______数
(两个)
0
没有
正数(一个)
正数(一个)
0
0
没有
②_________
负数(一个)
非 负 数 的 性 质 :(1)常见的非负数有 ( ≥ ),| a |,
(2)若几个非负数的和为, 则这几个非负数同时为,
+
=3.5

(3)将平均数进行平方,并与 a比较,确定与 最接近的整数,
如. �� = . , < . , 所以 < . ,所以与

2020中考复习第02课时数的开方与二次根式

2020中考复习第02课时数的开方与二次根式
数③ 相同
,立方根等于本身的数为±1,0.
考点聚焦
考点二 二次根式的相关概念和性质
1.二次根式:形如 (a≥0)的式子叫做二次根式.
2.二次根式有意义的条件:被开方数大于或等于④
0
.
3.最简二次根式
必须同时满足以下两个条件:
(1)被开方数不含分母;
(2)被开方数中不含能开得尽方的因数或因式.
如: 5, 2 + 1是最简二次根式,而 8,
[解析]∵9<13<16,3.52=12.25,
∴3.5< 13<4,
A.4
B.5
C.6
D.7
∴与 13最接近的整数是 4,
∴与 10- 13最接近的整数是 6,故选 C.
考点聚焦
考向五 二次根式的性质
例 7 若在数轴上表示实数 a 的点如图 2-1 所示, [答案] 3
2
则化简 (-5) + -2 的结果为
考点聚焦
例 4 下列根式中,与 3是同类二次根式的是 ( B )
A. 24
C.
3
2
B. 12
D. 18
考点聚焦
| 考向精练 |
下列各式中,哪些是同类二次根式?
0.5,2
1
7
2 3 (a≥0,x≥0), 50 2 (x≥0,y≥0).
,
12,
75,1
,
2
3
25
1
解:∵ 0.5=
2
2,2
1 2
,
12,
75是同类二次根式,
2
3
考点聚焦
考向三 二次根式的化简与计算
例 5 (1) [2019·扬州]计算:

数的开方与二次根式

数的开方与二次根式
第一单元
数与式
第 2 讲 数的开方与二次根式
内容 索引
备考基础 重点突破
温故知新,明确考向 分类讲练,以例求法
易错防范
辨析错因,提升考能
备考基础
返回
考点梳理
平方根、算术平方根与立方根
1.平方根: 一个数 x 的 平方等于 a, 那么 x 叫做 a 的平方根, 记做 x=± a. 2.算术平方根:如果一个正数 x 的平方 等于 a,那么 x 叫做 a 的算术平 方根,记做 x= a.0 的算术平方根是 0. 3.立方根:如果一个数 x 的 立方等于 a,那么 x 叫做 a 的立方根,记做 x= a.

答案
类型三
二次根式的计算
【例 3】 (1)(2017· 滨州)下列计算: ①( 2)2=2, ② -22=2, ③(-2 3)2 =12,④( 2+ 3)( 2- 3)=-1,其中结果正确的个数为( D )
A. 1
B. 2
C. 3
D. 4
点拨
根据二次根式的性质可得①、②、③正确;根据平方差公
式可得④正确.
点拨
答案
9 (2)(2017· 天津)计算(4+ 7)(4- 7)的结果等于________ . 点拨 根据平方差公式计算即可.

答案
【变式 3】
(1)(2017· 黄冈)计算: 27-6
1 3 . 的结果是 ________ 3

3 原式=3 3-6× =3 3-2 3= 3. 3
3
特别提醒
(1)± a表示 a 的平方根, a表示 a 的算术平方根,- a表示 a 的算术 平方根的相反数, a表示 a 的立方根. 3
(2)开平方运算与平方运算是互为逆运算的关系.常用平方运算来检

专题2 数的开方与二次根式(分层精练)(解析版)

专题2 数的开方与二次根式(分层精练)(解析版)

专题2 数的开方与二次根式一、基础过关练1.(2022·广东·佛山市中考三模)实数9的算术平方根为( )A .3B 3C .3D .3± 【答案】A【分析】根据算术平方根的定义,即可求出结果.【详解】解:∵239=, ∴93=. 故选:A【点睛】本题考查了算术平方根,解本题的关键在熟练掌握算术平方根的定义.算术平方根的定义:一般地,如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 就叫做a 的算术平方根.2.(2022·陕西·陇县中考二模)27−的立方根为( ) A .13− B .13 C .13± D .3【答案】A 【分析】根据立方根的概念求解即可.【详解】解:∵311327⎛⎫−=− ⎪⎝⎭, ∴127−的立方根为-13, 故选:A .【点睛】本题考查求一个数的立方根,熟练掌握立方根的概念“一个数x 3=a ,则x 叫a 有立方根”是解题的关键.3.(2022·江苏徐州·中考真题)要使得式子2x −有意义,则x 的取值范围是( ) A .2x >B .2x ≥C .2x <D .2x ≤【答案】B【分析】根据二次根式有意义,被开方数大于等于0,列不等式求解.【详解】解:根据题意,得 20x −≥,解得2x ≥.故选:B.【点睛】本题主要考查二次根式有意义的条件的知识点,代数式的意义一般从三个方面考虑:()1当代数式是整式时,字母可取全体实数;()2当代数式是分式时,分式的分母不能为0;()3当代数式是二次根式时,被开方数为非负数.4.(2022·上海中考三模)下列式子属于同类二次根式的是()A222B324C525D612【答案】A【分析】根据同类二次根式的概念判断即可.【详解】解:A、2与22是同类二次根式,符合题意;B、3与26不是同类二次根式,不符合题意;C、5与5不是同类二次根式,不符合题意;D、6与23不是同类二次根式,不符合题意;故选A.【点睛】本题考查了同类二次根式,掌握一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式是解题的关键.5.(2022·内蒙古通辽·中考一模)16的平方根是()A.4B.4±C.2D.2±【答案】D【分析】先根据算术平方根可得164=,再根据平方根的概念即可得.【详解】解:164=,±=,因为()224所以4的平方根是2±,即16的平方根是2±,故选:D.【点睛】本题考查了算术平方根与平方根,熟练掌握平方根的概念是解题关键.A42±B()222−=−C382−=−D235【答案】C【分析】根据立方根,算术平方根和二次根式的加法计算法则求解判断即可.【详解】解:A、42=,计算错误,不符合题意;B、()222−=,计算错误,不符合题意;C 、382−=−,计算正确,符合题意;D 、2与3不是同类二次根式,不能合并,不符合题意;故选C .【点睛】本题主要考查了立方根,算术平方根和二次根式的加法,熟知相关计算法则是解题的关键.A .125的平方根是15±B .()20.1−的平方根是0.1±C .9−81D 3273−=− 【答案】C【分析】根据平方根、算术平方根、立方根的定义即可解答.【详解】解:A.125的平方根是15±,说法正确,不符合题意; B. ()20.1−的平方根是0.1±,说法正确,不符合题意;C.819=,9的算术平方根是3,说法错误,符合题意; D. 3273−=−,说法正确,不符合题意.故选C .【点睛】本题主要考查了平方根、算术平方根、立方根的定义等知识点,正确理解相关定义成为解答本题的关键.8.(2022·湖北武汉·中考二模)计算()25−−的结果为______. 【答案】5−【分析】根据算术平方根的定义计算即可.【详解】()22555−−=−=−故答案:5−【点睛】本题考查算术平方根的定义,准确确定符号是解题的关键.9.(2022·河南许昌·中考二模)若代数式275x x −+−有意义,则实数x 的取值范围是______.【答案】3.5≤x ≤5【分析】根据被开方数为非负数,进而求解即可.【详解】解:由题意,得27050x x −≥⎧⎨−≥⎩, 解得3.5≤x ≤5.故答案为:3.5≤x ≤5.【点睛】本题考查了二次根式被开方数的非负性,解一元一次不等式组求解集,解决问题的关键是正确地计算能力.10.(2022·黑龙江哈尔滨·中考三模)计算327−的结果是________. 【答案】-3【分析】根据立方根的性质计算即可.【详解】327−=-3,故答案为:-3.【点睛】本题考查了立方根的性质,正数的立方根为正数,负数的立方根为负数,0的立方根为0,熟记立方根的性质是解题的关键.11.(2022·黑龙江·哈尔滨市中考模拟预测)计算 216(4)−+−=______. 【答案】0【分析】先将各二次根式化简,再合并即可得到答案.【详解】解:216(4)−+−=-4+4=0故答案为0【点睛】本题主要考查了二次根式的加减法,解答本题的关键是化简二次根式,注意(0)0(0)a a a a a >⎧⎪=⎨⎪−<⎩.12.(2022·黑龙江·哈尔滨市中考三模)计算32542−的结果是______. 【答案】26−【分析】先根据二次根式的性质化简,再合并,即可求解.【详解】解:32542− 62362=⨯− 26=−.故答案为:26−【点睛】本题主要考查了二次根式的混合运算,熟练掌握二次根式的混合运算法则是解题的关键.13.(2022·辽宁朝阳·24546−=___________. 【答案】1− 【分析】先将二次根式化简,再计算,即可求解.【详解】解:24546− 26366−= 66−= 1=−故答案为:-1【点睛】本题主要考查了二次根式的混合运算,熟练掌握二次根式的混合运算法则是解题的关键.14.(2022·江苏南京·中考二模)计算()()271832−+的结果是______. 【答案】3【分析】根据二次根式的混合运算可直接进行求解.【详解】解:原式=()()()3332323323−⨯+=⨯−=; 故答案为3.【点睛】本题主要考查二次根式的混合运算,熟练掌握二次根式的混合运算是解题的关键. 15.(2022·天津红桥·中考三模)计算()()233233+−的结果等于_______.【答案】3【分析】利用平方差公式解答.【详解】解:()()233233+−()22=2331293−=−=故答案为:3.【点睛】本题考查利用平方差公式进行计算,是基础考点,掌握相关知识是解题关键. 16.(2022·山东聊城·中考一模)()12156362−⨯+=______. 【答案】65【分析】先算小括号,再算乘除,最后算加减.【详解】解:原式2=2153-63+62⨯⨯⨯=65-32+32=65 故答案为:65.【点睛】本题考查了实数的混合运算,正确的运用法则和准确的计算是解决本题的关键.二、能力提升练 17.(2022·重庆市中考一模)下列运算正确的是( )A 235=B .232=C 822÷=D .3223= 【答案】C【分析】根据二次根式的加减法则即可判断选项A 和选项D ,根据二次根式的乘法法则即可判断选项B ,根据二次根式的除法法则即可判断选项C .【详解】解:A .2和3不能合并,故本选项不符合题意;B .22326⨯=,故本选项不符合题意;C .882422÷===,故本选项符合题意; D .32222−=,故本选项不符合题意;故选:C .【点睛】本题考查了二次根式的混合运算,能正确根据二次根式的运算法则进行计算是解此题的关键.A .0.08的立方根是0.2B 162±C .0的倒数是0D .–1是1的绝对值【答案】B【分析】根据立方根、平方根、倒数和绝对值的定义判断即可.【详解】解:A 、0.008的立方根是0.2,该选项错误,不符合题意;B 、164=,4的平方根是2±,该选项正确,符合题意;C 、0没有倒数,该选项错误,不符合题意;D 、1是-1的绝对值,该选项错误,不符合题意;故选:B .【点睛】此题考查立方根、平方根、倒数和绝对值的问题,关键是根据算术平方根、立方根和平方根的定义分析.19.(2022·广东中考三模)若2423y x x =−+−−,则2022()x y +等于( )A .1B .5C .5−D .1−【答案】A【分析】直接利用二次根式中被开方数是非负数,得出x 的值,进而得出y 的值,再利用有理数的乘方运算法则计算即可.【详解】解:由题意可得:20420x x −≥⎧⎨−≥⎩, 解得:x =2,故y =-3,∴20222022()(213)=x y +=−.故选:A .【点睛】此题主要考查了二次根式有意义的条件以及有理数的乘方运算,正确掌握被开方数为非负数是解题关键.20.(2022·贵州遵义·中考模拟预测)函数1x y +=的自变量x 的取值范围是( ) A .1x ≠−B .2x ≠C .1x ≥或2x ≠D .1x ≥−且2x ≠ 【答案】D【分析】根据分式有意义的条件和二次根式有意义的条件,列出不等式,即可求解.【详解】根据题意,得:10x +≥,20x −≠,解得1x ≥−且2x ≠,故选:D .【点睛】本题考查了分式有意义的条件和二次根式有意义的条件的知识,根据分式的分母不能为0,二次根式的被开方数非负列出不等式,是解答本题的关键.21.(2022·陕西·中考模拟预测)9的平方根是_____,立方根是_______. 【答案】 ±3 33【分析】依据平方根以及立方根的定义,即可得出结论.【详解】∵9=3,∴9的平方根是±3,立方根是33.故答案为:±3,33.【点睛】本题主要考查了平方根和立方根,如果一个数的平方等于a ,这个数就叫做a 的平方根,也叫做a 的二次方根;如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.22.(2022·山东济南·中考二模)如果2、5、m 是某三角形三边的长,则22(3)(7)m m −+−等于_____.【答案】4【分析】根据三角形三边的关系得到37m <<,再根据二次根式的性质得原式37m m =−+−,然后根据m 的取值范围去绝对值后合并即可.【详解】解:∵2、5、m 为三角形三边,∴37m <<,∴原式()3737374m m m m m m =−+−=−−−=−−+=,故答案为:4.【点睛】本题考查了三角形的三边关系,二次根式的性质与化简:2a a =及绝对值的性质,熟练掌握知识点是解题的关键.23.(2022·浙江·瑞安市中考三模)当31a =时,代数式122a a −−+的值为_______. 【答案】323−33− 【分析】把31a =+代入代数式()2122a a −−+,求出其值即可.【详解】解:把31a =+代入代数式()2122a a −−+得:原式=()()23112312+−−++ ()232322=−−+32322=−−+323=−.故答案为:323−.【点睛】本题主要考查了代数式的求值,二次根式的混合运算,运用完全平方公式计算,熟练掌握二次根式混合运算法则,是解题的关键.=a 数是_________.【答案】 -3 1【分析】根据正数的平方根是两个互为相反数,得出方程a +4+2a +5=0,求出a 值,把a 值代回任一个式子平方即可.【详解】解:∵一个正数的平方根是a +4和2a +5,∴a +4+2a +5=0,解得:a =﹣3,即这个正数是()2341−+=,故答案为:﹣3;1.【点睛】本题考查了平方根的应用,解一元一次方程,熟练掌握正数有两个平方根,是互为相反数,解一元一次方程的一般方法,是解决问题的关键.25.(2022·贵州黔东南·中考一模)函数y 121x x =−−中自变量x 的取值范围是_____. 【答案】x ≤2且x ≠1 【分析】根据二次根式的被开方数的取值大于等于零,以及分式的分母不等于零列式计算可得.【详解】解:由题意得,2﹣x ≥0且x ﹣1≠0,解得x ≤2且x ≠1.故答案为:x ≤2且x ≠1.【点睛】此题考查了函数自变量的取值计算,正确掌握二次根式被开方数的要求及分式分母的特点是解题的关键.26.(2022·广东·东莞市中考三模)已知()2120x y −+=,则()2014x y +=______ . 【答案】1【分析】利用偶次方和算术平方根的非负性求出x 与y 的值,代入计算即可得到结果.【详解】解:2(1)20x y −++=Q ,10x ∴−=,20y +=, 解得1x =,=2y −,则20142014()(12)1x y +=−=,故答案为:1.【点睛】本题考查了代数式求值、偶次方和算术平方根的非负性、一元一次方程的应用,熟练掌握偶次方和算术平方根的非负性是解题关键.27.(2022·浙江杭州·中考二模)已知x +y =﹣5,xy =4,则y x x y+=________. 【答案】52 【分析】对所求的式子进行整理,再代入相应的值运算即可.【详解】解:当x +y =-5,xy =4时,y x xy + 2()y x x y=+ 2y x x y=++ 222x y xy xy++=2()x y xy+= 2(5)4−= =52. 故答案为:52. 【点睛】本题主要考查二次根式的化简求值,解答的关键是对相应的运算法则的掌握. 28.(2022·广东·深圳市中考三模)计算:2231(2)8(2)2−+−+−+. 【答案】52 【分析】化简绝对值,二次根式的性质以及立方根进行计算即可求解.【详解】解:原式=12222+−+ 52=. 【点睛】本题考查了实数的混合运算,正确的计算是解题的关键.29.(2022·上海松江·中考二模)计算:11812221⎛⎫− ⎪+⎝⎭【答案】24−−【分析】先计算乘方,化简二次根式,化简绝对值,再合并同类二次根式即可.【详解】解:原式2322121=−−+−+− 24=−−【点睛】本题考查二次根式的混合运算,熟练掌握负整指数幂与二次根式的化简运算是解题的关键.。

《二次根式》第2课时示范课教学设计【数学八年级上册北师大】

《二次根式》第2课时示范课教学设计【数学八年级上册北师大】

《二次根式》教学设计
第2课时
一、教学目标
1.掌握二次根式的乘、除法运算法则,并能够熟练应用乘、除法法则进行计算.
2.会用二次根式的四则运算法则进行简单运算.
3.用类比的方法,引入实数的运算法则、运算律,并能用这些法则、运算律在实数范围内正确计算,培养类比学习的能力.
4.增强学生的符号、应用意识,培养学生合作交流、合情推理、表达能力。

二、教学重难点
重点:掌握二次根式的乘、除法运算法则,并能够熟练应用乘、除法法则进行计算.
难点:会用二次根式的四则运算法则进行简单运算.
三、教学用具
电脑、多媒体、课件、教学用具等
四、教学过程设计
a a
(a≥0,b>0)
=
b b
思考长方形的面积是20,它的长是5,宽是多少?
教师追问:该怎么计算呢?
教师提示:这一节我们根据之前学过的二次根式的性质来解决二次根式的四则运算问题吧.
a b=a b(a≥0
a
(a≥0,b>0)
=
b
加法、减法法则:
先化为最简二次根式.
35
思维导图的形式呈现本节课的主要内容:。

开方及二次根式知识点

开方及二次根式知识点

开方及二次根式知识点全文共四篇示例,供读者参考第一篇示例:开方及二次根式是高中数学中常见的一个知识点,也是数学中的基础概念之一。

在学习代数学时,开方及二次根式是必须要掌握的重要内容。

本文将对开方及二次根式进行详细介绍,帮助读者更好地理解和掌握这一知识点。

让我们从最基础的概念开始。

所谓开方,就是对一个数进行开方运算,即找到一个数,使得它的平方等于给定的数。

如果一个数是另一个数的平方,那么这个数就是这个数的平方根。

开方也可以用符号√来表示,如√4表示对4进行开方运算,结果为2,因为2的平方等于4。

二次根式是由一个数与它的二次根号组成的一个式子,例如√2、√3、√5等。

这些数都是无理数,也就是不能用有限位小数表示的数。

在数轴上,二次根式对应的数是不完全平方数,即无法整除的数。

在计算开方及二次根式时,有一些基本规则需要遵循。

对于整数n,如果n>0,则√n是一个正数;如果n<0,则√n是一个虚数。

开方运算是一个单调递增的函数,即当x<y时,√x < √y。

开方运算不满足交换律和结合律,即√xy≠√x·√y,(√x)²≠x。

在开方运算中,常见的性质有:1.开方运算的运算性质:√a ± √b ≠ √(a ± b),√a · √b ≠√(a · b)。

3.二次根式的乘法运算:√a · √b = √(a · b)。

还有一些常见的运算法则需要注意。

如何计算复合二次根式呢?如何计算√(√2 + √3)呢?我们可以用代数的方法将其化简。

设x = √2 + √3,则x² = (√2 + √3)² = 2 + 2√6 + 3 = 5 + 2√6,即x² - 5 = 2√6。

所以√(√2 + √3) = √(x) = √(x² - 5) = √(2√6) = √2 · √3 = √6。

第2课时 数的开方及二次根式

第2课时  数的开方及二次根式

返回思维导 图
考 3 二次根式的运算 1点. 加减运算:
先将二次根式化为最简二次根式,再将被开方数相同的二
次 2. 乘根除式运进算行:合并.
a b ab
(1) a a =______(a≥0,b≥0);
b
b
(2) =______(a≥0,b>0).
返回思维导 图
考 4 二次根式的估值 点 确定二次根式的值在两个整数之间的方法:
第2课时 数的开方及二次根式
(必考,均在实数的运算中涉及,5分)

录 1 点对点“过”考点
2 典例“串”考点
3 陕西5年真题、副题“明” 4 中 考考法试题中的数
学文化
点对点“过” 考点
【对接教材】北师:八上第二章P26-P31、P41-P48 人教:七上第六章P40-P52;
平方根 算术平方根平方方根根、、立算方术根平
6
③估计
的值应B在(
)
A. 1和2之间
B. 2和3之间
C. 3和6 4之间
D.C4和5之间
④与 +1最接近的整数是(
24
A. 1
B. 2
C. 3
) D. 4 B
⑤设n为正整数,且n< <n+1,则n的值为( )
陕西5年真题、副题 命题 平方根、算术“明平方”考根法、立方根

(2019陕西副题1题3分)-8的立B方根为( )
立方根
二次根式 二次根式的相关 二次根式有
概念及性质 意义的条件
最简二次根式
性质
数的开方及二次根式
加减运算
乘除运算
二次根式 的运算
二次根式的估值 非负数
考 1 平方根、算术平方根、立方根

2、数的开方与二次根式PPT课件

2、数的开方与二次根式PPT课件
· 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
8
三年中考 ·讲练
平方根、算术平方根、立方根
【例 1】 (2016 泰州)4 的平方根是( A )
A.±2
B.-2
C.2
D.±12
【思路点拨】 本题考查平方根.直接利用平方根的定义分析得出答案.
【解答】 4 的平方根是± 4=±2.
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
9
1.(2014 江西)计算: 9=__3__. 【考查内容】算术平方根. 【解析】∵32=9,∴ 9=3.
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
10
二次根式的运算
【例 2】 (2016 桂林)计算 3 5-2 5的结果是( A )
A. 5
B.2 5
C.3 5
D.6
【思路点拨】 本题考查二次根式的加减运算. 直接利用二次根式的加减运算法 则求出答案.
【解答】 原式=(3-2) 5= 5.
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
12
2.(2016 黄冈)计算:|1- 3|- 12=__-__1_-____3____.
【考查内容】二次根式的运算. 【解析】|1- 3|- 12 = 3-1-2 3 =-1- 3.
中考新突破 · 数学(江西)

人教版数学九年级上册第2课时数的开方与二次根式-课件

人教版数学九年级上册第2课时数的开方与二次根式-课件

(2)被开方数中不含能开得尽方的因数或因式.
如: 8 = 2×22 =2 2 ,故 8 不是最简二次根式.
5.同类二次根式:几个化简后被开方数相同的二次根式. 3.提下分列必数练中是最简二次根式的有__7___- __3 3__.
35
a
4 , 7 , 1 2 , - 3 , 2 , a 2 , b (ab>0)
提分必练
1.16的平方根是__±__4__;16的算术平方根是__4_; 4 的算
2
9
术平方根是___3___; 3 8 的算术平方根是2____;1 6 的平方
根是_±__2_; 2 5 =5____; ( - 6 ) 2 =__6____;
2. 3 - 8 =_-__2___;-27的立方根是_-__3___
提分必练
4. x - 1 有意义,则x的取值范围为__x_≥__1_. 5. 4 - 2x 有意义,则x的取值范围为_x_≤__2_.
1 6. 3 x - 6 有意义,则x的取值范围为_x_>____.
2
【温馨提示】求二次根式中字母取值范围的基本依据:
①被开方数大于等于零;②分母中有字母时,要保证分
a b
ab =⑤___b___(a≥0,b>0).
提分必练
7.判断正误:
(1) ( - 4 ) 2 = -4
(2) 4 2 =-4
(3) ( 4 ) 2 =4 (4) 2 ﹢ 3 ﹦ 5 (5) 6 ÷ 2 = 3 (6)2 3 - 3 = 3
(× ) (×)
(√) (×) √( ) (√ )
提分必练
温馨提示:点击完成练习册word习题
天每
开个
放孩
;子

中考数学复习第一单元数与式第02课时数的开方与二次根式课件

中考数学复习第一单元数与式第02课时数的开方与二次根式课件

考向二 二次根式及其运算
5.[2019·山西 4 题]下列二次根式是最简二次根式的是 ( D )
A.
1 2
C. 8
B.
12 7
D. 3
6.[2019·盐城]若 ������-2有意义,则 x 的取值范围是 ( A )
A.x≥2 C.x>2
B.x≥-2 D.x>-2
7.[2019·济宁]下列计算正确的是 ( D )
=
������ ������
(a⑩

0,b⑪
>
0).
考点三 二次根式的运算
1.加减运算:先将二次根式化为最简二次根式,再将被开方数相同的二次根式进
行合并.
2.乘除运算: ������· ������= ������������(a⑫

0,b⑬ ≥
0);
������ ������
=
������ ������
第 2 课时
数的开方与二次根式
考点一 平方根、算术平方根和立方根
平方根
算术平方根
表示方法
±a
被开方数的取值范围
a≥0
① ������ ③ a≥0
立方根 ② ������ ������ a为任意实数
【温馨提示】正数的算术平方根只有一个,且一定为正数,0的平方根是0.
考点二 二次根式的概念和性质 1.二次根式:形如 ������(a≥0)的式子叫做二次根式. 2.二次根式有意义的条件:被开方数大于或等于④ 0 . 3.最简二次根式 必须同时满足以下两个条件: (1)被开方数不含分母; (2)被开方数中不含能开得尽方的因数或因式. 如: 5, ������2 + 1是最简二次根式,而 8, 12, 2������2都不是最简二次根式.

数的开方及二次根式

数的开方及二次根式

开平方运算的运算

开平方运算遵循一些基本的运算 律,如结合律、交换律等。这些 运算律可以帮助我们简化复杂的 开平方运算。
开平方运算的性质
非负性
正数的平方根是正数或零,负数没有 实数平方根。这是因为正数的平方是 正数,而负数的平方也是正数,所以 负数没有实数范围内的平方根。
互反性
一个数的平方根与它的相反数的平方 互为相反数。例如,4的平方根是±2, 而-4的平方根是±(-2),它们的值互为 相反数。
详细描述
二次根式的被开方数是非负数,这是二次根式的基本性质。此外,算术平方根具有非负性,即√a≥0。同时,乘 方运算也有其特定的性质,如√(ab)=√a×√b(a≥0,b≥0)和√(a/b)=√a/√b(a≥0,b>0)。
二次根式的简化
总结词
通过因式分解、配方法等手段,可以简化二次根式。
详细描述
简化二次根式的方法有多种,如因式分解法、配方法等。通过因式分解,可以将复杂的二次根式化简 为简单的形式。配方法则是将二次根式转化为完全平方的形式,从而简化计算。这些方法在数学中有 着广泛的应用,有助于简化计算过程和提高解题效率。
数的开方及二次根式
目录
• 数的开方 • 二次根式 • 二次根式的运算 • 二次根式的应用
01
数的开方
平方根的定义
1 2
平方根
如果一个数的平方等于给定的数,则这个数被称 为给定数的平方根。例如,4的平方根是±2,因 为2^2=4和(-2)^2=4。
非负平方根
正数和0的平方根都是非负的。例如,9的平方根 是3,因为3^2=9。
使其具有最简形式。
二次根式的化简求值
要点一
总结词
掌握二次根式的化简求值方法,能够将复杂的二次根式化 简为最简形式,并求出其值。

专题02 数的开方及二次根式-备战2022年中考数学题源解密(解析版)

专题02 数的开方及二次根式-备战2022年中考数学题源解密(解析版)

专题02 数的开方及二次根式考向1 二次根式的相关概念及性质【母题来源】(2021·浙江杭州)【母题题文】下列计算正确的是()A.=2 B.=﹣2 C.=±2 D.=±2【分析】求出=2,=2,再逐个判断即可.【解答】解:A.=2,故本选项符合题意;B.=2,故本选项不符合题意;C.=2,故本选项不符合题意;D.=2,故本选项不符合题意;故选:A.【母题来源】(2021·浙江金华)【母题题文】二次根式中,字母x的取值范围是.【分析】由二次根式有意义的条件得出不等式,解不等式即可.【解答】解:当x﹣3≥0时,二次根式有意义,则x≥3;故答案为:x≥3.【母题来源】(2021·浙江丽水)【母题题文】要使式子有意义,则x可取的一个数是.【分析】根据二次根式有意义的条件得出x﹣3≥0,再求出不等式的解集,最后求出答案即可.【解答】解:要使式子有意义,必须x﹣3≥0,解得:x≥3,所以x可取的一个数是4,故答案为:4(答案不唯一).【母题来源】(2021·浙江湖州)【母题题文】化简的正确结果是()A.4 B.±4 C.2D.±2【分析】根据二次根式的性质化简即可.【解答】解:==×=2,故选:C.【母题来源】(2021·浙江衢州)【母题题文】若有意义,则x的值可以是.(写出一个即可)【分析】由题意可得:x﹣1≥0,解不等式即可得出答案.【解答】解:由题意可得:x﹣1≥0,即x≥1.则x的值可以是大于等于1的任意实数.故答案为:2(答案不唯一).【试题分析】这些题考察了二次根式的化简以及二次根式有意义的条件;【命题意图】此类题的出现,目的是为了考察学生对二次根式有意义的条件的的正确理解,以及二次根式化简的方法、答案形式等的掌握情况;【命题方向】二次根式的相关概念与性质在浙江中考中单独考察的几率不大,对这个考点的学习主要是用再综合问题的计算中,属于综合问题中附带的必会考点;【得分要点】一、平方根与算术平方根、立方根间的异同点a(a>0) a(a=0) a(a<0) 等于其本身的数平方根a±0 / 0算术平方根a0 / 0、1立方根3a03=a3a0、1、-1二、二次根式:非负数a的算式平方根叫做二次根式,记作a(a≥0);☆:最简二次根式满足的条件:①被开方数中不含分数,所含因式是整式; ②被开方数中不含开方开的尽的因数或因式; ☆:二次根式a 有意义的条件:被开方数a ≥0 三、二次根式的性质:001≥≥a a ,)双重非负性:(()()022≥=a aa )(()()⎩⎨⎧≤-≥==0032a aa aa a )(考向2 二次根式的运算【母题来源】(2021·浙江台州) 【母题题文】计算:|﹣2|+﹣.【分析】直接利用算术平方根、绝对值的性质分别化简得出答案. 【解答】解:原式=2+2﹣=2+.【母题来源】(2021·浙江金华) 【母题题文】计算:(﹣1)2021+﹣4sin45°+|﹣2|.【分析】先分别计算有理数的乘方,二次根式的化简,代入特殊角三角函数值,绝对值的化简,然后再计算.【解答】解:原式=﹣1+﹣4×+2=﹣1+2﹣2+2=1.【母题来源】(2021·浙江嘉兴) 【母题题文】计算:2﹣1+﹣sin30°;【分析】根据负整数指数幂、算术平方根、特殊角的三角函数值可以解答本题;【解答】解:2﹣1+﹣sin30°=+2﹣=2;【母题来源】(2021·浙江绍兴)【母题题文】计算:4sin60°﹣+(2﹣)0.【分析】原式第一项利用特殊角的三角函数值计算,第二项利用开平方法则化简,最后一项利用零指数幂的意义化简,计算即可得到结果;【解答】解:原式=2﹣2+1=1;【母题来源】(2021·浙江衢州)【母题题文】计算:+()0﹣|﹣3|+2cos60°.【分析】根据零指数幂,绝对值、算术平方根、特殊角三角函数值的性质进行化简,然后根据实数运算法则进行计算即可得出答案.【解答】解:原式=3+1﹣3+2×=2.【试题分析】这些题都二次根式与实数相关概念结合下的基本运算【命题意图】二次根式的运算主要考察二次根式的化简,以及化简后,根据二次根式的加减乘法法则进行的下一级运算。

人教版初中数学中考复习 一轮复习-数的开方与二次根式

人教版初中数学中考复习 一轮复习-数的开方与二次根式
C 2
伦﹣秦九韶公式.若p=5,c=4,则此三角形面积的最大值为( )
A. 5
B.4
C.2 5
D.5
知识点四、二次根式-二次根式的运算
解:p a b c a b 4 5
2
2
所以a b 6, a 6 b
s pp ap bp c 55 a5 b5 4
55 (6 b)5 b1 5 b 15 b
3 的结果是______.
3 12
解: 3 1 1 1 3 12 1 4 1 2 3
5. 化简: 1 1 49
解: 1 1 9 4 13 13 4 9 36 36 36 6
知识点三、二次根式-二次根式的性质
D 1.[2019·济宁]下列计算正确的是 ( )
A. 3 2 3
解:原式 9 — 1 8 22
9 2 — 1 2 2 2 22 22
3 2 — 2 2 2 22
3 — 1 2 2 2 2
3 2
知识点四、二次根式-二次根式的运算
2、(2021. 铜仁)计算( 27 — 18)( 3 — 2)
解:原式 (3 3 - 3 2)( 3 - 2) 9-3 6 -3 6 6 15- 6 6
一轮复习
数的开方与二次根式
课标要求
1. 了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方 根 、 .立方根。 2. 了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求
百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根. 3. 能用有理数估计一个无理数的大致范围. 4. 了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、
5 4 b3 2
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一单元 数与式
第2课时 数的开方与二次根式
1
考点聚焦
考点一 算术平方根、平方根、立方根

平方根

正的
相反数
0
没有
立方根

0
有一个负的
温馨提示
平方根等于本身的数有 1 个,算术平方根等于本身的数有 0,1 ,立 方根等于本身的数有 0,±1 。
考点聚焦
考点二 二次根式的相关定义
不含分母
非负数 开得尽方
相同
温馨提示
≥ ≥
考点聚焦
考点三 二次根式的性质及运算
a
温馨提示
考点聚焦
被开方数相同
乘方 乘除加减温馨提示源自最简二次根式强化训练
考点一:二次根式有意义的条件
D
解:由题意得x+2≥0, 解得x≥﹣2. 故选:D.
归纳拓展
强化训练
考点二:二次根式的性质
2
归纳拓展
【归纳拓展】 本题考查了二次根式的化简和性质、实数与数轴,解题 的关键是注意开方结果是非负数、以及绝对值结果的非 负性.
强化训练
考点三:二次根式的混合运算
归纳拓展
【归纳拓展】 二次根式的运算细则 (1)二次根式的混合运算顺序与实数的混合运算顺序相同,即先乘除, 后加减,有括号的先算括号里面的.实数的各种运算定律也同样适用于 二次根式的混合运算.二次根式相乘时,被开方数简单直接地让被开方 数相乘,再化简,积即为最简公分母,较大的也可先化简,再相乘;二 次根式相除时,可先将被开方数相除,再开根号;二次根式加减时,需 先将各项化成最简二次根式,再将被开方数相同的进行合并. (2)二次根式加减运算的实质是合并被开方数相同的二次根式,运算时 将系数相加、减,根式保持不变;二次根式的乘除运算,是将系数相乘 除,再将根式里面的数相乘除即可,同时注意运算后的结果要化为最简 二次根式.
强化训练
考点四:与二次根式有关的求值问题
1
本课结束
相关文档
最新文档