概率论与数理统计答案,祝东进

合集下载

概率论与数理统计课后习题答案(非常全很详细)

概率论与数理统计课后习题答案(非常全很详细)

P(B) P(A)P(B A) P(A)P(B A)
第 5 页 共 101 页
5
0.2 0.1
1 0.02702
0.8 0.9 0.2 0.1 37
即考试及格的学生中不努力学习的学生仅占 2.702%
(2) P(A B) P(AB)
P(A)P(B A)
P(B) P(A)P(B A) P(A)P(B A)
可以看出,用第二种方法简便得多. (3) 由于是有放回的抽取,每次都有 N 种取法,故所有可能的取法总数为 Nn 种,n
次抽取中有
m
次为正品的组合数为
C
m n
种,对于固定的一种正、次品的抽取次序,
m 次取得正品,都有 M 种取法,共有 Mm 种取法,nm 次取得次品,每次都有 NM 种取法,共有(NM)nm 种取法,故
【解】 P(A∪B∪C)=P(A)+P(B)+P(C)P(AB)P(BC)P(AC)+P(ABC)
111 1 3
=+ + =
4 4 3 12 4
7. 从 52 张扑克牌中任意取出 13 张,问有 5 张黑桃,3 张红心,3 张方块,2 张梅花的概率 是多少?
【解】
p=
C153C133C133C123
P( A1
B)
P( A1B) P(B)
P(B
A 1
)
P(
A1
)
2
P(B Ai )P( Ai )
i0
2 / 31/ 3
1
1/ 31/ 3 2 / 31/ 3 11/ 3 3
28. 某工厂生产的产品中 96%是合格品,检查产品时,一个合格品被误认为是次品的概率
为 0.02,一个次品被误认为是合格品的概率为 0.05,求在被检查后认为是合格品产品确

概率论与数理统计习题答案1-19章

概率论与数理统计习题答案1-19章

1 随机事件及其概率·样本空间·事件的关系及运算一、任意抛掷一颗骰子,观察出现的点数。

设事件A 表示“出现偶数点”,事件B 表示“出现的点数能被3整除”.(1)写出试验的样本点及样本空间;(2)把事件A 及B 分别表示为样本点的集合;(3)事件B A AB B A B A ,,,,分别表示什么事件?并把它们表示为样本点的集合.解:设i ω表示“出现i 点”)6,,2,1( =i ,则(1)样本点为654321,,,,,ωωωωωω;样本空间为}.,,,,,{654321ωωωωωω=Ω (2)},,{642ωωωA =; }.,{63ωωB =(3)},,{531ωωωA =,表示“出现奇数点”;},,,{5421ωωωωB =,表示“出现的点数不能被3整除”;},,,{6432ωωωωB A =⋃,表示“出现的点数能被2或3整除”;}{6ωAB =,表示“出现的点数能被2整除且能被3整除”;},{B A 51ωω= ,表示“出现的点数既不能被2整除也不能被3整除”二、写出下列随机试验的样本空间及各个事件中的样本点:(1)同时掷三枚骰子,记录三枚骰子的点数之和.A —“点数之和大于10”,B —“点数之和小于15”.(2)一盒中有5只外形相同的电子元件,分别标有号码1,2,3,4,5.从中任取3只,A —“最小号码为1”.解:(1) 设i ω表示“点数之和等于i ”)18,,4,3( =i ,则},,,{1843ωωω =Ω;},,,{181211ωωωA =;}.,,,{1443ωωωB =(2) 设ijk ω表示“出现号码为k j i ,,”);5,,2,1,,(k j i k j i ≠≠= ,则},,,,,,,,,{345245235234145135134125124123ωωωωωωωωωω=Ω }.,,,,,{145135134125124123ωωωωωωA =三、设C B A ,,为三个事件,用事件之间的运算表示下列事件: (1) A 发生, B 与C 都不发生; (2) C B A ,,都发生;(3) C B A ,,中至少有两个发生; (4) C B A ,,中至多有两个发生. 解:(1) C B A ;(2) ABC ;(3) ABC C AB C B A BC A ⋃⋃⋃或CA BC AB ⋃⋃(4) BC A C B A C AB C B A C B A C B A C B A ⋃⋃⋃⋃⋃⋃或C B A ⋃⋃或.ABC四、一个工人生产了n 个零件,以i A 表示他生产的第 i 个零件是合格品(n i ≤≤1).用i A 表示下列事件:(1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅有一个零件是不合格品;(4)至少有一个零件不是不合格品. 解:(1) n A A A 21;(2) n A A A 21或n A A A ⋃⋃⋃ 21; (3) n n n A A A A A A A A A 212121⋃⋃⋃ (4) n A A A ⋃⋃⋃ 21或.21n A A A2 概率的古典定义·概率加法定理一、电话号码由七个数字组成,每个数字可以是0,1,2,…,9中的任一个数(但第一个数字不能为0),求电话号码是由完全不同的数字组成的概率.解:基本事件总数为611011011011011011019109⨯=C C C C C C C有利事件总数为456789214151617181919⨯⨯⨯⨯⨯=C C C C C C C 设A 表示“电话号码是由完全不同的数字组成”,则0605.0109456789)(62≈⨯⨯⨯⨯⨯⨯=A P 二、把十本书任意地放在书架上,求其中指定的三本书放在一起的概率.解:基本事件总数为!101010=A指定的三本书按某确定顺序排在书架上的所有可能为!777=A 种;这三本书按确定的顺序放在书架上的所以可能的位置共818=C 种;这三本书的排列顺序数为!333=A ;故有利事件总数为!3!8!38!7⨯=⨯⨯(亦可理解为)3388P P 设A 表示“指定的三本书放在一起”,则067.0151!10!3!8)(≈=⨯=A P三、为了减少比赛场次,把二十个队任意分成两组(每组十队)进行比赛,求最强的两个队被分在不同组内的概率.解:20个队任意分成两组(每组10队)的所以排法,构成基本事件总数1020C ;两个最强的队不被分在一组的所有排法,构成有利事件总数91812C C 设A 表示“最强的两队被分在不同组”,则526.01910)(102091812≈==C C C A P四、某工厂生产的产品共有100个,其中有5个次品.从这批产品中任取一半来检查,求发现次品不多于1个的概率.解:设i A 表示“出现的次品为i 件”)5,4,3,2,1,0(=i ,A 表示“取出的产品中次品不多于 1个”,则 .10A A A ⋃=因为V A A =10,所以).()()(10A P A P A P +=而0281.0979942347)(5010050950≈⨯⨯⨯==C C A P 1529.09799447255)(501004995151≈⨯⨯⨯⨯==C C C A P 故 181.01529.00281.0)(=+≈A P五、一批产品共有200件, 其中有6件废品.求 (1) 任取3件产品恰有1件是废品的概率; (2) 任取3件产品没有废品的概率; (3) 任取3件产品中废品不少于2件的概率.解:设A 表示“取出的3件产品中恰有1件废品”;B 表示“取出的3件产品中没有废品”;C 表示“取出的3件产品中废品不少于2件”,则(1) 0855.019819920019319418)(3200219416≈⨯⨯⨯⨯==C C C A P (2) 912.0198199200192193194)(32003194≈⨯⨯⨯⨯==C C B P(3) 00223.019819920012019490)(3200019436119426≈⨯⨯⨯⨯=+=C C C C C C P六、设41)( ,0 ,31)()()(======BC P P(AC)P(AB)C P B P A P .求A , B , C 至少有一事件发生的 概率.解:因为0==P(AC)P(AB),所以V AC V AB ==,,从而V C AB =)(可推出0)(=ABC P设D 表示“A , B , C 至少有一事件发生”,则C B A D ⋃⋃=,于是有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃= 75.04341313131==-++=3 条件概率与概率乘法定理·全概率公式与贝叶斯公式一、设,6.0)|(,4.0)(,5.0)(===B A P B P A P 求)|(,)(B A A P AB P . 解:因为B A AB B B A A +=+=)(,所以)()()(B A P AB P A P +=,即14.06.0)4.01(5.0)()()()()()(=⨯--=-=-=B A P B P A P B A P A P AB P68.074.05.036.0)4.01(5.05.0)()()()()()]([)|(≈=--+=-+==A PB P A P A P B A P B A A P B A A P二、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求他拨号不超过两次而接通所需电话的概率.若已知最后一个数字是奇数,那么此概率是多少? 解:设A 表示“第一次拨通”,B 表示“第二次拨通”,C 表示“拨号不超过两次而拨通”(1)2.0101101)()()(19111101911011=+=⋅+=+=C C C C C C A B P A P C P(2)4.05151)()()(2511141511=+=+=+=A A A A A A B P A P C P三、两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多 一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率. 解:设i A 表示“第i 台机床加工的零件”)2,1(=i ;B 表示“出现废品”;C 表示“出现合格品”(1))()()()()()()()(22112121A C P A P A C P A P C A P C A P C A C A P C P +=+=+= 973.0)02.01(31)03.01(32≈-⨯+-⨯=(2)25.002.03103.03202.031)()()()()()()()()(22112222=⨯+⨯⨯=+==A B P A P A B P A P A B P A P B P B A P B A P四、猎人在距离100米处射击一动物,击中的概率为0.6;如果第一次未击中,则进行第二次射击,但由于动物逃跑而使距离变为150米;如果第二次又未击中,则进行第三次射击,这时距离变为200米.假定击中的概率与距离成反比,求猎人三次之内击中动物的概率.解:设i A 表示“第i 次击中”)3,2,1(=i ,则由题设,有1006.0)(1kA P ==,得60=k ,从而有4.015060150)(2===k A P ,.3.020060200)(3===k A P设A 表示“三次之内击中”,则321211A A A A A A A ++=,故有)()()()()()()(321211A P A P A P A P A P A P A P ++=832.03.0)4.01()6.01(4.0)6.01(6.0=⨯-⨯-+⨯-+= (另解)设B 表示“猎人三次均未击中”,则168.0)3.01)(4.01)(6.01()(=---=B P故所求为 832.0)(1)(=-=B P B P五、盒中放有12个乒乓球,其中有9个是新的.第一次比赛时从其中任取3个来用,比赛后仍放回盒中.第二次比赛时再从盒中任取3个,求第二次取出的都是新球的概率. 解:设i A 表示“第一次取得i 个新球”)3,2,1,0(=i ,则2201)(312330==C C A P 22027)(31219231==C C C A P 220108)(31229132==C C C A P 22084)(31239033==C C C A P 设B 表示“第二次取出的都是新球”,则312363123731238312393022084220108220272201)()()(C C C C C C C C A B P A P B P i i i ⋅+⋅+⋅+⋅==∑=146.0532400776161112208444722010855142202755212201≈=⋅+⋅+⋅+⋅=4 随机事件的独立性·独立试验序列一、一个工人看管三台车床,在一小时内车床不需要工人照管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7.求在一小时内三台车床中最多有一台需要工人照管的概率. 解:设i A 表示“第i 台机床不需要照管”)3,2,1(=i ,则9.0)(1=A P 8.0)(2=A P 7.0)(3=A P再设B 表示“在一小时内三台车床中最多有一台需要工人照管”,则321321321321A A A A A A A A A A A A B +++=于是有)()()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P B P +++= )7.01(8.09.07.0)8.01(9.07.08.0)9.01(7.08.09.0-⨯⨯+⨯-⨯+⨯⨯-+⨯⨯=902.0=.(另解)设i B 表示“有i 台机床需要照管”)1,0(=i ,B 表示“在一小时内三台车床中最多有一台需要工人照管”,则10B B B +=且0B 、1B 互斥,另外有504.07.08.09.0)(0=⨯⨯=B P398.0)7.01(8.09.07.0)8.01(9.07.08.0)9.01()(1=-⨯⨯+⨯-⨯+⨯⨯-=B P 故902.0398.0504.0)()()()(1010=+=+=+=B P B P B B P B P .二、电路由电池a 与两个并联的电池b 及c 串联而成.设电池c b a ,,损坏的概率分别是0.3、0.2、0.2,求电路发生间断的概率. 解:设1A 表示“a 损坏”;2A 表示“b 损坏”;3A 表示“c 损坏”;则3.0)(1=A P 2.0)()(32==A P A P又设B 表示“电路发生间断”,则321A A A B +=于是有)()()()()(321321321A A A P A A P A P A A A P B P -+=+=)()()()()()(321321A P A P A P A P A P A P -+= 328.02.02.03.02.02.03.0=⨯⨯-⨯+=.三、三个人独立地去破译一个密码,他们能译出的概率分别为51、31、41,求能将此密码译出的概率.解:设A 表示“甲能译出”;B 表示“乙能译出”;C 表示“丙能译出”,则51)(=A P 31)(=B P 41)(=C P设D 表示“此密码能被译出”,则C B A D ⋃⋃=,从而有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++= 6.0413151415141513151413151=⨯⨯+⨯-⨯-⨯-++=. (另解)52)411)(311)(511()()()()()(=---===C P B P A P C B A P D P ,从而有6.053521)(1)(==-=-=D P D P四、甲、乙、丙三人同时对飞机进行射击,三人的命中概率分别为7.0,5.0,4.0.飞机被一人击中而被击落的概率为2.0,被两人击中而被击落的概率为6.0,若三人都击中,则 飞机必被击落.求飞机被击落的概率. 解:设1A 表示“甲命中”;2A 表示“乙命中”;3A 表示“丙命中”;则4.0)(1=A P5.0)(2=A P 7.0)(3=A P 设i B 表示“i 人击中飞机” )3,2,1,0(=i ,则09.0)7.01)(5.01)(4.01()())(()()(3213210=---===A P A P A P A A A P B P)()(3213213211A A A A A A A A A P B P ++= )()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=)()(3213213212A A A A A A A A A P B P ++= )()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=41.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=14.07.05.04.0)()()()()(3213213=⨯⨯===A P A P A P A A A P B P 设A 表示“飞机被击落”,则由题设有0)(0=B A P 2.0)(1=B A P 6.0)(2=B A P 1)(3=B A P故有458.0114.06.041.02.036.0009.0)()()(30=⨯+⨯+⨯+⨯==∑=i i i B A P B P A P .五、某机构有一个9人组成的顾问小组,若每个顾问贡献正确意见的概率都是0.7,现在该机构内就某事可行与否个别征求每个顾问的意见,并按多数人意见作出决策,求作 出正确决策的概率.解:设i A 表示“第i 人贡献正确意见”,则7.0)(=i A P )9,,2,1( =i .又设m 为作出正确意见的人数,A 表示“作出正确决策”,则 )9()8()7()6()5()5()(99999P P P P P m P A P ++++=≥=+⋅⋅+⋅⋅+⋅⋅=277936694559)3.0()7.0()3.0()7.0()3.0()7.0(C C C9991889)7.0()3.0()7.0(⋅+⋅⋅+C C+⋅⋅+⋅⋅+⋅⋅=273645)3.0()7.0(36)3.0()7.0(84)3.0()7.0(126918)7.0()3.0()7.0(9+⋅⋅+ 0403.01556.02668.02668.01715.0++++= 901.0=.六、每次试验中事件A 发生的概率为p ,为了使事件A 在独立试验序列中至少发生一次的概率不小于p ,问至少需要进行多少次试验? 解:设做n 次试验,则n p A P A P )1(1}{1}{--=-=一次都不发生至少发生一次要p p n ≥--)1(1,即要p p n -≤-1)1(,从而有.1)1(log )1(=-≥-p n p 答:至少需要进行一次试验.5 离散随机变量的概率分布·超几何分布·二项分布·泊松分布一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的概率分布. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即亦即二、自动生产线在调整以后出现废品的概率为p .生产过程中出现废品时立即进行调整.求在两次调整之间生产的合格品数的概率分布.解:设X 表示“在两次调整之间生产的合格品数”,且设p q -=1,则ξ的概率分布为三、已知一批产品共20个,其中有4个次品.(1)不放回抽样.抽取6个产品,求样品中次品数的概率分布; (2)放回抽样.抽取6个产品,求样品中次品数的概率分布. 解:(1)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)4,3,2,0()(6206164===-x C C C x X P xx从而X 的概率分布为即(2)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)6,5,4,3,2,0()2.01()2.0()(66=-==-x C x X P xx x从而X即四、电话总机为300个电话用户服务.在一小时内每一电话用户使用电话的概率等于0.01,求在一小时内有4个用户使用电话的概率(先用二项分布计算,再用泊松分布近似计算,并求相对误差). 解:(1)用二项分布计算)01.0(=p168877.0)01.01()01.0()1()4(2964430029644300≈-=-==C p p C ξP(2)用泊松分布计算)301.0300(=⨯==np λ168031355.0!43)4(34≈==-e ξP相对误差为.5168877.0168031355.0168877.0000≈-=δ五、设事件A 在每一次试验中发生的概率为0.3,当A 发生次数不少于3次时,指示灯发出信号.现进行了5次独立试验,求指示灯发出信号的概率. 解:设X 表示“事件A 发生的次数”,则3.0)(==p A P ,5=n ,).3.0,5(~B X 于是有)5()4()3()3(=+=+==≥X P X P X P X P5554452335)1()1(p C p p C p p C +-+-=16308.000243.002835.01323.0≈++≈(另解) )2()1()0(1)3(1)3(=-=-=-=<-=≥X P X P X P X P X P322541155005)1()1()1(11p p C p p C p p C ------=16308.0≈六、设随机变量X 的概率分布为2, 1, ,0 , !)(===k k ak X P kλ;其中λ>0为常数,试确定常数a .解:因为∑∞===01)(k k X P ,即∑∞==01!k kk λa ,亦即1=λae ,所以.λe a -=6 随机变量的分布函数·连续随机变量的概率密度一、函数211x +可否是连续随机变量X 的分布函数?为什么?如果X 的可能值充满区间: (1)(∞+∞- ,);(2)(0,∞-).解:(1)设211)(x x F +=,则1)(0<<x F因为0)(lim =-∞→x F x ,0)(lim =+∞→x F x ,所以)(x F 不能是X 的分布函数.(2)设211)(x x F +=,则1)(0<<x F 且0)(lim =-∞→x F x ,1)(lim 0=-→x F x 因为)0( 0)1(2)('22<>+-=x x xx F ,所以)(x F 在(0,∞-)上单增. 综上述,故)(x F 可作为X 的分布函数.二、函数x x f sin )(=可否是连续随机变量X 的概率密度?为什么?如果X 的可能值充满区间:(1)⎥⎦⎤⎢⎣⎡2,0π; (2)[]π,0; (3)⎥⎦⎤⎢⎣⎡23,0π. 解:(1)因为⎥⎦⎤⎢⎣⎡∈2,0πx ,所以0sin )(≥=x x f ;又因为1cos )(2020=-=⎰ππx dx x f ,所以当⎥⎦⎤⎢⎣⎡∈2,0πx 时,函数x x f sin )(=可作为某随机变量X 的概率密度.(2)因为[]πx ,0∈,所以0sin )(≥=x x f ;但12cos )(00≠=-=⎰ππx dx x f ,所以当[]πx ,0∈时,函数x x f sin )(=不可能是某随机变量X 的概率密度. (3)因为⎥⎦⎤⎢⎣⎡∈23,0πx ,所以x x f sin )(=不是非负函数,从而它不可能是随机变量X 的概率密度.二、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的分布函数,并作出分布函数的图形. 解:设X 表示“取出的废品数”,则X 的分布律为于是,⎪⎩>3,1x四、(柯西分布)设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.求:(1)系数A 及B ;(2)随机变量X 落在区间)1 ,1(-内的概率;(3) X 的概率密度.解:(1) 由0)2()(lim =-⋅+=-∞→πB A x F x ,12)(lim =⋅+=-∞→πB A x F x ,解得.1,21πB A ==即)( ,arctan 121)(+∞<<-∞+=x x πx F .(2) .21)]1arctan(121[]1arctan 121[)1()1()11(=-+-+=--=<<-ππF F X P(3) X 的概率密度为)1(1)()(2x x F x f +='=π. 五、(拉普拉斯分布)设随机变量X 的概率密度为+∞<<∞-=-x Aex f x,)(.求:(1)系数A ;(2)随机变量X 落在区间)1,0(内的概率;(3)随机变量X 的分布函数.解:(1) 由1)(⎰+∞∞-=dx x f ,得1220⎰⎰+∞∞-+∞--===A dx e A dx Ae xx ,解得21=A ,即有).( ,21)(+∞<<-∞=-x e x f x(2) ).11(21)(2121)()10(101010ee dx e dx xf X P x x -=-===<<--⎰⎰(3) 随机变量X 的分布函数为⎪⎩⎪⎨⎧>-≤===-∞--∞-⎰⎰21102121)()(x e x e dx e dx x f x F x xx xx.7 均匀分布·指数分布·随机变量函数的概率分布一、公共汽车站每隔5分钟有一辆汽车通过.乘客到达汽车站的任一时刻是等可能的.求乘客候车时间不超过3分钟的概率.解:设随机变量X 表示“乘客的候车时间”,则X 服从]5,0[上的均匀分布,其密度函数为⎩⎨⎧∉∈=]5,0[,0]5,0[,1)(x x x f 于是有.6.053)()30(3===≤≤⎰dx x f X P二、已知某种电子元件的使用寿命X (单位:h)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,8001)(800x x e x f x任取3个这种电子元件,求至少有1个能使用1000h 以上的概率.解:设A 表示“至少有1个电子元件能使用1000h 以上”;321A 、A 、A 分别表示“元件甲、乙、丙能使用1000h 以上”.则287.08001)1000()()()(4510008001000800321≈=-==>===-∞+-∞+-⎰e e dx e X P A P A P A P xx)()()()()()()()()(321313221321321A A A P A A P A A P A A P A P A P A P A A A P A P +---++=⋃⋃=638.0287.0287.03287.0332≈+⨯-⨯=(另解)设A 表示“至少有1个电子元件能使用1000h 以上”.则287.08001)1000(4510008001000800≈=-==>-∞+-∞+-⎰ee dx e X P xx从而有713.01)1000(1)1000(45≈-=>-=≤-eX P X P ,进一步有638.0713.01)]1000([1)(33≈-≈≤-=X P A P三、(1) 设随机变量X 服从指数分布)(λe .证明:对于任意非负实数s 及t ,有).()(t X P s X t s X P ≥=≥+≥这个性质叫做指数分布的无记忆性.(2) 设电视机的使用年数X 服从指数分布)10(.e .某人买了一台旧电视机,求还能使用5年以上 的概率.解:(1)因为)(~λe X ,所以R x ∈∀,有xe x F λ--=1)(,其中)(x F 为X 的分布函数.设t s X A +≥=,t X B ≥=.因为s 及t 都是非负实数,所以B A ⊂,从而A AB =.根据条件概率公式,我们有)(1)(1)()()()()()()()(s X P t s X P s X P t s X P B P A P B P AB P B A P s X t s X P <-+<-=≥+≥====≥+≥tst s e e e λλλ--+-=----=]1[1]1[1)(. 另一方面,我们有t t e e t F t X P t X P t X P λλ--=--=-=≤-=<-=≥)1(1)(1)(1)(1)(.综上所述,故有)()(t X P s X t s X P ≥=≥+≥.(2)由题设,知X 的概率密度为⎩⎨⎧≤>=-.,;,0001.0)(1.0x x e x f x 设某人购买的这台旧电视机已经使用了s 年,则根据上述证明的(1)的结论,该电视机还能使用5年以上的概率为6065.01.0)()5()5(5.051.051.05≈=-===≥=≥+≥-∞+-∞+-∞+⎰⎰e e dx e dx xf X P s X s X P xx .答:该电视机还能使用5年以上的概率约为6065.0.四、设随机变量X 服从二项分布)4.0 ,3(B ,求下列随机变量函数的概率分布: (1)X Y 211-=;(2)2)3(2X X Y -=. 解:X 的分布律为(1)X Y 211-=的分布律为(2)2)3(2X XY -=的分布律为即五、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>+=.0,0;0,)1(2)(2x x x x f π求随机变量函数X Y ln =的概率密度.解:因为)()()(ln )()(yX yY e F e X P y X P y Y P y F =<=<=<= 所以随机变量函数X Y ln =的概率密度为)( )1(2)()()()(2''+∞<<-∞+====y e e e e f e e F y F y f yyyyyyXYY π,即 )( )1(2)(2+∞<<-∞+=y e e y f y yY π.8 二维随机变量的联合分布与边缘分布一、把一颗均匀的骰子随机地掷两次.设随机变量X 表示第一次出现的点数,随机变量Y 表示两次出现点数的最大值,求二维随机变量),(Y X 的联合概率分布及Y 的边缘概率分布. 解:二维随机变量),(Y X 的联合概率分布为Y 的边缘概率分布为二、设二维随机变量(X ,Y )的联合分布函数)3arctan )(2arctan(),(y C x B A y x F ++=. 求:(1)系数A 、B 及C ;(2)(X ,Y )的联合概率密度:(3)边缘分布函数及边缘概率密度.解:(1)由0)0,(,0),0(,1),(=-∞=∞-=∞+-∞F F F ,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=++0)2(0)2)(0(1)2)(2(πB AC πC B A πC πB A 解得2πC B ==,.12πA =(2)因为)3arctan 2)(2arctan 2(1),(2yx y x F ++=πππ,所以(X ,Y )的联合概率密度为.)9)(4(6),(),(222"y x y x F y x f xy ++==π(3)X 及Y 的边缘分布函数分别为xx x X x dx x dy y x f dx x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰2arctan 1)4(2),()(2ππ 2arctan 121xπ+=yx y Y y dy y dx y x f dy x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰3arctan 1)9(3),()(2ππ 3arctan 121yπ+=X 及Y 的边缘概率密度分别为⎰⎰⎰+∞+∞∞-+∞∞-++⋅=++==0222222)9(1)4(112)9)(4(6),()(dy y x dy y x dy y x f x f X ππ )4(2)3arctan 31()4(1122022x y x +=+⋅=∞+ππ ⎰⎰⎰+∞+∞∞-+∞∞-++=++==022222241)9(12)9)(4(6),()(dx x y dx y x dx y x f y f Y ππ)9(3)2arctan 21()9(122022y x y +=+=∞+ππ三、设),(Y X 的联合概率密度为⎩⎨⎧>>=+-.,00;0,,Ae ),(3y)(2x 其它y x y x f 求:(1)系数A ;(2)),(Y X 的联合分布函数;(3)X 及Y 的边缘概率密度;(4)),(Y X落在区域R :632 ,0 ,0<+>>y x y x 内的概率. 解:(1)由1),(=⎰⎰+∞∞-+∞∞-dy dx y x f ,有16132==⎰⎰∞+∞+--A dy e dx e A y x ,解得.6=A (2)),(Y X 的联合分布函数为⎪⎩⎪⎨⎧>>==⎰⎰⎰⎰--∞-∞-其它0,06),(),(0032y x dy e dx e dy y x f dx y x F x y y x xy⎩⎨⎧>>--=--其它0,0)1)(1(32y x e e y x (3)X 及Y 的边缘概率密度分别为⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰00020006),()(2032x x ex x dy e e dy y x f x f x y x X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰0030006),()(3032y y e x x dx e e dx y x f y f y y x Y(4)⎰⎰⎰⎰---==∈x y xR dy e dx edxdy y x f R Y X P 32203326),(}),{(6306271)(2---⎰-=-=e dx e e x四、设二维随机变量),(Y X 在抛物线2x y =与直线2+=x y 所围成的区域R 上服从均匀分布.求:(1) ),(Y X 的联合概率密度;(2) 概率)2(≥+Y X P . 解:(1) 设),(Y X 的联合概率密度为⎩⎨⎧∉∈=.),(, 0;),(,),(R y x R y x C y x f 则由129)322()2(21322122212==-+=-+==--+-⎰⎰⎰⎰⎰Cx x x C dx x x C dy dx C Cdxdy x x R解得92=C .故有⎪⎩⎪⎨⎧∉∈=.),(, 0;),(,92),(R y x R y x y x f(2) ⎰⎰⎰⎰⎰⎰++-≥++==≥+x x x x y x dy dx dy dx dxdy y x f Y X P 2212210229292),()2(⎰⎰-++=21210)2(92292dx x x xdx481.02713)322(92922132102≈=-++=x x x x . 9 随机变量的独立性·二维随机变量函数的分布一、设X 与Y 是两个相互独立的随机变量,X 在]1,0[上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,21)(2y y e y f yY求 (1) ),(Y X 的联合概率密度; (2) 概率)(X Y P ≥.解: (1)X 的概率密度为⎩⎨⎧∉∈=)1,0(,0)1,0(,1)(x x x f X ,),(Y X 的联合概率密度为(注意Y X ,相互独立)⎪⎩⎪⎨⎧><<==-其它,00,10,21)()(),(2y x e y f x f y x f yY X(2)dx edx e dy e dx dxdy y x f X Y P x xy xy xy ⎰⎰⎰⎰⎰⎰-∞+-∞+-≥=-===≥1021022102)(21),()(7869.0)1(2221122≈-=-=--e ex二、设随机变量X 与Y 独立,并且都服从二项分布:.,,2 ,1 ,0 ,)(; ,,2 ,1 ,0 ,)(212211n j qp C j p n i q p C i p jn jj n Y in i i n X ====--证明它们的和Y X Z +=也服从二项分布.证明: 设j i k +=, 则ik n i k i k n ki i n i i n k i Y X Z q p C q p C i k P i P k Z P k P +---=-=∑∑=-===22110)()()()( ∑=-+=ki kn n k i n in q p C C2121)( 由knm ki ik n k m C C C +=-=∑, 有kn n ki in i n C C C21210+==∑. 于是有 ),,2,1,0( )(212121n n k q p C k P kn n k i n n Z +==-++ 由此知Y X Z +=也服从二项分布.三、设随机变量X 与Y 独立,并且X 在区间[0,1]内服从均匀分布,Y 在区间[0,2]内服从辛普森分布:⎪⎩⎪⎨⎧><≤<-≤≤=.20 0,; 2 1 ,2;10 ,)(y y y y y y y f Y 或求随机变量Y X Z +=的概率密度.解: X 的概率密度为 ⎩⎨⎧∉∈=]1,0[,0]1,0[,1)(x x y f ξ . 于是),(Y X 的联合概率密度为⎪⎩⎪⎨⎧≤<≤≤-≤≤≤≤=. 0, 2 1,10 ,210,10,),(其它当当y x y y x y y x fY X Z +=的联合分布函数为}),{(}{}{)(D y x P z Y X P z Z P z F Z ∈=≤+=≤=,其中D 是z y x ≤+与),(y x f 的定义域的公共部分.故有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<-+-≤≤><=3229321212331023,00)(222z z z z z z z z z z z F Z 从而随机变量Y X Z +=的概率密度为⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤≤><=3232132103,00)(z z z z z z z z z f Z三、电子仪器由六个相互独立的部件ij L (3,2,1;2,1==j i )组成,联接方式如右图所示.设各个部件的使用寿命ij X 服从相同的指数分布)(λe ,求仪器使用寿命的概率密度.解: 由题设,知ij X 的分布函数为⎩⎨⎧≤>-=-0,00,1x x e F x X ij λ先求各个并联组的使用寿命)3,2,1( =i Y i 的分布函数.因为当并联的两个部件都损坏时,第i个并联组才停止工作,所以有)3,2,1(),max(21==i Y i i i ξξ从而有)3,2,1( =i Y i 的分布函数为⎩⎨⎧≤>-==-0,00,)1()(221y y e F F y F y X X Y i i i λ 设Z "仪器使用寿命".因为当三个并联组中任一个损坏时,仪器停止工作.所以有),,min(321Y Y Y Z =.从而有Z 的分布函数为⎩⎨⎧≤>---=⎩⎨⎧≤>----=-0,00,])1(1[10,00)],(1)][(1)][(1[1)(32321z z e z z z F z F z F z F z Y Y Y Z λ 故Z 的概率密度为⎩⎨⎧≤>--=---0,00,)2)(1(6)(23z z e e e z f z z z Z λλλλ10 随机变量的数学期望与方差一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取一个.如果取出的废品不再放回去,求在取得合格品以前已取出的废品数的数学期望、方差与标准差. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即1103322013220924491430=⨯+⨯+⨯+⨯=EX 即3.0004.03041.02205.0175.00≈⨯+⨯+⨯+⨯=EX2X 的分布为即于是有229220192209444914302=⨯+⨯+⨯+⨯=EX 即4091.0004.09041.04205.0175.002≈⨯+⨯+⨯+⨯=EX从而有3191.013310042471)11033(229)(222≈=-=-=EX EX DX 565.03191.0≈==DX Xσ二、对某一目标进行射击,直至击中为止.如果每次射击命中率为p ,求射击次数的数学期望及方差. 解:设X 表示“第i 次击中”),2,1( =i ,则X 的分布为X1 2 3 …… n ……p q p q q p q p iqp ipqEX i i i i i i 1)1()1()(211111=-='-='===∑∑∑∞=∞=-∞=- 2Xpp p p q q p q p q q p pqi EX i i i ii i 122)1()1()(])([223111122-=-=-+='=''==∑∑∑∞=∞=∞=-进一步有pp p p p EX EX DX 11)1(12)(22222-=--=-=三、设离散型随机变量X 的概率函数为,,2,1,21]2)1([ ==-=k k X P k k k问X 的数学期望是否存在?若存在,请计算)(X E ;若不存在,请解释为什么.解:因为∑∑∑∑∞=∞=∞=∞=-=⋅-=-=-==1111)1(212)1(]2)1([2)1()(k k k k k k k k k k ki i i k k k X P k x X P x 不绝对收敛,所以ξ没有数学期望.四、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≥<-=.1, 0;1,11)(2x x x x f π 求数学期望)(X E 及方差)(X D .解:011)()(112=-⋅==⎰⎰-+∞∞-dx xx dx x xf X E πdx x x dx xx dx x f x X D ⎰⎰⎰-=-⋅==-∞+∞-1022112221211)()(πππ21]arcsin 2112[2102=+--=x x x π五、(拉普拉斯分布)设随机变量X 的概率密度为 )( ,21)(+∞<<-∞=-x e x f x.求数学期望)(X E 及方差)(X D . 解:021)(===⎰⎰+∞∞--+∞∞-dx xe dx x xf EX x2!2)3(21)(0222==Γ====⎰⎰⎰+∞-+∞∞--+∞∞-dx e x dx e x dx x f x DX x x(分部积分亦可)11 随机变量函数的数学期望·关于数学期望与方差的定理一、设随机变量X 服从二项分布)4.0,3(B ,求2)3(X X Y -=的数学期望及方差. 解:X 的概率分布为Y 的概率分布为2Y 的分布为72.072.0128.00=⨯+⨯=EY 72.072.0128.002=⨯+⨯=EY2016.0)72.0(72.0)(222=-=-=EY EY DY二、过半径为R 的圆周上一点任意作这圆的弦,求所有这些弦的平均长度.解:在圆周上任取一点O ,并通过该点作圆得直径OA .建立平面直角坐标系,以O 为原点,且让OA 在x 轴的正半轴上.通过O 任作圆的一条弦OB ,使OB 与x 轴的夹角为θ,则θ服从]2,2[ππ-上的均匀分布,其概率密度为⎪⎩⎪⎨⎧-∉-∈=]2,2[,0]2,2[,1)(ππθππθπθf . 弦OB 的长为 ]2,2[cos 2)(ππθθθ-∈=R L ,故所有弦的平均长度为⎰⎰-∞+∞-⋅==22cos 21)()()]([ππθθπθθθθd R d L f L EπθπθθπππRRd R4sin 4cos 4202===⎰.三、一工厂生产的某种设备的寿命X (以年计)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-. 0, 0 ;0 ,41)(4x x e x f x工厂规定,出售的设备若在售出一年之内损坏可予以调换.若工厂售出一台设备赢利100元, 调换一台设备厂方需花费300元.试求厂方出售一台设备的平均净赢利. 解:由题设,有⎰⎰---∞--=-===<104110441141)()1(e e dx e dx x f X P x x进而有 41)1(1)1(-=<-=≥e X P X P设Y 表示“厂方出售一台设备获得的净赢利”,则Y 的概率分布为从而有64.33200300100)1(200414141≈-⨯=⨯+-⨯-=---ee e EY答:厂方出售一台设备获得的平均净赢利约为64.33元.四、设随机变量n X X X ,,21相互独立,并且服从同一分布,数学期望为μ,方差为2σ.求这些随机变量的算术平均值∑==ni i X n X 11的数学期望与方差.解:因为μ=)(i X E ,2)(σ=i X D ,且随机变量n X X X ,,21相互独立.所以有μμ=====∑∑∑∑====ni n i i ni i n i i n X E n X E n X n E X E 11111)(1)(1)1()(,nn X D n X D n X n D X D ni ni i n i i n i i 2122121211)(1)(1)1()(σσ=====∑∑∑∑====.五、一民航送客车载有20位旅客自机场开出,沿途有10个车站可以下车,到达一个车站时如没有旅客下车就不停车.假设每位旅客在各车站下车是等可能的,且各旅客是否下车相互独立.求该车停车次数的数学期望.解: 设i X 表示"第i 站的停车次数" (10,,2,1 =i ). 则i X 服从"10-"分布. 其中⎩⎨⎧=站有人下车若在第站无人下车若在第i i X i ,1,0 于是i X 的概率分布为设∑==ni iXX 1, 则X 表示沿途停车次数, 故有]})10110(1[1)10110(0{10)(2020101101--⨯+-⨯===∑∑==i i i i EX X E EX748.8)9.01(1020≈-= 即停车次数的数学期望为748.8.12 二维随机变量的数字特征·切比雪夫不等式与大数定律一、设二维随机变量),(Y X 的联合概率密度为()(). 1,222++=y xAy x f求:(1)系数A ;(2)数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X .解: (1) 由⎰⎰+∞∞-+∞∞-=1),(dxdy y x f . 有()()⎰⎰⎰⎰∞+∞-∞+∞-∞+==+=++1112022222A dr rrd A dxdy y xAπθπ解得, π1=A .(2) ()011),()(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxdy dxdy y x xf X E π.由对称性, 知 0)(=Y E .⎰⎰+∞∞-+∞∞-==-=dxdy y x f x EX EX X E X D ),(])[()(222()⎰⎰∞+∞-∞+∞-++=dx y xx dy 222211π()()+∞=+++=+-+=+=∞+∞+∞+⎰⎰⎰22022220223]11)1ln([1)1(211rr dr r rr r dr rr d πθπ同理, 有 +∞=)(Y D .)()])([(),cov(XY E EY Y Ex X E Y X =--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(()011),(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxydy dxdy y x xyf π.二、设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<=其它.,0;10,,1),(x x y y x f 求(1) ),cov(Y X ;(2) X 与Y 是否独立,是否相关,为什么? 解: (1) 因为 ⎰⎰⎰⎰⎰====-∞+∞-∞+∞-1210322),(dx x dy xdx dxdy y x xf EX x x0),(10===⎰⎰⎰⎰-+∞∞-+∞∞-xx ydy dx dxdy y x yf EY0),()(1===⎰⎰⎰⎰-+∞∞-+∞∞-xxydy xdx dxdy y x xyf XY E所以有])32[()])([(),cov(Y X E EY Y EX X E Y X -=--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(010==⎰⎰-xxydy xdx .(2) 当)1,0(∈x 时,有 ⎰⎰+∞∞--===x dy dy y x f x f xxX 2),()(; 当)1,0(∉x 时, 有0)(=x f X .即⎩⎨⎧∉∈=)1,0(0)1,0(2)(X x x x x f 同理有 ⎩⎨⎧∉+∈-=⎪⎩⎪⎨⎧∉∈=⎰⎰-)1,0(1)1,0(1)1,0()1,0()(11Y x y x y x dx x dx y f y y因为 ),()()(y x f y f x f Y X ≠, 所以X 与Y 不是独立的.又因为0),cov(=Y X , 所以X 与Y 是不相关的.三、利用切比雪夫不等式估计随机变量X 与其数学期望)(X E 的差的绝对值大于三倍标准差)(X σ的概率.解:91)3()3(2=≤>-ξξξξξD D D E P .四、为了确定事件A 的概率,进行10000次重复独立试验.利用切比雪夫不等式估计:用事件A在10000次试验中发生的频率作为事件A 的概率的近似值时,误差小于0.01的概率. 解:设ξ表示“在10000次试验中事件A 的次数”,则)5.0,10000(~B ξ且有50005.010000=⨯==np E ξ 2500)5.01(5.010000=-⨯⨯==n p q D ξ 于是有npqp npq p np m P p n m P 22)01.0(1)01.0(1)01.0()01.0(-=-≥<-=<- 75.025.011=-=-=pq五、样检查产品质量时,如果发现次品多于10个,则认为这批产品不能接受.应该检查多少个产品,可使次品率为10%的一批产品不被接受的概率达到0.9? 解:设ξ表示“发现的次品件数”,则)1.0,(~n B ξ,现要求.nn ξE 1.0= n ξD 09.0=要使得9.0)10(=>ξP ,即9.0)10(=≤<n ξP ,因为9.0)10(=≤<n ξP ,所以 )3.01.03.01.03.01.010()10(nn n n n ξn n P ξD ξE n ξD ξE ξξD ξE P -≤-<-=-≤-<-)3.01.010()3()33.01.03.01.010(1,01,0nn n n n n ξn n P --≈≤-<-=ΦΦ1)3.0101.0()3(1,01,0--+nn n ΦΦ (德莫威尔—Laplace 定理)因为10>n ,所以53>n ,从而有1)3(1,0≈n Φ,故9.0)3.0101.0(1,0≈-nn Φ. 查表有8997.0)28.1(1,0=Φ,故有28.13.0101.0≈-nn ,解得.146≈n 答:应该检查约146个产品,方可使次品率为10%的一批产品不被接受的概率达到0.9.13 正态分布的概率密度、分布函数、数学期望与方差一、设随机变量X 服从正态分布)2,1(2N ,求(1))8.56.1(<≤-X P ;(2))56.4(≥X P .解:(1) )4.2213.1()8.416.2()8.56.1(<-≤-=<-≤-=<≤-X P X P X P 8950.09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0=+-=--=--=ΦΦΦΦ (2) )78.12178.2(1)56.4(1)56.4(<-<--=<-=≥X P X P X P )]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ-+-=---= .0402.09973.09625.02=--二、已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2N .规定直径在2.1100±(mm )之间为合格品,求这种机械零件的不合格品率. 解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100(≤--=>-=X P X P p .而)26.01002()6.02.16.01006.02.1()2.1100(≤-≤-=≤-≤-=≤-X P X P X P 1)2(2)]2(1[)2()2()2(-Φ=Φ--Φ=-Φ-Φ= 9544.019772.02=-⨯=故0456.09544.01=-=p .三、测量到某一目标的距离时发生的误差X (m)具有概率密度3200)20(22401)(--=x ex f π求在三次测量中至少有一次误差的绝对值不超过30m 的概率.解:三次测量中每次误差绝对值都超过30米可表为}30{}30{}30{>⋃>⋃>=ξξξD 第三次第二次第一次因为)40,20(~2N ξ,所以由事件的相互独立性,有31,01,033)]25.0(1)25.1([})3030{(})30{()(ΦΦ-+-=>+-<=>=ξξP ξP D P 13025.05069.0)8944.05987.02(33≈=--= 于是有86975.013025.01)(1}30{=-=-=<D P P 米至少有一次绝对值三次测量中ξ.四、设随机变量),(~2σμN X ,求随机变量函数Xe Y =的概率密度(所得的概率分布称为对数正态分布).解:由题设,知X 的概率密度为)(21)(222)(+∞<<-∞=--x ex f x X σμσπ从而可得随机变量Y 的分布函数为)()()(y e P y Y P y F X Y ≤=≤=.当0≤y 时,有0)(=y F Y ;此时亦有0)(='y F Y . 当0>y 时,有dx ey X P y F yx Y ⎰∞---=≤=ln 2)(221)ln ()(σμσπ.此时亦有222)(ln 21)(σμσπ--='y Y eyy F .从而可得随机变量Y 的概率密度为⎪⎩⎪⎨⎧>≤=--.0,21;0,0)(222)(ln y e yy y f y Y σμσπ五、设随机变量X 与Y 独立,),(~211σμN X ,),(~222σμN Y ,求: (1) 随机变量函数bY aX Z +=1的数学期望与方差,其中a 及b 为常数; (2) 随机变量函数XY Z =2的数学期望与方差.解:由题设,有211)(,)(σμ==X D X E ;222)(,)(σμ==Y D Y E .从而有(1)211)()()()()()(μμb a Y bE X aE bY E aX E bY aX E Z E +=+=+=+=; 222212221)()()()()()(σσb a Y D b X D a bY D aX D bY aX D Z D +=+=+=+=. (2)212)()()()(μμ===Y E X E XY E Z E ;)()()()()()()()(22222222Y E X E Y E X E XY E Y X E XY D Z D -=-== )()()]()()][()([2222Y E X E Y E Y D X E X D -++= )()()()()()(22X E Y D Y E X D Y D X D ++=212222212221μσμσσσ++=.14 二维正态分布·正态随机变量线性函数的分布·中心极限定理四、 设二维随机变量),(Y X 服从二维正态分布,已知0)()(==Y E X E ,16)(=X D ,25)(=Y D ,并且12),cov(=Y X ,求),(Y X 的联合概率密度.解:已知0==y x μμ,416==x σ,525==y σ,53),cov(),(===y x Y X Y X r σσ.从而2516)53(1122=-=-r ,5412=-r .进一步按公式])())((2)([)1(21222121),(yy y x y x x x y y x r x r y x ery x f σμσσμμσμσπσ-+-------=,可得),(Y X 的联合概率密度为)2550316((322522321),(y xy x ey x f +--=π.二、设随机变量X 与Y 独立,并且)1,0(~N X ,)2,1(~2N Y .求随机变量32+-=Y X Z 的概率密度. 解:由题设,有0)(=X E ,1)(=X D ,1)(=Y E ,4)(=Y D .又根据关于数学期望的定理和方差的定理以及独立正态随机变量线性组合的分布,我们有2)3()()(2)32()(=+-=+-=E Y E X E Y X E Z E . 8)3()()(4)32()(=++=+-=D Y D X D Y X D Z D .且)8,2())(,)((~N Z D Z E N Z =,故随机变量32+-=Y X Z 的概率密度为16)2(82)2(2241821)(--⨯--==z z Z eez f ππ )(+∞<<-∞z .三、 台机床分别加工生产轴与轴衬.设随机变量X (mm)表示轴的直径,随机变量Y (mm)表示轴衬的内径,已知)3.0,50(~2N X ,)4.0,52(~2N Y ,显然X 与Y 是独立的.如果轴衬的内径与轴的直径之差在3~1(mm)之间,则轴与轴衬可以配套使用.求任取一轴与一轴衬可以配套使用的概率. 解:由题设,知随机变量X 与Y 是独立的,且)3.0,50(~2N X ,)4.0,52(~2N Y .设X Y Z -=根据独立正态随机变量线性组合的分布,我们有)5.0,2()3.0)1(4.0,50)1(52(~2222N N Z =⨯-+⨯-+.根据题目假设,我们知道当31≤-=≤X Y Z 时,轴与轴衬可以配套使用.于是所求概率为1)2(2)2()2()25.022()5.0235.025.021()31(-Φ=-Φ-Φ=≤-≤-=-≤-≤-=≤≤Z P Z P Z P9544.019772.02=-⨯=.四、100台车床彼此独立地工作着,每台车床的实际工作时间占全部工作时间的80%,求: (1) 任一时刻有70至86台车床在工作的概率;。

概率论与数理统计课后习题参考答案

概率论与数理统计课后习题参考答案

习题11、(1)同时掷两枚骰子,记录点数之和 {2,3,,12}S =;(2)生产产品知道得到5件正品,记录生产产品的总件数 {5,6,}S =; (3)单位圆任取一点,记录它的坐标 22{(,)1,,}S x y x y x R y R =+<∈∈;(4)将单位长线段分3段,观察各段长度{(,,)1,0,0,0}S x y z x y z x y z =++=>>>。

2、(1)A 与B 都发生,C 不发生:ABC ;(2)ABC 至少一个发生:A B C ;(3)ABC 不多于一个发生:ABAC BC 。

3、对事件ABC ,已知P(A)=P(B)=P(C)=1/4,P(AB)=P(BC)=0,P(AC)=1/8,求ABC 至少发生一个的概率?解:依题可知,()0P ABC =,则所求的概率为()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC ++=++---+1153000488=⨯---+= 4、将10本书任意地放在书架上,其中有一套4卷成套的书,求概率?解:设事件A 表示“成套的书放在一起”,B 表示“成套的书按卷次顺序排好放在一起”,由概率的古典定义可得所求的概率为 (1)成套的书放在一起:7!4!1()10!30P A ⋅==(2)成套的书案卷次顺序排好放在一起:7!11()10!720P B ⋅==5、从5双不同的鞋子中任取4只,问这4只鞋子不能配成一双的概率是多少?解:设事件A 表示“取出的4只鞋子不能配成一双”,由概率的古典定义可得所求的概率为 44541028()21C P A C ⋅== 6、在电话号码簿中任取一个电话号码,求后面4个数全不相同的概率?解:设事件A 表示“电话号码的后面4个数全不相同”,由概率的古典定义可得所求的概率为4104()0.50410A P A ==7、已知P(非A)=0、3,P(B)=0、4,P(A 非B)=1/2,求P(B|AU 非B)? 解:依题可知,()1()0.7P A P A =-=,()1()0.6P B P B =-=,而()0.55()()0.77P AB P B A P A ===则2()1()7P B A P B A =-=,()()()0.2P AB P A P B A ==,故所求的概率为 ()()()()()P BAB P ABBB P B A B P AB P AB ⎡⎤⎣⎦== ()0.20.25()()()0.70.60.5P AB P A P B P AB ===+-+-8、设AB 是随机事件,P(A)=0、7,P(A-B)=0、3,求P (非(AB))?解:由()()()P A B P A P AB -=-,得()()()0.70.30.4P AB P A P A B =--=-=故 ()1()0.6P AB P AB =-=9、半圆内均匀的投掷一随机点Q ,试求事件A={Q于π/4}的概率?解:事件A 所对应的区域D 如下图所示,由概率的几何定义得所求的概率为()()()m D P A m S ==10、10解:设事件A 表示“这对夫妇正好坐在一起”,(91)!22()(101)!9P A -⋅==-11、已知10只晶体管中有2只是次品,在其中任取两只,每次随机取一只作不放回抽取 解:设事件A 表示“两只都是正品”, B 表示“两只都是次品”, C 表示“一只是正品,一只是次品”, D 表示“第二次取出的是次品”, 由概率的古典定义可得所求的概率为(1)两只都是正品2821028()45A P A A == (2)两只都是次品222101()45A P B A ==(3)一直是正品,一只是次品11128221016()45C C C P C A ⋅⋅== (4)第二次取出的是次品11292101()5C C PD A ⋅== 12、某学生接连参加同一课程的两次考试,第一次及格的概率为p ,如果他第一次及格,则x第二次及格的概率也为p ,如果第一次不及格,第二次及格概率为p/2。

大学_概率论与数理统计(祝东进郭大伟著)课后答案

大学_概率论与数理统计(祝东进郭大伟著)课后答案

概率论与数理统计(祝东进郭大伟著)课后答案概率论与数理统计(祝东进郭大伟著)内容简介第1章随机事件和概率1.1 随机事件1.2 随机事件的频率与概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性习题1第2章随机变量及其数字特征2.1 随机变量及其分布2.2 随机变量的数字特征2.3 常用概率分布习题2第3章随机向量的分布及数字特征3.1 随机向量的分布3.2 随机变量的`独立性3.3 随机向量函数的分布与数学期望 3.4 随机向量的数字特征习题3第4章极限定理4.1 大数定律4.2 中心极限定理习题4第5章数理统计的基本概念5.1 总体与样本5.2 经验分布函数与顺序统计量5.3 样本分布的数字特征5.4 常用分布及分位数5.5 常用抽样分布习题5第6章参数估计6.1 点估计6.2 区间估计习题6第7章假设检验7.1 假设检验的基本概念7.2 单个正态总体的假设检验7.3 两个正态总体的假设检验__7.4 非正态总体参数及分布律的假设检验习题7第8章方差分析与线性回归分析8.1 单因素方差分析8.2 一元线性回归分析习题8第9章 Excel统计分析9.1 利用随机数发生器产生随机数9.2 常见的几个分布的概率计算9.3 常用统计量的计算9.4 假设检验9.5 方差分析9.6 回归分析附录1 部分习题参考答案附录2 几个常用函数的数值表及相关系数显著性检验表概率论与数理统计(祝东进郭大伟著)目录《概率论与数理统计》是高等学校概率统计课的教材,内容包括概率论的基本概念、随机变量及其概率分布、数字特征、大数定律与中心极限定理、统计量及其概率分布、参数估计和假设检验、回归分析、方差分析以及用EXcel进行概率统计计算。

《概率论与数理统计》论述严谨,通俗易懂,书中结合实际给出了大量例题和习题,特别是用Excel进行概率统计分析提供了简单实用的计算工具。

《概率论与数理统计》适合大学理工科各专业以及经济管理类专业学生使用,既可作为本科生同步学习参考书,又可作为考研复习指导书。

概率论与数理统计答案-祝东进

概率论与数理统计答案-祝东进

概率论与数理统计答案-祝东进习题 1.11. 写出下列随机试验的样本空间:(1) 掷两颗骰子,观察两颗骰子出现的点数.(2) 从正整数中任取一个数,观察取出数的个位数.(3) 连续抛一枚硬币,直到出现正面时为止.(4) 对某工厂出厂的产品进行检查,如连续检查出两个次品,则停止检查,或检查四个产品就停止检查,记录检查的结果.(5) 在单位圆内任意取一点,记录它的坐标.解:(1){(,)|1,2,,6,1,2,,6}i j i j Ω===; (2){|0,1,,9}i i Ω==; (3)Ω={(正), (反, 正), (反, 反, 正), (反, 反, 反,正), … }; (4)Ω={(次, 次), (次, 正, 正, 正), (次, 正, 正, 次), (次, 正, 次, 次), (次, 正, 次,正), (正, 次, 次), (正, 次, 正, 正), (正, 次, 正, 次)};(5)22{(,)|,,1}x y x R y R x y Ω=∈∈+≤.2. 在掷两颗骰子的试验中写出下列事件的集合表示:(1) A =”出现的点数之和为偶数”.(2) B =”出现的点数之和为奇数, 但没有骰子出现1点”.(3) C =”至少掷出一个2点”.(4) D =”两颗骰子出现的点数相同”.解: (1) {(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),A ={(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)}=;(2){(2,3),(2,5),(3,2),(3,4),(3,6),(4,3),(4,5),(5,2),(5,4),(5,6),(6,3),(6,5)}B =;(3){(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(1,2),(3,2),(4,2),(5,2),(6,2)}C =;(4){(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)}D =.3. 设,,A B C 是三个事件,试用,,A B C 来表示下列事件:(1) 事件“,,A B C 中至少有一个事件发生”.(2) 事件“,,A B C 中至少有两个事件不发生”.(3) 事件“,,A B C 中至多有一个事件不发生”.(4) 事件“,,A B C 中至少有一个事件不发生”.(5) 事件“,A B 至少有一个发生,而C 不发生”.解:(1)A B C ; (2)()()()A B A C B C 或 ()()()()A B C A B C AB C A B C ;(3)()()()()ABC A BC AB C AB C 或()()()AB AC BC ; (4)A B C ; (5)()A B C 或()()()ABC ABC ABC .4. 指出下列命题哪些成立,哪些不成立? (1) ()A B ABB =. (2) ()A B A AB =. (3) ()()A AB AB =. (4) ()A BC A B C =. (5) A B A B =. (6) ()()AB AB =∅. (7) A B ⊂等价于A B B =或AB A =或B A ⊂.(8) 若AB =∅,则A B ⊂.解:(1)正确;(2)正确;(3)正确;(4)正确;(5)错误;(6)正确;(7)正确;(8)正确.5. 在数学系的学生中任选一名学生,令事件A 表示被选学生是女生, 事件B 表示被选学生是三年级学生, 事件C 表示被选学生是运动员.(1) 叙述ABC 的意义.(2) 在什么条件下ABC A =成立?(3) 什么时候A C =成立?解: (1)被选学生是三年级男运动员;(2)因为ABC A =等价于A BC ⊂,即数学系的女生全部都是三年级运动员;(3)数学系的男生全部都是运动员,且运动员全部都是男生.6. 试用维恩图说明,当事件A ,B 互不相容,能否得出A ,B 也互不相容? 解: 不能.7. 设样本空间{}010x x Ω=≤≤, 事件{}27A x x =≤≤,{}15B x x =≤≤,试求: ,,,A B AB B A A B -.解:{}17A B x x =≤≤;{}25AB x x =≤≤;{}12B A x x -=≤<;[0,2)(5,10]A B AB ==.习题 1.2(6) 设A B ⊂,()()0.2,0.3,P A P B ==求(1)()P A B ; (2) ()P BA ;(3)()P A B -. 解: ()()0.3P A B P B ==;()()()0.1P B A P B P A =-=;()()0P A B P -=∅=.(7) 设()(),P AB P A B = 且()2,3P A =求()P B . 解:注意到()()1()1()()()P A B P A B P A B P A P B P AB ==-=---.从而由()()P AB P A B =得()()1P A P B +=.于是1()1()3P B P A =-=. (8) 设,,A B C 为三个随机事件, 且1()()(),2P A P B P C ===1()(),3P AB P BC == ()0P AC =,求()P A B C .解: 由()0P AC =知()0P ABC =. 于是由广义加法公式有()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+ 325236=-=. (9) 设,A B 为两个随机事件,且()0.7,()0.9P A P B ==,问:(4) 在什么条件下, ()P AB 取到最大值,最大值是多少?(5) 在什么条件下, ()P AB 取到最小值,最小值是多少?解:(1)由于()()()()P AB P A P AB P B ≤≤且.由此可见在A B ⊂条件下,()P AB 取到最大值()0.7P A =.(6) 注意到()()()()P AB P A P B P A B =+-. 因此当()1P A B =时,()P AB 取到最小值0.70.910.6+-=.思考: 有人说(2),在AB =∅时,()P AB 取到最小值0. 你能指出错误在什么 地方吗?(10) 设,A B 为两个随机事件,证明: (1) ()1()()()P AB P A P B P A B =--+. (2) 1()()()()()()P A P B P AB P A B P A P B --≤≤≤+.证明:(1)由广义加法公式可得()1()1()()()P AB P A B P A P B P A B =-=--+.(2)由(1)立得1()()()P A P B P AB --≤.其余不等式是显然的.(11)设,,A B C 为三个随机事件,证明:()()()()P AB P AC P BC P A +-≤. 证明:由广义加法公式可得()(())(()())()()()()()().P A P A B C P AB AC P AB P AC P ABC P AB P AC P BC ≥==+-≥+- (12) 设12,,,n A A A 为n 个事件,利用数学归纳法证明:(1) (次可加性) ()121()nn k k P A A A P A =≤∑.(2) ()121()(1)nn k k P A A A P A n =≥--∑.证明: (1) 当2n =时, 由广义加法公式有()21212121()()()()k k P A A P A P A P A A P A ==+-≤∑.即对2n =成立.假设对n k =成立, 于是()12112111()()()()().k k k k k k P A A A A P A A A P A P A P A P A +++≤+≤+++即对1n k =+成立. (1)得证.(2)当2n =时, 由广义加法公式有 ()12121212()()()()()1P A A P A P A P A A P A P A =+-≥+-. 即对2n =成立.假设对n k =成立, 即()121()(1)k k i i P A A A P A k =≥--∑. 于是()1211211111()()1()(1)()1().k k k k ki k i k i i P A A A A P A A A P A P A k P A P A k +++=+=≥+-≥--+-=-∑∑即对1n k =+成立. (2)得证.(13) 设12,,A A 为一列事件,且1,1,2,n n A A n +⊂=,证明:1()lim ()n n n n P A P A +∞→+∞==.证明:(利用性质6(1)的结论) 显然12,,A A 为一列事件,且1,1,2,n n A A n +⊂=,即性质6(1)的条件成立,因此1()lim ()n n n n P A P A +∞→+∞==. 于是11()1()1lim ()lim ()n n n n n n n n P A P A P A P A +∞+∞→+∞→+∞===-=-=. 习题 1.3(7) 掷两颗均匀的骰子,求下列事件概率: (1)两颗骰子的点数相同;(2)两颗骰子的点数之和为偶数;(3)一颗骰子的点数恰是另一颗骰子的点数的两倍.解:(1)16; (2) 12; (3)318. (8) 有五条线段,长度分别为1,3,5,7,9(单位cm),从这五条线段中任取三条,求所取的三条线段能拼成三角形的概率.解:由古典概型可得所求的概率为353310C =. (9) 一个小孩用13个字母:A 、A 、A 、C 、E 、H 、I 、I 、M 、M 、N 、T 、T 做组字游戏.如果字母的各种排列是随机的,问组成”MATHEMATICIAN ”一词的概率为多少?解:由古典概型可得所求的概率为3!2!2!2!13!. (10) n 个人随机地排成一列,甲、乙是其中的两个人,求甲、乙两人之间恰好有r 个人的概率, 这里0,1,,2r n =-.解:由古典概型可得所求的概率为2(1)!!2!!r n C n r r n -⋅--. (11) n 个男孩和m 个女孩(1m n ≤+)随机排成一列,求任意两个女孩都不相邻的概率.解:n 个男孩和m 个女孩(1m n ≤+)随机排成一列共有()!n m +种排法.任意两个女孩都不相邻可按如下方式进行: 先将n 个男孩排好,共有1n +个间隔,从1n +个间隔中选出m 个位置进行女生排列.因此排法总数为1!!m n C n m +.从而由古典概型可得所求的概率为1!!()!m n C n m n m ++. (12) 从n 双尺码不同的鞋子中任取2(2)r r n <只,求下列事件的概率: a) 所取的2r 只鞋子中没有两只成对的; (2) 所取的2r 只鞋子中只有两只成对的; (3) 所取的2r 只鞋子恰成r 对.解:(1)2222r r n r n C C ⋅;(2)12(1)2(1)1222r r n n r nC C C ---⋅⋅;(3)22r n r n C C .(13) 掷一枚均匀的硬币n 次,求出现的正面次数多于反面次数的概率. 解:设A 表示硬币出现的正面次数多于反面次数,B 表示硬币出现的反面次数多于正面次数,C 表示硬币出现的反面次数等于正面次数.易见 ()()()1P A P B P C ++=, ()()P A P B =.当21n m =+时,易见()0P C =,从而1()2P A =. 当2n m =时,易得21()2n nn P C C ⎛⎫= ⎪⎝⎭.从而211()122n n n P A C ⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. (14) 从一个装有a 个白球,b 个黑球的袋中逐一将球不放回地随机取出,直至留在袋中的球都是同一颜色的球为止,求最后留在袋中的球都是白球的概率.解:此题设想将袋中的a 个白球和b 个黑球全部摸出,则最后一次(第a b +次)摸出白球与本题所述的事件相同.因此由抽签原理可得所求的概率为a ab +. (15) 口袋中有5个白球、3个黑球,从中任取两个,求至少取到一个白球的概率.解:所求的概率为23281C C -. (16) 某人有m 把钥匙,其中只有一把能打开门,他一把接一把地试开门,不能开门的就扔掉.求他恰好在第k 次把门打开的概率.解:所求的概率为()()1(2)(1)111(1)m m m k m m m k m -⋅--+⨯=⋅--+. (17) 任取一个正整数,求下列事件的概率:a) 该数平方的个位数是1; (2)该数立方的个位和十位都是1. 解:(1)我们知道一个数平方的个位数只与该数的个位数有关.因此我们观察取出数的个位数,其样本空间为{0,1,2,,9}Ω=.易知其是古典概型.设A 表示该数平方的个位数是1, 则{1,9}A =,于是2()10P A =. (2)一个数立方的个位和十位与该数的个位和十位有关.因此我们观察取出数的个位和十位数,其样本空间为{00,01,02,,99}Ω=,B 表示该数立方的个位和十位都是1.则{71}B =,于是1()100P B =. (18) 某人忘记了一个电话号码的最后一位数字,因此只能试着随意地拨这位数,假设拔完规定电话位数算完成一次拨号,且假设对方电话不占线,试问他拨号不超过四次就能接通电话的概率是多少?解:所求的概率为191981987141010910981098710⨯⨯⨯⨯⨯⨯+++=⨯⨯⨯⨯⨯⨯. (19) 一公司批发出售服装,每批100套.公司估计某客商欲购的那批100套服装中有4套是次品,12套是等级品,其余是优质品,客商在进货时要从中接连抽出2套做样品检查,如果在样品中发现有次品,或者2套都是等级品,客商就要退货.试求下列事件的概率:(1)样品中1套是优质品,1套是次品;(2)样品中1套是等级品,1套是次品;(3)退货;(4)该批货被接受;(5)样品中恰好有1套优质品.解:(1)样品中1套是优质品,1套是次品的概率为2100844C ⨯; (3))样品中1套是等级品,1套是次品的概率为2100124C ⨯; (4)退货的概率为229612*********C C C C ⎛⎫+- ⎪⎝⎭; (5)该批货被接受的概率为22229696121222210010010011C C C C C C C ⎡⎤⎛⎫--+-=⎢⎥ ⎪⎝⎭⎣⎦; (6)样品中恰好有1套优质品的概率为21008416C ⨯. (20) 在桥牌比赛中,把52张牌(不包括大小王)任意地分给东、南、西、北四家(每家13张牌),求下列事件的概率:(1)北家的13张牌中恰有5张黑桃、4张红心、3张方块、1张草花;(2)南家及北家共有9张黑桃,东、西两家各有2张黑桃;(3) 南家及北家共有9张黑桃,东家有1张黑桃,西家有3张黑桃.解:(1)北家的13张牌中恰有5张黑桃、4张红心、3张方块、1张草花的概率为54311313131339!13!13!13!52!13!13!13!13!C C C C ⋅或54311313131352!13!39!C C C C ; (2)南家及北家共有9张黑桃,东、西两家各有2张黑桃的概率为13!39!9!2!2!17!11!11!52!26!13!13!⋅; (3)南家及北家共有9张黑桃,东家有1张黑桃,西家有3张黑桃的概率为13!39!9!1!3!17!12!10!52!26!13!13!⋅.(21) 将3个球随机地放入4个杯子,求4个杯子中球的个数最大值为2的概率.解: 3个球随机地放入4个杯子共有34种放法. 4个杯子中球的个数最大值为2相当于先从3个球中任意地选出2个球作为一个整体和另外一个球放到4个杯子(注意不能同时放入同一个杯子)的放法总数为24A .于是所求的概率为2434A . (22) 设集合A 有4个元素, 集合B 有3个元素,随机地作集合A 到集合B的映射,求该映射为满射的概率.解:该映射为满射的概率为2443!3C ⋅. (23) 将m 个球随机地放入n ()n m ≤个盒子中,求下列事件的概率:(14) 每个盒子中均有球; (2)恰好有1个盒子空着的概率.解:设i A 表示第i 个盒子无球,1,2,,i n =.(6) 设A 表示每个盒子中均有球.则1212n n A A A A A A A ==. 注意到(1)()mi m n P A n -=, 1,2,,i n =,()i j mP A A n =,1i j n ≤<≤,1212()(),1,1,2,,.k mi i i k mn k P A A A i i i n k n n-=≤<<<≤=于是由广义加法公式有()112121112111()()(1)()(1)(2)1().nn n i i j n i i j nm mn nn nm mmm n k n mk P A A A P A P A A P A A A n n C C C n nn n k C n +=≤<≤--==-++---=+++-=∑∑∑从而()()112121()()11mn kn n nmk n k P A P A A A P A A A C n -=-==-=-∑. (7) 恰好有1个盒子空着可以这样理解,先从n 个盒子任意选定1个空盒,然后将m 个球随机地放入1n -个盒子,使得1n -个盒子都有球. 从而由(1)及乘法原理可知"恰好有1个盒子空着"共有2111(1)(1)n m k m nn k C n C n k --=⎡⎤----⎢⎥⎣⎦∑样本点,于是其概率为2111(1)(1)n m k m nn k m C n C n k n --=⎡⎤----⎢⎥⎣⎦∑. (24)某班有m 个同学参加面试,共有n ()n m ≤张考签,每人抽到考签用后即放回,在面试结束后,求至少有一张考签没有被抽到的概率. (8) 解:设i A 表示第i 张考签没有被抽到,1,2,,i n =.设A 表示至少有一张考签没有被抽到. 则12n A A A A =.注意到(1)()mi mn P A n -=, 1,2,,i n =,()i j mP A A n =,1i j n ≤<≤,1212()(),1,1,2,,.k mi i i k mn k P A A A i i i n k n n-=≤<<<≤=于是由广义加法公式有()112121112111()()()(1)()(1)(2)1().nn n i i j n i i j nm mn nn nm mmm n k n mk P A P A A A P A P A A P A A A n n C C C n nn n k C n +=≤<≤--===-++---=+++-=∑∑∑ (25)从n 阶行列式的一般展开式中任取一项,问这项包含主对角线元素的概率为多少?解:设i A 表示所取的项含第i 行第i 列主对角线元素,1,2,,i n =.设A 表示所取的项包含主对角线元素. 则12n A A A A =.注意到(1)!()!i n P A n -=, 1,2,,i n =, (2)!()!i j n P A A n -=,1i j n ≤<≤,1212()!(),1,1,2,,.!k i i i k n k P A A A i i i n k n n -=≤<<<≤=于是由广义加法公式有()1121211121()()()(1)()(1)!(2)!1!!!1.!nn n i i j n i i j nn nn nnk P A P A A A P A P A A P A A A n n C C C n n n k +=≤<≤===-++---=+++=∑∑∑习题 1.51. 已知111(),(|),(|)432P A P B A P A B ===,求()P B ;()P A B ;()P A B .解:注意到1()()(|),12P AB P A P B A ==故()1/121()(|)1/26P AB P B P A B ===.1()()()()3P A B P A P B P AB =+-=.1()()()6P A B P A P AB =-=.□2. 设()0.4,()0.7,P A P B ==试证:(|)0.5.P B A ≥ 证明: 因为()()()()()0.3P A B P B P AB P B P A =-≥-=, ()1()0.6P A P A =-= . 故()0.3(|)0.5.0.6()P A B P B A P A =≥=□3. 设N 件产品中有M 件不合格品,从中逐一不放回地取出两件产品,(6)已知第一次取出不合格品,求第二次也取出不合格品的概率;(7)已知所取的两件产品中有一件是不合格品,求另一件也是不合格品的概率.解:(1)设iA 表示"第i 次取出不合格品",1,2i =.于是所求的概率为211()1M P AA N -=-.(2)设A 表示所取的两件产品中有一件是不合格品, B 表示另一件也是不合格品.于是所求的概率为2222222()().()1MN M N M N N MNC C C P AB P B A C P A C C C --===--□4. 掷两颗均匀的骰子,(1)已知点数和为偶数,求点数和等于8的概率;(2) 已知点数和为奇数,求点数和大于6的概率;(3) 已知点数和大于6,求点数和为奇数的概率.解: (1)所求的概率为518; (2)所求的概率为1218; (3)所求的概率为1221. □ 5. 一个家庭中有三个小孩,已知其中一个是女孩,求至少有一个男孩的概率. 解: A 表示三个小孩中有一个是女孩, B 表示三个小孩中至少有一个是男孩, 于是所求的概率为()6/86().()7/87P AB P B A P A ===□6. 为防止意外事故,在矿井内同时安装两种警报系统A 与B ,每种系统单独使用时,其有效率A 为0.92,B 为0.93,在A 失灵条件下B有效概率为0.85.求:(1)发生事故时,这两种警报系统至少有一个有效的概率;(2)在B 失灵条件下,A 有效的概率. 解:A 表示系统A 有效, B 表示系统B 有效. 由题意知()0.92,()0.93,(|)0.85P A P B P B A ===,从而()(|)()0.850.080.068,P A B P B A P A ==⨯= ()()()0.862P AB P B P A B =-=. (1)所求的概率为()()()()0.988P AB P A P B P AB =+-=.(2)所求的概率为()()()(|)0.8291()()P A B P A P AB P A B P B P B -===-. □7. 口袋中有1只红球和1n -只白球,现从中一个一个不放回地取球,(1) 已知前1()k k n -≤次都没有取到红球,求第k 次取出红球的概率. (2) 求第k 次取出红球的概率. 解: (1)所求的概率为11n k -+; (2)所求的概率为1n.□8. 口袋中有a 只白球、b 只黑球和3个红球,现从中一个一个不放回地取球,试求白球比黑球出现得早的概率. 解:设A 表示白球比黑球出现得早,iB 表示第i 次取出白球, iC 表示第i 次取出黑球, iD 表示第i 次取出红球,则1121231234()()()A BD B D D B D D D B =, 且1121231234,,,B D B D D B D D D B两两互斥,于是1121231234()()()()()P A P B P D B P D D B P D D D B =+++aa b =+.□9. 某射击小组共有20名射手,其中一级射手4人,二级射手8人,三级射手7人,四级射手1人,一、二、三、四级射手能通过选拔进入比赛的概率分别是0.9,0.7,0.5,0.2. 求任取一位射手,他能通过选拔进入比赛的概率.解: 设iB 表示选出i 级射手,1,2,3,4i =.A 表示选出的射手能通过选拔进入比赛. 于是由全概率公式得41()(|)()0.645.i i i P A P A B P B ===∑ □10. 12个乒乓球中有9个新球,3个旧球,第一次比赛,取出3个球,用完放回,第二次比赛又取出3个球.求第二次取出的3个球中有2个新球的概率.解:设iB 表示第一次比赛取出3个球中有i 个新球, 0,1,2,3i =.A 表示第二次取出的3个球中有2个新球.由全概率公式知 21333939333001212()(|)().i i i ii i i i C C C C P A P A B P B C C --+====⨯∑∑□11. 某商店出售尚未过关的某电子产品,进货10件,其中有3件次品,已经售出2件,现要从剩下的8件产品中任取一件,求这件是正品的概率.解: 设iB 表示已经售出2件产品中有i 件次品,0,1,2i =.A表示从剩下的8件产品中任取一件产品是正品.则由全概率公式知 222372001057()(|)().810i i i i i i C C i P A P A B P B C -==⋅+==⨯=∑∑□12. “学生参加选择题的测验,每一个题目有5个备选答案,其中有一个正确.若该学生知道答案,则他一定能选出正确的答案,否则他随机地从5个答案中选一个.若该学生知道所有试题的70%的正确答案,求:(1)对一试题,该学生选得正确答案的概率是多少?(2)若该学生对一试题已选得正确答案,问他真正知道此题答案的概率是多少?13. 设有来自3个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机地取一个地区的报名表,从中先后抽出两份.(1) 求先抽到的一份是女生报名表的概率. (2) 已知后抽到的一份是男生报名表,求先抽到的一份是女生报名表的概率.14. 口袋中有一球,不知它的颜色是黑的还是白的,假设”该球是白球”的可能性为12.现再往口袋中放入一只白球,然后从口袋中任意取出一只,已知取出的是白球,求口袋中原来那只球是白球的概率.解: 设B 表示"往口袋中放入一只白球,然后从口袋中任意取出一只是白球," A 表示口袋中原来那只球是白球. 则由贝叶斯公式知 11(|)()22(|)1113(|)()(|)()1222P B A P A P A B P B A P A P B A P A ⨯===+⨯+⨯.□15. 甲、乙两人轮流掷一颗骰子,甲先掷.每当某人掷出1点时,则交给对方掷,否则此人继续掷.试求第n 次由甲掷的概率. 解:设iA 表示第i 次由甲掷, 1,2,,i n=.显然125()1,()6P A P A ==,1151(|),(|)66i i i i P A A P A A ++==,1,2,,i n=.于是由全概率公式有111()(|)()(|)()51()(1())6614(),1,2,,.66i i i i i i i i i i P A P A A P A P A A P A P A P A P A i n +++=+=⋅+⋅-=+⋅=从而112()123i i P A -⎡⎤⎛⎫=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.2,,i n=.□16. 设()0P A >,证明:()(|)1()P B P B A P A ≥-. 证明:注意到()()()()()P AB P A P AB P A P B =-≥-, 不等式两边同除以()P A 得()()()()(|)1()()()P AB P A P B P B P B A P A P A P A -=≥=-.□17. 设0()1P B <<,证明: (|)()P A B P A ≤的充要条件是(|)()P A B P A ≥.证明:(|)()()()()()()()()()()()()(|)().P A B P A P AB P A P B P AB P A P AB P A P A P B P A P B P A B P A ≤⇔≤⇔=-≥-=⇔≥□。

概率论与数理统计课后习题答案1-8章-习题解答

概率论与数理统计课后习题答案1-8章-习题解答

第一章 思 考 题1.事件的和或者差的运算的等式两端能“移项”吗?为什么?2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么?3.圆周率 1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表:675844625664686762609876543210出现次数数字你能说出他产生怀疑的理由吗?答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由.4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗?5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系?6.条件概率是否是概率?为什么?习 题1.写出下列试验下的样本空间: (1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成{(,)(,)(,)(,)}Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω==(3)调查城市居民(以户为单位)烟、酒的年支出答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件: (1) “甲未中靶”: ;A (2) “甲中靶而乙未中靶”: ;B A (3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”: ;C B A C B A C B A (5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC (7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB (9)“三人均未中靶”: ;C B A (10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A 3 .设,A B 是两随机事件,化简事件 (1)()()AB A B (2) ()()A B A B解:(1)()()AB A B AB AB B B ==,(2) ()()AB AB ()A BA B B A A B B ==Ω=.4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率.解:51050.302410P P ==.5.n 张奖券中含有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。

概率论与数理统计答案(华东师大魏宗舒版)

概率论与数理统计答案(华东师大魏宗舒版)

概率论与数理统计答案(华东师大魏宗舒版)第一章 事件与概率1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。

(1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。

(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。

解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则,,,,,,,,,)()()(){(1913121次正正正正正正正 =Ω,,,,,,,,,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,,=A ){(1次正,,,,)(2次正)}(9次正,,(2)记2个白球分别为1ω,2ω,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。

则=Ω{1ω,2ω,1b ,2b ,3b ,1r ,2r ,3r ,4r }(ⅰ) =A {1ω,2ω} (ⅱ) =B {1r ,2r ,3r ,4r }1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。

(1) 叙述C AB 的意义。

(2)在什么条件下C ABC =成立? (3)什么时候关系式B C ⊂是正确的? (4) 什么时候B A =成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。

(2) C ABC = 等价于AB C ⊂,表示全系运动员都有是三年级的男生。

(3)当全系运动员都是三年级学生时。

(4)当全系女生都在三年级并且三年级学生都是女生时`。

1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i ≤≤1)。

用i A 表示下列事件:(1)没有一个零件是不合格品;(2)至少有一个零件是不合格品; (3)仅仅只有一个零件是不合格品; (4)至少有两个零件是不合格品。

概率论和数理统计课后习题答案解析

概率论和数理统计课后习题答案解析

随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2 随机事件的概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性复习总结与总习题解答习题3. 证明下列等式:习题6.习题7习题9习题10习题12习题13习题14习题15习题16习题18习题20习题21习题23习题24习题26第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3},定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ.解答:由P{X=1}=P{X=2}, 得λe-λ=λ^2/2e^-λ,解得λ=2.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3};(3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c, 试确定常数c, 并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1, 即3716c=1,解得c=3716=2.3125.由条件概率知P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5. 在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22⋅1C53=110, P{X=4}=C32⋅1C53=310, P{X=5}=C42⋅1C53=35,所以X的分布律为求因代营业务得到的收入大于当天的额外支出费用的概率.解答:因代营业务得到的收入大于当天的额外支出费用的概率为:P{3X>60}, 即P{X>20},P{X>20}=P{X=30}+P{X=40}=0.6.就是说,加油站因代营业务得到的收入大于当天的额外支出费用的概率为0.6.习题6设自动生产线在调整以后出现废品的概率为p=0.1, 当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?解答:(1)P{X=k}=(1-p)kp=(0.9)k×0.1,k=0,1,2,⋯;(2)P{X≥5}=∑k=5∞P{X=k}=∑k=5∞(0.9)k×0.1=(0.9)5;(3)设以0.6的概率保证在两次调整之间生产的合格品不少于m件,则m应满足P{X≥m}=0.6,即P{X≤m-1}=0.4. 由于P{X≤m-1}=∑k=0m-1(0.9)k(0.1)=1-(0.9)m,故上式化为1-0.9m=0.4, 解上式得m≈4.85≈5,因此,以0.6的概率保证在两次调整之间的合格品数不少于5.习题7设某运动员投篮命中的概率为0.6, 求他一次投篮时,投篮命中的概率分布.解答:此运动员一次投篮的投中次数是一个随机变量,设为X, 它可能的值只有两个,即0和1.X=0表示未投中,其概率为p1=P{X=0}=1-0.6=0.4,X=1表示投中一次,其概率为p2=P{X=1}=0.6.则随机变量的分布律为设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3. 对应概率分布为P{X=0}=C73C103=35120, P{X=1}=C73C31C103=36120,P{X=2}=C71C32C103=21120, P{X=3}=C33C103=1120.X的分布律为2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0, F(1+0)=F(1)=1,且F(-∞)=0,F(+∞)=1,(2)P{X<2∣X≠1}=P{X=-1}P{X≠1}=23.习题5设X的分布函数为F(x)={0,x<0x2,0≤x<1x-12,1≤x<1.51,x≥1.5,求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}.解答:P{0.4<X≥1.3}=P{1.3}-F(0.4)=(1.3-0.5)-0.4/2=0.6,P{X>0.5}=1-P{X≤0.5}=1-F(0.5)=1-0.5/2=0.75,P{1.7<X≤2}=F(2)-F(1.7)=1-1=0.习题6设随机变量X的分布函数为F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B; (2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarctanx,-∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1).解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1), 所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它, 求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1}; (3)概率密度函数F(x).解答:(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1, ∴A=1;又\becauselimx→0+(A+Be-2x)=F(0)=0, ∴B=-1.(2) P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣, 求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1, 即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X, 则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X, 则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X∼N(3,22).(1)确定C, 使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X∼N(3,22), 所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12, 所以 c-32=0, 故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X∼N(0,102), 先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率. 解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ,所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1, 即1-Φ(x-400060)=0.1, 所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997,因此x-400060≈1.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122). 在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x, 使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05,求x, 即1-P{X≤x}≤0.05, 亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X∼N(170,36), 问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36), 则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01, 而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99, 查标准正态表得x-1706>2.33, 故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102); 第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42), 求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725,P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.2.5 随机变量函数的分布当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),cb+d≤y≤ca+d0,其它.习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e), 其反函数为x=lny, 可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1, 于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x), 分布函数为F(x), 求下列随机变量Y的概率密度:(1)Y=1X; (2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0, 综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0, 这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0, 综上所述fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2), 已知θ=5(T-32)/9, 试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2). θ=59(T-32), 反函数为T=59θ+32,是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0, 其分布函数为FY(x), 又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0, 故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z), 因此,Z与X的分布函数相同.总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k, P(Ak)=ck, k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20} =1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7, 求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7, 故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X∼b(10,0.7), 而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X, 则X∼b(2500,0.002), 则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.试求:(1)q的值;(2)X的分布函数.解答:(1)\because离散型随机变量的概率函数P{X=xi}=pi, 满足∑ipi=1,且0≤pi≤1,∴{1/2+1-2q+q2=10≤1-2q≤1q2≤1,解得q=1-1/2. 从而X的分布律为下表所示:(2)由F(x)=P{X≤x}计算X的分布函数F(x)={0,1/2,2-1/2,1,x<-1-1≤x<00≤x<0x≥1.习题7设随机变量X的分布函数F(x)为F(x)={0,x<0Asinx,0≤x≤π/2,1,x>π/2则A=¯,P{∣X∣<π/6}=¯.解答:应填1;1/2.由分布函数F(x)的右连续性,有F(π2+0)=F(π2)⇒A=1.因F(x)在x=π6处连续,故P{X=π6=12,于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx),其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(∅)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx),而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx),即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx,积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0, 故C=1.于是F(x)=1-e-λx,x>0,λ>0,故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x). 显然,当x<0时,F(x)=0, 当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0),求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1,从而c=eλa.于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1 -e-λ.注意,a-1<a, 而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它, 计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2) dx∫0.10.5(12x2-12x+3)dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1. 证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0, 分布函数F(x)满足:(1)F(-a)=1-F(a); (2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5), 所以fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0,即K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去), 所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取.习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率 .解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002,P(A∣B0)=∫1+∞e-xdx=e-1, P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.试求Y=X2的分布律.解答:所以注:随机变量的值相同时要合并,对应的概率为它们概率之和.习题20设随机变量X的密度为fX(x)={0,x<02x3e-x2,x≥0,求Y=2X+3的密度函数.解答:由Y=2X+3, 有y=2x+3,x=y-32,x′=12,由定理即得fY(x)={0,y<3(y-32)3e-(y-32),y≥3.习题21设随机变量X的概率密度fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1), 则Y的取值范围为[1,2). 当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.第三章多维随机变量及其分布3.1 二维随机变量及其分布求a.解答:由分布律性质∑i⋅jPij=1, 可知1/6+1/9+1/18+1/3+a+1/9=1,解得a=2/9.习题2(1)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(1)P{a<X≤b,Y≤c};解答:P{a<X≤b,Y≤c}=F(b,c)-F(a,c).习题2(2)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(2)P{0<Y≤b};解答:P{0<Y≤b}=F(+∞,b)-F(+∞,0).习题2(3)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(3)P{X>a,Y≤b}.解答:P{X>a,Y≤b}=F(+∞,b)-F(a,b).习题3(1)3.设二维离散型随机变量的联合分布如下表:试求:(1)P{12<X<32,0<Y<4;解答:P{12<X<23,0<Y<4P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求:(2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求:(3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0} =P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值:(0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512, 请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1, 故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0}, {X=0,Y=13, {X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:(2)P{Y=0}=P{X=-1,Y=0}+P{X=0,Y=0}+P{X=2,Y=0} =0+16+512=712,同样可求得P{Y=13=112,P{Y=1}=13,关于的Y边缘分布见下表:Y 01/31pk 7/121/121/3习题6设随机向量(X,Y)服从二维正态分布N(0,0,102,102,0), 其概率密度为f(x,y)=1200πex2+y2200,求P{X≤Y}.解答:由于P{X≤Y}+P{X>Y}=1,且由正态分布图形的对称性,知P{X≤Y}=P{X>Y},故P{X≤Y}=12.习题7设随机变量(X,Y)的概率密度为f(x,y)={k(6-x-y),0<x<2,2<y<40,其它,(1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1.5}; (4)求P{X+Y≤4}.解答:如图所示(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数k.∫02∫24k(6-x-y)dydx=k∫02(6-2x)dx=8k=1,所以k=18.(2)P{X<1,Y<3}=∫01dx∫2318(6-x-y)dy=38.(3)P{X<1.5}=∫01.5dx∫2418(6-x-y)dy=2732.(4)P{X+Y≤4}=∫02dx∫24-x18(6-x-y)dy=23.习题8已知X和Y的联合密度为f(x,y)={cxy,0≤x≤1,0≤y≤10,其它,试求:(1)常数c; (2)X和Y的联合分布函数F(x,y).解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1,有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1,有F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1,有F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度.解答:区域G的面积A=∫01(x-x2)dx=16, 由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1,即fX(x)={6(x-x2),0≤x≤10,其它fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.3.2 条件分布与随机变量的独立性对应X的值,将每行的概率相加,可得P{X=i}.对应Y的值(最上边的一行), 将每列的概率相加,可得P{Y=j}.(2)当Y=51时,X的条件分布律为P{X=k∣Y=51}=P{X=k,y=51}P{Y=51}=pk,510.28, k=51,52,53,54,55.列表如下:故(1)在Y=1条件下,X的条件分布律为(2)在X=2的条件下,Y的条件分布律为表(a)表(b)解答:由X与Y相互独立知P{X=xi,Y=yi}=P{X=xi}P{Y=yj),从而(X,Y)的联合概率分布为亦即表P{X+y=1}=P{X=-2,y=3}+P{X=0,Y=1}=116+148=112,P{X+Y≠0}=1-P{X+Y=0}=1-P{X=-1,Y=1}-P{X=12,Y=-12=1-112-16=34.习题6某旅客到达火车站的时间X均匀分布在早上7:55∼8:00, 而火车这段时间开出的时间Y的密度fY(y)={2(5-y)25,0≤y≤50,其它,求此人能及时上火车站的概率.解答:由题意知X的密度函数为fX(x)={15,0≤x≤50,其它, 因为X与Y相互独立,所以X与Y的联合密度为:fXY(x,y)={2(5-y)125,0≤y≤5,0≤x≤50,其它,故此人能及时上火车的概率为P{Y>X}=∫05∫x52(5-y)125dydx=13.习题7设随机变量X与Y都服从N(0,1)分布,且X与Y相互独立,求(X,Y)的联合概率密度函数.解答:由题意知,随机变量X,Y的概率密度函数分别是fX(x)=12πe-x22,fY(y)=12πe-y22因为X与Y相互独立,所以(X,Y)的联合概率密度函数是f(x,y)=12πe-12(x+y)2.习题8设随机变量X的概率密度f(x)=12e-∣x∣(-∞<x<+∞),问:X与∣X∣是否相互独立?解答:若X与∣X∣相互独立,则∀a>0, 各有P{X≤a,∣X∣≤a}=P{X≤a}⋅P{∣X∣≤a},而事件{∣X∣≤a}⊂{X≤a},故由上式有P{∣X∣≤a}==P{X≤a}⋅P{∣X∣≤a},⇒P{∣X∣≤a}(1-P{X≤a})=0⇒P{∣X≤a∣}=0或1=P{X≤a}⋅(∀a>0)但当a>0时,两者均不成立,出现矛盾,故X与∣X∣不独立.习题9设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为fY(y)={12e-y2,y>00,y≤0,(1)求X与Y的联合概率密度;(2)设有a的二次方程a2+2Xa+Y=0, 求它有实根的概率.解答:(1)由题设易知fX(x)={1,0<x<10,其它,又X,Y相互独立,故X与Y的联合概率密度为f(x,y)=fX(x)⋅fY(y)={12e-y2,0<x<1,y>00,其它;(2)因{a有实根}={判别式Δ2=4X2-4Y≥0}={X2≥Y},故如图所示得到:P{a有实根}=P{X2≥Y}=∫∫x2>yf(x,y)dxdy=∫01dx∫0x212e-y2dy=-∫01e-x22dx=1-[∫-∞1e-x22dx-∫-∞0e-x22dx] =1-2π[12π∫-∞1e-x22dx-12π∫-∞0e-x22dx]=1-2π[Φ(1)-Φ(0),又Φ(1)=0.8413,Φ(0)=0.5,于是Φ(1)-Φ(0)=0.3413,所以P{a有实根}=1-2π[Φ(1)-Φ(0)]≈1-2.51×0.3413=0.1433.3.3 二维随机变量函数的分布习题1设随机变量X和Y相互独立,且都等可能地取1,2,3为值,求随机变量U=max{X,Y}和V=min{X,Y}的联合分布.解答:由于U≥V,可见P{U=i,V=j}=0(i<j).此外,有P{U=V=i}=P{X=Y=i}=1/9(i=1,2,3), P{U=i,V=j}=P{X=i,Y=j}+P{X=j,Y=i}=2/9(i>j),于是,随机变量U和V的联合概率分布为试求:(1)Z=X+Y; (2)Z=XY; (3)Z=X/Y; (4)Z=max{X,Y}的分布律.解答:与一维离散型随机变量函数的分布律的计算类型,本质上是利用事件及其概率的运算法则.注意,Z的相同值的概率要合并.于是(1)(2)Z的分布密度为fZ(z)={ze-z22,z>00,z≤0.习题5设随机变量(X,Y)的概率密度为f(x,y)={12(x+y)e-(x+y),x>0,y>00,其它,(1)问X和Y是否相互独立?(2)求Z=X+Y的概率密度.解答:(1)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞12(x+y)e-(x+y)dy,x>00,x≤0\under2line令x+y=t{∫x+∞12te-tdt=12(x+1)e-x,x>00,x≤0,由对称性知fY(y)={12(y+1)e-y,y>00,y≤0,显然f(x,y)≠fX(x)fY(y),x>0,y>0,所以X与Y不独立.(2)用卷积公式求fZ(z)=∫-∞+∞f(x,z-x)dx.当{x>0z-x>0 即{x>0x<z时,f(x,z-x)≠0,所以当z≤0时,fZ(z)=0;当z>0时,fZ(z)=∫0z12xe-xdx=12z2e-z.于是,Z=X+Y的概率密度为fZ(z)={12z2e-z,z>00,z≤0.习题6设随机变量X,Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数1的指数分布,求随机变量Z=X+Y 的概率密度.解答:据题意,X,Y的概率密度分布为fX(x)={1,0<x<10,其它, fY(y)={e-y,y≥00,y<0,由卷积公式得Z=X+Y的概率密度为fZ(z)=∫-∞+∞fX(x)fY(z-x)dx=∫-∞+∞fX(z-y)fY(y)dy =∫0+∞fX(z-y)e-ydy.由0<z-y<1得z-1<y<z,可见:当z≤0时,有fX(z-y)=0, 故fZ(z)=∫0+∞0⋅e-ydy=0;当z>0时,fZ(z)=∫0+∞fX(z-y)e-ydy=∫max(0,z-1)ze-ydy=e-max(0,z-1)-e-z,即fZ(z)={0,z≤01-e-z,0<z≤1e1-z-e-z,z>1.习题7设随机变量(X,Y)的概率密度为f(x,y)={be-(x+y),0<x<1,0<y<+∞,0,其它.(1)试确定常数b;(2)求边缘概率密度fX(x),fY(y);(3)求函数U=max{X,Y}的分布函数.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数b. ∫01dx∫0+∞be-xe-ydy=b(1-e-1)=1,所以b=11-e-1,从而f(x,y)={11-e-1e-(x+y),0<x<1,0<y<+∞,0,其它.(2)由边缘概率密度的定义得fX(x)={∫0+∞11-e-1e-(x+y)dy=e-x1-e-x,0<x<1,0,其它,fY(x)={∫0111-e-1e-(x+y)dx=e-y,0<y<+∞,0,其它(3)因为f(x,y)=fX(x)fY(y),所以X与Y独立,故FU(u)=P{max{X,Y}≤u}=P{X≤u,Y≤u}=FX(u)FY(u),其中FX(x)=∫0xe-t1-e-1dt=1-e-x1-e-1,0<x<1,所以FX(x)={0,x≤0,1-e-x1-e-1,0<x<1,1,x≥1.同理FY(y)={∫0ye-tdt=1-e-y,0<y<+∞,0,y≤0,因此FU(u)={0,u<0,(1-e-u)21-e-1,0≤u<1,1-e-u,u≥1.。

概率论与数理统计习题册答案

概率论与数理统计习题册答案

第一章 随机事件与概率 § 随机试验 随机事件 一、选择题1. 设B 表示事件“甲种产品畅销”,C 表示事件“乙种产品滞销”,则依题意得A=BC .于是对立事件 {}A B C ==甲产品滞销或乙产品畅销,故选D.2. 由A B B A B B A AB =⇔⊂⇔⊂⇔=Φ,故选D.也可由文氏图表示得出. 二 写出下列随机试验的样本空间1. {}3,420,,2 []0,100 3. z y x z y x z y x z y x ,,},1,0,0,0|),,{(=++>>>=Ω分别表示折后三段长度;三、1任意抛掷一枚骰子可以看作是一次随机试验,易知共有6个不同的结果.设试验的样本点 ""1,2,3,4,5,6i i i ω==出点点, ;则{}246,,A ωωω=,{}36,B ωω=2{}135,,A ωωω=,{}1245,,,B ωωωω=,{}2346,,,A B ωωωω=,{}6AB ω=,{}15,AB ωω=四、1ABC ;2ABC ;3“A B C 、、不都发生”就是“A B C 、、都发生”的对立事件,所以应记为ABC ;4A B C ;5“A B C 、、中最多有一事件发生”就是“A B C 、、中至少有二事件发生”的对立事件,所以应记为:AB AC BC .又这个事件也就是“A B C 、、中至少有二事件不发生”,即为三事件AB AC BC 、、的并,所以也可以记为AB ACBC .§ 随机事件的概率 一、填空题1. 试验的样本空间包含样本点数为10本书的全排列10,设{}A =指定的3本书放在一起,所以A 中包含的样本点数为8!3!⋅,即把指定的3本书捆在一起看做整体,与其他三本书全排,然后这指定的3本书再全排;故8!3!1()10!15P A ⋅==; 2. 样本空间样本点7!5040n ==,设事件A 表示这7个字母恰好组成单词SCIENCE,则因为C 及C, E 及E 是两两相同的,所以A 包含的样本点数是2!2!4A =⨯=,故2!2!1()7!1260P A ⋅==二、求解下列概率1. 1 25280.36C C ≈; 2 1515373766885!0.3756!C C C A C A == 2. 412410.427112A -≈3. 由图所示,样本点为随机点M 落在半圆202 ()y ax x a <<-为正常数内,所以样本空间测度可以用半圆的面积S 表示;设事件A 表示远点O 与随机点M 的连线OM 与x 轴的夹角小于4π,则A 的测度即为阴影部分面积s , 所以2221142()22a a s P A S aπππ+===+ §概率的性质 一. 填空题 1.; 2. 1p -; 3. 16; 4. 712二. 选择题1. C;2. A;3. D;4. B;5. B. 三. 解答题解:因为,AB A AB ⊆⊆所以由概率的性质可知:()()().P AB P A P A B ≤≤又因为()0,P AB ≥所以可得 ()()(),P AB P A P B ≤+于是我们就有()P AB ≤ ()()P A P A B ≤()()P A P B ≤+.如果,A B ⊆则,AB A = ()()P AB P A =; 如果,B A ⊆则,AB A =这时有()().P A P A B =如果,AB φ=则(0,P AB =)这时有()()().P A B P A P B =+§ 条件概率与事件的独立性aa2a1.1图一. 填空题 1.23;2. 0.3、;3. 23;4. 14; 5. 2; 5. 因为AB AB =,所以()(),()()AB AB AABB AB AB AB AB φ====,则有,AB A B A B φ=+=+=Ω,因为,AB A B φ=+=Ω且所以A 与B 是对立事件,即A B A B ==,;所以,()()1,P A B P A B ==于是()()2P A B P A B +=二. 选择题1. D ;2. B ;3. A ;4. D ;5. B1. 已知()()1,P A B P A B +=又()()1,P A B P A B +=所以()(),P A B P A B =于是得()()()()P AB P AB P B P B =,注意到()()(),()1(),P AB P A P AB P B P B =-=-代入上式并整理后可得()()()P AB P A P B =;由此可知,答案D; 三. 解答题 1.33105,; 2. 2n§ 全概率公式和逆概率Bayes 公式 解答题 1. 2. 1;23.10.943;20.848§ 贝努利概型与二项概率公式 一. 填空题1. 11(1),(1)(1)n n n p p np p ----+-;2.23二. 解答题 1. .2. 0.94n,222(0.94)(0.06)n n n C --,11(0.94)(0.06)(0.94)n n n ---3.1,2,3章节测验一. 填空题 1.825; 2. 对立;3. 0.7; 4. 84217,二. 选择题 三、解答题 1.1; 22232. .0038 四、证明题略; 随机变量 分布函数一、填空题1.)(1a F -;)1()1(--F F ;)()()(b F a F b F -;2. 1,12a b ==/π;3.121--e二、选择题1、D ;2、A ; 三、计算题1.所以得随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<=5,154,10443,1013,0)(x x x x x F2.解:1由条件知,当1-<x 时,0)(=x F ; 由于81}1{=-=X P ,则81}1{)1(=-≤=-X P F ; 从而有 8581411}1{}1{1}11{=--=-=-=-=<<-X P X P X P ;由已知条件当11<<-x 时,有 )1(}111{+=<<-≤<-x k X x X P ; 而1}1111{=<<-≤<-X X P ,则21=k 于是,对于11<<-X 有}111{}11{}11,1{}1{<<-≤<-⋅<<-=<<-≤<-=≤<-X x X P X P X x X P x X P 16)1(52185+=+⨯=x x 所以 167516)1(581}1{}1{)(+=++=≤<-+-≤=x x x X P X P x F 当1≥x 时,1)(=x F ,从而⎪⎪⎩⎪⎪⎨⎧≥<≤-+-<=1,111,16751,0)(x x x x x F2略;离散型与连续性随机变量的概率分布 一、填空题1.3827;2.2二、选择题; ;三、计算题1.12,1==B A ;2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤--<≤<=2,121,12210,20,0)(22x x x x x x x x F ;343 2.略;常用的几个随机变量的概率分布 一、填空题1.649;2.232-e ;3.2.0 二、计算题 1、43;2、352.0;3、5167.0;4、19270.01)5.1()5.2(=-Φ+Φ;229.3=d随机向量及其分布函数 边际分布 一、填空题1、(,)(,)(,)(,)F b b F a b F b a F a a --+;(,)(,)F b b F a b -;2、0;1 二、计算题1、12,2,12πππ===C B A ;2161; 3R x x x F X ∈+=),2arctan 2(1)(ππ,R y yy F Y ∈+=),3arctan 2(1)(ππ 2、1⎩⎨⎧≤>-=-0,00,1)(2x x e x F x X ,⎩⎨⎧≤>-=-0,00,1)(y y e y F y Y ,;242---e e;3、⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤-+<=2,120),cos 1(sin 210,0)(ππx x x x x x F X ,⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤-+<=2,120),cos 1(sin 210,0)(ππy y y y y y F Y二维离散型与连续性随机向量的概率分布一、填空题1、87;2、∑+∞=1j ij p ,∑+∞=1i ij p ;3、41;4、41二、计算题1、1=c ;⎩⎨⎧≤>=-0,00,)(x x e x f xX ;⎪⎩⎪⎨⎧≤>+=0,00,)1(1)(2y y y y f Y2、16,(,)(,)0,x y Df x y ∈⎧=⎨⎩其它;226(),01()0,X x x x f x ⎧-<<=⎨⎩其它;),01()0,Y y y f y ⎧<<⎪=⎨⎪⎩其它3、条件分布 随机变量的独立性一、选择题1、B ;2、A ;3、D ;4、C ;5、D 二、计算题1、2、||2,012,01(|),(|)0,0,X Y Y X x x y y f x y f y x ≤≤≤≤⎧⎧==⎨⎨⎩⎩其它其它 3、18=c ;241}2{=<X Y P ;3不独立; 4、)1(11121Φ-+⎪⎪⎭⎫ ⎝⎛--e π 随机变量函数的概率分布一、填空题1、2、1,01()0,Y y f y ≤≤⎧=⎨⎩其它二、选择题1、B ;2、D ; 三、计算题1、⎩⎨⎧<<=else y y f ,010,1)(;2、⎪⎩⎪⎨⎧≥-<<-<=--1,)1(10,10,0)(z e e z e z z f z zZ3、⎪⎪⎩⎪⎪⎨⎧≥<<≤=1,110,21,0)(z z z z f Z ;⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-<<≤=1,21110,20,0)(z zz z z z F Z 第二章测验一、填空题1、41;2、34;3、0;4、2.0 二、选择题1、C ;2、A ;3、B 三、计算题1、~(3,0.4)X B ,则随机变量的概率函数为其分布函数为:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<=3,132,12511721,1258110,125270,0)(x x x x x x F2、124=A ;2⎩⎨⎧≤≤-=其它,010),1(12)(2x x x x f X ,⎩⎨⎧≤≤-=其它,010),1(12)(2y y y x f X ;3不独立;4⎪⎩⎪⎨⎧<<<<=⎪⎩⎪⎨⎧<<<<--=其它其它,010,10,2)|(,,010,10,)1()1(2)|(2|2|y x x y x y f y x y x y x f X Y Y X ;3、1⎩⎨⎧≤>=-0,00,)(z z ze z f z Z ;2⎪⎩⎪⎨⎧≤>+=0,00,)1(1)(2z z z z f Z第三章 随机变量的数字特征数学期望 一 、填空题1、13,23,3524 ; 2、21,0.2 3、 2 ,4796二、计算题1. 解: 11211()(1)(1)1k k k k k a a a E X k k a a a -+∞+∞+==⎛⎫== ⎪+++⎝⎭∑∑ 根据公式()''12111(1)11k k k k x kx x x x x +∞+∞-==⎛⎫⎛⎫===< ⎪ ⎪-⎝⎭-⎝⎭∑∑ 得到221()(1)11a E X a a a a ==+⎛⎫- ⎪+⎝⎭2. 0 ;3.:2a4. 2/3,4/3 ,-2/3,8/5 ; 5.4/5,3/5,1/2,16/15 方差一、填空题1. 0.49 ;2. 1/6 ;3. 8/9 ;4. 8 , 二、计算题 1.: , 提示: 设0,1,i i X i ⎧=⎨⎩部件个不需要调整部件个需要调整则123,,X X X 相互独立,并且123X X X X =++,显然1(1,0.1),X B2(1,0.2),X B 3(1,0.3)X B2.:1/3,1/3 ; 3.: 16/3 ,28三、 证明题提示: [][]22()())D XY E XY E XY E XY EX EY =-=-[]2)E XY YEX YEX EX EY =-+-[]2()()E Y X EX EX Y EY DX DY =-+-≥ 协方差与相关系数 一、 选择题 1. A ; ; 二、 计算题1. ()()0E X E Y ==,()()0.75D X D Y ==, 0XY ρ=, () 1.5D X Y += X 与Y 不独立2. 0 ,0提示:111()0Y y f y π⎧=-≤≤⎪=⎨⎪⎩⎰其它 1211()10E Y yy dy π-=-=⎰()0.25D Y =同理可得()()0E X E Y ==,()()0.25D X D Y ==221(,)()0x y xyCov X Y E XY dxdy π+≤===⎰⎰3. :2222a b a b-+ 矩与协方差矩阵1. 33321132v v v v μ=-+2.1,,, ;2 ;340.210.020.020.24-⎡⎤⎢⎥-⎣⎦第三章 测验 一、 填空题1. ; 2. 1 ,; 3. ab二、 选择题 1.B ; ;三、 计算题1.解:设X 表示该学徒工加工的零件中报废的个数,又设 0,1,i i X i ⎧=⎨⎩第个零件未报废第个零件报废则由题设知1111iX i i i ⎡⎤⎢⎥⎢⎥++⎣⎦于是有 101i i X X ==∑ 且1()(1,2,,10)1i E X i i ==+从而1010101111111()()() 2.0212311i i i i i E X E XE X i =======+++=+∑∑∑ 2.: 10分25秒提示:设乘客到达车站的时间为X ,由题意可知X 为0,60上的均匀分布,根据发车时间可以得到等候时间Y ,且Y 是关于X 的函数10010301030()553055705560X X X X Y g X X X XX -<≤⎧⎪-<≤⎪==⎨-<≤⎪⎪-<≤⎩3. 0,0第四章习题切比雪夫不等式 随机变量序列的收敛性 1.解:由切比雪夫不等式知,2221(37)(|5|2)12221(|5|8)832P X P X P X <<=-<≥-=->≤=2.解:设X 为在n 次试验中事件A 出现的次数,则~(,)X B n p ,Xn为频率. 21110.750.25()()0.750.75,()()X X E E X n D D X n n n n n n⨯==⨯⨯=== 由题意知{0.70.8}0.9,XP n<<≥而由切比雪夫不等式有20.750.25{|0.75|0.05}10.05X n P n ⨯-<≥- 所以有20.750.2510.90.05n ⨯-=,得750n =大数定理1. 证:有题设知n n=2,3,…的概率分布为:故n 的数学期望为()012101n -)(n =⨯+⎪⎪⎭⎫⎝⎛-⨯+⨯=nn n n X EX n 的方差为()(22222121()[()]012n nn D X E X E X n n n⎛⎫=-=⨯+⨯-+⨯= ⎪⎝⎭故∑==Nnn X NX 11的数学期望 ()()01111==⎪⎪⎭⎫ ⎝⎛=∑∑==Nnn Nn n X E N X NE X E方差()()NN X D N X ND X D Nn Nn n Nn n 2211112121===⎪⎪⎭⎫ ⎝⎛=∑∑∑===在利用车比雪夫不等式得(){}()0222−−−−→−≤≤≥-+∞→N N X D XE X P εεε因此,X 1,X 2,…,X n ,…服从大数定理;2.证:由于X 1,X 2,…,X n 相互独立,且()i i E X μ=,()i D X 存在,令 n 11ni i X X n ==∑则 ()()k k 111111n nn nki i i EX E X E X n n n μ===⎛⎫=== ⎪⎝⎭∑∑∑有限;()()k k 211110n n n ni i D X D X D X n n →∞==⎛⎫==−−−→ ⎪⎝⎭∑∑故由车比雪夫不等式知,0>∀ε; ()()()()1222111nknn k n n D XD X P XE X n εεε→∞=-≤≥-=-−−−→∑即 1111lim {||}1n ni i n i i P X n n με→+∞==-<=∑∑中心极限定理1.解:设X 为抽取的100件中次品的件数,则(100,0.2)XB ,()1000.220,()200.816E X D X =⨯==⨯=则18202025201205{1825}{}{}444244(1.25)(0.5)(1.25)(0.5)10.89440.691510.5859X X P X P P ----<<=<<=-<<=Φ-Φ-=Φ+Φ-=+-=2.解:1 设X 为一年中死亡的人数,则(,)XB n p ,其中n =10000,p =保险公司亏本则必须1000X>120000,即X>120 P{保险公司亏本}={120}P X >=P >=7.769}P >1(7.769)0≈-Φ=2P{保险公司获利不少于40000元}{120000100040000}{80}(2.59)0.995P X P X P -≥=≤=≤=Φ=3.解:设X i ={每个加数的舍入误差},则X i ~ U, ,()0i =X E ,()121i =X D ,i = 1, 2, …故由独立同分布中心极限定理知X 1,X 2,…服从中心极限定理;1[][][]802.10)9099.01(2)4.31(121)4.31(21)4.31()4.31(11211500015001512115000150012115000150015-1151511511515001150011500115001=-⨯=Φ-=-Φ-=-Φ-Φ-≈⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎪⎭⎫ ⎝⎛⨯⨯-≤⎪⎪⎪⎪⎭⎫ ⎝⎛⨯⨯-≤⎪⎪⎪⎪⎭⎫⎝⎛⨯⨯--=⎪⎭⎫⎝⎛≤≤--=⎪⎪⎭⎫ ⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>∑∑∑∑====i i i i i i i i X P X P X P X P 21{||10}0.9n i i P X =<≥∑,|0.9n i X P ⎧⎫⎪⎪⎪<≥⎨⎪⎪⎩∑由中心极限定理得,210.9,0.95Φ-≥Φ≥,所以1.65≥,解得440n =.第四章 测验一、填空题 1.1/4;211k-. 2.221n σε-.提示:利用切比雪夫不等式估计. 3.1/12 4.0. 5.. 6.()x Φ. 二、选择题1.A 2.C 3 D .三、应用题1.解:设X 为1000次中事件A 出现的次数,则(1000,0.5)X B()500,()5000.5250E X D X ==⨯=25039{400600}{|500|100}10.9751000040P X P X <<=-<≥-==2.解:设至少要掷n 次,有题设条件知应有()9.06.04.0≥<<n X P其中∑==nii X nX 1n1, i=1,2,…独立同分布,且()()5.001i i ====X P X P , 5.0)(i =X E ,25.05.05.0)(i =⨯=X D1 用切比雪夫不等式确定()()()2n 1.011.05.06.04.0nn X D X P X P -><-=<<而()nnX D n X n D X D ni ni i ni 25.05.0111)(12212n ===⎪⎪⎭⎫ ⎝⎛=∑∑∑==即要求90.01.025.012≥-n即)次(2501.025.03=≥n 即至少应掷250次才能满足要求; 2用中心极限定理确定()0.40.60.50.50.5210.90555n n X P X P n n n n n n ⎛⎫<<=<<⎛⎫⎛⎫⎛⎫=Φ-Φ-=Φ-≥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭得10.900.9552n ⎛⎫+Φ≥= ⎪ ⎪⎝⎭查标准正态分布表的645.15≥n ,225.8645.15=⨯≥n所以6865.67225.82≈=≥n即在这种情况下至少应掷68次才能满足要求; 3.解:设X 为每天去阅览室上自习的人数; 则有(12000,0.08),()120000.08960,()9600.92883.2X B E X D X =⨯==⨯=1{880}1{880}9608809601{}883.2883.21( 2.692)(2.692)0.996P X P X X P >=-≤--=-≤≈-Φ-=Φ= 2设总座位数为n960960{}0.8,{}0.8883.2883.2X n P X n P --<=≤=由中心极限定理知, 960()0.8883.2n -Φ=,查表得960883.2n -=,986n =,所以应增添986-880=105个座位; 4.解:令n 为该药店需准备的治胃药的瓶数 X 为在这段时间内购买该药的老人数则由题意知(2000,0.3)XB ,()20000.3600,()6000.7E X D X =⨯==⨯{}0.99600600{}0.99420420P X n X n P ≤=--≤=由中心极限定理知, 600()0.99420n -Φ≈,查表得6002.33420n -=,所以648n ≈四、证明题1.证明:设则有,11,()()(1)4nn k k k k k k k M X E X p D X p p ====-≤∑ 11111()()().nknn n k k k k k pM E E X E X n n n n======∑∑∑12221111114()()().4nnnn k k k k k M D D X D X n n n nn=====≤≤∑∑∑ 由切比雪夫不等式得,1222()111{||}4nn nM D M p p p n P n n n εεε++-≤-≤-<,所以当n →+∞时121{||}1n nM p p p P n nε++≤-<≤,即12{||}1n n M p p p P n nε++-<=.2.证:因为12,,,n X X X 相互独立且同分布,所以21X ,22X ,…,2n X 相互独立且同分布,且有相同的数学期望与方差:()22a X E i =,()()()[]()0a -22242242≠=-==σa X E X E X D ii i满足独立分布中心极限定理条件,所以∑=nii X 12近似服从正太分布()22,σn na N,即∑==ni i nX n Y 121近似服从⎥⎦⎤⎢⎣⎡-n a a a N 2242)(, 第五章 数理统计的基本概念总体 样本 统计量 一、选择题 1.D2.A ()9922221192859257.591918iii i XX XX S ==--⨯-⨯====--∑∑3. D二、应用题1. 5,2.551251511()(,,...)(),,...0,i X i i b a f x x x f x a x x b=⎧⎪-==<<⎨⎪⎩∏其它3.0,11,124()3,2341,3x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩抽样分布 一、选择题 1.C 注:1~(1)t n -才是正确的.2.B 根据()()2221~1n S n χσ--得到()221()~1ni i X X n χ=--∑ 3.A 解:()99211~(0,9)9~0,1ii i i XN X N ==⇒∑∑,()92219~9i i Y χ=∑由t()9t 二、应用题 1. (1,1)F n -2. 13~(10,)2X N 23.第五章 测验一、选择题 1. C2.C 注:统计量是指不含有任何未知参数的样本的函数 3D对于答案D,由于~(0,1),1,2,,i X N i n μσ-=,且相互独立,根据2χ分布的定义有2212()~()nii Xx n μσ=-∑4.C 注:1~(0,)X N n~(1)t n -才是正确的5.C 12345{max(,,,,)15}P X X X X X >123451{max(,,,,)15}P X X X X X =-≤ ()15115,,15P X X =-≤≤=5)]5.1([1Φ- 二、填空题 1.μ,2nσ2.1nii Xn=∑()2111n i i X X n =--∑,11i n k i X n =∑,()11nk i i X X n =-∑ 3. ,pqp n4. 252(1)n χ-三、应用题1.(1)21211(,,...)()!!n n knn n ni i f x x x e e k k λλλλ+--====∏∏2. 0.13.(1)t n -第六章 参数估计参数的点估计 一、选择题二、解答题 1.解 1()()∑∑∞=-∞=-===1111}{x x x p p x x X xP X E ∑∞='⎪⎪⎭⎫ ⎝⎛-==11x x q q p q dq dpp1=()p q -=1 用X 代替()X E ,则得p 的矩估计量Xp 1=⎪⎭⎫ ⎝⎛=∑=n i i X n X 112分布参数p 的似然函数()()∏∏=-=-===ni x i n i p p x X P p L i 1111}{()∑-=-=ni i nx np p 11取对数 ()()p n x p n p L n i i -⎪⎭⎫⎝⎛-+=∑=1ln ln ln 1解似然方程 ()011ln 1=⎪⎭⎫⎝⎛---=∑=n i i n x p p n dp p L d得p 的极大似然估计量 Xp 1=⎪⎭⎫⎝⎛=∑=n i i X n X 112.解 1()()()26;32θθθθθ=-==⎰⎰∞+∞-dx x x dx x xf X E ,用∑==ni i X n X 11代替总体均值()X E ,则得参数θ的矩估计量为.2X =θ2()()()⎪⎭⎫ ⎝⎛===∑=n i i X n D X D X D D 11442θ()()()∑====ni iX D nX nD nX D n122444因为()()()()⎰∞+∞-⎪⎭⎫⎝⎛-=-=22222;][θθdx x f x X E XE X D ()⎰=--=θθθθθ022332046 dx x x 所以 ()nn D 520422θθθ==3.解 取()()∑-=+-=112121,,,,n i i i n X X C X X X ϕ由定义()]()⎢⎢⎣⎡⎢⎣⎡=⎥⎦⎤-=∑-=+112121,,,n i i i n X X C E X X X E ϕ()∑-=+=-1121n i i i X X E C][=+-∑-=++1121212n i i i i i X X X X E C ()()()][∑-=++=+-1121212n i i i i i X E X X E X E C()()()()][=+-∑-=++1121212n i iii i X E X E X E XE C ()()()][∑-=+=+-1122212n i ii X E X E X E C()()21122221σσσσ=-=+∑-=n i n C C所以 ()121-=n C参数的区间估计 一、选择题1. C2. A一个总体均值的估计1.解 由于,99.01=-α 故,31,01.0=-=n 又α查t 分布表得()0.0123 5.841,t =又%,03.0%,34.8==s x 故得μ的99%的置信区间为][%428.8%,252.8)%403.0841.534.8()%,403.0841.534.8( =⎢⎣⎡⎥⎦⎤⨯+⨯- 2.解 计算得样本均值16,0171.0,125.22===n s x10.120.10,1.645,0.01,u ασ=== 总体均值μ的90%的置信区间为]22 2.121, 2.129x u x u αα⎡⎤⎡-+=⎢⎣⎢⎣2.151,10.0=-=n α查t 分布表得()0.1215 1.753t =()753.11510.0=t ,总体均值μ的90%的置信区间为((]2211 2.117, 2.133x t n x t n αα⎡⎤⎡--+-=⎢⎣⎢⎣3.解:计算得265,3000,0.05x s α===, n -1=7,查t 分布表得()0.1027 1.895t =,计算得株高绝对降低值μ的95%的置信下限为(2128.298x t n α--=. 4.解 每20.10hm 的平均蓄积量为315m ,以及全林地的总蓄积量375000m ,估计精度为0.9505A =5. ,一个总体方差与频率的估计1.解 由样本资料计算得3750.60=x ,3846.02=s ,6202.0=s ,又由于05.0=α,025.02=α,975.021=-α,151=-n 查2χ分布表得临界值,488.27)15(2025.0=χ,262.6)15(2975.0=χ从而2σ及σ的置信概率为%95的置信区间分别为,与,.2. 解 1由于,14=n ,05.0=α查t 分布表得()0.05213 2.16,t =又67.1,7.8==s x ,故得总体均值μ的95%的置信的区间为((]22117.736,9.664x t n x t n αα⎡⎤⎡--+-=⎢⎣⎢⎣2由于,10.0=α 05.0=2α,,95.021=-α,131=-n 查2χ分布表得()362.2213205.0=χ,()892.513295.0=χ,故得总体方差2σ的90%的置信区间为()()()()][153.6,621.111,112212222=⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-----n S n n S n ααχχ 3. 解,41,95.021,05.02,10.0=-=-==n ααα查2χ分布表得(),488.94205.0=χ ()711.04295.0=χ,又计算得1.21=x ,505.82=s ,故得该地年平均气温方差2σ的90%的置信区间为()()()()][85.47,58.311,112212222=⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-----n s n n s n ααχχ 4. 解 造林成活率的置信区间为[0.8754,0.9369] 两个总体均值差的估计1. 解 由于182,05.021=-+=n n α,查t 分布表得临界值()0.05218 2.101.t =又,8.126,06.14,1021====y x n n ,96.71,93.162221==s s 从而求得21μμ-的置信概率为95%的置信区间为,.即以95%的概率保证每块试验田甲稻种的平均产量比乙稻种的平均产量高7.536kg 到20.064kg.2.解由样本值计算得5,5,27,4.24221=====A B A n n y x σ,82=Bσ,05.0=α,,96.105.0=u 故21μμ-的95%的置信区间为()()]5.76,0.56A B A B x y x y ⎡⎢⎡---+=-⎣⎢⎣3.解由样本值计算得222211.10,875.75,30.11,44.81====B B A A s y s x ,,91=n ,82=n ,05.0=α 查t 分布表得()0.05215 2.131,t =故得B A μμ-的95%的置信区间为4. ,两个总体方差比的估计解 ,025.02,05.0,911===-=-ααB A n n 查F 分布表得()=--1,12B A n n F α()(),03.49,91,1025.02==--F n n F A B α故 2221σσ的95%的置信区间为:()()][⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤----6008.3,2217.01,1·,1,11·222222 n n F s s n n F s s A B BA B AB A αα第六章 测验一、选择题二、填空题 1.12α=2.21ˆ2X θ-= 3. ][588.5,412.4 4. 21;1λλ 5. ()0.351t n k -=三、计算题1.解 因为X ~N (),4,2μ所以(),9492222χχ~S =于是, ⎩⎨⎧=⎭⎬⎫>=>1.0169169}{22σS P a S P 查2χ分布表得,684.14169=a所以.105.26≈a ()(()(12212222 5.58,16.71.A B A B x y t n n x y t n n αα⎡--+-⎢⎣⎡⎤⎤-++-=-⎢⎥⎥⎦⎦⎣2.解 1()()λλλ-==∏∏==ex x f x x x f n i ni ix in i1121!;,,, ∏=-∑==ni i x n x eni i 1!·1λλ;2()()()λλλnn S E nX D X E n 1,,2-===. 3.解 因为X ~N()22,30 ,于是()(),)21(,30)162(,3022 =N ~N X 从而()1,02130 ~N X U -=,故 }{⎩⎨⎧⎭⎬⎫-<-<-=<<2/130312/1302/130293129X P X P()()()9545.0197725.0212222221302=-⨯=⎩⎨⎧-Φ=-Φ-Φ=⎭⎬⎫<-<-=X P4.解 1178320,314022====b x σμ ;219813322==s σ5.解 设施肥与不施肥的收获量分别为总体,,Y X 且X ~N (),,21σμY ~N)(~22σμ,N Y ,计算可得,1738.1,9227.0,7.9,4.11222221====s s y x 又,05.0,162,10,82121==-+==αn n n n 查t 分布表得临界值()0.05216 2.12,t =从而计算均值差21μμ-的95%的置信区间为()()][.7773.2,6227.016810181738.199227.0712.27.94.11,16810181738.199227.0712.27.94.112222=⎥⎦⎤⨯⨯⨯+⨯+-⎢⎣⎡⨯⨯⨯+⨯--故在置信概率下,每201亩水稻平均收获量施肥比不施肥的增产到斤.第七章 假设检验假设检验概念和原理 一、填空题:1、概率很小的事件在一次试验抽样中是不至于发生的;2、0H 为真,通过一次抽样拒绝0H 所犯错误; 0H 为假,通过一次抽样接受0H 所犯错误; 二、选择题 1、B ;2、D;三、应用计算题1、解:{}1232|1258P x x x p α=++≥=={}1232|14364P x x x pβ=++<==2、解:1、0.62c ==2、因c u α= 故拒绝原假设00:0H μμ==;3、{}1.15P x P α⎫=≥=≥[]3.6412(3.64)10.0003P ⎫⎪=≥=-Φ-=⎬⎪⎭一个总体参数的假设检验 一、填空题:1、X U =12(,,):1n X x x u α⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭;3、1(,,):n R x x u p α⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭二、选择题1.A 3. B 三、应用计算题1、1若根据以往资料已知σ=14 ;2σ未知; 解:101:500:500H H μμ=↔≠ 0.452x u ===因 20.452 1.96u u α=<= 故接受原假设0H . 从而包装机工作正常; 2.先检验标准差 0010:=15:H H σσσσ≥↔< 22222(1)(101)1610.2415n S χσ--=== 22110.24 3.325(1)n αχχ-=<=- 故拒绝原假设00:=15H σσ≥其次检验01:500:500H H μμ=↔≠ 0.395x T ===因2T 0.395 2.262(1)t n α=<=- 故接受原假设0:500H μ= 所以,综合上述两个检验可知包装机工作正常;2、解:0010:=0.3:=0.3H H σσσσ≤↔<22222(1)(251)(0.36)0.3456(0.3)n S χσ--=== 220.345636.415(1)n αχχ=<=- 故接受原假设;标准差没有明显增大;3、解:0010:0.9:0.9H p p H p p ≤=↔>= 4400.88500W ==1.49U ===-0.050.011.645, 2.33u u ==0.05 1.645U u <= 0.01 2.33U u <= 故两个水平下均接受原假设;两个总体参数的假设检验 一、填空题 1、等方差; 2、22122212S S F σσ=服从12(1,1)F n n --.分布;3、U =, 其中112212n W n W W n n +=+;二、选择题 1、 B 2. A 三、应用计算题1、解:012112::H H μμμμ=↔≠X YT =0.206==-因20.206 2.131(15)T t α=<= 故接受原假设;2、解:检验012112::H H μμμμ=↔≠1.5X Y U ==-因21.5 1.96U u α=<= 故接受原假设即认为两种工艺下细纱强力无显著差异; 3、解:012112::H p p H p p ≤↔>1202000.1W == 2152000.75W ==112212350.07500nW n W W n n +===+5.97U ==因 5.97 1.645U u α=>= 故拒绝原假设,即认为乙厂产品的合格率显著低于甲厂; 非参数假设检验 一、填空题 1、1m k --2、由抽样检验某种科学科学理论假设是否相符合;3、(1)(1)r c --; 二、选择题 1. A ;2. C 三、应用计算题1、解:0:H 该盒中的白球与黑球球的个数相等;记总体X 表示首次出现白球时所需摸球次数,则X 服从几何分布{}1(1)k P X k p p -==-,1,2,k=其中p 表示从盒中任摸一球为白球的概率;若何种黑球白球个数相等,则此时12p = 从而{}1112p P X ===, {}2214p P X === ,{}3318p P X === {}44116p P X ===,{}552116kk P X +∞-=≥==∑2521() 3.2i i i i v np np χ=-=∑2(4)9.488αχ= 223.29.488(4)αχχ<= 则接受原假设;2、解:0:H X 的概率密度为()2f x x = (01)x <≤{}100.250.0625p P X =<≤=,{}20.250.50.1875p P X =<≤={}30.50.750.3125p P X =<≤=,{}40.7510.4375p P X =<≤= 2421()64 1.82935i i i i v np np χ=-==∑ 2(3)7.815αχ= 因221.8297.815(3)αχχ<=故接受原假设即认为X 的概率密度为()2f x x = (01)x <≤; 3、解:0:H 公民对这项提案的态度与性别相互独立223211()2173.7ij ij i j ijn e e χ==-==∑∑因222173.7 5.991(2)αχχ>= 故拒绝0H ,即认为公民对这项提案的态度与性别不独立;4、略;第七章 测验一、填空题每小题4分,共20分1、12(,,):2n X R x x u α⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭2、X T =3、222(1)n S χσ-=;2χ;4、2122S F S =;(){}222211221212,,:,n R x x S S F S S F αα-=≥≤或;5、 =14α; 916β=.二、选择题每空4分,共20分1、A ;2、C ;3、B ;4、C ;5、A三、应用题共60分1、解:检验01:70:70H H μμ=↔≠ 1.4x T ===因2T 1.4 2.02(1)t n α=<=- 故接受原假设0:70H μ= 2、解: 001:=8:8H H σσσ=↔≠ 2220(1)(101)75.73310.6564n S χσ--⨯===221210.65 2.7(1)n αχχ-=>=- 故拒绝原假设00:=8H σσ=3、解:先检验2222012112::H H σσσσ=↔≠2122 3.3251.492.225S F S ==2212S S > 查表的212((1),(1)) 5.35F n n α--=因2121.49 5.35((1),(1))F F n n α=<=--故可认为方差相等; 其次检验012112::H H μμμμ≤↔>X YT =3.52=-因 3.52 2.552(18)T t α=-<= 故接受原假设012:H μμ≤ 4、解:0010:0.2:H p p H p p ≤=↔>,3.5U ===因 3.5 1.645U u α=>= 故拒绝原假设; 5、解:(1)1.026α= (2)0.0132β=第八章 方差分析与回归分析方差分析的概念与基本思想 一、名词解释1. 因素:影响试验指标变化的原因;2. 水平:因素所设置的不同等级3. 单因素试验:在试验中仅考察一个因素的试验4. 多因素试验:在试验中考察两个或两个以上因素的试验,这类试验一般可用因素的数目来命名5. 处理:一个试验中所考察因素不同水平的组合6. 处理效应组间误差:试验中所考虑且加以控制的因素不同水平对试验指标的影响7. 随机误差:试验中为考虑或未控制的随机因素所造成的试验指标的变异 二、问答题1. 单因素试验中,因素的每一个水平即为一个处理,试验有几个水平,就相应地有几个处理;多因素试验中,处理的数目是各因素水平的乘积;例如,三因素试验中,A 因素有a 个水平,B 因素有b 个水平,C 因素有c 个水平,则处理数为abc 个;2. 方差分析的基本思想:将测量数据的总变异按照变异来源分解为处理效应和随机误差,利用数理统计的相关原理建立适当的统计量,在一定显著性水平下比较处理效应和随机误差,从而检验处理效应是否显著; 单因素方差分析 一、填空题1. 平方根变换,角度弧度反正弦变换,对数变换;2. 最小显著差数法,最小显著极差法;新复极差法,q 法;3. 总平方和,随机误差平方和,组间平方和; 二、计算题 1.2.解:112229i n r i j i j T X ====∑∑,211199327in rij i j X ===∑∑, ()222112229199327589.3625in rT ij i j T SS X n ===-=-=∑∑()()222122291200704219024174724495.36525ri A i iT T SS n n ==-=+++-=∑589.36495.3694e T A SS SS SS =-=-=方差分析表如下:因为0.01=26.35 4.43(4,20)F F >=,所以,当显著性水平=0.01α,5个温度对产量的影响有显著差异;3.该题属于单因素4水平等重复试验的方差分析;其方差分析表如下:多重比较省略;4.母猪对仔猪体重存在极显著的影响作用; 双因素方差分析1.F 检验结果表明,品种和室温对家兔血糖值的影响均达极显著水平; 2.; 回归分析的基本概念1.如何用数学语言描述相关关系相关关系就是一个或一些变量X 与另一个或一些变量Y 之间有密切关系,但还没有确切到由其中一个可以唯一确定另一个的程度,其数学语言描述可为:如果给定变量X 任意一个具体取值0x ,存在变量Y 的一个概率分布与其对应,并且该概率分布随0x 的不同而不同;同时给定变量Y 任意一个具体取值0y ,存在变量X 的一个概率分布与其对应,并且该概率分布随0y 的不同而不同,则称X 与Y 之间具有相关关系;相关关系是两个随机变量之间的平行相依关系;2.什么是回归关系回归关系与相关关系有何联系回归关系是指在相关关系中,如果X 容易测定或可人为控制,就将X 看成为非随机变量,并记为x 称为预报因子,这时x 与Y 称为预报量之间的关系称为回归关系; 回归关系是相关关系的简化,是变量之间的因果关系;一元线性回归模型的建立与检验 一、填空题 1.()211ˆ2n i i i Y y n =--∑; 2.01ˆˆy x ββ=- , ()()()1121ˆ=ni i xy i n xxi i x x Y Y L L x x β==--=-∑∑; 二、应用题1. 解:21111211113755.68,11xx i i i i L x x ==⎛⎫=-= ⎪⎝⎭∑∑11111111118708.58,11xy i i i i i i i L x y x y ===⎛⎫⎛⎫=-= ⎪⎪⎝⎭⎝⎭∑∑∑2111121116050.58311yy i i i i L y y ==⎛⎫=-= ⎪⎝⎭∑∑1先求回归方程,由于1=0.633,xy xxL L β=01=-38.97,y x ββ-=所以Y 关于x 的回归方程为ˆy0.633-38.97,x = 2用相关系数检验法计算样本相关系数00.955r ==因为()0.0190.7348,r =而()00.019,r r >故可认为Y 与x 的线性相关关系是极显著的 3把0200x =代入回归直线方程,得ˆ0.633200-38.9787.63y=⨯=, 2. 略; 3. 证明略;预测、控制与残差分析(1) 解:211112211113675051013104.55,1111xx i i i i L x x ==⎛⎫=-=-⨯= ⎪⎝⎭∑∑11111111111139105102143988.18,1111xy i i i i i i i L x y x y ===⎛⎫⎛⎫=-=-⨯⨯= ⎪⎪⎝⎭⎝⎭∑∑∑2111122111154222141258.731111yy i i i i L y y ==⎛⎫=-=-⨯= ⎪⎝⎭∑∑1先求回归方程,由于13988.18=0.304,13104.55xy xxL L β==01214510=0.304 5.36,1111y x ββ-=-⨯= 所以Y 关于x 的回归方程为ˆy5.360.304,x =+ 在检验,用相关系数检验法计算样本相关系数00.982r ===取=0.01α,查相关系数检验表得,()0.0190.7348,r =由于()00.019,r r >故可认为Y 与x 的线性相关关系是极显著的;2把075x =代入回归直线方程,得ˆ 5.360.3047528.16y=+⨯=, ˆ 2.301σ==,0.05(9) 2.626t =, 故当075x s =时,腐蚀深度Y 的95%预测区间为[]28.16 2.262 2.301 1.074,28.16 2.262 2.301 1.074,-⨯⨯+⨯⨯即 []22.57.7,335. 3要使腐蚀深度在1020m μ之间,即1210,20,y y Y ==的取值在区间[]1020,内时,则由方程组10112012ˆ2ˆ2,y x y x ββσββσ=+-⎧⎨=++⎩ 解得()()()()1101220111ˆ210 5.362 2.30130.40,0.30411ˆ220 5.362 2.30133.02.0.304x y x y βσββσβ=-+=⨯-+⨯==--=⨯--⨯=可线性化的一元非线性回归 一、填空题011ln ,ln ,ln ,Y Y x x ββββ''''====;00111ln ,,ln ,Y Y x xββββ''''====;ln ,lg Y Y x x ''==;二、解答题解:做散点图如右图;由于Y 与x 散点图呈指数曲线形状,于是有•,x Y e βαε=()2ln 0,N εσ两边取对数,令ln ,ln ,,,ln Y Y a b x x αβεε'''=====模型转化为线性模型()2,0,Y a bx N εεσ''''=++对所给数据进行形影变换得到10ˆˆ0.29768,8.164585ββ=-= 所以Y '对x '的样本回归方程为 8.164585-0.29768Y x ''=用t 检验法检验'Y 对'x 的回归效果是否显著,取显著性水平为,可得()0.02532.36938 2.3060t t ==>=即线性回归效果是显著的;代回原变量,得曲线回归方程()0.29768ˆˆexp 3514.26x yy e -'== 第八章 测验一、选择题1、A ;2、C ;3、B ;4、D 二、填空题1. 正态 ,独立, 等方差 ;2. ()201,~0,Y x N ββεεσ=++;3. ˆr β=三、解答题 1.提示与解答:方差分析结果表明,农药的杀虫效果是极显著的;2. 提示与解答:一元线性回归方程建立、检验、应用. 销售费用Y 与销售收入x 之间的经验回归方程为ˆ 3.140.108Yx =+ 销售费用Y 与销售收入x 之间的线性回归关系是显著的;。

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案1. 引言概率论与数理统计是统计学的基础课程之一,通过学习这门课程,我们可以理解和运用概率和统计的概念和方法,从而分析和解决实际问题。

本文档将提供《概率论与数理统计》课后习题的详细答案。

2. 习题答案第一章:概率论的基本概念和基本原理1.1 选择题a.概率是以【答案】】D.形式结果给出的。

b.从一副有 52 张牌的扑克牌中,任意取一张牌,其点数是 7 的概率是【答案】】C.$\\frac{4}{52}$。

1.2 计算题a.设 A, B 是两个事件,已知 P(A) = 0.5,P(B) = 0.4,且P(A ∪ B) = 0.7,求P(A ∩ B)。

【解答】根据概率的加法定理可知,P(P∪P)=P(P)+P(P)−P(P∩P)代入已知数据,得到:0.7=0.5+0.4−P(P∩P)解上式得到P(A ∩ B) = 0.2。

所以,P(A ∩ B) = 【答案】0.2。

b.有两个相互独立的事件 A 和 B,且 P(A) = 0.3,P(A∪ B) = 0.5,求 P(B)。

【解答】由于事件 A 和 B 是相互独立的,所以根据概率的乘法定理可知,P(P∪P)=P(P)×P(P)代入已知数据,得到:0.5=0.3×P(P)解上式得到 P(B) = 0.5 ÷ 0.3 = 1.67。

所以,P(B) = 【答案】1.67。

第二章:随机变量及其分布2.1 选择题a.设 X 是一个随机变量,其概率密度函数为:$$ f(x) = \\begin{cases} \\frac{1}{2}x & 0 < x < 2 \\\\ 0 &其他 \\end{cases} $$则 P(X < 1) = 【答案】】C. 0.25。

b.对 X 的分布函数 F(x) = 1 - e^{-x}, 其中x ≥ 0,下列说法中错误的是【答案】】B. F(x) 是一个概率密度函数。

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案

习题答案第1章 三、解答题1.设P (AB ) = 0,则下列说法哪些是正确的? (1) A 和B 不相容; (2) A 和B 相容; (3) AB 是不可能事件; (4) AB 不一定是不可能事件; (5) P (A ) = 0或P (B ) = 0 (6) P (A – B ) = P (A ) 解:(4) (6)正确.2.设A ,B 是两事件,且P (A ) = 0.6,P (B ) = 0.7,问: (1) 在什么条件下P (AB )取到最大值,最大值是多少? (2) 在什么条件下P (AB )取到最小值,最小值是多少? 解:因为)()()()(B A P B P A P AB P ,又因为)()(B A P B P 即.0)()( B A P B P 所以(1) 当)()(B A P B P 时P (AB )取到最大值,最大值是)()(A P AB P =0.6.(2)1)( B A P 时P (AB )取到最小值,最小值是P (AB )=0.6+0.7-1=0.3.3.已知事件A ,B 满足)()(B A P AB P ,记P (A ) = p ,试求P (B ).解:因为)()(B A P AB P ,即)()()(1)(1)()(AB P B P A P B A P B A P AB P ,所以.1)(1)(p A P B P4.已知P (A ) = 0.7,P (A – B ) = 0.3,试求)(AB P .解:因为P (A – B ) = 0.3,所以P (A )– P(AB ) = 0.3, P(AB ) = P (A )– 0.3, 又因为P (A ) = 0.7,所以P(AB ) =0.7– 0.3=0.4,6.0)(1)( AB P AB P .5. 从5双不同的鞋子种任取4只,问这4只鞋子中至少有两只配成一双的概率是多少? 解:显然总取法有410C n种,以下求至少有两只配成一双的取法k : 法一:分两种情况考虑:15C k24C 212)(C +25C 其中:2122415)(C C C 为恰有1双配对的方法数法二:分两种情况考虑:!2161815C C C k +25C其中:!2161815C C C为恰有1双配对的方法数法三:分两种情况考虑:)(142815C C C k +25C其中:)(142815C C C 为恰有1双配对的方法数法四:先满足有1双配对再除去重复部分:2815C C k -25C法五:考虑对立事件:410C k -45C 412)(C其中:45C 412)(C 为没有一双配对的方法数法六:考虑对立事件:!4141618110410C C C C C k其中:!4141618110C C C C 为没有一双配对的方法数所求概率为.2113410C k p 6.在房间里有10个人,分别佩戴从1号到10号的纪念章,任取3人记录其纪念章的号码.求: (1) 求最小号码为5的概率; (2) 求最大号码为5的概率.解:(1) 法一:12131025 C C p ,法二:1213102513 A A C p (2) 法二:20131024 C C p ,法二:2013102413 A A C p 7.将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:设M 1, M 2, M 3表示杯子中球的最大个数分别为1,2,3的事件,则834)(3341 A M P , 1694)(324232 A C M P , 1614)(3143C M P8.设5个产品中有3个合格品,2个不合格品,从中不返回地任取2个,求取出的2个中全是合格品,仅有一个合格品和没有合格品的概率各为多少?解:设M 2, M 1, M 0分别事件表示取出的2个球全是合格品,仅有一个合格品和没有合格品,则 3.0)(25232 C C M P ,6.0)(2512131 C C C M P ,1.0)(25221 C C M P9.口袋中有5个白球,3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:设M 1=“取到两个球颜色相同”,M 1=“取到两个球均为白球”,M 2=“取到两个球均为黑球”,则2121M M M M M 且.所以.2813C C C C )()()()(282328252121 M P M P M M P M P10. 若在区间(0,1)内任取两个数,求事件“两数之和小于6/5”的概率.解:这是一个几何概型问题.以x 和y 表示任取两个数,在平面上建立xOy 直角坐标系,如图. 任取两个数的所有结果构成样本空间 = {(x ,y ):0 x ,y 1} 事件A =“两数之和小于6/5”= {(x ,y ) : x + y 6/5} 因此2517154211)(2的面积的面积A A P . 图?11.随机地向半圆220x ax y(a 为常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,求原点和该点的连线与x 轴的夹角小于4的概率. 解:这是一个几何概型问题.以x 和y 表示随机地向半圆内掷一点的坐标, 表示原点和该点的连线与x 轴的夹角,在平面上建立xOy 直角坐标系,如图.随机地向半圆内掷一点的所有结果构成样本空间={(x ,y ):220,20x ax y a x}事件A =“原点和该点的连线与x 轴的夹角小于4” ={(x ,y ):40,20,202x ax y a x }因此211214121)(222 a aa A A P 的面积的面积.12.已知21)(,31)(,41)( B A P A B P A P ,求)(B A P . 解:,1213141)()()( A B P A P AB P ,6121121)|()()(B A P AB P B P.311216141)()()()(AB P B P A P B A P 13.设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是多少?解:题中要求的“已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率”应理解为求“已知所取两件产品中至少有一件是不合格品,则两件均为不合格品的概率”。

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案

习题一1.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C(1)A发生,B,C都不发生;(2)A与B发生,C(3)A,B,C都发生;(4)A,B,C(5)A,B,C都不发生;(6)A,B,C(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)A BC(2)AB C(3)ABC(4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC(5) ABC=A B C(6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3..4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB).【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)]=1-[0.7-0.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,(1)在什么条件下P(AB(2)在什么条件下P(AB【解】(1)当AB=A时,P(AB)取到最大值为0.6.(2)当A∪B=Ω时,P(AB)取到最小值为0.3.6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,P(AC)=1/12,求A,B,C至少有一事件发生的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC )=14+14+13-112=347.52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C8.学习小组考虑生日问题: (1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)59..见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率. (1) n 件是同时取出的; (2)n (3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C m n m nM N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P nN 种,n 次抽取中有m次为正品的组合数为C m n 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P m M 种,从N -M 件次品中取n -m 件的排列数为P n mN M --种,故P (A )=C P PP m m n mn M N M n N--由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n mM N Mn N--可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n次抽取中有m 次为正品的组合数为C m n 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故()C ()/m m n mn n P A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为()C 1m n mm n M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11..见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13.7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=14.0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=15.3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1) 223151115()()22232p C == (2) 1342111C ()()22245/325p ==16.0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则33312123330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.32076175双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18.0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19.3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20.5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯21.9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图题22图【解】设两人到达时刻为x,y,则0≤x,y≤60.事件“一人要等另一人半小时以上”等价于|x-y|>30.如图阴影部分所示.22301604P==22.0,1)中随机地取两个数,求:(1)两个数之和小于65的概率;(2)两个数之积小于14的概率.【解】设两数为x,y,则0<x,y<1.(1)x+y<65.11441725510.68125p=-==(2) xy=<14.1111244111d d ln242xp x y⎛⎫=-=+⎪⎝⎭⎰⎰23.P(A)=0.3,P(B)=0.4,P(A B)=0.5,求P(B|A∪B)【解】()()()()()()()()P AB P A P ABP B A BP A B P A P B P AB-==+-0.70.510.70.60.54-==+-24.15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有3()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =∙+∙+∙+∙0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯27.【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知11112()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28.工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.960.980.9980.960.980.040.05⨯==⨯+⨯29..统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故} 则由贝叶斯公式得()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯30.过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率. 【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯= 31.0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?【解】设必须进行n 次独立射击.1(0.8)0.9n -≥即为 (0.8)0.1n ≤ 故 n ≥11 至少必须进行11次独立射击. 32.P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B =亦即 ()()()()P AB P B P AB P B =()[1()][()()]()P AB P B P A P AB P B -=-因此 ()()()P AB P A P B = 故A 与B 相互独立. 33.15,13,14,求将此密码破译出的概率.【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯= 34.0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7 =0.45835.25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求: (1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2) 新药完全无效,但通过试验被认为有效的概率. 【解】(1) 310110C(0.35)(0.65)0.5138k k k k p -===∑(2) 10102104C(0.25)(0.75)0.2241kk k k p -===∑36.6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”; (3) C =“恰有两位乘客在同一层离开”; (4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1) 2466C 9()10P A =,也可由6重贝努里模型:224619()C ()()1010P A =(2) 6个人在十层中任意六层离开,故6106P ()10P B =(3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++(4) D=B .故6106P ()1()110P D P B =-=-37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率: (1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率; (2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率. 【解】 (1) 111p n =-(2) 23!(3)!,3(1)!n p n n -=>-(3) 12(1)!13!(2)!;,3!!n n p p n n n n --''===≥ 38.[0,a ]【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由0<x <a ,0<y <a ,0<a -x -y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y ax y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣ 如图阴影部分所示,故所求概率为14p =. 39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】 11P 1,1,2,,P k n k n p k n n--=== 40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3). 【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====, 24968()0.096,()0.00810001000P A P A ====.41.对任意的随机事件A ,B ,CP (AB )+P (AC )-P (BC )≤P (A). 【证】 ()[()]()P A P A BC P AB AC ≥=()()()P AB P AC P ABC =+-()()()P AB P AC P BC ≥+- 42.3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率.【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A ==而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A ==因此 213319()1()()181616P A P A P A =--=--= 或 12143323C C C 9()416P A == 43.2n 次,求出现正面次数多于反面次数的概率.【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -=由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n nn P C C =故 2211()[1C ]22nn n P A =-44.n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5(2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =-45.n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数. 显然有>正正(甲乙)=(甲正≤乙正)=(n +1-甲反≤n -乙反)=(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=1246.Sure -thing ):若P (A |C )≥P (B |C ),P (A |)≥P (B |),则P (A )≥P (B ).【证】由P (A |C )≥P (B |C ),得()(),()()P AC P BC P C P C ≥即有 ()()P AC P BC ≥ 同理由 (|)(|),P A C P B C ≥ 得 ()(),P AC P BC ≥故 ()()()()()()P A P AC P AC P BC P BC P B =+≥+= 47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率.【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(1)2()(1)1()(1)n k ki k ki j ki i i n P A n nP A A n n P A A A n--==-=--=-其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个. 显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk ki ni ki j n i j nn kn i i i n i i i nn nn i ni S P A n n n S P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C (1)k kn n kn n n n nnn--=---++--故所求概率为121121()1C (1)C (1)nk i i n ni P A n n=-=--+--+111(1)C (1)n n kn n n+----48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()n n ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少? 【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品} 由题知 (),()m nP B P B m n m n==++ 1(|),(|)12r P A B P A B ==则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+ 121212r rr m m m n m n m nm n m n+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N 根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案概率论与数理统计课后习题答案概率论与数理统计是一门重要的数学学科,它研究的是随机事件的规律性和统计现象的规律性。

在学习这门课程时,课后习题是巩固知识和提高能力的重要方式。

下面将给出一些概率论与数理统计课后习题的答案,希望对大家的学习有所帮助。

1. 掷一枚硬币,出现正面的概率是多少?答:硬币只有两面,正面和反面。

所以出现正面的概率是1/2。

2. 从一副扑克牌中随机抽取一张牌,抽到红桃的概率是多少?答:一副扑克牌共有52张牌,其中有26张红桃牌。

所以抽到红桃的概率是26/52,即1/2。

3. 一枚骰子有六个面,每个面上的数字分别是1、2、3、4、5、6。

投掷一次,出现奇数的概率是多少?答:一共有六个可能的结果,其中有三个是奇数(1、3、5)。

所以出现奇数的概率是3/6,即1/2。

4. 一家超市每天卖出的苹果数量服从正态分布,均值为100,标准差为10。

如果随机选取一天,卖出的苹果数量大于110的概率是多少?答:根据正态分布的性质,若随机变量X服从正态分布N(μ, σ^2),则P(X > a) = 1 - P(X ≤ a),其中a为某个实数。

根据题目给出的均值和标准差,可以计算出标准化后的分数为(110-100)/10=1。

查正态分布表可知,标准正态分布Z的分位数为0.8413。

所以P(X > 110) = 1 - P(X ≤ 110) = 1 - 0.8413 = 0.1587。

5. 一批产品的质量服从正态分布,均值为μ,标准差为σ。

如果从中随机抽取一件产品,其质量在μ-σ和μ+σ之间的概率是多少?答:根据正态分布的性质,P(μ-σ < X < μ+σ) = P((X-μ)/σ < (μ+σ-μ)/σ < (X-μ)/σ) = P(-1 < Z < 1),其中Z为标准正态分布的随机变量。

查正态分布表可知,P(-1 < Z < 1) = 0.6826。

概率论与数理统计学1至7章课后答案

概率论与数理统计学1至7章课后答案

概率论与数理统计学1至7章课后答案(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第二章作业题解:掷一颗匀称的骰子两次, 以X 表示前后两次出现的点数之和, 求X 的概率分布, 并验证其满足 式.解:由表格知并且,361)12()2(====X P X P ;362)11()3(====X P X P ;363)10()4(====X P X P ;364)9()5(====X P X P ;365)8()6(====X P X P ;366)7(==X P 。

即 36|7|6)(k k X P --== (k =2,3,4,5,6,7,8,9,10,11,12)设离散型随机变量的概率分布为,2,1,}{ ===-k ae k X P k 试确定常数a . 解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---e ae 。

故 1-=e a甲、乙两人投篮时, 命中率分别为 和 , 今甲、乙各投篮两次, 求下列事件的概率:(1) 两人投中的次数相同; (2) 甲比乙投中的次数多. 解:分别用)2,1(,=i B A i i 表示甲乙第一、二次投中,则12121212()()0.7,()()0.3,()()0.4,()()0.6,P A P A P A P A P B P B P B P B ======== 两人两次都未投中的概率为:0324.06.06.03.03.0)(2121=⨯⨯⨯=B B A A P , 两人各投中一次的概率为:2016.06.04.03.07.04)()()()(1221211212212121=⨯⨯⨯⨯=+++B B A A P B B A A P B B A A P B B A A P 两人各投中两次的概率为:0784.0)(2121=B B A A P 。

所以: (1)两人投中次数相同的概率为3124.00784.02016.00324.0=++ (2) 甲比乙投中的次数多的概率为:12121221121212121212()()()()()20.490.40.60.490.3620.210.360.5628P A A B B P A A B B P A A B B P A A B B P A A B B ++++=⨯⨯⨯+⨯+⨯⨯= 设离散型随机变量X 的概率分布为5,4,3,2,1,15}{===k kk X P ,求)31()1(≤≤X P )5.25.0()2(<<X P 解:(1)52153152151)31(=++=≤≤X P (2) )2()1()5.25.0(=+==<<X P X P X P 51152151=+= 设离散型随机变量X 的概率分布为,,3,2,1,21}{ ===k k X P k ,求 };6,4,2{)1( =X P }3{)2(≥X P解:31)21211(21212121}6,4,2{)1(422642=++⨯=++== X P41}2{}1{1}3{)2(==-=-=≥X P X P X P设事件A 在每次试验中发生的概率均为 , 当A 发生3 次或3 次以上时, 指示灯发出信号, 求下列事件的概率:(1) 进行4 次独立试验, 指示灯发出信号; (2) 进行5 次独立试验, 指示灯发出信号.解:(1))4()3()3(=+==≥X P X P X P1792.04.06.04.04334=+⨯=C(2) )5()4()3()3(=+=+==≥X P X P X P X P31744.04.06.04.06.04.054452335=+⨯+⨯=C C .某城市在长度为t (单位:小时) 的时间间隔内发生火灾的次数X 服从参数为 的泊松分布, 且与时间间隔的起点无关, 求下列事件的概率: (1) 某天中午12 时至下午15 时未发生火灾;(2) 某天中午12 时至下午16 时至少发生两次火灾. 解:(1) ()!kP X k e k λλ-==,由题意,0.53 1.5,0k λ=⨯==,所求事件的概率为1.5e -.(2) 0(2)110!1!P X e e e e λλλλλλλ----≥=--=--, 由题意,0.54 1.5λ=⨯=,所求事件的概率为213e --.为保证设备的正常运行, 必须配备一定数量的设备维修人员. 现有同类设备180 台, 且各台设备工作相互独立, 任一时刻发生故障的概率都是,假设一台设备的故障由一人进行修理,问至少应配备多少名修理人员, 才能保证设备发生故障后能得到及时修理的概率不小于解:设应配备m 名设备维修人员。

概率论与数理统计第四版课后习题答案

概率论与数理统计第四版课后习题答案

概率论与数理统计第四版课后习题答案概率论与数理统计习题答案第四版盛骤 (浙江大学)浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。

(1)A 发生,B 与C 不发生。

表示为: CB A 或A - (AB+AC )或A -(B ∪C ) (2)A ,B 都发生,而C 不发生。

表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生,表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ??(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生相当于C A C B B A ,,中至少有一个发生。

故表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生。

相当于:C B A ,,中至少有一个发生。

故表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。

相当于:AB ,BC ,AC 中至少有一个发生。

(完整版)概率论与数理统计课后习题答案

(完整版)概率论与数理统计课后习题答案

·1·习 题 一1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’;(4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’;(5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。

解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =,135{,,}A e e e =。

(2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。

(3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S =(2,3,5),(2,4,5),(1,3,5)}{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A =(4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =---------(,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒;{(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。

概率论与数理统计习题解答

概率论与数理统计习题解答

概率论与数理统计习题解答第一章 随机事件及其概率1. 写出下列随机试验的样本空间:(1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标;(3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数;(4)测量一汽车通过给定点的速度. 解 所求的样本空间如下(1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x, y)| x 2+y 2<1}(3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0}2. 设A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示下列事件: (1)A 发生,B 和C 不发生; (2)A 与B 都发生,而C 不发生; (3)A 、B 、C 都发生; (4)A 、B 、C 都不发生; (5)A 、B 、C 不都发生; (6)A 、B 、C 至少有一个发生; (7)A 、B 、C 不多于一个发生; (8)A 、B 、C 至少有两个发生. 解 所求的事件表示如下(1)(2)(3)(4)(5)(6)(7)(8)A B C A B C A B CA B CA B C A B CA B B C A CA BB CC A3.在某小学的学生中任选一名,若事件A 表示被选学生是男生,事件B 表示该生是三年级学生,事件C 表示该学生是运动员,则 (1)事件AB 表示什么?(2)在什么条件下ABC =C 成立?(3)在什么条件下关系式C B ⊂是正确的? (4)在什么条件下A B =成立?(2)当全校运动员都是三年级男生时,ABC =C 成立.(3)当全校运动员都是三年级学生时,关系式C B ⊂是正确的.(4)当全校女生都在三年级,并且三年级学生都是女生时,A B =成立. 4.设P (A )=0.7,P (A -B )=0.3,试求()P AB 解 由于 A -B = A – AB , P (A )=0.7 所以P (A -B ) = P (A -AB ) = P (A ) -P (AB ) = 0.3,所以 P (AB )=0.4, 故()P AB= 1-0.4 = 0.6.5. 对事件A 、B 和C ,已知P(A) = P(B)=P(C)=14,P(AB) = P(CB) = 0, P(AC)= 18求A 、B 、C 中至少有一个发生的概率. 解 由于,()0,⊂=ABC AB P AB 故P(ABC) = 0则P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC)1111500044488=++---+=6. 设盒中有α只红球和b 只白球,现从中随机地取出两只球,试求下列事件的概率: A ={两球颜色相同}, B ={两球颜色不同}.解 由题意,基本事件总数为2a b A +,有利于A 的事件数为22a b A A +,有利于B 的事件数为1111112a b b a a b A A A A A A +=, 则2211222()()a b a ba ba bA A A AP A P B A A +++==7. 若10件产品中有件正品,3件次品,(1)不放回地每次从中任取一件,共取三次,求取到三件次品的概率; (2)每次从中任取一件,有放回地取三次,求取到三次次品的概率. 解 (1)设A={取得三件次品} 则 333333101016()()120720或者====C A P A P A C A .(2)设B={取到三个次品}, 则33327()101000==P A .8. 某旅行社100名导游中有43人会讲英语,35人会讲日语,32人会讲日语和英语,9人会讲法语、英语和日语,且每人至少会讲英、日、法三种语言中的一种,求: (1)此人会讲英语和日语,但不会讲法语的概率; (2)此人只会讲法语的概率.解 设 A={此人会讲英语}, B={此人会讲日语}, C={此人会讲法语} 根据题意, 可得(1) 32923()()()100100100=-=-=P ABC P AB P ABC(2)()()()P ABC P AB P ABC =-()01()P A B P A B =+-=-+1()()()P A P B P AB =--+433532541100100100100=--+=(1) 取到的都是白子的概率;(2) 取到两颗白子,一颗黑子的概率; (3) 取到三颗棋子中至少有一颗黑子的概率; (4) 取到三颗棋子颜色相同的概率. 解(1) 设A={取到的都是白子} 则 3831214()0.25555===C P A C .(2) 设B={取到两颗白子, 一颗黑子}2184312()0.509==C C P B C .(3) 设C={取三颗子中至少的一颗黑子} ()1()0.7=-=P C P A . (4) 设D={取到三颗子颜色相同}3384312()0.273+==C C P D C .10. (1)500人中,至少有一个的生日是7月1日的概率是多少(1年按365日计算)?(2)6个人中,恰好有个人的生日在同一个月的概率是多少? 解(1) 设A = {至少有一个人生日在7月1日}, 则 500500364()1()10.746365=-=-=P A P A (2)设所求的概率为P(B)412612611()0.007312⨯⨯==C C P B11. 将C ,C ,E ,E ,I ,N ,S 7个字母随意排成一行,试求恰好排成SCIENCE 的概率p.解 由于两个C ,两个E 共有2222A A 种排法,而基本事件总数为77A ,因此有 2222770.000794A Ap A ==12. 从5副不同的手套中任取款4只,求这4只都不配对的概率.解 要4只都不配对,我们先取出4双,再从每一双中任取一只,共有⋅4452C 中取法.设A={4只手套都不配对},则有⋅==445410280()210C P A C13. 一实习生用一台机器接连独立地制造三只同种零件,第i 只零件是不合格的概率为=+11i p i,i=1,2,3,若以x 表示零件中合格品的个数,则P(x =2)为多少?解 设A i = {第i 个零件不合格},i=1,2,3, 则1()1i i P A p i==+ 所以()11i i i P A p i=-=+ 123123123(2)()()()P x P A A A P A A A P A A A ==++由于零件制造相互独立,有:123123()()()()P A A A P A P A P A =11112111311,(2)23423423424P x ==⨯⨯+⨯⨯+⨯⨯=所以14. 假设目标出现在射程之内的概率为0.7,这时射击命中目标的概率为0.6,试求两次独立射击至少有一次命中目标的概率p.解 设A={目标出现在射程内},B={射击击中目标},B i ={第i 次击中目标}, i=1,2.则 P(A)=0.7, P(B i|A)=0.6 另外 B=B 1+B 2,由全概率公式12()()()()()(|)()(()|)P B P AB P AB P AB P A P B A P A P B B A =+===+ 另外, 由于两次射击是独立的, 故P(B 1B 2|A)= P(B 1|A) P(B 2|A) = 0.36由加法公式P((B 1+B 2)|A)= P(B 1|A)+ P(B 2|A)-P(B 1B 2|A)=0.6+0.6-0.36=0.84因此P(B)= P(A)P((B 1+B 2)|A)=0.7×0.84 = 0.58815. 设某种产品50件为一批,如果每批产品中没有次品的概率为0.35,有1,2,3,4件次品的概率分别为0.25, 0.2, 0.18, 0.02,今从某批产品中抽取10件,检查出一件次品,求该批产品中次品不超过两件的概率.解 设A i ={一批产品中有i 件次品},i=0, 1, 2, 3, 4, B={任取10件检查出一件次品}, C={产品中次品不超两件}, 由题意01914911050192482105019347310501944611050(|)01(|)516(|)4939(|)98988(|)2303=========P B A C C P B A C C C P B A CC C P B A C C C P B A C由于 A 0, A 1, A 2, A 3, A 4构成了一个完备的事件组, 由全概率公式40()()(|)0.196===∑i i i P B P A P B A由Bayes 公式000111222()(|)(|)0()()(|)(|)0.255()()(|)(|)0.333()======P A P B A P A B P B P A P B A P A B P B P A P B A P A B P B故2()(|)0.588==∑i P C P A B16. 由以往记录的数据分析,某船只运输某种物品损坏2%,10%和90%的概率分别为0.8,0.15,0.05,现在从中随机地取三件,发现三件全是好的,试分析这批物品的损坏率是多少(这里设物品件数很多,取出一件后不影响下一件的概率).解 设B={三件都是好的},A 1={损坏2%}, A 2={损坏10%}, A 1={损坏90%},则A 1, A 2, A 3是两两互斥, 且A 1+ A 2 +A 3=Ω, P(A 1)=0.8, P(A 2)=0.15, P(A 2)=0.05. 因此有 P(B| A 1) = 0.983, P(B| A 2) = 0.903, P(B| A 3) = 0.13, 由全概率公式31333()()(|)0.80.980.150.900.050.100.8624===⨯+⨯+⨯=∑i i i P B P A P B A由Bayes 公式, 这批货物的损坏率为2%, 10%, 90%的概率分别为313233()(|)0.80.98(|)0.8731()0.8624()(|)0.150.90(|)0.1268()0.8624()(|)0.050.10(|)0.0001()0.8624⨯===⨯===⨯===i i i i i i P A P B A P A B P B P A P B A P A B P B P A P B A P A B P B由于P( A 1|B) 远大于P( A 3|B), P( A 2|B), 因此可以认为这批货物的损坏率为0.2.17. 验收成箱包装的玻璃器皿,每箱24只装,统计资料表明,每箱最多有两只残次品,且含0,1和2件残次品的箱各占80%,15%和5%,现在随意抽取一箱,随意检查其中4只;若未发现残次品,则通过验收,否则要逐一检验并更换残次品,试求: (1)一次通过验收的概率α;(2)通过验收的箱中确定无残次品的概率β. 解 设H i ={箱中实际有的次品数},0,1,2=i , A={通过验收}则 P(H 0)=0.8, P(H 1)=0.15, P(H 2)=0.05, 那么有:042314244222424(|)1,5(|),695(|)138P A H C P A H C C P A H C =====(1)由全概率公式20()()(|)0.96α====∑i i i P A P H P A H(2)由Bayes 公式 得00()(|)0.81(|)0.83()0.96β⨯====i P H P A H P H A P A18. 一建筑物内装有5台同类型的空调设备,调查表明,在任一时刻,每台设备被 使用的概率为0.1,问在同一时刻(1)恰有两台设备被使用的概率是多少? (2)至少有三台设备被使用的概率是多少?由题意,有p=0.1, q=1-p=0.9, 故 (1) 223155(2)(0.1)(0.9)0.0729===P P C(2) 2555(3)(4)(5)P P P P =++332441550555(0.1)(0.9)(0.1)(0.9)(0.1)(0.9)0.00856C C C =++=第二章 随机变量及其分布1. 有10件产品,其中正品8件,次品两件,现从中任取两件,求取得次品数X 的分律. 解 X 的分布率如下表所示:2. 进行某种试验,设试验成功的概率为34,失败的概率为14,以X 表示试验首次成功所需试验的次数,试写出X的分布律,并计算X 取偶数的概率. 解 X 的分布律为:113(),1,2,3,44k P X k k -⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭X 取偶数的概率:2113{}(2)4411116331165116k k P X P X k -∞∞∞⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭⎛⎫==⨯=⎪-⎝⎭∑∑∑k=1k=1k=1为偶数 3. 从5个数1,2,3,4,5中任取三个为数123,,x x x .求:X =max (123,,x x x )的分布律及P(X ≤4); Y =min (123,,x x x )的分布律及P(Y>3). 解 基本事件总数为:3510C =,X 34 5(1)X 的分布律为:P(X ≤4)=P(3)+P(4)=0.4 (2)Y 的分布律为P(X>3) =04. C 应取何值,函数f(k) =!kC k λ,k =1,2,…,λ>0成为分布律?解 由题意, 1()1k f x ∞==∑, 即0110(1)1!!!0!kkk k k k C C C C e k k k λλλλλ∞∞∞===⎛⎫==-=-= ⎪⎝⎭∑∑∑ 解得:1(1)C e λ=-5. 已知X的分布律 X -112P162636求:(1)X 的分布函数;(2)12P X ⎛⎫< ⎪⎝⎭;(3)312P X ⎛⎫<≤ ⎪⎝⎭.解 (1) X 的分布函数为()()k k x xF x P X x p ≤=≤=∑0,11/6,11()1/2,121,2x x F x x x <-⎧⎪-≤<⎪=⎨≤<⎪⎪≥⎩;(2) 11(1)26P X P X ⎛⎫<==-= ⎪⎝⎭(3)31()02P X P ⎛⎫<≤=∅= ⎪⎝⎭6. 设某运动员投篮投中的概率为P =0.6,求一次投篮时投中次数X解 X 的分布函数00()0.60111x F x x x ≤⎧⎪=<≤⎨⎪>⎩7. 对同一目标作三次独立射击,设每次射击命中的概率为p ,求:(1)三次射击中恰好命中两次的概率;(2)目标被击中两弹或两弹以上被击毁,目标被击毁的概率是多少? 解 设A={三次射击中恰好命中两次},B=目标被击毁,则(1) P(A) =2232233(2)(1)3(1)P C p p p p -=-=-(2) P(B) =22323333233333(2)(3)(1)(1)32P P C p p C p p p p --+=-+-=-8. 一电话交换台每分钟的呼唤次数服从参数为4的泊松分布,求:(1)每分钟恰有6次呼唤的概率;(2)每分钟的呼唤次数不超过10次的概率. 解(1) P(X=6) =6440.104!6!k e e k λλ--==或者P(X=6) =!kek λλ-446744!!k k k k e e k k ∞∞--===-∑∑= 0.21487 – 0.11067 =0.1042.(2) P(X ≤10)104401144110.00284!!kkk k e e k k ∞--====-=-∑∑ =0.997169. 设随机变量X 服从泊松分布,且P(X =1)=P(X =2),求P(X =4) 解 由已知可得,12,1!2!e e λλλλ--=解得λ=2, (λ=0不合题意)422,(4)4!P X e -==因此= 0.0910. 商店订购1000瓶鲜橙汁,在运输途中瓶子被打碎的概率为0.003,求商店收到的玻璃瓶,(1)恰有两只;(2)小于两只;(3)多于两只;(4)至少有一只的概率. 解 设X={1000瓶鲜橙汁中由于运输而被打破的瓶子数},则X 服从参数为n=1000, p=0.003的二项分布,即X~B(1000, 0.003), 由于n 比较大,p 比较小,np=3, 因此可以用泊松分布来近似, 即X~π(3). 因此(1) P(X=2)2330.2242!e -==(2)323(2)1(2)110.80080.1992!k k P X P X e k ∞-=<=-≥=-=-=∑(3)333(2)(2)0.5768!k k P X P X e k ∞-=>=>==∑(4)313(1)0.9502!k k P X e k ∞-=≥==∑11. 设连续型随机变量X 的分布函数为20,0(),011,1x F x kx x x <⎧⎪=≤≤⎨⎪>⎩求:(1)系数k ;(2)P(0.25<X<0.75);(3)X 的密度函数;(4)四次独立试验中有三次恰好在区间(0.25,0.75)内取值的概率.解 (1) 由于当0≤x ≤1时,有F(x )=P(X ≤x )=P(X<0)+P(0≤X ≤x )=k x 2 又F(1) =1, 所以k ×12=1因此k=1.(2) P(0.25<X<0.75) = F(0.75)-F(0.25) = 0.752-0.252=0.5(3) X 的密度函数为2,01()'()0,x x f x F x Other ≤≤⎧==⎨⎩(4) 由(2)知,P(0.25<X<0.75) = 0.5, 故P{四次独立试验中有三次在(0.25, 0.75)内} =334340.5(10.5)0.25C --=.12. 设连续型随机变量X 的密度函数为1()0,1x F x x ⎧<⎪=⎨⎪≥⎩求:(1)系数k ;(2)12P X⎛⎫<⎪⎝⎭;(3)X 的分布函数.解 (1)由题意,()1f x dx +∞-∞=⎰, 因此111()a r c s i n 111kf x d x d x k x kk ππ+∞+-∞====-=⎰⎰解得:(2)1/21/1/21111arcsin 1/22663k P x x ππππ--⎛⎫⎛⎫<===-= ⎪ ⎪-⎝⎭⎝⎭⎰ (3) X 的分布函数1()()1/2arcsin /11111/x x F x f x dx x x x k ππ-∞<-⎧⎪==+-≤≤⎨⎪>⎩=⎰解得: 13. 某城市每天用电量不超过100万千瓦时,以Z 表示每天的耗电率(即用电量除以100万千瓦时),它具有分布密度为212(1),01()0,x x x F x ⎧-<<=⎨⎩其他若该城市每天的供电量仅有80万千瓦时,求供电量不够需要的概率是多少?如每天供电量为90万千瓦时又是怎样的?解 如果供电量只有80万千瓦,供电量不够用的概率为: P(Z>80/100)=P(Z>0.8)=120.812(1)0.0272x x dx -=⎰如果供电量只有80万千瓦,供电量不够用的概率为:P(Z>90/100)=P(Z>0.9)=120.912(1)0.0037x x dx -=⎰ 14. 某仪器装有三只独立工作的同型号电子元件,其寿命(单位 小时)都服从同一指数分布,分布密度为6001,0()6000,xe x F x x⎧<⎪=⎨⎪≥⎩试求在仪器使用的最初200小时以内,至少有一只电子元件损坏的概率.解 设X 表示该型号电子元件的寿命,则X 服从指数分布,设A={X ≤200},则 P(A)=1200600311600x e dx e --=-⎰设Y={三只电子元件在200小时内损坏的数量},则所求的概率为:10033331(1)1(0)1()(1())1()1P Y P Y C P A P A e e--≥=-==--=-=- 15. 设X 为正态随机变量,且X ~N(2,2σ),又P(2<X<4) = 0.3,求P(X<0) 解 由题意知()222422(24)00.3X P X P σσσσ---⎛⎫⎛⎫<<=<<=Φ-Φ=⎪ ⎪⎝⎭⎝⎭即20.30.50.8σ⎛⎫Φ=+= ⎪⎝⎭故20222(0)10.2X P X P σσσσ---⎛⎫⎛⎫⎛⎫<=<=Φ=-Φ= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭16. 设随机变量X 服从正态分布N(10,4),求a ,使P(|X -10|<a ) = 0.9.解 由于()()10|10|10222a X a P X a P a X a P --⎛⎫-<=-<-<=<<⎪⎝⎭210.9222a a a -⎛⎫⎛⎫⎛⎫=Φ-Φ=Φ-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以0.952a ⎛⎫Φ= ⎪⎝⎭查表可得, 2a =1.65即 a = 3.3 17. 设某台机器生产的螺栓的长度X 服从正态分布N(10.05,0.062),规定X 在范围(10.05±0.12)厘米内为合格品,求螺栓不合格的概率. 解 由题意,设P 为合格的概率,则()10.05(|10.05|0.12)0.1210.050.12220.06X P P X P X P -⎛⎫=-<=-<-<=-<< ⎪⎝⎭(2)(2)2(2)120.977210.9544=Φ-Φ-=Φ-=⨯-=则不合格的概率=1-P = 0.045618. 设随机变量X 服从正态分布N(60,9),求分点x 1,x 2,使X 分别落在(-∞,x 1)、(x 1,x 2)、(x 2,+∞)的概率之比为3:4:5. 解 由题,111116060603()()0.253333456060()1()0.75,33x x X P X x P x x ---⎛⎫<=<=Φ== ⎪++⎝⎭--Φ-=-Φ=查表可得1600.673x --=解得, x 1 = 57.9922260606034()()0.5833333345x x X P X x P ---+⎛⎫<=<=Φ== ⎪++⎝⎭又查表可得2600.213x -=解得, x 2 =60.63. 19. 已知测量误差X (米)服从正态分布N(7.5, 102),必须进行多少次测量才能使至少有一次误差的绝对值不超过10米的概率大于0.98?解 设一次测量的误差不超过10米的概率为p , 则由题可知107.57.5107.5(10)101010(0.25)(1.75)(0.25)1(1.75)0.598710.95990.5586X p P X P ----⎛⎫=<=<< ⎪⎝⎭=Φ-Φ-=Φ-+Φ=-+= 设 Y 为n 次独立重复测量误差不超过10米出现的次数,则Y~B(n, 0.5586)于是 P(Y ≥1)=1-P(X=0)=1-(1-0.5586)n ≥0.98 0.4414n ≤0.02, n ≥ln(0.02)/ln(0.4414) 解得:n ≥4.784取n=5, 即,需要进行5次测量. 20.设随机变量X 的分布列为X -2 023P11 3 2试求:(1)2X 的分布列;(2)x 2的分布列. 解 (1) 2X 的分布列如下(2) x 2的分布列21. 设X 服从N(0,1)分布,求Y =|X |的密度函数.解 y=|x|的反函数为,0h(y)=,x x x x -<⎧⎨≥⎩,从而可得Y=|X|的密度函数为:当y>0时,222222()()|()'|()|'|yyy Y X X f y f y y f y y e e e---=--+==当y ≤0时,()Y f y =0 因此有 22,0()0,0yY e y f y y ->=≤⎩22. 若随机变量X 的密度函数为23,01()0,x x f x ⎧<<=⎨⎩其他求Y =1x的分布函数和密度函数.解 y=1x在(0,1)上严格单调,且反函数为 h(y)=1y,y>1, h ’(y)=21y -222411113()[()]|()|3Y X X f y f h y h y f y y y y y⎛⎫⎛⎫⎛⎫'==-== ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭因此有43,1()0,Y y y f y other ⎧>⎪=⎨⎪⎩Y 的分布函数为:433131,1()10,y Y y y dy y y y F y other---⎧=-=->⎪=⎨⎪⎩⎰23. 设随机变量X 的密度函数为22,0(1)()0,0x x f x x π⎧>⎪+=⎨⎪≤⎩试求Y =lnX 的密度函数.解 由于ln y x =严格单调,其反函数为(),'()y y h y e h y e ==且,则2()[()]|()|()2(1)2,()y yY X X yy y y f y f h y h y f e e e e y e e ππ-'===+=-∞<<+∞+24. 设随机变量X 服从N(μ,2σ)分布,求Y =x e 的分布密度.解 由于x y e =严格单调,其反函数为1()ln ,'(),h y y h y ==且yy>0,则221(ln )21()[()]|()|(ln ),0Y X X y f y f h y h y f y yey μσ--'===>当0y ≤时()0Y f y =因此221(ln )2,0()0,y Y e y f y y μσ--⎧>=≤⎩25. 假设随机变量X 服从参数为2的指数分布,证明:Y =21x e --在区间(0, 1)上服从均匀分布.解 由于21x y e -=-在(0, +∞)上单调增函数,其反函数为:1()ln(1),01,2h y y y =--<<并且1'()2(1)h y y =-,则当01y << 12(ln(1))2()[()]|()|11(ln(1))22(1)1212(1)Y X X y f y f h y h y f y y ey ---'==---==-当y ≤0或y ≥1时,()Y f y =0.因此Y 在区间(0, 1)上服从均匀分布. 26. 把一枚硬币连掷三次,以X 表示在三次中正面出现的次数,Y 表示三次中出现正面的次数与出现反面的次数之差的绝对值,试求(X ,Y )的联合概率分布.解 根据题意可知, (X ,Y)可能出现的情况有:3次正面,2次正面1次反面, 1次正面2次反面, 3次反面, 对应的X,Y 的取值及概率分别为P(X=3, Y=3)=18P(X=2,Y=1)=223113228C ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭P(X=1, Y=1)=3113113228C -⎛⎫⎛⎫=⎪⎪⎝⎭⎝⎭P(X=0, Y=3)=31128⎛⎫= ⎪⎝⎭ 于是,(X ,27. 在10件产品中有2件一级品,7件二级品和1件次品,从10件产品中无放回抽取3件,用X 表示其中一级品件数,Y 表示其中二级品件数,求: (1)X 与Y 的联合概率分布;(2)X 、Y 的边缘概率分布; (3)X 与Y 相互独立吗?解 根据题意,X 只能取0,1,2,Y 可取的值有:0,1,2,3,由古典概型公式得:(1) 271310(,),i j k ijC C C p P X i Y j C====其中,3,0,1,2,i j k i ++==0,1,2,3j =0,1k =,可以计算出联合分布表如下j(2) X,Y 的边缘分布如上表(3) 由于P(X=0,Y=0)=0, 而P(X=0)P(Y=0)≠0, P(X=0,Y=0)≠P(X=0)P(Y=0), 因此X,Y 不相互独立. 28. 袋中有9张纸牌,其中两张“2”,三张“3”,四张“4”,任取一张,不放回,再任取一张,前后所取纸牌上的数分别为X 和Y ,求二维随机变量(X, Y)的联合分布律,以及概率P(X +Y>6)解 (1) X,Y 可取的值都为2,3,4, 则(X,Y)的联合概率j(2) P(X+Y>6) = P(X=3, Y=4) + P(X=4, Y=3) + P(X=4,Y=4)=1/6+1/6+1/6=1/2.29. 设二维连续型随机变量(X, Y)的联合分布函数为(,)arctan arctan 23x y F x y A B C ⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭,求:(1)系数A 、B 及C ; (2)(X, Y)的联合概率密度; (3)X ,Y 的边缘分布函数及边缘概率密度;(4)随机变量X 与Y 是否独立?解 (1) 由(X, Y)的性质, F(x, -∞) =0, F(-∞,y) =0, F(-∞, -∞) =0, F(+∞, +∞)=1, 可以得到如下方程组:a r c t a n 022arctan 023022122x A B C y A B C A B C A B C ππππππ⎧⎛⎫⎛⎫+-= ⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⎛⎫⎛⎫-+=⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪--= ⎪ ⎪⎪⎝⎭⎝⎭⎪⎛⎫⎛⎫⎪++= ⎪ ⎪⎪⎝⎭⎝⎭⎩解得:21,,,22A B C πππ===(2)2222(,)6(,)(4)(9)F x y f x y x y x y π∂==∂∂++(3) X 与Y 的边缘分布函数为:211()(,)arctan arctan 222222X x x F x F x ππππππ⎛⎫⎛⎫⎛⎫=+∞=++=+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ 211()(,)arctan arctan 222322Y y y F y F y ππππππ⎛⎫⎛⎫⎛⎫=+∞=++=+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭X 与Y 的边缘概率密度为:'22()()(4)X X f x F x x π==+'23()()(9)Y Y f y F y y π==+(4) 由(2),(3)可知:(,)()()X Y f x y f x f y =, 所以X ,Y 相互独立.30. 设二维随机变量(X, Y)的联合概率密度为-(x+y)e ,0,(,)0,x f x y ⎧<<+∞=⎨⎩其他(1)求分布函数F(x, y);(2)求(X ,Y)落在由x =0,y =0,x +y =1所围成的三角形区域G 内的概率.解 (1) 当x>0, y>0时, ()00(,)(1)(1)yxu v x y F x y e dudv e e -+--==--⎰⎰ 否则,F (x, y ) = 0.(2) 由题意,所求的概率为11()10((,))(,)120.2642Gxx y P x y G f x y dxdydx e dy e --+-∈===-=⎰⎰⎰⎰31. 设随机变量(X ,Y )的联合概率密度为-(3x+4y)Ae ,0,0,(,)0,x y f x y ⎧>>=⎨⎩其他求:(1)常数A ;(2)X ,Y 的边缘概率密度;(3)(01,02)P X Y <≤<≤.解 (1) 由联合概率密度的性质,可得(34)00(,)1/12x y f x y dxdy Ae dxdy A +∞+∞+∞+∞-+-∞-∞===⎰⎰⎰⎰ 解得 A=12.(2) X, Y 的边缘概率密度分别为:(34)30123,0()(,)0,x y x X edy e x f x f x y dy other +∞-+-+∞-∞⎧=>⎪==⎨⎪⎩⎰⎰ (34)40124,0()(,)0,x y y Y edx e y f y f x y dx other +∞-+-+∞-∞⎧=>⎪==⎨⎪⎩⎰⎰(3) (01,02)P x y <≤<≤21(34)03812(1)(1)x y edxdye e -+--==--⎰⎰32. 设随机变量(X ,Y )的联合概率密度为2,01,02,(,)30,xyx x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其他求 P(X +Y ≥1).解 由题意,所求的概率就是(X,Y)落入由直线x=0 ,x=1, y=0, y=2, x+y=1围的区域G 中, 则122012310((,))(,)3456532672G x P x y G f x y dxdyxy dx x dy x x x dx -∈==+=++=⎰⎰⎰⎰⎰33. 设二维随机变量(X, Y)在图2.20所示的区域G 上服从均匀分布,试求(X, Y)的联合概率密度及边缘概率密度.解 由于(X, Y)服从均匀分布,则G的面积A 为:2112001(,)()6x x GA f x y dxdy dx dy x x dx ===-=⎰⎰⎰⎰⎰,(X, Y)的联合概率密度为:6,01(,)0,x f x y other≤<⎧=⎨⎩.X,Y 的边缘概率密度为:2266(),01()(,)0,x x X dy x x x f x f x y dy other +∞-∞⎧=-≤<⎪==⎨⎪⎩⎰⎰ ),01()(,)0,y Y dy y y f y f x y dx other +∞-∞⎧=≤<⎪==⎨⎪⎩⎰34. 设X 和Y 是两个相互独立的随机变量,X 在(0, 0.2)上服从均匀分布,Y 的概率密度是55,0()0,0y y e y f y y -⎧ >=⎨≤⎩求:(1)X 和Y 和联合概率密度; (2)P(Y ≤X).解 由于X 在(0, 0.2)上服从均匀分布,所以()1/0.25X f x == (1) 由于X ,Y 相互独立,因此X, Y 525,0,00.2(,)()()0,y X Y e y x f x y f x f y other -⎧><<==⎨⎩(2) 由题意,所求的概率是由直线所围的区域,如右图所示, 因此0.2500.2511()(,)255111xy Gx P Y X f x y dxdy dx e dye dx e e ----≤===-=+-=⎰⎰⎰⎰⎰35. 设(X ,Y )的联合概率密度为1,01,02(,)20,x y f x y ⎧ ≤≤≤≤⎪=⎨⎪⎩其他求X 与Y中至少有一个小于12的概率.解 所求的概率为0.50.5120.50.511()()22111,221(,)15128P X Y P XY f x y dxdydxdy +∞+∞⎛⎫<< ⎪⎝⎭⎛⎫=-≥≥ ⎪⎝⎭=-=-=⎰⎰⎰⎰ 36. 设随机变量X 与Y 相互独立,且X -113 Y -3 1P1215310P 1434求二维随机变量(X ,Y )的联合分布律.解 由独立性,计算如下表37. 设二维随机变量(X ,Y )的联合分布律为X 1 2 3Y116191182 a bc(1)求常数a ,b ,c 应满足的条件;(2)设随机变量X 与Y 相互独立,求常数a ,b ,c. 解 由联合分布律的性质,有:11116918a b c +++++=, 即 a + b + c =12133-= 又,X, Y 相互独立,可得 111::::6918a b c =从而可以得到: 121,,399a b c ===38. 设二维随机变量(X ,Y )的联合分布函数为22232,0,1,1(,),0,01,10,x x y x x y F x y x y x⎧ >>⎪+⎪⎪= ><≤⎨+⎪⎪ ⎪⎩其他, 求边缘分布函数()x F x 与()y F y ,并判断随机变量X 与Y 是否相互独立.解 由题意, 边缘分布函数2222lim,0()(,)110,0y X x x x F x F x x x x →+∞⎧=>⎪=+∞=++⎨⎪≤⎩下面计算F Y (y )2332220,0()(,)lim ,011lim1,11Y x x y x y F y F y y y xx y x →+∞→+∞⎧⎪≤⎪⎪=+∞==<≤⎨+⎪⎪=>⎪+⎩可以看出,F(x,y)= F x (x ) F Y (y ), 因此,X ,Y 相互独立.39.设二维随机变量(X ,Y )的联合分布函数为132,1,1(,)0,ye x yf x y x -⎧ ≥≥⎪=⎨⎪ ⎩其他,求边缘概率密度()X f x 与()Y f y ,并判断随机变量X 与Y 是否相互独立.解 先计算()X f x , 当x <1时, ()0X f x =当x ≥1时,113331222()1y y X f x e dy e x x x+∞--+∞-===⎰再计算()Y f y , 当y <1时, ()0Y f y =当y ≥1时, 11132121()1y y y Y f y e dx e e x x+∞---+∞-===⎰可见, (,)()()X Y f x y f x f y =, 所以随机变量X, Y 相互独立40.设二维随机变量(X ,Y )的联合分布函数为,(,)0,x y x y f x y + 0≤,≤1,⎧=⎨ ⎩其他,求边缘概率密度()X f x 与()Y f y ,并判断随机变量X 与Y 是否相互独立.解 先计算()X f x , 当x <0或者x >1时, ()0X f x = 当1≥x ≥0时,1212011()02X f x x y dy xy y x =+=+=+⎰ 再计算()Y f y , 当y <0或者y >1时, ()0Y f y =当1≥y ≥0时, 120111()022Y f y x ydx xy x y =+=+=+⎰ 由于11(,)()()22X Y f x y x y f x f y x y ⎛⎫⎛⎫=+≠=++ ⎪⎪⎝⎭⎝⎭, 所以随机变量X,Y 不独立41.设二维随机变量(X ,Y )的联合分布函数为22,00(,)0,x y e x y f x y --⎧ >,>=⎨⎩其他求随机变量Z =X -2Y 的分布密度. 解 先求Z 的分布函数F(z ) :2()()(2)(,)D X Y zF z P Z z P X Y z f x y dxdy -≤=≤=-≤=⎰⎰当z<0时,积分区域为:求得2220()2z z yx y F z dy e dx +∞+---=⎰⎰224122z y y z z e e dy e +∞----=-=⎰ 当z ≥0时,积分区域为:z},2200()2z yx y F z dy e dx +∞+--=⎰⎰ 2401212yy zz eedy e +∞----=-=-⎰由此, 随机变量Z 的分布函数为11,02()1,02zz e z F z e z -⎧-≥⎪⎪=⎨⎪<⎪⎩ 因此, 得Z 的密度函数为:1,02()1,02zz e z f z e z -⎧≥⎪⎪=⎨⎪<⎪⎩42. 设随机变量X 和Y 独立,X ~2()N μ,σ,Y 服从[-b ,b ](b>0)上的均匀分布,求随机变量Z =X +Y 的分布密度. 解 解法一 由题意,22()21()()()2z y a bX Y F z f z y f y dy dy bσ---+∞-∞-=-=⋅⎰⎰令)/,,[,],z y a t dy dt y b b σσ--==-∈-(则()()()2211()22z b az b a t z b a z b aF z e dt b bσσσσ+----+---==Φ-Φ⎰ 解法二22()()(),()1()221122111212X Yz bz bF z f x f z x dx-b<z-x<b,z-b<x<z+bx aF z dxbz bx a z b a z b az bb ba zb a z bba z bbσσσσσσσ+∞-∞+-=-∴--=⋅+-⎛+---⎫⎛⎫⎛⎫⎛⎫=Φ=Φ-Φ⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫--⎛-+⎫⎛⎫⎛⎫=-Φ--Φ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭-+⎛⎫=Φ ⎪⎝⎭⎰⎰a z bσ⎛--⎫⎛⎫-Φ ⎪⎪⎝⎭⎝⎭43.设X服从参数为12的指数分布,Y服从参数为13的指数分布,且X与Y独立,求Z=X+Y 的密度函数.解由题设,X~12120,0(),0X xxf xe x-≤⎧⎪=⎨>⎪⎩,Y~13130,0(),0Y xxf ye x-≤⎧⎪=⎨>⎪⎩并且,X,Y相互独立,则()()()Z X YF z f x f z x dx+∞-∞=-⎰由于()Xf x仅在x>0时有非零值,()Yf z x-仅当z-x>0,即z>x时有非零值,所以当z<0时,()Xf x=0, 因此()Zf z=0.当z>0时,有0>z>x, 因此1132()11()23z z xxZF z e e dx---=⎰1633216zz zz xe dx e e----==-⎰44.设(X,Y)的联合分布律为X0 1 2 3Y0 0 0.05 0.08 0.121 0.01 0.09 0.12 0.152 0.02 0.11 0.13 0.12求:(1)Z=X+Y的分布律;(2)U=max(X,Y)的分布律;(3)V=min(X,Y)的分布律.解(1) X+Y的可能取值为:0,1,2,3,4,5,且有P(Z=0)=P(X=0,Y=0) = 0P(Z=1)=P(X=1,Y=0) + P(X=0,Y=1) = 0.06P(Z=2)=P(X=2,Y=0) + P(X=0,Y=2) + P(X=1,Y=1) =0.19P(Z=3)=P(X=3,Y=0) + P(X=1,Y=2) + P(X=2,Y=1) =0.35P(Z=4)=P(X=2,Y=2) + P(X=3,Y=1) = 0.28P(Z=5)=P(X=3,Y=2) = 0.12同理,U=max(X,Y)的分布如下U∈{0,1,2,3}同理,V=min(X,Y)的分布分别如下V∈{0,1,2}概率论与数理统计 习题参考答案(仅供参考) 第三章 第30页 (共80页)第三章 随机变量的数字特征1. 随机变量X 的分布列为X -1 0 1212P13161611214求E(X),E(-X +1),E(X 2) 解 111111136261243()1012E X =-⨯+⨯+⨯+⨯+⨯=111111236261243(1)((1)1)(01)(1)(11)(21)E X -+=--+⨯+-+⨯+-+⨯+-+⨯+-+⨯=或者1233(1)()(1)()11E X E X E E X -+=-+=-+=-+= 22222235111111362612424()(1)(0)()(1)(2)E X -=-⨯+⨯+⨯+⨯+⨯=2. 一批零件中有9件合格品与三件废品,安装机器时从这批零件中任取一件,如果取出的废品不再放回,求在取得合格品以前已取出的废品数的数学期望. 解 设取得合格品之前已经取出的废品数为X, X 的取值为0, 1, 2, 3, A k 表示取出废品数为k 的事件, 则有:1391121230(),0,1,2,3,66()()0.3220k k k kk k C C P A k C C E X k P A -==∙==⋅==∑3. 已知离散型随机变量X 的可能取值为-1、0、1,E(X)=0.1,E(X 2)=0.9,求P(X=-1),P(X =0),P(X =1). 解 根据题意得:2222()1(1)0(0)1(1)0.1()(1)(1)0(0)1(1)0.9E X P X P X P X E X P X P X P X =-=-+=+===-=-+=+==可以解得 P(X =-1)=0.4, P(X=1)=0.5,P(X=0) = 1- P(X =-1) - P(X=1) = 1-0.4-0.5=0.14. 设随机变量X 的密度函数为2(1),()x x f x - 0<<1,⎧=⎨0, ⎩其他. 求E(X). 解 由题意,11()()2(1)3E X xf x dx x xdx ∞-∞==-=⎰⎰,5. 设随机变量X 的密度函数为,0()x e x f x x -⎧ ≥,=⎨0, <0.⎩ 求E(2X),E(2x e -). 解(2)2()2x E X xf x dx xe dx ∞∞--∞==⎰⎰()()0002|20|2x x x xe e dx e∞-∞--∞=+=-=⎰ 22230()()11|33Xx x xx E ee f x dxee dx e ∞---∞∞---∞===-=⎰⎰6. 对球的直径作近似测量,其值均匀分布在区间[a ,b ]上,求球的体积的数学期望.解 由题意,球的直接D~U(a,b), 球的体积V=()3432D π因此,341()()32bax E V Vf x dx dx b aπ∞-∞⎛⎫== ⎪-⎝⎭⎰⎰ 4220|()()24()24x a b a b b a ππ∞==++-7. 设随机变量X ,Y 的密度函数分别为22,0()x X e x f x x -⎧ >,=⎨0, ≤0.⎩ 44,0()y Y e y f y y -⎧ >,=⎨0, <0.⎩ 求E(X +Y),E(2X -3Y 2). 解()()(E X Y E X E Y+=+240()()24113244X Y x y x f x dx y f y dyxe dx ye dy+∞+∞-∞-∞+∞+∞--=+=+=+=⎰⎰⎰⎰22222400(23)2()3()2()3()223435188X Y xy E X Y E X E Y x f x dx y f y dyxedx y e dy+∞+∞-∞-∞+∞+∞---=-=-=-=-=⎰⎰⎰⎰8. 设随机函数X 和Y 相互独立,其密度函数为2,1()X x x f x 0≤≤,⎧=⎨ 0, .⎩其他5,5() 5y Y e y f y y -⎧ >,=⎨ 0, ≤.⎩(-)求E(XY).解 由于XY 相互独立, 因此有()()()12(5)05(5)(5)5(5)()()()()()225320553225(01)(6)433X Y y y y y E XY E X E Y x f x dx y f y dyx dx ye dyye e dy e +∞+∞-∞-∞+∞--+∞------===⎛⎫⎛+∞⎫=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛+∞⎫=---- ⎪ ⎪ ⎪⎝⎭⎝⎭=-----=-⨯-=⎰⎰⎰⎰⎰9. 设随机函数X 的密度为()f x <,= 0, ≥⎩x 1x 1.求E(X), D(X). 解11()()0E X x f x dx +∞-∞-===⎰⎰π221122211001012()()2222211()arcsin |1422E X x f x dx x +∞-∞-====-=-+=-+=-+=⎰⎰⎰⎰⎰⎰ππππππππ()221()()()2D XE X E X =-=10. 设随机函数X 服从瑞利(Rayleigh)分布, 其密度函数为2222,0()x x e x f x x σ-⎧ >,⎪=σ⎨⎪ 0, ≤0.⎩其中σ>0是常数,求E(X),D(X). 解22222222()()x x x E X x f x dx edx xdeσσσ--+∞+∞+∞-∞===-⎰⎰⎰2222222222200/0022x x x u u x xe e dx e dxedu σσσσππσσσ---+∞+∞+∞-=⎛⎫+∞=--= ⎪⎝⎭−−−→===⎰⎰⎰22222222222222222232222200222()()2202220x x x x x x u u ux E X x f x dx edx x dex e xe dx xe dx e du e σσσσσσσσσσ=+∞+∞+∞---∞+∞+∞---+∞--===-⎛+∞⎫=--= ⎪⎝⎭+∞−−−→==-=⎰⎰⎰⎰⎰⎰ ()22222()()()2(2)22D XE X E X ππσσσ⎛⎫=-=-=- ⎪ ⎪⎝⎭11. 抛掷12颗骰子,求出现的点数之和的数学期望与方差.解 掷1颗骰子,点数的期望和方差分别为: E(X) = (1+2+3+4+5+6)/6= 7/2 E(X 2)=(12+22+32+42+52+62)/6=91/6 因此 D(X) = E(X 2)-(E(X)) 2 = 35/12掷12颗骰子, 每一颗骰子都是相互独立的, 因此有: E(X 1+X 2+…+X 12)=12E(X) = 42 D(X 1+X 2+…+X 12) =D(X 1)+D(X 2)+…+D(X 12)=12D(X)=35 12. 将n 只球(1~n 号)随机地放进n 只盒子(1~n 号)中去,一只盒子装一只球,将一只球装入与球同号码的盒子中,称为一个配对,记X 为配对的个数,求E(X), D(X).解 (1)直接求X 的分布律有些困难,我们引进新的随机变量X k1,0,k k X k ⎧=⎨⎩第只球装入第k 号盒子第只球没装入第k 号盒子,则有:1nkk X X ==∑,X k 服0-1分布因此:11(0)11,(1),kk P X p P X p n n==-=-===()11111(),()11()1k k n nk k k k E X p D X n n n E X E X E X n n ==⎛⎫===- ⎪⎝⎭⎛⎫===⋅= ⎪⎝⎭∑∑ (2)k j X X 服从0-1分布,则有11(1)(1)(1)(1,1),()k j k j k j n n n n P X X P X X E X X --======1()n k k D X D X =⎛⎫= ⎪⎝⎭∑()112222(,)1112(()()())11112(1)1111112111(1)nk k j k k jnk j k j k k jk j n D X Cov X X E X X E X E X n n n n n n n C n n n n n n =<=<<=+⎛⎫=-+- ⎪⎝⎭⎛⎫=-+- ⎪-⎝⎭⎛⎫-⎛⎫=-+-=-+-= ⎪ ⎪-⎝⎭⎝⎭∑∑∑∑∑故,E(X)=D(X)=1.我们知道,泊松分布具有期望与方差相等的性质,可以认定,X 服从参数为1的泊松分布. 13. 在长为l 的线段上任意选取两点,求两点间距离的数学期望及方差.解 设所取的两点为X,Y, 则X,Y 为独立同分布的随机变量, 其密度函数为11,01,01(),(),0,0,X Y x x f x f y l l other other ⎧⎧≤≤≤≤⎪⎪==⎨⎨⎪⎪⎩⎩ 21,0,1(,)()(),0,Y Y x y f x y f x f y l other ⎧≤≤⎪==⎨⎪⎩依题意有()(,)E X Y x y f x y dxdy +∞+∞-∞-∞-=-⎰⎰()()2200011lxl l x x y dydx y x dydx l l=-+-⎰⎰⎰⎰222220011222l l x l x dx lx dx l l=+-+⎰⎰ 322322110032262l l x l x lx x l l ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭ 663l l l =+= ()22()(,)E X Y x yf x y dxdy +∞+∞-∞-∞-=-⎰⎰()22001l lx y dxdy l=-⎰⎰ ()222003222012103ll l dx x xy y dyl l yx y xy dxl =-+⎛⎫=-+ ⎪⎝⎭⎰⎰⎰ 3222033222213111032316ll x l xl dx l ll x l x l x l l =-+⎛⎫=-+⎪⎝⎭=⎰ D(X -Y) = E((X -Y)2)-(E(X -Y))2 = 2221116918l l l -= 14.设随机变量X 服从均匀分布,其密度函数为12,()2x f x ⎧0<<,⎪=⎨⎪0, .⎩其他,求E(2X 2),D(2X 2). 解12222201(2)2()2()226E X E X x f x dx x dx +∞-∞====⎰⎰ 124442011()()2,()8012E X x f x dx x dx E X +∞-∞====⎰⎰ ()()22242111(2)4()4()()48014445D X D X E X E X ⎛⎫==-=⨯-=⎪⎝⎭15. 设随机变量X 的方差为2.5,试利用切比雪夫不等式估计概率(()7.5)P X E X -≥。

《概率论与数理统计》答案.docx

《概率论与数理统计》答案.docx

4、至少两名女生的概率: « 0.40465人全为女生的概率: C5亠〜0.00045、一等奖: 冷“6430 Me33e l6二等奖: .8.4645x10-三等奖: CMC:匕9・1417乂10亠四等奖:C:C;7C;5 + C:瞬C;^33^16=0.0004习题1.11、(1)选中乘客是不超过30岁的乘车旅游的男性(2)选中的乘客是不超过30岁的女性或以旅游为乘车目的(3)选中乘客是不超过30岁的女性或乘车旅游的女性(4)选中乘客是30岁以上以旅游为目的男性n(2)q/=!⑶ G.G2习题1.21、(该题题目有误,请将P(A) = l / 4改作P(A) = l/3)(1) P(AB) = P(A) + P(B) - B)= —(2) - 3P(AB) = P( A -B) = P( A) - P(AB)=—(3)- 7 P(AUB) = \-P(AB) = —10(4)7P(AB AB) = P(AB) + P(AB) = P(AB) + P(B) — P(AB)=—158x1 _18^7 _7(2)末位1和9的数的平方末位是1,故概率为:早=丄C;。

5102、(1)俎)By (2)5Bj>13(3)20Z=1710 10Ci(4) Q y-l>13、(1)3、⑴仅考虑末位煜吕ne33v16五等奖:“.0078 六等奖: “.05896、双王出现的概率:—=-3x3 3 3 14个2出现的概率:—=丄34 277 1农民手中有双王的概率:—r = —22 2习题1.32、设A 表示事件:取出的两个球屮有一个红球,B 表示事件:取出的两个球都是红球,则 P ⑷亠唱,所求概率为:P 加骨晋*3、用人•表示笫门欠取得黑球,则所求事件可表示为:A44 A4舛,其概率为:P=P(A l A 2A^+P(A l A 2A 3) = P ⑷P (駆)P(% I £爲)+ P«)P (血冈)P(% I 剳2)= 2x^xl +8x 2xh=76 «0.037510 9 9 10 10 920254、用A 表示事件:任选一人为男生,B 表示事件:任选一人该人参加了社团活动,任选一 人该人没有参加社团活动的概率为:F\ = P(B) = P(B\A)P(A) + P(B| A)P(A) = ().3 x 0.75 + 0.2 x 0.25 = 0.275 已知抽取一人参加社团活动,此人为男生的概率为: P_P(A0=PeM )P (A) = O ・7xO.75=m - P(B) 1-0.275 29大于此人是女生的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题1. 写出下列随机试验的样本空间: (1) 掷两颗骰子,观察两颗骰子出现的点数. (2) 从正整数中任取一个数,观察取出数的个位数. (3) 连续抛一枚硬币,直到出现正面时为止.(4) 对某工厂出厂的产品进行检查,如连续检查出两个次品,则停止检查,或检查四个产品就停止检查,记录检查的结果. (5) 在单位圆内任意取一点,记录它的坐标. 解:(1){(,)|1,2,,6,1,2,,6}i j i j Ω===;(2){|0,1,,9}i i Ω==;(3)Ω={(正), (反, 正), (反, 反, 正), (反, 反, 反, 正), … };(4)Ω={(次, 次), (次, 正, 正, 正), (次, 正, 正, 次), (次, 正, 次, 次), (次,正, 次,正), (正, 次, 次), (正, 次, 正, 正), (正, 次, 正, 次)};(5)22{(,)|,,1}x y x R y R x y Ω=∈∈+≤.2. 在掷两颗骰子的试验中写出下列事件的集合表示: (1) A =”出现的点数之和为偶数”.(2) B =”出现的点数之和为奇数, 但没有骰子出现1点”. (3) C =”至少掷出一个2点”. (4) D =”两颗骰子出现的点数相同”.解: (1) {(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),A = {(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)}=;(2){(2,3),(2,5),(3,2),(3,4),(3,6),(4,3),(4,5),(5,2),(5,4),(5,6),(6,3),(6,5)}B =;(3){(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(1,2),(3,2),(4,2),(5,2),(6,2)}C =; (4){(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)}D =.3. 设,,A B C 是三个事件,试用,,A B C 来表示下列事件:(1) 事件“,,A B C 中至少有一个事件发生”. (2) 事件“,,A B C 中至少有两个事件不发生”. (3) 事件“,,A B C 中至多有一个事件不发生”. (4) 事件“,,A B C 中至少有一个事件不发生”. (5) 事件“,A B 至少有一个发生,而C 不发生”. 解:(1)A B C ; (2)()()()A BA CBC 或 ()()()()A B C A B C AB C A B C ;(3)()()()()ABC A BC AB C AB C 或()()()AB AC BC ;(4)A B C ; (5)()A B C 或()()()ABCABC ABC .4. 指出下列命题哪些成立,哪些不成立 (1) ()A B AB B =. (2) ()A B AAB =.(3) ()()A AB AB =. (4) ()A B C A B C =.(5) A B A B =. (6) ()()AB AB =∅.(7) A B ⊂等价于A B B =或AB A =或B A ⊂. (8) 若AB =∅,则A B ⊂.解:(1)正确;(2)正确;(3)正确;(4)正确;(5)错误;(6)正确;(7)正确;(8)正确.5. 在数学系的学生中任选一名学生,令事件A 表示被选学生是女生, 事件B 表示被选学生是三年级学生, 事件C 表示被选学生是运动员. (1)叙述ABC 的意义.(2)在什么条件下ABC A =成立 (3)什么时候A C =成立解: (1)被选学生是三年级男运动员;(2)因为ABC A =等价于A BC ⊂,即数学系的女生全部都是三年级运动员; (3)数学系的男生全部都是运动员,且运动员全部都是男生.6. 试用维恩图说明,当事件A ,B 互不相容,能否得出A ,B 也互不相容 解: 不能.7. 设样本空间{}010x x Ω=≤≤, 事件{}27A x x =≤≤,{}15B x x =≤≤,试求: ,,,A B AB B A A B -.解:{}17A B x x =≤≤;{}25AB x x =≤≤;{}12B A x x -=≤<;[0,2)(5,10]A B AB ==.习题(6) 设A B ⊂,()()0.2,0.3,P A P B ==求(1)()P A B ; (2)()P BA ;(3)()P A B -. 解: ()()0.3P A B P B ==;()()()0.1P B A P B P A =-=;()()0P A B P -=∅=.(7) 设()(),P AB P A B = 且()2,3P A =求()P B .解:注意到()()1()1()()()P A B P A B P A B P A P B P AB ==-=---. 从而由()()P AB P A B =得()()1P A P B +=.于是1()1()3P B P A =-=.(8) 设,,A B C 为三个随机事件, 且1()()(),2P A P B P C ===1()(),3P AB P BC ==()0P AC =,求()P A B C .解: 由()0P AC =知()0P ABC =. 于是由广义加法公式有()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+325236=-=.(9) 设,A B 为两个随机事件,且()0.7,()0.9P A P B ==,问: (4)在什么条件下, ()P AB 取到最大值,最大值是多少 (5)在什么条件下, ()P AB 取到最小值,最小值是多少解:(1)由于()()()()P AB P A P AB P B ≤≤且.由此可见在A B ⊂条件下,()P AB 取到最大值()0.7P A =. (6)注意到()()()()P AB P A P B P A B =+-. 因此当()1P A B =时,()P AB 取到最小值0.70.910.6+-=.思考: 有人说(2),在AB =∅时,()P AB 取到最小值0. 你能指出错误在什么 地方吗(10) 设,A B 为两个随机事件,证明: (1) ()1()()()P AB P A P B P A B =--+.(2) 1()()()()()()P A P B P AB P A B P A P B --≤≤≤+.证明:(1)由广义加法公式可得 ()1()1()()()P AB P AB P A P B P A B =-=--+.(2)由(1)立得1()()()P A P B P AB --≤. 其余不等式是显然的.(11) 设,,A B C 为三个随机事件,证明:()()()()P AB P AC P BC P A +-≤. 证明:由广义加法公式可得()(())(()())()()()()()().P A P A B C P AB AC P AB P AC P ABC P AB P AC P BC ≥==+-≥+-(12) 设12,,,n A A A 为n 个事件,利用数学归纳法证明:(1) (次可加性) ()121()nn k k P A A A P A =≤∑.(2) ()121()(1)nn k k P A A A P A n =≥--∑.证明: (1) 当2n =时, 由广义加法公式有()21212121()()()()k k P A A P A P A P A A P A ==+-≤∑.即对2n =成立.假设对n k =成立, 于是()12112111()()()()().kk k k k k P A A A A P A A A P A P A P A P A +++≤+≤+++即对1n k =+成立. (1)得证.(2)当2n =时, 由广义加法公式有()12121212()()()()()1P A A P A P A P A A P A P A =+-≥+-.即对2n =成立.假设对n k =成立, 即()121()(1)kk i i P A A A P A k =≥--∑.于是()1211211111()()1()(1)()1().k k k k k i k i k i i P A A A A P A A A P A P A k P A P A k +++=+=≥+-≥--+-=-∑∑ 即对1n k =+成立. (2)得证. (13) 设12,,A A 为一列事件,且1,1,2,n n A A n +⊂=,证明:1()lim ()n n n n P A P A +∞→+∞==.证明:(利用性质6(1)的结论) 显然12,,A A 为一列事件,且1,1,2,n n A A n +⊂=,即性质6(1)的条件成立,因此1()lim ()n n n n P A P A +∞→+∞==.于是11()1()1lim ()lim ()n n n n n n n n P A P A P A P A +∞+∞→+∞→+∞===-=-=.习题(7)掷两颗均匀的骰子,求下列事件概率: (1)两颗骰子的点数相同;(2)两颗骰子的点数之和为偶数;(3)一颗骰子的点数恰是另一颗骰子的点数的两倍.解:(1)16; (2) 12; (3)318.(8)有五条线段,长度分别为1,3,5,7,9(单位cm),从这五条线段中任取三条,求所取的三条线段能拼成三角形的概率. 解:由古典概型可得所求的概率为353310C =. (9)一个小孩用13个字母:A 、A 、A 、C 、E 、H 、I 、I 、M 、M 、N 、T 、T 做组字游戏.如果字母的各种排列是随机的,问组成”MATHEMATICIAN ”一词的概率为多少解:由古典概型可得所求的概率为3!2!2!2!13!. (10)n 个人随机地排成一列,甲、乙是其中的两个人,求甲、乙两人之间恰好有r 个人的概率, 这里0,1,,2r n =-.解:由古典概型可得所求的概率为2(1)!!2!!rn C n r r n -⋅--.(11) n 个男孩和m 个女孩(1m n ≤+)随机排成一列,求任意两个女孩都不相邻的概率.解:n 个男孩和m 个女孩(1m n ≤+)随机排成一列共有()!n m +种排法. 任意两个女孩都不相邻可按如下方式进行: 先将n 个男孩排好,共有1n +个间隔,从1n +个间隔中选出m 个位置进行女生排列.因此排法总数为1!!m n C n m +.从而由古典概型可得所求的概率为1!!()!m n C n m n m ++.(12) 从n 双尺码不同的鞋子中任取2(2)r r n <只,求下列事件的概率:a) 所取的2r 只鞋子中没有两只成对的; (2) 所取的2r 只鞋子中只有两只成对的; (3) 所取的2r 只鞋子恰成r 对.解:(1)2222r r n r n C C ⋅;(2)12(1)2(1)1222r r n n rnC C C ---⋅⋅;(3)22r n r n C C . (13) 掷一枚均匀的硬币n 次,求出现的正面次数多于反面次数的概率.解:设A 表示硬币出现的正面次数多于反面次数,B 表示硬币出现的反面次数多于正面次数,C 表示硬币出现的反面次数等于正面次数.易见()()()1P A P B P C ++=, ()()P A P B =.当21n m =+时,易见()0P C =,从而1()2P A =. 当2n m =时,易得21()2n n nP C C ⎛⎫= ⎪⎝⎭.从而211()122n n n P A C ⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.(14) 从一个装有a 个白球,b 个黑球的袋中逐一将球不放回地随机取出,直至留在袋中的球都是同一颜色的球为止,求最后留在袋中的球都是白球的概率.解:此题设想将袋中的a 个白球和b 个黑球全部摸出,则最后一次(第a b +次)摸出白球与本题所述的事件相同.因此由抽签原理可得所求的概率为aa b+. (15)口袋中有5个白球、3个黑球,从中任取两个,求至少取到一个白球的概率.解:所求的概率为23281C C -.(16)某人有m 把钥匙,其中只有一把能打开门,他一把接一把地试开门,不能开门的就扔掉.求他恰好在第k 次把门打开的概率. 解:所求的概率为()()1(2)(1)111(1)m m m k m m m k m-⋅--+⨯=⋅--+.(17)任取一个正整数,求下列事件的概率:a) 该数平方的个位数是1; (2)该数立方的个位和十位都是1.解:(1)我们知道一个数平方的个位数只与该数的个位数有关.因此我们观察取出数的个位数,其样本空间为{0,1,2,,9}Ω=.易知其是古典概型.设A 表示该数平方的个位数是1, 则{1,9}A =,于是2()10P A =. (2)一个数立方的个位和十位与该数的个位和十位有关.因此我们观察取出数的个位和十位数,其样本空间为{00,01,02,,99}Ω=,B 表示该数立方的个位和十位都是1.则{71}B =,于是1()100P B =. (18)某人忘记了一个电话号码的最后一位数字,因此只能试着随意地拨这位数,假设拔完规定电话位数算完成一次拨号,且假设对方电话不占线,试问他拨号不超过四次就能接通电话的概率是多少 解:所求的概率为191981987141010910981098710⨯⨯⨯⨯⨯⨯+++=⨯⨯⨯⨯⨯⨯. (19)一公司批发出售服装,每批100套.公司估计某客商欲购的那批100套服装中有4套是次品,12套是等级品,其余是优质品,客商在进货时要从中接连抽出2套做样品检查,如果在样品中发现有次品,或者2套都是等级品,客商就要退货.试求下列事件的概率:(1)样品中1套是优质品,1套是次品;(2)样品中1套是等级品,1套是次品;(3)退货;(4)该批货被接受;(5)样品中恰好有1套优质品. 解:(1)样品中1套是优质品,1套是次品的概率为2100844C ⨯; (3))样品中1套是等级品,1套是次品的概率为2100124C ⨯; (4)退货的概率为229612221001001C C C C ⎛⎫+- ⎪⎝⎭;(5)该批货被接受的概率为22229696121222210010010011C C C C C C C ⎡⎤⎛⎫--+-=⎢⎥ ⎪⎝⎭⎣⎦; (6)样品中恰好有1套优质品的概率为21008416C ⨯. (20)在桥牌比赛中,把52张牌(不包括大小王)任意地分给东、南、西、北四家(每家13张牌),求下列事件的概率:(1)北家的13张牌中恰有5张黑桃、4张红心、3张方块、1张草花;(2)南家及北家共有9张黑桃,东、西两家各有2张黑桃;(3) 南家及北家共有9张黑桃,东家有1张黑桃,西家有3张黑桃.解:(1)北家的13张牌中恰有5张黑桃、4张红心、3张方块、1张草花的概率为54311313131339!13!13!13!52!13!13!13!13!C C C C ⋅或54311313131352!13!39!C C C C ;(2)南家及北家共有9张黑桃,东、西两家各有2张黑桃的概率为13!39!9!2!2!17!11!11!52!26!13!13!⋅;(3)南家及北家共有9张黑桃,东家有1张黑桃,西家有3张黑桃的概率为13!39!9!1!3!17!12!10!52!26!13!13!⋅.(21)将3个球随机地放入4个杯子,求4个杯子中球的个数最大值为2的概率.解: 3个球随机地放入4个杯子共有34种放法. 4个杯子中球的个数最大值为2相当于先从3个球中任意地选出2个球作为一个整体和另外一个球放到4个杯子(注意不能同时放入同一个杯子)的放法总数为24A .于是所求的概率为2434A . (22) 设集合A 有4个元素, 集合B 有3个元素,随机地作集合A 到集合B的映射,求该映射为满射的概率.解:该映射为满射的概率为2443!3C ⋅.(23)将m 个球随机地放入n ()n m ≤个盒子中,求下列事件的概率:(14) 每个盒子中均有球; (2)恰好有1个盒子空着的概率. 解:设i A 表示第i 个盒子无球,1,2,,i n =.(6) 设A 表示每个盒子中均有球.则1212n n A A A A A A A ==.注意到(1)()mi m n P A n -=, 1,2,,i n =,(2)()mi j mn P A A n-=,1i jn ≤<≤,1212()(),1,1,2,,.k mi i i k mn k P A A A i i i n k n n -=≤<<<≤=于是由广义加法公式有()112121112111()()(1)()(1)(2)1().nn n i i j n i i j nm mn nn nm mmm n k n mk P A A A P A P A A P A A A n n C C C n nn n k C n +=≤<≤--==-++---=+++-=∑∑∑从而()()112121()()11mn kn n nmk n k P A P A A A P A A A C n -=-==-=-∑. (7) 恰好有1个盒子空着可以这样理解,先从n 个盒子任意选定1个空盒,然后将m 个球随机地放入1n -个盒子,使得1n -个盒子都有球. 从而由(1)及乘法原理可知"恰好有1个盒子空着"共有2111(1)(1)n m k m nn k C n C n k --=⎡⎤----⎢⎥⎣⎦∑样本点,于是其概率为2111(1)(1)n m k m nn k m C n C n k n --=⎡⎤----⎢⎥⎣⎦∑. (24)某班有m 个同学参加面试,共有n ()n m≤张考签,每人抽到考签用后即放回,在面试结束后,求至少有一张考签没有被抽到的概率. (8) 解:设i A 表示第i 张考签没有被抽到,1,2,,i n =.设A 表示至少有一张考签没有被抽到. 则12n A A A A =.注意到(1)()mi m n P A n -=, 1,2,,i n =,(2)()mi j mn P A A n-=,1i j n ≤<≤,1212()(),1,1,2,,.k mi i i k mn k P A A A i i i n k n n -=≤<<<≤=于是由广义加法公式有()112121112111()()()(1)()(1)(2)1().nn n i i j n i i j nm mn nn nm mmm n k n mk P A P A A A P A P A A P A A A n n C C C n nn n k C n +=≤<≤--===-++---=+++-=∑∑∑(25) 从n 阶行列式的一般展开式中任取一项,问这项包含主对角线元素的概率为多少解:设i A 表示所取的项含第i 行第i 列主对角线元素,1,2,,i n =.设A 表示所取的项包含主对角线元素. 则12n A A A A =.注意到(1)!()!i n P A n -=, 1,2,,i n =, (2)!()!i j n P A A n -=,1i j n ≤<≤,1212()!(),1,1,2,,.!k i i i k n k P A A A i i i n k n n -=≤<<<≤=于是由广义加法公式有()1121211121()()()(1)()(1)!(2)!1!!!1.!nn n i i j n i i j nn nn nnk P A P A A A P A P A A P A A A n n C C C n n n k +=≤<≤===-++---=+++=∑∑∑习题1. 已知111(),(|),(|)432P A P B A P A B ===,求()P B ; ()P A B ;()P A B . 解:注意到1()()(|),12P AB P A P B A ==故 ()1/121()(|)1/26P AB P B P A B ===.1()()()()3P A B P A P B P AB =+-=.1()()()6P A B P A P AB =-=. □2. 设()0.4,()0.7,P A P B ==试证:(|)0.5.P B A ≥证明: 因为()()()()()0.3P A B P B P AB P B P A =-≥-=, ()1()0.6P A P A =-= . 故 ()0.3(|)0.5.0.6()P A B P B A P A =≥= □ 3. 设N 件产品中有M 件不合格品,从中逐一不放回地取出两件产品, (6)已知第一次取出不合格品,求第二次也取出不合格品的概率;(7)已知所取的两件产品中有一件是不合格品,求另一件也是不合格品的概率.解:(1)设i A 表示"第i 次取出不合格品",1,2i =. 于是所求的概率为211()1M P A A N -=-. (2)设A 表示所取的两件产品中有一件是不合格品, B 表示另一件也是不合格品. 于是所求的概率为2222222()().()1MN M N M N N MNC C C P AB P B A C P A C C C --===-- □ 4. 掷两颗均匀的骰子,(1)已知点数和为偶数,求点数和等于8的概率;(2) 已知点数和为奇数,求点数和大于6的概率;(3) 已知点数和大于6,求点数和为奇数的概率.解: (1)所求的概率为518; (2)所求的概率为1218; (3)所求的概率为1221. □ 5. 一个家庭中有三个小孩,已知其中一个是女孩,求至少有一个男孩的概率. 解: A 表示三个小孩中有一个是女孩, B 表示三个小孩中至少有一个是男孩,于是所求的概率为()6/86().()7/87P AB P B A P A === □ 6. 为防止意外事故,在矿井内同时安装两种警报系统A 与B ,每种系统单独使用时,其有效率A 为,B 为,在A 失灵条件下B 有效概率为.求:(1)发生事故时,这两种警报系统至少有一个有效的概率;(2)在B 失灵条件下,A 有效的概率. 解:A 表示系统A 有效, B 表示系统B 有效. 由题意知()0.92,()0.93,(|)0.85P A P B P B A ===,从而()(|)()0.850.080.068,P A B P B A P A ==⨯= ()()()0.862P AB P B P A B =-=.(1)所求的概率为()()()()0.988P A B P A P B P AB =+-=.(2)所求的概率为()()()(|)0.8291()()P A B P A P AB P A B P B P B -===-. □7. 口袋中有1只红球和1n -只白球,现从中一个一个不放回地取球, (1) 已知前1()k k n -≤次都没有取到红球,求第k 次取出红球的概率. (2) 求第k 次取出红球的概率. 解: (1)所求的概率为11n k -+;(2)所求的概率为1n. □ 8. 口袋中有a 只白球、b 只黑球和3个红球,现从中一个一个不放回地取球,试求白球比黑球出现得早的概率. 解:设A 表示白球比黑球出现得早,i B 表示第i 次取出白球, i C 表示第i 次取出黑球, i D 表示第i 次取出红球, 则1121231234()()()A B D B D D B D D D B =, 且1121231234,,,B D B D D B D D D B 两两互斥,于是1121231234()()()()()P A P B P D B P D D B P D D D B =+++aa b=+. □ 9. 某射击小组共有20名射手,其中一级射手4人,二级射手8人,三级射手7人,四级射手1人,一、二、三、四级射手能通过选拔进入比赛的概率分别是,,,. 求任取一位射手,他能通过选拔进入比赛的概率. 解: 设i B 表示选出i 级射手,1,2,3,4i =. A 表示选出的射手能通过选拔进入比赛. 于是由全概率公式得41()(|)()0.645.iii P A P A B P B ===∑ □10. 12个乒乓球中有9个新球,3个旧球,第一次比赛,取出3个球,用完放回,第二次比赛又取出3个球.求第二次取出的3个球中有2个新球的概率. 解:设i B 表示第一次比赛取出3个球中有i 个新球, 0,1,2,3i =. A 表示第二次取出的3个球中有2个新球. 由全概率公式知21333939333001212()(|)().i i i ii i i i C C C C P A P A B P B C C --+====⨯∑∑ □ 11. 某商店出售尚未过关的某电子产品,进货10件,其中有3件次品,已经售出2件,现要从剩下的8件产品中任取一件,求这件是正品的概率. 解: 设i B 表示已经售出2件产品中有i 件次品,0,1,2i =.A 表示从剩下的8件产品中任取一件产品是正品.则由全概率公式知222372001057()(|)().810i i i i i i C C i P A P A B P B C -==⋅+==⨯=∑∑ □ 12. “学生参加选择题的测验,每一个题目有5个备选答案,其中有一个正确.若该学生知道答案,则他一定能选出正确的答案,否则他随机地从5个答案中选一个.若该学生知道所有试题的70%的正确答案,求:(1)对一试题,该学生选得正确答案的概率是多少(2)若该学生对一试题已选得正确答案,问他真正知道此题答案的概率是多少13. 设有来自3个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机地取一个地区的报名表,从中先后抽出两份. (1) 求先抽到的一份是女生报名表的概率.(2) 已知后抽到的一份是男生报名表,求先抽到的一份是女生报名表的概率. 14. 口袋中有一球,不知它的颜色是黑的还是白的,假设”该球是白球”的可能性为12.现再往口袋中放入一只白球,然后从口袋中任意取出一只,已知取出的是白球,求口袋中原来那只球是白球的概率.解: 设B 表示"往口袋中放入一只白球,然后从口袋中任意取出一只是白球," A 表示口袋中原来那只球是白球. 则由贝叶斯公式知11(|)()22(|)1113(|)()(|)()1222P B A P A P A B P B A P A P B A P A ⨯===+⨯+⨯. □15. 甲、乙两人轮流掷一颗骰子,甲先掷.每当某人掷出1点时,则交给对方掷,否则此人继续掷.试求第n 次由甲掷的概率. 解:设i A 表示第i 次由甲掷, 1,2,,i n =.显然125()1,()6P A P A ==, 1151(|),(|)66i i i i P A A P A A ++==,1,2,,i n =.于是由全概率公式有111()(|)()(|)()51()(1())6614(),1,2,,.66i i i i i i i i i i P A P A A P A P A A P A P A P A P A i n +++=+=⋅+⋅-=+⋅=从而112()123i i P A -⎡⎤⎛⎫=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 2,,i n =. □16. 设()0P A >,证明:()(|)1()P B P B A P A ≥-. 证明:注意到()()()()()P AB P A P AB P A P B =-≥-, 不等式两边同除以()P A 得()()()()(|)1()()()P AB P A P B P B P B A P A P A P A -=≥=-. □ 17. 设0()1P B <<,证明: (|)()P A B P A ≤的充要条件是(|)()P A B P A ≥.证明:(|)()()()()()()()()()()()()(|)().P A B P A P AB P A P B P AB P A P AB P A P A P B P A P B P A B P A ≤⇔≤⇔=-≥-=⇔≥ □。

相关文档
最新文档