高中物理竞赛十年复赛真题-热学(含答案)
物理竞赛热学专题40题刷题练习(带答案详解)
物理竞赛热学专题40题刷题练习(带答案详解)1.潜水艇的贮气筒与水箱相连,当贮气筒中的空气压入水箱后,水箱便排出水,使潜水艇浮起。
某潜水艇贮气简的容积是2m 3,其上的气压表显示内部贮有压强为2×107Pa 的压缩空气,在一次潜到海底作业后的上浮操作中利用简内的压缩空气将水箱中体积为10m 3水排出了潜水艇的水箱,此时气压表显示筒内剩余空气的压强是9.5×106pa ,设在排水过程中压缩空气的温度不变,试估算此潜水艇所在海底位置的深度。
设想让压强p 1=2×107Pa 、体积V 1=2m 3的压缩空气都变成压强p 2=9.5×106Pa 压缩气体,其体积为V 2,根据玻-马定律则有p 1V 1=p 2V 2排水过程中排出压强p 2=9.5×106Pa 的压缩空气的体积 221V V V '=-,设潜水艇所在处水的压强为p 3,则压强p 2=9.5×106Pa 、体积为2V '的压缩空气,变成压强为p 3的空气的体积V 3=10m 3。
根据玻马定律则有2233p V p V '=联立可解得p 3=2.1×106Pa设潜水艇所在海底位置的深度为h ,因p 3=p 0+ρ gh解得h =200m2.在我国北方的冬天,即便气温很低,一些较深的河 流、湖泊、池塘里的水一般也不会冻结到底,鱼类还可以在水面结冰的情况下安全过冬,试解释水不会冻结到底的原因?【详解】由于水的特殊内部结构,从4C ︒到0C ︒,体积随温度的降低而增大,达到0C ︒后开始结冰,冰的密度比水的密度小。
入秋冬季节,气温开始下降,河流、湖泊、池塘里的水上层的先变冷,密度变大而沉到水底,形成对流,到达4C ︒时气温如果再降低,上层水反而膨胀,密度变小,对流停止,“漂浮”在水面上,形成一个“盖子”,而下面的水主要靠热传导散失内能,但由于水是热的不良导体,这样散热是比较慢的。
全国中学生物理竞赛复赛试卷及参考解答
全国中学生物理竞赛复赛试卷(本题共七大题,满分160分)一、(20分)如图所示,一块长为m L 00.1=的光滑平板PQ 固定在轻质弹簧上端,弹簧的下端与地面固定连接。
平板被限制在两条竖直光滑的平行导轨之间(图中未画出竖直导轨),从而只能地竖直方向运动。
平板与弹簧构成的振动系统的振动周期s T 00.2=。
一小球B 放在光滑的水平台面上,台面的右侧边缘正好在平板P 端的正上方,到P 端的距离为m h 80.9=。
平板静止在其平衡位置。
水球B 与平板PQ 的质量相等。
现给小球一水平向右的速度0μ,使它从水平台面抛出。
已知小球B 与平板发生弹性碰撞,碰撞时间极短,且碰撞过程中重力可以忽略不计。
要使小球与平板PQ 发生一次碰撞而且只发生一次碰撞,0μ的值应在什么范围内?取2/8.9s m g =二、(25分)图中所示为用三角形刚性细杆AB 、BC 、CD 连成的平面连杆结构图。
AB 和CD 杆可分别绕过A 、D 的垂直于纸面的固定轴转动,A 、D 两点位于同一水平线上。
BC 杆的两端分别与AB 杆和CD 杆相连,可绕连接处转动(类似铰链)。
当AB 杆绕A 轴以恒定的角速度ω转到图中所示的位置时,AB 杆处于竖直位置。
BC 杆与CD 杆都与水平方向成45°角,已知AB 杆的长度为l ,BC 杆和CD 杆的长度由图给定。
求此时C 点加速度c a 的大小和方向(用与CD 杆之间的夹角表示)三、(20分)如图所示,一容器左侧装有活门1K ,右侧装有活塞B ,一厚度可以忽略的隔板M 将容器隔成a 、b 两室,M 上装有活门2K 。
容器、隔板、活塞及活门都是绝热的。
隔板和活塞可用销钉固定,拔掉销钉即可在容器内左右平移,移动时不受摩擦作用且不漏气。
整个容器置于压强为P 0、温度为T 0的大气中。
初始时将活塞B 用销钉固定在图示的位置,隔板M 固定在容器PQ 处,使a 、b 两室体积都等于V 0;1K 、2K 关闭。
(完整word版)全国中学生物理竞赛真题汇编(热学)
全国中学生物理竞赛真题汇编---热学1.(19Y4) 四、(20分)如图预19-4所示,三个绝热的、容积相同的球状容器A 、B 、C ,用带有阀门K 1、K 2的绝热细管连通,相邻两球球心的高度差 1.00m h =.初始时,阀门是关闭的,A 中装有1mol 的氦(He ),B 中装有1mol 的氪(Kr ),C 中装有lmol 的氙(Xe ),三者的温度和压强都相同.气体均可视为理想气体.现打开阀门K 1、K 2,三种气体相互混合,最终每一种气体在整个容器中均匀分布,三个容器中气体的温度相同.求气体温度的改变量.已知三种气体的摩尔质量分别为31He 4.00310kg mol μ--=⨯⋅在体积不变时,这三种气体任何一种每摩尔温度升高1K ,所吸收的热量均为 3/2R ,R 为普适气体常量. 2.(20Y3)(20分)在野外施工中,需要使质量m =4.20 kg 的铝合金构件升温;除了保温瓶中尚存有温度t =90.0ºC 的1.200kg 的热水外,无其他热源。
试提出一个操作方案,能利用这些热水使构件从温度t 0=10.0ºC 升温到66.0ºC 以上(含66.0ºC),并通过计算验证你的方案.已知铝合金的比热容c =0.880×103J ·(k g·ºC)-1, 水的比热容c =4.20×103J ·(kg ·ºC)-1,不计向周围环境散失的热量. 3.(22Y6)(25分)如图所示。
两根位于同一水平面内的平行的直长金属导轨,处于恒定磁场中。
磁场方向与导轨所在平面垂直.一质量为m 的均匀导体细杆,放在导轨上,并与导轨垂 直,可沿导轨无摩擦地滑动,细杆与导轨的电阻均可忽略不计.导轨的左端与一根阻值为尺0的电阻丝相连,电阻丝置于一绝热容器中,电阻丝的热容量不计.容器与一水平放置的开口细管相通,细管内有一截面为S 的小液柱(质量不计),液柱将l mol 气体(可视为理想气体)封闭在容器中.已知温度升高1 K 时,该气体的内能的增加量为5R /2(R 为普适气体常量),大气压强为po ,现令细杆沿导轨方向以初速V 0向右运动,试求达到平衡时细管中液柱的位移. 4.(16F1)20分)一汽缸的初始体积为0V ,其中盛有2mol 的空气和少量的水(水的体积可以忽略)。
物理竞赛热学专题精编大全(带答案详解)
物理竞赛热学专题精编大全(带答案详解)一、多选题1.如图所示为一种简易温度计构造示意图,左右两根内径粗细均匀的竖直玻玻璃管下端通过软管相连接,在管中灌入某种液体后环境的温度。
重复上述操作,便可在左管上方标注出不同的温度刻,将左管上端通过橡皮塞插入小烧瓶中。
调节右管的高度,使左右两管的液面相平,在左管液面位置标上相应的温度刻度。
多次改变烧瓶所在度,为了增大这个温度计在相同温度变化时液面变化的髙度,下列措施中可行的是()A.增大液体的密度B.增大烧瓶的体积C.减小左管的内径D.减小右管的内径【答案】BC2.如图所示为两端封闭的U形玻璃管,竖直放置,管内左、右两段封闭空气柱A、B 被一段水银柱隔开,设原来温度分别为T A和T B,当温度分别升高△T A和△T B时,关于水银柱高度差的变化情况,下列说法中正确的是()A.当T A=T B,且△T A=△T B时,h一定不变B.当T A=T B,且△T A=△T B时,h一定增大C.当T A<T B,且△T A<△T B时,h一定增大D.当T A>T B,且△T A=△T B时,h一定增大【答案】BD【解析】【详解】AB.由于左边的水银比右边的高ℎ,所以右边的气体的压强比左边气体的压强大,即P B> P A,设在变化的前后AB两部分气体的体积都不发生变化,即AB做的都是等容变化,则根据PT =ΔPΔT可知,气体的压强的变化为ΔP=PΔTT,当T A=T B,且ΔT A=ΔT B时,由于P B>P A,根据ΔP=PΔTT可知ΔP B>ΔP A,ℎ一定增大,故选项A错误,B正确;C.当T A<T B,且ΔT A<ΔT B时,由于P B>P A,根据ΔP=PΔTT可知不能判断ΔP B和ΔP A变化的大小,所以不能判断ℎ的变化情况,故选项C错误;D.当T A>T,且ΔT A=ΔT B时,由于P B>P A,根据ΔP=PΔTT可知ΔP B>ΔP A,ℎ一定增大,故选项D正确;3.下列叙述正确的是()A.温度升高,物体内每个分子的热运动速率都增大B.气体压强越大,气体分子的平均动能就越大C.在绝热过程中外界对气体做功,气体的内能必然增加D.自然界中进行的涉及热现象的宏观过程都具有方向性【答案】CDA.温度升高,气体分子的平均动能增大,但是个别分子运动速率可能减小,故A错误;B.温度是气体分子的平均动能变化的标志。
高中物理竞赛热学部分优题选
高中物理竞赛——热学题选1.一个老式的电保险丝,由连接在两个端纽之间的一根细而均匀的导线构成。
导线按斯特藩定律从其表面散热。
斯特藩定律指出:辐射功率P 跟辐射体表面积S 以及一个与温度有关的函数成正比,即(),44外辐T T S P -∞试说明为什么用保险丝时并不需要准确的长度。
2.有两根长度均为50cm 的金属丝A 和B 牢固地焊在一起,另两端固定在牢固的支架上(如图21-3)。
其线胀系数分别为αA =1.1×10-5/℃,αB =1.9×10-5/℃,倔强系数分别为K A =2×106N/m ,K B =1×106N/m ;金属丝A 受到450N 的拉力时就会被拉断,金属丝B 受到520N 的拉力时才断,假定支架的间距不随温度改变。
问:温度由+30°C 下降至-20°C 时,会出现什么情况?(A 、B 丝都不断呢,还是A 断或者B 断呢,还是两丝都断呢?)不计金属丝的重量,在温度为30°C 时它们被拉直但张力为零。
3.长江大桥的钢梁是一端固定,另一端自由的。
这是为什么?如果在-10℃时把两端都固定起来,当温度升高到40℃时,钢梁所承担的胁强(压强)是多少?(钢的线胀系数为12×10-6/℃,弹性模量为2.0×105N/mm 2,g=10m/s 2)4.厚度均为a=0.2毫米的钢片和青铜片,在T 1=293开时,将它们的端点焊接起来,成为等长的平面双金属片,若钢和青铜的线膨胀系数分别为10-5/度和2×10-5/度,当把它们的温度升高到T 2=293开时,它们将弯成圆弧形,试求这圆弧的半径,在加热时忽略厚度的变化。
5.在负载功率P 1=1kW ,室温t 0=20℃时,电网中保险丝的温度达到t 1=120℃,保险丝的材料的电阻温u C 图21-13度系数α=4×10-3K-1,保险丝的熔断温度t2=320℃,其所释放的热量与温度差成正比地增加,请估计电路中保险丝熔断时负载的功率。
2023年全国中学生物理竞赛复赛试题参考解答
全国中学生物理竞赛复赛试题参考解答、评分标准一、参考解答令 表达质子的质量, 和 分别表达质子的初速度和到达a 球球面处的速度, 表达元电荷, 由能量守恒可知2201122mv mv eU =+ (1)由于a 不动, 可取其球心 为原点, 由于质子所受的a 球对它的静电库仑力总是通过a 球的球心, 所以此力对原点的力矩始终为零, 质子对 点的角动量守恒。
所求 的最大值相应于质子到达a 球表面处时其速度方向刚好与该处球面相切(见复解20-1-1)。
以 表达 的最大值, 由角动量守恒有 max 0mv l mvR = (2)由式(1)、(2)可得20max 1/2eU l R mv =- (3) 代入数据, 可得max 22l R = (4) 若把质子换成电子, 则如图复解20-1-2所示, 此时式(1)中 改为 。
同理可求得 max 62l R =(5)评分标准: 本题15分。
式(1)、(2)各4分, 式(4)2分, 式(5)5分。
二、参考解答在温度为 时, 气柱中的空气的压强和体积分别为, (1)1C V lS = (2)当气柱中空气的温度升高时, 气柱两侧的水银将被缓慢压入A 管和B 管。
设温度升高届时 , 气柱右侧水银刚好所有压到B 管中, 使管中水银高度增大C BbS h S ∆= (3) 由此导致气柱中空气体积的增大量为C V bS '∆= (4)与此同时, 气柱左侧的水银也有一部分进入A 管, 进入A 管的水银使A 管中的水银高度也应增大 , 使两支管的压强平衡, 由此导致气柱空气体积增大量为A V hS ''∆=∆ (5)所以, 当温度为 时空气的体积和压强分别为21V V V V '''=+∆+∆ (6)21p p h =+∆ (7)由状态方程知112212p V p V T T = (8) 由以上各式, 代入数据可得2347.7T =K (9)此值小于题给的最终温度 K, 所以温度将继续升高。
高中物理竞赛复赛模拟试题(有答案)
高中物理竞赛模拟试题〔复赛〕一、某一构件由两个菱形组成,AB 和DE 是两根硬杆,各焦点都用铰链连接,大菱形的边长是2l ,小菱形的边长是l ,现设法使顶点F 以加速度a 水平向右运动,求: 〔1〕C 点的加速度多大?〔2〕当两个菱形都是正方形,F 点的速度为ν时,A 点的加速度的大小和方向。
二、长为L 的杆AO 用铰链固定在O 点,以角速度ω围绕O 点转动,在O 点的正上方有一个定滑轮B ,一轻绳绕过B 滑轮的一端固定在杆的A 端,另一端悬挂一质量为M 的重物C ,O 、B 之间的距离为h ,求:〔1〕当AB 绳与竖直方向成θ角时,重物的运动速度; 〔2〕此时绳上的张力为多少?三、一对半径为r 的轻轮安装在一根细轴上它们共同以某一速度ν沿图示的平面向右滚动。
斜面与平面接触的顶角A 处足够粗糙〔即轮不会产生滑动〕,斜面与水平面成α角,要求轮从平面滚动到斜面时不要离开顶角,问ν的最大值为多少?四、一架大型民航飞机在降落到机场前撞上一只正在飞行的天鹅,试估算,天鹅转击飞机的力为多少〔只要数量级正确即可〕?五、有一汽缸,除底部外都是绝热的。
上面是一个不计重量的活塞,中间是固定的导热隔板,把汽缸分成相等的两局部A 和B ,上下各有1mol 氮气,现从底部将350J 的热量传送给气体,求:〔1〕A 、B 内的气体温度各改变了多少? 〔2〕它们各吸收了多少热量?假设是将中间的隔板变成一个导热的活塞其他条件不变,如此A 、B 的温度又是多少?〔不计一切摩擦〕A六、两个绝缘的相距较远的球形导体,半径分别为r 1、r 2,带电后电势分别为ν1和ν2,假设用细导线将两个球连接起来,求在导线上放出的电量。
七、一个正方形的导线框ABCD ,边长为l ,每边的电阻为R ,在它中点处内接一个小一些的正方形线框EFGH ,然后在各边中点在内接一个更小的正方形导线框 一直下去,直至无穷。
如果所有正方形导线框用的导线都是一样的,所有接触点接触良好。
十年高考物理真题(2011-2020)分类汇编专题17 选修3-3热力学综合1(解析版)
十年高考分类汇编专题17 选修3-3热学综合1(2011-2020)目录题型一、分子间相互作用力 (1)题型二、分子动理论和气体压强 (2)题型三、油膜法测分子直径 (6)题型一、分子间相互作用力1.(2020全国1)分子间作用力F 与分子间距r 的关系如图所示,r = r 1时,F =0。
分子间势能由r 决定,规定两分子相距无穷远时分子间的势能为零。
若一分子固定于原点O ,另一分子从距O 点很远处向O 点运动,在两分子间距减小到r 2的过程中,势能_____(填“减小“不变”或“增大”);在间距由r 2减小到r 1的过程中,势能_____ (填“减小”“不变”或“增大”);在间距等于r 1处,势能_____(填“大于”“等于”或“小于”)零。
【答案】 (1). 减小 (2). 减小 (3). 小于【解析】1从距O 点很远处向O 点运动,两分子间距减小到2r 的过程中,分子间体现引力,引力做正功,分子势能减小;2在21r r →过程中,分子间仍然体现引力,引力做正功,分子势能减小;3在间距等于1r 之前,分子势能一直减小,取无穷远处分子间势能为零,则在1r 处分子势能小于零。
2.(2020北京)分子力F 随分子间距离r 的变化如图所示。
将两分子从相距2r r =处释放,仅考虑这两个分于间的作用,下列说法正确的是( )A. 从2r r =到0r r =分子间引力、斥力都在减小B. 从2r r =到1r r =分子力的大小先减小后增大C. 从2r r =到0r r =分子势能先减小后增大D. 从2r r =到1r r =分子动能先增大后减小【答案】D【解析】A .从2r r =到0r r =分子间引力、斥力都在增加,但斥力增加得更快,故A 错误;B .由图可知,在0r r =时分子力为零,故从2r r =到1r r =分子力的大小先增大后减小再增大,故B 错误;C .分子势能在0r r =时分子势能最小,故从2r r =到0r r =分子势能一直减小,故C 错误;D .从2r r =到1r r =分子势能先减小后增大,故分子动能先增大后减小,故D 正确。
全国中学生物理竞赛复赛试题及参考答案
全国中学生物理竞赛复赛考试试题解答与评分标准一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g .参考解答:以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度v 分解成纬线切向 (水平方向)分量ϕv 及经线切向分量θv . 设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O 的连线与水平方向的夹角为θ. 由机械能守恒得2220111sin 222m mgR m m ϕθθ=-++v v v (1) 这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故0cos m R m R ϕθ=v v . (2)由 (1) 式,最大速率应与θ的最大值相对应max max ()θ=v v . (3)而由 (2) 式,q 不可能达到π2. 由(1)和(2)式,q 的最大值应与0θ=v 相对应,即max ()0θθ=v . (4)[(4)式也可用下述方法得到:由 (1)、(2) 式得22202sin tan 0gR θθθ-=≥v v .若sin 0θ≠,由上式得220sin 2cos gRθθ≤v .实际上,sin =0θ也满足上式。
由上式可知max 22max 0sin 2cos gRθθ=v .由(3)式有222max max 0max ()2sin tan 0gR θθθθ=-=v v . (4’)将max ()0θθ=v 代入式(1),并与式(2)联立,得()2220max max max sin 2sin 1sin 0gR θθθ--=v . (5)以max sin θ为未知量,方程(5)的一个根是sin q =0,即q =0,这表示初态,其速率为最小值,不是所求的解. 于是max sin 0θ≠. 约去max sin θ,方程(5)变为22max 0max 2sin sin 20gR gR θθ+-=v . (6)其解为20maxsin 14gR θ⎫=-⎪⎪⎭v . (7)注意到本题中sin 0θ≥,方程(6)的另一解不合题意,舍去. 将(7)式代入(1)式得,当max θθ=时,(22012ϕ=v v ,(8) 考虑到(4)式有max ==v评分标准:本题15分. (1)式3分, (2) 式3分,(3) 式1分,(4) 式3分, (5) 式1分,(6) 式1分,(7) 式1分, (9) 式2分.二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处.1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量;2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件.参考解答:1. 由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束. 设碰后A 、C 、D 的速度分别为A v 、C v 、D v ,显然有D C2l r =v v . (1)以A 、B 、C 、D 为系统,在碰撞过程中,系统相对于轴不受外力矩作用,其相对于轴的角动量守恒D C A 0222m l m r m l m l ++=v v v v . (2)由于轴对系统的作用力不做功,系统内仅有弹力起作用,所以系统机械能守恒. 又由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束,所以不必考虑弹性势能的变化. 故2222D C A 011112222m m m m ++=v v v v . (3) 由 (1)、(2)、(3) 式解得2200022222248,,888C D A lr l r l r l r l r===-+++v v v v v v (4)[代替 (3) 式,可利用弹性碰撞特点0D A =-v v v . (3’) 同样可解出(4). ]设碰撞过程中D 对A 的作用力为1F ',对A 用动量定理有221A 0022428l r F t m m m l r+'∆=-=-+v v v ,(5)方向与0v 方向相反. 于是,A 对D 的作用力为1F 的冲量为221022428l r F t m l r+∆=+v (6)方向与0v 方向相同.以B 、C 、D 为系统,设其质心离转轴的距离为x ,则22(2)2mr m l l r x m αα++==++. (7)质心在碰后瞬间的速度为C 0224(2)(2)(8)l l r x r l r α+==++v v v . (8) 轴与杆的作用时间也为t ∆,设轴对杆的作用力为2F ,由质心运动定理有()210224(2)28l l r F t F t m m l rα+∆+∆=+=+v v . (9) 由此得2022(2)28r l r F t m l r-∆=+v . (10) 方向与0v 方向相同. 因而,轴受到杆的作用力的冲量为2022(2)28r l r F t m l r -'∆=-+v ,(11) 方向与0v 方向相反. 注意:因弹簧处在拉伸状态,碰前轴已受到沿杆方向的作用力;在碰撞过程中还有与向心力有关的力作用于轴. 但有限大小的力在无限小的碰撞时间内的冲量趋于零,已忽略.[代替 (7)-(9) 式,可利用对于系统的动量定理21C D F t F t m m ∆+∆=+v v . ][也可由对质心的角动量定理代替 (7)-(9) 式. ]2. 值得注意的是,(1)、(2)、(3) 式是当碰撞时间极短、以至于弹簧来不及伸缩的条件下才成立的. 如果弹簧的弹力恰好提供滑块C 以速度02248C lrl r =+v v 绕过B 的轴做匀速圆周运动的向心力,即()222C 022216(8)l r k r m m r l r -==+v v(12) 则弹簧总保持其长度不变,(1)、(2)、(3) 式是成立的. 由(12)式得碰前滑块A 的速度0v 应满足的条件0=v (13)可见,为了使碰撞后系统能保持匀速转动,碰前滑块A 的速度大小0v 应满足(13)式.评分标准:本题20分.第1问16分,(1)式1分, (2) 式2分,(3) 式2分,(4) 式2分, (5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分,(9) 式2分,(10) 式1分,(11) 式1分; 第2问4分,(12) 式2分,(13) 式2分.三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆, 1. 令mLλ=表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为 k E k L αβγλω=式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值.2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值.3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力. 重力加速度大小为g .提示:如果)(t X 是t 的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对t 的导数为d (())d d d d d Y X t Y Xt X t=例如,函数cos ()t θ对自变量t 的导数为dcos ()dcos d d d d t t tθθθθ=参考解答:1. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其动能是独立变量λ、ω和L 的函数,按题意 可表示为k E k L αβγλω= (1)式中,k 为待定常数(单位为1). 令长度、质量和时间的单位分别为[]L 、[]M 和[]T (它们可视为相互独立的基本单位),则λ、ω、L 和k E 的单位分别为 1122[][][],[][],[][],[][][][]k M L T L L E M L T λω---==== (2)在一般情形下,若[]q 表示物理量q 的单位,则物理量q 可写为 ()[]q q q = (3)式中,()q 表示物理量q 在取单位[]q 时的数值. 这样,(1) 式可写为 ()[]()()()[][][]k k E E k L L αβγαβγλωλω= (4)在由(2)表示的同一单位制下,上式即()()()()k E k L αβγλω= (5) [][][][]k E L αβγλω= (6)将 (2)中第四 式代入 (6) 式得22[][][][][][]M L T M L T αγαβ---= (7)(2)式并未规定基本单位[]L 、[]M 和[]T 的绝对大小,因而(7)式对于任意大小的[]L 、[]M 和[]T 均成立,于是1,2,3αβγ=== (8)所以23k E k L λω= (9)2. 由题意,杆的动能为,c ,r k k k E E E =+ (10)其中, 22,cc 11()222k L E m L λω⎛⎫== ⎪⎝⎭v (11) 注意到,杆在质心系中的运动可视为两根长度为2L的杆过其公共端(即质心)的光滑水平轴在铅直平面内转动,因而,杆在质心系中的动能,r k E 为 32,r2(,,)222k k L L E E k λωλω⎛⎫== ⎪⎝⎭(12)将(9)、 (11)、 (12)式代入(10)式得2323212222L L k L L k λωλωλω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭(13)由此解得16k = (14)于是E k =16lw 2L 3. (15)3. 以细杆与地球为系统,下摆过程中机械能守恒sin 2k L E mg θ⎛⎫= ⎪⎝⎭(16) 由(15)、(16)式得w =以在杆上距O 点为r 处的横截面外侧长为()L r -的那一段为研究对象,该段质量为()L r λ-,其质心速度为22c L r L rr ωω-+⎛⎫'=+= ⎪⎝⎭v . (18) 设另一段对该段的切向力为T (以θ增大的方向为正方向), 法向(即与截面相垂直的方向)力为N (以指向O 点方向为正向),由质心运动定理得()()cos t T L r g L r a λθλ+-=- (19) ()()sin n N L r g L r a λθλ--=- (20)式中,t a 为质心的切向加速度的大小()3cos d d d d d 2d 2d dt 4ct L r g L r L r a t t Lθωωθθ+'++====v (21) 而n a 为质心的法向加速度的大小()23sin 22n L r g L r a Lθω++==. (22) 由(19)、(20)、(21)、(22)式解得 ()()23cos 4L r r L T mg L θ--= (23)()()253sin 2L r L r N mg L θ-+=(24)评分标准:本题25分.第1问5分, (2) 式1分, (6) 式2分,(7) 式1分,(8) 式1分;第2问7分, (10) 式1分,(11) 式2分,(12) 式2分, (14) 式2分;不依赖第1问的结果,用其他方法正确得出此问结果的,同样给分;第3问13分,(16) 式1分,(17) 式1分,(18) 式1分,(19) 式2分,(20) 式2分,(21) 式2分,(22) 式2分,(23) 式1分,(24) 式1分;不依赖第1、2问的结果,用其他方法正确得出此问结果的,同样给分.四、(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总是只有一滴液滴). 液滴开始下落时相对于地面的高度为h . 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g . 若容器初始电势为零,求容器可达到的最高电势max V .参考解答:设在某一时刻球壳形容器的电量为Q . 以液滴和容器为体系,考虑从一滴液滴从带电液滴产生器 G 出口自由下落到容器口的过程. 根据能量守恒有2122Qq Qqmgh km mgR kh R R+=++-v . (1) 式中,v 为液滴在容器口的速率,k 是静电力常量. 由此得液滴的动能为 21(2)(2)2()Qq h R m mg h R kh R R-=---v . (2) 从上式可以看出,随着容器电量Q 的增加,落下的液滴在容器口的速率v 不断变小;当液滴在容器口的速率为零时,不能进入容器,容器的电量停止增加,容器达到最高电势. 设容器的最大电量为max Q ,则有 max (2)(2)0()Q q h R mg h R kh R R---=-. (3)由此得 max ()mg h R RQ kq-=. (4)容器的最高电势为maxmax Q V kR= (5) 由(4) 和 (5)式得 max ()mg h R V q-=(6) 评分标准:本题20分. (1)式6分, (2) 式2分,(3) 式4分,(4) 式2分, (5) 式3分,(6) 式3分.五、(25分)平行板电容器两极板分别位于2dz =±的平面内,电容器起初未被充电. 整个装置处于均匀磁场中,磁感应强度大小为B ,方向沿x 轴负方向,如图所示.1. 在电容器参考系S 中只存在磁场;而在以沿y 轴正方向的恒定速度(0,,0)v (这里(0,,0)v 表示为沿x 、y 、z 轴正方向的速度分量分别为0、v 、0,以下类似)相对于电容器运动的参考系S '中,可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B '''. 试在非相对论情形下,从伽利略速度变换,求出在参考系S '中电场(,,)xy z E E E '''和磁场(,,)x y z B B B '''的表达式. 已知电荷量和作用在物体上的合力在伽利略变换下不变.2. 现在让介电常数为ε的电中性液体(绝缘体)在平行板电容器两极板之间匀速流动,流速大小为v ,方向沿y 轴正方向. 在相对液体静止的参考系(即相对于电容器运动的参考系)S '中,由于液体处在第1问所述的电场(,,)xy z E E E '''中,其正负电荷会因电场力作用而发生相对移动(即所谓极化效应),使得液体中出现附加的静电感应电场,因而液体中总电场强度不再是(,,)xy z E E E ''',而是0(,,)xy z E E E εε''',这里0ε是真空的介电常数. 这将导致在电容器参考系S 中电场不再为零. 试求电容器参考系S 中电场的强度以及电容器上、下极板之间的电势差. (结果用0ε、ε、v 、B 或(和)d 表出. )参考解答:1. 一个带电量为q 的点电荷在电容器参考系S 中的速度为(,,)x y z u u u ,在运动的参考系S '中的速度为(,,)x y z u u u '''. 在参考系S 中只存在磁场(,,)(,0,0)x y z B B B B =-,因此这个点电荷在参考系S 中所受磁场的作用力为0,,x y z z y F F qu B F qu B==-= (1) 在参考系S '中可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B ''',因此点电荷q 在S '参考系中所受电场和磁场的作用力的合力为(),(),()x x y z z y y yx z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B '''''''=+-'''''''=-+'''''''=+-(2) 两参考系中电荷、合力和速度的变换关系为 ,(,,)(,,),(,,)(,,)(0,,0)x y z x y z x y z x y z q q F F F F F F u u u u u u '='''='''=-v (3)由(1)、 (2)、 (3)式可知电磁场在两参考系中的电场强度和磁感应强度满足 ()0,,()xy z z y yx z z x z z x yy x y E u B u B E u B u B u B E u B u B u B '''+--='''-+=-'''+--=v v (4)它们对于任意的(,,)x y z u u u 都成立,故(,,)(0,0,),(,,)(,0,0)xy z xy z E E E B B B B B '''='''=-v (5)可见两参考系中的磁场相同,但在运动的参考系S '中却出现了沿z 方向的匀强电场.2. 现在,电中性液体在平行板电容器两极板之间以速度(0,,0)v 匀速运动. 电容器参考系S 中的磁场会在液体参考系S '中产生由(5)式中第一个方程给出的电场. 这个电场会把液体极化,使得液体中的电场为(,,)(0,0,)xy z E E E B εε'''=v . (6) 为了求出电容器参考系S 中的电场,我们再次考虑电磁场的电场强度和磁感应强度在两个参考系之间的变换,从液体参考系S '中的电场和磁场来确定电容器参考系S 中的电场和磁场. 考虑一带电量为q 的点电荷在两参考系中所受的电场和磁场的作用力. 在液体参考系S '中,这力(,,)x y z F F F '''如(2)式所示. 它在电容器参考系S 中的形式为(),(),()x x y z z y y y x z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B =+-=-+=+-(7) 利用两参考系中电荷、合力和速度的变换关系(3)以及(6)式,可得 00,,()x y z z y y x z z x z z x y y x y E u B u B E u B u B u B BE u B u B u B εε+-=-+=-+-=+-v v (8)对于任意的(,,)x y z u u u 都成立,故 0(,,)(0,0,(1)),(,,)(,0,0)x y z x y z E E E B B B B B εε=-=-v (9) 可见,在电容器参考系S 中的磁场仍为原来的磁场,现由于运动液体的极化,也存在电场,电场强度如(9)中第一式所示.注意到(9)式所示的电场为均匀电场,由它产生的电容器上、下极板之间的电势差为z V E d =-. (10)由(9)式中第一式和(10)式得01V Bd εε⎛⎫=- ⎪⎝⎭v . (11)评分标准:本题25分.第1问12分, (1) 式1分, (2) 式3分, (3) 式3分,(4) 式3分,(5) 式2分;第2问13分, (6) 式1分,(7) 式3分,(8) 式3分, (9) 式2分, (10) 式2分,(11) 式2分.六、(15分)温度开关用厚度均为0.20 mm 的钢片和青铜片作感温元件;在温度为20C ︒时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片. 若钢和青铜的线膨胀系数分别为51.010-⨯/度和52.010-⨯/度. 当温度升高到120C ︒时,双金属片将自动弯成圆弧形,如图所示. 试求双金属片弯曲的曲率半径. (忽略加热时金属片厚度的变化. )参考解答:设弯成的圆弧半径为r ,金属片原长为l ,圆弧所对的圆心角为φ,钢和青铜的线膨胀系数分别为1α和2α,钢片和青铜片温度由120C T =︒升高到2120C T =︒时的伸长量分别为1l ∆和2l ∆. 对于钢片1()2dr l l φ-=+∆ (1)1121()l l T T α∆=- (2) 式中,0.20 mm d =. 对于青铜片2()2dr l l φ+=+∆ (3)2221()l l T T α∆=- (4) 联立以上各式得2122121212()()2.010 mm 2()()T T r d T T αααα++-==⨯-- (5)评分标准:本题15分. (1)式3分, (2) 式3分,(3) 式3分,(4) 式3分, (5) 式3分.七、(20分)一斜劈形透明介质劈尖,尖角为θ,高为h . 今以尖角顶点为坐标原点,建立坐标系如图(a)所示;劈尖斜面实际上是由一系列微小台阶组成的,在图(a)中看来,每一个小台阶的前侧面与xz 平面平行,上表面与yz 平面平行. 劈尖介质的折射率n 随x 而变化,()1n x bx =+,其中常数0b >. 一束波长为λ的单色平行光沿x 轴正方向照射劈尖;劈尖后放置一薄凸透镜,在劈尖与薄凸透镜之间放一档板,在档板上刻有一系列与z 方向平行、沿y 方向排列的透光狭缝,如图(b)所示. 入射光的波面(即与平行入射光线垂直的平面)、劈尖底面、档板平面都与x 轴垂直,透镜主光轴为x 轴. 要求通过各狭缝的透射光彼此在透镜焦点处得到加强而形成亮纹. 已知第一条狭缝位于y =0处;物和像之间各光线的光程相等.1. 求其余各狭缝的y 坐标;2. 试说明各狭缝彼此等距排列能否仍然满足上述要求.图(a) 图(b) 参考解答:1. 考虑射到劈尖上某y 值处的光线,计算该光线由0x =到x h =之间的光程()y δ. 将该光线在介质中的光程记为1δ,在空气中的光程记为2δ. 介质的折射率是不均匀的,光入射到介质表面时,在0x = 处,该处介质的折射率()01n =;射到x 处时,该处介质的折射率()1n x bx =+. 因折射率随x线性增加,光线从0x =处射到1x h =(1h 是劈尖上y 值处光线在劈尖中传播的距离)处的光程1δ与光通过折射率等于平均折射率()()()1111110111222n n n h bh bh =+=++=+⎡⎤⎣⎦ (1) 的均匀介质的光程相同,即2111112nh h bh δ==+ (2)x忽略透过劈尖斜面相邻小台阶连接处的光线(事实上,可通过选择台阶的尺度和档板上狭缝的位置来避开这些光线的影响),光线透过劈尖后其传播方向保持不变,因而有21h h δ=- (3)于是()212112y h bh δδδ=+=+. (4)由几何关系有1tan h y θ=. (5)故()22tan 2b y h y δθ=+. (6)从介质出来的光经过狭缝后仍平行于x 轴,狭缝的y 值应与对应介质的y 值相同,这些平行光线会聚在透镜焦点处. 对于0y =处,由上式得d 0()=h . (7)y 处与0y =处的光线的光程差为()()220tan 2b y y δδθ-=. (8)由于物像之间各光线的光程相等,故平行光线之间的光程差在通过透镜前和会聚在透镜焦点处时保持不变;因而(8)式在透镜焦点处也成立. 为使光线经透镜会聚后在焦点处彼此加强,要求两束光的光程差为波长的整数倍,即22tan ,1,2,3,2b y k k θλ==. (9)由此得y A θθ===. (10) 除了位于y =0处的狭缝外,其余各狭缝对应的y 坐标依次为,,,,A . (11)2. 各束光在焦点处彼此加强,并不要求(11)中各项都存在. 将各狭缝彼此等距排列仍可能满足上述要求. 事实上,若依次取,4,9,k m m m =,其中m 为任意正整数,则49,,,m m m y y y ===. (12),光线在焦点处依然相互加强而形成亮纹. 评分标准:本题20分.第1问16分, (1) 式2分, (2) 式2分, (3) 式1分,(4) 式1分,(5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分, (9) 式2分, (10) 式1分,(11) 式2分; 第2问4分,(12) 式4分(只要给出任意一种正确的答案,就给这4分).八、(20分)光子被电子散射时,如果初态电子具有足够的动能,以至于在散射过程中有能量从电子转移到光子,则该散射被称为逆康普顿散射. 当低能光子与高能电子发生对头碰撞时,就会出现逆康普顿散射. 已知电子静止质量为e m ,真空中的光速为 c . 若能量为e E 的电子与能量为E γ的光子相向对碰,1. 求散射后光子的能量;2. 求逆康普顿散射能够发生的条件;3. 如果入射光子能量为2.00 eV ,电子能量为 1.00´109 eV ,求散射后光子的能量. 已知 m e =0.511´106 eV /c 2. 计算中有必要时可利用近似:如果1x <<»1-12x .参考解答:1. 设碰撞前电子、光子的动量分别为e p (0e p >)、p γ(0p γ<),碰撞后电子、光子的能量、动量分别为,,,ee E p E p γγ''''. 由能量守恒有 E e +E g =¢E e +¢E g . (1)由动量守恒有cos cos ,sin sin .e eep p p p p p γγγαθαθ''+=+''=. (2)式中,α和θ分别是散射后的电子和光子相对于碰撞前电子的夹角. 光子的能量和动量满足E g =p g c ,¢E g =¢p g c . (3)电子的能量和动量满足22224e e e E p c m c -=,22224e e e E p c m c ''-= (4)由(1)、(2)、(3)、(4)式解得e E E E γγ'=[由(2)式得22222()2()cos ee e p c p c p c p c p c p c p c γγγγθ'''=++-+此即动量p '、ep '和e p p γ+满足三角形法则. 将(3)、(4)式代入上式,并利用(1)式,得 22(2)()22cos 2e e e E E E E E E E E E E E γγγγγγγγθθ''+-+=+--此即(5)式. ]当0θ→时有e E E E γγ'=(6)2. 为使能量从电子转移到光子,要求¢E g >E g . 由(5)式可见,需有E E γγ'-=>此即E γ 或 e p p γ>(7)注意已设p e >0、p g <0.3. 由于2e e E m c >>和e E E γ>>,因而e p p p γγ+>>,由(5)式可知p p γγ'>>,因此有0θ≈. 又242e e em cE E -. (8)将(8)式代入(6)式得¢E g »2E e E g2E g +m e 2c 42E e. (9) 代入数据,得¢E g »29.7´106eV . (10)评分标准:本题20分.第1问10分, (1) 式2分, (2) 式2分, (3) 式2分,(4) 式2分,(5) 或(6)式2分; 第2问5分,(7) 式5分;第3问5分,(8) 式2分, (9) 式1分, (10) 式2分.。
物理竞赛热学专题精编大全(带答案详解)
物理竞赛热学专题精编大全(带答案详解)一、多选题1.如图所示为一种简易温度计构造示意图,左右两根内径粗细均匀的竖直玻玻璃管下端通过软管相连接,在管中灌入某种液体后环境的温度。
重复上述操作,便可在左管上方标注出不同的温度刻,将左管上端通过橡皮塞插入小烧瓶中。
调节右管的高度,使左右两管的液面相平,在左管液面位置标上相应的温度刻度。
多次改变烧瓶所在度,为了增大这个温度计在相同温度变化时液面变化的髙度,下列措施中可行的是()A .增大液体的密度B.增大烧瓶的体积C.减小左管的内径 D .减小右管的内径【答案】BC2.如图所示为两端封闭的U 形玻璃管,竖直放置,管内左、右两段封闭空气柱A、B 被一段水银柱隔开,设原来温度分别为T A和T B,当温度分别升高△ T A和△ T B时,关于水银柱高度差的变化情况,下列说法中正确的是()A.当T A=T B,且△ T A=△ T B时,h一定不变B.当T A=T B,且△ T A=△ T B时,h一定增大C.当T A<T B,且△ T A<△ T B时,h一定增大D.当T A>T B,且△ T A=△ T B时,h 一定增大【答案】BD【解析】【详解】AB. 由于左边的水银比右边的高?,所以右边的气体的压强比左边气体的压强大,即???> ???,设在变化的前后???两? 部分气体的体积都不发生变化,即???做?的都是等容变化,则?? ???? ??????根据????= ??????可??知,气体的压强的变化为 ????= ??????,??当????= ???,且????= ?? ??时,由于???>??????C. 当????< ???,且 ????< ????时,由于 ???> ???,根据 ????= ??????可??知不能判断 ?? ??和?? ??变化的大小,所以不能判断 ?的变化情况,故选项 C 错误;??????D. 当???? > ??,且?????= ?????时,由于 ???> ???,根据????=??????可??知 ????> ????,?一定增大, 故选项 D 正确;3.下列叙述正确的是()A .温度升高,物体内每个分子的热运动速率都增大B .气体压强越大,气体分子的平均动能就越大C .在绝热过程中外界对气体做功,气体的内能必然增加D .自然界中进行的涉及热现象的宏观过程都具有方向性 【答案】 CDA .温度升高,气体分子的平均动能增大, 但是个别分子运动速率可能减小, 故 A 错误; B.温度是气体分子的平均动能变化的标志。
高中物理竞赛十年复赛真题-热学(纯手打word版含问题详解)
十年真题-热学(复赛)1.(34届复赛7)如气体压强-体积图所示,摩尔数为ν的双原子理想气体构成的系统经历一正循环过程(正循环指沿图中箭头所示的循环),其中自A 到B 为直线过程,自B 到A 为等温过程.双原子理想气体的定容摩尔热容为52R ,R 为气体常量.(1)求直线AB 过程中的最高温度;(2)求直线AB 过程中气体的摩尔热容量随气体体积变化的关系式,说明气体在直线AB 过程各段体积围是吸热过程还是放热过程,确定吸热和放热过程发生转变时的温度T c ;(3)求整个直线AB 过程中所吸收的净热量和一个正循环过程中气体对外所作的净功.解析:(1)直线AB 过程中任一平衡态气体的压强p 和体积V 满足方程p -p 0p 0-p 02=V -V 02V 02-V 0此即 p =32p 0-p 0V 0V ①根据理想气体状态方程有:pV =νRT ② 由①②式得: T =1νR ⎝ ⎛⎭⎪⎫-p 0V 0V 2+32p 0V =-p 0νR ⎝ ⎛⎭⎪⎫V -34V 02+9p 0V 016νR ③ 由③式知,当V =34V 0时, ④气体达到直线AB 过程中的最高温度为:T max =9p 0V 016νR ⑤(2)由直线AB 过程的摩尔热容C m 的定义有:dQ =νC m dT ⑥ 由热力学第一定律有: dU =dQ -pdV ⑦由理想气体能公式和题给数据有:dU =νC V dT =ν52RdT ⑧由①⑥⑦⑧式得:C m =C V +p ν dV dT =52R +⎝ ⎛⎭⎪⎫32p 0-p 0V 0V 1ν dVdT ⑨由③式两边微分得:dV dT =2νRV 0p 0(3V 0-4V )⑩由⑩式带入⑨式得:C m =21V 0-24V 3V 0-4V R2 ⑪由⑥⑩⑪式得,直线AB 过程中,在V 从V 02增大到3V 04的过程中,C m >0,dV dT >0,故dQ dV >0,吸热 ⑫在V 从3V 04增大到21V 024的过程中,C m <0,dV dT <0,故dQdV >0,吸热 ⑬在V 从21V 024增大到V 0的过程中,C m >0,dV dT <0,故dQdV <0,放热 ⑭由⑫⑬⑭式可知,系统从吸热到放热转折点发生在V =V c =21V 024处由③式和上式得:T c =1νR ⎝ ⎛⎭⎪⎫-p 0V 0V 2+32p 0V =35p 0V 064νR ⑮ (3)对于直线AB 过程,由⑥⑩式得: dQ =νC mdT dVdV =21V 0-24V4V 0p 0dV =⎝ ⎛⎭⎪⎫214-6V V 0p 0dV⑯将上式两边对直线过程积分得,整个直线AB 过程中所吸收的净热量为:Q直线=⎠⎜⎛V 0/2V 0⎝⎛⎭⎪⎫214-6V V 0p 0dV =p 0⎝ ⎛⎭⎪⎫21V 4-3V 2V 0⎪⎪⎪V 0V 02=38p 0V 0 ⑰直线AB 过程中气体对外所做的功为:W 直线=12⎝⎛⎭⎪⎫p 0+p 02⎝⎛⎭⎪⎫V 0-V 02=38p 0V 0 ⑱等温过程中气体对外所做的功为:W 等温=⎠⎛V 0V 0/2pdV =⎠⎜⎛V 0V 0/2p 0V 02dV V=-p 0V 02ln2 ⑲一个正循环过程中气体对外所做的净功为:W =W 直线+W 等温=⎝ ⎛⎭⎪⎫38-ln22p 0V 0 ⑳参考评分:第(1)问10分,①②式各3分,④⑤式各2分;第(2)问20分,⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮式各2分;第(3)问10分,⑯⑰⑱⑲⑳式各2分.2.(33届复赛2)秋天清晨,气温为4.0℃,一加水员到实验园区给一径为2.00m 、高为2.00m 的圆柱形不锈钢蒸馏水罐加水.罐体导热良好.罐外有一径为4.00cm 的透明圆柱形观察柱,底部与罐相连(连接处很短),与大气相通,如图所示.加完水后,加水员在水面上覆盖一层轻质防蒸发膜(不溶于水,与罐壁无摩擦),闭了罐顶的加水口.此时加水 员通过观察柱上的刻度看到罐水高为1.00m . (1)从清晨到中午,气温缓慢升至24.0℃,问此时观察柱水位为多少?假设中间无人用水,水的蒸发及罐和观察柱体积随温度的变化可忽略.(2)从密闭水罐后至中午,罐空气对外做的功和吸收的热量分别为多少?求这个过程中罐空气的热容量.已知罐外气压始终为标准大气压p 0=1.01×105pa ,水在4.0℃时的密度为ρ0=1.00×103kg ·m -3,水在温度变化过程中的平均体积膨胀系数为3.03×10-4K -1,重力加速度大小为g =9.80m/s 2,绝对零度为-273.15℃.解析:(1)清晨加完水封闭后,罐空气的状态方程为p 0V 0=nRT 0 ① 至中午时由于气温升高,罐空气压强增大,设此时罐空气的压强、体积和温度分别为p 1、V 1、T 1,相应的状态方程为:p 1V 1=nRT 1 ②此时观察柱和罐水位之差为:Δh =V 1-V 0S 1+V 1-V 0S 2+κ(T 1-T 0)(S 1+S 2)l 0S 2③式中右端第三项是由原罐和观察柱水的膨胀引起的贡献,l 0=1.00m 为早上加水后观察柱水面的高度,S 1=πm 2,S 2=4π×10-4m 2分别为罐、观察柱的横截面积. 由力平衡条件有:p 1=p 0+ρ1g Δh 1 ④ 式中ρ1=ρ01+κ(T 1-T 0)是水在温度为T 1时的密度. ⑤联立①②③④⑤式得:ρ1gS ′(Δh )2+(p 0S 1+λρ1gV 0)-⎝ ⎛⎭⎪⎫T 1T 0-λp 0V 0=0⑥ 式中S ′=S 1S 2S 1+S 2,λ=1-κ(T 1-T 0) ⑦解⑥得:Δh =-(p 0S 1+λρ1gV 0)+(p 0S 1+λρ1gV 0)2+4ρ1gS ′p 0V 0⎝ ⎛⎭⎪⎫T 1T 0-λ2ρ1gS ′=0.812m ⑧另一解不合题意,舍去.由③⑤⑦⑧式和题给数据得:V 1-V 0=S ′Δh -κ(T 1-T 0)S 1l 0=-0.0180m 3 由上式和题给数据得,中午观察柱水位为:l 1=Δh -V 1-V 0S 1+l 0=1.82m ⑨(2)先求罐空气从清晨至中午对外所做的功.解法(一)早上罐空气压强p 0=1.01×105pa ,中午观察柱水位相对于此时罐水位升高Δh ,罐空气压强升高了Δp =ρ1g Δh =7.91×103pa ⑩ 因Δp <<p 0,认为在准静态升温过程中罐平均压强p -=p 0+12Δp =11.05×105pa⑪罐空气体积缩小了ΔV =0.0180m 3 ⑫ 可见ΔVV<<1,这说明⑪式是合理的.罐空气对外做功W =p -ΔV =-1.9×103J ⑬ 解法(二)缓慢升温是一个准静态过程,在封闭水罐后至中午之间的任意时刻,设罐空气都处于热平衡状态,设其体积、温度和压强分别为V 、T 和p .水温为T 时水的密度为ρ=ρ01+κ(T -T 0) ⑩将②③④式中的V 1、T 1和p 1换为V 、T 和p ,利用⑩式得罐空气在温度为T 时的状态方程为:p =p 0+ρg S ′[V 1-V 0+κ(T 1-T 0)S 1l 0]=p 0+ρgS 1l 0S ′V 1-V 0S 1l 0+κ(T 1-T 0)1+κ(T 1-T 0)⑪由题设数据和前门计算结果可知,κ(T -T 0)<κ(T 1-T 0)=0.0060V -V 0S 1l 0<V 1-V 0S 1l 0=0.0057这说⑪式右端分子中与T 有关的项不可略去,而右端分母中与T 有关的项可略去.于是⑪式:p =p 0+ρg S ′[V 1-V 0+κ(T 1-T 0)S 1l 0]=p 0+ρgS 1l 0S ′⎣⎢⎡⎦⎥⎤V 1-V 0S 1l 0+κ(T 1-T 0)利用状态方程,上式可改写成p =p 0-ρg S ′(V 0+κT 0S 1l 0)+nRκS 1l 01-κρ0gl 0nRS 1S ′V-nR κS 1l 0⑫从封闭水罐后至中午,罐空气对外界做的功为W =⎠⎛V 0V 1pdV=⎠⎜⎛V 0V 1⎝⎛⎭⎪⎫p 0-ρg S ′(V 0+κT 0S 1l 0)+nRκS 1l 01-κρ0gl 0nR S 1S ′V -nR κS 1l 0dV=-nR κS 1l 0⎩⎨⎧⎭⎬⎫(V 1-V 0)-S ′ρ0g ⎣⎢⎡⎦⎥⎤p 0-ρ0g S ′(V 0+κT 0S 1l 0)+nR κS 1l 0ln 1-κρ0gl 0nR S 1S ′V 11-κρ0gl 0nR S 1S ′V⑬=-1.9×103J解法(三)缓慢升温是一个准静态过程,在封闭水罐后至中午的任意时刻,罐空气都处于热平衡状态,设其体积、温度和压强分别为V 、T 和p .水在温度为T 时的密度为ρ=ρ01+κ(T -T 0) ⑩将②③④式中的V 1、T 1和p 1换为V 、T 和p ,利用⑩式得罐空气在温度为T 时的状态方程为p =p 0+ρg S ′[V -V 0+κ(T 1-T 0)S 1l 0]=p 0+ρ0g S ′V -V 0+κ(T -T 0)S 1l 01+κ(T -T 0)=p 0+ρ0g S ′S 1l 0+ρ0g S ′ V -V 0-S 1l 01+κ(T -T 0)≈p 0+ρ0gS 1l 0S ′+ρ0g S ′(V -V 0-S 1l 0)[1-κ(T -T 0)]=p 0+ρ0gS 1l 0S ′+ρ0g S ′⎣⎢⎡⎦⎥⎤(V -V 0-S 1l 0)(1+κT 0)-κnR PV (V -V 0-S 1l 0) ⑪ ≈p 0+ρ0gS 1l 0S ′+ρ0g S ′(V -V 0-S 1l 0)(1+κT 0)+ρ0g S ′κS 1l 0nRPV=p 0+ρ0gS 1l 0S ′+ρ0g S ′(V -2V 0)(1+κT 0)+ρ0g S ′ κV 0nRPV =p 0+ρ0gS 1l 0S ′+ρ0g S ′(V -2V 0)(1+κT 0)+ρ0g S ′κT 0p 0PV 式中应用了κ(T -T 0)<κ(T 1-T 0)=0.0060,V -V 0S 1l 0<V 1-V 0S 1l 0=0.0057⑪式可改写成p =p 0+ρ0gS 1l 0S ′+ρ0g S ′(V -2V 0)(1+κT 0)1-ρ0g S ′κT 0p 0V=-(1+κT 0)p 0κT 0+1+2κT 02κT 0p 0-ρ0gV 0S ′(1+2κT 0)1-ρ0g S ′κT 0p 0V⑫从封闭水罐后至中午,罐空气对外界做的功为W =⎠⎛V 0V 1pdV =⎠⎜⎛V 0V 1⎣⎢⎡⎦⎥⎤-1+2κT 02κT 0p 0-ρ0gV 0S ′(1+2κT 0)1-ρ0g S ′κT 0p 0VdV=-(1+κT 0)p 0κT 0⎣⎢⎡⎦⎥⎤V -V 0+⎝ ⎛⎭⎪⎫S ′p 0ρ0g κT 0-V 0lnS ′p 0-ρ0g κT 0V 1S ′p 0-ρ0g κT 0V 0 ⑬=-1.9×103J现计算罐空气的能变化.由能量均分定理知,罐空气中午相对于清晨的能改变为:ΔU =52nR (T 1-T 0)=52 p 0V 0T 0(T 1-T 0)=5.72×104J ⑭式中5是常温下空气分子的自由度.由热力学第一定律得罐空气的吸热为:ΔQ =W +ΔU =5.54×104J ⑮ 从封闭水罐后至中午,罐空气在这个过程中的热容量为:C =ΔQT 1-T 0=2.77×103J/K ⑯参考评分:第(1)问10分,①②③④⑤⑥⑦⑧式各1分,⑨式2分;第(2)问10分,⑩⑪⑫式各1分,⑬⑭⑮式各2分,⑯式1分.3.(32届复赛7)如图,1mol 单原子理想气体构成的系统分别经历循环过程abcda 和abc ′a .已知理想气体在任一缓慢变化过程中,压强p 和体积V 满足函数关系p =f (V ).(1)试证明:理想气体在任一缓慢变化过程的摩尔热容可表示为C π=C V +pR p +VdpdV,式中,C V 和R 分别为定容摩尔热容和理想气体常数;(2)计算系统经bc ′直线变化过程中的摩尔热容;(3)分别计算系统经bc ′直线过程中升降温的转折点在p-V 图中的坐标A 和吸放热的转折点在p-V 图中的坐标B ;(4)定量比较系统在两种循环过程的循环效率.解析:(1)根据热力学第一定律有:dU =δQ +δW ① 这里对于1mol 理想气体经历的任一缓慢变化过程中,δQ 、δW 和dU 可分别表示为δQ =CπdT 、δW =-pdV 、dU =C V dT②将理想气体状态方程pV =RT 两边求导得p dV dT+Vdp dVdV dT=R③式中利用了dp dT =dp dVdV dT,根据③式有:dV dT=R p +VdpdV④联立①②③④式得:C π=C V +pR p +VdpdV⑤(2)设bc ′过程方程为p =α-βV ⑥ 根据C π=C V +pR p +VdpdV可得该直线过程的摩尔热容为:C π=C V +α-βVα-2βV)R⑦式中C V =32R 是单原子理想气体的定容摩尔热容.对bc ′过程的初态(3p 1,V 1)和终态(p 1,5V 1)有:3p 1=α-βV 1、p 1=α-5βV 1 ⑧由⑧式得:α=72p 1、β=p 12V 1 ⑨由⑥⑦⑧⑨式得:C π=8V -35V 14V -14V 1R ⑩(3)根据过程热容的定义有:C π=ΔQΔT ⑪式中,ΔQ 是气体在此直线过程中,温度升高ΔT 时从外界吸收的热量.由⑩⑪式得:ΔT =4V -14V 18V -35V 1RΔQ⑫ΔQ =8V -35V 14V -14V 1 ΔTR⑬由⑫式可知,bc ′过程中的升降温的转折点A 在p -V 图上的坐标为A (72V 1,74p 1) ⑭由⑩式可知,bc ′过程中的吸放热的转折点B 在p -V 图上的坐标为B (358V 1,2116p 1)⑮(4)对于abcda 循环过程,ab 和bc 过程吸热,cd 和da 过程放热 Q ab =nC V (T b -T a )=1.5(RT b -RT a )=3p 1V 1 Q bc =nC p (T c -T b )= 2.5(RT c -RT b )=15p 1V 1⑯式中已知n =1mol ,单原子理想气体定容摩尔热容C V =32R ,定压摩尔热容C V =52R气体在abcda 循环过程中的效率可表示为循环过程中对外做的功处以总吸热,即ηabcda=W abcda Q ab +Q bc=4p 1V 118p 1V 1=0.22⑰对于abc ′a 循环过程,ab 和bB 过程吸热,Bc ′和c ′a 过程放热.由热力学第一定律可得bB 过程吸热为:Q bc ′=ΔU bB -W bB =nC V (T B -T b )+12(p B +3p 1)(V B -V 1)=11.39p 1V 1 ⑱所以循环过程abc ′a 的效率为ηabc ′a=W abc ′a Q ab +Q bc ′=4p 1V 114.39p 1V 1=0.278⑲由⑰⑲式可知,ηabc ′a >ηabcda ⑳ 参考评分:第(1)问5分,①②③④⑤式各1分;第(2)问5分,⑥⑦⑧⑨⑩式各1分;第(3)问7分,⑪式1分,⑫⑬式各2分,⑭⑮式各1分;第(4)问5分,⑯⑰⑱⑲⑳式各1分.4.(31届复赛2)一种测量理想气体的摩尔热容比γ=C p /C V 的方法(Clement-Desormes方法)如图所示:大瓶G 装满某种理想气体,瓶盖上通有一个灌气(放气)开关H ,另接出一根U 形管作为压强计M .瓶外的压强差通过U 形管右、左两管液面的高度差来确定.初始时,瓶外的温度相等,瓶气体的压强比外面的大气压强稍高,记录此时U 形管液面的高度差h i .然后打开H ,放出少量气体,当瓶外压强相等时,即刻关闭H .等待瓶外温度又相等时,记录此时U 形管液面的高度差h f .试由这两次记录的实验数据h i 和h f ,导出瓶气体的摩尔热容比γ的表达式.(提示:放气过程时间很短,可视为无热量交换;且U 形管很细,可忽略由高差变化引起的瓶气体在状态变化前后的体积变化)→解析:解法(一)瓶理想气体经历如下两个气体过程:(p i ,V 0,T 0,N i )——――——→放气(绝热膨胀)(p 0,V 0,T ,N f )—―——→等容升温(p f ,V 0,T 0,N f )其中,(p i ,V 0,T 0,N i )、(p 0,V 0,T ,N f )、(p f ,V 0,T 0,N f )分别是瓶气体在初态、中间态与末态的压强、体积、温度和摩尔数.根据理想气体方程pV =NkT ,考虑到由于气体初、末态的体积和温度相等,有p f p i =N fN i ①另一方面,设V ′是初态气体在保持其摩尔数不变的条件下绝热膨胀到压强为p 0时的体积,即:(p i ,V 0,T ,N i )—―——→绝热膨胀(p 0,V ′,T 0,N i )此绝热过程满足V 0V ′=⎝ ⎛⎭⎪⎫p 0p i 1γ ②由状态方程有p 0V ′=N i kT 和p 0V 0=N f kT ,所以N f N i =V 0V ′ ③ 联立①②③式得p f p i =⎝ ⎛⎭⎪⎫p 0p i 1γ ④此即γ=lnp i p 0lnp i p f ⑤ 由力学平衡条件有p i =p 0+ρgh i ⑥ p f =p 0+ρgh f ⑦ 式中,p 0+ρgh 0为瓶外的大气压强,ρ是U 形管中液体的密度,g 是重力加速度的大小.由⑤⑥⑦式得γ=ln ⎝ ⎛⎭⎪⎫1+h i h 0ln ⎝ ⎛⎭⎪⎫1+h i h 0-ln ⎝ ⎛⎭⎪⎫1+h f h 0 ⑧ 利用近似关系式:当x <<1,ln(1+x )≈x ,以及h i h 0<<1,h fh 0<<1有γ=h ih 0h i h 0-h f h 0=h i h i -h f ⑨参考评分:本题16分.①②③⑤⑥⑦⑧⑨式各2分.解法(二)若仅考虑留在容器的气体:它首先经历了一个绝热膨胀过程ab ,再通过等容升温过程bc 达到末态(p i ,V 1,T 0)绝热膨胀ab ——————→(p 0,V 0,T )等容升温bc —————→(p f ,V 0,T 0) 其中,(p i ,V 1,T 0)、(p 0,V 0,T )、和(p f ,V 0,T 0)分别是留在瓶的气体在初态、中间态和末态的压强、体积与温度.留在瓶的气体先后满足绝热方程和等容过程方程ab :p 1γ-1T 0γ=p 0γ-1T γ ①bc :p 0T =p f T 0② 由①②式得:p f p i =⎝ ⎛⎭⎪⎫p 0p i 1γ ③此即γ=lnp i p 0lnp i p f ④ 由力学平衡条件有p i =p 0+ρgh i ⑤ p f =p 0+ρgh f ⑥ 式中,p 0+ρgh 0为瓶外的大气压强,ρ是U 形管中液体的密度,g 是重力加速度的大小.由④⑤⑥式得ln ⎝ ⎛⎭⎪⎫1+h i h 0ln ⎝ ⎛⎭⎪⎫1+h i h 0-ln ⎝ ⎛⎭⎪⎫1+h f h 0 ⑦ 利用近似关系式:当x <<1,ln(1+x )≈x ,以及h i h 0<<1,h fh 0<<1有γ=h ih 0h i h 0-h f h 0=h i h i -h f ⑧参考评分:本题16分.①②式各3分,④⑤⑥⑦⑧式各2分.5.(30届复赛6)温度开关用厚度均为0.20mm 的钢片和青铜片作感温元件;在温度为20℃时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片.若钢和青铜的线膨胀系数分别为1.0×10-5/度和2.0×10-5/度.当温度升高到120℃时,双金属片将自动弯成圆弧形,如图所示.试求双金属片弯曲的曲率半径.(忽略加热时金属片厚度的变化.) 解析:设弯成的圆弧半径为r ,金属片原长为l ,圆弧所对的圆心角为φ,钢和青铜的线膨胀系数分别为α1和α2,钢片和青铜片温度由T 1=20℃升高到T 2=120℃时的伸长量分别为Δl 1和Δl 2. 对于钢片 (r -d 2)φ=l +Δl 1 ① Δl 1=l α1(T 2-T 1) ②式中,d =0.20mm .对于青铜片(r +d 2)φ=l +Δl 2 ③ Δl 2=l α2(T 2-T 1) ④联立以上各式得r =2+(α1+α2)(T 2-T 1)2(α2-α1)(T 2-T 1)d =2.0×102mm ⑤ 参考评分:本题15分.①式3分,②式3分,③式3分,④式3分,⑤式3分. 6.(29届复赛6)如图所示,刚性绝热容器A 和B 水平放置,一根带有绝热阀门和多孔塞的绝热刚性细短管把容器A 、B 相互连通.初始时阀门是关闭的,A 装有某种理想气体,温度为T 1;B 为真空.现将阀门打开,气体缓慢通过多孔塞后进入容器B 中.当容器A 中气体的压强降到与初始时A 中气体压强之比为α时,重新关闭阀门.设最后留在容器A 的那部分气体与进入容器B 中的气体之间始终无热量交换,求容器B 中气体质量与气体总质量之比.已知:1mol 理想气体的能为u =CT ,其中C 是已知常量,T 为绝对温度;一定质量的理想气体经历缓慢的绝热过程时,其压强p 与体积V 满足过程方程常量=+C RC pV ,其中R 为普适气体常量.重力影响和连接管体积均忽略不计.解析:设重新关闭阀门后容器A中气体的摩尔数为n1,B中气体的摩尔数为n2,则气体总摩尔数为n=n1+n2①把两容器中的气体作为整体考虑,设重新关闭阀门后容器A中气体温度为T1′,B中气体温度为T2,重新关闭阀门之后与打开阀门之前气体能的变化可表示为ΔU=n1C(T1′-T1)+n2C(T2-T1) ②由于容器是刚性绝热的,按热力学第一定律有ΔU=0 ③令V1表示容器A的体积, 初始时A中气体的压强为p1,关闭阀门后A中气体压强为αp1,由理想气体状态方程可知n=p1V1RT1④n1=(αp1)V1RT1′⑤由以上各式可解得:T2=(1-α)T1T1′T1′-αT1由于进入容器B中的气体与仍留在容器A中的气体之间没有热量交换,因而在阀门打开到重新关闭的过程中留在容器A中的那部分气体经历了一个绝热过程,设这部分气体初始时体积为V10(压强为p1时),则有p1V10C+RC=(αp1)V1C+RC⑥利用状态方程可得p1V10T1=(αp1)V1T1′⑦由①②③④⑤⑥⑦式得,阀门重新关闭后容器B中气体质量与气体总质量之比n2n=2-αRC+R-αCC+R2―α―αRC+R⑧参考评分:本题15分.①式1分,②式3分,③式2分,④⑤式各1分,⑥式3分,⑦式1分,⑧式3分.7.(28届复赛6)如图所示为圆柱形气缸,气缸壁绝热,气缸的右端有一小孔与大气相通,大气的压强为P 0.用一热容量可忽略的导热隔板N和一绝热活塞M 将气缸分为A 、B 、C 三室,隔板与气缸固连,活塞相对气缸可以无摩擦地移动但不漏气.气缸的左端A 室中有一电加热器Ω.已知在A 、B 室中均盛有1摩尔同种理想气体,电加热器加热前,系统处于平衡状态,A 、B 两室中气体的温度均为T 0,A 、B 、C 三室的体积均为V 0.现通过电加热器对A 室中气体缓慢加热,若提供的总热量为Q 0,试求B 室中气体的末态体积和A 室中气体的末态温度.(设A 、B 两室中气体1摩尔的能为U =52RT ,式中R 为普适气体常量,T 为绝对温度)在电加热器对A 室中气体加热的过程中,由于隔板N 是导热的,B 室中气体的温度要升高,活塞M 将向右移动.当加热停止时,活塞M 有可能刚移到气缸最右端,亦可能尚未移到气缸最右端. 当然亦可能活塞已移到气缸最右端但加热过程尚未停止.解析:(1)设加热恰好能使活塞M 移到气缸的最右端,则B 室气体末态的体积V B =2V 0 ① 根据题意,活塞M 向右移动过程中,B 中气体压强不变,用T B 表示B 室中气体末态的温度,有V 0T 0=V BT B ②由①②式得 T B =2T 0 ③ 由于隔板N 是导热的,故A 室中气体末态的温度 T A =2T 0 ④ 下面计算此过程中的热量Q m .在加热过程中,A室中气体经历的是等容过程,根据热力学第一定律,气体吸收的热量等于其能的增加量,即Q A =52R (T A -T 0) ⑤ 由④⑤两式得 Q A =52RT 0 ⑥ B 室中气体经历的是等压过程,在过程中B 室气体对外做功为W B =p 0(V B -V 0) ⑦ 由①⑦式及理想气体状态方程得W B =RT 0 ⑧能改变为ΔU B =52R (T B -T 0) ⑨ 由④⑨两式得ΔU B =52RT 0 ⑩ 根据热力学第一定律和⑧⑩两式, B 室气体吸收的热量为Q B =ΔU B +W B =72RT 0 ⑪ 由⑥⑪两式可知电加热器提供的热量为Q m =Q A +Q B =6RT 0 ⑫ 若Q 0=Q m ,B 室中气体末态体积为2V 0,A 室中气体的末态温度2T 0.(2)若Q 0>Q m ,则当加热器供应的热量达到Q m 时,活塞刚好到达气缸最右端,但这时加热尚未停止,只是在以后的加热过程中气体的体积保持不变,故热量Q 0-Q m 是A 、B 中气体在等容升温过程中吸收的热量.由于等容过程中气体不做功,根据热力学第一定律,若A 室中气体末态的温度为T A ′,有Q 0-Q m =52R (T A ′-2T 0)+52R (T A ′-2T 0) ⑬ 由⑫⑬两式可求得T A ′=Q 05R +45T 0 ⑭ B 中气体的末态的体积V B ′=2V 0 ⑮(3)若Q 0<Q m ,则隔板尚未移到气缸最右端,加热停止,故B 室中气体末态的体积V B ″<2V 0.设A 、B 两室中气体末态的温度为T A ″,根据热力学第一定律,注意到A 室中气体经历的是等容过程,其吸收的热量Q A =52R (T A ″-T 0) ⑯ B 室中气体经历的是等压过程,吸收热量Q B =52R (T A ″-T 0)+p 0(V B ″-V 0) ⑰ 利用理想气体状态方程,上式变为Q B =72R (T A ″-T 0) ⑱ 由上可知Q 0=Q A +Q B =6R (T A ″-T 0)T 0 ⑲ 所以A 室中气体的末态温度T A ″=Q 06R +T 0 ⑳ B 室中气体的末态体积V B ″=V 0T 0T A ″=⎝ ⎛⎭⎪⎫Q 06RT 0+1V 0 ○21 参考评分:本题20分.得到Q 0=Q m 的条件下①④式各1分;⑫式6分,得到Q 0>Q m 的条件下的⑭式4分,⑮式2分;得到Q 0<Q m 的条件下的⑳式4分,○21式2分. 8.(27届复赛7)地球上的能量从源头上说来自太阳辐射到达地面的太阳辐射(假定不计大气对太阳辐射的吸收)一部分被地球表面反射到太空,其余部分被地球吸收.被吸收的部分最终转换成为地球热辐射(红外波段的电磁波).热辐射在向外传播过程中,其中一部分会被温室气体反射回地面,地球以此方式保持了总能量平衡.作为一个简单的理想模型,假定地球表面的温度处处相同,且太阳和地球的辐射都遵从斯忒蕃一玻尔兹曼定律:单位面积的辐射功率J 与表面的热力学温度T 的四次方成正比,即J =σT 4,其中σ是一个常量.已知太阳表面温度T s =5.78×103K ,太阳半径R s =6.69×105km ,地球到太阳的平均距离d =1.50×108km .假设温室气体在大气层中集中形成一个均匀的薄层,并设它对热辐射能量的反射率为ρ=0.38.(1)如果地球表面对太阳辐射的平均反射率α=0.30,试问考虑了温室气体对热辐射的反射作用后,地球表面的温度是多少?(2)如果地球表面一部分被冰雪覆盖,覆盖部分对太阳辐射的反射率为α1=0.85,其余部分的反射率处α2=0.25.间冰雪被盖面占总面积多少时地球表面温度为273K .解析:(1)根据题意,太阳辐射的总功率P S =4πR 2S σT 4S ,太阳辐射各向同性的向外传播.设地球半径为r E ,可以认为地球所在处的太阳辐射是均匀的,故地球接收太阳辐射的总功率为:P I =σT 4S ⎝ ⎛⎭⎪⎫R S d 2πr 2E①地球表面反射太阳辐射的总功率为αP I .设地球表面的温度为T E ,则地球的热辐射总功率为:P E =4πr 2E σT 4E ② 考虑到温室气体向地球表面释放的热辐射,则输入地球表面的总功率为P I +βP E .当达到热平衡时,输入的能量与输出的能量相等,有:P I +βP E =αP I +P E ③由以上各式得:T E =T S22⎝ ⎛⎭⎪⎫1-α1-β14⎝ ⎛⎭⎪⎫R S d 12 错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十年真题-热学(复赛)1.(34届复赛7)如气体压强-体积图所示,摩尔数为ν的双原子理想气体构成的系统经历一正循环过程(正循环指沿图中箭头所示的循环),其中自A 到B 为直线过程,自B到A 为等温过程.双原子理想气体的定容摩尔热容为52R ,R 为气体常量. (1)求直线AB 过程中的最高温度; (2)求直线AB 过程中气体的摩尔热容量随气体体积变化的关系式,说明气体在直线AB 过程各段体积范围内是吸热过程还是放热过程,确定吸热和放热过程发生转变时的温度T c ; (3)求整个直线AB 过程中所吸收的净热量和一个正循环过程中气体对外所作的净功. 解析:(1)直线AB 过程中任一平衡态气体的压强p 和体积V 满足方程p -p 0p 0-p 02=V -V 02V 02-V 0 此即 p =32p 0-p 0V 0V ① 根据理想气体状态方程有:pV =νRT ② 由①②式得: T =1νR ⎝⎛⎭⎫-p 0V 0V 2+32p 0V =-p 0νR ⎝⎛⎭⎫V -34V 02+9p 0V 016νR③ 由③式知,当V =34V 0时, ④ 气体达到直线AB 过程中的最高温度为:T max =9p 0V 016νR⑤ (2)由直线AB 过程的摩尔热容C m 的定义有:dQ =νC m dT ⑥ 由热力学第一定律有: dU =dQ -pdV ⑦由理想气体内能公式和题给数据有:dU =νC V dT =ν52RdT ⑧ 由①⑥⑦⑧式得:C m =C V +p ν dV dT =52R +⎝⎛⎭⎫32p 0-p 0V 0V 1ν dV dT ⑨ 由③式两边微分得:dV dT =2νRV 0p 0(3V 0-4V )⑩ 由⑩式带入⑨式得:C m =21V 0-24V 3V 0-4V R 2⑪ 由⑥⑩⑪式得,直线AB 过程中,在V 从V 02增大到3V 04的过程中,C m >0,dV dT >0,故dQ dV>0,吸热 ⑫ 在V 从3V 04增大到21V 024的过程中,C m <0,dV dT <0,故dQ dV>0,吸热 ⑬ 在V 从21V 024增大到V 0的过程中,C m >0,dV dT <0,故dQ dV<0,放热 ⑭由⑫⑬⑭式可知,系统从吸热到放热转折点发生在V =V c =21V 024处 由③式和上式得:T c =1νR ⎝⎛⎭⎫-p 0V 0V 2+32p 0V =35p 0V 064νR⑮ (3)对于直线AB 过程,由⑥⑩式得:dQ =νC m dT dV dV =21V 0-24V 4V 0p 0dV =⎝⎛⎭⎫214-6V V 0p 0dV ⑯ 将上式两边对直线过程积分得,整个直线AB 过程中所吸收的净热量为:Q 直线=⎠⎛V 0/2V 0⎝⎛⎭⎫214-6V V 0p 0dV =p 0⎝⎛⎭⎫21V 4-3V 2V 0⎪⎪V 0V 02=38p 0V 0 ⑰ 直线AB 过程中气体对外所做的功为:W 直线=12⎝⎛⎭⎫p 0+p 02⎝⎛⎭⎫V 0-V 02=38p 0V 0 ⑱ 等温过程中气体对外所做的功为:W 等温=⎠⎛V 0V 0/2pdV =⎠⎛V 0V 0/2p 0V 02dV V =-p 0V 02ln2 ⑲ 一个正循环过程中气体对外所做的净功为:W =W 直线+W 等温=⎝⎛⎭⎫38-ln22p 0V 0 ⑳ 参考评分:第(1)问10分,①②式各3分,④⑤式各2分;第(2)问20分,⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮式各2分;第(3)问10分,⑯⑰⑱⑲⑳式各2分.2.(33届复赛2)秋天清晨,气温为4.0℃,一加水员到实验园区给一内径为2.00m 、高为2.00m 的圆柱形不锈钢蒸馏水罐加水.罐体导热良好.罐外有一内径为4.00cm 的透明圆柱形观察柱,底部与罐相连(连接处很短),与大气相通,如图所示.加完水后,加水员在水面上覆盖一层轻质防蒸发膜(不溶于水,与罐壁无摩擦),闭了罐顶的加水口.此时加水 员通过观察柱上的刻度看到罐内水高为1.00m .(1)从清晨到中午,气温缓慢升至24.0℃,问此时观察柱内水位为多少?假设中间无人用水,水的蒸发及罐和观察柱体积随温度的变化可忽略.(2)从密闭水罐后至中午,罐内空气对外做的功和吸收的热量分别为多少?求这个过程中罐内空气的热容量.已知罐外气压始终为标准大气压p 0=1.01×105pa ,水在4.0℃时的密度为ρ0=1.00×103kg·m -3,水在温度变化过程中的平均体积膨胀系数为3.03×10-4K -1,重力加速度大小为g =9.80m/s 2,绝对零度为-273.15℃.解析:(1)清晨加完水封闭后,罐内空气的状态方程为p 0V 0=nRT 0 ① 至中午时由于气温升高,罐内空气压强增大,设此时罐内空气的压强、体积和温度分别为p 1、V 1、T 1,相应的状态方程为:p 1V 1=nRT 1 ②此时观察柱和罐内水位之差为:Δh =V 1-V 0S 1+V 1-V 0S 2+κ(T 1-T 0)(S 1+S 2)l 0S 2③ 式中右端第三项是由原罐内和观察柱内水的膨胀引起的贡献,l 0=1.00m 为早上加水后观察柱内水面的高度,S 1=πm 2,S 2=4π×10-4m 2分别为罐、观察柱的横截面积.由力平衡条件有:p 1=p 0+ρ1g Δh 1 ④式中ρ1=ρ01+κ(T 1-T 0)是水在温度为T 1时的密度. ⑤联立①②③④⑤式得:ρ1gS ′(Δh )2+(p 0S 1+λρ1gV 0)-⎝⎛⎭⎫T 1T 0-λp 0V 0=0 ⑥ 式中S ′=S 1S 2S 1+S 2,λ=1-κ(T 1-T 0) ⑦ 解⑥得:Δh =-(p 0S 1+λρ1gV 0)+(p 0S 1+λρ1gV 0)2+4ρ1gS ′p 0V 0⎝⎛⎭⎫T 1T 0-λ2ρ1gS ′=0.812m ⑧另一解不合题意,舍去.由③⑤⑦⑧式和题给数据得:V 1-V 0=S ′Δh -κ(T 1-T 0)S 1l 0=-0.0180m 3由上式和题给数据得,中午观察柱内水位为:l 1=Δh -V 1-V 0S 1+l 0=1.82m ⑨ (2)先求罐内空气从清晨至中午对外所做的功.解法(一)早上罐内空气压强p 0=1.01×105pa ,中午观察柱内水位相对于此时罐内水位升高Δh ,罐内空气压强升高了Δp =ρ1g Δh =7.91×103pa ⑩因Δp <<p 0,认为在准静态升温过程中罐内平均压强p -=p 0+12Δp =11.05×105pa ⑪ 罐内空气体积缩小了ΔV =0.0180m 3 ⑫可见ΔV V <<1,这说明⑪式是合理的.罐内空气对外做功W =p -ΔV =-1.9×103J ⑬ 解法(二)缓慢升温是一个准静态过程,在封闭水罐后至中午之间的任意时刻,设罐内空气都处于热平衡状态,设其体积、温度和压强分别为V 、T 和p .水温为T 时水的密度为ρ=ρ01+κ(T -T 0) ⑩ 将②③④式中的V 1、T 1和p 1换为V 、T 和p ,利用⑩式得罐内空气在温度为T 时的状态方程为:p =p 0+ρg S ′[V 1-V 0+κ(T 1-T 0)S 1l 0]=p 0+ρgS 1l 0S ′ V 1-V 0S 1l 0+κ(T 1-T 0)1+κ(T 1-T 0) ⑪ 由题设数据和前门计算结果可知,κ(T -T 0)<κ(T 1-T 0)=0.0060V -V 0S 1l 0<V 1-V 0S 1l 0=0.0057这说⑪式右端分子中与T 有关的项不可略去,而右端分母中与T 有关的项可略去.于是⑪式:p =p 0+ρg S ′[V 1-V 0+κ(T 1-T 0)S 1l 0]=p 0+ρgS 1l 0S ′⎣⎡⎦⎤V 1-V 0S 1l 0+κ(T 1-T 0) 利用状态方程,上式可改写成p =p 0-ρg S ′(V 0+κT 0S 1l 0)+nR κS 1l 01-κρ0gl 0nR S 1S ′V-nR κS 1l 0 ⑫ 从封闭水罐后至中午,罐内空气对外界做的功为W =⎠⎛V 0V 1pdV=⎠⎜⎛V 0V 1⎝ ⎛⎭⎪⎫p 0-ρg S ′(V 0+κT 0S 1l 0)+nRκS 1l 01-κρ0gl 0nR S 1S ′V -nR κS 1l 0dV =-nR κS 1l 0⎩⎨⎧⎭⎬⎫(V 1-V 0)-S ′ρ0g ⎣⎡⎦⎤p 0-ρ0g S ′(V 0+κT 0S 1l 0)+nR κS 1l 0ln 1-κρ0gl 0nR S 1S ′V 11-κρ0gl 0nR S 1S ′V 0 ⑬ =-1.9×103J解法(三)缓慢升温是一个准静态过程,在封闭水罐后至中午的任意时刻,罐内空气都处于热平衡状态,设其体积、温度和压强分别为V 、T 和p .水在温度为T 时的密度为ρ=ρ01+κ(T -T 0) ⑩ 将②③④式中的V 1、T 1和p 1换为V 、T 和p ,利用⑩式得罐内空气在温度为T 时的状态方程为p =p 0+ρg S ′[V -V 0+κ(T 1-T 0)S 1l 0]=p 0+ρ0g S ′ V -V 0+κ(T -T 0)S 1l 01+κ(T -T 0) =p 0+ρ0g S ′S 1l 0+ρ0g S ′ V -V 0-S 1l 01+κ(T -T 0) ≈p 0+ρ0gS 1l 0S ′+ρ0g S ′(V -V 0-S 1l 0)[1-κ(T -T 0)]=p 0+ρ0gS 1l 0S ′+ρ0g S ′⎣⎡⎦⎤(V -V 0-S 1l 0)(1+κT 0)-κnR PV (V -V 0-S 1l 0) ⑪ ≈p 0+ρ0gS 1l 0S ′+ρ0g S ′(V -V 0-S 1l 0)(1+κT 0)+ρ0g S ′ κS 1l 0nR PV=p 0+ρ0gS 1l 0S ′+ρ0g S ′(V -2V 0)(1+κT 0)+ρ0g S ′ κV 0nR PV=p 0+ρ0gS 1l 0S ′+ρ0g S ′(V -2V 0)(1+κT 0)+ρ0g S ′ κT 0p 0PV 式中应用了κ(T -T 0)<κ(T 1-T 0)=0.0060,V -V 0S 1l 0<V 1-V 0S 1l 0=0.0057 ⑪式可改写成p =p 0+ρ0gS 1l 0S ′+ρ0g S ′(V -2V 0)(1+κT 0)1-ρ0g S ′ κT 0p 0V =-(1+κT 0)p 0κT 0+1+2κT 02κT 0p 0-ρ0gV 0S ′(1+2κT 0)1-ρ0g S ′ κT 0p 0V ⑫ 从封闭水罐后至中午,罐内空气对外界做的功为W =⎠⎛V 0V 1pdV =⎠⎜⎛V 0V 1⎣⎢⎡⎦⎥⎤-1+2κT 02κT 0p 0-ρ0gV 0S ′(1+2κT 0)1-ρ0g S ′ κT 0p 0V dV=-(1+κT 0)p 0κT 0⎣⎢⎡⎦⎥⎤V -V 0+⎝⎛⎭⎫S ′p 0ρ0gκT 0-V 0ln S ′p 0-ρ0gκT 0V 1S ′p 0-ρ0gκT 0V 0 ⑬ =-1.9×103J现计算罐内空气的内能变化.由能量均分定理知,罐内空气中午相对于清晨的内能改变为:ΔU =52nR (T 1-T 0)=52 p 0V 0T 0(T 1-T 0)=5.72×104J ⑭ 式中5是常温下空气分子的自由度.由热力学第一定律得罐内空气的吸热为:ΔQ =W +ΔU =5.54×104J ⑮从封闭水罐后至中午,罐内空气在这个过程中的热容量为:C =ΔQ T 1-T 0=2.77×103J/K ⑯ 参考评分:第(1)问10分,①②③④⑤⑥⑦⑧式各1分,⑨式2分;第(2)问10分,⑩⑪⑫式各1分,⑬⑭⑮式各2分,⑯式1分.3.(32届复赛7)如图,1mol 单原子理想气体构成的系统分别经历循环过程abcda 和abc ′a .已知理想气体在任一缓慢变化过程中,压强p 和体积V 满足函数关系p =f (V ).(1)试证明:理想气体在任一缓慢变化过程的摩尔热容可表示为C π=C V +pR p +V dp dV,式中,C V 和R 分别为定容摩尔热容和理想气体常数;(2)计算系统经bc ′直线变化过程中的摩尔热容;(3)分别计算系统经bc ′直线过程中升降温的转折点在p-V 图中的坐标A 和吸放热的转折点在p-V 图中的坐标B ;(4)定量比较系统在两种循环过程的循环效率.解析:(1)根据热力学第一定律有:dU =δQ +δW ① 这里对于1mol 理想气体经历的任一缓慢变化过程中,δQ 、δW 和dU 可分别表示为δQ =C πdT 、δW =-pdV 、dU =C V dT ②将理想气体状态方程pV =RT 两边求导得p dV dT +V dp dV dV dT=R ③ 式中利用了dp dT =dp dV dV dT ,根据③式有:dV dT =R p +V dp dV④ 联立①②③④式得:C π=C V +pR p +V dp dV⑤ (2)设bc ′过程方程为p =α-βV ⑥根据C π=C V +pR p +V dp dV 可得该直线过程的摩尔热容为:C π=C V +α-βV α-2βV )R ⑦ 式中C V =32R 是单原子理想气体的定容摩尔热容. 对bc ′过程的初态(3p 1,V 1)和终态(p 1,5V 1)有:3p 1=α-βV 1、p 1=α-5βV 1 ⑧由⑧式得:α=72p 1、β=p 12V 1⑨ 由⑥⑦⑧⑨式得:C π=8V -35V 14V -14V 1R ⑩ (3)根据过程热容的定义有:C π=ΔQ ΔT⑪ 式中,ΔQ 是气体在此直线过程中,温度升高ΔT 时从外界吸收的热量.由⑩⑪式得:ΔT =4V -14V 18V -35V 1R ΔQ ⑫ ΔQ =8V -35V 14V -14V 1ΔT R ⑬ 由⑫式可知,bc ′过程中的升降温的转折点A 在p -V 图上的坐标为A (72V 1,74p 1) ⑭ 由⑩式可知,bc ′过程中的吸放热的转折点B 在p -V 图上的坐标为B (358V 1,2116p 1) ⑮ (4)对于abcda 循环过程,ab 和bc 过程吸热,cd 和da 过程放热Q ab =nC V (T b -T a )=1.5(RT b -RT a )=3p 1V 1Q bc =nC p (T c -T b )=2.5(RT c -RT b )=15p 1V 1 ⑯式中已知n =1mol ,单原子理想气体定容摩尔热容C V =32R ,定压摩尔热容C V =52R 气体在abcda 循环过程中的效率可表示为循环过程中对外做的功处以总吸热,即ηabcda =W abcda Q ab +Q bc =4p 1V 118p 1V 1=0.22 ⑰ 对于abc ′a 循环过程,ab 和bB 过程吸热,Bc ′和c ′a 过程放热.由热力学第一定律可得bB 过程吸热为:Q bc′=ΔU bB -W bB =nC V (T B -T b )+12(p B +3p 1)(V B -V 1)=11.39p 1V 1 ⑱ 所以循环过程abc ′a 的效率为ηabc′a =W abc′a Q ab +Q bc′=4p 1V 114.39p 1V 1=0.278 ⑲ 由⑰⑲式可知,ηabc′a >ηabcda ⑳ 参考评分:第(1)问5分,①②③④⑤式各1分;第(2)问5分,⑥⑦⑧⑨⑩式各1分;第(3)问7分,⑪式1分,⑫⑬式各2分,⑭⑮式各1分;第(4)问5分,⑯⑰⑱⑲⑳式各1分.4.(31届复赛2)一种测量理想气体的摩尔热容比γ=C p /C V 的方法(Clement-Desormes 方法)如图所示:大瓶G 内装满某种理想气体,瓶盖上通有一个灌气(放气)开关H ,另接出一根U 形管作为压强计M .瓶内外的压强差通过U 形管右、左两管液面的高度差来确定.初始时,瓶内外的温度相等,瓶内气体的压强比外面的大气压强稍高,记录此时U 形管液面的高度差h i .然后打开H ,放出少量气体,当瓶内外压强相等时,即刻关闭H .等待瓶内外温度又相等时,记录此时U 形管液面的高度差h f .试由这两次记录的实验数据h i 和h f ,导出瓶内气体的摩尔热容比γ的表达式.(提示:放气过程时间很短,可视为无热量交换;且U 形管很细,可忽略由高差变化引起的瓶内气体在状态变化前后的体积变化)→解析:解法(一)瓶内理想气体经历如下两个气体过程:(p i ,V 0,T 0,N i )——――——→放气(绝热膨胀)(p 0,V 0,T ,N f )—―——→等容升温(p f ,V 0,T 0,N f )其中,(p i ,V 0,T 0,N i )、(p 0,V 0,T ,N f )、(p f ,V 0,T 0,N f )分别是瓶内气体在初态、中间态与末态的压强、体积、温度和摩尔数.根据理想气体方程pV =NkT ,考虑到由于气体初、末态的体积和温度相等,有p f p i =N f N i① 另一方面,设V ′是初态气体在保持其摩尔数不变的条件下绝热膨胀到压强为p 0时的体积,即:(p i ,V 0,T ,N i )—―——→绝热膨胀(p 0,V ′,T 0,N i )此绝热过程满足V 0V ′=⎝⎛⎭⎫p 0p i 1γ ② 由状态方程有p 0V ′=N i kT 和p 0V 0=N f kT ,所以N f N i =V 0V ′③ 联立①②③式得p f p i =⎝⎛⎭⎫p 0p i 1γ ④ 此即γ=ln p i p 0ln p i p f⑤ 由力学平衡条件有p i =p 0+ρgh i ⑥ p f =p 0+ρgh f ⑦ 式中,p 0+ρgh 0为瓶外的大气压强,ρ是U 形管中液体的密度,g 是重力加速度的大小.由⑤⑥⑦式得γ=ln ⎝⎛⎭⎫1+h i h 0ln ⎝⎛⎭⎫1+h i h 0-ln ⎝⎛⎭⎫1+h f h 0 ⑧ 利用近似关系式:当x <<1,ln(1+x )≈x ,以及h i h 0<<1,h f h 0<<1有 γ=h ih 0h i h 0-h f h 0=h i h i -h f ⑨ 参考评分:本题16分.①②③⑤⑥⑦⑧⑨式各2分.解法(二)若仅考虑留在容器内的气体:它首先经历了一个绝热膨胀过程ab ,再通过等容升温过程bc 达到末态(p i ,V 1,T 0)绝热膨胀ab ——————→(p 0,V 0,T )等容升温bc —————→(p f ,V 0,T 0) 其中,(p i ,V 1,T 0)、(p 0,V 0,T )、和(p f ,V 0,T 0)分别是留在瓶内的气体在初态、中间态和末态的压强、体积与温度.留在瓶内的气体先后满足绝热方程和等容过程方程ab :p 1γ-1T 0γ=p 0γ-1T γ ①bc :p 0T =p f T 0② 由①②式得: p f p i =⎝⎛⎭⎫p 0p i 1γ ③此即γ=ln p i p 0ln p i p f ④ 由力学平衡条件有p i =p 0+ρgh i ⑤ p f =p 0+ρgh f ⑥ 式中,p 0+ρgh 0为瓶外的大气压强,ρ是U 形管中液体的密度,g 是重力加速度的大小.由④⑤⑥式得ln ⎝⎛⎭⎫1+h i h 0ln ⎝⎛⎭⎫1+h i h 0-ln ⎝⎛⎭⎫1+h f h 0 ⑦ 利用近似关系式:当x <<1,ln(1+x )≈x ,以及h i h 0<<1,h f h 0<<1有 γ=h ih 0h i h 0-h f h 0=h i h i -h f ⑧ 参考评分:本题16分.①②式各3分,④⑤⑥⑦⑧式各2分.5.(30届复赛6)温度开关用厚度均为0.20mm 的钢片和青铜片作感温元件;在温度为20℃时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片.若钢和青铜的线膨胀系数分别为 1.0×10-5/度和2.0×10-5/度.当温度升高到120℃时,双金属片将自动弯成圆弧形,如图所示.试求双金属片弯曲的曲率半径.(忽略加热时金属片厚度的变化.)解析:设弯成的圆弧半径为r ,金属片原长为l ,圆弧所对的圆心角为φ,钢和青铜的线膨胀系数分别为α1和α2,钢片和青铜片温度由T 1=20℃升高到T 2=120℃时的伸长量分别为Δl 1和Δl 2. 对于钢片 (r -d 2)φ=l +Δl 1 ① Δl 1=lα1(T 2-T 1) ②式中,d =0.20mm .对于青铜片(r +d 2)φ=l +Δl 2 ③ Δl 2=lα2(T 2-T 1) ④联立以上各式得r =2+(α1+α2)(T 2-T 1)2(α2-α1)(T 2-T 1)d =2.0×102mm ⑤ 参考评分:本题15分.①式3分,②式3分,③式3分,④式3分,⑤式3分. 6.(29届复赛6)如图所示,刚性绝热容器A 和B 水平放置,一根带有绝热阀门和多孔塞的绝热刚性细短管把容器A 、B 相互连通.初始时阀门是关闭的,A 内装有某种理想气体,温度为T 1;B 内为真空.现将阀门打开,气体缓慢通过多孔塞后进入容器B 中.当容器A 中气体的压强降到与初始时A 中气体压强之比为α时,重新关闭阀门.设最后留在容器A 内的那部分气体与进入容器B 中的气体之间始终无热量交换,求容器B 中气体质量与气体总质量之比.已知:1mol 理想气体的内能为u =CT ,其中C 是已知常量,T 为绝对温度;一定质量的理想气体经历缓慢的绝热过程时,其压强p 与体积V 满足过程方程常量=+CR C pV ,其中R 为普适气体常量.重力影响和连接管体积均忽略不计.解析:设重新关闭阀门后容器A 中气体的摩尔数为n 1,B 中气体的摩尔数为n 2,则气体总摩尔数为n =n 1+n 2 ① 把两容器中的气体作为整体考虑,设重新关闭阀门后容器A 中气体温度为T 1′,B 中气体温度为T 2,重新关闭阀门之后与打开阀门之前气体内能的变化可表示为 ΔU =n 1C (T 1′-T 1)+n 2C (T 2-T 1) ② 由于容器是刚性绝热的,按热力学第一定律有ΔU =0 ③ 令V 1表示容器A 的体积, 初始时A 中气体的压强为p 1,关闭阀门后A 中气体压强为αp 1,由理想气体状态方程可知n =p 1V 1RT 1 ④n 1=(αp 1)V 1RT 1′ ⑤ 由以上各式可解得:T 2=(1-α)T 1T 1′T 1′-αT 1由于进入容器B 中的气体与仍留在容器A 中的气体之间没有热量交换,因而在阀门打开到重新关闭的过程中留在容器A 中的那部分气体经历了一个绝热过程,设这部分气体初始时体积为V 10 (压强为p 1时),则有 p 1V 10C +RC =(αp 1)V 1C +R C ⑥ 利用状态方程可得p 1V 10T 1=(αp 1)V 1T 1′⑦ 由①②③④⑤⑥⑦式得,阀门重新关闭后容器B 中气体质量与气体总质量之比n 2n =2-αR C +R -αCC +R2―α―αR C +R⑧ 参考评分:本题15分.①式1分,②式3分,③式2分,④⑤式各1分,⑥式3分,⑦式1分,⑧式3分.7.(28届复赛6)如图所示为圆柱形气缸,气缸壁绝热,气缸的右端有一小孔与大气相通,大气的压强为P 0.用一热容量可忽略的导热隔板N 和一绝热活塞M 将气缸分为A 、B 、C 三室,隔板与气缸固连,活塞相对气缸可以无摩擦地移动但不漏气.气缸的左端A 室中有一电加热器Ω.已知在A 、B 室中均盛有1摩尔同种理想气体,电加热器加热前,系统处于平衡状态,A 、B 两室中气体的温度均为T 0,A 、B 、C 三室的体积均为V 0.现通过电加热器对A 室中气体缓慢加热,若提供的总热量为Q 0,试求B 室中气体的末态体积和A 室中气体的末态温度.(设A 、B 两室中气体1摩尔的内能为U =52RT ,式中R 为普适气体常量,T 为绝对温度)在电加热器对A 室中气体加热的过程中,由于隔板N 是导热的,B 室中气体的温度要升高,活塞M 将向右移动.当加热停止时,活塞M 有可能刚移到气缸最右端,亦可能尚未移到气缸最右端. 当然亦可能活塞已移到气缸最右端但加热过程尚未停止.解析:(1)设加热恰好能使活塞M 移到气缸的最右端,则B 室气体末态的体积 V B =2V 0 ① 根据题意,活塞M 向右移动过程中,B 中气体压强不变,用T B 表示B 室中气体末态的温度,有V 0T 0=V B T B② 由①②式得 T B =2T 0 ③Ω A B C由于隔板N 是导热的,故A 室中气体末态的温度 T A =2T 0 ④ 下面计算此过程中的热量Q m .在加热过程中,A 室中气体经历的是等容过程,根据热力学第一定律,气体吸收的热量等于其内能的增加量,即Q A =52R (T A -T 0) ⑤ 由④⑤两式得 Q A =52RT 0 ⑥ B 室中气体经历的是等压过程,在过程中B 室气体对外做功为W B =p 0(V B -V 0) ⑦ 由①⑦式及理想气体状态方程得W B =RT 0 ⑧内能改变为ΔU B =52R (T B -T 0) ⑨ 由④⑨两式得ΔU B =52RT 0 ⑩ 根据热力学第一定律和⑧⑩两式, B 室气体吸收的热量为Q B =ΔU B +W B =72RT 0 ⑪ 由⑥⑪两式可知电加热器提供的热量为Q m =Q A +Q B =6RT 0 ⑫ 若Q 0=Q m ,B 室中气体末态体积为2V 0,A 室中气体的末态温度2T 0.(2)若Q 0>Q m ,则当加热器供应的热量达到Q m 时,活塞刚好到达气缸最右端,但这时加热尚未停止,只是在以后的加热过程中气体的体积保持不变,故热量Q 0-Q m 是A 、B 中气体在等容升温过程中吸收的热量.由于等容过程中气体不做功,根据热力学第一定律,若A 室中气体末态的温度为T A ′,有Q 0-Q m =52R (T A ′-2T 0)+52R (T A ′-2T 0) ⑬ 由⑫⑬两式可求得T A ′=Q 05R +45T 0 ⑭ B 中气体的末态的体积V B ′=2V 0 ⑮(3)若Q 0<Q m ,则隔板尚未移到气缸最右端,加热停止,故B 室中气体末态的体积V B ″<2V 0.设A 、B 两室中气体末态的温度为T A ″,根据热力学第一定律,注意到A 室中气体经历的是等容过程,其吸收的热量Q A =52R (T A ″-T 0) ⑯ B 室中气体经历的是等压过程,吸收热量Q B =52R (T A ″-T 0)+p 0(V B ″-V 0) ⑰ 利用理想气体状态方程,上式变为Q B =72R (T A ″-T 0) ⑱ 由上可知Q 0=Q A +Q B =6R (T A ″-T 0)T 0 ⑲所以A 室中气体的末态温度T A ″=Q 06R+T 0 ⑳ B 室中气体的末态体积V B ″=V 0T 0T A ″=⎝⎛⎭⎫Q 06RT 0+1V 0 ○21 参考评分:本题20分.得到Q 0=Q m 的条件下①④式各1分;⑫式6分,得到Q 0>Q m 的条件下的⑭式4分,⑮式2分;得到Q 0<Q m 的条件下的⑳式4分,○21式2分. 8.(27届复赛7)地球上的能量从源头上说来自太阳辐射到达地面的太阳辐射(假定不计大气对太阳辐射的吸收)一部分被地球表面反射到太空,其余部分被地球吸收.被吸收的部分最终转换成为地球热辐射(红外波段的电磁波).热辐射在向外传播过程中,其中一部分会被温室气体反射回地面,地球以此方式保持了总能量平衡.作为一个简单的理想模型,假定地球表面的温度处处相同,且太阳和地球的辐射都遵从斯忒蕃一玻尔兹曼定律:单位面积的辐射功率J 与表面的热力学温度T 的四次方成正比,即J =σT 4,其中σ是一个常量.已知太阳表面温度T s =5.78×103K ,太阳半径R s =6.69×105km ,地球到太阳的平均距离d =1.50×108km .假设温室气体在大气层中集中形成一个均匀的薄层,并设它对热辐射能量的反射率为ρ=0.38.(1)如果地球表面对太阳辐射的平均反射率α=0.30,试问考虑了温室气体对热辐射的反射作用后,地球表面的温度是多少?(2)如果地球表面一部分被冰雪覆盖,覆盖部分对太阳辐射的反射率为α1=0.85,其余部分的反射率处α2=0.25.间冰雪被盖面占总面积多少时地球表面温度为273K . 解析:(1)根据题意,太阳辐射的总功率P S =4πR 2S σT 4S ,太阳辐射各向同性的向外传播.设地球半径为r E ,可以认为地球所在处的太阳辐射是均匀的,故地球接收太阳辐射的总功率为:P I =σT 4S ⎝⎛⎭⎫R S d 2πr 2E ① 地球表面反射太阳辐射的总功率为αP I .设地球表面的温度为T E ,则地球的热辐射总功率为:P E =4πr 2E σT 4E ② 考虑到温室气体向地球表面释放的热辐射,则输入地球表面的总功率为P I +βP E .当达到热平衡时,输入的能量与输出的能量相等,有:P I +βP E =αP I +P E ③ 由以上各式得:T E =T S 22⎝ ⎛⎭⎪⎫1-α1-β14⎝⎛⎭⎫R S d 12 错误!未定义书签。