123数字黑洞解码
123数字黑洞
123数字黑洞数学中的123就跟英语中的ABC一样平凡和简单。
然而,按以下运算顺序,就可以观察到这个最简单的数字黑洞的值:设定一个任意数字串,数出这个数中的偶数个数,奇数个数,及这个数中所包含的所有位数的总数,例如:1234567890,偶:数出该数数字中的偶数个数,在本例中为2,4,6,8,0,总共有 5 个。
奇:数出该数数字中的奇数个数,在本例中为1,3,5,7,9,总共有 5 个。
总:数出该数数字的总个数,本例中为 10 个。
新数:将答案按“偶-奇-总”的位序,排出得到新数为:5510。
重复:将新数5510按以上算法重复运算,可得到新数:134。
重复:将新数134按以上算法重复运算,可得到新数:123。
结论:对数1234567890,按上述算法,最后必得出123的结果,我们可以用计算机写出程序,测试出对任意一个数经有限次重复后都会是123。
换言之,任何数的最终结果都无法逃逸123黑洞。
重排求差黑洞三位数黑洞495:只要你输入一个三位数,要求个,十,百位数字不相同,如不允许输入111,222等。
那么你把这个三位数的三个数字按大小重新排列,得出最大数和最小数,两者相减得到一个新数,再按照上述方式重新排列,再相减,最后总会得到495这个数字。
举例:输入352,排列得最大数位532,最小数为235,相减得297;再排列得972和279,相减得693;接着排列得963和369,相减得594;最后排列得到954和459,相减得495。
四位数黑洞6174:把一个四位数的四个数字由小至大排列,组成一个新数,又由大至小排列排列组成一个新数,这两个数相减,之后重复这个步骤,只要四位数的四个数字不重复,数字最终便会变成 6174。
例如 3109,9310 - 0139 = 9171,9711 - 1179 = 8532,8532 - 2358 = 6174。
而 6174 这个数也会变成 6174,7641 - 1467 = 6174。
谈谈黑洞数
黑洞数河北张家口市第十九中学贺峰一、一位黑洞数(0)黑洞数0:随意取4个数,如8,3,12,5写在圆周的四面。
用两个相邻数中的大数减小数,将得数写在第二圈圆周。
如此做下去,必会得到4个相同的数。
这个现象是意大利教授杜西在1930年发现的,所以叫作"杜西现象"。
其实把“杜西现象”再继续下去必会得到这个圆周的最外层是四个0。
因为得到的4个相同的数两两相减差为0,也就得到:任意地在圆周的四面写上4个数,用两个相邻数中的大数减小数(相同的也相减),将得数写在第二圈圆周。
如此做下去,必会得到4个0。
这就是黑洞0。
二、两位黑洞数(13)(2004重庆北碚区)自然数中有许多奇妙而有趣的现象,很多秘密等待着我们去探索!比如:对任意一个自然数,先将其各位数字求和,再将其和乘以3后加上1,多次重复这种操作运算,运算结果最终会得到一个固定不变的数R,它会掉入一个数字“陷井”,永远也别想逃出来,没有一个自然数能逃出它的“魔掌”。
那么最终掉入“陷井”的这个固定不变的数R=__13_。
三、三位黑洞数(495、123)黑洞数123随便找一个数,然后分别数出这个数中的奇数个数和偶数个数以及这个数有多少位,并用数出来的个数组成一个新数,最后组成的数字总会归结到123。
举个例子,如:58967853,这里面有8、6、8共3个偶数,5、9、7、5、3共5个奇数,共8位数。
然后我们用新得到的几个数字重新组合,把原数中的偶数个数放在最左边,中间放原数的奇数个数,最右边表示原数的位数。
根据这个规则,上面的数就变成358了,然后按照这个规则继续变换下去,就会得到123。
再取任一个数,如:81872115378,其中偶数个数是4,奇数个数是7,是11位数,又组成一个新的数4711。
该数有1个偶数,3个奇数,是4位数,又组成新数134。
再重复以上程序,1个偶数,2个奇数,是3位数,便得到123黑洞。
反复重复以上程序,始终是123,就再也逃不出去,得不到新的数了。
数学黑洞
数学黑洞茫茫宇宙之中,存在着这样一种极其神秘的天体叫“黑洞”(blackhole)。
黑洞的物质密度极大,引力极强,任何物质经过它的附近,都要被它吸引进去,再也不能出来,包括光线也是这样,因此是一个不发光的天体黑洞的名称由此而来。
由于不发光,人们无法通过肉眼或观测仪器发觉它的存在,而只能理论计算或根据光线经过其附近时产生的弯曲现象而判断其存在。
虽然理论上说,银河系中作为恒星演化终局的黑洞总数估计在几百万到几亿个之间,但至今被科学家确认了的黑洞只有天鹅座X-1、大麦哲伦云X-3、AO602-00等极有限的几个。
证认黑洞成为21世纪的科学难题之一。
数学被誉为“科学之母”,在现代科技的发展中起着定海神针般的作用,而现代的战争更是被认为将是一场“数学家和信息学家的战争”。
在信息战中,要运用数学作大量的模拟运算,运用数学在空间作精确的定位,运用数学对导弹作精密制导,运用数学来研究保密通信的算法,运用数学作为网络攻击利器。
无独有偶,在数学中也有这种神密的黑洞现象,对于数学黑洞,无论怎样设值,在规定的处理法则下,最终都将得到固定的一个值,再也跳不出去了,就像宇宙中的黑洞可以将任何物质(包括运行速度最快的光)牢牢吸住,不使它们逃脱一样。
这就对密码的设值破解开辟了一个新的思路。
【一】123黑洞(即西西弗斯串)数学中的123就跟英语中的ABC一样平凡和简单。
然而,按以下运算顺序,就可以观察到这个最简单的黑洞值:设定一个任意数字串,数出这个数中的偶数个数,奇数个数,及这个数中所包含的所有位数的总数,例如:1234567890,偶:数出该数数字中的偶数个数,在本例中为2,4,6,8,0,总共有5 个。
奇:数出该数数字中的奇数个数,在本例中为1,3,5,7,9,总共有5 个。
总:数出该数数字的总个数,本例中为10 个。
新数:将答案按“偶-奇-总”的位序,排出得到新数为:5510。
重复:将新数5510按以上算法重复运算,可得到新数:134。
109. 黑洞数123探秘
黑洞数123探秘王凯成(陕西省小学教师培训中心 710600)设正整数A 中的偶数字个数为m(A 中没有偶数字时m=0),奇数字个数为n(A 中没有奇数字时n=0),A 是m+n 位数,把A 的偶数字个数m 、奇数字个数n 、总位数m+n 按照“偶奇总”顺序排列得到一个新的整数B(B 的首位可以为0),我们把从A 得到B 的过程叫做A 的黑洞数变换f ,即f(A)=B 。
例如:A=36925037186,A 中的偶数字个数为m=5,奇数字个数为n=6,A 是m+n=11位数。
把A 的偶数字个数5、奇数字个数6、总位数11按照“偶奇总”顺序排列得到一个新的整数B=5611。
从A=36925037186得到B=5611的过程就是A=36925037186的一次黑洞数变换,即有:f(36925037186)=5611。
任意一个正整数A ,经过有限次黑洞数变换f 后,总能得到123。
例如:A=3546980001有6个偶数字、4个奇数字,6+4=10,那么f(3546980001)=6410; 6410有3个偶数字、1个奇数字,3+1=4,那么f(6410)=314;314有1个偶数字、2个奇数字,是3位数,所以f(314)=123(将123黑洞数变换f 后仍然是123,即f(123)=123)。
A 经过三次黑洞数变换f ,最终成为123。
再如:A=555555有0个偶数字6个奇数字,0+6=6,那么f(555555)=066(066是形式上的3位数,本文仍然称为3位数,以下类同);066有3个偶数字0个奇数字,3+0=3,那么f(066)=303; 303有1个偶数字2个奇数字,1+2=3,所以f(303) =123。
命题1:设k 位数A= 12k a a a ⋅⋅⋅(i a 是数字),A 有m 个偶数字、n 个奇数字(m 、n 是自然数),m+n=k 。
则A 经过有限次黑洞数变换f 后,总能得到123。
数字黑洞
这是我们银河系的近邻:半人马座A星系,其中心存在一个巨大的黑洞,它正在吞噬和半人马A发生碰撞的另一个较小的星系.何谓黑洞:在宇宙空间中存在的一种质量相当大的天体,它的质量是如此之大,它产生的引力场是如此之强,以至于任何物质和辐射都无法逃逸,就连光也逃逸不出来.由于类似热力学上完全不反射光线的黑体,故名为黑洞.处理法则有:简单的四则运算、立方运算等等在古希腊神话中,科林斯国王西西弗斯被罚将一块巨石推到一座山上,但是无论他怎么努力,这块巨石总是在到达山顶之前不可避免地滚下来,于是他只好重新再推,永无休止.著名的西西弗斯串就是根据这个故事而得名的.西西弗斯串也被称作123黑洞,意思是说对于任意一数字串按一定规则重复进行下去,所得的结果都是“123”,而且一旦转变成“123”后,无论再按以上规则进行多少次,每次所转变的结果都会永无休止地重复着“123”.设定一个任意数字串,数出其中的偶数个数、奇数个数及其中所包含的数字的总个数.将答案按“偶-奇-总”的位序排出而得到新数,再将新数按照以上规则重复,最终的结果都将是123.例如:5681245721,该数字串中的偶数个数为5,奇数个数为5,数字的总个数为10.将答案按“偶-奇-总”的位序排出而得到新数为:5510.将新数5510按以上规则重复进行,可得到新数:134.将新数134按以上规则重复进行,可得到新数:123.取任意一个4位数(4个数字均为同一个数的除外),将该数的4个数字重新组合,形成可能的最大数和可能的最小数,再将两者之间的差求出来;对此差值重复同样过程,最后你总是至达卡普雷卡尔黑洞值,至达这个黑洞最多需要7个步骤.例如:大数:取这4个数字能构成的最大数,本例为:4321;小数:取这4个数字能构成的最小数,本例为:1234;差:求出大数与小数之差,本例为:4321-1234=重复:对新数3087按以上算法求得新数为:8730-0378=重复:对新数8352按以上算法求得新数为:8532-2358=3087;8352;6174;我们能不能找到像6174这样三位数呢?数学黑洞三——如来佛手掌(漩涡黑洞)《西游记》里的孙悟空是一个神通广大、本领高超的人物,他能七十二变,还会腾云驾雾,一个筋斗可翻出十万八千里外.但不管他怎样变幻,一蹦有多远,总还是落在如来佛的掌心里,难以逃脱.这当然只是一个神话故事.但是,数学家发现,这样的现象竟然也会在数学的变幻中出现.我们随便选一个数,比如选人们认为很吉利的数168吧.如果把这个数的每一位数字都平方,然后相加,即168→1+36+64=101这样一来,原来的数就变为101;接下来将101这个数的每一位数字都平方,并相加,即101→1+0+1=2,……按照这种变换不断重复,就能得到:4→16→37→58→89→145→…….结果是:168→101→2→4→16 →37 →58↑ →4 89↑ →20←42←145数学黑洞四——考拉兹猜想事情始于上个世纪的三十年代,德国汉堡的一名学生洛萨赫·考拉兹发现了一个奇怪的现象:任意写下一个自然数,如果是奇数,则将它乘以3并加1;如果是偶数,则将它除以2.对结果反复施行这样的变换之后,会出现一个有趣的现象,似乎数字掉进了一个“无底洞”,最后总是出现:一个自然数,经过K步变换跌入1,那么这个K是否有最大值呢?没有!最直接的说明是2K需要经过K次变换才能变为1,而对这个K 没有限制.同理,因为27需要111步变为1,所以54就需要112步,108需要113步,2K×27需要(K+111)步.考拉兹猜想的魅力就在于数字飘忽不定.比如27,它初看上去貌不惊人,但在变换过程中,上下变化异常剧烈,到77步时升达峰顶9232,又经过34步跌入谷底1,全程竟达111步之多.再比如703,到82步时竟然达到250504,最终经过170步跌入谷底1.。
123黑洞原创解法
“西西弗斯串(数学黑洞)”现象与其证明□秋屏由若干个阿拉伯数字从左至右排列而成的一串数字符号,叫做数字串。
如:“0”,“12”,“235”,“333”,“1403765”,“00587465132098”等等,就分别是一个数字串。
显然任意一数字串中均含有若干个由一个阿拉伯数字构成的奇数或偶数。
“数学黑洞”现象:取任意一数字串,(1)先数一下其中所含由一个阿拉伯数字构成的偶数个数,比如个数是“m”,就记作“m”。
(2)再数一下其中所含由一个阿拉伯数字构成的奇数个数,比如个数是“n”,就在“m”后面记作“n”——得出“mn”。
(3)最后算一下其中所含阿拉伯数字的总个数,即把“m”加“n”的和算出,比如和是“l”,就在“mn”后面记作“l”——得出“mnl”。
经过以上三个步骤的程序操作,就将原数字串转变成了“mnl”这个数字串。
此时会发现:也许按本程序操作一次,所转变成的数字串就是数字串“123”;否则,将转变成的数字串继续按本程序操作,这样反复操作下去最终总可将原数字串转变成数字串“123”。
而且一旦将原数字串转变成数字串“123”后,无论再对“123”按本程序操作多少次,所转变成的数字串总还是“123”,而不会是其他形式的数字串。
这就是说对任意一数字串按本程序反复操作下去,最终所转变的数字串总是“123”。
因此对于这个程序以及“数字宇宙(即无限个数字串)”来说,数字串“123”就是一个永远无法逃逸的“数学黑洞”。
数字串“123”也称作西西弗斯串。
西西弗斯的故事出自希腊神话,天神罚科林斯国王西西弗斯将一块巨石推到一座陡峭的山顶上,但无论他怎样努力,这块巨石总是在到达山顶时却又不可避免地滚下来,于是他只得重新再推,永无休止。
之所以把数字串“123”称作西西弗斯串,意思是说对于任意一数字串按本程序反复操作下去,所得的结果都是“123”,而且一旦转变成“123”后,无论再按本程序操作多少次,每次所转变的结果都会永无休止地重复着“123”。
生命数字中黑洞数字解读
生命数字中黑洞数字解读
生命数字中的黑洞数字是指一个数字,如果你将其各个数字按升序排列,然后再以降序排列,然后用后者减去前者,得到的结果仍然是这个数字。
例如,我们以数字123为例,按升序排列得到123,按降序排列得到321,两者相减得到198,并且198并不等于123,因此123不是一个黑洞数字。
但是,以数字495为例,按升序排列得到459,按降序排列得到954,两者相减得到495,依然是495,因此495是一个黑洞数字。
黑洞数字在数学上具有一些特殊的性质,它们在进行特定的运算时会呈现出一些有趣的现象。
例如,对任意的三位数,经过几次按照黑洞数字的规则进行运算,最终都会收敛到某一个黑洞数字。
这种性质使得黑洞数字成为了数学上一个有趣的研究对象。
在现实生活中,黑洞数字也被用于一些密码学和加密技术中,因为它们具有一定的隐蔽性和不可逆性,能够用于信息安全领域。
另外,黑洞数字也常常被用于一些谜题和游戏中,因为它们具有一定的趣味性和挑战性。
总的来说,黑洞数字是一种有趣且具有特殊性质的数字,它们
在数学研究和实际应用中都具有一定的价值和意义。
希望这个回答能够从多个角度为你解读生命数字中的黑洞数字。
“数字黑洞”及其简易证明-
“数字黑洞”及其简易证明近年来,在各级各类数学竞赛或数学考试中屡屡出现一类所谓的“数字黑洞”问题。
这类问题既有趣、又神秘,还很怪异,往往让人琢磨不透.而教辅杂志或互联网上的相关文章大多数总是惊叹这些“数字黑洞”是如何的奇妙,如何的乖巧,却对它们的内在奥秘闭口不提.即使是少数专业杂志上给出了严格的证明,但一般也用到了较高深的数论知识,非普通读者可以轻松阅读.笔者经过仔细研究,对一些常见于书报的“数字黑洞”得到了一些相对浅显的、变通的证明,目的是想让更多的读者不光“知其然”,而且“知其所以然”.通过这些简易的证明,足以让读者承认这些“数字黑洞”的真实存在,并且能够透视出真正操纵它们的“幕后黑手”.下面,笔者就来给读者朋友们介绍几个著名的“数字黑洞”及其简易证明.问题1:(2003年青岛市中考数学试题) 探究数字“黑洞”:“黑洞”原指非常奇怪的天体,它体积小,密度大,吸引力强,任何物体到了它那里都别想再“爬”出来.无独有偶,数字中也有类似的“黑洞”,满足某种条件的所有数,通过一种运算,都能被它“吸”进去,无一能逃脱它的魔掌.譬如:任意找一个3的倍数的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方、求和,…,重复运算下去,就能得到一个固定的数T= ,我们称它为数字“黑洞”.T 为何具有如此魔力?通过认真的观察、分析,你一定能发现它的奥秘!分析:如果我们先取18,首先我们得到5138133=+,然后是153315333=++,接下去又是153,于是就陷在“153153−→−F ” (F 代表上述的变换规则,下同)这个循环中了。
再举个例子,最开始的数取756,我们得到下面的序列:Λ1535131080792684756F −→−−→−−→−−→−−→−F F F F这次复杂了一点,但是我们最终还是陷在“153153−→−F ”这个循环中。
随便取一个其他的3的倍数的数,对它进行这一系列的变换,或迟或早,你总会掉到“153153−→−F ”这个“死循环”中,或者说,你总会得到153.于是我们可以猜想“黑洞”T =153. 现在要讨论的问题是:是否对于所有的符合条件的自然数都是如此呢?西方把153称作“圣经数”。
数学黑洞123原理
数学黑洞123原理宝子们!今天咱们来唠唠数学里超级有趣的一个玩意儿——数学黑洞123。
这可不是什么神秘的宇宙黑洞哦,但是它在数学的小天地里也有着超级迷人的魅力呢!你随便想一个自然数,什么数都行哦。
比如说35吧。
然后按照这个规则来操作,要是这个数是偶数呢,就把它除以2;要是这个数是奇数呢,就把它乘以3再加1。
35是奇数,那按照规则就是35×3 + 1 = 106。
这106是偶数啦,那就要除以2,106÷2 = 53。
53又是奇数,就又要乘以3再加1,53×3+1 = 160。
160是偶数,160÷2 = 80。
80÷2 = 40,40÷2 = 20,20÷2 = 10,10÷2 = 5。
5是奇数,5×3+1 = 16,16÷2 = 8,8÷2 = 4,4÷2 = 2,2÷2 = 1。
你看,从35这个数开始,经过这么一系列的操作,最后就得到了1。
那这和123有啥关系呢?别急嘛。
当得到1之后,如果我们再按照这个规则继续操作。
1是奇数,1×3+1 = 4,4÷2 = 2,2÷2 = 1。
你会发现,这就开始循环啦。
不过呢,要是我们把每次得到的数按照一定的顺序排列起来,就会发现一个有趣的现象。
比如说从21这个数开始操作。
21是奇数,21×3+1 = 64,64÷2 = 32,32÷2 = 16,16÷2 = 8,8÷2 = 4,4÷2 = 2,2÷2 = 1。
把这些数按照顺序写出来,你就会发现,在这个过程中会出现一些数字的组合趋势。
在很多数的操作过程中,你会发现会不断地出现一些数字,而且最后总是会掉进1 - 2 - 4这个小循环里。
那为啥说是123黑洞呢?其实啊,是因为在这个不断计算的过程中,数字的变化就像是被一股神秘的力量拉扯着,最后总是会呈现出一种类似向123相关的规律靠近的感觉。
数学黑洞123的计算方法
数学黑洞123是一种数学现象,它指的是输入任何数字经过一系列计算最终都会指向数字123。
下面是一种计算方法:
假设我们要计算的数字是N,将N乘以7,然后将结果加上N再减去3,最后再除以4即可得到123。
具体步骤如下:
1. 将要计算的数字N乘以7,得到N乘以7的结果M。
2. 将M加上N再减去3,得到(M+N-3)的结果K。
3. 将K除以4即可得到123。
经过一系列的运算,无论输入任何数字,最终都将会得到数字123。
这一现象引起了人们对数学结构和无限思维的关注和思考。
这种现象不仅体现了数学的神奇和美丽,也反映了数学在处理无限和有限问题时的深刻思想和精妙思维。
在实际应用中,数学黑洞123可以用于一些简单的密码学和数学游戏,也可以用于解决一些简单的数学问题。
同时,它也提醒人们在数学领域中要时刻关注无限和有限问题,以及数学结构之间的关系,才能更好地理解和应用数学。
总之,数学黑洞123是一种有趣的数学现象,它通过一系列运算最终指向数字123,体现了数学的神奇和美丽,也反映了数学在处理问题时的深刻思想和精妙思维。
在未来的学习和探索中,人们将继续发现更多有趣的数学现象和问题,进一步拓展数学的应用领域和深度。
数字黑洞
安徽省芜湖县大闸中学近年来,在各级各类数学竞赛或数学考试中屡屡出现一类所谓的“数字黑洞”问题。
这类问题既有趣、又神秘,还很怪异,往往让人琢磨不透.而教辅杂志或互联网上的相关文章大多数总是惊叹这些“数字黑洞”是如何的奇妙,如何的乖巧,却对它们的内在奥秘闭口不提.即使是少数专业杂志上给出了严格的证明,但一般也用到了较高深的数论知识,非普通读者可以轻松阅读.笔者经过仔细研究,对一些常见于书报的“数字黑洞”得到了一些相对浅显的、变通的证明,目的是想让更多的读者不光“知其然”,而且“知其所以然”.通过这些简易的证明,足以让读者承认这些“数字黑洞”的真实存在,并且能够透视出真正操纵它们的“幕后黑手”.下面,笔者就来给读者朋友们介绍几个著名的“数字黑洞”及其简易证明.问题1:(2003年青岛市中考数学试题) 探究数字“黑洞”:“黑洞”原指非常奇怪的天体,它体积小,密度大,吸引力强,任何物体到了它那里都别想再“爬”出来.无独有偶,数字中也有类似的“黑洞”,满足某种条件的所有数,通过一种运算,都能被它“吸”进去,无一能逃脱它的魔掌.譬如:任意找一个3的倍数的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方、求和,…,重复运算下去,就能得到一个固定的数T = ,我们称它为数字“黑洞”.T 为何具有如此魔力?通过认真的观察、分析,你一定能发现它的奥秘!分析:如果我们先取18,首先我们得到5138133=+,然后是153315333=++,接下去又是153,于是就陷在“153153−→−F ” (F 代表上述的变换规则,下同)这个循环中了。
再举个例子,最开始的数取756,我们得到下面的序列:1535131080792684756F −→−−→−−→−−→−−→−F F F F这次复杂了一点,但是我们最终还是陷在“153153−→−F ”这个循环中。
随便取一个其他的3的倍数的数,对它进行这一系列的变换,或迟或早,你总会掉到“153153−→−F ”这个“死循环”中,或者说,你总会得到153.于是我们可以猜想“黑洞”T =153. 现在要讨论的问题是:是否对于所有的符合条件的自然数都是如此呢?西方把153称作“圣经数”。
数字黑洞123原理
数字黑洞123原理
数字黑洞123是一个数学研究中的概念,它涉及到对一个三位数的操作,展示了一个有趣的现象。
下面我们来介绍一下数字黑洞123原理。
假设我们有一个任意的三位数,例如345。
首先,我们将这个数字按照降序排列得到最大数和最小数。
在这种情况下,得到543和345。
接下来,将最大数减去最小数,即543减去345,得到198。
然后,再次将结果按照降序排列得到最大数和最小数。
在这种情况下,得到981和189。
接着,将最大数减去最小数,即981减去189,得到792。
再次按照降序排列,得到972和279。
重复以上步骤,直到得到一个数字循环。
最终,我们得到的数字循环是495。
由此可见,不论最初选择哪个三位数,经过一系列的操作,最终都会收敛到495这个循环。
数字黑洞123原理的惊人之处在于,看似复杂的操作最终都会以相同的循环结果结束。
这种现象引发了人们对数学领域的探索和研究。
通过研究数字黑洞123原理,我们可以了解到数学中的奇妙之处。
它展示了数字之间的关系和规律,让我们对数学的深度有了更多的理解。
总之,数字黑洞123原理是一个引人入胜的数学概念,通过一系列的操作,最终会收敛到一个循环数字。
它揭示了数学中的规律和奇妙之处,激发了人们对数学领域的兴趣。
数字黑洞123原理
数字黑洞123原理
摘要:
一、数字黑洞123 的概念
二、数字黑洞123 的原理
三、数字黑洞123 的应用
四、数字黑洞123 的意义
正文:
数字黑洞123 是一种在计算机科学中出现的现象,它涉及到数字的排序和计算。
当一个四位数按照特定的顺序进行排序和计算时,最终会得到一个固定的数字,即数字黑洞123。
数字黑洞123 的原理是通过对四位数进行排序和计算,使其最终得到一个固定的数字。
首先,将四位数的四个数字按照非递减的顺序进行排序,然后将这四个数字按照非递增的顺序进行排序。
接下来,用第一个排序后的数字减去第二个排序后的数字,得到一个新的数字。
重复这个过程,最终会得到数字黑洞123。
数字黑洞123 的应用主要集中在计算机科学领域,它可以帮助我们更好地理解计算机科学中的算法和数据结构。
同时,数字黑洞123 也具有一定的娱乐价值,通过不断地计算和排序,可以得到一个固定的数字,具有一定的趣味性。
数字黑洞123 的意义在于它揭示了计算机科学中数字计算和排序的规律,为我们更好地理解和应用计算机科学提供了重要的参考。
“西西弗斯串(数学黑洞)”现象与其证明
由若干个阿拉伯数字从左至右排列而成的一串数字符号,叫做数字串。
如:“0”,“12”,“235”,“333”,“”,“098”等等,就分别是一个数字串。
显然任意一数字串中均含有若干个由一个阿拉伯数字构成的奇数或偶数。
“数学黑洞”现象:取任意一数字串,(1)先数一下其中所含由一个阿拉伯数字构成的偶数个数,比如个数是“m”,就记作“m”。
(2)再数一下其中所含由一个阿拉伯数字构成的奇数个数,比如个数是“n”,就在“m”后面记作“n”——得出“mn”。
(3)最后算一下其中所含阿拉伯数字的总个数,即把“m”加“n”的和算出,比如和是“l”,就在“mn”后面记作“l”——得出“mnl”。
经过以上三个步骤的程序操作,就将原数字串转变成了“mnl”这个数字串。
此时会发现:也许按本程序操作一次,所转变成的数字串就是数字串“123”;否则,将转变成的数字串继续按本程序操作,这样反复操作下去最终总可将原数字串转变成数字串“123”。
而且一旦将原数字串转变成数字串“123”后,无论再对“123”按本程序操作多少次,所转变成的数字串总还是“123”,而不会是其他形式的数字串。
这就是说对任意一数字串按本程序反复操作下去,最终所转变的数字串总是“123”。
因此对于这个程序以及“数字宇宙(即无限个数字串)”来说,数字串“123”就是一个永远无法逃逸的“数学黑洞”。
数字串“123”也称作西西弗斯串。
西西弗斯的故事出自希腊神话,天神罚科林斯国王西西弗斯将一块巨石推到一座陡峭的山顶上,但无论他怎样努力,这块巨石总是在到达山顶时却又不可避免地滚下来,于是他只得重新再推,永无休止。
之所以把数字串“123”称作西西弗斯串,意思是说对于任意一数字串按本程序反复操作下去,所得的结果都是“123”,而且一旦转变成“123”后,无论再按本程序操作多少次,每次所转变的结果都会永无休止地重复着“123”。
例如:对数字串“235”按本程序反复操作。
先数下其中所含由一个阿拉伯数字构成的偶数个数,个数为“1”,就记作“1”。
形形色色的数学黑洞
形形色色的数学黑洞在数学的广袤世界里,存在着一些神秘而又迷人的现象,被称为“数学黑洞”。
它们就像是宇宙中的黑洞一样,一旦陷入其中,就难以逃脱。
今天,就让我们一起来探索这些形形色色的数学黑洞。
首先,让我们来认识一个简单而有趣的数学黑洞——“123 黑洞”。
任意取一个数字串,比如 3456789,然后按照从大到小的顺序重新排列得到 9876543,再从小到大排列得到 3456789。
用大的数字减去小的数字,即 9876543 3456789 = 6419754。
接着,对得到的新数字重复刚才的操作,不断进行下去。
神奇的是,最终都会得到一个固定的数字 495。
是不是很奇妙?无论你最初选择的数字是什么,经过一系列的运算,都会掉入“495”这个黑洞。
再来看另一个著名的数学黑洞——“卡普雷卡尔黑洞”。
对于一个三位数,比如 352,将其组成的数字最大数 532 和最小数 235 相减,532 235 = 297。
再对 297 重复这个操作,972 279 = 693,963 369 = 594,954 459 = 495。
瞧,又回到了 495 这个黑洞。
除了以上这些,还有一个让人惊叹的数学黑洞——“西西弗斯串”。
设定一个数字串,例如 1234。
计算数字串中偶数数字的个数、奇数数字的个数以及数字的总个数,得到 2 个偶数、2 个奇数、4 个数字,组成新的数字串 224。
然后对新数字串重复这个操作,不断进行下去,最终也会陷入一个循环,就像西西弗斯不断推石头上山却又滚落一样。
这些数学黑洞的存在,让我们不禁思考,数学到底是一种人为创造的规则,还是隐藏在宇宙深处的某种神秘规律的体现?或许,数学黑洞正是宇宙中那些未知奥秘的一个小小窗口,等待着我们去进一步探索和发现。
数学黑洞不仅仅是一种有趣的数学现象,它们还在很多领域有着重要的应用。
在密码学中,对数字的规律研究可以帮助我们设计更加安全的加密算法。
在计算机科学中,通过对数学黑洞的理解,可以优化算法,提高计算效率。
123数字黑洞
123数字黑洞黑洞原是天文学中的概念,表示这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。
数学中借用这个词,指的是某种运算,这种运算一般限定从某些整数出发,反复迭代后结果必然落入一个点或若干点。
数字黑洞运算简单,结论明了,易于理解,故人们乐于研究。
但有些证明却不那么容易。
数字黑洞是指某些数字经过一定的运算得到一个循环或确定的答案,比如黑洞数6174:随便选一个四位数,如1628,先把组成的四个数字从大到小排列得到8621,再把原数1628的四个数字由小到大排列得到1268,用大的减小的:8621-1268=7353。
按上面的办法重复,由大到小排列7353,得到7533,由小到大排列得到3357,大减小:7533-3357=4176,把4176再重复一遍,得7641-1467=6174。
所以6174就是一个黑洞数字。
任取一个数,相继依次写下它所含的偶数的个数,奇数的个数与这两个数字的和,将得到一个正整数。
对这个新的数再把它的偶数个数和奇数个数与其和拼成另外一个正整数,如此进行,最后必然停留在数123。
例:所给数字14741029第一次计算结果448第二次计算结果303第三次计算结果123将三个数字的和乘以2,得数作为重组三位数的百位数和十位数;将原数的十位数字与个位数字的和(若得两位数,再将数字相加得出和),作为新三位数的个位数。
此后,再对重组的三位数重复这一过程,你将看到,必有一数堕落陷阱。
如,任写一个数843,按要求,其转换过程是:(8+4+3)×2=30……作新三位的百位、十位数。
4+3=7……作新三位数的个位数。
组成新三位数307,重复上述过程,继续下去是:307→207→187→326→228→241→145→209→229→262→208→208→……结果,208落入“陷阱”。
再如:411,按要求,其转换过程是:411→122→104→104→……结果,104落入了陷阱。
数字黑洞123原理
数字黑洞123原理
数字黑洞是一个数字谜题,其原理如下:
1. 首先,选择一个任意的三位数(必须保证各位数字不全相同,例如111或222不符合要求)。
2. 将这个三位数按照从大到小的顺序排列出来,得到一个数字x1。
3. 再将这个数字按照从小到大的顺序排列出来,得到一个数字x2。
4. 计算x1与x2的差值,记为x3 = x1 - x2。
5. 将x3作为下一轮的输入,重复步骤2到步骤4,直到得到
数字6174为止。
6. 如果输入的数是6174,则停止计算。
根据这个原理,我们可以看出数字黑洞是一个经过有限次迭代后,最终会收敛到6174的数字。
这个数字也被称为"卡普雷卡
尔常数"。
如果输入的数字不满足三位数或者数字全相同的条件,则无法进行迭代计算。
三位数黑洞数求解过程
三位数黑洞数求解过程嘿,朋友们!今天咱来聊聊三位数黑洞数的求解过程,这可有意思啦!你说三位数,就那么三个数字,能玩出啥花样来呢?嘿嘿,这花样可大着呢!想象一下,就好像进入了一个数字的奇妙世界。
咱先随便拿个三位数,比如说 123 吧。
然后把这三个数字重新排列组合,能得到最大的数 321,最小的数 123,用大的减小的,321-123=198。
接下来呢,再对 198 重复这个过程,得到 891-108=783。
再继续,873-378=495。
嘿,你发现没,到 495 就好像进入了一个循环,再怎么弄都是 495 啦!这 495 就是三位数的黑洞数呀!你说神奇不神奇?就这么几个数字倒腾来倒腾去,最后就掉进这个“黑洞”里出不来啦!这就好像你在一个迷宫里走啊走,最后走到了一个固定的地方。
咱再试试其他三位数,是不是都这样呢?比如说 567,一番操作下来,最后也会掉进 495 这个黑洞里呢!这难道是数字世界的一个秘密规律?这就好像生活中有些事情,你一开始觉得没啥特别,但是慢慢探索,就会发现其中的奇妙之处。
就像你偶然发现一个小角落,里面藏着意想不到的惊喜!三位数黑洞数的求解过程不就是这样嘛,看似简单,却藏着这么有趣的秘密。
每次求解都像是一场小小的冒险,你永远不知道会得出什么结果,但最后都会被这个神奇的黑洞给吸引住。
所以啊,朋友们,别小看了这小小的三位数,它们里面可有着大大的乐趣呢!去试试吧,自己亲手去探索这个数字的奇妙世界,感受一下发现黑洞数的那种惊喜和乐趣。
相信我,你会被深深吸引的,然后感叹:哇塞,原来数字这么好玩!就这么简单的几个数字,居然能玩出这么多花样来,这就是数字的魅力呀!怎么样,还不赶紧去试试?原创不易,请尊重原创,谢谢!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
123数字黑洞解码
数论
四则变換法则
123数字黑洞——数理模式解码
世界数学奇葩难题解答集
作者: 中国数论研究者
乐平林登发(经济師)
2208831455@
2015.2.1.
附原文
123数字黑洞
设定一个任意数字串,数出这个数中的偶数个数,奇数个数,及这个数中所包含的所有位数的总数。
例如:1234567890,偶:2,4,6,8,0总共5个,奇:1,3,5,7,9总共5个,总:数字总个数10个。
新数:按“偶一奇一总”的位序排出新数:5510.
重复
偶:0.共1个,奇:5,5,1,共3个,总:数字总个数:4.
新数:按“偶一奇一总”位数:134.
重复
偶:4.共1个,奇:1,3,共2个,总:数字总个数3个,
新数:按“偶一奇一总”总位书写:123.下面是不断循环操作,始终是:123.
㈠前言
此是网上公布的数学奇葩难题,扑朔迷离,怪到如入云雾渺茫之中,既稀奇古怪又趣味无穷,百思不得其解,故以“黑洞”命名喻之。
本人阅后兴趣使然,研究并发现了一种解码方法,供世人评论参考,现公布于众。
㈡四则变換法则解码
1、该题以浩瀚的自然数为背景出现任意数字串里的偶数个数和奇数个数及总个数,只考虑所有位数个数,数字大小则无关。
2、排列模式规定偶数个数在前,奇数个数在后,总个数在最后。
命题: 实际本质是:“偶一奇一总”个数表达式问题,为什么总会产生数理逻辑123模式?
3、这个数字黑洞是奇偶数与前后位置变换逻辑模式,暗藏2的平方数理模式,共四种不同变換形态模式,即:四则变換法则:
奇奇总,偶偶总,奇偶总,偶奇总。
其中:
奇奇总112型是:偶数位在前是奇数个数,奇数位在后是奇数个数,总数位则等于偶数。
产生新数就是奇数,奇数,偶數,这是第一次变換模式,接下来就是偶数位在前是1,奇数位是2在后,总个数在最后是3.进入形态模式123。
同理,偶偶总224型会变換成偶偶偶224,偶数位是3个,奇数位在后是0,总数位之和则是3.这是第一次变換,接着偶数位1个(是0),奇数位是2(两个3),总个数位等于3.就是123形态模式。
奇偶总123型变換成奇偶奇。
再变換成123形态模式。
偶奇总213型变換成偶奇奇123,再变換成奇偶奇,就成了123形态模式。
原文规定0是数,也是偶数个数。
只要变換出现偶数个数是1就成功了,奇数个数就是2,总个数必然是3。
这样两种不同数与前后两种位置变化数理逻辑四则类型,早在中国周易阴阳学说中已采用,这里借用此理论解码具有现实意义。
功绩在先贤文明智慧创新。
上述原文中5,5,10,变成1,3,4,就是偶数0计1个,奇数5,5,1,计3个,总计个数1,5,5,0共计4个,是奇(偶数是0,计个数是1个,排在前面)奇(奇数5,5,1,共计3个)偶(总数5,5,1,0,共计4个)134形态模式。
下一步骤是偶数4(即上一步骤总个数)计1个排在前面,奇数1,3,共计2个排在后,接着是排总个数则是3个,就变成123数字形态模式。
4、这里计算个数值与数字大小不要混淆,如上文:5,5,10个,即是偶数0,共计1个,奇数5,5,1共计3个,总:数字总个数4,即新数按偶奇总位数:134,
5、这个黑洞不是讲计算自然数,只是象征而已,作为背景,实际是证明“偶一奇一总“排列顺序,变成123形态模式,个数表达式的求法所以然问题。
6、下面按4种数理逻辑演示举例:
例1:
如有奇数个数3,偶数个数3,总数个数6,即336,奇奇偶,下一步变成偶数6是l个,奇数3,3是2个,总个数是3,就是123形态模式。
例2:
如有偶数个数4,奇数个数4,总个数是8,就是偶偶总448,下一步骤变成偶数个数3个,奇数个数0个,总数3个,变成偶3奇0总3,即3o3,再下一步骤变成偶数是0共计1个,奇数3,3是2个,总数个数3,即123形态模式。
例3:
如有奇数5,偶数4,总个数9,偶数个数4共1个,奇数个数5,9共2个,总数个数4,5,9共3个,即123形态模式。
例4:
如有奇数个数8个,偶数个数1个,总个数9,即奇偶总819模式,下一步骤偶数个数在前是8共计1个,奇数个数1,9共2个,总数8,1,9共计3个,按偶奇总排列即123形态模式。
7、解码答案:
因为除了上述四则变换类型数理逻辑均会直接变換成123形态模式,不会产生另类。
所以123数字黑洞是可循环的唯一必然结局!!!
㈢后记体会
黑洞变成了光明大道,它是益智类、正能量智能数字游戏,並非象无底洞一样黑暗、深不可测。
很多高深、顶级,前沿、尖端数学难题,不一定只采用特殊工具、手段才能解决其中奥秘,如整数论不需要进入小数,分数,无理数……之中来解析,反而有的自找麻烦,甚至闹成笑话。
只有在基础科学上发现其数理模式自然规律,探究其本质原理,揭开其形态神奇面纱,怪异难题可能就会解码谜底。
本人研究方向是数论,还有素数方面分布、组合论文,破解了希尔伯特23个问题中第8题,基础理论有重大突破性进展。
呼吁有声誉的期刊,数论杂志约稿发表,好早日公布。
附照片:
在洪马中学校门前 2014.7.20.17:46.留影
作者:中国数论研究者
乐平市林登发(经济师)
2208831455@
2015,2,1,。