初三数学圆的难题
(word完整版)初三数学圆所有经典难题
圆所有经典难题一,选择题1.下列命题中正确的有( )个(1) 平分弦的直径垂直于弦(2)经过半径一端且与这条半径垂直的直线是圆的切线 (3)在同圆或等圆中,圆周角等于圆心角的一半 (4)平面内三点确定一个圆(5)三角形的外心到各个顶点的距离相等 (A) 1个 (B) 2个 (C) 3个 (D) 4个2.AC 平分∠BAD 且交BD 于F 点.若∠ADE =19°,则∠AFB 的度数为何?( )A .97°B .104°C .116°D .142°3.下列说法正确的是 ( ) A 、三点确定一个圆。
B 、一个三角形只有一个外接圆。
C 、和半径垂直的直线是圆的切线。
D 、三角形的内心到三角形三个顶点距离相等。
4.在半径等于5cm 的圆内有长为35cm 的弦,则此弦所对的圆周角为( )A 、60º或120º B. 30º或120º C. 60º D. 120º5.如图4,⊙O 的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为( )A、2 B、3 C、4 D、56.与三角形三个顶点距离相等的点,是这个三角形的 ( ) A 、 三条中线的交点, B 、三条角平分线的交点, C 、三条高的交点, D 、三边的垂直平分线的交点。
7.圆的半径为5cm ,圆心到一条直线的距离是7cm ,则直线与圆( ) A 、有两个交点, B 、有一个交点, C 、没有交点, D 、交点个数不定。
8.两圆的半径比为 2 cm 与3cm ,圆心距等于小圆半径的2倍,则两圆的关系为 ( ) A 、相离, B 、外切, C 、相交, D 、内切或内含9.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a>b ),A BP O则此圆的半径为( )A .2b a +B .2b a -C .22b a b a -+或D .b a b a -+或10.如图24—A —6,两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD=13,PC=4,则两圆组成的圆环的面积是( )A .16πB .36πC .52πD .81π二.填空题1.已知圆锥的高是cm 30,母线长是cm 50,则圆锥的侧面积是2.一个扇形的圆心角为90°,半径为2,则这个扇形的弧长为__________(结果保留π)3.将半径为5,圆心角为144°的扇形围成一个圈锥的侧面,则这个圆锥的底面半径为 _____.4.如图AD 、AE 、CB 都是⊙O 的切线,AD=4,则ΔABC 的周长是 . E ACA F ·O PB ·O CBD5.已知一个圆锥的侧面展开图是半径为r 的半圆,则这个圆锥的全面积是__________.6.圆柱的底面半径是3 cm ,母线长为4 cm ,那么圆柱的侧面积为_______.7.在Rt △ABC 中,∠C=90゜,AC=5,BC=12,以C 为圆心,R 为半径作圆与斜边AB 相切,则R 的值为 。
中考数学圆与相似(大题培优 易错 难题)含答案解析
中考数学圆与相似(大题培优易错难题)含答案解析一、相似1.Rt△ABC中,∠ACB=90°,AC=3,BC=7,点P是边AC上不与点A、C重合的一点,作PD∥BC交AB边于点D.(1)如图1,将△APD沿直线AB翻折,得到△AP'D,作AE∥PD.求证:AE=ED;(2)将△APD绕点A顺时针旋转,得到△AP'D',点P、D的对应点分别为点P'、D',①如图2,当点D'在△ABC内部时,连接P′C和D'B,求证:△AP'C∽△AD'B;②如果AP:PC=5:1,连接DD',且DD'= AD,那么请直接写出点D'到直线BC的距离.【答案】(1)证明:∵将△APD沿直线AB翻折,得到△AP'D,∴∠ADP'=∠ADP,∵AE∥PD,∴∠EAD=∠ADP,∴∠EAD=∠ADP',∴AE=DE(2)解:①∵DP∥BC,∴△APD∽△ACB,∴,∵旋转,∴AP=AP',AD=AD',∠PAD=∠P'AD',∴∠P'AC=∠D'AB,,∴△AP'C∽△AD'B②若点D'在直线BC下方,如图,过点A作AF⊥DD',过点D'作D'M⊥AC,交AC的延长线于M,∵AP:PC=5:1,∴AP:AC=5:6,∵PD∥BC,∴ = ,∵BC=7,∴PD=,∵旋转,∴AD=AD',且AF⊥DD',∴DF=D'F= D'D,∠ADF=∠AD'F,∵cos∠ADF== = ,∴∠ADF=45°,∴∠AD'F=45°,∴∠D'AD=90°∴∠D'AM+∠PAD=90°,∵D'M⊥AM,∴∠D'AM+∠AD'M=90°,∴∠PAD=∠AD'M,且AD'=AD,∠AMD'=∠APD,∴△AD'M≌△DAP(AAS)∴PD=AM=,∵CM=AM﹣AC=﹣3,∴CM=,∴点D'到直线BC的距离为若点D'在直线BC的上方,如图,过点D'作D'M⊥AC,交CA的延长线于点M,同理可证:△AMD'≌△DPA,∴AM=PD=,∵CM=AC+AM,∴CM=3+ =,∴点D'到直线BC的距离为综上所述:点D'到直线BC的距离为或;【解析】【分析】(1)由折叠的性质和平行线的性质可得∠EAD=∠ADP=∠ADP',即可得AE=DE;(2)①由题意可证△APD∽△ACB,可得,由旋转的性质可得AP=AP',AD=AD',∠PAD=∠P'AD',即∠P'AC=∠D'AB,,则△AP'C∽△AD'B;②分点D'在直线BC的下方和点D'在直线BC的上方两种情况讨论,根据平行线分线段成比例,可求PD=,通过证明△AMD'≌△DPA,可得AM=PD=,即可求点D'到直线BC 的距离.2.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE·CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,若PB=OB,CD=,求⊙O的半径.【答案】(1)证明:∵DC2=CE·CA,∴,∵∠DCE=∠ACD,∴△CDE~△CAD,∴∠CDE=∠CAD,又∵∠CBD=∠CAD,∴∠CDE=∠CBD,∴CD=CB.(2)解:连结OC(如图),设⊙O的半径为r,由(1)知CD=CB,∴弧CD=弧CB,∴∠CDB=∠CBD=∠CAB=∠CAD=∠BAD,∠BOC=2∠CAB,∴∠BOC=∠BAD,∴OC∥AD,∴,∵PB=OB,∴PB=OB=OA=r,PO=2r,∴=2,∵CD=2,∴PC=4,PD=PC+CD=6,又∵∠PCB=∠CDB+∠CBD,∠PAD=∠PACB+∠CAD,∴∠PCB=∠PAD,∵∠CPB=∠APD,∴△PCB~△PAD,∴,即,解得:r=4.即⊙O的半径为4.【解析】【分析】(1)根据相似三角形的判定:两边对应成比例及夹角相等可得△CDE~△CAD,再由相似三角形的性质:对应角相等,等量代换可得∠CDE=∠CBD,根据等腰三角形的性质即可得证.(2)连结OC,设⊙O的半径为r,根据圆周角定理可得∠BOC=∠BAD,由平行线的判定得OC∥AD,根据平行线所截线段成比例可得=2,从而求得PC、PD长,再根据相似三角形的判定可得△PCB~△PAD,由相似三角形的性质可得,从而求得半径.3.如图1,以□ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.(1)猜想BG与EG的数量关系.并说明理由;(2)延长DE,BA交于点H,其他条件不变,①如图2,若∠ADC=60°,求的值;②如图3,若∠ADC=α(0°<α<90°),直接写出的值.(用含α的三角函数表示)【答案】(1)解:,理由如下:∵四边形是平行四边形,∴∥, .∵四边形是菱形,∴∥, .∴∥, .∴ .又∵,∴≌ .∴(2)解:方法1:过点作∥,交于点,∴ .∵,∴∽ .∴ .由(1)结论知 .∴ .∴ .∵四边形为菱形,∴ .∵四边形是平行四边形,∴∥ .∴ .∵∥,∴ .∴,即 .∴是等边三角形。
初中数学圆的难题汇编附答案解析
一、选择题
1.如图,在 中, .将 绕点 按顺时针方向旋转 度后得到 ,此时点 在 边上,斜边 交 边于点 ,则 的大小和图中阴影部分的面积分别为()
A. B.
C. D.
【答案】C
【解析】
试题分析:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,
∴∠B=60°,AC=BC×cot∠A=2× =2 ,AB=2BC=4,
A.50°B.60°C.80°D.90°
【答案】C
【解析】
【分析】
根据圆内接四边形的性质得:∠GBC=∠ADC=50°,由垂径定理得: ,则∠DBC=2∠EAD=80°.
【详解】
如图,∵四边形ABCD为⊙O的内接四边形,∴∠GBC=∠ADC=50°.
∵AE⊥CD,∴∠AED=90°,∴∠EAD=90°﹣50°=40°,延长AE交⊙O于点M.
∴S阴影=S扇形−S△ODC= − ×3×3= − .
故答案选B.
【点睛】
本题考查的知识点是扇形面积的计算,解题的关键是熟练的掌握扇形面积的计算.
5.如图, 是 的直径, 是 上一点( 、 除外), ,则 的度数是()
A. B. C. D.
【答案】D
【解析】
【分析】
根据平角得出 的度数,进而利用圆周角定理得出 的度数即可.
故选C.
考点:1.旋转的性质2.含30度角的直角三角形.
2.在Rt△ABC中,∠ACB=90°.AC=8,BC=3,点D是BC边上动点,连接AD交以CD为直径的圆于点E,则线段BE长度的最小值为( )
A.1B. C. D.
【答案】A
【解析】
【分析】
根据直径所对的圆周角为直角可知∠CED=90°,则∠AEC=90°,设以AC为直径的圆的圆心为O,若BE最短,则OB最短,根据直角三角形斜边上的中线等于斜边的一半可得OE= AC=4,在Rt△OBC中,根据勾股定理可求得OB=5,即可得解.
初三数学圆压轴题方法
初三数学圆压轴题方法初三数学作为初中阶段最后一年的学习,对于学生来说,数学圆压轴题可以说是非常重要的一道考题。
那么,如何在考试中成功解决数学圆压轴题呢?下面是我总结的一些方法和技巧,希望能够帮助到大家。
一、切割法切割法是解决数学圆压轴题的一种常用方法。
具体来说,我们可以将圆分割成一些已知图形,通过这些已知图形的性质,来计算未知部分的值。
比如说,在求一个扇形的面积时,我们可以将扇形切割成一个以扇形半径为边长的等腰三角形和一个圆心角的弧所对的扇形,然后通过求等腰三角形的面积和扇形的面积的和来得到最终答案。
二、相似三角形法相似三角形法是圆压轴题中的常用方法之一。
我们可以通过建立一些相似三角形,来计算圆内、外一些未知部分的值。
比如说,在求圆内接正三角形的边长时,我们可以通过建立相似三角形来求解。
具体来说,我们可以连接圆心与三角形的顶点,并作垂线,然后就可以得到一个小三角形和一个大三角形。
由于这两个三角形是相似的,所以我们可以利用它们的边长比例,来求解出正三角形的边长。
三、勾股定理法有些圆压轴题,可以利用勾股定理来求解。
比如说,如果我们已知一个角度以及圆弧所对的弦长,那么我们就可以通过勾股定理来求解弧长。
具体来说,我们可以将弦分成两部分,然后运用勾股定理得到弦的长度,最后再用弦长(即直径)来求解弧长。
四、向量法向量法可以帮助我们快速求解圆的一些部分,例如弧长、面积等。
我们可以通过向量的加减乘除运算,来计算圆周上的点的坐标,从而求得圆弧的长度和面积。
以上就是我总结的一些初三数学圆压轴题的方法和技巧,希望能够帮助大家在考试中取得优异的成绩。
当然,解决数学圆压轴题不仅需要掌握一些方法和技巧,更需要这些方法和技巧在实践中的灵活应用,只有这样,我们才能更加轻松地应对各类数学题目。
(专题精选)初中数学圆的难题汇编含解析
(专题精选)初中数学圆的难题汇编含解析一、选择题1.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为()A.25cm B.45 cm C.25cm或45cm D.23cm或43cm【答案】C【解析】连接AC,AO,∵O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=12AB=12×8=4cm,OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴222254OA AM-=-=3cm,∴CM=OC+OM=5+3=8cm,∴22224845AM CM+=+=;当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5−3=2cm,在Rt△AMC中22224225AM CM+=+=cm.故选C.2.如图,已知AB是⊙O的直径,CD是弦,且CD⊥AB,BC=3,AC=4,则sin∠ABD的值是()A.43B.34C.35D.45【答案】D【解析】【分析】由垂径定理和圆周角定理可证∠ABD=∠ABC,再根据勾股定理求得AB=5,即可求sin∠ABD 的值.【详解】∵AB是⊙O的直径,CD⊥AB,∴弧AC=弧AD,∴∠ABD=∠ABC.根据勾股定理求得AB=5,∴sin∠ABD=sin∠ABC=45.故选D.【点睛】此题综合考查了垂径定理以及圆周角定理的推论,熟悉锐角三角函数的概念.3.如图,在平行四边形ABCD中,BD⊥AD,以BD为直径作圆,交于AB于E,交CD于F,若BD=12,AD:AB=1:2,则图中阴影部分的面积为()A.3B.36ππC.312πD.48336ππ【答案】C【解析】【分析】易得AD长,利用相应的三角函数可求得∠ABD的度数,进而求得∠EOD的度数,那么一个阴影部分的面积=S△ABD-S扇形DOE-S△BOE,算出后乘2即可.【详解】连接OE,OF.∵BD=12,AD :AB=1:2,∴AD=43 ,AB=83,∠ABD=30°,∴S △ABD =×43×12=243,S 扇形=603616,633933602OEB S ππ⨯==⨯⨯=V ∵两个阴影的面积相等,∴阴影面积=()224369330312ππ⨯--=- .故选:C【点睛】本题主要是理解阴影面积等于三角形面积减扇形面积和三角形面积.4.如图,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF=EB ,EF 与AB 交于点C ,连接OF ,若∠AOF=40°,则∠F 的度数是( )A .20°B .35°C .40°D .55°【答案】B【解析】【分析】 连接FB ,由邻补角定义可得∠FOB=140°,由圆周角定理求得∠FEB=70°,根据等腰三角形的性质分别求出∠OFB 、∠EFB 的度数,继而根据∠EFO =∠EBF-∠OFB 即可求得答案.【详解】连接FB ,则∠FOB=180°-∠AOF=180°-40°=140°,∴∠FEB=12∠FOB=70°,∵FO=BO,∴∠OFB=∠OBF=(180°-∠FOB)÷2=20°,∵EF=EB,∴∠EFB=∠EBF=(180°-∠FEB)÷2=55°,∴∠EFO=∠EBF-∠OFB=55°-20°=35°,故选B.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.5.如图,△ABC的外接圆是⊙O,半径AO=5,sinB=25,则线段AC的长为()A.1 B.2 C.4 D.5【答案】C【解析】【分析】首先连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,又由⊙O的半径是5,sinB=25,即可求得答案.【详解】解:连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,∵∠B和∠D所对的弧都为弧AC,∴∠B=∠D,即sinB=sinD=25,∵半径AO=5,∴CD=10,∴2 sin105AC ACDCD===,∴AC=4,故选:C.【点睛】本题考查了同弧所对的圆周角相等,以及三角函数的内容,注意到直径所对的圆周角是直角是解题的关键.6.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5 B.4 C.3 D.2【答案】B【解析】【分析】连接AI、BI,因为三角形的内心是角平分线的交点,所以AI是∠CAB的平分线,由平行的性质和等角对等边可得:AD=DI,同理BE=EI,所以图中阴影部分的周长就是边AB 的长.【详解】连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=4,即图中阴影部分的周长为4,故选B.【点睛】本题考查了三角形内心的定义、平移的性质及角平分线的定义等知识,熟练掌握三角形的内心是角平分线的交点是关键.7.如图,ABC ∆是O e 的内接三角形,45A ∠=︒,1BC =,把ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,点A 的对应点为点D ,则点A ,D 之间的距离是()A .1B .2 C .3 D .2【答案】A【解析】【分析】 连接AD ,构造△ADB ,由同弧所对应的圆周角相等和旋转的性质,证△ADB 和△DBE 全等,从而得到AD=BE=BC=1.【详解】如图,连接AD ,AO ,DO∵ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,∴AB=DE ,90AOD ∠=︒,45CAB BDE ∠=∠=︒∴1452ABD AOD ∠=∠=︒(同弧所对应的圆周角等于圆心角的一半), 即45ABD EDB ∠=∠=︒,又∵DB=BD ,∴DAB BED ∠=∠(同弧所对应的圆周角相等),在△ADB 和△DBE 中 ABD EDB AB EDDAB BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADB ≌△EBD (ASA ),∴AD=EB=BC=1.故答案为A.【点睛】本题主要考查圆周角、圆中的计算问题以及勾股定理的运用;顶点在圆上,两边都与圆相交的角角圆周角;掌握三角形全等的判定是解题的关键.8.如图,在扇形OAB中,120AOB∠=︒,点P是弧AB上的一个动点(不与点A、B重合),C、D分别是弦AP,BP的中点.若33CD=,则扇形AOB的面积为()A.12πB.2πC.4πD.24π【答案】A【解析】【分析】如图,作OH⊥AB于H.利用三角形中位线定理求出AB的长,解直角三角形求出OB即可解决问题.【详解】解:如图作OH⊥AB于H.∵C、D分别是弦AP、BP的中点.∴CD是△APB的中位线,∴AB=2CD=63∵OH⊥AB,∴BH=AH=33∵OA=OB,∠AOB=120°,∴∠AOH=∠BOH=60°,在Rt△AOH中,sin∠AOH=AHAO,∴AO=336sin3AHAOH==∠,∴扇形AOB的面积为:2120612360ππ=g g,故选:A.【点睛】本题考查扇形面积公式,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.9.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则⊙O的半径为()A.3B.23C.32D.23【答案】A【解析】连接OC,∵OA=OC,∠A=30°,∴∠OCA=∠A=30°,∴∠COB=∠A+∠ACO=60°,∵PC是⊙O切线,∴∠PCO=90°,∠P=30°,∵PC=3,∴OC=PC•tan30°3故选A10.如图,以Rt△ABC的直角边AB为直径作⊙O交BC于点D,连接AD,若∠DAC=30°,DC=1,则⊙O的半径为()A .2B .3C .2﹣3D .1【答案】B【解析】【分析】 先由圆周角定理知∠BDA=∠ADC=90°,结合∠DAC=30°,DC=1得AC=2DC=2,∠C=60°,再由AB=ACtanC=23可得答案.【详解】∵AB 是⊙O 的直径,∴∠BDA =∠ADC =90°,∵∠DAC =30°,DC =1,∴AC =2DC =2,∠C =60°,则在Rt △ABC 中,AB =ACtanC =23,∴⊙O 的半径为3,故选:B .【点睛】本题主要考查圆周角定理,解题的关键是掌握半圆(或直径)所对的圆周角是直角和三角函数的应用.11.如图,O e 中,若66OA BC AOB ⊥∠=o 、,则ADC ∠的度数为( )A .33°B .56°C .57°D .66°【答案】A【解析】【分析】 根据垂径定理可得»»ACAB =,根据圆周角定理即可得答案.【详解】∵OA ⊥BC ,∴»»ACAB =, ∵∠AOB=66°,∠AOB 和∠ADC 分别是»AB和»AC 所对的圆心角和圆周角, ∴∠ADC=12∠AOB=33°, 故选:A .【点睛】 本题考查垂径定理及圆周角定理,垂直于弦的直径平分弦,并且平分这条弦所对的两条弧;在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;熟练掌握相关定理是解题关键.12.在平面直角坐标系内,以原点O 为圆心,1为半径作圆,点P 在直线323y x =+上运动,过点P 作该圆的一条切线,切点为A ,则PA 的最小值为( )A .3B .2C .3D .2 【答案】D 【解析】【分析】先根据题意,画出图形,令直线y= 3x+ 23与x 轴交于点C ,与y 轴交于点D ,作OH ⊥CD 于H ,作OH ⊥CD 于H ;然后根据坐标轴上点的坐标特点,由一次函数解析式,求得C 、D 两点的坐标值; 再在Rt △POC 中,利用勾股定理可计算出CD 的长,并利用面积法可计算出OH 的值; 最后连接OA ,利用切线的性质得OA ⊥PA ,在Rt △POH 中,利用勾股定理,得到21PA OP =-,并利用垂线段最短求得PA 的最小值即可.【详解】如图, 令直线3x+23x 轴交于点C ,与y 轴交于点D ,作OH ⊥CD 于H , 当x=0时,y=3D (0,3当y=033,解得x=-2,则C (-2,0),∴222(23)4 CD=+=,∵12OH•CD=12OC•OD,∴OH=2233⨯=.连接OA,如图,∵PA为⊙O的切线,∴OA⊥PA,∴2221PA OP OA OP=-=-,当OP的值最小时,PA的值最小,而OP的最小值为OH的长,∴PA的最小值为22(3)12-=.故选D.【点睛】本题考查了切线的性质,解题关键是熟记切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.13.已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为()A.60πcm2B.65πcm2C.120πcm2D.130πcm2【答案】B【解析】【分析】先利用三视图得到底面圆的半径为5cm,圆锥的高为12cm,再根据勾股定理计算出母线长为13cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】根据三视图得到圆锥的底面圆的直径为10cm,即底面圆的半径为5cm,圆锥的高为12cm,所以圆锥的母线长=225+12=13,所以这个圆锥的侧面积=12×2π×5×13=65π(cm 2). 故选B .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.14.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.下列说法中错误的是( )A .勒洛三角形是轴对称图形B .图1中,点A 到¶BC上任意一点的距离都相等 C .图2中,勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都相等D .图2中,勒洛三角形的周长与圆的周长相等【答案】C【解析】【分析】根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误.【详解】鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;点A 到¶BC上任意一点的距离都是DE ,故正确; 勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误;鲁列斯曲边三角形的周长=3×60180DE DE ππ⨯=⨯ ,圆的周长=22DE DE ππ⨯=⨯ ,故说法正确.故选C.【点睛】主要考察轴对称图形,弧长的求法即对于新概念的理解.15.“直角”在几何学中无处不在,下列作图作出的AOB ∠不一定...是直角的是( ) A . B .C .D .【答案】C【解析】【分析】根据作图痕迹,分别探究各选项所做的几何图形问题可解.【详解】解:选项A 中,做出了点A 关于直线BC 的对称点,则AOB ∠是直角.选项B 中,AO 为BC 边上的高,则AOB ∠是直角.选项D 中,AOB ∠是直径AB 作对的圆周角,故AOB ∠是直角.故应选C【点睛】本题考查了尺规作图的相关知识,根据基本作图得到的结论,应用于几何证明是解题关键.16.如图,将边长为2cm 的正方形ABCD 沿直线l 向右翻动(不滑动),当正方形连续翻动8次后,正方形的中心O 经过的路线长是( )cm .A .2B .8C .3πD .4π【答案】D【解析】【分析】由题意可得翻转一次中心O 经过的路线长就是1个半径为1,圆心角是90°的弧长,然后进行计算即可解答.【详解】解:∵正方形ABCD cm ,∴对角线的一半=1cm ,则连续翻动8次后,正方形的中心O 经过的路线长=8×901180π⨯=4π. 故选:D .【点睛】本题考查了弧长的计算,审清题意、确定点O 的路线和长度是解答本题的关键.17.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x =的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.18.若正六边形的半径长为4,则它的边长等于( )A .4B .2C .D .【答案】A【解析】试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于4,则正六边形的边长是4.故选A . 考点:正多边形和圆.19.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=86°,则∠BCD的度数是()A.86°B.94°C.107°D.137°【答案】D【解析】【分析】【详解】解:∵∠BOD=86°,∴∠BAD=86°÷2=43°,∵∠BAD+∠BCD=180°,∴∠BCD=180°-43°=137°,即∠BCD的度数是137°.故选D.【点睛】本题考查圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).20.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.50°B.60°C.80°D.90°【答案】C【解析】【分析】根据圆内接四边形的性质得:∠GBC=∠ADC=50°,由垂径定理得:··,则∠CM DMDBC=2∠EAD=80°.【详解】如图,∵四边形ABCD为⊙O的内接四边形,∴∠GBC=∠ADC=50°.∵AE⊥CD,∴∠AED=90°,∴∠EAD=90°﹣50°=40°,延长AE交⊙O于点M.∵AO⊥CD,∴··,∴∠DBC=2∠EAD=80°.CM DM故选C.【点睛】本题考查了圆内接四边形的性质:圆内接四边形的任意一个外角等于它的内对角,还考查了垂径定理的应用,属于基础题.。
初三数学圆的综合的专项培优 易错 难题练习题附答案
初三数学圆的综合的专项培优 易错 难题练习题附答案一、圆的综合1.如图,AB 是半圆的直径,过圆心O 作AB 的垂线,与弦AC 的延长线交于点D ,点E 在OD 上DCE B ∠=∠. (1)求证:CE 是半圆的切线; (2)若CD=10,2tan 3B =,求半圆的半径.【答案】(1)见解析;(2)413 【解析】分析: (1)连接CO ,由DCE B ∠=∠且OC=OB,得DCE OCB ∠=∠,利用同角的余角相等判断出∠BCO+∠BCE=90°,即可得出结论;(2)设AC=2x ,由根据题目条件用x 分别表示出OA 、AD 、AB ,通过证明△AOD ∽△ACB ,列出等式即可.详解:(1)证明:如图,连接CO .∵AB 是半圆的直径, ∴∠ACB =90°.∴∠DCB =180°-∠ACB =90°. ∴∠DCE+∠BCE=90°. ∵OC =OB , ∴∠OCB =∠B. ∵=DCE B ∠∠, ∴∠OCB =∠DCE . ∴∠OCE =∠DCB =90°. ∴OC ⊥CE . ∵OC 是半径, ∴CE 是半圆的切线. (2)解:设AC =2x ,∵在Rt △ACB 中,2tan 3AC B BC ==, ∴BC =3x .∴()()222313AB x x x =+=.∵OD ⊥AB , ∴∠AOD =∠A CB=90°. ∵∠A =∠A , ∴△AOD ∽△ACB . ∴AC AOAB AD=. ∵1132OA AB x ==,AD =2x +10, ∴113221013xx x =+. 解得 x =8. ∴138413OA =⨯=. 则半圆的半径为413.点睛:本题考查了切线的判定与性质,圆周角定理,相似三角形.2.如图1,以边长为4的正方形纸片ABCD 的边AB 为直径作⊙O ,交对角线AC 于点E . (1)图1中,线段AE= ;(2)如图2,在图1的基础上,以点A 为端点作∠DAM=30°,交CD 于点M ,沿AM 将四边形ABCM 剪掉,使Rt △ADM 绕点A 逆时针旋转(如图3),设旋转角为α(0°<α<150°),在旋转过程中AD 与⊙O 交于点F . ①当α=30°时,请求出线段AF 的长;②当α=60°时,求出线段AF 的长;判断此时DM 与⊙O 的位置关系,并说明理由; ③当α= °时,DM 与⊙O 相切.【答案】(1)2(2)①2②2,相离③当α=90°时,DM 与⊙O 相切【解析】(1)连接BE ,∵AC 是正方形ABCD 的对角线,∴∠BAC =45°,∴△AEB 是等腰直角三角形,又∵AB=8,∴AE=4;(2)①连接OA、OF,由题意得,∠NAD=30°,∠DAM=30°,故可得∠OAM=30°,∠DAM=30°,则∠OAF=60°,又∵OA=OF,∴△OAF是等边三角形,∵OA=4,∴AF=OA=4;②连接B'F,此时∠NAD=60°,∵AB'=8,∠DAM=30°,∴AF=AB'cos∠DAM=8×=4;此时DM与⊙O的位置关系是相离;③∵AD=8,直径的长度相等,∴当DM与⊙O相切时,点D在⊙O上,故此时可得α=∠NAD=90°.点睛:此题属于圆的综合题,主要是仔细观察每一次旋转后的图形,根据含30°角的直角三角形进行计算,另外在解答最后一问时,关键是判断出点D的位置,有一定难度.3.矩形ABCD中,点C(3,8),E、F为AB、CD边上的中点,如图1,点A在原点处,点B在y轴正半轴上,点C在第一象限,若点A从原点出发,沿x轴向右以每秒1个单位长度的速度运动,点B随之沿y轴下滑,并带动矩形ABCD在平面内滑动,如图2,设运动时间表示为t秒,当点B到达原点时停止运动.(1)当t=0时,点F的坐标为;(2)当t=4时,求OE的长及点B下滑的距离;(3)求运动过程中,点F到点O的最大距离;(4)当以点F为圆心,FA为半径的圆与坐标轴相切时,求t的值.【答案】(1)F(3,4);(2)8-33)7;(4)t的值为245或325.【解析】试题分析:(1)先确定出DF,进而得出点F的坐标;(2)利用直角三角形的性质得出∠ABO=30°,即可得出结论;(3)当O、E、F三点共线时,点F到点O的距离最大,即可得出结论;(4)分两种情况,利用相似三角形的性质建立方程求解即可.试题解析:解:(1)当t=0时.∵AB=CD=8,F为CD中点,∴DF=4,∴F(3,4);(2)当t=4时,OA=4.在Rt△ABO中,AB=8,∠AOB=90°,∴∠ABO=30°,点E是AB的中点,OE=12AB=4,BO=3∴点B下滑的距离为843-.(3)当O 、E 、F 三点共线时,点F 到点O 的距离最大,∴FO=OE+EF=7.(4)在Rt △ADF 中,FD 2+AD 2=AF 2,∴AF =22FD AD +=5,①设AO =t 1时,⊙F 与x 轴相切,点A 为切点,∴FA ⊥OA ,∴∠OAB +∠FAB =90°.∵∠FAD +∠FAB =90°,∴∠BAO =∠FAD .∵∠BOA =∠D =90°,∴Rt △FAE ∽Rt △ABO ,∴AB AO FA FE =,∴1853t=,∴t 1=245,②设AO =t 2时,⊙F 与y 轴相切,B 为切点,同理可得,t 2=325. 综上所述:当以点F 为圆心,FA 为半径的圆与坐标轴相切时,t 的值为245或325. 点睛:本题是圆的综合题,主要考查了矩形的性质,直角三角形的性质,中点的意义,勾股定理,相似三角形的判定和性质,切线的性质,解(2)的关键是得出∠ABO =30°,解(3)的关键是判断出当O 、E 、F 三点共线时,点F 到点O 的距离最大,解(4)的关键是判断出Rt △FAE ∽Rt △ABD ,是一道中等难度的中考常考题.4.如图.在△ABC 中,∠C =90°,AC =BC ,AB =30cm ,点P 在AB 上,AP =10cm ,点E 从点P 出发沿线段PA 以2c m/s 的速度向点A 运动,同时点F 从点P 出发沿线段PB 以1c m/s 的速度向点B 运动,点E 到达点A 后立刻以原速度沿线段AB 向点B 运动,在点E 、F 运动过程中,以EF 为边作正方形EFGH ,使它与△ABC 在线段AB 的同侧,设点E 、F 运动的时间为t (s )(0<t <20).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与△ABC 重叠部分的面积为S .①试求S 关于t 的函数表达式;②以点C为圆心,12t为半径作⊙C,当⊙C与GH所在的直线相切时,求此时S的值.【答案】(1)t=2s或10s;(2)①S=22 2 9?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩;②100cm2.【解析】试题分析:(1)如图1中,当0<t≤5时,由题意AE=EH=EF,即10﹣2t=3t,t=2;如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10;(2)分四种切线讨论a、如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2.b、如图4中,当2<t≤5时,重叠部分是五边形EFGMN.c、如图5中,当5<t<10时,重叠部分是五边形EFGMN.d、如图6中,当10<t<20时,重叠部分是正方形EFGH.分别计算即可;②分两种情形分别列出方程即可解决问题.试题解析:解:(1)如图1中,当0<t≤5时,由题意得:AE=EH=EF,即10﹣2t=3t,t=2如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10.综上所述:t=2s或10s时,点H落在AC边上.(2)①如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2如图4中,当2<t≤5时,重叠部分是五边形EFGMN,S=(3t)2﹣12(5t﹣10)2=﹣72t2+50t﹣50.如图5中,当5<t<10时,重叠部分是五边形EFGMN,S=(20﹣t)2﹣12(30﹣3t)2=﹣72t2+50t﹣50.如图6中,当10<t<20时,重叠部分是正方形EFGH,S=(20﹣t)2=t2﹣40t+400.综上所述:S=2229?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩.②如图7中,当0<t≤5时,12t+3t=15,解得:t=307,此时S=100cm2,当5<t<20时,12t+20﹣t=15,解得:t=10,此时S=100.综上所述:当⊙C与GH所在的直线相切时,求此时S的值为100cm2点睛:本题考查了圆综合题、正方形的性质、等腰直角三角形的性质、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,注意不能漏解,属于中考压轴题.5.如图,Rt ABC∆内接于⊙O,AC BC=,BAC∠的平分线AD与⊙O交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连接CD,G是CD的中点,连接OG.(1)判断OG与CD的位置关系,写出你的结论并证明;(2)求证:AE BF=;(3)若3(22)OG DE=g,求⊙O的面积.【答案】(1)OG ⊥CD (2)证明见解析(3)6π 【解析】试题分析:(1)根据G 是CD 的中点,利用垂径定理证明即可; (2)先证明△ACE 与△BCF 全等,再利用全等三角形的性质即可证明; (3)构造等弦的弦心距,运用相似三角形以及勾股定理进行求解. 试题解析:(1)解:猜想OG ⊥CD .证明如下:如图1,连接OC 、OD .∵OC =OD ,G 是CD 的中点,∴由等腰三角形的性质,有OG ⊥CD .(2)证明:∵AB 是⊙O 的直径,∴∠ACB =90°,而∠CAE =∠CBF (同弧所对的圆周角相等).在Rt △ACE 和Rt △BCF 中,∵∠ACE =∠BCF =90°,AC =BC ,∠CAE =∠CBF ,∴Rt △ACE ≌Rt △BCF (ASA ),∴AE =BF .(3)解:如图2,过点O 作BD 的垂线,垂足为H ,则H 为BD 的中点,∴OH =12AD ,即AD =2OH ,又∠CAD =∠BAD ⇒CD =BD ,∴OH =OG .在Rt △BDE 和Rt △ADB 中,∵∠DBE =∠DAC =∠BAD ,∴Rt △BDE ∽Rt △ADB ,∴BD DEAD DB=,即BD 2=AD •DE ,∴22622BD AD DE OG DE =⋅=⋅=().又BD =FD ,∴BF =2BD ,∴2242422BF BD ==()①,设AC =x ,则BC =x ,AB 2x .∵AD 是∠BAC 的平分线,∴∠FAD =∠BAD .在Rt △ABD 和Rt △AFD 中,∵∠ADB =∠ADF =90°,AD =AD ,∠FAD =∠BAD ,∴Rt △ABD ≌Rt △AFD (ASA ),∴AF =AB 2x ,BD =FD ,∴CF =AF ﹣AC 221x x x -=().在Rt △BCF 中,由勾股定理,得:222222[21]222BF BC CF x x x =+=+=()()②,由①、②,得22222422x =()(),∴x 2=12,解得:23x =23-∴222326AB x ===∴⊙O 6,∴S ⊙O =π•6)2=6π.点睛:本题是圆的综合题.解题的关键是熟练运用垂径定理、勾股定理、相似三角形的判定与性质.6.如图,AD是△ABC的角平分线,以AD为弦的⊙O交AB、AC于E、F,已知EF∥BC.(1)求证:BC是⊙O的切线;(2)若已知AE=9,CF=4,求DE长;(3)在(2)的条件下,若∠BAC=60°,求tan∠AFE的值及GD长.【答案】(1)证明见解析(2)DE=6(3)37 5【解析】试题分析:(1)连接OD,由角平分线的定义得到∠1=∠2,得到»»DE DF=,根据垂径定理得到OD⊥EF,根据平行线的性质得到OD⊥BC,于是得到结论;(2)连接DE,由»»DE DF=,得到DE=DF,根据平行线的性质得到∠3=∠4,等量代换得到∠1=∠4,根据相似三角形的性质即可得到结论;(3)过F作FH⊥BC于H,由已知条件得到∠1=∠2=∠3=∠4=30°,解直角三角形得到FH=12DF=12×6=3,3227CF HF-=,根据三角函数的定义得到tan∠AFE=tan∠C=37HFCH=;根据相似三角形到现在即可得到结论.试题解析:(1)连接OD,∵AD是△ABC的角平分线,∴∠1=∠2,∴»»DE DF=,∴OD⊥EF,∵EF ∥BC ,∴OD ⊥BC ,∴BC 是⊙O 的切线;(2)连接DE ,∵»»DEDF =, ∴DE=DF ,∵EF ∥BC ,∴∠3=∠4,∵∠1=∠3,∴∠1=∠4,∵∠DFC=∠AED ,∴△AED ∽△DFC , ∴AE DE DF CF =,即94DE DE =, ∴DE 2=36,∴DE=6;(3)过F 作FH ⊥BC 于H ,∵∠BAC=60°,∴∠1=∠2=∠3=∠4=30°, ∴FH=12DF=162⨯=3,∴=,∵EF ∥BC ,∴∠C=∠AFE ,∴tan ∠AFE=tan ∠C=7HF CH =; ∵∠4=∠2.∠C=∠C ,∴△ADC ∽△DFC , ∴AD CD DF CF=, ∵∠5=∠5,∠3=∠2,∴△ADF ∽△FDG , ∴AD DF DF DG =,∴CD DF CF DG =6DG=,∴点睛:本题考查了切线的判定、圆周角定理、相似三角形的判定与性质、解直角三角形、平行线的性质,正确作出辅助线是解题的关键.7.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足若13 CFDF=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.(1)求证:△ADF∽△AED;(2)求FG的长;(3)求tan∠E的值.【答案】(1)证明见解析;(2)FG =2;(3)5 4.【解析】分析:(1)由AB是 O的直径,弦CD⊥AB,根据垂径定理可得:弧AD=弧AC,DG=CG,继而证得△ADF∽△AED;(2)由13CFFD= ,CF=2,可求得DF的长,继而求得CG=DG=4,则可求得FG=2;(3)由勾股定理可求得AG的长,即可求得tan∠ADF的值,继而求得tan∠5本题解析:①∵AB是⊙O的直径,弦CD⊥AB,∴DG=CG,∴»»AD AC=,∠ADF=∠AED,∵∠FAD=∠DAE(公共角),∴△ADF∽△AED;②∵13CFFD=,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG=CG-CF=2;③∵AF=3,FG=2,∴225AF FG-=,点睛:本题考查了相似三角形的判定与性质、圆周角定理、垂径定理、勾股定理以及三角函数等知识点,考查内容较多,综合性较强,难度适中,注意掌握数形结合的思想.8.如图,AB是⊙O的直径,D、D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且CE=CF.(1)求证:CE是⊙O的切线;(2)连接CD、CB,若AD=CD=a,求四边形ABCD面积.【答案】(1)证明见解析;(2)【解析】【分析】(1)连接OC,AC,可先证明AC平分∠BAE,结合圆的性质可证明OC∥AE,可得∠OCB=90°,可证得结论;(2)可先证得四边形AOCD为平行四边形,再证明△OCB为等边三角形,可求得CF、AB,利用梯形的面积公式可求得答案.【详解】(1)证明:连接OC,AC.∵CF⊥AB,CE⊥AD,且CE=CF.∴∠CAE=∠CAB.∵OC=OA,∴∠CAB=∠OCA.∴∠CAE=∠OCA.∴OC∥AE.∴∠OCE+∠AEC=180°,∵∠AEC=90°,∴∠OCE=90°即OC⊥CE,∵OC是⊙O的半径,点C为半径外端,∴CE是⊙O的切线.(2)解:∵AD=CD,∴∠DAC=∠DCA=∠CAB,∴DC∥AB,∵∠CAE=∠OCA,∴OC∥AD,∴四边形AOCD是平行四边形,∴OC=AD=a,AB=2a,∵∠CAE=∠CAB,∴CD=CB=a,∴CB=OC=OB,∴△OCB是等边三角形,在Rt△CFB中,CF=,∴S四边形ABCD=(DC+AB)•CF=【点睛】本题主要考查切线的判定,掌握切线的两种判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切点时,过圆心作垂直,证明圆心到直线的距离等于半径.9.如图,已知在△ABC中,∠A=90°,(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.【答案】(1)作图见解析;(2)3π【解析】【分析】(1)与AB、BC两边都相切.根据角平分线的性质可知要作∠ABC的角平分线,角平分线与AC的交点就是点P的位置.(2)根据角平分线的性质和30°角的直角三角形的性质可求半径,然后求圆的面积.【详解】解:(1)如图所示,则⊙P为所求作的圆.(2)∵∠ABC=60°,BP平分∠ABC,∴∠ABP=30°,∵∠A=90°,∴BP=2APRt△ABP中,AB=3,由勾股定理可得:AP=3,∴S⊙P=3π10.在直角坐标系中,O为坐标原点,点A坐标为(2,0),以OA为边在第一象限内作等边△OAB,C为x轴正半轴上的一个动点(OC>2),连接BC,以BC为边在第一象限内作等边△BCD,直线DA交y轴于E点.(1)求证:△OBC≌△ABD(2)随着C点的变化,直线AE的位置变化吗?若变化,请说明理由;若不变,请求出直线AE的解析式.(3)以线段BC为直径作圆,圆心为点F,当C点运动到何处时,直线EF∥直线BO;这时⊙F和直线BO的位置关系如何?请给予说明.【答案】(1)见解析;(2)直线AE的位置不变,AE的解析式为:33=-y x(3)C点运动到(4,0)处时,直线EF∥直线BO;此时直线BO与⊙F相切,理由见解析.【解析】【分析】(1)由等边三角形的性质可得到OB=AB,BC=BD,∠OBA=∠DBC,等号两边都加上∠ABC,得到∠OBC=∠ABD,根据“SAS”得到△OBC≌△ABD.(2)先由三角形全等,得到∠BAD=∠BOC=60°,由等边△BCD,得到∠BAO=60°,根据平角定义及对顶角相等得到∠OAE=60°,在直角三角形OAE中,由OA的长,根据tan60°的定义求出OE的长,确定出点E的坐标,设出直线AE的方程,把点A和E的坐标代入即可确定出解析式.(3)由EA∥OB,EF∥OB,根据过直线外一点作已知直线的平行线有且只有一条,得到EF与EA重合,所以F为BC与AE的交点,又F为BC的中点,得到A为OC中点,由A的坐标即可求出C的坐标;相切理由是由F为等边三角形BC边的中点,根据“三线合一”得到DF与BC 垂直,由EF与OB平行得到BF与OB垂直,得证.【详解】(1)证明:∵△OAB 和△BCD 都为等边三角形,∴OB=AB ,BC=BD ,∠OBA=∠DBC=60°,∴∠OBA+∠ABC=∠DBC+∠ABC ,即∠OBC=∠ABD ,在△OBC 和△ABD 中,OB AB OBC ABD BC BD =⎧⎪∠=∠⎨⎪=⎩, ∴△OBC ≌△ABD.(2)随着C 点的变化,直线AE 的位置不变,∵△OBC ≌△ABD ,∴∠BAD=∠BOC=60°,又∵∠BAO=60°,∴∠DAC=60°,∴∠OAE=60°,又OA=2,在Rt △AOE 中,tan60°=OE OA, 则∴点E 坐标为(0,设直线AE 解析式为y=kx+b ,把E 和A 的坐标代入得:02k b b=+⎧⎪⎨-=⎪⎩ ,解得,k b ⎧=⎪⎨=-⎪⎩, ∴直线AE的解析式为:y =-(3)C 点运动到(4,0)处时,直线EF ∥直线BO ;此时直线BO 与⊙F 相切,理由如下: ∵∠BOA=∠DAC=60°,EA ∥OB ,又EF ∥OB ,则EF 与EA 所在的直线重合,∴点F 为DE 与BC 的交点,又F 为BC 中点,∴A 为OC 中点,又AO=2,则OC=4,∴当C 的坐标为(4,0)时,EF ∥OB ,这时直线BO 与⊙F 相切,理由如下:∵△BCD 为等边三角形,F 为BC 中点,∴DF ⊥BC ,又EF ∥OB ,∴FB ⊥OB ,∴直线BO与⊙F相切,【点睛】本题考查了一次函数;三角形全等的判定与性质;等边三角形的性质和直线与圆的位置关系.熟练掌握相关性质定理是解题关键.11.如图,⊙O是△ABC的外接圆,AB是直径,过点O作OD⊥CB,垂足为点D,延长DO 交⊙O于点E,过点E作PE⊥AB,垂足为点P,作射线DP交CA的延长线于F点,连接EF,(1)求证:OD=OP;(2)求证:FE是⊙O的切线.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(2)证明△POE≌△ADO可得DO=EO;(3)连接AE,BE,证出△APE≌△AFE即可得出结论.试题解析:(1)∵∠EPO=∠BDO=90°∠EOP=∠BODOE=OB∴△OPE≌△ODB∴OD="OP"(2)连接EA,EB∴∠1=∠EBC∵AB是直径∴∠AEB=∠C=90°∴∠2+∠3=90°∵∠3=∠DEB∵∠BDE=90°∴∠EBC+∠DEB=90°∴∠2=∠EBC=∠1∵∠C=90°∠BDE=90°∴CF∥OE∴∠ODP=∠AFP∵OD=OP∴∠ODP=∠OPD∵∠OPD=∠APF∴∠AFP=∠APF∴AF=AP 又AE=AE∴△APE≌△AFE∴∠AFE=∠APE=90°∴∠FED=90°∴FE是⊙O的切线考点:切线的判定.12.如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.(1)求证:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度数;②若⊙O的半径为22,求线段EF的长.【答案】(1)证明见解析;(2)①∠OCE=45°;②EF =23【解析】【试题分析】(1)根据直线与⊙O相切的性质,得OC⊥CD.又因为AD⊥CD,根据同一平面内,垂直于同一条直线的两条直线也平行,得:AD//OC. ∠DAC=∠OCA.又因为OC=OA,根据等边对等角,得∠OAC=∠OCA.等量代换得:∠DAC=∠OAC.根据角平分线的定义得:AC平分∠DAO.(2)①因为 AD//OC,∠DAO=105°,根据两直线平行,同位角相等得,中,∠E=30°,利用内角和定理,得:∠OCE=45°.∠EOC=∠DAO=105°,在OCE②作OG⊥CE于点G,根据垂径定理可得FG=CG,因为OC=2,∠OCE=45°.等腰直角三2倍,得CG=OG=2. FG=2.在Rt△OGE中,∠E=30°,得GE=23则EF=GE-FG=23【试题解析】(1)∵直线与⊙O相切,∴OC⊥CD.又∵AD⊥CD,∴AD//OC.∴∠DAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA.∴∠DAC=∠OAC.∴AC平分∠DAO.(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°∵∠E=30°,∴∠OCE=45°.②作OG⊥CE于点G,可得FG=CG∵OC=22,∠OCE=45°.∴CG=OG=2.∴FG=2.∵在Rt△OGE中,∠E=30°,∴GE=23.∴EF=GE-FG=23-2.【方法点睛】本题目是一道圆的综合题目,涉及到圆的切线的性质,平行线的性质及判定,三角形内角和,垂径定理,难度为中等.13.在平面直角坐标系XOY中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,若P、Q为某等边三角形的两个顶点,且有一边与x轴平行(含重合),则称P、Q 互为“向善点”.如图1为点P、Q互为“向善点”的示意图.已知点A的坐标为(1,3),点B的坐标为(m,0)(1)在点M(﹣1,0)、S(2,0)、T(3,33)中,与A点互为“向善点”的是_____;(2)若A、B互为“向善点”,求直线AB的解析式;(3)⊙B的半径为3,若⊙B上有三个点与点A互为“向善点”,请直接写出m的取值范围.【答案】(1)S ,T .(2)直线AB 的解析式为y =3x 或y =﹣3x +23;(3)当﹣2<m <0或2<m <4时,⊙B 上有三个点与点A 互为“向善点”. 【解析】【分析】(1)根据等边三角形的性质结合“向善点”的定义,可得出点S ,T 与A 点互为“向善点”; (2)根据等边三角形的性质结合“向善点”的定义,可得出关于m 的分式方程,解之经检验后可得出点B 的坐标,根据点A ,B 的坐标,利用待定系数法即可求出直线AB 的解析式;(3)分⊙B 与直线y=3x 相切及⊙B 与直线y=-3x+23相切两种情况求出m 的值,再利用数形结合即可得出结论.【详解】(1)∵30330,3tan 601(1)221︒--===---,3333tan 6031︒-==-, ∴点S ,T 与A 点互为“向善点”.故答案为S ,T .(2)根据题意得:303|1|m -=-, 解得:m 1=0,m 2=2,经检验,m 1=0,m 2=2均为所列分式方程的解,且符合题意,∴点B 的坐标为(0,0)或(2,0).设直线AB 的解析式为y =kx +b (k ≠0),将A (1,),B (0,0)或(2,0)代入y =kx +b ,得:30k b b ⎧+=⎪⎨=⎪⎩或320k b k b ⎧+=⎪⎨+=⎪⎩, 解得:30k b ⎧=⎪⎨=⎪⎩或323k b ⎧=-⎪⎨=⎪⎩, ∴直线AB 的解析式为y =3x 或y =﹣3x +23.(3)当⊙B 与直线y =3x 相切时,过点B 作BE ⊥直线y =3x 于点E ,如图2所示.∵∠BOE =60°,∴sin60°=32BE OB =,∴OB=2,∴m=﹣2或m=2;当⊙B与直线y=﹣3x+23相切时,过点B作BF⊥直线y=﹣3x+23于点F,如图3所示.同理,可求出m=0或m=4.综上所述:当﹣2<m<0或2<m<4时,⊙B上有三个点与点A互为“向善点”.【点睛】本题考查了等边三角形的性质、特殊角的三角函数值、待定系数法求一次函数解析式、解分式方程以及解直角三角形,解题的关键是:(1)根据等边三角形的性质结合“向善点”的定义,确定给定的点是否与A点互为“向善点”;(2)根据点的坐标,利用待定系数法求出一次函数解析式;(3)分⊙B与直线y=3x相切及⊙B与直线y=-3x+23相切两种情况考虑.14.在中,,,,分别是边,的中点,若等腰绕点逆时针旋转,得到等腰,设旋转角为,记直线与的交点为.(1)问题发现如图1,当时,线段的长等于_________,线段的长等于_________.(2)探究证明如图2,当时,求证:,且.(3)问题解决求点到所在直线的距离的最大值.(直接写出结果)【答案】(1);;(2)详见解析;(3)【解析】【分析】(1)利用等腰直角三角形的性质结合勾股定理分别得出BD1的长和CE1的长;(2)根据旋转的性质得出,∠D1AB=∠E1AC=135°,进而求出△D1AB≌△E1AC(SAS),即可得出答案;(3)首先作PG⊥AB,交AB所在直线于点G,则D1,E1在以A为圆心,AD为半径的圆上,当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,进而求出PG的长.【详解】(1)解:∵∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点,∴AE=AD=2,∵等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),∴当α=90°时,AE1=2,∠E1AE=90°,∴BD1=;故答案为:;;(2)证明:由题意可知,,,∵是由绕点逆时针旋转得到,∴,,在和中,,∴,∴,.∵,∴,∴,∴,且.(3)点的运动轨迹是在的上半圆周,点的运动轨迹是在的弧段.即当与相切时,有最大值.点到所在直线的距离的最大值为.【点睛】此题主要考查了几何变换以及等腰腰直角三角形的性质和勾股定理以及切线的性质等知识,根据题意得出PG 的最长时P 点的位置是解题关键.15.如图,已知AB 是⊙O 的直径,直线CD 与⊙O 相切于C 点,AC 平分∠DAB . (1)求证:AD ⊥CD ;(2)若AD =2,AC=6,求⊙O 的半径R 的长.【答案】(1)证明见解析(2)32【解析】试题分析:(1)连接OC ,由题意得OC ⊥CD .又因为AC 平分∠DAB ,则∠1=∠2=12∠DAB .即可得出AD ∥OC ,则AD ⊥CD ; (2)连接BC ,则∠ACB =90°,可证明△ADC ∽△ACB .则2AD AC AC R ,从而求得R . 试题解析:(1)证明:连接OC ,∵直线CD 与⊙O 相切于C 点,AB 是⊙O 的直径,∴OC ⊥CD .又∵AC 平分∠DAB ,∴∠1=∠2=12∠DAB . 又∠COB =2∠1=∠DAB ,∴AD ∥OC ,∴AD ⊥CD .(2)连接BC ,则∠ACB =90°,在△ADC 和△ACB 中∵∠1=∠2,∠3=∠ACB =90°,∴△ADC ∽△ACB .∴2AD AC AC R= ∴R =2322AC AD =。
数学初三圆的试题及答案
数学初三圆的试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是圆的标准方程?A. (x-a)²+(y-b)²=r²B. x²+y²=rC. x²+y²=r²D. (x-a)²+(y-b)²=r答案:A2. 圆心为(2,3),半径为5的圆的方程是什么?A. (x-2)²+(y-3)²=25B. (x-2)²+(y-3)²=5C. x²+y²=25D. x²+y²=5答案:A3. 已知圆C的圆心为(1,1),半径为2,点P(4,3)在圆C上,那么点P 到圆心的距离是多少?A. 2B. 3C. 4D. 5答案:B4. 圆的直径是10,那么它的半径是多少?A. 5B. 10C. 20D. 15答案:A5. 圆心在原点,半径为3的圆的方程是?A. x²+y²=9B. (x-0)²+(y-0)²=3C. x²+y²=3D. (x-3)²+(y-3)²=9答案:A6. 圆的周长公式是?A. C=2πrB. C=πrC. C=2rD. C=r答案:A7. 圆的面积公式是?A. A=πr²B. A=2πrC. A=r²D. A=2r答案:A8. 圆的切线与半径垂直,那么切线与圆心的距离是多少?A. rB. 2rC. πrD. 0答案:A9. 圆的弧长公式是?A. L=rθB. L=2πrC. L=rθ/180D. L=2πrθ/360答案:D10. 圆的扇形面积公式是?A. S=1/2r²θB. S=1/2r²C. S=rθD. S=2πrθ/360答案:D二、填空题(每题4分,共20分)1. 圆心在(-2,4),半径为3的圆的方程是:(x+2)²+(y-4)²=________。
初三数学圆的解题技巧
初三数学圆的解题技巧圆,这个看似简单的图形,其实在数学的世界里,能让人乐此不疲。
初三的数学里,圆的题目总是充满了各种各样的考验,但只要掌握了几个关键技巧,你会发现解题其实没那么难。
今天咱们就来聊聊这些技巧,让你轻松应对圆的难题!1. 圆的基本概念1.1 圆的定义首先,咱们得知道什么是圆。
圆是由一个点(圆心)到圆上所有点的距离都相等的图形。
这个距离就是半径。
听起来简单吧?但这可是解圆题的基础哦。
1.2 圆的元素圆的基本元素有圆心、半径、直径、弦、切线。
圆心就是圆的中心点,半径是圆心到圆上任何一点的距离,直径则是穿过圆心的最长的线段,弦是圆内任意两点之间的线段,而切线则是与圆相切的直线。
这些概念都得熟记于心哦!2. 圆的常见问题与技巧2.1 弦的性质圆里的弦有个很重要的性质:在圆内,两条弦的长度如果相等,它们到圆心的距离也相等。
这就像两个“好朋友”,总是保持一样的距离。
利用这一点,可以帮助你解决很多涉及弦的题目。
2.2 圆心角与弦的关系圆心角就是圆心到圆上两点的夹角。
圆心角的一半就是弧所对的弦所夹的角,也就是所说的“圆周角”。
换句话说,圆心角越大,对应的弦也越长。
掌握这一点,你就能轻松搞定那些需要计算角度的题目。
2.3 切线与圆的关系切线和圆的关系特别简单:切线与圆在切点处垂直。
就是说,切线的斜率和圆的半径在切点处正好是“直的”。
这个性质常常用来求解与切线相关的题目,比如找切点或者切线的长度。
3. 解题策略3.1 画图“纸上得来终觉浅,绝知此事要躬行。
”解题时,画图是非常重要的一步。
画图不仅能帮助你理清思路,还能让你更好地理解题目中的条件和要求。
别怕麻烦,拿起铅笔动手画吧!3.2 应用公式圆的题目中,有几个公式是必备的,比如圆的周长公式(C = 2pi r)和圆的面积公式(A = pi r^2)。
这些公式的运用可以帮你快速解答涉及周长和面积的问题。
3.3 综合运用有些题目需要综合运用多个知识点,比如既要用到弦的性质,又要考虑圆心角和弧的关系。
初中数学圆难题压轴题60道
初中数学圆难题压轴题60道初中数学圆难题压轴题 60 道,以下是正文与拓展:1. 圆的周长公式是 C = 2πr,其中 r 是圆的半径,π是圆周率,约等于 3.14。
然而,当圆的半径增加时,圆的周长也增加,但是增加的速度不快。
因此,我们可以使用圆的周长公式来估算较大的圆的周长。
拓展:可以使用以下公式来计算任何圆的周长 C:C = πd,其中d 是圆的直径。
如果圆的半径增加一倍,则直径也会增加一倍,因此圆的周长也会增加一倍。
2. 圆的面积公式是 A = πr2,其中 r 是圆的半径。
圆的面积公式告诉我们,圆的面积与半径的平方成正比。
因此,当圆的半径增加时,圆的面积也会增加。
拓展:可以使用以下公式来计算任何圆的面积 A:A = πd2,其中 d 是圆的直径。
如果圆的半径增加一倍,则直径也会增加一倍,因此圆的面积也会增加一倍。
3. 圆心角的度数等于其所对的弧长与半径之比。
例如,如果一个圆心角是 360 度,那么它所对的弧长就是半径的二倍,因为 360 度÷ 2 = 180 度。
弧长与半径之比是 2:1。
拓展:在一个圆形中,所有圆心角所对的弧长都相等。
这是因为在任何圆形中,所有圆心角所对的弧长都等于半径,因此所有圆心角所对的度数都相等。
4. 弦长公式是 l = 2r sin(θ),其中 r 是圆的半径,θ是弦所在的圆心角。
弦长公式告诉我们,弦长与半径的正弦值成正比。
拓展:可以使用以下公式来计算任何圆的弦长 l:l = 2πrsin(θ),其中 r 是圆的半径,θ是弦所在的圆心角。
如果圆的半径增加一倍,则弦长也会增加一倍。
5. 切线公式是切线长公式是 l = √(s/r),其中 s 是半圆周长,r 是圆的半径。
切线长公式告诉我们,切线长与半径的平方根成正比。
拓展:可以使用以下公式来计算任何圆的切线长 l:l = √(2πr/2),其中 r 是圆的半径。
如果圆的半径增加一倍,则切线长也会增加一倍。
中考数学圆的重心和垂心难题讲解
在中考数学中,圆的重心和垂心是比较常见但难度较大的题目。
通过深入的讲解和解析,我们可以更好地理解这一主题的内涵和求解方法。
一、圆的重心1. 圆的重心概念圆的重心指的是圆内任意一点到圆上任意一点的距离的平方的和达到最小值时,这个点的位置。
通俗地讲,重心是圆内到圆上各点距离平方的和的最小值点。
2. 圆的重心求解当圆心坐标为(a, b),半径为r时,圆的重心坐标可表示为(Gx, Gy)=(a, b)。
也就是说,圆的重心坐标与圆心重合。
3. 圆的重心难题示例例题:已知圆心为O(-3, 4),半径为5,求圆的重心坐标。
解析:根据圆的特性可得,圆心坐标即为重心坐标,所以重心坐标为(-3, 4)。
这里是一个简单的例题,仅用于帮助理解圆的重心的概念。
二、圆的垂心1. 圆的垂心概念圆的垂心是指在直角三角形中,垂直于各边的三条高线的交点。
在圆内部,垂心是指三条垂直于圆上某点切线的交点。
2. 圆的垂心求解对于一个直角三角形,垂心是三条高的交点;对于一个圆,垂心是三条切线的交点。
垂心的求解需要根据具体的题目和情况来进行分析和计算。
3. 圆的垂心难题示例例题:已知圆心为A(2, 3),半径为4,点P在圆上,求AP的垂直平分线方程。
解析:首先求出AP的中点坐标M,然后根据斜率的性质求出垂直平分线的方程。
这是一个典型的圆的垂心难题,需要利用多种数学知识和方法来求解。
总结回顾:通过以上的深入讲解和示例分析,我们对圆的重心和垂心有了更清晰的理解。
重心是圆内到圆上各点距离平方的和的最小值点,而垂心是直角三角形或圆内三条切线的交点。
在实际求解中,需要运用到圆的性质、坐标系和几何知识等多方面的内容。
对于学生来说,需要通过大量的练习和实际应用来加深理解和掌握这一主题。
个人观点和理解:在学习和教学圆的重心和垂心时,应该注重学生对基本原理和概念的理解,同时也要引导他们探索解题的方法和思路。
通过合理的示例讲解和练习,可以帮助学生更好地掌握这一知识点,并在解题中灵活运用。
中考数学圆的综合(大题培优 易错 难题)
中考数学圆的综合(大题培优易错难题)一、圆的综合1.如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O上,且点C是的中点,过点C作⊙O的切线交AB的延长线于点D,交AF的延长线于点E.(1)求证:AE⊥DE;(2)若∠BAF=60°,AF=4,求CE的长.【答案】(1)证明见解析;(2)【解析】试题分析:(1)首先连接OC,由OC=OA,,易证得OC∥AE,又由DE切⊙O于点C,易证得AE⊥DE;(2)由AB是⊙O的直径,可得△ABC是直角三角形,易得△AEC为直角三角形,根据AE=3求得AC的长,然后连接OF,可得△OAF为等边三角形,知AF=OA=AB,在△ACB 中,利用已知条件求得答案.试题解析:(1)证明:连接OC,∵OC=OA,∴∠BAC=∠OCA,∵∴∠BAC=∠EAC,∴∠EAC=∠OCA,∴OC∥AE,∵DE切⊙O于点C,∴OC⊥DE,∴AE⊥DE;(2)解:∵AB是⊙O的直径,∴△ABC是直角三角形,∵∠CBA=60°,∴∠BAC=∠EAC=30°,∵△AEC为直角三角形,AE=3,∴AC=2,连接OF,∵OF=OA,∠OAF=∠BAC+∠EAC=60°,∴△OAF为等边三角形,∴AF=OA=AB,在Rt△ACB中,AC=2,tan∠CBA=,∴BC=2,∴AB=4,∴AF=2.考点:切线的性质.2.已知▱ABCD的周长为26,∠ABC=120°,BD为一条对角线,⊙O内切于△ABD,E,F,G 为切点,已知⊙O的半径为3▱ABCD的面积.【答案】3【解析】【分析】首先利用三边及⊙O的半径表示出平行四边形的面积,再根据题意求出AB+AD=13,然后利用切线的性质求出BD的长即可解答.【详解】设⊙O分别切△ABD的边AD、AB、BD于点G、E、F;平行四边形ABCD的面积为S;则S=2S△ABD=2×12(AB·OE+BD·OF+AD·3(AB+AD+BD);∵平行四边形ABCD的周长为26,∴AB+AD=13,∴3;连接OA;由题意得:∠OAE=30°,∴AG=AE=3;同理可证DF=DG,BF=BE;∴DF+BF=DG+BE=13﹣3﹣3=7,即BD=7,∴313+7)3即平行四边形ABCD的面积为3.3.如图,点P是正方形ABCD内的一点,连接PA,PB,PC.将△PAB绕点B顺时针旋转90°到△P'CB的位置.(1)设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P'CB的过程中边PA所扫过区域(图中阴影部分)的面积;(2)若PA=2,PB=4,∠APB=135°,求PC的长.【答案】(1) S阴影=(a2-b2);(2)PC=6.【解析】试题分析:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积.(2)连接PP',根据旋转的性质可知:BP=BP',旋转角∠PBP'=90°,则△PBP'是等腰直角三角形,∠BP'C=∠BPA=135°,∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,可推出△PP'C是直角三角形,进而可根据勾股定理求出PC的长.试题解析:(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP′=(a2-b2);(2)连接PP′,根据旋转的性质可知:△APB≌△CP′B,∴BP=BP′=4,P′C=PA=2,∠PBP′=90°,∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32;又∵∠BP′C=∠BPA=135°,∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,即△PP′C是直角三角形.PC==6.考点:1.扇形面积的计算;2.正方形的性质;3.旋转的性质.4.如图,△ABC的内接三角形,P为BC延长线上一点,∠PAC=∠B,AD为⊙O的直径,过C作CG⊥AD于E,交AB于F,交⊙O于G.(1)判断直线PA与⊙O的位置关系,并说明理由;(2)求证:AG2=AF·AB;(3)若⊙O的直径为10,AC=25,AB=45,求△AFG的面积.【答案】(1)PA与⊙O相切,理由见解析;(2)证明见解析;(3)3.【解析】试题分析:(1)连接CD,由AD为⊙O的直径,可得∠ACD=90°,由圆周角定理,证得∠B=∠D,由已知∠PAC=∠B,可证得DA⊥PA,继而可证得PA与⊙O相切.(2)连接BG,易证得△AFG∽△AGB,由相似三角形的对应边成比例,证得结论.(3)连接BD,由AG2=AF•AB,可求得AF的长,易证得△AEF∽△ABD,即可求得AE的长,继而可求得EF与EG的长,则可求得答案.试题解析:解:(1)PA与⊙O相切.理由如下:如答图1,连接CD,∵AD为⊙O的直径,∴∠ACD=90°.∴∠D+∠CAD=90°.∵∠B=∠D,∠PAC=∠B,∴∠PAC=∠D.∴∠PAC+∠CAD=90°,即DA⊥PA.∵点A在圆上,∴PA与⊙O相切.(2)证明:如答图2,连接BG,∵AD 为⊙O 的直径,CG ⊥AD ,∴»»AC AD =.∴∠AGF=∠ABG.∵∠GAF=∠BAG ,∴△AGF ∽△ABG.∴AG :AB=AF :AG. ∴AG 2=AF•AB.(3)如答图3,连接BD ,∵AD 是直径,∴∠ABD=90°. ∵AG 2=AF•AB ,AG=AC=25,AB=45,∴AF=5.∵CG ⊥AD ,∴∠AEF=∠ABD=90°.∵∠EAF=∠BAD ,∴△AEF ∽△ABD. ∴AE AF AB AD =,即51045=,解得:AE=2. ∴221EF AF AE =-=. ∵224EG AG AE =-=,∴413FG EG EF =-=-=. ∴1132322AFG S FG AE ∆=⋅⋅=⨯⨯=.考点:1. 圆周角定理;2.直角三角形两锐角的关系;3. 相切的判定;4.垂径定理;5.相似三角形的判定和性质;6.勾股定理;7.三角形的面积.5.四边形 ABCD 的对角线交于点 E ,且 AE =EC ,BE =ED ,以 AD 为直径的半圆过点 E ,圆心 为 O .(1)如图①,求证:四边形 ABCD 为菱形;(2)如图②,若 BC 的延长线与半圆相切于点 F ,且直径 AD =6,求弧AE 的长.【答案】(1)见解析;(2)π2 【解析】 试题分析:(1)先判断出四边形ABCD 是平行四边形,再判断出AC ⊥BD 即可得出结论; (2)先判断出AD =DC 且DE ⊥AC ,∠ADE =∠CDE ,进而得出∠CDA =30°,最后用弧长公式即可得出结论.试题解析:证明:(1)∵四边形ABCD 的对角线交于点E ,且AE =EC ,BE =ED ,∴四边形ABCD 是平行四边形.∵以AD 为直径的半圆过点E ,∴∠AED =90°,即有AC ⊥BD ,∴四边形ABCD 是菱形;(2)由(1)知,四边形ABCD 是菱形,∴△ADC 为等腰三角形,∴AD =DC 且DE ⊥AC ,∠ADE =∠CDE .如图2,过点C 作CG ⊥AD ,垂足为G ,连接FO .∵BF 切圆O 于点F ,∴OF ⊥AD ,且132OF AD ==,易知,四边形CGOF 为矩形,∴CG =OF =3. 在Rt △CDG 中,CD =AD =6,sin ∠ADC =CG CD =12,∴∠CDA =30°,∴∠ADE =15°. 连接OE ,则∠AOE =2×∠ADE =30°,∴¶3031802AE ππ⋅⨯==.点睛:本题主要考查菱形的判定即矩形的判定与性质、切线的性质,熟练掌握其判定与性质并结合题意加以灵活运用是解题的关键.6.不用圆规、三角板,只用没有刻度的直尺,用连线的方法在图1、2中分别过圆外一点A 作出直径BC 所在射线的垂线.【答案】画图见解析.【解析】【分析】根据直角所对的圆周角是直角,构造直角三角形,利用直角三角形性质可画出垂线;或结合圆的轴对称性质也可以求出垂线.【详解】解:画图如下:【点睛】本题考核知识点:作垂线.解题关键点:结合圆的性质和直角三角形性质求出垂线.7.如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB交⊙O于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG(1)判断CG与⊙O的位置关系,并说明理由;(2)求证:2OB2=BC•BF;(3)如图2,当∠DCE=2∠F,CE=3,DG=2.5时,求DE的长.【答案】(1)CG与⊙O相切,理由见解析;(2)见解析;(3)DE=2【解析】【分析】(1)连接CE,由AB是直径知△ECF是直角三角形,结合G为EF中点知∠AEO=∠GEC=∠GCE,再由OA=OC知∠OCA=∠OAC,根据OF⊥AB可得∠OCA+∠GCE=90°,即OC⊥GC,据此即可得证;(2)证△ABC∽△FBO得BC ABBO BF=,结合AB=2BO即可得;(3)证ECD∽△EGC得EC EDEG EC=,根据CE=3,DG=2.5知32.53DEDE=+,解之可得.【详解】解:(1)CG与⊙O相切,理由如下:如图1,连接CE,∵AB是⊙O的直径,∴∠ACB=∠ACF=90°,∵点G是EF的中点,∴GF=GE=GC,∴∠AEO=∠GEC=∠GCE,∵OA=OC,∴∠OCA=∠OAC,∵OF⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠GCE=90°,即OC⊥GC,∴CG与⊙O相切;(2)∵∠AOE=∠FCE=90°,∠AEO=∠FEC,∴∠OAE=∠F,又∵∠B=∠B,∴△ABC∽△FBO,∴BC ABBO BF=,即BO•AB=BC•BF,∵AB=2BO,∴2OB2=BC•BF;(3)由(1)知GC=GE=GF,∴∠F =∠GCF ,∴∠EGC =2∠F ,又∵∠DCE =2∠F ,∴∠EGC =∠DCE ,∵∠DEC =∠CEG ,∴△ECD ∽△EGC , ∴EC ED EG EC=, ∵CE =3,DG =2.5,∴32.53DE DE =+, 整理,得:DE 2+2.5DE ﹣9=0,解得:DE =2或DE =﹣4.5(舍),故DE =2.【点睛】本题是圆的综合问题,解题的关键是掌握圆周角定理、切线的判定、相似三角形的判定与性质及直角三角形的性质等知识点.8.如图,□ABCD 的边AD 是△ABC 外接圆⊙O 的切线,切点为A ,连接AO 并延长交BC 于点E ,交⊙O 于点F ,过点C 作直线CP 交AO 的延长线于点P ,且∠BCP =∠ACD . (1)求证:PC 是⊙O 的切线;(2)若∠B =67.5°,BC =2,求线段PC ,PF 与弧CF 所围成的阴影部分的面积S .【答案】(1)见解析;(2)14π-【解析】 【分析】(1) 过C 点作直径CM ,连接MB ,根据CM 为直径,可得∠M+∠BCM =90°,再根据AB ∥DC 可得∠ACD =∠BAC ,由圆周角定理可得∠BAC =∠M ,∠BCP =∠ACD ,从而可推导得出∠PCM =90°,根据切线的判定即可得;(2)连接OB ,由AD 是⊙O 的切线,可得∠PAD =90°,再由BC ∥AD ,可得AP ⊥BC ,从而得BE =CE = 12BC =1,继而可得到∠ABC =∠ACB =67.5°,从而得到∠BAC =45°,由圆周角定理可得∠BOC=90°,从而可得∠BOE =∠COE =∠OCE = 45°,根据已知条件可推导得出OE =CE =1,PC =OC 22OE CE 2+部分的面积.【详解】(1)过C点作直径CM,连接MB,∵CM为直径,∴∠MBC=90°,即∠M+∠BCM=90°,∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴∠ACD=∠BAC,∵∠BAC=∠M,∠BCP=∠ACD,∴∠M=∠BCP,∴∠BCP+∠BCM=90°,即∠PCM=90°,∴CM⊥PC,∴PC与⊙O相切;(2)连接OB,∵AD是⊙O的切线,切点为A,∴OA⊥AD,即∠PAD=90°,∵BC∥AD,∠AEB=∠PAD=90°,∴AP⊥BC.∴BE=CE=12BC=1,∴AB=AC,∴∠ABC=∠ACB=67.5°,∴∠BAC=180°-∠ABC-∠ACB=45°,∴∠BOC=2∠BAC=90°,∵OB=OC,AP⊥BC,∴∠BOE=∠COE=∠OCE= 45°,∵∠PCM=90°,∴∠CPO=∠COE=∠OCE= 45°,∴OE=CE=1,PC=OC=22OE CE2+=,∴S=S△POC-S扇形OFC=()245π21π22123604⨯⨯⨯-=-.【点睛】本题考查了切线的判定与性质、圆周角定理、垂径定理、扇形面积等,综合性较强,准确添加辅助线是解题的关键.9.如图,⊙O是△ABC的外接圆,AB是直径,过点O作OD⊥CB,垂足为点D,延长DO 交⊙O于点E,过点E作PE⊥AB,垂足为点P,作射线DP交CA的延长线于F点,连接EF,(1)求证:OD=OP;(2)求证:FE是⊙O的切线.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(2)证明△POE≌△ADO可得DO=EO;(3)连接AE,BE,证出△APE≌△AFE即可得出结论.试题解析:(1)∵∠EPO=∠BDO=90°∠EOP=∠BODOE=OB∴△OPE≌△ODB∴OD="OP"(2)连接EA,EB∴∠1=∠EBC∵AB是直径∴∠AEB=∠C=90°∴∠2+∠3=90°∵∠3=∠DEB∵∠BDE=90°∴∠EBC+∠DEB=90°∴∠2=∠EBC=∠1∵∠C=90°∠BDE=90°∴CF∥OE∴∠ODP=∠AFP∵OD=OP∴∠ODP=∠OPD∵∠OPD=∠APF∴∠AFP=∠APF∴AF=AP 又AE=AE∴△APE≌△AFE∴∠AFE=∠APE=90°∴∠FED=90°∴FE是⊙O的切线考点:切线的判定.10.如图,点A,B,C,D,E在⊙O上,AB⊥CB于点B,tanD=3,BC=2,H为CE延长线上一点,且AH=10,CH52=.(1)求证:AH是⊙O的切线;(2)若点D是弧CE的中点,且AD交CE于点F,求证:HF=HA;(3)在(2)的条件下,求EF的长.-【答案】(1)证明见解析(2)证明见解析(3)102【解析】【分析】(1)连接AC,由AB⊥CB可知AC是⊙O的直径,由圆周角定理可得∠C=∠D,于是得到tanC=3,故此可知AB=6,在Rt△ABC中,由勾股定理得:AC2= 40,从而可得AC2+AH2=CH2,根据勾股定理的逆定理可得AC⊥AH,问题得证;(2)连接DE、BE,由弦切角定理可知∠ABD=∠HAD,由D是»CE的中点,可得∠CED=∠EBD,再由圆周角定理可得∠ABE=∠ADE,结合三角形的外角即可证明∠HAF=∠AFH,从而可证得AH=HF;(3)由切割线定理可得EH=2,由(2)可知AF=FH=10,从而可得EF=FH﹣EH=10-2.【详解】(1)如图1所示:连接AC.∵AB⊥CB,∴AC是⊙O的直径,∵∠C=∠D,∴tanC=3,∴AB=3BC=3×2=6,在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=40,又∵AH2=10,CH2=50,∴AC2+AH2=CH2,∴△ACH为直角三角形,∴AC⊥AH,∴AH是圆O的切线;(2)如图2所示:连接DE、BE,∵AH是圆O的切线,∴∠ABD=∠HAD,∵D是»CE的中点,∴»»CD ED=,∴∠CED=∠EBD,又∵∠ABE=∠ADE,∴∠ABE+∠EBD=∠ADE+∠CED,∴∠ABD=∠AFE,∴∠HAF=∠AFH,∴AH=HF;(3)由切割线定理可知:AH2=EH•CH10)22EH,解得:2,∵由(2)可知10,∴EF=FH﹣102.【点睛】本题主要考查圆的综合应用,解答主要应用了切线的判定定理、弦切角定理、切割线定理、圆周角定理、勾股定理、勾股定理的逆定理、三角形的外角的性质等,正确添加辅助线是解题的关键.BC=,∠B=45°,点D在边BC上,联结AD,以点A 11.如图,已知△ABC,2,3为圆心,AD为半径画圆,与边AC交于点E,点F在圆A上,且AF⊥AD.(1)设BD为x,点D、F之间的距离为y,求y关于x的函数解析式,并写出定义域;BD CD的值;(2)如果E是»DF的中点,求:(3)联结CF,如果四边形ADCF是梯形,求BD的长.【答案】(1) 2442y x x =-+(0≤x≤3); (2) 45; (3) BD 的长是1或1+5. 【解析】【分析】 (1)过点A 作AH ⊥BC ,垂足为点H .构造直角三角形,利用解直角三角形和勾股定理求得AD 的长度.联结DF ,点D 、F 之间的距离y 即为DF 的长度,在Rt △ADF 中,利用锐角三角形函数的定义求得DF 的长度,易得函数关系式.(2)由勾股定理求得:AC=22AH DH +.设DF 与AE 相交于点Q ,通过解Rt △DCQ 和Rt △AHC 推知12DQ CQ =.故设DQ=k ,CQ=2k ,AQ=DQ=k ,所以再次利用勾股定理推知DC 的长度,结合图形求得线段BD 的长度,易得答案.(3)如果四边形ADCF 是梯形,则需要分类讨论:①当AF ∥DC 、②当AD ∥FC .根据相似三角形的判定与性质,结合图形解答.【详解】(1)过点A 作AH ⊥BC ,垂足为点H .∵∠B =45°,AB 2∴·cos 1BH AH AB B ===.∵BD 为x ,∴1DH x =-.在Rt △ADH 中,90AHD ∠=︒,∴22222AD AH DH x x =+=-+. 联结DF ,点D 、F 之间的距离y 即为DF 的长度.∵点F 在圆A 上,且AF ⊥AD ,∴AD AF =,45ADF ∠=︒.在Rt △ADF 中,90DAF ∠=︒,∴2442cos AD DF x x ADF ==-+∠ ∴2442y x x =-+.()03x ≤≤ ;(2)∵E 是DF 的中点,∴AE DF ⊥,AE 平分DF .∵BC=3,∴312HC =-=.∴AC =.设DF 与AE 相交于点Q ,在Rt △DCQ 中,90DQC ∠=︒,tan DQ DCQ CQ ∠=. 在Rt △AHC 中,90AHC ∠=︒,1tan 2AH ACH HC ∠==. ∵DCQ ACH ∠=∠,∴12DQ CQ =. 设,2DQ k CQ k ==,AQ DQ k ==,∵3k =k =,∴53DC ==. ∵43BD BC DC =-=,∴4:5BD CD =. (3)如果四边形ADCF 是梯形 则①当AF ∥DC 时,45AFD FDC ∠=∠=︒.∵45ADF ∠=︒,∴AD BC ⊥,即点D 与点H 重合. ∴1BD =.②当AD ∥FC 时,45ADF CFD ∠=∠=︒.∵45B ∠=︒,∴B CFD ∠=∠.∵B BAD ADF FDC ∠+∠=∠+∠,∴BAD FDC ∠=∠.∴ABD ∆∽DFC ∆.∴AB AD DF DC =. ∵DF =,DC BC BD =-.∴2AD BC BD =-.即23x =-,整理得 210x x --=,解得 x =综上所述,如果四边形ADCF 是梯形,BD 的长是1或2. 【点睛】此题属于圆的综合题,涉及了平行四边形的性质、相似三角形的判定与性质、三角函数值以及勾股定理等知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.12.如图,在△ABC 中,AB =AC ,以AC 为直径作⊙O 交BC 于点D ,过点D 作FE ⊥AB 于点E ,交AC 的延长线于点F .(1)求证:EF 与⊙O 相切;(2)若AE =6,sin ∠CFD =35,求EB 的长.【答案】(1)见解析(2)32 【解析】 【分析】 ()1如图,欲证明EF 与O e 相切,只需证得OD EF ⊥.()2通过解直角AEF V 可以求得AF 10.=设O e 的半径为r ,由已知可得△FOD ∽△FAE ,继而得到OF OD AF AE =,即10r r 106-=,则易求15AB AC 2r 2===,所以153EB AB AE 622=-=-=. 【详解】(1)如图,连接OD ,OC OD =Q ,OCD ODC ∠∠∴=.AB AC =Q ,ACB B ∠∠∴=,ODC B ∠∠∴=,OD //AB ∴,ODF AEF ∠∠∴=,EF AB ⊥Q ,ODF AEF 90∠∠∴==o ,OD EF ∴⊥,OD Q 是O e 的半径,EF ∴与O e 相切;()2由()1知,OD//AB ,OD EF ⊥.在Rt AEF V 中,AE 3sin CFD AF 5∠==,AE 6=, 则AF 10=, OD //AB Q ,∴△FOD ∽△FAE ,OF OD AF AE∴=, 设O e 的半径为r ,10r r 106-∴=, 解得,15r 4=, 15AB AC 2r 2∴===, 153EB AB AE 622∴=-=-=. 【点睛】本题考查了切线的判定、相似三角形的判定与性质、解直角三角形的应用等,正确添加辅助线、灵活应用相关知识是解题的关键.13.如图,已知,,BAC AB AC O ∆=为ABC ∆外心,D 为O e 上一点,BD 与AC 的交点为E ,且2·BC AC CE =.①求证:CD CB =;②若030A ∠=,且O e 的半径为33+,I 为BCD ∆内心,求OI 的长.【答案】①证明见解析; ②3【解析】【分析】①先求出BC CE AC BC=,然后求出△BCE 和△ACB 相似,根据相似三角形对应角相等可得∠A =∠CBE ,再根据在同圆或等圆中,同弧所对的圆周角相等可得∠A =∠D ,然后求出∠D=∠CBE,然后根据等角对等边即可得证;②连接OB、OC,根据在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍求出∠BOC=60°,然后判定△OBC是等边三角形,再根据等腰三角形三线合一的性质以及三角形的内心的性质可得OC经过点I,设OC与BD相交于点F,然后求出CF,再根据I是三角形的内心,利用三角形的面积求出IF,然后求出CI,最后根据OI=OC﹣CI计算即可得解.【详解】①∵BC2=AC•CE,∴BC CE AC BC=.∵∠BCE=∠ECB,∴△BCE∽△ACB,∴∠CBE=∠A.∵∠A=∠D,∴∠D=∠CBE,∴CD=CB;②连接OB、OC.∵∠A=30°,∴∠BOC=2∠A=2×30°=60°.∵OB=OC,∴△OBC是等边三角形.∵CD=CB,I是△BCD的内心,∴OC经过点I,设OC与BD相交于点F,则CF=BC×sin30°12=BC,BF=BC•cos30°32=BC,所以,BD=2BF=232⨯BC3=BC,设△BCD内切圆的半径为r,则S△BCD12=BD•CF12=(BD+CD+BC)•r,即12•3BC•12BC12=(3BC+BC+BC)•r,解得:r3223=+()BC233-=BC,即IF233-=BC,所以,CI=CF﹣IF12=BC2332--BC=(23-)BC,OI=OC﹣CI=BC﹣(23-)BC=(3-1)BC.∵⊙O的半径为33+,∴BC=33+,∴OI=(3-1)(33+)=33+3﹣3323-=.【点睛】本题是圆的综合题,主要考查了相似三角形的判定与性质,等腰三角形的判定与性质,圆周角定理,等边三角形的判定与性质,三角形的内心的性质,(2)作辅助线构造出等边三角形并证明得到OC经过△BCD的内心I是解题的关键.14.在△ABC 中,0090,60ACB BAC ∠=∠=,AC=2,P 为△ABC 所在平面内一点,分别连PA,PB ,PC .(1)如图1,已知,APB BPC APC ∠=∠=∠,以A 为旋转中心,将APB ∆顺时针旋转60度,得到AMN ∆.①请画出图形,并求证:C 、P 、M 、N 四点在同一条直线上;②求PA+PB+PC 的值.(2)如图2,如果点P 满足090BPC ∠=,设Q 为AB 边中点,求PQ 的取值范围.【答案】(1)①详见解析;②7;(231312PQ PQ ≤≤≠且;【解析】【分析】(1)①欲证明C 、P 、M 、N 四点在同一条直线上,只要证明∠APC+∠APM=180°,∠AMN+∠AMP=180°即可;②只要证明PA+PB+PC=PC+PM+MN=CN ,在Rt △CBN 中,利用勾股定理求出NC 即可; (2)如图2中,由∠BPC=90°,推出点P 在以BC 为直径的圆上(P 不与B 、C 重合),设BC 的中点为O ,作直线OQ 交⊙O 与P 和P′,可得PQ 3-1,PQ 的最大值为3+1,PQ≠2,由此即可解决问题;【详解】(1)①证明:如图,∵△APB≌△AMN,△APM是等边三角形,∴∠APM=∠APM=60°,∵∠APB=∠BPC=∠APC=120°,∴∠APB=∠BPC=∠APC=∠AMN=120°,∴∠APC+∠APM=180°,∠AMN+∠AMP=180°,∴C、P、M、N四点在同一条直线上;②解:连接BN,易得ΔABN是等边三角形∴∠ABN=60°,∵∠ABC=30°,∴∠NBC=90°,∵AC=2,∴AB=BN=4,BC=23,∵PA=PM,PB=MN,∴PA+PB+PC=PC+PM+MN=CN,在Rt△CBN中,CN=22+=,BC BN27∴PA+PB+PC=27.(2) 如图2中,∵∠BPC=90°,∴点P在以BC为直径的圆上(P不与B、C重合),设BC的中点为O,作直线OQ交⊙O与P和P′,可得PQ3-1,PQ3+1,PQ≠2,∴33+1且PQ≠2.PQ31PQ31PQ2的取值范围是且∴-≤≤+≠【点睛】本题考查几何变换综合题、等边三角形的性质和判定、全等三角形的性质、勾股定理、圆的有关知识等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会利用辅助圆解决问题,属于中考压轴题.15.如图,已知四边形ABCD内接于⊙O,点E在CB的延长线上,连结AC、AE,∠ACB=∠BAE=45°.(1)求证:AE是⊙O的切线;(2)若AB=AD,AC=32,tan∠ADC=3,求BE的长.【答案】(1)证明见解析;(2)52 BE=【解析】试题分析:(1)连接OA、OB,由圆周角定理得出∠AOB=2∠ACB=90°,由等腰直角三角形的性质得出∠OAB=∠OBA=45°,求出∠OAE=∠OAB+∠BAE=90°,即可得出结论;(2)过点A作AF⊥CD于点F,由AB=AD,得到∠ACD=∠ACB=45°,在Rt△AFC中可求得AF =3,在Rt△AFD中求得DF=1,所以AB=AD=10,CD= CF+DF=4,再证明△ABE∽△CDA,得出BE ABDA CD=,即可求出BE的长度;试题解析:(1)证明:连结OA,OB,∵∠ACB=45°,∴∠AOB=2∠ACB= 90°,∵OA=OB,∴∠OAB=∠OBA=45°,∵∠BAE=45°,∴∠OAE=∠OAB+∠BAE=90°,∴OA⊥AE.∵点A在⊙O上,∴AE是⊙O的切线.(2)解:过点A作AF⊥CD于点F,则∠AFC=∠AFD=90°.∵AB=AD , ∴AB u u u r =AD u u u r∴∠ACD =∠ACB =45°, 在Rt △AFC 中,∵AC =32,∠ACF =45°, ∴AF=CF=AC ·sin ∠ACF =3, ∵在Rt △AFD 中, tan ∠ADC=3AF DF =, ∴DF =1,∴223110AB AD ==+=, 且CD = CF +DF =4, ∵四边形ABCD 内接于⊙O , ∴∠ABE =∠CDA , ∵∠BAE =∠DCA , ∴△ABE ∽△CDA , ∴BE AB DA CD =, ∴1010=, ∴52BE =.。
初三数学圆专题练习题
初三数学圆专题练习题数学是一门重要的学科,对于我们的学习和生活都起着至关重要的作用。
在初三的学习中,圆是一个重要的概念,涉及到许多有趣且实用的数学知识。
为了帮助同学们提升对圆的理解和应用能力,下面将提供一些初三数学圆专题练习题。
练习1:计算圆的周长和面积1. 半径为5cm的圆的周长和面积分别是多少?2. 半径为3.5cm的圆的周长和面积分别是多少?3. 如果三个圆的半径分别为2cm、4cm、6cm,那么它们的周长和面积分别是多少?练习2:判断圆之间的关系1. 判断以下两个圆的位置关系,并说明理由:圆A:半径为5cm,圆心坐标为(0,0)圆B:半径为8cm,圆心坐标为(9,0)2. 如果两个圆的半径相等,那么它们之间的位置关系是什么?练习3:圆的切线和切点1. 如图所示,圆O的半径为6cm,点A在圆上,点B在圆外。
求证OB是圆O的切线,并求出切点。
(图略)2. 若两个圆相交于两个点,那么圆的切线与两圆的交点之间是否存在关系?说明理由。
练习4:圆的幂1. 在平面上,点P到圆O的距离为8cm,点P到圆O的一条切线与切点的连线交于点Q,求证OP * OQ = 64。
2. 若两圆的圆心距离为10cm,两圆的半径分别为4cm和6cm,求证两圆的切线的长度乘积等于14。
练习5:应用题1. 如图所示,圆O的半径为8cm,点C是圆上一点,直线AC的长度为10cm,点B为直线AC上的一点,并且BC的长度为6cm。
求证点B到圆O的距离等于6cm。
(图略)以上是一些初三数学圆专题的练习题,通过解答这些题目,可以帮助你巩固圆的概念、理解圆的性质,并有助于提升解决数学问题的能力。
希望你能够认真思考和解答这些题目,加深对圆的理解,进一步提高数学水平。
加油!。
中考数学圆与相似(大题培优 易错 难题)
中考数学圆与相似(大题培优易错难题)一、相似1.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;(4)当t为何值时,△PQF为等腰三角形?试说明理由.【答案】(1)解:证明:∵四边形是矩形,在中,分别是的中点,(2)解:如图1,过点作于,(舍)或秒(3)解:四边形为矩形时,如图所示:解得:(4)解:当点在上时,如图2,当点在上时,如图3,时,如图4,时,如图5,综上所述,或或或秒时,是等腰三角形.【解析】【分析】(1)根据矩形的性质可证得AD∥BC,∠A=∠C,根据中位线定理可证得EF∥AD,就可得出EF∥BC,可证得∠BEF=∠C,∠BFE=∠DBC,从而可证得结论。
(2)过点Q作QM⊥EF,易证QM∥BE,可证得△QMF∽△BEF,得出对应边成比例,可求出QM的值,再根据△PQF的面积为0.6cm2,建立关于t的方程,求解即可。
(3)分情况讨论:当点 Q 在 DF 上时,如图2, PF=QF;当点 Q 在 BF 上时, PF=QF,如图3;PQ=FQ 时,如图4;PQ=PF 时,如图5,分别列方程即可解决问题。
2.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为,sinA= ,求BH的长.【答案】(1)证明:如图,∵∠ODB=∠AEC,∠AEC=∠ABC,∴∠ODB=∠ABC,∵OF⊥BC,∴∠BFD=90°,∴∠ODB+∠DBF=90°,∴∠ABC+∠DBF=90°,即∠OBD=90°,∴BD⊥OB,∴BD是⊙O的切线(2)证明:连接AC,如图2所示:∵OF⊥BC,∴,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴,∴CE2=EH•EA(3)解:连接BE,如图3所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为,sin∠BAE= ,∴AB=5,BE=AB•sin∠BAE=5× =3,∴EA= =4,∵,∴BE=CE=3,∵CE2=EH•EA,∴EH= ,∴在Rt△BEH中,BH= .【解析】【分析】(1)要证BD是⊙O的切线,只需证∠OBD=90°,因为∠OBC+∠BOD=90°,所以只须证∠ODB=∠OBC即可。
初中数学圆的难题汇编及答案解析
初中数学圆的难题汇编及答案解析一、选择题1.下列命题错误的是()A.平分弦的直径垂直于弦B.三角形一定有外接圆和内切圆C.等弧对等弦D.经过切点且垂直于切线的直线必经过圆心【答案】C【解析】【分析】根据垂径定理、三角形外接圆、圆的有关概念判断即可.【详解】A、平分弦的直径一定垂直于弦,是真命题;B、三角形一定有外接圆和内切圆,是真命题;C、在同圆或等圆中,等弧对等弦,是假命题;D、经过切点且垂直于切线的直线必经过圆心,是真命题;故选C.【点睛】本题考查了命题与定理的知识,解题的关键是根据垂径定理、三角形外接圆、圆的有关概念等知识解答,难度不大.2.在Rt△ABC中,∠ACB=90°.AC=8,BC=3,点D是BC边上动点,连接AD交以CD为直径的圆于点E,则线段BE长度的最小值为( )A.1 B.32C.3D.52【答案】A【解析】【分析】根据直径所对的圆周角为直角可知∠CED=90°,则∠AEC=90°,设以AC为直径的圆的圆心为O,若BE最短,则OB最短,根据直角三角形斜边上的中线等于斜边的一半可得OE=12AC=4,在Rt△OBC中,根据勾股定理可求得OB=5,即可得解.【详解】解:连接CE,∵E点在以CD为直径的圆上,∴∠CED=90°,∴∠AEC=180°-∠CED=90°,∴E点也在以AC为直径的圆上,设以AC为直径的圆的圆心为O,若BE最短,则OB最短,∵AC=8,∴OC=12AC=4,∵BC=3,∠ACB=90°,∴OB=22OC BC=5,∵OE=OC=4,∴BE=OB-OE=5-4=1.故选A.【点睛】本题考查了直径所对的圆周角为直角,直角三角形的性质和勾股定理.3.如图,在平面直角坐标系中,点P是以C(﹣2,7)为圆心,1为半径的⊙C上的一个动点,已知A(﹣1,0),B(1,0),连接PA,PB,则PA2+PB2的最小值是()A.6 B.8 C.10 D.12【答案】C【解析】【分析】设点P(x,y),表示出PA2+PB2的值,从而转化为求OP的最值,画出图形后可直观得出OP 的最值,代入求解即可.【详解】设P (x ,y ),∵PA 2=(x +1)2+y 2,PB 2=(x ﹣1)2+y 2,∴PA 2+PB 2=2x 2+2y 2+2=2(x 2+y 2)+2,∵OP 2=x 2+y 2,∴PA 2+PB 2=2OP 2+2,当点P 处于OC 与圆的交点上时,OP 取得最值,∴OP 的最小值为CO ﹣CP =3﹣1=2,∴PA 2+PB 2最小值为2×22+2=10.故选:C .【点睛】本题考查了圆的综合,解答本题的关键是设出点P 坐标,将所求代数式的值转化为求解OP 的最小值,难度较大.4.下列命题中,是假命题的是( )A .任意多边形的外角和为360oB .在ABC V 和'''A B C V 中,若''AB A B =,''BC B C =,'90C C ∠=∠=o ,则ABC V ≌'''A B C VC .在一个三角形中,任意两边之差小于第三边D .同弧所对的圆周角和圆心角相等【答案】D【解析】【分析】根据相关的知识点逐个分析.【详解】解:A. 任意多边形的外角和为360o ,是真命题;B. 在ABC V 和'''A B C V 中,若''AB A B =,''BC B C =,'90C C ∠=∠=o ,则ABC V ≌'''A B C V ,根据HL ,是真命题;C. 在一个三角形中,任意两边之差小于第三边,是真命题;D. 同弧所对的圆周角等于圆心角的一半,本选项是假命题.故选D .【点睛】本题考核知识点:判断命题的真假. 解题关键点:熟记相关性质或定义.5.如图,△ABC 的外接圆是⊙O ,半径AO=5,sinB=25,则线段AC 的长为( )A .1B .2C .4D .5【答案】C【解析】【分析】 首先连接CO 并延长交⊙O 于点D ,连接AD ,由CD 是⊙O 的直径,可得∠CAD=90°,又由⊙O 的半径是5,sinB=25,即可求得答案. 【详解】解:连接CO 并延长交⊙O 于点D ,连接AD ,由CD 是⊙O 的直径,可得∠CAD=90°,∵∠B 和∠D 所对的弧都为弧AC ,∴∠B=∠D ,即sinB=sinD=25, ∵半径AO=5,∴CD=10,∴2sin 105AC AC D CD ===, ∴AC=4,故选:C.【点睛】本题考查了同弧所对的圆周角相等,以及三角函数的内容,注意到直径所对的圆周角是直角是解题的关键.6.如图,AC BC ⊥,8AC BC ==,以BC 为直径作半圆,圆心为点O ;以点C 为圆心,BC 为半径作»AB ,过点O 作AC 的平行线交两弧于点D 、E ,则图中阴影部分的面积是( )A.20833π-B.20833π+C.20833π-D.20433π+【答案】A【解析】【分析】如图,连接CE.图中S阴影=S扇形BCE−S扇形BOD−S△OCE.根据已知条件易求得OB=OC=OD=4,BC=CE=8,∠ECB=60°,OE=43,所以由扇形面积公式、三角形面积公式进行解答即可.【详解】解:如图,连接CE.∵AC⊥BC,AC=BC=8,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB,∴∠ACB=90°,OB=OC=OD=4,BC=CE=8.又∵OE∥AC,∴∠ACB=∠COE=90°.∴在Rt△OEC中,OC=4,CE=8,∴∠CEO=30°,∠ECB=60°,OE=3∴S阴影=S扇形BCE−S扇形BOD−S△OCE=2260811-4-443 36042ππ⨯⨯⨯⨯=20-83 3π故选:A.【点睛】本题考查了扇形面积的计算.不规则图形的面积一定要注意分割成规则图形的面积进行计算.7.如图,ABC ∆是O e 的内接三角形,45A ∠=︒,1BC =,把ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,点A 的对应点为点D ,则点A ,D 之间的距离是()A .1B .2 C .3 D .2【答案】A【解析】【分析】 连接AD ,构造△ADB ,由同弧所对应的圆周角相等和旋转的性质,证△ADB 和△DBE 全等,从而得到AD=BE=BC=1.【详解】如图,连接AD ,AO ,DO∵ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,∴AB=DE ,90AOD ∠=︒,45CAB BDE ∠=∠=︒∴1452ABD AOD ∠=∠=︒(同弧所对应的圆周角等于圆心角的一半), 即45ABD EDB ∠=∠=︒,又∵DB=BD ,∴DAB BED ∠=∠(同弧所对应的圆周角相等),在△ADB 和△DBE 中 ABD EDB AB EDDAB BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADB ≌△EBD (ASA ),∴AD=EB=BC=1.故答案为A.【点睛】本题主要考查圆周角、圆中的计算问题以及勾股定理的运用;顶点在圆上,两边都与圆相交的角角圆周角;掌握三角形全等的判定是解题的关键.8.如图,在扇形OAB中,120AOB∠=︒,点P是弧AB上的一个动点(不与点A、B重合),C、D分别是弦AP,BP的中点.若33CD=,则扇形AOB的面积为()A.12πB.2πC.4πD.24π【答案】A【解析】【分析】如图,作OH⊥AB于H.利用三角形中位线定理求出AB的长,解直角三角形求出OB即可解决问题.【详解】解:如图作OH⊥AB于H.∵C、D分别是弦AP、BP的中点.∴CD是△APB的中位线,∴AB=2CD=63∵OH⊥AB,∴BH=AH=33∵OA=OB,∠AOB=120°,∴∠AOH=∠BOH=60°,在Rt△AOH中,sin∠AOH=AHAO,∴AO=336sin3AHAOH==∠,∴扇形AOB的面积为:2120612360ππ=g g,故选:A.【点睛】本题考查扇形面积公式,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.9.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则⊙O的半径为()A.3B.23C.32D.233【答案】A【解析】连接OC,∵OA=OC,∠A=30°,∴∠OCA=∠A=30°,∴∠COB=∠A+∠ACO=60°,∵PC是⊙O切线,∴∠PCO=90°,∠P=30°,∵PC=3,∴OC=PC•tan30°=3,故选A10.如图,用半径为12cm,面积272cmπ的扇形无重叠地围成一个圆锥,则这个圆锥的高为()A.12cm B.6cm C.6√2 cm D.3【解析】【分析】先根据扇形的面积公式计算出扇形的圆心角,再利用周长公式计算出底面圆的周长,得出半径.再构建直角三角形,解直角三角形即可.【详解】 72π=212360n π⨯ 解得n=180°,∴扇形的弧长=18012180π⨯=12πcm . 围成一个圆锥后如图所示:因为扇形弧长=圆锥底面周长即12π=2πr解得r=6cm ,即OB=6cm根据勾股定理得22126=63-,故选D .【点睛】本题综合考查了弧长公式,扇形弧长=用它围成的圆锥底面周长,及勾股定理等知识,所以学生学过的知识一定要结合起来.11.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是( )A .13B .12C .34D .1【答案】B【解析】【分析】根据侧面展开图的弧长等于圆锥的底面周长,即可求得底面周长,进而即可求得底面的半径长.【详解】圆锥的底面周长是:π;设圆锥的底面半径是r ,则2πr=π.解得:r=12.【点睛】本题考查了圆锥的计算,正确理解理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.12.“直角”在几何学中无处不在,下列作图作出的AOB ∠不一定...是直角的是( ) A . B .C .D .【答案】C【解析】【分析】根据作图痕迹,分别探究各选项所做的几何图形问题可解.【详解】解:选项A 中,做出了点A 关于直线BC 的对称点,则AOB ∠是直角.选项B 中,AO 为BC 边上的高,则AOB ∠是直角.选项D 中,AOB ∠是直径AB 作对的圆周角,故AOB ∠是直角.故应选C【点睛】本题考查了尺规作图的相关知识,根据基本作图得到的结论,应用于几何证明是解题关键.13.如图,点E 为ABC ∆的内心,过点E 作MN BC P 交AB 于点M ,交AC 于点N ,若7AB =,5AC =,6BC =,则MN 的长为( )A .3.5B .4C .5D .5.5【答案】B【解析】【分析】连接EB 、EC ,如图,利用三角形内心的性质得到∠1=∠2,利用平行线的性质得∠2=∠3,所以∠1=∠3,则BM=ME ,同理可得NC=NE ,接着证明△AMN ∽△ABC ,所以767MN BM -=,则BM=7-76MN①,同理可得CN=5-56MN②,把两式相加得到MN 的方程,然后解方程即可.【详解】连接EB 、EC ,如图,∵点E 为△ABC 的内心,∴EB 平分∠ABC ,EC 平分∠ACB ,∴∠1=∠2,∵MN ∥BC ,∴∠2=∠3,∴∠1=∠3,∴BM=ME ,同理可得NC=NE ,∵MN ∥BC ,∴△AMN ∽△ABC ,∴MN AM BC AB = ,即767MN BM -=,则BM=7-76MN①, 同理可得CN=5-56MN②, ①+②得MN=12-2MN ,∴MN=4.故选:B .【点睛】此题考查三角形的内切圆与内心,相似三角形的判定与性质,解题关键在于掌握与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.14.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x =的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.15.如图,抛物线y =ax 2﹣6ax+5a (a >0)与x 轴交于A 、B 两点,顶点为C 点.以C 点为圆心,半径为2画圆,点P 在⊙C 上,连接OP ,若OP 的最小值为3,则C 点坐标是( )A .522(,22-B .(4,﹣5)C .(3,﹣5)D .(3,﹣4)【答案】D【解析】【分析】首先根据二次函数的解析式求出点A 、B 、C 三点的坐标,再由当点O 、P 、C 三点共线时,OP 取最小值为3,列出关于a 的方程,即可求解.【详解】∵2650y ax ax a a +-=(>) 与x 轴交于A 、B 两点,∴A (1,0)、B (5,0),∵226534y ax ax a a x a =+=---() , ∴顶点34C a (,-), 当点O 、P 、C 三点共线时,OP 取最小值为3,∴OC =OP+2=5,∴29165(0)a a +=> ,∴1a = ,∴C (3,﹣4),故选:D .【点睛】 本题考查了二次函数的图象和性质,解题的关键是明确圆外一点到圆上的最短距离即该点与圆心的距离减去半径长.16.如图,3个正方形在⊙O 直径的同侧,顶点B 、C 、G 、H 都在⊙O 的直径上,正方形ABCD 的顶点A 在⊙O 上,顶点D 在PC 上,正方形EFGH 的顶点E 在⊙O 上、顶点F 在QG 上,正方形PCGQ 的顶点P 也在⊙O 上.若BC =1,GH =2,则CG 的长为( )A .125B 6C 21D .22【答案】B【解析】【分析】【详解】解:连接AO 、PO 、EO ,设⊙O 的半径为r ,OC =x ,OG =y ,由勾股定理可知:22222222211{22r x r x x y r y =++=++=++()①()②()③,②﹣③得到:x 2+(x +y )2﹣(y +2)2﹣22=0,∴(x +y )2﹣22=(y +2)2﹣x 2,∴(x +y +2)(x +y ﹣2)=(y +2+x )(y +2﹣x ).∵x +y +2≠0,∴x +y ﹣2=y +2﹣x ,∴x =2,代入①得到r 2=10,代入②得到:10=4+(x +y )2,∴(x +y )2=6.∵x +y >0,∴x +y 6,∴CG =x +y 6.故选B .点睛:本题考查了正方形的性质、圆、勾股定理等知识,解题的关键是设未知数列方程组解决问题,难点是解方程组,利用因式分解法巧妙求出x的值,学会把问题转化为方程组,用方程组的思想去思考问题.17.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=86°,则∠BCD的度数是()A.86°B.94°C.107°D.137°【答案】D【解析】【分析】【详解】解:∵∠BOD=86°,∴∠BAD=86°÷2=43°,∵∠BAD+∠BCD=180°,∴∠BCD=180°-43°=137°,即∠BCD的度数是137°.故选D.【点睛】本题考查圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).18.如图,在⊙O中,OC⊥AB,∠ADC=26°,则∠COB的度数是()A.52°B.64°C.48°D.42°【答案】A【解析】【分析】由OC⊥AB,利用垂径定理可得出,再结合圆周角定理及同弧对应的圆心角等于圆周角的2倍,即可求出∠COB的度数.【详解】解:∵OC⊥AB,∴,∴∠COB=2∠ADC=52°.故选:A.【点睛】考查了圆周角定理、垂径定理以及圆心角、弧、弦的关系,利用垂径定理找出是解题的关键.19.如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是()A.15°B.30°C.60°D.75°【答案】D【解析】【分析】【详解】连接OD,∵CA,CD是⊙O的切线,∴OA⊥AC,OD⊥CD,∴∠OAC=∠ODC=90°,∵∠ACD=30°,∴∠AOD=360°﹣∠C﹣∠OAC﹣∠ODC=150°,∵OB=OD,∴∠DBA=∠ODB=12∠AOD=75°.故选D.考点:切线的性质;圆周角定理.20.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD 交于点O ,则图中阴影部分的面积是( )A .224π--B .224π-+ C .142π+ D .142π- 【答案】B【解析】【分析】先根据正方形的边长,求得CB 1=OB 1=AC-AB 1=2-1,进而得到211(21)2OB C S =-V ,再根据S △AB1C1=12,以及扇形的面积公式即可得出图中阴影部分的面积. 【详解】连结DC 1,∵∠CAC 1=∠DCA =∠COB 1=∠DOC 1=45°,∴∠AC 1B 1=45°,∵∠ADC =90°,∴A ,D ,C 1在一条直线上,∵四边形ABCD 是正方形,∴AC 2OCB 1=45°,∴CB 1=OB 1∵AB 1=1,∴CB 1=OB 1=AC ﹣AB 12﹣1,∴211111(21)22OB C S OB CB ∆=⋅⋅=, ∵1111111111222AB C S AB B C =⋅=⨯⨯=V , ∴图中阴影部分的面积=2245(2)11(21)22360224ππ⨯⨯--=-+故选B.【点睛】本题考查了旋转的性质,正方形性质、勾股定理以及扇形面积的计算等知识点的综合应用,主要考查学生运用性质进行计算的能力.解题时注意:旋转前、后的图形全等.。
初中数学--初三重难点突破:圆中的最值问题(模型)
圆中最值问题汇编题型一圆中将军饮马例1、如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为弧AN的中点,P是直径MN上一动点,则PA+PB的最小值为▲ .解析:作点B关于MN的对称点C,连接AC交MN于点P,则P点就是所求作点.此时PA+PB最小,且等于AC的长.连接OA,OC,∵∠AMN=30°,∴∠AON=60°,∴弧AN的度数是60°,则弧BN的度数是30°,根据垂径定理得弧CN的度数是30°,则∠AOC=90°,又OA=OC=1,则AC=21、已知圆O的面积为3 ,AB为直径,弧AC的度数为80度,弧BD的度数为20度,点P为直径AB上任一点,则PC+CD的最小值为______,最小值为3.2、如图,菱形ABC中,∠A=60度,AB=3,⊙A、⊙B的半径为2和1,P、E、F分别是CD,⊙A和⊙B上的动点,则PE+PF的最小值为______PE+PF最小值是3.3.如图,平面直角坐标系中,分别以点A(-2,3),B(3,4)为圆心,以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于▲____解析:∴A′B=(3+2)2+(4+3)2=74,∴MN=A′B-BN-A′M=74-2-1=74-3,∴PM+PN的最小值为74-3.题型二圆的定义(一周同长)例2、木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动。
下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A. B. C. D.解析:如右图,连接OP,由于OP是Rt△AOB斜边上的中线,所以OP=12AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线。
选D.1、如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44∘,则∠CAD的度数为__.解析:∵AB=AC=AD,∴B,C,D在以A为圆心,AB为半径的圆上,∴∠CAD=2∠CBD,∠BAC=2∠BDC,∵∠CBD=2∠BDC,∠BAC=44∘,∴∠CAD=2∠BAC=88∘2、在平面直角坐标系中,A(4,0)、B(0,-3),以点B为圆心、2为半径的圆B上有一动点P,连接AP,若点C为AP的中点,连接OC,则OC的最小值3为。
中考数学圆的综合(大题培优 易错 难题)含详细答案
中考数学圆的综合(大题培优易错难题)含详细答案一、圆的综合1.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点一次落在直线y x=上时停止旋转,旋转过程中,AB边交直线y x=于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设MBN∆的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析【解析】试题分析:(1)根据扇形的面积公式来求得边OA在旋转过程中所扫过的面积;(2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM的度数;(3)利用全等把△MBN的各边整理到成与正方形的边长有关的式子.试题解析:(1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°,∴OA旋转了45°.∴OA在旋转过程中所扫过的面积为24523602ππ⨯=.(2)∵MN∥AC,∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.∴∠BMN=∠BNM.∴BM=BN.又∵BA=BC,∴AM=CN.又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.∴∠AOM=∠CON=12(∠AOC-∠MON)=12(90°-45°)=22.5°.∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°-22.5°=22.5°.(3)在旋转正方形OABC的过程中,p值无变化.证明:延长BA交y轴于E点,则∠AOE=45°-∠AOM,∠CON=90°-45°-∠AOM=45°-∠AOM,∴∠AOE=∠CON.又∵OA=OC,∠OAE=180°-90°=90°=∠OCN.∴△OAE≌△OCN.∴OE=ON,AE=CN.又∵∠MOE=∠MON=45°,OM=OM,∴△OME≌△OMN.∴MN=ME=AM+AE.∴MN=AM+CN,∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.∴在旋转正方形OABC的过程中,p值无变化.考点:旋转的性质.2.如图,A、B两点的坐标分别为(0,6),(0,3),点P为x轴正半轴上一动点,过点A作AP的垂线,过点B作BP的垂线,两垂线交于点Q,连接PQ,M为线段PQ的中点.(1)求证:A、B、P、Q四点在以M为圆心的同一个圆上;(2)当⊙M与x轴相切时,求点Q的坐标;(3)当点P从点(2,0)运动到点(3,0)时,请直接写出线段QM扫过图形的面积.【答案】(1)见解析;(2) Q的坐标为(32,9);(3)63 8.【解析】(1)解:连接AM、BM,∵AQ⊥AP,BQ⊥BP∵△APQ和△BPQ都是直角三角形,M是斜边PQ的中点∴AM=BM=PM=QM= 12 PQ,∴A、B、P、Q四点在以M为圆心的同一个圆上。
初三数学圆典型难题及答案
20PP 年中考“圆”热点题型分类解析1. (20PP,泉州)如图1, △ ABC 为O O 的内接三角形,AB 为O O 的直径,点D?在O O 上,/ BAC=35 ,则/ ADC= ________________⑴⑵⑶⑷2. ________________________________________________________________________________________ (20PP,哈尔滨市)在厶 ABC 中,AB=AC=5且厶ABC 的面积为12,则厶ABC 外接圆的半径为 __________________________________ .3. ( 20PP,南京市)如图 2,矩形 ABCD 与圆心在 AB 上的O O 交于点 G B 、F 、E, ?GB=8cmAG=1cmDE=2cm 则 EF= ____________ cm (20PP,旅顺口区)如图 3,点D 在以AC 为直径的O O 上,如果/ BDC=20,那么/ ACB=⑸® 7)(8)(9)9. (20PP,重庆)如图 7 , △ ABC 内接于O O, Z A 所对弧的度数为 120 ° , Z ABC ?Z ACB 的角平分线分别交 AC AB1于点D 、E, CE BD 相交于点F.①cos Z BFE —;②BC=?BD ③EF=FD ④BF=2DF.其中结论一定正确的序号是 ______________________210. (20PP,海淀区)如图 8,已知A B 、C 是O O 上,若Z COA=100,则Z CBA 的度数是() A. 40° B. 50° C. 80° D. 200 °11. (20PP,温州)如图9, AB 是O O 的直径,点 C 在O O 上,Z B=70°,则Z A 的度数是()A. 20°B. 25°C. 30°D. 35°4.5. (20PP,盐城)已知四边形 ABCD 内接于O 0,且/ A Z C=1: 2,则/ BOD=6. (20PP,大连) 如图7. (20PP,盐城)&如图6, O O 的直径 AB=8cm C 为O O 上的一点,Z BAC=30 ,则BC= cm B在O 0中,Z ACB Z D=60°, AC=3则厶ABC?勺周长为 4 ,如图(10)(11)(12)(13)(14)312. (20PP,陕西)如图10,0 O 是厶ABC 的外接圆,AD 是O O 的直径,连接 CD,若O O 的半径 戸上,AC=2贝U cosB2的值是()A3.5「5 2A. B.C.D.-232 313. (20PP,浙江)如图11, A 、B 、C 是O O 上的三点,/ BAC=45,则/ BOC?勺大小是()A. 90°B. 60°C. 45°D. 22. 5°14.(20PP,浙江台州)我们知道,“两点之间线段最短”,“直线外一点与直线上各点连线的所有线段中, 垂线段最短” •在此基础上,人们定义了点与点的距离,?点到直线的距离.类似地,如图 12,若P 是O O 外一点,直线PO 交O O 于A 、B 两点,PC?切O O 于点C,则点P 到O O 的距离是()A.线段PO 的长度;B .线段PA 的长度;C .线段PB 的长度;D .线段PC 的长度15. (20PP,绵阳)如图 13, AB 是O O 的直径,BC CD DA 是O O 的弦,且 BC=CD=?DA 则/ BCD=() A. 100° B . 110° C. 120° D. 135°16. (20PP,重庆)如图14,O O 的直径 CD 过弦EF 的中点 G,Z EOD=40 , ?则/ DCF 等于() A. 80° B. 50° C. 40° D. 20°17. (20PP,广安)用一把带有刻度尺的直角尺,①可以画出两条平行的直线 平分线OP 如图(2); ?③可以检验工件的凹面是否为半圆,如图( 种说法正确的有()A. 4个B. 3个C. 2个D. 1个18. (20PP,攀枝花)图16中/ BOD 勺度数是()CD19. (20PP,攀枝花)如图17, AB 是O O 的直径,弦 AC BD 相交于点E,则CD 等于()a?和b ,如图(1);②可以画出/ AOB 的3);④可以量出一个圆的半径,如图(4).这四(16) (17) (18)ABA. tan / AEDB cot / AEDC sin / AEDD cos / AED20. (20PP,浙江舟山)如图 18已知A、B、C是O O上的三点,若/ ACB=44 , ?则/ AOB勺度数为()A. 44°B. 46°C. 68°D. 88°21. (20PP,浙江台州)如图,△ABC内接于O O / BAC的平分线交O O于点D, ?交边BC于点E,连结BD(1)根据题设条件,请你找出图中各对相似的三角形;(2)请选择其中的一对相似三角形加以证明.D22. (20PP,黄冈)如图,AB AC分别是O O的直径和弦,点D为劣弧AC上一点?弦ED分别交O O于点E,交AB于点H, 交AC于点F,过点C的切线交ED的延长线于点P.(1 )若 PC=PF 求证:AB1 ED.(2)点D在劣弧AC的什么位置时,才能使 AD=DE DF,为什么?23. (20PP,广东课改区)如图所示,AB是O O的弦,半径 OG OD分别交AB于点E、F,且AE=BF请你找出线段 OE与OF的数量关系,并给予证明.24. (20PP,上海市)本市新建的滴水湖是圆形人工湖,为测量该湖的半径,小杰和小丽沿湖边选取A B C三根木柱,使得A、B之间的距离与A、C之间的距离相等,?并测得BC长为240米,A到BC的距离为5米,如图所示,?请你帮他们求出滴水湖的半径.1. (20PP,温州)已知/ ABC=6C°,点O在/ ABC的平分线上, OB=5cm以O为圆心,?3cm为半径作圆,则O O与BC 的位置关系是.2. __________________________________________________________________ (20PP,大连)如图1, AB是O O的切线,OB=2OA 则/ B的度数是 __________________________________________________________________ .优质参考文档BOA3 cm4 (度)5 6 A 7 BOOZ 1AR8 5 30°D .6 O优质参考文档a A(20PP,浙江绍兴)如图 (4) (5) (6)那么/ P 等于() 已知O O 中弦AB, CD 相交于点(20PP,天津)已知O O 中,两弦AB 和CD 相交于点P, 已知O O 的直径AB 与弦AC 的夹角为35°(1)试判断点D 与O O 的位置关系,并说明理由A. 6B. 5C. 4D. 3(1) (2) (3)3,则直线9. (20PP,浙江台州)如图 (20PP,天津)如图 2,已知直线 CD 与O O 相切于点12. (20PP,陕西)如图过C 点的切线PC?与 AB 的延长线交于点 PA=45°.求证:直线 AB 是O O 的切线A.相交B.相切C.相离D.无法确定C, AB 为直径,若/ BCD=?40,则/ ABC 的大小等于若 AP: PB=2 3, CP=2cm DP=?12cm 则弦 AB 的长为 BP=2, CP=?4,贝U PD 的长是()11. (20PP,白云区)如图, A 是O O 外一点,B 是O O 上一点 A. 15° B. 20° C. 25° (20PP,旅顺口区)如图 4, AB 与O O 切于点B, AO=6cm AB=4cm 则O O?的半径为()4B. ,1Q C. 2.6 D. 4.310. (20PP,重庆)O O 的半径为4 ,圆心O 到直线L 的距离为 AO?的延长线交O O 于点C ,连结BC / C=22. 5 ° , /L 与O O?的位置关系是()A. 4 亦cmB. 2 75cmC 2i/T3cmD ^^3 cm(20PP,哈尔滨)如图 3 , PB 为O O 的切线,B 为切点,连结 PO 交O O 于点A , PA=2, PO=5贝U PB 的长为() (20PP,上海市)已知圆 O 的半径为1,点P 到圆心O 的距离为2,过点P?作圆的切线,那么切线长是O 的直径 AB=4, / ABC=30 , BC=^3 , D 是线段 BC?的 中点(2)过点D 作DEL AC,垂足为点 E ,求证直线 DE 是O O 的切线13. (20PP,攀枝花)如图所示, PA PB 是O 0的切线,A B 为切点,/ APB=?80,点C 是O 0上不同于 A 、B 的任意 一点,求/ ACB 的度数.14. (20PP,绵阳)已知在 Rt △ ABC 中,AD 是/ BAC 的角平分线,以 AB 上一点0?为圆心,AD 为弦作O O. (1)在图中作出O 0;(不写作法,保留作图痕迹) (2)求证:BC 为O 0的切线;3(3) 若AC=3 tanB= ?,求O 0的半径长.417. (20PP,盐城)如图,已知: C 是以AB 为直径的半圆 0上一点,D, E 为CH 中点,连接 AE 并延长交BD 于点F,直线CF 交直线AB 于点G.(1) 求证:点F 是BD 中点;(2)求证:CG 是O 0的切线;(3)若FB=FE=2求O 0的半径.15. (20PP,天津)如图,已知O 0的割线 PAB 交O O 于A 、B 两点, (1)求O 0的半径;(2)求厶PB0的面积.(结果可带根号)16. (20PP,海淀区)如图,在O 0中,弦AC 与 BD 交于 E ,AB=6, P0与O 0?交于点 C,且 PA=AB=6cm P0=12cm AE=8 ED=4, ?求 CD 的长.CF U AB?于点H,直线AC 与过B 点的切线相交于点1 (20PP,攀枝花市)如图,O 0的半径 0A=6以A为圆心,0A为半径的弧交0 0于B、C贝U BC= —2. (20PP,淄博市)要在一个矩形纸片上画出半径分别是_______ 4cm 和1cm?的两个外切圆,该矩形长的最小值是.213. (20PP,哈尔滨)已知O 0与O 0半径的长是方程 G2-7G+12=0的两根,且0Q2=,则O与O 02的位置关系是()2A.相交B.内切C.内含D.外切4. (20PP,白云山区)已知两圆的半径分别为 1和4,圆心距为3,则两圆的位置关系是()A.外离B.外切C.相交D.内切5. (20PP,南安市)已知O 01和O 02的半径分别为 2cm和3cm,两圆的圆心距是 1cm,则两圆的位置关系是()A.外离B.外切C.相交D.内切16. (20PP,烟台市)已知:关于G的一元二次方程&- ( R+r)G+—d2=0无实数根,其中R、?r分别是O 0「O 0?的半4径,d为此两圆的圆心距,则O 01, O 02的位置关系为()A.外离B.相切C.相交D.内含7. (20PP,哈尔滨市)下列命题中,正确命题的个数是()①垂直于弦的直径平分这条弦;②平行四边形对角互补;③有理数与数轴上的点是一一对应的;④相交两圆的公共弦垂直平分两圆的连心线.A. 0个B. 1个C. 2个D. 3个8 (20PP,浙江)如果两圆半径分别为3和4,圆心距为8,那么这两圆的位置关系是()A.内切B.相交C.外离D.外切9. (20PP,广安)若O A和O B相切,它们的半径分别为 8cm和2cm,贝恫心距 AB为(?)A. 10cmB 6cmC 10cm或 6cmD 以上都不对10. (20PP,攀枝花)在等边三角形、正五边形、正六边形、正七边形中,既是轴对称又是中心对称的图形是()A.等边三角形B.正五边形C.正六边形D.正七边形11. (20PP,哈尔滨市)已知:如图,O O1与O 02外切于点P,经过O 0上一点A?作O O的切线交O 02于B C两点,直线AP交O 02于点D,连结DC PC.(1)求证:DC2=DP- D A(2)若O 01与O 02的半径之比为1 : 2,连结BD BD=4j6 , PC=12求AB的长.DC12. (20PP,成都)已知:如图,O 0与O A相交于C D两点,A 0分别是两圆的圆心,△ ABC内接于O 0,弦CD交AB 于点G,交O 0的直径AE于点F,连结BD.(1)求证:△ AC&A DBG(2)求证:AC =AC ・ AB;(3)若O A 、O O 的直径分别为 6J 5、15,且CG CD=1 4,求AB 和BD 的长.个作答: 问题1:判断△ PEF 的形状,并证明你的结论; 问题2:判断线段AE 与BF 的关系,并证明你的结论.(20PP,黄冈)如图2,将边长为8cm 的正方形ABCD 勺四边沿直线 L 向右滚动(不滑动),当正方形滚动两周时,正 4.( 20PP,广州)如图3,从一块直径为a+b 的圆形纸板上挖去直径分别为 a?和b 的两个圆,则剩下的纸板面积为 __________ 5.(20PP,旅顺口)若圆锥的底面周长为2013. (20PP,盐城)已知: AB 为O O 的直径,P 为AB 弧的中心.(1)若O O 与O O 外切于点P (见图甲),AP BP 的延长线分别交O O 于点C D, ?连接CD 则厶PCD 是(2)若O O 与O O 相交于点P 、Q (见图乙),连接AQ BQ 并延长分别交O O?'于点E 、F ,请选择下列两个问题中的我选择问题,结论:证明:2. 8cm, ?那么这个圆锥的侧面积是(20PP,泉州)已知圆柱的底面半径为2cm ,母线长为3cm, ?则该圆柱的侧面展开图的面积为乙cm 2.cm 2.3.方形的顶点A 所经过的路线的长是 cm.EAD()■甲(7B1.6cm,高为兀,?侧面展开后所得扇形的圆心角为120° ,则圆锥的侧面积为__________ 6. _____________________________________________________________________________ (?20PP, ?晋江)?若圆锥的底面半径为 3, ?母线长为8, ?则这个圆锥的全面积是_______________________________________ 平方单位.7. (20PP,哈尔滨市)已知矩形 ABCD勺一边AB=5cm另一边AD=3cm则以直线AB?为轴旋转一周所得到的圆柱的表面积为cm2. & (20PP,晋江)正十二边形的每一个外角等于 ___________ 度.9 (20PP,黄冈)已知圆锥的侧面展开图是一个半圆,则这个圆锥的母线长与底面半径长的比是一 一 2 一10. (20PP,广东课改实验区)如图 4,已知圆柱体底面圆的半径为 ,高为2, ?AB CD 分别是两底面的直径, ADBC 是母线.若一只小虫从A 点出发,从侧面爬地到C 点,则小虫爬行的最短路线的长度是 ________________ (结果保留根式) 11.(20PP, 广安)将一个弧长为12二cm,半径为10cm 的扇形铁皮围成个圆锥形容器(不计接缝),那么这个圆锥形容(20PP, ?重庆)?圆柱的底面周长为 2二,?高为1, ?则圆柱的侧面展开图的面积为 (?20PP, ?浙江舟山)?已知正六边形的外接圆的半径是a, ?则正六边形周长是制作的这个圆锥模型的侧面展开扇形的纸片的圆心角度数是()A. 150° B . 200° C. 180° D. 240°17. (20PP,广州)一个圆柱的侧面展开图是相邻边长分别为10和16的矩形,?则该圆柱的底面圆半径是()18. (20PP,天津)若同一个圆的内接正三角形、正方形、正六边形的边心距分别为 A. 1:2 : 、、3B. .3 : 2 : 1C. 1: 2: 3D. 3: 2: 119. (20PP,青岛市)如图 7,在厶ABC 中,BC=4,以点A 为圆心、2为半径的O A 与BC 相切于点 D,交AB 于E,交AC 于F,点P 是O A 上的一点,且/ EPF=40°,则图中阴影部分的面积是()A , 4848A. 4-B. 4-C. 8-D. 8- 一 ■:9 9 9 920. (20PP,南安)如图,半圆 M 的直径AB 为20cm,现将半圆M 绕着点A 顺时针旋转180° (1)请你画出旋转后半圆 M 的图形;器的高为cm. 12. 13. 14. (20PP,浙江台州)如图 5, 已知圆锥的母线长为 5cm,底面半径为3cm,则此圆锥的侧面积为()2 2A . 15 二 cmB . 20 二 cmC . 15. (20PP,浙江)在厶 712 二 A. — B.——3 316. (20PP, 成都)如图 斜边 AB=4,Z B=60°,将厶ABC 绕点 B 旋转60°, ?顶点C 运动的路线长是()C.二D.—— 36,小丽要制作一个圆锥模型,要求圆锥的母线长9cm, ?底面圆的直径为10cm, ?那么小丽要A.B.-b , », 6 贝V 「3:「4: @ 等于()212 二 cm D . 30 二cm(5) (6) ( 7)ABC中,JT JT Tt JT(2)求出在整个旋转过程中,半圆M所扫过区域的面积(结果精确到1cm2)21. (20PP,海淀区)如图,已知O O的直径AB垂直弦CD于E,连结 AD, BD, OC ?0D且0D=53(1)若sin / BAD兰,求CD的长;5(2)若/ ADO / EDO=4 1,求扇形OAC(阴影部分)的面积(结果保留兀).B 22. (20PP,烟台市)如图a, O为圆柱形木块底面的圆心,过底面的一条弦AD, ?沿母线AB剖开,得剖面矩形 ABCD2AD=24cm AB=25cm若AmD的长为底面周长的一,?如图b所示.3(1)求O O的半径;(2)求这个圆柱形木块的表面积. (结果可保留二和根号)(a) (b)23. (20PP,攀枝花市)如图,圆锥的底面半径r=3cm,高h=4cm,求这个圆锥的表面积(二取3.14 ).1. (20PP,福建泉州)如图,已知 O为原点,点A的坐标为(4,3),O A?的半径为2,过A作直线L平行于G轴,点P在直线L上运动.(1)当点P在O O上时,请你直接写出它的坐标;(2)设点P的横坐标为12,试判断直线 OP与O A的位置关系,并说明理由.2. (20PP,广安市)已知:如图, AB是O O的直径,O O过AC的中点D, DE切O O于点D,交BC于点E. (1)求证:DEI BC (2)如果 CD=4 CE=3,求O O 的半径.3. (20PP,广安市)如图,已知 AB 是O O 的直径,直线 L 与O O 相切于点 C 且AC 二AD ,弦CD 交AB 于E, BF 丄L, 垂足为F, BF 交O O 于G.(1)求证:C^=FG ・ FB;1(2)若 tan / CBF — , AE=3,求O 0的直径.24. (20PP,苏州市)如图①,△ ABC 内接于O 0,且/ ABC=/ C,点D 在弧BC?k 运动,过点D 作DE// BC, DE 交直线AB于点E,连结BD (1) 求证:/ ADB=/ E; (2) 求证:AD 2=AC- AE(3) 当点D 运动到什么位置时,△ DB 0A ADE 请你利用图②进行探索和证明.5. (20PP,晋江)街道旁边有一根电线杆 AB 和一块半圆形广告牌•有一天,?小明突然发现,在太阳光照射下,电线杆的顶端A 的影子刚好落在半圆形广告牌的最高处 G, ?而半圆形广告牌的影子刚好落在地面上一点E,已知BC=5米,半圆形的直径为 6米,?DE=2米. (1)求电线杆落在广告牌上的影长(即CG 的长度,精确到0.1米).(2)求电线杆的高度.6. (20PP,深圳)如图①,在平面直角坐标系GOP 中,点M 在G 轴的正半轴上,O M 交G 轴于A 、B 两点,交P 轴于C 、D 两点,且C 为AE 的中点,AE 交P 轴于G 点.若点A?的坐标为(-2 , 0), AE=8. (1)求点C 的坐标;(2)连结 MG BC,求证:MG/ BC;DABA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学圆的难题3 (10分)如图,点I是△ABC的内心,线段A I的延长线交△ABC的外接圆于点D,交BC 边于点E.(1)求证:I D=BD;(2)设△ABC的外接圆的半径为5,I D=6,=,DE y=,当点A在优弧上运动时,AD x求y与x的函数关系式,并指出自变量x的取值范围.(第4题图)4 如图,点A ,B ,C ,D 是直径为AB 的⊙O 上四个点,C 是劣弧BD 的中点,AC 交BD 于点E , AE =2, EC =1.(1)求证:DEC △∽ADC △(3分)(2)试探究四边形ABCD 是否是梯形?若是,请你给予证明并求出它的面积;若不是,请说明理由. (4分) (3)延长AB 到H ,使BH =OB . 求证:CH 是⊙O 的切线. (3分)D B A O CE · 图10 D B A O C E 图11 5 如图10,半圆O 为△ABC 的外接半圆,AC 为直径,D 为BC 上的一动点.(1)问添加一个什么条件后,能使得BD BE BC BD?请说明理由; (2)若AB ∥OD ,点D 所在的位置应满足什么条件?请说明理由;(3)如图11,在 (1)和(2)的条件下,四边形AODB 是什么特殊的四边形?证明你的结论.6 如图1,已知正方形ABCD 的边长为M 是AD 的中点,P 是线段MD 上的一动点(P不与M ,D 重合),以AB 为直径作⊙O ,过点P 作⊙O 的切线交BC 于点F ,切点为E .(1)除正方形ABCD 的四边和⊙O 中的半径外,图中还有哪些相等的线段(不能添加字母和辅助线)?(2)求四边形CDPF 的周长;(3)延长CD ,FP 相交于点G ,如图2所示. 是否存在点P ,使BF*FG=CF*OF ?如果存在,试求此时AP 的长;如果不存在,请说明理由.· M · A F C O P E D 图1 · P DO G E M F B A C 图27 如图,在平面直角坐标系xoy 中,M 是x 轴正半轴上一点,M 与x 轴的正半轴交于A B ,两点,A 在B 的左侧,且OA OB ,的长是方程212270x x -+=的两根,ON 是M 的切线,N 为切点,N 在第四象限.(1)求M 的直径.(2)求直线ON 的解析式.(3)在x 轴上是否存在一点T ,使OTN △是等腰三角形,若存在请在图2中标出T 点所在位置,并画出OTN △(要求尺规作图,保留作图痕迹,不写作法,不证明,不求T 的坐标)若不存在,请说明理由.y x B M A O N图 图1 解:(1)连结AD. ∵∠ABO=60°,∴∠ADO=60°…..1分由点A 的坐标为(3,0)得OA=3. ∵在Rt △ADO 中有 cot ∠ADO=OD OA,…………….2分 ∴OD=OA ·cot ∠ADO=3·cot60°=3×33=3. ∴点D 的坐标为(03)……………3分(2)DC 与△AOB 的外接圆相切于点D ,理由如下:由(1)得3∴2222(3)323AD OD OA =+=+=又∵C 点坐标是(-1,0), ∴OC=1.∴22221(3)2CD OC OD =+=+=………………4分 ∵AC=OA+OC=3+1=4,∴CD 2+AD 2=223)2=42=AC 2…………………5分 ∴∠ADC=90°,即AD ⊥DC.由∠AOD=90°得AD 为圆的直径.∴DC 与△AOB 的外接圆相切于点D ……………6分ME F N(说明:也可用解直角三角形或相似三角形等知识求解.) (3)由二次函数图象过点O (0,0)和A (3,0), 可设它的解析式为 y=ax(x-3)(a ≠0). 如图,作线段OA 的中垂线交△AOB 的外接圆于E 、F 两点,交AD 于M 点,交OA 于N 点.由抛物线的对称性及它的顶点在圆上可知,抛物线的顶点就是点E 或F. ∵EF 垂直平分OA , ∴EF 是圆的直径. 又∵AD 是圆的直径,∴EF 与AD 的交点M 是圆的圆心………….7分 由(1)、(2)得OA=3,3∴AN=12OA=32,AM=FM=EM=123∴222233(3)()22MN AM AN =-=-=.∴3333333∴点E 的坐标是(3233),点F 的坐标是(32, 3)……..8分当点E 为抛物线顶点时,有32(3233, a=23.∴y=x(x-3).即y=2…………………………9分当点F 为抛物线顶点时,有3(3-3)a=-2,a=9.∴y=9x(x-3). 即y=239x233-x.故二次函数的解析式为y=33-x 2+23x 或y=239x 2233-x ….10分2 (1)2211π1π1144S=-=-; ········ 2分2222121ππ24228S ⎛⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭; ········· 4分223221221ππ22422416S ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ······· 6分(2)2008200720091π22S =-; ·········· 8分(3)111π22n n n S -+=-(n 为正整数). ···· 10分3 (1) 证明: 如图,∵ 点I 是△ABC 的内心, ∴ ∠BAD =∠CAD ,∠ABI =∠CBI . ………………2分∵ ∠CBD =∠CAD , ∴∠BAD =∠CBD . ……………………………3分∴ ∠BID =∠ABI +∠BAD =∠CBI +∠CBD =∠IBD .∴ ID =BD . ………………………5分(2)解:如图,∵∠BAD =∠CBD =∠EBD , ∠D =∠D , ∴△ABD ∽△BED . …………………………7分∴ BD ADDE BD =. ∴ 22AD DE BD ID ⨯==. …………………8分∵ ID =6,AD =x ,DE =y ,∴ xy =36. ………………9分又∵ x =AD >ID =6, AD 不大于圆的直径10, ∴ 6<x ≤10.∴ y 与x 的函数关系式是36y x=.(610x <≤) …………………………10分说明:只要求对xy =36与6<x ≤10,不写最后一步,不扣分.4 (1)证明:∵C 是劣弧BD 的中点, ∴DAC CDB ∠=∠. ············ 1分 而ACD ∠公共, ∴DEC △∽ADC △. ········· 3分(2)证明:连结OD ,由⑴得DC ECAC DC=, ∵ 1.213CE AC AE EC ==+=+=, ∴2313DC AC EC ==⨯= . ∴DC = . ········································ 4分 由已知3BC DC ==AB 是⊙O 的直径, ∴90ACB ∠=︒ ,∴222223312AB AC CB =+=+=. ∴3AB = ∴3OD OB BC DC ====, ∴四边形OBCD 是菱形.∴DC AB DC AB <∥,, ∴四边形ABCD 是梯形.5分 法一:过C 作CF 垂直AB 于F ,连结OC ,则3OB BC OC === ∴60OBC ∠=︒. ······································· 6分∴sin 60CF BC︒=,33sin 60322CF BC =︒==, ∴()(11393233222ABCDSCF AB DC ⨯梯形=+=+= ··········· 7分法二:(接上证得四边形ABCD 是梯形)又DC AB ∥ ∴AD BC =,连结OC ,则AOD △,DOC △和OBC △3的等边三角形··············· 6分 ∴AOD △≌DOC △≌OBC △,∴2393333AODABCDS S △梯形===······················ 7分 (3)证明:连结OC 交BD 于G 由(2)得四边形OBCD 是菱形, ∴OC BD ⊥且OG GC =. ····························· 8分 又已知OB =BH , ∴BG CH ∥. ······ 9分 ∴90OCH OGB ∠=∠=︒ , ∴CH 是⊙O 的切线.10分5 解: (1)添加 AB =BD ························· 2分 ∵AB =BD ∴AB =BD ∴∠BDE =∠BCD ··· 3分 又∵∠DBE =∠DBC ∴△BDE ∽△BCD∴BD BEBC BD····························································· 4分 (2)若AB ∥DO ,点D 所在的位置是BC 的中点 ························································ 5分 ∵AB ∥DO ∴∠ADO =∠BAD ··· 6分 ∵∠ADO =∠OAD ∴∠OAD =∠BAD ∴DB =DC ·········································· 7分 (3)在(1)和(2)的条件下,.∵AB =BD =DC ∴∠BDA =∠DAC ∴ BD ∥OA又∵AB ∥DO ∴四边形AODB 是平行四边形 ········································ 9分 ∵O A =OD ∴平行四边形AODB 是菱形 ·············································· 10分6 解:(1)FB =FE ,PE =PA ········ 2分(2)四边形CDPF 的周长为FC +CD +DP +PE +EF =FC +CD +DP +PA +BF ··································· 3分=BF +FC +CD +DP +PA ·································· 4分=BC +CD +DA (5)=×3=··················································· 6 (3)存在. 7分若BF FG CF OF =,则BF CFOF FG=∵ cos ∠OFB =BFOF ,cos ∠GFC =CF FG∴ ∠OFB =∠GFC 又 ∵ ∠OFB =∠OFE∴ ∠OFE =∠OFB =∠GFC=60 8分∴ 在Rt OFB △中 FE =FB =tan 60OB=1 ∴ 在Rt GFC △中CG=()tan tan 60231tan 6063CF GFC CF ∠==-=-∴ 633DG CG CD =-=-∴ tan tan 30233DP DG PGD DG =∠==- ····· 9分 ∴ ()232333AP AD DP =-== ···· 10分7 解:(1)解方程212270xx -+=,得19x=,23x=A在B 的左侧 3OA ∴=,9OB =6AB OB OA ∴=-=OM∴的直径为6 ······································ 1分(2)过N 作NC OM ⊥,垂足为C , 连结MN ,则MN ON ⊥ 31sin 62MN MON OM ===∠ 30MON ∴=∠又cos ON MON OM =∠cos3033ON OM ∴=⨯=在Rt OCN △中9cos30332OC ON ===1sin 30332CN ON ===N∴的坐标为93322⎛- ⎝⎭, 设直线ON 的解析式为y kx =3392x =3k ∴=∴直线ON 的解析式为33y x =-······················ 4分(3)如图2,1T ,2T ,3T ,4T 为所求作的点,1OT N △,2OT N△,3OT N △,4OT N △为所求等腰三角形.(每作出一种图形给一分) ····························· 8分30.(深圳)如图1,以点M (-1,0)为圆心的圆与y 轴、x 轴分别交于点A 、B 、C 、D ,直线y =- 33 x - 533 与⊙M 相切于点H ,交x 轴于点E ,交y 轴于点F .(1)请直接写出OE 、⊙M 的半径r 、CH 的长; (2)如图2,弦HQ 交x 轴于点P ,且DP :PH =3:2,求cos ∠QHC 的值;(3)如图3,点K 为线段EC 上一动点(不与E 、C 重合),连接BK 交⊙M 于点T ,弦AT 交x 轴于点N .是否存在一个常数a ,始终满足MN ·MK =a ,如果存在,请求出a 的值;如果不存在,请说明理由.30.(1)、如图4,OE =5,2r =,CH =2(2)、如图5,连接QC 、QD ,则90CQD ∠=︒,QHC QDC ∠=∠,易知CHPDQP∆∆,故DP DQPH CH=, 322DQ =,3DQ =,由于4CD =,3cos cos 4QD QHC QDC CD ∴∠=∠==; (3)、如图6,连接AK ,AM ,延长AM , 与圆交于点G ,连接TG ,则90GTA ∠=︒2490∴∠+∠=︒34∠=∠,2390︒∴∠+∠=由于390BKO ∠+∠=︒,故,2BKO ∠=∠;而1BKO ∠=∠,故12∠=∠在AMK ∆和NMA ∆中,12∠=∠;AMK NMA ∠=∠故AMKNMA∆;xD A B H CE M OF 图1x y D A BH C E M O 图2P Q 图3yMN AMAM MK =;图图。