热传导方程向后差分格式的MATLAB程序
一维热传导MATLAB模拟
![一维热传导MATLAB模拟](https://img.taocdn.com/s3/m/4d6a58384b73f242336c5f22.png)
昆明学院2015届毕业设计(论文)设计(论文)题目一维热传导问题的数值解法及其MATLAB模拟子课题题目无姓名伍有超学号************所属系物理科学与技术系专业年级2011级物理学2班指导教师王荣丽2015 年 5 月摘要本文介绍了利用分离变量法和有限差分法来求解一维传导问题的基本解,并对其物理意义进行了讨论。
从基本解可以看出,在温度平衡过程中,杠上各点均受初始状态的影响,而且基本解也满足归一化条件,表示在热传导过程中杆的总热量保持不变。
通过对一维杆热传导的分析,利用分离变量法和有限差分法对一维热传导进行求解,并用MATLAB 数学软件来对两种方法下的热传导过程进行模拟,通过对模拟所得三维图像进行取值分析,得出由分离变量法和有限差分法绘制的三维图基本相同,且均符合热传导过程中温度随时间、空间的变化规律,所以两种方法均可用来解决一维热传导过程中的温度变化问题。
关键词:一维热传导;分离变量法;有限差分法;数值计算;MATLAB 模拟AbstractIn this paper, the method of variable separation and finite difference method are introduced to solve the problem of one-dimensional heat conduction problems, and the physical significance of numerical methods for heat conduction problems are discussed. From the basic solution, we can see the temperature on the bar are affected by the initial state during the process of temperature balance, and basic solution also satisfy the normalization condition which implied the invariance of the total heat in the bar during the heat conduction process. Through the analysis of the one-dimensional heat conduction, by taking use of variable separation method and finite difference method, we simulated the one-dimensional heat conduction problem by MATLAB. The three-dimensional images of the simulation results obtained by the method of separation of variables and finite difference method are similar to each other, and the temperature curve is in accordance with the law of temperature variation during heat conduction. Thus, we can go to the conclusion that both methods can be used to deal with the one-dimensional heat conduction problems.Keywords: One-dimensional heat conduction; method of variable separation;finite difference method; numerical method; MATLAB simulation目录第一章绪论 (1)1.1热传导的概念 (1)1.2热质的运动和传递 (1)第二章一维热传导问题的两种数值解法 (3)2.1一维热传导问题的初值问题 (3)2.2一维热传导问题的分离变量法 (4)2.3一维热传导问题的有限差分法 (6)第三章一维有界杆热传导问题的MATLAB模拟 (9)3.1一维有界杆热传导问题 (9)3.2分离变量法的MATLAB模拟 (9)3.3有限差分法的MATLAB模拟 (12)第四章总结与展望 (18)参考文献 (19)谢辞 (20)第一章绪论1.1热传导的概念由于温度分布不均匀,热量从介质中温度高的地方流向温度低的地方称为热传导。
导热方程求解matlab
![导热方程求解matlab](https://img.taocdn.com/s3/m/211267738e9951e79b892763.png)
使用差分方法求解下面的热传导方程2(,)4(,)0100.2t xx T x t T x t x t =<<<<初值条件:2(,0)44T x x x =-边值条件:(0,)0(1,)0T t T t ==使用差分公式1,,1,222(,)2(,)(,)2(,)()i j i j i j i j i j i j xx i j T x h t T x t T x h t T T T T x t O h h h -+--++-+=+≈,1,(,)(,)(,)()i j i j i j i jt i j T x t k T x t T T T x t O k k k ++--=+≈上面两式带入原热传导方程,1,1,,1,22i j i ji j i j i jT T T T T k h +-+--+= 令224k r h=,化简上式的 ,1,1,1,(12)()i j i j i j i j T r T r T T +-+=-++ix jt j编程MATLAB 程序,运行结果如下x t Tfunction mypdesolutionc=1;xspan=[0 1];tspan=[0 0.2];ngrid=[100 10];f=@(x)4*x-4*x.^2;g1=@(t)0;g2=@(t)0;[T,x,t]=rechuandao(c,f,g1,g2,xspan,tspan,ngrid);[x,t]=meshgrid(x,t);mesh(x,t,T);xlabel('x')ylabel('t')zlabel('T')function [U,x,t]=rechuandao(c,f,g1,g2,xspan,tspan,ngrid)% 热传导方程:% Ut(x,t)=c^2*Uxx(x,t) a<x<b ts<t<tf% 初值条件:% u(x,0)=f(x)% 边值条件:% u(a,t)=g1(t)% u(b,t)=g2(t)%% 参数说明% c:方程中的系数% f:初值条件% g1,g2:边值条件% xspan=[a,b]:x的取值范围% tspan=[ts,tf]:t的取值范围% ngrid=[n,m]:网格数量,m为x网格点数量,n为t的网格点数量% U:方程的数值解% x,t:x和t的网格点n=ngrid(1);m=ngrid(2);h=range(xspan)/(m-1);x=linspace(xspan(1),xspan(2),m);k=range(tspan)/(n-1);t=linspace(tspan(1),tspan(2),n);r=c^2*k/h^2;if r>0.5error('为了保证算法的收敛,请增大步长h或减小步长k!')ends=1-2*r;U=zeros(ngrid);% 边界条件U(:,1)=g1(t);U(:,m)=g2(t);% 初值条件U(1,:)=f(x);% 差分计算for j=2:nfor i=2:m-1U(j,i)=s*U(j-1,i)+r*(U(j-1,i-1)+U(j-1,i+1));endend。
热传导模型方程matlab
![热传导模型方程matlab](https://img.taocdn.com/s3/m/526e50e829ea81c758f5f61fb7360b4c2f3f2a79.png)
热传导模型方程引言热传导模型方程是描述热传导过程的数学模型,它在物理学、工程学等领域中有着广泛的应用。
该方程可以用来求解物体内部的温度分布以及热量的传输过程。
本文将重点介绍热传导模型方程在Matlab中的实现方法及应用。
热传导模型方程热传导模型方程是一种偏微分方程,用于描述物体内部温度分布随时间的变化。
它的一般形式如下:∂u/∂t = κ∇²u其中,u是温度分布函数,t是时间,κ是热传导率,∇²是拉普拉斯算子。
离散化处理为了在计算机中求解热传导模型方程,我们需要对其进行离散化处理。
通常,我们将物体分成若干个小区域,每个小区域的温度可以看作是一个离散节点。
然后,我们利用数值差分方法将偏微分方程转化为差分方程。
最常用的数值差分方法是有限差分法,其中最简单的方法是二阶中心差分法。
二阶中心差分法二阶中心差分法是一种常用的数值差分方法,它能够较为准确地近似热传导模型方程。
该方法利用了节点的前后两个时间步长的温度值和空间步长的温度梯度。
具体来说,对于一个二维网格,节点(i, j)的二阶中心差分近似可以表示为:(∂u/∂t)(i, j) ≈ (u(i+1, j) - 2u(i, j) + u(i-1, j))/(Δx²) + (u(i, j+1) - 2u(i, j) + u(i, j-1))/(Δy²)其中,Δx和Δy分别是空间步长。
Matlab实现在Matlab中,我们可以通过编写代码来求解热传导模型方程。
下面是实现该方程的一个示例代码:% 定义初始条件和边界条件N = 50; % 网格节点数L = 1; % 系统尺寸T = 1; % 总时间dx = L/N;dt = dx^2/4;x = linspace(0, L, N+1);y = linspace(0, L, N+1);[X, Y] = meshgrid(x, y);u = sin(pi*X).*sin(pi*Y); % 初始温度分布% 迭代求解热传导模型方程for t = 0:dt:Tu_new = u + dt*(del2(u)/dx^2);u = u_new;end% 可视化温度分布surf(X, Y, u)xlabel('x')ylabel('y')zlabel('Temperature')在上面的代码中,我们首先定义了初始条件和边界条件,然后利用循环迭代的方式求解热传导模型方程。
一维热传导MATLAB模拟
![一维热传导MATLAB模拟](https://img.taocdn.com/s3/m/6207eef32af90242a895e5ed.png)
一维热传导MATLAB模拟昆明学院2015届毕业设计(论文)设计(论文)题目一维热传导问题的数值解法及其MATLAB模拟子课题题目无姓名伍有超学号 2所属系物理科学与技术系专业年级 2011级物理学2班指导教师王荣丽2015 年 5 月摘要本文介绍了利用分离变量法和有限差分法来求解一维传导问题的基本解,并对其物理意义进行了讨论。
从基本解可以看出,在温度平衡过程中,杠上各点均受初始状态的影响,而且基本解也满足归一化条件,表示在热传导过程中杆的总热量保持不变。
通过对一维杆热传导的分析,利用分离变量法和有限差分法对一维热传导进行求解,并用MATLAB 数学软件来对两种方法下的热传导过程进行模拟,通过对模拟所得三维图像进行取值分析,得出由分离变量法和有限差分法绘制的三维图基本相同,且均符合热传导过程中温度随时间、空间的变化规律,所以两种方法均可用来解决一维热传导过程中的温度变化问题。
关键词:一维热传导;分离变量法;有限差分法;数值计算;MATLAB 模拟AbstractIn this paper, the method of variable separation andfinite difference method are introduced to solve the problem of one-dimensional heat conduction problems, and the physical significance of numerical methods for heat conduction problems are discussed. From the basic solution, we can see the temperature on the bar are affected by the initial state during the process of temperature balance, and basic solution also satisfy the normalization condition which implied the invariance of the total heat in the bar during the heat conduction process. Through the analysis of the one-dimensional heat conduction, by taking use of variable separation method and finite difference method, we simulated the one-dimensional heat conduction problem by MATLAB. The three-dimensional images of the simulation results obtained by the method of separation of variables and finite difference method are similar to each other, and the temperature curve is in accordance with the law of temperature variation during heat conduction. Thus, we can go to the conclusion that both methods can be used to deal with the one-dimensional heat conduction problems.Keywords: One-dimensional heat conduction; method of variableseparation; finite difference method; numerical2method; MATLAB simulation目录第一章绪论11.1热传导的概念......................................................... .. (1)1.2热质的运动和传递......................................................... (1)第二章一维热传导问题的两种数值解法32.1一维热传导问题的初值问题32.2一维热传导问题的分离变量法42.3一维热传导问题的有限差分法63第三章一维有界杆热传导问题的MATLAB模拟9 3.1一维有界杆热传导问题93.2分离变量法的MATLAB模拟93.3有限差分法的MATLAB模拟12第四章总结与展望18参考文献19谢辞204第一章绪论1.1热传导的概念由于温度分布不均匀,热量从介质中温度高的地方流向温度低的地方称为热传导。
一维导热方程有限差分法matlab实现
![一维导热方程有限差分法matlab实现](https://img.taocdn.com/s3/m/92f316e6168884868662d68f.png)
第五次作业(前三题写在作业纸上)一、用有限差分方法求解一维非定常热传导方程,初始条件和边界条件见说明.pdf 文件,热扩散系数α=const ,22T T t xα∂∂=∂∂ 1. 用Tylaor 展开法推导出FTCS 格式的差分方程2. 讨论该方程的相容性和稳定性,并说明稳定性要求对求解差分方程的影响。
3. 说明该方程的类型和定解条件,如何在程序中实现这些定解条件。
4. 编写M 文件求解上述方程,并用适当的文字对程序做出说明。
(部分由网络搜索得到,添加,修改后得到。
)function rechuandaopde%以下所用数据,除了t 的范围我根据题目要求取到了20000,其余均从pdf 中得来 a=0.00001;%a 的取值xspan=[0 1];%x 的取值范围tspan=[0 20000];%t 的取值范围ngrid=[100 10];%分割的份数,前面的是t 轴的,后面的是x 轴的f=@(x)0;%初值g1=@(t)100;%边界条件一g2=@(t)100;%边界条件二[T,x,t]=pdesolution(a,f,g1,g2,xspan,tspan,ngrid);%计算所调用的函数[x,t]=meshgrid(x,t);mesh(x,t,T);%画图,并且把坐标轴名称改为x ,t ,Txlabel('x')ylabel('t')zlabel('T')T%输出温度矩阵dt=tspan(2)/ngrid(1);%t 步长h3000=3000/dt;h9000=9000/dt;h15000=15000/dt;%3000,9000,15000下,温度分别在T矩阵的哪些行T3000=T(h3000,:)T9000=T(h9000,:)T15000=T(h15000,:)%输出三个时间下的温度分布%不再对三个时间下的温度-长度曲线画图,其图像就是三维图的截面%稳定性讨论,傅里叶级数法dx=xspan(2)/ngrid(2);%x步长sta=4*a*dt/(dx^2)*(sin(pi/2))^2;if sta>0,sta<2fprintf('\n%s\n','有稳定性')elsefprintf('\n%s\n','没有稳定性')errorend%真实值计算[xe,te,Te]=truesolution(a,f,g1,g2,xspan,tspan,ngrid);[xe,te]=meshgrid(xe,te);mesh(xe,te,Te);%画图,并且把坐标轴名称改为xe,te,Texlabel('xe')ylabel('te')zlabel('Te')Te%输出温度矩阵%误差计算jmax=1/dx+1;%网格点数[rms]=wuchajisuan(T,Te,jmax)rms%输出误差function [rms]=wuchajisuan(T,Te,jmax)for j=1:jmaxrms=((T(j)-Te(j))^2/jmax)^(1/2)endfunction[Ue,xe,te]=truesolution(a,f,g1,g2,xspan,tspan,ngrid)n=ngrid(1);%t份数m=ngrid(2);%x份数Ue=zeros(ngrid);xe=linspace(xspan(1),xspan(2),m);%画网格te=linspace(tspan(1),tspan(2),n);%画网格for j=2:nfor i=2:m-1for g=1:m-1Ue(j,i)=100-(400/(2*g-1)/pi)*sin((2*g-1)*pi*xe(j))*exp(-a*(2*g-1)^2*pi^2*te(i)) endendendfunction [U,x,t]=pdesolution(a,f,g1,g2,xspan,tspan,ngrid)n=ngrid(1);%t份数m=ngrid(2);%x份数h=range(xspan)/(m-1);%x网格长度x=linspace(xspan(1),xspan(2),m);%画网格k=range(tspan)/(n-1); %t网格长度t=linspace(tspan(1),tspan(2),n);%画网格U=zeros(ngrid);U(:,1)=g1(t);%边界条件U(:,m)=g2(t);U(1,:)=f(x);%初值条件%差分计算for j=2:nfor i=2:m -1U(j,i)=(1-2*a*k/h^2)*U(j -1,i)+a*k/h^2*U(j -1,i -1)+a*k/h^2*U(j -1,i+1);endend5. 将温度随时间变化情况用曲线表示x t T6. 给出3000、9000、15000三个时刻的温度分布情况,对温度随时间变化规律做说明。
【毕业设计(论文)】二维热传导方程有限差分法的MATLAB实现
![【毕业设计(论文)】二维热传导方程有限差分法的MATLAB实现](https://img.taocdn.com/s3/m/fc9ed88bdaef5ef7ba0d3c80.png)
第1章前言1.1问题背景在史策教授的《一维热传导方程有限差分法的MATLAB实现》和曹刚教授的《一维偏微分方程的基本解》中,对偏微分方程的解得MATLAB实现问题进行过研究,但只停留在一维中,而实际中二维和三维的应用更加广泛。
诸如粒子扩散或神经细胞的动作电位。
也可以作为某些金融现象的模型,诸如布莱克-斯科尔斯模型与Ornstein-uhlenbeck过程。
热方程及其非线性的推广形式也被应用与影响分析。
在科学和技术发展过程中,科学的理论和科学的实验一直是两种重要的科学方法和手段。
虽然这两种科学方法都有十分重要的作用,但是一些研究对象往往由于他们的特性(例如太大或太小,太快或太慢)不能精确的用理论描述或用实验手段来实现。
自从计算机出现和发展以来,模拟那些不容易观察到的现象,得到实际应用所需要的数值结果,解释各种现象的规律和基本性质。
科学计算在各门自然科学和技术科学与工程科学中其越来越大的作用,在很多重要领域中成为不可缺少的重要工具。
而科学与工程计算中最重要的内容就是求解科学研究和工程技术中出现的各种各样的偏微分方程或方程组。
解偏微分方程已经成为科学与工程计算的核心内容,包括一些大型的计算和很多已经成为常规的计算。
为什么它在当代能发挥这样大的作用呢?第一是计算机本身有了很大的发展;第二是数值求解方程的计算法有了很大的发展,这两者对人们计算能力的发展都是十分重要的。
1.2问题现状近三十年来,解偏微分方程的理论和方法有了很大的发展,而且在各个学科技术的领域中应用也愈来愈广泛,在我国,偏微分方程数值解法作为一门课程,不但在计算数学专业,而且也在其他理工科专业的研究生的大学生中开设。
同时,求解热传导方程的数值算法也取得巨大进展,特别是有限差分法方面,此算法的特点是在内边界处设计不同于整体的格式,将全局的隐式计算化为局部的分段隐式计算。
而且精度上更好。
目前,在欧美各国MATLAB的使用十分普及。
在大学的数学、工程和科学系科,MATLAB苏佳园:二维热传导方程有限差分法的MATLAB实现被用作许多课程的辅助教学手段,MATLAB也成为大学生们必不可少的计算工具,甚至是一项必须掌握的基本技能。
一维热传导方程数值解法及matlab实现分离变量法和有限差分法
![一维热传导方程数值解法及matlab实现分离变量法和有限差分法](https://img.taocdn.com/s3/m/c91e964f26284b73f242336c1eb91a37f111323b.png)
一维热传导方程数值解法及matlab实现分离变量法和有限差分法一维热传导方程的Matlab解法:分离变量法和有限差分法。
问题描述:本实验旨在利用分离变量法和有限差分法解决热传导方程问题,并使用Matlab进行建模,构建图形,研究不同情况下采用何种方法从更深层次上理解热量分布与时间、空间分布关系。
实验原理:分离变量法:利用分离变量法,将热传导方程分解为两个方程,分别只包含变量x和变量t,然后将它们相乘并求和,得到一个无穷级数的解。
通过截取该级数的前n项,可以得到近似解。
有限差分法:利用有限差分法,将空间和时间分别离散化,将偏导数用差分代替,得到一个差分方程组。
通过迭代求解该方程组,可以得到近似解。
分离变量法实验:采用Matlab编写代码,利用分离变量法求解热传导方程。
首先设定x和t的范围,然后计算无穷级数的前n项,并将其绘制成三维图形。
代码如下:matlabx = 0:0.1*pi:pi;y = 0:0.04:1;x。
t] = meshgrid(x。
y);s = 0;m = length(j);for i = 1:ms = s + (200*(1-(-1)^i))/(i*pi)*(sin(i*x).*exp(-i^2*t));endsurf(x。
t。
s);xlabel('x')。
XXX('t')。
zlabel('T');title('分离变量法(无穷)');axis([0 pi 0 1 0 100]);得到的三维热传导图形如下:有限差分法实验:采用Matlab编写代码,利用有限差分法求解热传导方程。
首先初始化一个矩阵,用于存储时间t和变量x。
然后计算稳定性系数S,并根据边界条件和初始条件,迭代求解差分方程组,并将其绘制成三维图形。
代码如下:matlabu = zeros(10.25);s = (1/25)/(pi/10)^2;fprintf('稳定性系数S为:\n');disp(s);for i = 2:9u(i。
matlab传热计算程序
![matlab传热计算程序](https://img.taocdn.com/s3/m/6a352279b80d6c85ec3a87c24028915f804d843c.png)
matlab传热计算程序
传热计算在工程学和科学领域中是一个重要的应用。
Matlab是一个功能强大的工程计算软件,可以用于传热计算。
在Matlab中,你可以使用各种方法来进行传热计算,比如有限元法、差分法、有限体积法等。
以下是一些常见的传热计算程序的示例:
1. 热传导方程求解,你可以编写一个Matlab程序来求解热传导方程,根据给定的边界条件和初始条件,使用差分法或有限元法来离散方程,并进行时间步进求解,得到温度场的分布。
2. 对流换热计算,对于流体内部的对流换热问题,你可以编写一个Matlab程序来求解Navier-Stokes方程和能量方程,结合有限体积法来进行流场和温度场的耦合求解。
3. 辐射换热计算,针对辐射换热问题,你可以编写一个Matlab程序来计算辐射传热,比如使用辐射传热方程和辐射传热模型,结合离散方法进行求解。
4. 传热系统优化,除了单一的传热计算,你还可以使用Matlab进行传热系统的优化设计,比如通过建立传热模型和耦合其
他工程模型,使用优化算法来寻找最优的传热系统设计参数。
总之,Matlab提供了丰富的工具和函数,可以用于传热计算的各个方面。
通过编写程序,你可以灵活地进行传热计算,并且可以根据具体的问题需求进行定制化的计算和分析。
希望这些信息对你有所帮助。
【毕业设计(论文)】二维热传导方程有限差分法的MATLAB实现
![【毕业设计(论文)】二维热传导方程有限差分法的MATLAB实现](https://img.taocdn.com/s3/m/fc9ed88bdaef5ef7ba0d3c80.png)
第1章前言1.1问题背景在史策教授的《一维热传导方程有限差分法的MATLAB实现》和曹刚教授的《一维偏微分方程的基本解》中,对偏微分方程的解得MATLAB实现问题进行过研究,但只停留在一维中,而实际中二维和三维的应用更加广泛。
诸如粒子扩散或神经细胞的动作电位。
也可以作为某些金融现象的模型,诸如布莱克-斯科尔斯模型与Ornstein-uhlenbeck过程。
热方程及其非线性的推广形式也被应用与影响分析。
在科学和技术发展过程中,科学的理论和科学的实验一直是两种重要的科学方法和手段。
虽然这两种科学方法都有十分重要的作用,但是一些研究对象往往由于他们的特性(例如太大或太小,太快或太慢)不能精确的用理论描述或用实验手段来实现。
自从计算机出现和发展以来,模拟那些不容易观察到的现象,得到实际应用所需要的数值结果,解释各种现象的规律和基本性质。
科学计算在各门自然科学和技术科学与工程科学中其越来越大的作用,在很多重要领域中成为不可缺少的重要工具。
而科学与工程计算中最重要的内容就是求解科学研究和工程技术中出现的各种各样的偏微分方程或方程组。
解偏微分方程已经成为科学与工程计算的核心内容,包括一些大型的计算和很多已经成为常规的计算。
为什么它在当代能发挥这样大的作用呢?第一是计算机本身有了很大的发展;第二是数值求解方程的计算法有了很大的发展,这两者对人们计算能力的发展都是十分重要的。
1.2问题现状近三十年来,解偏微分方程的理论和方法有了很大的发展,而且在各个学科技术的领域中应用也愈来愈广泛,在我国,偏微分方程数值解法作为一门课程,不但在计算数学专业,而且也在其他理工科专业的研究生的大学生中开设。
同时,求解热传导方程的数值算法也取得巨大进展,特别是有限差分法方面,此算法的特点是在内边界处设计不同于整体的格式,将全局的隐式计算化为局部的分段隐式计算。
而且精度上更好。
目前,在欧美各国MATLAB的使用十分普及。
在大学的数学、工程和科学系科,MATLAB苏佳园:二维热传导方程有限差分法的MATLAB实现被用作许多课程的辅助教学手段,MATLAB也成为大学生们必不可少的计算工具,甚至是一项必须掌握的基本技能。
一维稳态导热数值解法matlab
![一维稳态导热数值解法matlab](https://img.taocdn.com/s3/m/5d87ff5bc381e53a580216fc700abb68a882ad4c.png)
一维稳态导热数值解法matlab 在导热传输的研究中,解析方法常常难以适用于复杂的边界条件和非均匀材料性质的情况。
因此,数值解法在求解热传导方程的问题上发挥了重要作用。
本文将介绍一维稳态导热数值解法,以及如何使用MATLAB来实现。
稳态导热数值解法通常基于有限差分法(Finite Difference Method, FDM),它将连续的一维热传导方程离散为一组代数方程。
首先,我们需要将热传导方程转化为差分格式,然后利用MATLAB编写程序来求解。
下面,将具体介绍该方法的步骤。
步骤一:离散化根据一维热传导方程,可以将其离散为一组差分方程。
假设被研究的材料长度为L,将其等分为N个离散节点。
令x为节点位置,T(x)表示节点处的温度。
则可以得到以下差分方程:d²T/dx² ≈ (T(x+Δx) - 2T(x) + T(x-Δx)) / Δx²其中,Δx = L/N是节点之间的间距。
将热传导方程在每个节点处应用上述差分格式后,我们便得到了一组代表节点温度的代数方程。
步骤二:建立矩阵方程将差分方程中各节点的温度代入,我们可以将其表示为一个线性方程组。
这个方程组可以用矩阵的形式表示为Ax = b,其中A是系数矩阵,x是节点温度的向量,b是右侧项的向量。
步骤三:求解方程组使用MATLAB的线性方程求解器可以直接求解上述的线性方程组。
具体而言,通过利用MATLAB中的"\ "操作符,我们可以快速求解未知节点的温度向量x。
步骤四:结果分析与可视化在得到节点温度向量后,我们可以对结果进行可视化和分析。
例如,可以使用MATLAB的plot函数绘制温度随位置的分布曲线,以及温度随节点编号的变化曲线。
这样可以直观地观察到温度的变化情况。
总结:本文介绍了一维稳态导热数值解法以及使用MATLAB实现的步骤。
通过将热传导方程离散化为差分方程,然后建立矩阵方程并利用MATLAB的线性方程求解器求解,我们可以得到节点温度的数值解。
利用matlab程序解决热传导问题-推荐下载
![利用matlab程序解决热传导问题-推荐下载](https://img.taocdn.com/s3/m/3b755636f12d2af90242e6c1.png)
1、题目及要求
1. 原始题目及要求 2. 各节点的离散化的代数方程 3. 源程序 4. 不同初值时的收敛快慢 5. 上下边界的热流量(λ=1W/(m℃)) 6. 计算结果的等温线图 7. 计算小结 题目:已知条件如下图所示:
二、各节点的离散化的代数方程
各温度节点的代数方程
ta=(300+b+e)/4 ; tb=(200+a+c+f)/4; tc=(200+b+d+g)/4; td=(2*c+200+h)/4 te=(100+a+f+i)/4; tf=(b+e+g+j)/4; tg=(c+f+h+k)/4 ; th=(2*g+d+l)/4 ti=(100+e+m+j)/4; tj=(f+i+k+n)/4; tk=(g+j+l+o)/4; tl=(2*k+h+q)/4
0,0,-2,4,0,0,0,-1,0,0,0,0,0,0,0,0; -1,0,0,0,4,-1,0,0,-1,0,0,0,0,0,0,0; 0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0,0; 0,0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0; 0,0,0,-1,0,0,-2,4,0,0,0,-1,0,0,0,0; 0,0,0,0,-1,0,-1,0,4,0,0,0,-1,0,0,0; 0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0,0; 0,0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0; 0,0,0,0,0,0,0,-1,0,0,-2,4,0,0,0,-1; 0,0,0,0,0,0,0,0,-2,0,0,0,24,-1,0,0; 0,0,0,0,0,0,0,0,0,-2,0,0,-1,24,-1,0; 0,0,0,0,0,0,0,0,0,0,-2,0,0,-1,24,-1; 0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,12]; b=[300,200,200,200,100,0,0,0,100,0,0,0,300,200,200,100]'; [x,n]=gauseidel(A,b,[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]',1.0e-6) xx=1:1:4; yy=xx; [X,Y]=meshgrid(xx,yy); Z=reshape(x,4,4); Z=Z' contour(X,Y,Z,30) Z= 139.6088 150.3312 153.0517 153.5639
利用matlab程序解决热传导问题
![利用matlab程序解决热传导问题](https://img.taocdn.com/s3/m/ee7296bb998fcc22bcd10da4.png)
哈佛大学能源与环境学院课程作业报告作业名称:传热学大作业——利用matlab程序解决热传导问题院系:能源与环境学院专业:建筑环境与设备工程学号:姓名:盖茨比2015年6月8日一、题目及要求1.原始题目及要求2.各节点的离散化的代数方程3.源程序4.不同初值时的收敛快慢5.上下边界的热流量(λ=1W/(m℃))6.计算结果的等温线图7.计算小结题目:已知条件如下图所示:二、各节点的离散化的代数方程各温度节点的代数方程ta=(300+b+e)/4 ; tb=(200+a+c+f)/4; tc=(200+b+d+g)/4; td=(2*c+200+h)/4 te=(100+a+f+i)/4; tf=(b+e+g+j)/4; tg=(c+f+h+k)/4 ; th=(2*g+d+l)/4ti=(100+e+m+j)/4; tj=(f+i+k+n)/4; tk=(g+j+l+o)/4; tl=(2*k+h+q)/4tm=(2*i+300+n)/24; tn=(2*j+m+p+200)/24; to=(2*k+p+n+200)/24; tp=(l+o+100)/12 三、源程序【G-S迭代程序】【方法一】函数文件为:function [y,n]=gauseidel(A,b,x0,eps)D=diag(diag(A));L=-tril(A,-1);U=-triu(A,1);G=(D-L)\U;f=(D-L)\b;y=G*x0+f;n=1;while norm(y-x0)>=epsx0=y;y=G*x0+f;n=n+1;end命令文件为:A=[4,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0;-1,4,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0;0,-1,4,-1,0,0,-1,0,0,0,0,0,0,0,0,0;0,0,-2,4,0,0,0,-1,0,0,0,0,0,0,0,0;-1,0,0,0,4,-1,0,0,-1,0,0,0,0,0,0,0;0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0,0;0,0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0;0,0,0,-1,0,0,-2,4,0,0,0,-1,0,0,0,0;0,0,0,0,-1,0,-1,0,4,0,0,0,-1,0,0,0;0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0,0;0,0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0;0,0,0,0,0,0,0,-1,0,0,-2,4,0,0,0,-1;0,0,0,0,0,0,0,0,-2,0,0,0,24,-1,0,0;0,0,0,0,0,0,0,0,0,-2,0,0,-1,24,-1,0;0,0,0,0,0,0,0,0,0,0,-2,0,0,-1,24,-1;0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,12];b=[300,200,200,200,100,0,0,0,100,0,0,0,300,200,200,100]';[x,n]=gauseidel(A,b,[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]',1.0e-6) xx=1:1:4;yy=xx;[X,Y]=meshgrid(xx,yy);Z=reshape(x,4,4);Z=Z'contour(X,Y,Z,30)Z =139.6088 150.3312 153.0517 153.5639108.1040 108.6641 108.3119 108.1523 84.1429 67.9096 63.3793 62.4214 20.1557 15.4521 14.8744 14.7746 【方法2】>> t=zeros(5,5);t(1,1)=100;t(1,2)=100;t(1,3)=100;t(1,4)=100;t(1,5)=100;t(2,1)=200;t(3,1)=200;t(4,1)=200;t(5,1)=200;for i=1:10t(2,2)=(300+t(3,2)+t(2,3))/4 ;t(3,2)=(200+t(2,2)+t(4,2)+t(3,3))/4;t(4,2)=(200+t(3,2)+t(5,2)+t(4,3))/4;t(5,2)=(2*t(4,2)+200+t(5,3))/4;t(2,3)=(100+t(2,2)+t(3,3)+t(2,4))/4;t(3,3)=(t(3,2)+t(2,3)+t(4,3)+t(3,4))/4; t(4,3)=(t(4,2)+t(3,3)+t(5,3)+t(4,4))/4; t(5,3)=(2*t(4,3)+t(5,2)+t(5,4))/4;t(2,4)=(100+t(2,3)+t(2,5)+t(3,4))/4;t(3,4)=(t(3,3)+t(2,4)+t(4,4)+t(3,5))/4;t(4,4)=(t(4,3)+t(4,5)+t(3,4)+t(5,4))/4;t(5,4)=(2*t(4,4)+t(5,3)+t(5,5))/4;t(2,5)=(2*t(2,4)+300+t(3,5))/24;t(3,5)=(2*t(3,4)+t(2,5)+t(4,5)+200)/24;t(4,5)=(2*t(4,4)+t(3,5)+t(5,5)+200)/24;t(5,5)=(t(5,4)+t(4,5)+100)/12;t'endcontour(t',50);ans =100.0000 200.0000 200.0000 200.0000 200.0000 100.0000 136.8905 146.9674 149.8587 150.7444 100.0000 102.3012 103.2880 103.8632 104.3496 100.0000 70.6264 61.9465 59.8018 59.6008 100.0000 19.0033 14.8903 14.5393 14.5117【Jacobi迭代程序】函数文件为:function [y,n]=jacobi(A,b,x0,eps)D=diag(diag(A));L=-tril(A,-1);U=-triu(A,1);B=D\(L+U);f=D\b;y=B*x0+f;n=1;while norm(y-x0)>=epsx0=y;y=B*x0+f;n=n+1;end命令文件为:A=[4,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0;-1,4,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0; 0,-1,4,-1,0,0,-1,0,0,0,0,0,0,0,0,0; 0,0,-2,4,0,0,0,-1,0,0,0,0,0,0,0,0;-1,0,0,0,4,-1,0,0,-1,0,0,0,0,0,0,0; 0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0,0; 0,0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0;0,0,0,-1,0,0,-2,4,0,0,0,-1,0,0,0,0;0,0,0,0,-1,0,-1,0,4,0,0,0,-1,0,0,0;0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0,0;0,0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0;0,0,0,0,0,0,0,-1,0,0,-2,4,0,0,0,-1;0,0,0,0,0,0,0,0,-2,0,0,0,24,-1,0,0;0,0,0,0,0,0,0,0,0,-2,0,0,-1,24,-1,0;0,0,0,0,0,0,0,0,0,0,-2,0,0,-1,24,-1;0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,12];b=[300,200,200,200,100,0,0,0,100,0,0,0,300,200,200,100]'; [x,n]=jacobi(A,b,[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]',1.0e-6); xx=1:1:4;yy=xx;[X,Y]=meshgrid(xx,yy);Z=reshape(x,4,4);Z=Z'contour(X,Y,Z,30)n =97Z =139.6088 150.3312 153.0517 153.5639108.1040 108.6641 108.3119 108.152384.1429 67.9096 63.3793 62.421420.1557 15.4521 14.8744 14.7746四、不同初值时的收敛快慢1、[方法1]在Gauss 迭代和Jacobi 迭代中,本程序应用的收敛条件均为norm(y-x0)>=eps ,即使前后所求误差达到e 的-6次方时,跳出循环得出结果。
matlab用差分求导数代码
![matlab用差分求导数代码](https://img.taocdn.com/s3/m/b3b1224877c66137ee06eff9aef8941ea76e4bd8.png)
MATLAB(矩阵实验室)是一种强大的数学计算和编程软件,常用于科学、工程和技术领域。
在MATLAB中,可以使用差分的方法来求解导数,这在数值计算中非常常见。
本文将介绍如何使用MATLAB编写差分求导数的代码。
一、差分求导数的原理差分求导数是一种数值求导的方法,它通过对函数在不同点上的取值进行离散化处理,从而得到函数在某一点上的导数近似值。
常见的差分求导数方法包括前向差分、后向差分和中心差分。
在MATLAB中,可以利用这些方法来求解函数的导数。
二、MATLAB中的差分求导数代码1.前向差分前向差分是一种简单的求导数方法,它利用函数在某一点和该点附近的取值来近似求解导数。
在MATLAB中,可以使用以下代码来实现前向差分求导数:```matlabfunction df = forward_diff(f, x, h)df = (f(x + h) - f(x)) / h;end```其中,f为要求导的函数,x为求导点的横坐标,h为步长,df为导数的近似值。
2.后向差分后向差分与前向差分类似,不同之处在于后向差分利用的是函数在求导点之前的取值。
在MATLAB中,可以使用以下代码来实现后向差分求导数:```matlabfunction df = backward_diff(f, x, h)df = (f(x) - f(x - h)) / h;end```3.中心差分中心差分是一种更精确的求导数方法,它利用函数在求导点两侧的取值来进行近似计算。
在MATLAB中,可以使用以下代码来实现中心差分求导数:```matlabfunction df = central_diff(f, x, h)df = (f(x + h) - f(x - h)) / (2 * h);end```三、代码示例下面以求解函数y=x^2在x=2处的导数为例,示范如何使用MATLAB中的差分求导数代码。
```matlab定义函数f = (x) x^2;求解导数x = 2; 求导点h = 0.001; 步长前向差分df_forward = forward_diff(f, x, h);disp(['前向差分求导结果:', num2str(df_forward)]);后向差分df_backward = backward_diff(f, x, h);disp(['后向差分求导结果:', num2str(df_backward)]);中心差分df_central = central_diff(f, x, h);disp(['中心差分求导结果:', num2str(df_central)]);```四、总结通过本文的介绍,我们了解了在MATLAB中如何使用差分的方法来求解函数的导数,并给出了前向差分、后向差分和中心差分的代码示例。
热传导方程有限差分法的MATLAB实现
![热传导方程有限差分法的MATLAB实现](https://img.taocdn.com/s3/m/d5f7dd0590c69ec3d5bb754f.png)
万方数据万方数据万方数据万方数据热传导方程有限差分法的MATLAB实现作者:史策作者单位:西安建筑科技大学,理学院,陕西,西安,710055刊名:咸阳师范学院学报英文刊名:JOURNAL OF XIANYANG NORMAL UNIVERSITY年,卷(期):2009,24(4)被引用次数:0次1.曹钢,王桂珍,任晓荣.一维热传导方程的基本解[J].山东轻工业学院学报,2005,19(4):76-80.2.万正苏,方春华,张再云.关于热传导方程有限差分区域分解并行算法精度的注记[J].湖南理工学院学报(自然科学版),2007,20(3):12-14.3.StephenJ.Chapman.MATLAB编程[M].邢树军,郑碧波,译.北京:科学出版社,2008.4.田兵.用MATLAB解偏微分方程[J].阴山学刊,2006,20(4):12-13.5.王飞,裴永祥.有限差分方法的MATLAB编程[J].新疆师范大学学报(自然科学版),2003,22(4):21-27.6.王宝红.热传导方程的可视化探讨[J].忻州师范学院学报,2008,24(2):31-36.7.李先枝.热传导方程差分解法的最佳网格[J].河南大学学报(自然科学版),2004,34(3):16-18.8.赵德奎,刘勇.MATLAB在有限差分数值计算中的应用[J].四川理工学院学报,2005,18(4):61-64.9.谢焕田,吴艳.拉普拉斯有限差分法的MATLAB实现[J].四川理工学院学报,2008,21(3):1-2.10.南京大学数学系计算数学专业.偏微分方程数值解法[M].北京:科学出版社,1979.1.学位论文申卫东热传导方程有限差分区域分解算法研究2003区域分解算法是在并行机上求解偏微分方程数值解的一种较自然的方法.该方法先将偏微分方程求解区域划分为若干个子区域,然后在各个子区域并行求解.全文共五章.第一章为引言,简要介绍了热传导方程并行算法的概况及该文所讨论的基本内容.在第二章,我们在内边界点为等距分划的多子区域条件下,得到Dawson等人关于求解热传导方程区域分解算法差分解的误差估计.在第三章,我们以Saul'yev非对称格式作内边界处理,发展了新的区域分解算法,得到了差分解的先验误差估计,并与Dawson等人的算法作了比较.给出了关于算法计算精度的数值结果.在第四章,我们发展了一些新技术,在子区域的边界处采用小时间步长古典显式格式求解,构造了新的区域分解算法,得到了差分解的先验误差估计.给出了关于算法计算精度的数值结果.在第五章,我们在二维热传导方程求解上扩充了Dawson等人的区域分解算法.给出了关于算法计算精度的数值结果.第六章为该研究工作的主要结论.2.期刊论文张守慧.王文洽.ZHANG Shou-hui.WANG Wen-qia热传导方程有限差分逼近的数学Stencil及其新型迭代格式-山东大学学报(理学版)2006,41(6)将Stencil应用于偏微分方程有限元差分逼近过程,以两类差分格式为基础建立了求解热传导方程的两种新型迭代算法.此两种算法与经典的Jacobi方法同样具有并行的性质,但比Jacobi方法收敛快.给出的算例说明方法的适用性.3.期刊论文吕桂霞.马富明.Lü Guixia.Ma Fuming二维热传导方程有限差分区域分解算法-数值计算与计算机应用2006,27(2)本文讨论了一类数值求解二维热传导方程的并行差分格式.在这个算法中,通过引进内界点将求解区域分裂成若干子区域.在子区域间内界点上采用非对称格式计算,一旦这些点的值被计算出来,各子区域间的计算可完全并行.本文得到了稳定性条件和最大模误差估计.它表明我们的格式有令人满意的稳定性,并且有着较高的收敛阶.4.学位论文田源地下煤火三维数理模型正演数值模拟2006本文首先给出了几个地下煤火随空间、温度变化的动态和稳态热数学物理模型及其简化模型。
matlab 热传导方程的差分
![matlab 热传导方程的差分](https://img.taocdn.com/s3/m/7538b952974bcf84b9d528ea81c758f5f61f29ee.png)
matlab 热传导方程的差分热传导方程是描述物体内部温度分布随时间变化的数学模型。
在工程和科学领域中,热传导方程的数值解是非常重要的,因为它可以帮助工程师和科学家们预测材料的温度变化,设计有效的散热系统等。
在本文中,我们将讨论如何使用Matlab对热传导方程进行差分求解。
差分法是一种常用的数值解法,它将连续的方程离散化为离散的点,通过迭代计算得到方程的近似解。
首先,让我们回顾一下热传导方程。
热传导方程通常写作:$$\frac{\partial u}{\partial t} = \alpha \nabla^2 u$$。
其中,$u$是温度分布,$t$是时间,$\alpha$是热传导系数,$\nabla^2$是拉普拉斯算子。
在一维情况下,热传导方程可以简化为:$$\frac{\partial u}{\partial t} = \alpha\frac{\partial^2 u}{\partial x^2}$$。
接下来,我们将使用有限差分法对这个一维热传导方程进行离散化。
假设我们有一个长度为$L$的杆,我们将其分成$n$个小段,每个小段的长度为$\Delta x = \frac{L}{n}$。
我们将温度在每个小段的离散点上进行逼近,即$u_i(t)$表示第$i$个小段上的温度,$t_j$表示第$j$个时间步。
我们可以使用中心差分法来逼近二阶导数:$$\frac{\partial^2 u}{\partial x^2} \approx\frac{u_{i+1} 2u_i + u_{i-1}}{(\Delta x)^2}$$。
将这个逼近代入热传导方程,我们可以得到离散化的方程:$$\frac{u_i^{j+1} u_i^j}{\Delta t} = \alpha\frac{u_{i+1}^j 2u_i^j + u_{i-1}^j}{(\Delta x)^2}$$。
其中,$\Delta t$是时间步长。
通过这个离散化方程,我们可以使用Matlab编写一个迭代算法来求解热传导方程的数值解。
matlab练习程序(差分法解一维热传导方程)
![matlab练习程序(差分法解一维热传导方程)](https://img.taocdn.com/s3/m/09edd50053ea551810a6f524ccbff121dc36c553.png)
matlab练习程序(差分法解⼀维热传导⽅程)差分法计算⼀维热传导⽅程是计算偏微分⽅程数值解的⼀个经典例⼦。
热传导⽅程也是⼀种抛物型偏微分⽅程。
⼀维热传导⽅程如下:该⽅程的解析解为:通过对⽐解析解和数值解,我们能够知道数值解的是否正确。
下⾯根据微分写出差分形式:整理得:已知⽹格平⾯三条边的边界条件,根据上⾯递推公式,不断递推就能计算出每个⽹格的值。
matlab代码如下:clear all;close all;clc;t = 0.03; %时间范围,计算到0.03秒x = 1; %空间范围,0-1⽶m = 320; %时间⽅向分320个格⼦n = 64; %空间⽅向分64个格⼦ht = t/(m-1); %时间步长dthx = x/(n-1); %空间步长dxu = zeros(m,n);%设置边界条件i=2:n-1;xx = (i-1)*x/(n-1);u(1,2:n-1) = sin(4*pi*xx);u(:,1) = 0;u(:,end) = 0;%根据推导的差分公式计算for i=1:m-1for j=2:n-1u(i+1,j) = ht*(u(i,j+1)+u(i,j-1)-2*u(i,j))/hx^2 + u(i,j);endend%画出数值解[x,t] = meshgrid(0:x/(n-1):1,0:0.03/(m-1):0.03);mesh(x,t,u)%画出解析解u1 = exp(-(4*pi)^2*t).*sin(4*pi*x);figure;mesh(x,t,u1);%数值解与解析解的差figure;mesh(abs(u-u1));数值解:解析解:两种解的差的绝对值:。
热传导方程以及matlab求解
![热传导方程以及matlab求解](https://img.taocdn.com/s3/m/71d90480d4bbfd0a79563c1ec5da50e2524dd132.png)
热传导方程及matlab求解1. 热传导方程的概念热传导方程是描述物质内部温度分布随时间变化的数学模型。
它是热力学基本方程之一,描述了热能在物体内传递和扩散的过程。
热传导方程通常表示为:$$\frac{\partial u}{\partial t} = \alpha \nabla^2 u$$其中,u表示温度分布,t表示时间,$\alpha$表示热扩散系数,$\nabla^2$表示拉普拉斯算子。
热传导方程可以根据不同的物理条件和边界条件进行不同形式的推导和求解。
2. 热传导方程的重要性热传导方程在工程、地球科学、生物学和材料科学等领域都有着广泛的应用。
通过研究热传导方程,可以深入理解物质内部温度变化的规律,从而优化材料设计、改进能源利用效率,甚至预测地球内部热量分布等方面都有着重要的意义。
3. 热传导方程的matlab求解Matlab作为一种强大的科学计算软件,对热传导方程的求解有着很好的支持。
通过Matlab中的偏微分方程求解工具包,可以方便地对热传导方程进行数值求解。
一般来说,使用Matlab求解热传导方程的步骤包括定义方程、设定边界条件和初值条件、选择合适的数值求解方法,并进行模拟计算。
4. 个人观点和理解对于热传导方程及其在Matlab中的求解,我个人认为这是一个非常有意思且实用的课题。
热传导方程作为热力学基本方程之一,在工程领域有着很重要的应用,而Matlab作为科学计算软件的代表,在求解热传导方程时具有高效、准确的优势。
通过学习热传导方程及在Matlab中的求解,不仅可以深入理解热传导的物理过程,还能够提升数值计算及编程的能力。
总结通过本文的介绍,我们了解了热传导方程的基本概念、重要性以及在Matlab中的求解方法。
热传导方程作为描述物质内部温度分布变化的数学模型,对于研究物质热传导过程有着重要意义。
而Matlab作为强大的科学计算软件,对于求解热传导方程也有着很好的支持。
希望通过本文的介绍,读者能对热传导方程及其在Matlab中的求解有更深入的理解,并能够在相关领域应用这些知识。
matlab二维热传导方程
![matlab二维热传导方程](https://img.taocdn.com/s3/m/202d750ee55c3b3567ec102de2bd960590c6d9d6.png)
matlab二维热传导方程热传导方程是描述热量在空间中传递和分布的数学模型。
在二维情况下,热传导方程可以写为偏微分方程的形式。
本文将介绍如何使用MATLAB来求解二维热传导方程。
首先,我们需要确定问题的边界条件和初始条件。
假设我们研究一个矩形区域内的热传导问题,并且该区域的边界上有固定的温度。
那么边界条件可以描述为边界上的温度值为常数。
对于初始条件,我们可以指定矩形区域内的温度分布。
然后,我们将采用有限差分法来离散化热传导方程。
假设矩形区域的长度为Lx,宽度为Ly,并将其划分为Nx个网格段和Ny个网格段。
我们可以将矩形区域内的温度值表示为一个Nx×Ny的矩阵,其中每个网格点的温度值为Ti,j。
根据有限差分法的思想,我们可以将二维热传导方程离散化为如下的差分方程:(Ti,j(t+Δt) - Ti,j(t))/Δt = α( (Ti+1,j(t) - 2Ti,j(t) + Ti-1,j(t))/(Δx)² +(Ti,j+1(t) - 2Ti,j(t) + Ti,j-1(t))/(Δy)² )其中,Δt是时间步长,α是热导率,Δx和Δy分别是网格段在x和y方向上的长度。
我们可以通过对该差分方程进行离散化,得到如下的迭代公式:Ti,j(t+Δt) = Ti,j(t) + αΔt/Δx² ( Ti+1,j(t) - 2Ti,j(t) + Ti-1,j(t) ) + αΔt/Δy² ( Ti,j+1(t) - 2Ti,j(t) + Ti,j-1(t) )我们可以使用MATLAB来编写程序求解上述差分方程,计算每个网格点在每个时间步长上的温度值。
首先,我们需要定义问题的参数,包括矩形区域的大小、网格的数量、以及时间步长等等。
Lx = 1; % 矩形区域的长度Ly = 1; % 矩形区域的宽度Nx = 100; % 网格在x方向上的数量Ny = 100; % 网格在y方向上的数量alpha = 0.1; % 热导率tFinal = 1; % 计算的总时间dt = 0.001; % 时间步长然后,我们需要对矩形区域进行离散化,得到网格点的坐标。
导热方程求解matlab
![导热方程求解matlab](https://img.taocdn.com/s3/m/211267738e9951e79b892763.png)
使用差分方法求解下面的热传导方程2(,)4(,)0100.2t xx T x t T x t x t =<<<<初值条件:2(,0)44T x x x =-边值条件:(0,)0(1,)0T t T t ==使用差分公式1,,1,222(,)2(,)(,)2(,)()i j i j i j i j i j i j xx i j T x h t T x t T x h t T T T T x t O h h h -+--++-+=+≈,1,(,)(,)(,)()i j i j i j i jt i j T x t k T x t T T T x t O k k k ++--=+≈上面两式带入原热传导方程,1,1,,1,22i j i ji j i j i jT T T T T k h +-+--+= 令224k r h=,化简上式的 ,1,1,1,(12)()i j i j i j i j T r T r T T +-+=-++ix jt j编程MATLAB 程序,运行结果如下x t Tfunction mypdesolutionc=1;xspan=[0 1];tspan=[0 0.2];ngrid=[100 10];f=@(x)4*x-4*x.^2;g1=@(t)0;g2=@(t)0;[T,x,t]=rechuandao(c,f,g1,g2,xspan,tspan,ngrid);[x,t]=meshgrid(x,t);mesh(x,t,T);xlabel('x')ylabel('t')zlabel('T')function [U,x,t]=rechuandao(c,f,g1,g2,xspan,tspan,ngrid)% 热传导方程:% Ut(x,t)=c^2*Uxx(x,t) a<x<b ts<t<tf% 初值条件:% u(x,0)=f(x)% 边值条件:% u(a,t)=g1(t)% u(b,t)=g2(t)%% 参数说明% c:方程中的系数% f:初值条件% g1,g2:边值条件% xspan=[a,b]:x的取值范围% tspan=[ts,tf]:t的取值范围% ngrid=[n,m]:网格数量,m为x网格点数量,n为t的网格点数量% U:方程的数值解% x,t:x和t的网格点n=ngrid(1);m=ngrid(2);h=range(xspan)/(m-1);x=linspace(xspan(1),xspan(2),m);k=range(tspan)/(n-1);t=linspace(tspan(1),tspan(2),n);r=c^2*k/h^2;if r>0.5error('为了保证算法的收敛,请增大步长h或减小步长k!')ends=1-2*r;U=zeros(ngrid);% 边界条件U(:,1)=g1(t);U(:,m)=g2(t);% 初值条件U(1,:)=f(x);% 差分计算for j=2:nfor i=2:m-1U(j,i)=s*U(j-1,i)+r*(U(j-1,i-1)+U(j-1,i+1));endend。