【附20套高考模拟试题】2020届山东省广饶一中高考数学模拟试卷含答案

合集下载

2020年山东省高考数学模拟试卷

2020年山东省高考数学模拟试卷

2020年山东省高考数学模拟试卷学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共8小题)1.设集合A={(x,y)|x+y=2},B={(x,y)|y=x2},则A∩B=()A.{(1,1)} B.{(﹣2,4)}C.{(1,1),(﹣2,4)} D.∅2.已知a+bi(a,b∈R)是的共轭复数,则a+b=()A.﹣1 B.﹣C.D.13.设向量=(1,1),=(﹣1,3),=(2,1),且(﹣λ)⊥,则λ=()A.3 B.2 C.﹣2 D.﹣34.(﹣x)10的展开式中x4的系数是()A.﹣210 B.﹣120 C.120 D.2105.已知三棱锥S﹣ABC中,∠SAB=∠ABC=,SB=4,SC=2,AB=2,BC=6,则三棱锥S﹣ABC的体积是()A.4 B.6 C.4D.66.已知点A为曲线y=x+(x>0)上的动点,B为圆(x﹣2)2+y2=1上的动点,则|AB|的最小值是()A.3 B.4 C.3D.47.设命题p:所有正方形都是平行四边形,则¬p为()A.所有正方形都不是平行四边形B.有的平行四边形不是正方形C.有的正方形不是平行四边形D.不是正方形的四边形不是平行四边形8.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c二、多选题(共4小题)9.如图为某地区2006年~2018年地方财政预算内收入、城乡居民储蓄年末余额折线图.根据该折线图可知,该地区2006年~2018年()A.财政预算内收入、城乡居民储蓄年末余额均呈增长趋势B.财政预算内收入、城乡居民储蓄年末余额的逐年增长速度相同C.财政预算内收入年平均增长量高于城乡居民储蓄年末余额年平均增长量D.城乡居民储蓄年末余额与财政预算内收入的差额逐年增大10.已知双曲线C过点(3,)且渐近线为y=±x,则下列结论正确的是()A.C的方程为﹣y2=1B.C的离心率为C.曲线y=e x﹣2﹣1经过C的一个焦点D.直线x﹣﹣1=0与C有两个公共点11.正方体ABCD﹣A1B1C1D1的棱长为1,E,F,G分别为BC,CC1,BB1的中点.则()A.直线D1D与直线AF垂直B.直线A1G与平面AEF平行C.平面AEF截正方体所得的截面面积为D.点C与点G到平面AEF的距离相等12.函数f(x)的定义域为R,且f(x+1)与f(x+2)都为奇函数,则()A.f(x)为奇函数B.f(x)为周期函数C.f(x+3)为奇函数D.f(x+4)为偶函数三、填空题(共4小题)13.某元宵灯谜竞猜节目,有6名守擂选手和6名复活选手,从复活选手中挑选1名选手为攻擂者,从守擂选手中挑选1名选手为守擂者,则攻擂者、守擂者的不同构成方式共有种.14.已知cos(α+)﹣sinα=,则sin(α+)=﹣.15.直线l过抛物线C:y2=2px(p>0)的焦点F(1,0),且与C交于A,B两点,则p=,+=.16.半径为2的球面上有A,B,C,D四点,且AB,AC,AD两两垂直,则△ABC,△ACD与△ADB面积之和的最大值为.四、解答题(共6小题)17.在①b1+b3=a2,②a4=b4,③S5=﹣25这三个条件中任选一个,补充在下面问题中,若问题中的k存在,求k的值;若k不存在,说明理由.设等差数列{a n}的前n项和为S n,{b n}是等比数列,,b1=a5,b2=3,b5=﹣81,是否存在k,使得S k>S k+1且S k+1<S k+2?18.在△ABC中,∠A=90°,点D在BC边上.在平面ABC内,过D作DF⊥BC且DF=AC.(1)若D为BC的中点,且△CDF的面积等于△ABC的面积,求∠ABC;(2)若∠ABC=45°,且BD=3CD,求cos∠CFB.19.如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SA⊥平面ABCD,E,F分别为AD,SC的中点,EF与平面ABCD所成的角为45°.(1)证明:EF为异面直线AD与SC的公垂线;(2)若EF=BC,求二面角B﹣SC﹣D的余弦值.20.下面给出了根据我国2012年~2018年水果人均占有量y(单位:kg)和年份代码x绘制的散点图和线性回归方程的残差图(2012年~2018年的年份代码x分别为1~7).(1)根据散点图分析y与x之间的相关关系;(2)根据散点图相应数据计算得y i=1074,x i y i=4517,求y关于x的线性回归方程;(3)根据线性回归方程的残差图,分析线性回归方程的拟合效果(精确到0.01)附:回归方程中斜率和截距的最小二乘估计公式分别为:.21.设中心在原点,焦点在x轴上的椭圆E过点(1,),且离心率为,F为E的右焦点,P为E上一点,PF⊥x轴,⊙F的半径为PF.(1)求E和⊙F的方程;(2)若直线1:y=k(x﹣)(k>0)与⊙F交于A,B两点,与E交于C,D两点,其中A,C在第一象限,是否存在k使|AC|=|BD|?若存在,求l的方程:若不存在,说明理由.22.函数f(x)=(x>0),曲线y=f(x)在点(1,f(1))处的切线在y轴上的截距为.(1)求a;(2)讨论g(x)=x(f(x))2的单调性;(3)设a1=1,a n+1=f(a n),证明:2n﹣2|2lna n﹣ln7|<1.2020年山东省高考数学模拟试卷参考答案一、单选题(共8小题)1.【分析】可以选择代入选项中的元素.【解答】解:将(1,1)代入A,B成立,则(1,1)为A∩B中的元素.将(﹣2,4)代入A,B成立,则(﹣2,4)为A∩B中的元素.故选:C.【知识点】交集及其运算2.【分析】先利用复数的除法运算法则求出的值,再利用共轭复数的定义求出a+bi,从而确定a,b的值,求出a+b.【解答】解:===﹣i,∴a+bi=﹣(﹣i)=i,∴a=0,b=1,∴a+b=1,故选:D.【知识点】复数代数形式的乘除运算3.【分析】利用(﹣λ)⊥,列出含λ的方程即可.【解答】解:因为﹣λ=(1+λ,1﹣3λ),又因为(﹣λ)⊥,所以(1+λ,1﹣3λ)•(2,1)=2+2λ+1﹣3λ=0,解得λ=3,故选:A.【知识点】平面向量的坐标运算4.【分析】由二项式展开式通项公式可得:二项式(﹣x)10的展开式的通项为T r+1=,再令2r﹣10=4求解即可.【解答】解:由二项式(﹣x)10的展开式的通项T r+1=得,令2r﹣10=4,得r=7,即展开式中x4的系数是,故选:B.【知识点】二项式定理5.【分析】根据条件可以计算出AC,进而判断出SA⊥AC,所以SA⊥平面ABC,则三棱锥体积可表示为•SA•S△ABC,计算出结果即可.【解答】解:如图,因为∠ABC=,所以AC==2,则SA2+AC2=40+12=52=SC2,所以SA⊥AC,又因为∠SAB=,即SA⊥AB,AB∩AC=A,SA⊄平面ABC,所以SA⊥平面ABC,所以V S﹣ABC=•SA•S△ABC==4,故选:C.【知识点】棱柱、棱锥、棱台的体积6.【分析】作出对勾函数的图象,利用圆的性质,判断当A,B,C三点共线时,|AB|最小,然后进行求解即可.【解答】解:作出对勾函数y=x+(x>0)的图象如图:由图象知函数的最低点坐标为A(2,4),圆心坐标C(2,0),半径R=1,则由图象知当A,B,C三点共线时,|AB|最小,此时最小值为4﹣1=3,即|AB|的最小值是3,故选:A.【知识点】直线与圆的位置关系7.【分析】找出条件和结论,否定条件和结论.【解答】解:命题的否定为否定量词,否定结论.故¬p,有的正方形不是平行四边形.故选:C.【知识点】命题的否定8.【分析】通过和1比较大小判断,特殊值代入排除选项.【解答】解:因为a>b>c>1,令a=16,b=8,c=2,则log c a>1>log a b所以A,C错,则故D错,B对.故选:B.【知识点】对数值大小的比较二、多选题(共4小题)9.【分析】根据图分析每一个结论.【解答】解:由图知财政预算内收入、城乡居民储蓄年末余额均呈增长趋势,A对.由图知城乡居民储蓄年末余额的年增长速度高于财政预算内收入的年增长速度,B错.由图知财政预算内收入年平均增长量低于城乡居民储蓄年末余额年平均增长,C错.由图知城乡居民储蓄年末余额与财政预算内收入的差额逐年增大,D对.故选:AD.【知识点】进行简单的合情推理10.【分析】根据条件可求出双曲线C的方程,再逐一排除即可.【解答】解:设双曲线C的方程为,根据条件可知=,所以方程可化为,将点(3,)代入得b2=1,所以a2=3,所以双曲线C的方程为,故A对;离心率e====,故B错;双曲线C的焦点为(2,0),(﹣2,0),将x=2代入得y=e0﹣1=0,所以C对;联立,整理得y2﹣2y+2=0,则△=8﹣8=0,故只有一个公共点,故D错,故选:AC.【知识点】双曲线的简单性质11.【分析】取DD1中点M,则AM为AF在平面AA1D1D上的射影,由AM与DD1不垂直,可得AF与DD1不垂直;取B1C1中点N,连接A1N,GN,得平面A1GN∥平面AEF,再由面面平行的性质判断B;把截面AEF补形为四边形AEFD1,由等腰梯形计算其面积判断C;利用反证法证明D错误.【解答】解:取DD1中点M,则AM为AF在平面AA1D1D上的射影,∵AM与DD1不垂直,∴AF与DD1不垂直,故A错;取B1C1中点N,连接A1N,GN,可得平面A1GN∥平面AEF,故B正确;把截面AEF补形为四边形AEFD1,由等腰梯形计算其面积S=,故C正确;假设C与G到平面AEF的距离相等,即平面AEF将CG平分,则平面AEF必过CG的中点,连接CG交EF于H,而H不是CG中点,则假设不成立,故D错.故选:BC.【知识点】直线与平面平行的判定12.【分析】利用已知条件推导出f(x)的周期,再利用周期即可得出f(x)与f(x+3)都为奇函数.【解答】解:∵f(x+1)与f(x+2)都为奇函数,∴f(﹣x+1)=﹣f(x+1)①,f(﹣x+2)=﹣f(x+2)②,∴由①可得f[﹣(x+1)+1]=﹣f(x+1+1),即f(﹣x)=﹣f(x+2)③,∴由②③得f(﹣x)=f(﹣x+2),所以f(x)的周期为2,∴f(x)=f(x+2),则f(x)为奇函数,∴f(x+1)=f(x+3),则f(x+3)为奇函数,故选:ABC.【知识点】函数的周期性、函数奇偶性的判断三、填空题(共4小题)13.【分析】先阅读题意,再结合排列组合中的分步原理计算即可得解.【解答】解:由排列组合中的分步原理,从复活选手中挑选1名选手为攻擂者,共=6种选法,从守擂选手中挑选1名选手为守擂者,共=6种选法,则攻擂者、守擂者的不同构成方式共有6×6=36种选法,即攻擂者、守擂者的不同构成方式共有36种,故答案为:36.【知识点】排列、组合及简单计数问题14.【分析】由条件利用两角和差的三角公式求得cos(α+)的值,再利用诱导公式求得sin(α+)的值.【解答】解:∵cos(α+)﹣sinα=cosα﹣sinα﹣sinα=(cosα﹣sinα)=cos(α+)=,∴cos(α+)=.则sin(α+)=sin(α﹣)=﹣cos(α﹣+)=﹣cos(α+)=﹣,故答案为:﹣.【知识点】两角和与差的余弦函数15.【分析】本题先根据抛物线焦点坐标可得p的值,然后根据抛物线的定义和准线,可知|AF|=x1+1,|BF|=x2+1.再根据直线斜率存在与不存在两种情况进行分类讨论,联立直线与抛物线方程,利用韦达定理最终可得结果.【解答】解:由题意,抛物线C的焦点F(1,0),∴=1,故p=2.∴抛物线C的方程为:y2=4x.则可设A(x1,y1),B(x2,y2).由抛物线的定义,可知:|AF|=x1+1,|BF|=x2+1.①当斜率不存在时,x1=x2=1.∴=+=+=1.②当斜率存在时,设直线l斜率为k(k≠0),则直线方程为:y=k(x﹣1).联立,整理,得k2x2﹣2(k2+2)x+k2=0,∴.∴=+===1.综合①②,可知:=1.故答案为:2;1.【知识点】直线与圆锥曲线的综合问题16.【分析】首先求出长方体的外接球的半径,进一步利用三角形的面积和基本不等式的应用求出结果.【解答】解:半径为2的球面上有A,B,C,D四点,且AB,AC,AD两两垂直,如图所示则设四面体ABCD置于长方体模型中,外接球的半径为2,故x2+y2+z2=16,S=S△ABC+S△ACD+S△ABD=,由于2(x2+y2+z2)﹣4S=(x﹣y)2+(y﹣z)2+(x﹣z)2≥0,所以4S≤2•16=32,故S≤8,故答案为:8.【知识点】球内接多面体四、解答题(共6小题)17.【分析】利用等差数列、等比数列的通项公式和前n项和公式,先求出,等比数列{b n}的通项公式,再分别结合三个条件一一算出等差数列{a n}的通项公式,并判断是否存在符合条件的k.【解答】解:∵{b n}是等比数列,b2=3,b5=﹣81,∴,解得,∴b n=﹣(﹣3)n﹣1,∴a5=b1=﹣1,若S k>S k+1,即S k>S k+a k+1,则只需a k+1<0,同理,若S k+1<S k+2,则只需a k+2>0,若选①:b1+b3=a2时,a2=﹣1+(﹣9)=﹣10,又a5=﹣1,∴a n=3n﹣16,∴当k=4时,a5<0,a6>0,符合题意,若选②:a4=b4时,a4=b4=27,又a5=﹣1,∴d=﹣28,∴等差数列{a n}为递减数列,故不存在k,使得a k+1<0,a k+2>0,若选③:S5=﹣25时,S5===5a3=﹣25,∴a3=﹣5,又a5=﹣1,∴a n=2n﹣11,∴当k=4时,a5<0,a6>0,符合题意,综上所求:①,③符合题意.故答案为:①,③.【知识点】等差数列的前n项和、等比数列18.【分析】(1)直接利用三角形的面积公式的应用建立等量关系,进一步求出∠ABC.(2)利用三角形的边的关系式的应用和余弦定理的应用求出cos∠CFB.【解答】解:(1)如图所示在△ABC中,∠A=90°,点D在BC边上.在平面ABC内,过D作DF⊥BC且DF=AC,所以,,且△CDF的面积等于△ABC的面积,由于DF=AC,所以CD=AB,D为BC的中点,故BC=2AC,所以∠ABC=60°.(2)如图所示:设AB=k,由于∠A=90°,∠ABC=45°,BD=3DC,DF=AC,所以AC=k,CB=k,BD=,DF=k,由于DF⊥BC,所以CF2=CD2+DF2,则.且BF2=BD2+DF2,解得,在△CBF中,利用余弦定理==.【知识点】余弦定理19.【分析】(1)根据异面直线共垂线的定义进行证明即可.(2)建立空间直角坐标系,求出点的坐标,利用向量法求出平面的法向量,利用向量法进行转化求解即可.【解答】解:(1)取SD的中点H,连EH,FH,则EH∥SA,则EH⊥平面ABCD,∴EH⊥AD,∵FH∥CD,CD⊥AD,∴FH⊥AD,∴AD⊥平面EFH,∴AD⊥EF设BC=2,∴EF=1,EM=FM=,∴CD=AB=,SA=,建立如图的空间直角坐标系,则E(0,1,0),F(,1,),S(0,0,),C(,2,0),则=(,0,),=(,2,﹣),则=1﹣1=0,即EF⊥SC,即EF为异面直线AD与SC的公垂线.(2)若EF=BC,设BC=2,则EF=1,则EM=FM=,CD=AB=,SA=,D(0,2,0),B(,0,0),则=(,2,﹣),=(0,2,0),=(﹣,0,0),设面BCS的法向量为=(a,b,c),则,则,取a=c=1,则=(1,0,1)设面SCD的法向量为=(x,y,z),则,则,取z=,则y=1,则=(0,1,),则cosθ===,∴余弦值为.【知识点】与二面角有关的立体几何综合题20.【分析】(1)根据散点图可以看出,散点均匀的分布在一条直线附近,故y与x成线性相关;(2)根据给出信息,分别计算出x,y的平均值,代入最小二乘法估计公式,即可得到回归方程;(3)根据所给残差图分别区域的宽度分析即可.【解答】解:(1)根据散点图可知,散点均匀的分布在一条直线附近,且随着x的增大,y增大,故y 与x成线性相关,且为正相关;(2)依题意,=(1+2+3+4+5+6+7)=4,=y i=1074≈153.43,===≈7.89,=﹣=154.43﹣7.89×4=121.87,所以y关于x的线性回归方程为:=7.89x+121.87;(3)由残差图可以看出,残差对应点分布在水平带状区域内,且宽度较窄,说明拟合效果较好,回归方程的预报精度较高.【知识点】线性回归方程21.【分析】(1)根据离心率可得,代入a2=b2+c2得a=2b,再代点即可得出E的方程,再求出点F、P的坐标,从而求出圆F的方程;(2)设出C、D的坐标,求出|CF|、|DF|,根据条件得到|AB|=|CD|=1,利用韦达定理代入即可得到结论.【解答】解:(1)由题意可设椭圆的标准方程为,∵椭圆的离心率e=,∴,∵a2=b2+c2,∴a=2b,将点(1,)代入椭圆的方程得:,联立a=2b解得:,∴椭圆E的方程为:,∴F(),∵PF⊥x轴,∴P(),∴⊙F的方程为:;(2)由A、B再圆上得|AF|=|BF|=|PF|=r=,设C(x1,y1),D(x2,y2),|CF|=1同理:,若|AC|=|BD|,则|AB|=|CD|=1,∴4﹣,由得,∴∴4﹣=1得12k2=12k2+3,无解,故不存在.【知识点】直线与椭圆的位置关系22.【分析】(1)求得f(x)的导数,可得切线的斜率和切点,以及切线方程,代入(0,),解方程可得a;(2)求得g(x)的解析式和导数,分解因式可得导数的符号,进而判断单调性;(3)运用分析法证明,结合f(x)和g(x)的单调性,以及a n+1=f(a n),等比数列的性质,对a n与的大小关系讨论,即可得证.【解答】解:(1)函数f(x)=(x>0)的导数为f′(x)=,曲线y=f(x)在点(1,f(1))处的切线斜率为,切点为(1,),切线方程为y﹣=(x﹣1),代入(0,)可得﹣=(0﹣1),解得a=7;(2)g(x)=x(f(x))2=x•()2=,g′(x)=,当x>0时,g′(x)>0,可得g(x)在(0,+∞)递增;(3)要证2n﹣2|2lna n﹣ln7|<1,只需证|lna n﹣ln7|<,即为|ln|<,只要证|ln|<|ln|,由f(x)在(0,+∞)递减,a n>0,若a n>,a n+1=f(a n)<f()=,此时<1<,只要证ln<ln(),即为<(),即a n a n+12>7,此时a n>,由(2)知a n a n+12=g(a n)>g()=7;若a n<,a n+1=f(a n)>f()=,此时<1<,只要证ln<ln(),即为<(),即a n a n+12<7,此时a n<,由(2)知a n a n+12=g(a n)<g()=7;若a n=,不等式显然成立.综上可得|ln|<|ln|,(n≥1,n∈N*)成立,则|ln|<•|ln|=•ln7,由ln7<lne2=1,可得|ln|<,则2n﹣2|2lna n﹣ln7|<1成立.【知识点】利用导数研究函数的单调性。

山东省高考数学模拟考试试题及答案.pdf

山东省高考数学模拟考试试题及答案.pdf

的通项 an = 3n −16 , k = 4 ,同理②不存在,③ m.cksdu 牛逼 k = 4
18. (1)根据三角形面积很容易得出两边之比,再用正弦定理即可,60° (2)设 AC=4x(想想为什么不直接设为 x?),将三角形 CFB 三边表示出来,再用余
弦定理, 5 17 51
19. (1)取 SB 中点 M,易知 AM//EF,且 MAB=45°,可得 AS=AB,易证 AM⊥面 SBC, 进一步得证
C 6. 画个图,一目了然,A 7. 关键是把“所有”翻译成“任取”,C 8. 用 6、4、2 特值即可(更高级的,可以用极限特值 8-、4、2,绝招班里有讲),B 二、多项选择题 9. 这个,主要考语文,AD
10.
注意相同渐近线的双曲线设法,
x2 a2

y2 b2
=
,D
选项可用头哥口诀(直线平方……)
AC 11. B 选项构造二面平行,C 选项注意把面补全为 AEFD1(也可通过排除法选出),D 选项
CG 中点明显不在面上,BC 12. 利用函数平移的思想找对称中心,ABC 三、填空题 13. 确定不是小学题?36
14. 竟然考和差化积,头哥告诉过你们记不住公式怎么办,不过这题直接展开也可以, − 4 5
4
4
(2)单一关参模型,条件转化为 AB=CD=1(绝招班里有讲),剩下就是计算了,无解, 所以不存在 22. (1)送分的(求导可用头哥口诀),7
(2)考求导,没啥意思,注意定义域,单增 (0, +)
(3)有点意思,详细点写
由递推公式易知 an 1
( )( ) 由 an+1 −
7 = an + 7 − an +1

2020年山东省高考数学模拟试卷(含答案)20200610

2020年山东省高考数学模拟试卷(含答案)20200610

2020年山东省高考数学模拟试卷一、单项选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中只有一项是符合题目要求的。

1.(5分)设集合A ={(x ,y )|x +y =2},B ={(x ,y )|y =x 2},则A ∩B =( ) A .{(1,1)}B .{(﹣2,4)}C .{(1,1),(﹣2,4)}D .∅2.(5分)已知a +bi (a ,b ∈R )是1−i 1+i的共轭复数,则a +b =( )A .﹣1B .−12C .12D .13.(5分)设向量a →=(1,1),b →=(﹣1,3),c →=(2,1),且(a →−λb →)⊥c →,则λ=( ) A .3B .2C .﹣2D .﹣34.(5分)(1x−x )10的展开式中x 4的系数是( ) A .﹣210B .﹣120C .120D .2105.(5分)已知三棱锥S ﹣ABC 中,∠SAB =∠ABC =π2,SB =4,SC =2√13,AB =2,BC =6,则三棱锥S ﹣ABC 的体积是( ) A .4B .6C .4√3D .6√36.(5分)已知点A 为曲线y =x +4x(x >0)上的动点,B 为圆(x ﹣2)2+y 2=1上的动点,则|AB |的最小值是( ) A .3B .4C .3√2D .4√27.(5分)设命题p :所有正方形都是平行四边形,则¬p 为( ) A .所有正方形都不是平行四边形B .有的平行四边形不是正方形C .有的正方形不是平行四边形D .不是正方形的四边形不是平行四边形 8.(5分)若a >b >c >1且ac <b 2,则( ) A .log a b >log b c >log c a B .log c b >log b a >log a c C .log b c >log a b >log c aD .log b a >log c b >log a c 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得09.(5分)如图为某地区2006年~2018年地方财政预算内收入、城乡居民储蓄年末余额折线图.根据该折线图可知,该地区2006年~2018年( ) A .财政预算内收入、城乡居民储蓄年末余额均呈增长趋势 B .财政预算内收入、城乡居民储蓄年末余额的逐年增长速度相同C .财政预算内收入年平均增长量高于城乡居民储蓄年末余额年平均增长量D .城乡居民储蓄年末余额与财政预算内收入的差额逐年增大10.(5分)已知双曲线C 过点(3,√2)且渐近线为y =±√33x ,则下列结论正确的是( ) A .C 的方程为x 23−y 2=1B .C 的离心率为√3C .曲线y =e x ﹣2﹣1经过C 的一个焦点D .直线x −√2y −1=0与C 有两个公共点11.(5分)正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,E ,F ,G 分别为BC ,CC 1,BB 1的中点.则( )A .直线D 1D 与直线AF 垂直B .直线A 1G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为98D.点C与点G到平面AEF的距离相等12.(5分)函数f(x)的定义域为R,且f(x+1)与f(x+2)都为奇函数,则()A.f(x)为奇函数B.f(x)为周期函数C.f(x+3)为奇函数D.f(x+4)为偶函数三、填空题:本题共4小题,每小题5分,共20分13.(5分)某元宵灯谜竞猜节目,有6名守擂选手和6名复活选手,从复活选手中挑选1名选手为攻擂者,从守擂选手中挑选1名选手为守擂者,则攻擂者、守擂者的不同构成方式共有种.14.(5分)已知cos(α+π6)﹣sinα=4√35,则sin(α+11π6)=.15.(5分)直线l过抛物线C:y2=2px(p>0)的焦点F(1,0),且与C交于A,B两点,则p=,1|AF|+1|BF|=.16.(5分)半径为2的球面上有A,B,C,D四点,且AB,AC,AD两两垂直,则△ABC,△ACD与△ADB面积之和的最大值为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在①b1+b3=a2,②a4=b4,③S5=﹣25这三个条件中任选一个,补充在下面问题中,若问题中的k存在,求k的值;若k不存在,说明理由.设等差数列{a n}的前n项和为S n,{b n}是等比数列,,b1=a5,b2=3,b5=﹣81,是否存在k,使得S k>S k+1且S k+1<S k+2?18.(12分)在△ABC中,∠A=90°,点D在BC边上.在平面ABC内,过D作DF⊥BC 且DF=AC.(1)若D为BC的中点,且△CDF的面积等于△ABC的面积,求∠ABC;(2)若∠ABC=45°,且BD=3CD,求cos∠CFB.19.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SA⊥平面ABCD,E,F分别为AD,SC的中点,EF与平面ABCD所成的角为45°.(1)证明:EF为异面直线AD与SC的公垂线;(2)若EF=12BC,求二面角B﹣SC﹣D的余弦值.20.(12分)下面给出了根据我国2012年~2018年水果人均占有量y(单位:kg)和年份代码x绘制的散点图和线性回归方程的残差图(2012年~2018年的年份代码x分别为1~7).(1)根据散点图分析y与x之间的相关关系;(2)根据散点图相应数据计算得∑7i=1y i=1074,∑7i=1x i y i=4517,求y关于x的线性回归方程;(3)根据线性回归方程的残差图,分析线性回归方程的拟合效果(精确到0.01)附:回归方程y=b x+a中斜率和截距的最小二乘估计公式分别为:b=∑n i=1(x i−x)(y i−y),a=y−b x.∑n i−1(x i−x)221.(12分)设中心在原点,焦点在x 轴上的椭圆E 过点(1,√32),且离心率为√32,F 为E 的右焦点,P 为E 上一点,PF ⊥x 轴,⊙F 的半径为PF . (1)求E 和⊙F 的方程;(2)若直线l :y =k (x −√3)(k >0)与⊙F 交于A ,B 两点,与E 交于C ,D 两点,其中A ,C 在第一象限,是否存在k 使|AC |=|BD |?若存在,求l 的方程:若不存在,说明理由.22.(12分)函数f (x )=a+x1+x (x >0),曲线y =f (x )在点(1,f (1))处的切线在y 轴上的截距为112.(1)求a ;(2)讨论g (x )=x (f (x ))2的单调性;(3)设a 1=1,a n +1=f (a n ),证明:2n ﹣2|2lna n ﹣ln 7|<1.2020年山东省高考数学模拟试卷答案解析1.解:将(1,1)代入A ,B 成立,则(1,1)为A ∩B 中的元素.将(﹣2,4)代入A ,B 成立,则(﹣2,4)为A ∩B 中的元素.故选:C . 2.【解答】解:1−i 1+i=(1−i)2(1+i)(1−i)=−2i 2=−i ,∴a +bi =﹣(﹣i )=i , ∴a =0,b =1, ∴a +b =1,故选:D .3.【解答】解:因为a →−λb →=(1+λ,1﹣3λ),又因为(a →−λb →)⊥c →, 所以(1+λ,1﹣3λ)•(2,1)=2+2λ+1﹣3λ=0,解得λ=3,故选:A . 4.【解答】解:由二项式(1x−x )10的展开式的通项T r +1=C 10r (1x)10−r (−x)r =(−1)r C 10r x2r−10得,令2r ﹣10=4,得r =7,即展开式中x 4的系数是(−1)7C 107=−120,故选:B .5【解答】解:如图,因为∠ABC =π2,所以AC =√AB 2+BC 2=2√10, 则SA 2+AC 2=40+12=52=SC 2,所以SA ⊥AC ,又因为∠SAB =π2,即SA ⊥AB ,AB ∩AC =A ,SA ⊄平面ABC ,所以SA ⊥平面ABC , 所以V S ﹣ABC =13•SA •S △ABC =13×2√3×12×2×6=4√3, 故选:C .6.【解答】解:作出对勾函数y =x +4x (x >0)的图象如图:由图象知函数的最低点坐标为A (2,4),圆心坐标C (2,0),半径R =1,则由图象知当A ,B ,C 三点共线时,|AB |最小,此时最小值为4﹣1=3, 即|AB |的最小值是3, 故选:A .7.【解答】解:命题的否定为否定量词,否定结论.故¬p ,有的正方形不是平行四边形. 故选:C .8.【解答】解:因为a >b >c >1,令a =16,b =8,c =2, 则log c a >1>log a b 所以A ,C 错, 则log c b =3>log b a =43故D 错,B 对. 故选:B .9.【解答】解:由图知财政预算内收入、城乡居民储蓄年末余额均呈增长趋势,A 对. 由图知城乡居民储蓄年末余额的年增长速度高于财政预算内收入的年增长速度,B 错. 由图知财政预算内收入年平均增长量低于城乡居民储蓄年末余额年平均增长,C 错. 由图知城乡居民储蓄年末余额与财政预算内收入的差额逐年增大,D 对. 故选:AD .10.【解答】解:设双曲线C 的方程为x 2a 2−y 2b 2=1,根据条件可知ba=√33,所以方程可化为x 23b 2−y 2b 2=1,将点(3,√2)代入得b 2=1,所以a 2=3,所以双曲线C 的方程为x 23−y 2=1,故A对;离心率e =c a =√a 2+b 2a 2=√3+13=2√33,故B 错;双曲线C 的焦点为(2,0),(﹣2,0),将x =2代入得y =e 0﹣1=0,所以C 对;联立{x 23−y 2=1x −√2y −1=0,整理得y 2﹣2√2y +2=0,则△=8﹣8=0,故只有一个公共点,故D 错,故选:AC .11.【解答】解:取DD 1 中点M ,则AM 为AF 在平面AA 1D 1D 上的射影, ∵AM 与DD 1 不垂直,∴AF 与DD 1不垂直,故A 错;取B 1C 1中点N ,连接A 1N ,GN ,可得平面A 1GN ∥平面AEF ,故B 正确; 把截面AEF 补形为四边形AEFD 1,由等腰梯形计算其面积S =98,故C 正确;假设C 与G 到平面AEF 的距离相等,即平面AEF 将CG 平分,则平面AEF 必过CG 的中点,连接CG 交EF 于H ,而H 不是CG 中点,则假设不成立,故D 错.故选:BC .12【解答】解:∵f (x +1)与f (x +2)都为奇函数,∴f (﹣x +1)=﹣f (x +1)①,f (﹣x +2)=﹣f (x +2)②,∴由①可得f [﹣(x +1)+1]=﹣f (x +1+1),即f (﹣x )=﹣f (x +2)③, ∴由②③得f (﹣x )=f (﹣x +2),所以f (x )的周期为2, ∴f (x )=f (x +2),则f (x )为奇函数,∴f (x +1)=f (x +3),则f (x +3)为奇函数,故选:ABC .13【解答】解:由排列组合中的分步原理,从复活选手中挑选1名选手为攻擂者,共C 61=6种选法,从守擂选手中挑选1名选手为守擂者,共C 61=6种选法,则攻擂者、守擂者的不同构成方式共有6×6=36种选法, 即攻擂者、守擂者的不同构成方式共有36种,故答案为:36.14.【解答】解:∵cos (α+π6)﹣sin α=√32cos α−12sin α﹣sin α=√3(12cos α−√32sin α)=√3cos(α+π3)=4√35, ∴cos (α+π3)=45.则sin (α+11π6)=sin (α−π6)=﹣cos (α−π6+π2)=﹣cos (α+π3)=−45, 故答案为:−45.15.【解答】解:由题意,抛物线C 的焦点F (1,0), ∴p2=1,故p =2.∴抛物线C 的方程为:y 2=4x .则可设A (x 1,y 1),B (x 2,y 2).由抛物线的定义,可知:|AF |=x 1+1,|BF |=x 2+1. ①当斜率不存在时,x 1=x 2=1. ∴1|AF|+1|BF|=1x 1+1+1x 2+1=12+12=1.②当斜率存在时,设直线l 斜率为k (k ≠0),则直线方程为:y =k (x ﹣1). 联立{y =k(x −1)y 2=4x,整理,得k 2x 2﹣2(k 2+2)x +k 2=0,∴{△=4(k 2+2)2−4k 4=16(k 2+1)>0x 1+x 2=2(k 2+2)k 2x 1⋅x 2=1.∴1|AF|+1|BF|=1x 1+1+1x 2+1=x 1+x 2+2x 1x 2+x 1+x 2+1=x 1+x 2+2x 1+x 2+2=1.综合①②,可知:1|AF|+1|BF|=1.故答案为:2;1.16.【解答】解:半径为2的球面上有A ,B ,C ,D 四点,且AB ,AC ,AD 两两垂直, 如图所示则设四面体ABCD 置于长方体模型中,外接球的半径为2,故x2+y2+z2=16,S=S△ABC+S△ACD+S△ABD=12yz+12xy+12xz,由于2(x2+y2+z2)﹣4S=(x﹣y)2+(y﹣z)2+(x﹣z)2≥0,所以4S≤2•16=32,故S≤8,故答案为:8.17.【解答】解:因为在等比数列{b n}中,b2=3,b5=﹣81,所以其公比q=﹣3,从而b n=b2(−3)n−2=3×(−3)n−2,从而a5=b1=﹣1.若存在k,使得S k>S k+1,即S k>S k+a k+1,从而a k+1<0;同理,若使S k+1<S k+2,即S k+1<S k+1+a k+2,从而a k+2>0.若选①:由b1+b3=a2,得a2=﹣1﹣9=﹣10,所以a n=3n﹣16,当k=4时满足a5<0,且a6>0成立;若选②:由a4=b4=27,且a5=﹣1,所以数列{a n}为递减数列,故不存在a k+1<0,且a k+2>0;若选③:由S5=−25=5(a1+a5)2=5a3,解得a3=﹣5,从而a n=2n﹣11,所以当n=4时,能使a5<0,a6>0成立.18.【解答】解:(1)如图所示在△ABC中,∠A=90°,点D在BC边上.在平面ABC内,过D作DF⊥BC且DF=AC,所以S△ABC=12⋅AB⋅AC,S△CDF=12⋅CD⋅DF,且△CDF的面积等于△ABC的面积,由于DF=AC,所以CD=AB,D为BC的中点,故BC=2AC,所以∠ABC=60°.(2)如图所示:设AB=k,由于∠A=90°,∠ABC=45°,BD=3DC,DF=AC,所以AC=k,CB=√2k,BD=3√24k,DF=k,由于DF⊥BC,所以CF2=CD2+DF2,则CF=3√24k.且BF2=BD2+DF2,解得BF=√344k,在△CBF中,利用余弦定理cos∠CBF=CF2+BF2−BC22⋅CF⋅BF=98k2+178k2−2k22⋅3√24k⋅√344k=5√1751.19.【解答】解:(1)取SB中点M,连接FM和MA,则四边形FMAE为平行四边形,∵EF与底面所成角度为45°,∴AM与底面所成角度为45°,即∠MAB=45°,则△SAB为等腰直角三角形,则AM ⊥SB ,AM ⊥BC ,即AM ⊥面SBC ,EF ⊥面SBC ,则EF ⊥SC ,EF ⊥BC ,EF ⊥AD ,即EF 为异面直线AD 与SC 的公垂线. (2)若EF =12BC ,设BC =2,则EF =1,则EM =FM =√22,CD =AB =√2,SA =√2,D (0,2,0),B (√2,0,0),则SC →=(√2,2,−√2),BC →=(0,2,0),CD →=(−√2,0,0),设面BCS 的法向量为n →=(a ,b ,c ),则{n →⋅SC →=√2a +2b −√2c =0n →⋅BC →=2b =0,则{b =0a =c ,取a =c =1,则n →=(1,0,1) 设面SCD 的法向量为m →=(x ,y ,z ),则{m →⋅SD →=√2x +2y −√2z =0m →⋅CD →=−√2x =0,则{x =02y =√2z,取z =√2,则y =1,则m →=(0,1,√2),则cos θ=m →⋅n→|m →||n →|=√2√2⋅√3=√33,由图象知二面角B ﹣SC ﹣D 为钝二面角.则二面角B ﹣SC ﹣D 的余弦值为−√33.20.【解答】解:(1)根据散点图可知,散点均匀的分布在一条直线附近,且随着x 的增大,y 增大,故y 与x 成线性相关,且为正相关;(2)依题意,x =17(1+2+3+4+5+6+7)=4,y =17∑ 7i=1y i =17×1074≈153.43, b =∑ 71x i y i −7xy ∑ 71x i 2−7x2=∑ 71x 1y i −7x×y ∑ 71x i 2−7x2=4517−7×154.43×4140−7×42≈7.89, a =y −b x =154.43﹣7.89×4=121.87,所以y 关于x 的线性回归方程为:y =7.89x +121.87;(3)由残差图可以看出,残差对应点分布在水平带状区域内,且宽度较窄,说明拟合效果较好,回归方程的预报精度较高.21.【解答】解:(1)由题意可设椭圆的标准方程为x 2a 2+y 2b 2=1,∵椭圆的离心率e =√32,∴c a =√32,∵a 2=b 2+c 2,∴a =2b ,将点(1,√32)代入椭圆的方程得:1a 2+34b2=1, 联立a =2b 解得:{a =2b =1,∴椭圆E 的方程为:x 24+y 2=1,∴F (√3,0),∵PF ⊥x 轴,∴P (√3,±12),∴⊙F 的方程为:(x −√3)2+y 2=14; (2)由A 、B 在圆上得|AF |=|BF |=|PF |=r =12,设C (x 1,y 1),D (x 2,y 2),|CF |=√(x 1−√3)2+y 12=2−√32x 1同理:|DF|=2−√32x 2,若|AC |=|BD |,则|AC |+|BC |=|BD |+|BC |,即|AB |=|CD |=1, ∴4−√32(x 1+x 2)=1,由{x 24+y 2=1y =k(x −√3)得(4k 2+1)x 2−8√3k 2x +12k 2−4=0, ∴x 1+x 2=8√3k24k 2+1∴4−12k24k 2+1=1得12k 2=12k 2+3,无解,故不存在.22.【解答】解:(1)函数f (x )=a+x 1+x (x >0)的导数为f ′(x )=1−a(x+1)2, 曲线y =f (x )在点(1,f (1))处的切线斜率为1−a 4,切点为(1,a+12),切线方程为y −a+12=1−a 4(x ﹣1), 代入(0,112)可得112−a+12=1−a 4(0﹣1),解得a =7;(2)g (x )=x (f (x ))2=x •(7+x 1+x)2=x 3+14x 2+49x(x+1)2,g ′(x )=(x+7)[(x−2)2+3](x+1)3,当x >0时,g ′(x )>0,可得g (x )在(0,+∞)递增;(3)要证2n ﹣2|2lna n ﹣ln 7|<1,只需证|lna n −12ln 7|<12n−1,即为|lnn √7|12n−1,只要证|lnn+1√7|12|lnn√7|由f (x )在(0,+∞)递减,a n >0,若a n >√7,a n +1=f (a n )<f (√7)=√7,此时n+1√7<1n √7, 只要证ln √7a n+1<ln (n √7)12,即为√7a n+1<(n √7)12,即a n a n +12>7√7,此时a n >√7,由(2)知a n a n +12=g (a n )>g (√7)=7√7; 若a n <√7,a n +1=f (a n )>f (√7)=√7,此时n √71n+1√7, 只要证ln n+1√7<ln (√7a n)12,即为n+1√7<(√7a n )12,即a n a n +12<7√7,此时a n <√7,由(2)知a n a n +12=g (a n )<g (√7)=7√7; 若a n =√7,不等式显然成立. 综上可得|ln n+1√7|12|lnn√7|(n ≥1,n ∈N *)成立,则|lnn√7|12n−1•|ln1√7|=12n−1•12ln 7,由12ln 7<12lne 2=1,可得|lnn√7|12n−1,则2n ﹣2|2lna n ﹣ln 7|<1成立.。

2020年2020届山东省高三高考模拟考试数学试卷及解析

2020年2020届山东省高三高考模拟考试数学试卷及解析

2020年2020届山东省高三高考模拟考试数学试卷★祝考试顺利★ (解析版)一、单项选择题:1.已知集合{1,2}A =-,{|1}B x ax ==,若B A ⊆,则由实数a 的所有可能的取值组成的集合为( )A. 11,2⎧⎫⎨⎬⎩⎭B. 11,2⎧⎫-⎨⎬⎩⎭C. 10,1,2⎧⎫⎨⎬⎩⎭D. 11,0,2⎧⎫-⎨⎬⎩⎭【答案】D 【解析】分B 为空集和B 不为空集两种情况讨论,分别求出a 的范围,即可得出结果. 【详解】因为集合{1,2}A =-,{|1}B x ax ==,B A ⊆, 若B 为空集,则方程1ax =无解,解得0a =; 若B 不为空集,则0a ≠;由1ax =解得1x a=,所以11a =-或12a =,解得1a =-或12a =,综上,由实数a 的所有可能的取值组成的集合为11,0,2⎧⎫-⎨⎬⎩⎭.故选D2.若1iz i =-+(其中i 是虚数单位),则复数z 的共轭复数在复平面内对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】D分析:变形1iz i =-+,利用复数代数形式的乘除运算化简,求出z 的坐标即可得结论. 详解:由i 1i z =-+, 得()()21i i 1i 1i i iz -+--+===+-,1z i =- ∴复数z 的共轭复数在复平面内对应的点的坐标为()1,1-,位于第四象限,故选D.3.函数()()22ln x xf x x -=+的图象大致为( )A. B.C. D.【答案】B 【解析】根据函数奇偶性的判断可知函数为偶函数,图象关于y 轴对称,排除D ;根据()0,1x ∈时,()0f x <,排除,A C ,从而得到正确选项. 【详解】()f x 定义域为{}0x x ≠,且()()()()22ln 22ln x x x x f x x x f x ---=+-=+=()f x ∴为偶函数,关于y 轴对称,排除D ;当()0,1x ∈时,220x x -+>,ln 0x <,可知()0f x <,排除,A C . 本题正确选项:B4.《九章算术⋅衰分》中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱数多少衰出之,问各几何?”翻译为“今有甲持钱560,乙持钱350,丙持钱180,甲、乙、丙三个人一起出关,关税共计100钱,要按个人带钱多少的比例交税,问三人各应付多少税?”则下列说法中错误的是( ) A. 甲付的税钱最多 B. 乙、丙两人付的税钱超过甲 C. 乙应出的税钱约为32 D. 丙付的税钱最少【答案】B 【解析】通过阅读可以知道,A D 说法的正确性,通过计算可以知道,B C 说法的正确性.【详解】甲付的税钱最多、丙付的税钱最少,可知,A D 正确:乙、丙两人付的税钱占总税钱的3511002<不超过甲。

2020年普通高等学校招生考试全国统一考试(数学模拟卷)及其参考答案(山东)

2020年普通高等学校招生考试全国统一考试(数学模拟卷)及其参考答案(山东)

A. 210
B. 120
C. 120
D. 210
4.B 【解析 】由二项 展开式, 知其通项 为 Tr1
C1r0
(
1 x
)10r
(
x)r
(1)r C1r0 x2r10
,令
2r 10 4 ,解得 r 7 .所以 x4 的系数为 (1)7 C170 120. 选 B.
5.已知三棱锥 S ABC 中, SAB ABC π , SB 4, SC 2 13, AB 2, BC 6 , 2
,得
x
2.
由 0 x 2 时, g(x) 0 , g(x) 单调递闰;
当 x 2 时, g(x) 0 , g(x) 单调递增.
从 而 g(x) 在 x 2 时 取 得 最 小 值 为 g(2) 16 , 从 而 点 A 到 圆 心 C 的 最 小 值 为
g(2) 16 4 ,所以| AB | 的最小值为 4 1 3. 选 A.
C. {(1,1), (2, 4)}
D.
x y 2
x 1
1.C【解析】
首先注意到集合 A 与集合 B 均为点集,联立 y
x2
,解得
y
1
,或
x 2
y
4
பைடு நூலகம்
,从而集合
A
B
{(1,1),
(2,
4)}
,选
C.
2.已知 a bi(a, b R) 是 1 i 的共轭复数,则 a b 1 i
A. 1
2
2
SA AC
.所以
SA
平面
ABC
.又由于
SABC
1 26 2
6
,从而

山东省高考数学模拟考试试题及答案.doc

山东省高考数学模拟考试试题及答案.doc

山东省 2020 年高考数学模拟考试试题及答案参考答案一、1. 一看就是两个交点,所以需要算? C2. 分母数化,忘了“共”, D3.的向量坐运算, A4.球盒模型(考点关班里有), 37 分配, B5.在一个方体中画即可(出人就是从方体出凑的,其就是一个臑 bie nao) C6.画个,一目了然, A7.关是把“所有”翻成“任取”,C8. 用 6、 4、 2 特即可(更高的,可以用极限特8-、 4、 2,招班里有), B二、多9. 个,主要考文,AD10. 注意相同近的双曲法,x2 y2,D 可用哥口(直平方⋯⋯)a2 b2AC11.B 构造二面平行, C注意把面全 AEFD1(也可通排除法出), D CG 中点明不在面上, BC12.利用函数平移的思想找称中心,ABC三、填空13. 确定不是小学?3614. 竟然考和差化,哥告你不住公式怎么,不直接展开也可以,4 515. 利用焦半径公式,或者更快的用特殊位置,或者更更快用极限特殊位置(招班有),2, 116.根据称之美原(招班有), 8(老,填空所有都可以不笔直接口算出来的呀~~~)四、解答b n n 117. 故弄玄虚,都是等差等比的基本运算,选①,先算等比的通项 3 ,再算等差的通项 a n 3n 16 ,k 4,同理②不存在,③牛逼 k 418.(1)根据三角形面积很容易得出两边之比,再用正弦定理即可,60°(2)设 AC=4x(想想为什么不直接设为x?),将三角形 CFB三边表示出来,再用余弦定理,5175119.(1)取 SB中点 M,易知 AM//EF,且 MAB=45°,可得 AS=AB,易证 AM⊥面 SBC,进一步得证3(2)可设 AB=AS=a,AD=2a ,建系求解即可,320.(1)正相关(2)公式都给了,怕啥,但是需要把公式自己化简一下,y 121.86 7.89x ?(3)两侧分布均匀,且最大差距控制在1%左右,拟合效果较好x 2y2 2 1 1, x 321. (1)没啥可说的,y24 4(2)单一关参模型,条件转化为 AB=CD=1(绝招班里有讲),剩下就是计算了,无解,所以不存在22.(1)送分的(求导可用头哥口诀), 7(2)考求导,没啥意思,注意定义域,单增0,(3)有点意思,详细点写由递推公式易知a n 1a n 7 1 7 a n 7由 a n 1 7 知71 a n 1a n若a n7 ,则 a n 1 7 ;若 a n 7 ,则 a n 1 7又 a 17 ,所以 n 为奇数时 an7 , n 为偶数时 a71n1) n 为奇数时, a n7 , a n 1 7 ,由( 2)的单增可知7 7 2a n a n 2 1 a n f 2 a n77 77 1可知 1a n 2 1 7ln 7lna n 21lnan2 lnan 17a na n7 7 72) n 为偶数时, a n7 , a n 1 7 ,由( 2)的单增可知7 7 2a n a n 2 1 a n f 2 a n77 77 1a n 71 lna n ln70 a n an 1可知7 272 ln2 lna n 1an 177lnan 11由 1) 2)可得7ln a n27a n a 1ln a 2 ln a 3ln a nn 1n 1所以 ln77L 7 1 1 7lna 1a 2an 1ln 727 ln ln ln27 7 7所以 2n 2 2ln a n ln7 1证毕注 : 奉 劝 大 家 千 万 不 要 求 通 项 公 式 , 当 然 利 用 不 动 点 也 能 求 出 来n 171 7 777a n1 7 ,只是接下来你就要崩溃了吧 ~~~1 n 117 77 117。

山东省2020年高考模拟考试数学试题 Word版含答案

山东省2020年高考模拟考试数学试题 Word版含答案

山东省2020年普通高等院校统一招生模拟考试高三教学质量检测数学试题2020.02本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,将第I 卷选择题的正确答案选项填涂在答题卡相应位置上,考试结束,将答题卡交回.考试时间120分钟,满分150分. 注意事项:1.答卷前,考生务必将姓名、座号、准考证号填写在答题卡规定的位置上. 2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.3.第Ⅱ卷答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第I 卷(选择题 共60分)一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数2,i z z 在复平面内对应的点分别为()()11221,1,0,1z Z Z z =,则 A .1i +B .1i -+C .1i --D .1i -2.设a R ∈,则“sin cos αα=”是“sin 21α=”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.向量a b r r ,满足()()1,2a b a b a b ==+⊥-u u r u u r r r r r,则向量a b r r 与的夹角为 A .45oB .60oC .90oD .120o4.已知数列{}n a 中,372,1a a ==.若1n a ⎧⎫⎨⎬⎩⎭为等差数列,则5a = A .23B .32C .43D .345.已知点()2,4M 在抛物线()2:20C y px p =>上,点M 到抛物线C 的焦点的距离是A .4B .3C .2D .16.在ABC ∆中,2,20AB AC AD AE DE EB x AB y AC +=+==+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,若,则 A .2y x =B .2y x =-C .2x y =D .2x y =-7.已知双曲线()2222:1,0,0x y C a b a b-=>>的左、右焦点分别为12,F F O ,为坐标原点,P是双曲线在第一象限上的点,()21212=2=2,0,PF PF m m PF PF m >⋅=u u u u r u u u u r u u u r u u u u r ,则双曲线C 的渐近线方程为 A .12y x =±B .22y x =±C .y x =±D .2y x =±8.已知奇函数()f x 是R 上增函数,()()g x xf x =则A. 233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C. 23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D. 23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分。

山东省2020年高考数学模拟考试题与答案

山东省2020年高考数学模拟考试题与答案

山东省2020年高考数学模拟考试试题及答案按珈密级苇项管理*启用前2020年普通高等学校招生全国统一考试(模拟卷)数学asw 项:1. 答卷前,考生务必将口己的姓名、考生号等填遞在答题卡和试卷指定位匿匕工回答选择题时,选岀每小题答案屁用铅抠把答题R上对应题冃的答案折号涂熾如磁动,用橡皮掠干净后,再选涂苴他答案标号*回答非选择题时,将答案写在答题卡上。

另在本试卷上无效,生考试结束存*将本试卷和答題卡…井交回。

—、单项选择题:本趣共$小舐每小題§分・共豹分。

在每小题给出的四个选琐中,只有一项是符合髒目要求的“1, 迎集合/訂(工』)ix+?=2}, 则*n七A. {(ij)}氐{(一签4)} C HM)J-2f4)}6 02. 已知◎牛bi⑷b左R)是上二的共扳复数・则a^b =1 +1A- -1 B.-丄C- ;D・ 12 23* Bt向fi4-(.1,1)t A = c»(2,!)> 且(■-几血)丄―则丄“A. 3 氐2 G -2-34. 幵式中『抽系数足xA.-210B. -12QC. 120D. 2105+已知三按锥$_仙C中,ZSAB = ZABC= y * 5^-4• SC = 1J\3. XB = 2,5C = 6, 则三棱锥S 亠ABC的体积是A. 4B. 6 G 4巧D+ M6. 己知点丄为曲纯y二工+毀工:>0)上前动点,月为圆2F +/=!上的动点’则皿鋼X的最小值是九3 B•斗G迈 D. 4^27, 设命題戸所有正方形都是平行叫边母*则「卩为d所宿疋方形罰不長平行四边形B-有的平行四边底不是正方舷C”有的iE方形不是平行四边形 D.不是正方形的四边彫不是平行四边形数学试题第1页:(共5贡)数学试題第2页(共5页〉数学试題第2页(共5页〉8. 若>1 且 MC F ・则4. log 」、1隅疋、teg 評 C. log f c> lo£fl 5> lo 空 a二、多項远择题*本题共4」卜駆•毎小题5^-共20分・存毎小额给岀的选项中、右 多项精合倾目蓉求,全部选对的得5分,部分选对的得3分,有选措的得0分“ 9. 下国为茱地桜2006年〜2018年地方財政预算内收入、城乡居民储齧年未余额折线2财政预篇内收入*城乡居民储蓄年朮余额肉呈増怅趋势 R.财政预算内收入、城乡居民储蓄年末余额的逐年增长速度相同C. 赃政预畀内收入年平均增长虽局于城乡居民储蔷年末余额年平均增机帚 D, 城乡居艮储蓄年末余鈿与财政预算内收入的差報逐年增大w.已知艰曲线<?过点Q 品且渐近钱为丿=±¥厂则下列结论正确的是A, C 的方程为■- / -I B ・0的离心翠为J5 C ・曲线经过C 的一于焦点 D.直线"逅厂1“与C 有两个公共点11正方陣」肌也GO 的梭长为1・E , F 、(?分别为5C, CC 「1?鸟的中点•则扎直线与直线曲垂直 B.直^Afi 与平面*防平行C 平面/EF 截正方体所得的載画面积为? D.点C?与点石到平而*EF 曲聊离相諄B- log"〉k 唱』a lug/ D, log/A 】0£ 占 > log/城乡尿民储雷叶朿 ♦余额C 百亿元】 亠地方财政预算内 收入f 百亿元)根据该折线I ]可Sb 该地区2006年-2018年\2.函数/(巧的定义域为K, fi7(^ + 1) f(x^2)都为奇函数,则A. 奇函数氐/V)为周期雷数C /(x + 3)为奇函数 D. /(I +4)X J®^I数三填空駆本题共4小题、每小题3分,共20分。

2020年山东省高考数学模拟试卷(理科)含答案解析

2020年山东省高考数学模拟试卷(理科)含答案解析

2020年山东省高考数学模拟试卷(理科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z=(a﹣1)+3i(a∈R)在复平面内对应的点在直线y=x+2上,则a的值等于()A.1B.2C.5D.62.已知集合,则集合A的真子集的个数为()A.3B.4C.1D.23.已知函数f(x)=,若f(﹣1)=2f(a),则a的值等于()A.或﹣B.C.﹣D.±4.将800个个体编号为001~800,然后利用系统抽样的方法从中抽取20个个体作为样本,则在编号为121~400的个体中应抽取的个体数为()A.10B.9C.8D.75.“数列{a n}成等比数列”是“数列{lga n+1}成等差数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知直线l的方程为ax+2y﹣3=0,且a∈[﹣5,4],则直线l的斜率不小于1的概率为()A.B.C.D.7.一个空间几何体的三视图如图,其中主视图是腰长为3的等腰三角形,俯视图是边长分别为1,2的矩形,则该几何体的体积等于()A.2B.C.D.8.已知向量,若向量的夹角为φ,则有()A.φ=θB.φ=π﹣θC.φ=θ﹣πD.φ=θ﹣2π9.已知不等式2x+m+>0对一切x∈(1,+∞)恒成立,则实数m的取值范围是()A.m>﹣10B.m<﹣10C.m>﹣8D.m<﹣810.在三角形ABC中,角A、B、C的对边分别为a,b,c,且满足==,则=()A.﹣B.C.﹣D.﹣二、填空题(每题5分,满分25分,将答案填在答题纸上)11.阅读如图所示的程序框图,运行相应的程序,输出的结果是.12.从0,2,4中选两个数字,从1,3中选一个数字,组成无重复数字的三位数,其中偶数的个数为.13.若不等式|2x+a|<b的解集为{x|1<x<4},则ab等于.14.若函数f(x)=a x+2﹣(a>0,a≠1)的图象经过定点P(m,n),则函数g(x)=log n (x2﹣mx+4)的最大值等于.15.已知双曲线=1(a>0,b>0)的一条渐近线与抛物线y2=2px(p>0)的准线的交点坐标为,且双曲线与抛物线的一个公共点M的坐标(x0,4),则双曲线的方程为.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知函数f(x)=cosx[sin(x+)﹣sin(x+)]+.(1)若f(+)=,0<θ<,求tanθ的值;(2)求函数f(x)的最小正周期和单调递增区间.17.在2020年8月世界杯女排比赛中,中国女排以11战10胜1负的骄人战绩获得冠军.世界杯女排比赛,采取5局3胜制,即每场比赛中,最先获胜3局的队该场比赛获胜,比赛结束,每场比赛最多进行5局比赛.比赛的积分规则是:3﹣0或者3﹣1取胜的球队积3分,负队积0分;3﹣2取胜的球队积2分,负队积1分.在本届世界杯中,中国队与美国队在第三轮相遇,根据以往数据统计分析,中国队与美国队的每局比赛中,中国队获胜的概率为.(1)在中国队先输一局的情况下,中国队本场比赛获胜的概率是多少?(2)试求中国队与美国队比赛中,中国队获得积分的分布列与期望.18.如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF且BE<CF,∠BCF=,AD=,EF=2.(1)求证:AE∥平面DCF;(2)若,且=λ,当λ取何值时,直线AE与BF所成角的大小为600?19.已知数列{a n}的前n项和S n=a n+.(1)求数列{a n}的通项公式;(2)若b n=,且数列{b n}的前n项和为T n,求T2n.20.已知椭圆=1(a>b>0)经过点,且离心率等于.(1)求椭圆的方程;(2)若直线l:y=x+m与椭圆交于A,B两点,与圆x2+y2=2交于C,D两点.①当|CD|=2时,求直线l的方程;②若λ=,试求λ的取值范围.21.已知函数f(x)=ln()+(a∈R).(1)若函数f(x)在定义域上是单调递增函数,求实数a的取值范围;(2)若函数在定义域上有两个极值点x1,x2,试问:是否存在实数a,使得f(x1)+f(x2)=3?2020年山东省高考数学模拟试卷(理科)参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z=(a﹣1)+3i(a∈R)在复平面内对应的点在直线y=x+2上,则a的值等于()A.1B.2C.5D.6【考点】复数的代数表示法及其几何意义.【分析】求出对应点的坐标,代入直线方程,然后求解a的值.【解答】解:复数z=(a﹣1)+3i(a∈R)在复平面内对应的点在直线y=x+2上,可得3=a﹣1+2,解得a=2.故选:B.2.已知集合,则集合A的真子集的个数为()A.3B.4C.1D.2【考点】子集与真子集.【分析】先求出集合A,由此能求出集合A的子集的个数.【解答】解:∵集合={2},∴集合A的真子集只有一个为∅.故选:C.3.已知函数f(x)=,若f(﹣1)=2f(a),则a的值等于()A.或﹣B.C.﹣D.±【考点】分段函数的应用.【分析】利用分段函数的表达式建立方程关系进行求解即可.【解答】解:f(﹣1)=(﹣1)2=1,则由f(﹣1)=2f(a),得1=2f(a),即f(a)=,若a>0,由f(a)=得log3a=,得a=,若a<0,由f(a)=得a2=,得a=﹣或(舍),综上a的值等于或﹣,故选:A.4.将800个个体编号为001~800,然后利用系统抽样的方法从中抽取20个个体作为样本,则在编号为121~400的个体中应抽取的个体数为()A.10B.9C.8D.7【考点】系统抽样方法.【分析】根据题意,求出系统抽样的分组组距,再求编号为121~400的个体中应抽取的个体数即可.【解答】解:把这800个个体编上001~800的号码,分成20组,则组距为=40;所以编号为121~400的个体中应抽取的个体数为=7.故选:D.5.“数列{a n}成等比数列”是“数列{lga n+1}成等差数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】等差关系的确定.【分析】数列{a n}成等比数列,公比为q.若a1<0时,则lga n+1没有意义.由数列{lga n+1}成等差数列,则(lga n+1+1)﹣(lga n+1)=为常数,则为非0常数.即可判断出结论.【解答】解:∵数列{a n}成等比数列,公比为q.∴a n=.若a1<0时,则lga n+1没有意义.由数列{lga n+1}成等差数列,则(lga n+1+1)﹣(lga n+1)=为常数,则为非0常数.∴“数列{a n}成等比数列”是“数列{lga n+1}成等差数列”的必要不充分条件.故选:B.6.已知直线l的方程为ax+2y﹣3=0,且a∈[﹣5,4],则直线l的斜率不小于1的概率为()A.B.C.D.【考点】直线的斜率.【分析】先求出直线的斜率的范围,再根据几何概型的概率公式计算即可.【解答】解:由ax+2y﹣3=0得到y=﹣x+,故直线的斜率为﹣,∵直线l的斜率不小于1,∴﹣≥1,即a≤﹣2,∵且a∈[﹣5,4],∴﹣5≤a≤﹣2,∴直线l的斜率不小于1的概率为=,故选:C.7.一个空间几何体的三视图如图,其中主视图是腰长为3的等腰三角形,俯视图是边长分别为1,2的矩形,则该几何体的体积等于()A.2B.C.D.【考点】由三视图求面积、体积.【分析】由三视图易得这个几何体是一个四棱锥,四棱锥的底面是一个边长是1、2的长方形,顶点在底面的射影是长边的中点,短侧棱长为:3,求出棱锥的高,即可求解四棱锥的体积.【解答】解:由三视图知,这是一个四棱锥,四棱锥的底面是一个边长是1、2的长方形,顶点在底面的射影是长边的中点,短侧棱长为3,棱锥的高:=2,∴四棱锥的体积是:×1×2×2=.故选:D.8.已知向量,若向量的夹角为φ,则有()A.φ=θB.φ=π﹣θC.φ=θ﹣πD.φ=θ﹣2π【考点】平面向量数量积的运算.【分析】根据向量的夹角公式和两角和的余弦公式以及诱导公式,再根据向量的夹角的范围即可求出.【解答】解:∵向量,∴||==1,||=1,=﹣cosθcos2θ﹣sinθsin2θ=﹣cosθ=cos(π﹣θ),∴cosφ==cos(π﹣θ)=cos(θ﹣π),∵θ∈(π,2π),∴θ﹣π∈(0,π),∴φ=θ﹣π,故选:C.9.已知不等式2x+m+>0对一切x∈(1,+∞)恒成立,则实数m的取值范围是()A.m>﹣10B.m<﹣10C.m>﹣8D.m<﹣8【考点】基本不等式.【分析】不等式2x+m+>0化为:2(x﹣1)+>﹣m﹣2,利用基本不等式的性质可得2(x﹣1)+的最小值,即可得出.【解答】解:不等式2x+m+>0化为:2(x﹣1)+>﹣m﹣2,∵x>1,∴2(x﹣1)+≥2×=8,当且仅当x=3时取等号.∵不等式2x+m+>0对一切x∈(1,+∞)恒成立,∴﹣m﹣2<8,解得m>﹣10,故选:A.10.在三角形ABC中,角A、B、C的对边分别为a,b,c,且满足==,则=()A.﹣B.C.﹣D.﹣【考点】正弦定理;余弦定理.【分析】由题意设===k,可得a=6k,b=4k,c=3k,由余弦定理可得cosA,再由正弦定理可得=,代值化简可得.【解答】解:由题意设===k,(k>0),则a=6k,b=4k,c=3k,∴由余弦定理可得cosA===﹣,∴由正弦定理可得====﹣,故选:A.二、填空题(每题5分,满分25分,将答案填在答题纸上)11.阅读如图所示的程序框图,运行相应的程序,输出的结果是11.【考点】循环结构.【分析】按照循环结构的流程,列举出每个循环的变量的取值,与循环条件对比即可得结果【解答】解:依此程序框图,变量a的变化依次为1,12+2=3,32+2=11不满足循环条件a <10,故输出11故答案为1112.从0,2,4中选两个数字,从1,3中选一个数字,组成无重复数字的三位数,其中偶数的个数为20.【考点】计数原理的应用.【分析】根据0的特点,分三类进行,当0在个为和十位时,当没有0参与时,根据分类计数原理可得.【解答】解:若三位数的个位为0,则有2×2×A22=8个;若十位为0,则有C21•C21=4个;若这个三位数没有0,则有C21•C21A22=8个.综上,要求的三位偶数的个数为8+8+4=20个,故答案为:20.13.若不等式|2x+a|<b的解集为{x|1<x<4},则ab等于﹣15.【考点】绝对值不等式的解法.【分析】解出不等式|2x+a|<b,得到关于a,b的不等式组,求出a,b的值,从而求出ab 即可.【解答】解:∵|2x+a|<b,∴﹣b<2x+a<b,∴﹣a﹣b<2x<b﹣a,∴﹣<x<,由不等式的解集为{x|1<x<4},则,解得:a=﹣5,b=3则ab=﹣15,故答案为:﹣15.14.若函数f(x)=a x+2﹣(a>0,a≠1)的图象经过定点P(m,n),则函数g(x)=log n(x2﹣mx+4)的最大值等于﹣1.【考点】函数与方程的综合运用;函数的最值及其几何意义.【分析】求出m、n,然后利用对数函数的性质,以及二次函数的性质求解函数的最值.【解答】解:函数f(x)=a x+2﹣(a>0,a≠1)的图象经过定点P(m,n),可知m=﹣2,n=,函数g(x)=log n(x2﹣mx+4)=log(x2+2x+4)=log[(x+1)2+3]≤﹣1.函数g(x)=log n(x2﹣mx+4)的最大值:﹣1.故答案为:﹣1.15.已知双曲线=1(a>0,b>0)的一条渐近线与抛物线y2=2px(p>0)的准线的交点坐标为,且双曲线与抛物线的一个公共点M的坐标(x0,4),则双曲线的方程为\frac{{x}^{2}}{5}﹣\frac{{y}^{2}}{20}=1.【考点】双曲线的简单性质.【分析】求得双曲线的渐近线方程和抛物线的准线方程,由题意可得p=,=2,求得M (3,4)代入双曲线的方程,解方程可得a,b,进而得到双曲线的方程.【解答】解:双曲线=1的渐近线方程为y=±x,抛物线y2=2px的准线方程为x=﹣,由题意可得=,即p=,=2,即b=2a①又M的坐标(x0,4),可得16=2px0=x0,解得x0=3,将M(3,4)代入双曲线的方程可得﹣=1②由①②解得a=,b=2,即有双曲线的方程为﹣=1.故答案为:﹣=1.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知函数f(x)=cosx[sin(x+)﹣sin(x+)]+.(1)若f(+)=,0<θ<,求tanθ的值;(2)求函数f(x)的最小正周期和单调递增区间.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)由三角函数中的恒等变换应用化简函数解析式可得f(x)=sin(2x﹣),由f(+)=,可解得cosθ,又0<θ<,可由同角三角函数关系式即可求sinθ,tanθ的值.(2)由f(x)=sin(2x﹣),根据周期公式可求T,由2kπ﹣≤2x﹣≤2kπ+,k∈Z 可解得单调递增区间.【解答】解:(1)∵f(x)=cosx[sin(x+)﹣sin(x+)]+=cosx(sinx﹣cosx)+=sin2x﹣cos2x=sin(2x﹣),∵f(+)=,故有:sin[2(+)﹣]=sin(θ+﹣)=sin (θ+)=cosθ=,∴可解得:cosθ=,∵0<θ<,sinθ==,∴tanθ===.(2)∵f(x)=sin(2x﹣),∴T==π.∴由2kπ﹣≤2x﹣≤2kπ+,k∈Z可解得:x∈[kπ﹣,kπ+],k∈Z∴函数f(x)的最小正周期是π,单调递增区间是:x∈[kπ﹣,kπ+],k∈Z.17.在2020年8月世界杯女排比赛中,中国女排以11战10胜1负的骄人战绩获得冠军.世界杯女排比赛,采取5局3胜制,即每场比赛中,最先获胜3局的队该场比赛获胜,比赛结束,每场比赛最多进行5局比赛.比赛的积分规则是:3﹣0或者3﹣1取胜的球队积3分,负队积0分;3﹣2取胜的球队积2分,负队积1分.在本届世界杯中,中国队与美国队在第三轮相遇,根据以往数据统计分析,中国队与美国队的每局比赛中,中国队获胜的概率为.(1)在中国队先输一局的情况下,中国队本场比赛获胜的概率是多少?(2)试求中国队与美国队比赛中,中国队获得积分的分布列与期望.【考点】离散型随机变量的期望与方差;互斥事件的概率加法公式;离散型随机变量及其分布列.【分析】(1)在中国队先输一局的情况下,中国队本场比赛获胜的可能性有两种:连胜3局或前3局两胜1负,第五局胜,由此能求出在中国队先输一局的情况下,中国队本场比赛获胜的概率.(2)中国队与美国队比赛中,中国队获得积分X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出中国队获得积分X的分布列和数学期望EX.【解答】解:(1)∵根据以往数据统计分析,中国队与美国队的每局比赛中,中国队获胜的概率为,∴在中国队先输一局的情况下,中国队本场比赛获胜的概率:p=+=.(2)中国队与美国队比赛中,中国队获得积分X的可能取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)=()=,∴中国队获得积分X的分布列为:X 0 1 2 3PEX==.18.如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF且BE<CF,∠BCF=,AD=,EF=2.(1)求证:AE∥平面DCF;(2)若,且=λ,当λ取何值时,直线AE与BF所成角的大小为600?【考点】异面直线及其所成的角;直线与平面平行的判定.【分析】(1)推导出面ABE∥面CDF,由此能证明AE∥面CDF.(2)以C为坐标原点,以CB,CD,CF分别为x,y,z轴建系,利用向量法能求出当λ取1时,直线AE与BF所成角的大小为60°.【解答】证明:(1)∵BE∥CF,AB∥CD,且BE∩AB=B,FC∩CD=C,∴面ABE∥面CDF,又AE⊂面ABE,∴AE∥面CDF.解:(2)∵∠BCF=,且面ABCD⊥面BEFC,∴FC⊥面ABCD以C为坐标原点,以CB,CD,CF分别为x,y,z轴建系,∵,且=λ,∴AB=()λ,∴A(,()λ,0),E(,0,),F(0,0,),B(,0,0),=(0,(1﹣)λ,),=(﹣,0,),∵直线AE与BF所成角的大小为60°,∴cos60°==,由λ>0,解得λ=1,∴当λ取1时,直线AE与BF所成角的大小为60°.19.已知数列{a n }的前n 项和S n =a n +.(1)求数列{a n }的通项公式; (2)若b n =,且数列{b n }的前n 项和为T n ,求T 2n .【考点】数列的求和;数列递推式. 【分析】(1)由于数列{a n }的前n 项和S n =a n +,可得a 1+a 2=a 2+﹣2,解得a 1.当n ≥2时,S n ﹣1=a n ﹣1+﹣2,可得:a n =a n ﹣a n ﹣1+n ﹣2﹣[﹣2],化简整理即可得出.(2)b n =,可得b 2n ﹣1==.b 2n =.即可得出.【解答】解:(1)∵数列{a n }的前n 项和S n =a n +,∴a 1+a 2=a 2+﹣2,解得a 1=3.当n ≥2时,S n ﹣1=a n ﹣1+﹣2,可得:a n =a n ﹣a n ﹣1+n ﹣2﹣[﹣2],解得a n ﹣1=n+1.∴a n =n+2,当n=1时也成立.∴a n=n+2.=(2)b n=,∴b2n﹣1==.b2n==.∴数列{b n}的前2n项和T2n=+=﹣﹣.20.已知椭圆=1(a>b>0)经过点,且离心率等于.(1)求椭圆的方程;(2)若直线l:y=x+m与椭圆交于A,B两点,与圆x2+y2=2交于C,D两点.①当|CD|=2时,求直线l的方程;②若λ=,试求λ的取值范围.【考点】椭圆的简单性质.【分析】(1)运用椭圆的离心率公式和点M满足椭圆方程,结合a,b,c的关系,解方程可得a,b,进而得到椭圆方程;(2)①求出O到直线的距离,由圆的弦长公式可得2,解方程可得m的值,进而得到直线的方程;②将直线y=x+m代入椭圆方程,运用判别式大于0,运用韦达定理和弦长公式,再由直线和圆相交的条件和弦长公式,化简整理,即可得到所求范围.【解答】解:(1)由题意可得e==,a2﹣b2=c2,将M的坐标代入椭圆方程,可得+=1,解得a=2,b=c=2,即有椭圆的方程为+=1;(2)①O到直线y=x+m的距离为d=,由弦长公式可得2=2,解得m=±,可得直线的方程为y=x±;②由y=x+m代入椭圆方程x2+2y2=8,可得3x2+4mx+2m2﹣8=0,由判别式为△=16m2﹣12(2m2﹣8)>0,化简可得m2<12,由直线和圆相交的条件可得d<r,即有<,即为m2<4,综上可得m的范围是(﹣2,2).设A(x1,y1),B(x2,y2),可得x1+x2=﹣,x1x2=,即有弦长|AB|=•=•=•,|CD|=2=,即有λ==•=•,由0<4﹣m2≤4,可得≥2,即有λ≥.则λ的取值范围是[,+∞).21.已知函数f(x)=ln()+(a∈R).(1)若函数f(x)在定义域上是单调递增函数,求实数a的取值范围;(2)若函数在定义域上有两个极值点x1,x2,试问:是否存在实数a,使得f(x1)+f(x2)=3?【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)求得函数的定义域和导函数f′(x),依题意可知f′(x)≥0,在(0,+∞)上恒成立,即a≤在(0,+∞)上恒成立,构造辅助函数,g(x)=,求导,利用导数法求得g(x)的单调区间及最小值,即可求得a的取值范围;(2)由题意可知:函数在定义域上有两个极值点x1,x2,即方程f′(x)=0在(1,+∞)上由两个不同的实根,根据二次函数性质求得a的取值范围,利用韦达定理,求得x1+x2和x1•x2表达式,写出f(x1)+f(x2),根据对数的运算性质求得a的值,判断是否满足a的取值范围.【解答】解:(1)由函数f(x)的定义域为(0,+∞),f′(x)=﹣,依题意可知:f′(x)≥0,在(0,+∞)上恒成立,即a≤在(0,+∞)上恒成立,令g(x)=,g′(x)==,令g′(x)=0,解得x=4,且1<x<4时,g′(x)<0,当x>4时,g′(x)>0,所以g(x)在x=4时取极小值,也为最小值,g(4)=12,故实数a的取值范围是a≤12;(2)f′(x)=﹣=,函数在定义域上有两个极值点x1,x2,即方程f′(x)=0在(1,+∞)上由两个不同的实根,即方程x2+(4﹣a)x+(4+a)=0,在(1,+∞)上由两个不同的实根,∴解得:a≥12,由韦达定理:x1+x2=a﹣4,x1•x2=a+4,于是,f(x1)+f(x2)=ln()++ln()+,=ln[]+a[],=ln[]+a[],=ln()+a(),=,=3,解得a=9,但不满足a>12,所以不存在实数a,使得f(x1)+f(x2)=3.2020年7月18日。

山东省2020年高考数学模拟考试试题及答案

山东省2020年高考数学模拟考试试题及答案

山东省2020年高考数学模拟考试试题及答案参考答案一、单项选择题1. 一看就是两个交点,所以需要算吗?C2. 分母实数化,别忘了“共轭”,D3. 简单的向量坐标运算,A4. 球盒模型(考点闯关班里有讲),37分配,B5. 在一个长方体中画图即可(出题人就是从长方体出发凑的题,其实就是一个鳖臑bie nao )C6. 画个图,一目了然,A7. 关键是把“所有”翻译成“任取”,C8. 用6、4、2特值即可(更高级的,可以用极限特值8-、4、2,绝招班里有讲),B二、多项选择题9. 这个,主要考语文,AD10. 注意相同渐近线的双曲线设法,2222x y a bλ-=,D 选项可用头哥口诀(直线平方……)AC11. B 选项构造二面平行,C 选项注意把面补全为AEFD1(也可通过排除法选出),D 选项CG中点明显不在面上,BC12. 利用函数平移的思想找对称中心,ABC三、填空题13. 确定不是小学题?3614. 竟然考和差化积,头哥告诉过你们记不住公式怎么办,不过这题直接展开也可以,45- 15. 利用焦半径公式,或者更快的用特殊位置,或者更更快用极限特殊位置(绝招班有讲),2,116. 根据对称之美原则(绝招班有讲),8(老实讲,选择填空所有题都可以不动笔直接口算出来的呀~~~)四、解答题17. 故弄玄虚,都是等差等比的基本运算,选①,先算等比的通项()13n n b -=--,再算等差的通项316n a n =-,4k =,同理②不存在,③ m.cksdu 牛逼 4k =18. (1)根据三角形面积很容易得出两边之比,再用正弦定理即可,60°(2)设AC=4x (想想为什么不直接设为x ?),将三角形CFB 三边表示出来,再用余弦19. (1)取SB 中点M ,易知AM//EF ,且MAB=45°,可得AS=AB ,易证AM ⊥面SBC ,进一步得证(2)可设AB=AS=a ,,建系求解即可,20. (1)正相关(2)公式都给了,怕啥,但是需要把公式自己化简一下,ˆ121.867.89yx =+ (3)两侧分布均匀,且最大差距控制在1%左右,拟合效果较好21. (1)没啥可说的,2214x y +=,(2214x y -+= (2)单一关参模型,条件转化为AB=CD=1(绝招班里有讲),剩下就是计算了,无解,所以不存在22. (1)送分的(求导可用头哥口诀),7(2)考求导,没啥意思,注意定义域,单增()0,+∞(3)有点意思,详细点写由递推公式易知1n a ≥由(11711n n n n n a a a a a +-+-==++知若n a,则1n a +;若n a >,则1n a +<又11a =<,所以n为奇数时n a <,n为偶数时n a >1)n为奇数时,n a <,1n a +>,由(2)的单增可知 ()2221n n n n a a a f a +=<=可知22111ln ln 0ln 277n n n n a a a a ++<<⇒>>⇒>2)n为偶数时,n a >,1n a +<2)的单增可知()2221n n n n a a a f a +=>=2211771ln 02ln n n a a ++>>⇒>>⇒>由1)212<所以111117ln ln22lnn nna---⎛⎫⎛⎫=≤<⎪⎪⎝⎭⎝⎭所以222ln ln71nna-⋅-<证毕注:奉劝大家千万不要求通项公式,当然利用不动点也能求出来)(((117711nn na--⎛⎫-⎝⎭=-,只是接下来你就要崩溃了吧~~~。

山东省2020新高考模拟考试数学答案

山东省2020新高考模拟考试数学答案

山东省模拟考试答案解析1、C[解析]C y x y x xy y x ,故选或解得根据题意⎩⎨⎧=-=⎩⎨⎧==⎩⎨⎧==+421122本题考查集合运算以及求解曲线的交点,本质是解一元二次方程,属于基础题。

2、D [解析]Db a b a i bi a i i i i i i 故选所以,所以根据题意,1,1,0,)1)(1()1(112=+===+-=-+-=+-本题考查复数的运算以及共轭复数的概念,属于基础题。

3、A [解析]Ac b c a c b a ,故选所以根据题意0,0)32(3)(==+--=∙-∙=∙-λλλλ本题考查向量垂直的坐标运算,属于基础题。

4、B [解析]()()BT x r r x C x C T r x x r r r r rr r 故选的系数所以得到由项是的展开式中第根据题意,120,74102,1211)1(84102101010110-===--=-⎪⎭⎫ ⎝⎛=+---+本题考查二项式定理中二项展开式的系数问题,属于基础题。

5、C [解析]CV ABC S AS ABCAS AS AC SC AS AC SC AS SB AB AS AB SAB AC BC AB BC AB ABC ABC S ,故选的高为三棱锥面得再由又,又3432631,32,32,4,2,2,102,6,22222=⨯⨯=∴-∴⊥∴⊥∴=+==∴==⊥∴=∠=∴==⊥∴=∠- ππ本题考查立体几何中求三棱锥的体积,考查同学们的空间想象能力,属于基础题。

6、A [解析]()A AB B A y x x xx y 故选有最小值时,由数形结合易知当的图象,和圆(角坐标系中作出根据题意,可在同一直,3)1,2(),4,2(2)20422=+->+=本题考查圆锥曲线中圆的最值问题,属于基础题。

7、C [解析]根据全称命题和特称命题的关系,全称命题的否定是特称命题,故选C 本题考查全称命题的否定,属于基础题。

2020年山东省高考数学模拟试卷(12)

2020年山东省高考数学模拟试卷(12)

点 A 到平面 A1DE 的距离是

??2 ??2
15.( 5 分)已知双曲线 ??2 -
= 1(??>0) 的左右焦点分别为
7
F1、 F2,左顶点为 A,以 F2
为圆心, |F 2A|为半径的圆交双曲线右支于 M 、N 两点, 且线段 AM 的垂直平分线过点 N,
则 a=

四.解答题(共 6 小题)
∴ A∩ B= { x|0< x≤ 3} .
) D. { x|1< x< 3}
故选: A.
2.( 5 分)函数 ??(??=) ( ????-+11)????的部分图象大致是(

A.
B.
C.
D.
【解答】
解:当
x→﹣∞时,
????→
0+

??-1 ??+1
=
1-
2 ??+1

1+
,所以
f( x)→ 0+,排除

12)
) D. { x|1< x< 3}
A.
B.
C.
D.
3.( 5 分)已知 z=( m+3) +( m﹣ 1) i( m∈R)在复平面内对应的点为 P,则 P 点不可能
在( )
A .第一象限
B .第二象限
C.第三象限
D .第四象限
1
1
4.( 5 分)命题 p: ? x∈( 0, +∞), ??3 = ??5,则¬ p 为(
C,
D;
因为
x→ +

??-1 ??+1
=
1-
2 ??+1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届山东省广饶一中高考数学模拟试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知1tan 2α=,且3,2παπ⎛⎫∈ ⎪⎝⎭,则cos 2πα⎛⎫-= ⎪⎝⎭( )A.B. C.D.2.已知过抛物线2:8C y x =的焦点F 的直线l 交抛物线于,P Q 两点,若R 为线段PQ 的中点,连接OR 并延长交抛物线C 于点S ,则OS OR的取值范围是( )A .()0,2B .[)2,+∞ C .(]0,2D .()2,+∞3..已知双曲线2213y x -=的左顶点为1A ,右焦点为2F ,P 为双曲线右支上一点,则12PA PF ⋅u u u r u u u u r 最小值为( )A .2-B .8116-C .1D .04.在ABC ∆中,角,,A B C 所对应的边分别是,,a b c ,若()()a b sinA sinB -+(sin )c C B =,则角A 等于A .6πB .3πC .23πD .56π5.已知函数()sin 33f x x x ππωω⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭ ()0ω>在区间3,42ππ⎡⎤-⎢⎥⎣⎦上单调,且在区间[]0,2π内恰好取得一次最大值2,则ω的取值范围是( )A .20,3⎛⎤ ⎥⎝⎦B .12,43⎡⎤⎢⎥⎣⎦C .30,4⎛⎤⎥⎝⎦ D .13,44⎡⎤⎢⎥⎣⎦6.若点(,0)A t 与曲线e x y =上点P的距离的最小值为t 的值为( )A .ln 243-B .ln 242-C .ln 333+D .ln 332+7.某几何体的三视图如图所示,图中的四边形都是边长为4的正方形,两条虚线互相垂直且相等,则该几何体的体积是( )A.1763 B.1603 C.1283 D.328.已知O为坐标原点,抛物线2:8C y x=上一点A到焦点F的距离为4,若点P为抛物线C准线上的动点,则OP AP+的最小值为()A.213B.8 C.45D.469.已知某算法的程序框图如图所示,则该算法的功能是A.求首项为1,公比为2的等比数列的前2017项的和B.求首项为1,公比为2的等比数列的前2018项的和C.求首项为1,公比为4的等比数列的前1009项的和D.求首项为1,公比为4的等比数列的前1010项的和10.已知函数()2sin()cos(0,0)6f x x a x aπωωω=++>>对任意的12,x x R∈,都有12()()43f x f x+≤()f x在[]0,π上的值域为3⎡⎣,则实数ω的取值范围为A.11,63⎡⎤⎢⎥⎣⎦B.12,33⎡⎤⎢⎥⎣⎦C.1,6⎡⎫+∞⎪⎢⎣⎭D.12,23⎡⎤⎢⎥⎣⎦11.函数()y f x=的图象过原点且它的导函数()y f x'=的图象是如图所示的一条直线, 则()y f x=的图象的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限12.已知函数f (x )定义域为R ,则命题p :“函数f (x )为偶函数”是命题q :“∃x 0∈R ,f (x 0)=f (-x 0)”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。

13.若非零向量,a b r r 满足()2a a b⊥+r r r ,则a b b+=rr r __________.14.若函数()2sin()f x x ωϕ=+ (01ω<<,02πϕ<<)的图像过点(0,3),且关于点(2,0)-对称,则(1)f -=_______. 15.在数列{}n a 中,已知122a a ==.若2n a +是1n n a a +的个位数字,则27a =______.16.已知六棱锥P ABCDEF -,底面ABCDEF 为正六边形,点P 在底面的射影为其中心.将该六棱锥沿六条侧棱剪开,使六个侧面和底面展开在同一平面上,若展开后点P 在该平面上对应的六个点全部落在一个半径为5的圆上,则当正六边形ABCDEF 的边长变化时,所得六棱锥体积的最大值为__________. 三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

17.(12分)如图,等腰直角三角形ABC 中,90ACB ∠=︒,4AB =,点P 为ABC ∆内一点,且1tan 3PAB ∠=,1tan 2PBA ∠=.求APB ∠;求PC .18.(12分)设直线l 的方程为(1)20a x y a +++-=,a R ∈.若l 在两坐标轴上的截距相等,求l 的方程;若l 与两坐标轴围成的三角形的面积为6,求a 的值.19.(12分)已知椭圆C :22221(0)x y a b a b +=>>的离心率为3,且经过点1(3,)2M .求椭圆C 的方程;与x 轴不垂直的直线l 经过2)N ,且与椭圆C 交于A ,B 两点,若坐标原点O 在以AB 为直径的圆内,求直线l 斜率的取值范围.20.(12分)某医疗科研项目组对5只实验小白鼠体内的,A B 两项指标数据进行收集和分析、得到的数据如下表:指标1号小白鼠2号小白鼠3号小白鼠4号小白鼠5号小白鼠A 5 7 6 9 8 B22344(1)若通过数据分析,得知A 项指标数据与B 项指标数据具有线性相关关系,试根据上表,求B 项指标数据y 关于A 项指标数据x 的线性回归方程ˆˆy bxa =+;现要从这5只小白鼠中随机抽取3只,求其中至少有一只的B 项指标数据高于3的概率.参考公式:121()()()ˆniii ni i x x y y bx x ==--=-∑∑ ˆˆ=.a y bx -21.(12分)某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过300): 空气质量指数 (]0,50 (]50,100 (]100,150 (]150,200 (]200,250 (]250,300空气质量等级1级优2级良3级轻度污染 4级中度污染 5级重度污染 6级严重污染该社团将该校区在2018年11月中10天的空气质量指数监测数据作为样本,绘制的频率分布直方图如下图,把该直方图所得频率估计为概率.以这10天的空气质量指数监测数据作为估计2018年11月的空气质量情况,则2018年11月中有多少天的空气质量达到优良?从这10天的空气质量指数监测数据中,随机抽取三天,求恰好有一天空气质量良的概率;从这10天的数据中任取三天数据,记ξ表示抽取空气质量良的天数,求ξ的分布列和期望.22.(10分)已知多面体ABCDE 中,ACD DE ⊥平面,AB DE ∥,2AC AD CD DE ====,1AB =,O为CD的中点。

求证:AO P平面BCE;求异面直线AC和BE所成角的余弦值;求直线BD与平面BCE所成角的正弦值。

参考答案一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A2.D3.A4.D5.B6.D7.B8.A9.C10.A11.A12.A二、填空题:本题共4小题,每小题5分,共20分。

13.114.115.416.15 3三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

17.(1)34π(2)210PC=【解析】【分析】(1)利用两角的正切公式,求得()tan 1PAB PBA ∠+∠=,得到4PAB PBA π∠+∠=,从而得到34APB π∠=.(2)计算出CA 的长,求得sin CAP ∠,cos CAP ∠的值,由正弦定理求得PA 的长,再由余弦定理求得PC 的长. 【详解】解:(1)由条件及两角和的正切公式,()tan tan tan 1tan tan PAB PBA PAB PBA PAB PBA ∠+∠∠+∠=-∠⋅∠ 1132111132+==-⨯, 而0PAB PBA π<∠+∠<,所以4PAB PBA π∠+∠=,则()344APB PAB PBA ππππ∠=-∠+∠=-=. (2)由(1)知,4PAB PBA π∠+∠=,而在等腰直角三角形ABC中,CA =4CAB CAP PAB π∠=∠+∠=,所以CAP PBA ∠=∠,则1tan tan 2CAP PBA ∠=∠=,进而可求得sin sin CAP PBA ∠=∠=,cos cos 5CAP PBA ∠=∠=. 在PAB ∆中,由正弦定理,sin 4sin 2PBA PA AB APB ∠=⋅==∠在PAC ∆中,由余弦定理,2222cos PC AC AP AC AP CAP =+-⋅⋅∠328825555=+-⨯=,∴PC =【点睛】本小题主要考查两角和的正切公式,考查利用正弦定理和余弦定理解三角形,属于中档题. 18. (1) 直线l 的方程为30x y +=或20x y ++=;(2) 8a =±4a =-. 【解析】试题分析:(Ⅰ)分类讨论:当直线过原点时,a=2;当直线l 不过原点时,a=0,从而求出直线l 的方程. (Ⅱ)由题意知l 在x 轴,y 轴上的截距分别为21a a -+,2a -,由三角形面积构建方程,求出a 的值. 试题解析:(1)由题意知,10a +≠,即1a ≠-当直线过原点时,该直线在两条坐标轴上的截距都为0,此时2a =,直线l 的方程为30x y +=; 当直线l 不过原点时,即2a ≠时,由截距相等,得221a a a -=-+,即0a =, 直线l 的方程为20x y ++=,综上所述,所求直线l 的方程为30x y +=或20x y ++=. (2)由题意知,10a +≠,20a -≠, 且l 在x 轴,y 轴上的截距分别为21a a -+,2a -, 由题意知,122621a a a --=+,即()22121a a -=+当10a +>时,解得8a =±当10a +<时,解得4a =-,综上所述,8a =±4a =-.19.(Ⅰ)2214x y +=(Ⅱ)(,)22-∞-+∞U【解析】 【分析】(I )根据椭圆的离心率和椭圆上一点的坐标,结合222a b c =+列方程组,解方程组求得,a b 的值,进而求得椭圆方程.(II )设直线l的方程为y kx =点O 在以AB 为直径的圆内得0OA OB u u u r u u u r⋅<,利用向量的坐标运算代入化简,由此解得k 的取值范围.【详解】解:(Ⅰ)由题意可得222223114a b a b c c a⎧+=⎪⎪⎪=+⎨⎪⎪=⎪⎩,解得2a =,1b =,∴椭圆C 的方程为2214x y +=.(Ⅱ)设直线l的方程为y kx =+2214x y +=整理可得得()221440k x+++=,()()2216140k∆=-+>,解得12k >或12k <-, 设()11,A x y ,()22,B x y ,又12x x +=,122414x x k ⋅=+,∴()21212122y y k x x x x =++, ∵坐标原点O 在以AB 为直径的圆内,∴0OA OB u u u r u u u r⋅<,∴()()21212121212x x y y kx x x x +=+++ ()22412014k k ⎛=+++< +⎝⎭,解得k <2k >. 故直线l斜率的取值范围为,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭. 【点睛】本小题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,属于中档题.20.(1)11ˆ22yx =-;(2)910.【解析】 【分析】(1)利用回归直线方程计算公式,计算出回归直线方程.(2)利用列举法和古典概型概率计算公式,求得所求概率. 【详解】(1)根据题意,计算()15769875x =⨯++++= ()12234435y =⨯++++=,()()()112221151102ˆn ni i i i i i n n i i i i x x y y x y nxy b x x x x ====---====--∑∑∑∑ ˆ1=ˆˆ2ay bx -=-,所以线性回归方程为1122ˆy x =-. (2)从这5只小白鼠中随机抽取三只,基本事件数为223,224,225,234,235,245,……,345共10种不同的取法,其中至少有一只B 项指标数据高于3的基本事件共9种取法, 所以所求概率为910p =. 【点睛】本小题主要考查回归直线方程的求法,考查利用列举法求古典概型的概率,属于中档题. 21.(1)11月中平均有9天的空气质量达到优良;(2)7()15P A =;(3)见解析 【解析】 【分析】(1)由频率分布直方图得到11月中10天的空气质量优良的频率,即为概率,然后进行估计可得30天中空气优良的天数.(2)根据古典概型概率公式和组合数的计算可得所求概率.(3)先判断出随机变量ξ的所有可能取值,然后分别求出对应的概率,进一步可得分布列和期望. 【详解】(1)由频率分布直方图,知这10天中1级优1天,2级良2天,3-6级共7天. 所以这10天中空气质量达到优良的概率为310P =, 因为330910⨯=, 所以11月中平均有9天的空气质量达到优良.(2)记“从10天的空气质量指数监测数据中,随机抽取三天,恰有一天空气质量优良”为事件A ,则()1228310715C C P A C ⋅==, 即恰好有一天空气质量良的概率715. (3)由题意得ξ的所有可能取值为0,1,2,()13283107015C C P C ξ⋅===; ()12283107115C C P C ξ⋅===; ()21283101215C C P C ξ⋅===. 所以ξ的分布列为:所以30121515155E ξ=⨯+⨯+⨯=. 【点睛】解得此类应用题的关键在于读懂题意,并从统计图表中得到解题的条件和信息,然后再根据要求进行求解.求分布列时首先要得到随机变量的所有可能取值,然后再根据概率类型求出相应的概率,列成表格的形式即可.本题考查概率与统计的结合,属于基础题.22. (Ⅰ)证明见解析;(Ⅱ(Ⅲ. 【解析】 【分析】(Ⅰ)取CE 中点F ,连接BF ,OF ,由几何关系可证得四边形ABFO 为平行四边形,结合线面平行的性质定理可得题中的结论;(Ⅱ)取DE 中点M ,连接AF ,由题意可证得ABEM 为平行四边形,从而∠CAM 或其补角为AC 与BE 所成的角.求得三角形的边长,利用余弦定理可得异面直线AC 和BE 所成角的余弦值.(Ⅲ)由题意结合(Ⅱ)中的结论可知∠DBF 就是直线BD 与平面BEC 所成角,利用边长的比值关系可得BD 与平面BCE 所成角的正弦值. 【详解】(Ⅰ)取CE 中点F ,连接BF ,OF , ∵O 为CD 的中点, ∴OF ∥DE ,且OF=DE ,∵AB//DE ,AC=AD=CD=DE=2,AB=1, ∴OF ∥AB ,OF=AB ,则四边形ABFO 为平行四边形,∴AO//BF ,BF ⊆平面BCE ,AO ⊊平面BCE , ∴AO//平面BCE ;(Ⅱ)取DE 中点M ,连接AF , ∵AB ∥DE ,AB=1,DE=2, ∴AB ∥ME ,AB=ME , ∴ABEM 为平行四边形. ∴AM//BE.∴∠CAM 或其补角为AC 与BE 所成的角. ∵DE ⊥平面ACD ,AD ,CD ⊆平面ACD , ∴DE ⊥CD ,DE ⊥AD ,在Rt CDM V 中,CD=2,DM=1,CM ∴=,在Rt ADM △中,AD=2,DM=1,AM ∴=222cos25CA AM CM CAM CA AM +-∠===⋅.所以异面直线AC 和BE 所成角的余弦值为5. (Ⅲ)由题意可得BF//AO ,∵AO ⊥平面CDE ,∴BF ⊥平面CDE ,∴BF ⊥DF. ∵CD=DE ,∴DF ⊥CE ,∵BF∩CE=F ,∴DF ⊥平面CBE ; ∴∠DBF 就是直线BD 与平面BEC 所成角. 在△BDF 中,2,5DF BD ==,10sin 5DBF ∴∠=. 【点睛】本题主要考查线面平行的判定,线面角的求解,异面直线所成角的求解等知识,意在考查学生的转化能力和计算求解能力. 高考模拟数学试卷全卷满分150分,考试用时120分钟。

相关文档
最新文档