2017年广东省茂名市中考数学试题及解析

合集下载

2017年广东省中考数学试卷(含答案解析版)

2017年广东省中考数学试卷(含答案解析版)
/ 19 2017年广东省中考数学试卷 参考答案与试题解析 一、选择题(本大题共10小题,每小题3分,共30分) 1.5的相反数是( ) A. B.5 C.﹣ D.﹣5 【考点】14:相反数. 【分析】根据相反数的概念解答即可. 【解答】解:根据相反数的定义有:5的相反数是﹣5. 故选:D. 2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为( ) A.0.4×109 B.0.4×1010 C.4×109 D.4×1010 【考点】1I:科学记数法—表示较大的数. 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数. 【解答】解:4000000000=4×109. 故选:C. 3.已知∠A=70°,则∠A的补角为( ) A.110° B.70° C.30° D.20° 【考点】IL:余角和补角. 【分析】由∠A的度数求出其补角即可. 【解答】解:∵∠A=70°, ∴∠A的补角为110°, 故选A 4.如果2是方程x2﹣3x+k=0的一个根,则常数k的值为( ) A.1 B.2 C.﹣1 D.﹣2 【考点】A3:一元二次方程的解. 【分析】把x=2代入已知方程列出关于k的新方程,通过解方程来求k的值. 【解答】解:∵2是一元二次方程x2﹣3x+k=0的一个根, ∴22﹣3×2+k=0, 解得,k=2. 故选:B. 5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是( ) A.95 B.90 C.85 D.80

(完整版)2017年广东省中考数学试题与参考答案

(完整版)2017年广东省中考数学试题与参考答案

2017年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。

2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。

用2B 铅笔把对应该号码的标号涂黑。

3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。

4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

5.考生务必保持答题卡的整洁。

考试结束时,将试卷和答题卡一并交回。

一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 5的相反数是( ) A. B.5 C.- D.-52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。

2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×B.0.4×C.4×D.4× 3.已知,则的补角为( )A. B. C. D. 4.如果2是方程的一个根,则常数k 的值为( )A.1B.2C.-1D.-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A.95B.90C.85D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆 7.如题7图,在同一平面直角坐标系中,直线与双曲线 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( ) A.(-1,-2) B.(-2,-1) C.(-1,-1) D.(-2,-2)15159101010910101070A ∠=︒A ∠110︒70︒30︒20︒230x x k -+=11(0)y k x k =≠22(0)k y k x=≠题7图8.下列运算正确的是( )A. B. C. D.9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①;②;③; ④,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是,那么n= . 13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知,则整式的值为 .16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .223a a a +=325·a a a =426()a a =424a a a +=ABF ADF S S =△△4CDF CBF S S =△△2ADF CEF S S =△△2ADF CDF S S =△△720︒ab ÷431a b ÷=863a b ÷-三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:.18.先化简,再求值,其中x =√5 .19.学校团委组织志愿者到图书馆整理一批新进的图书。

2017年广东省中考数学(word版,有解析)

2017年广东省中考数学(word版,有解析)

2017年广东省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.5的相反数是()A.B.5 C.﹣ D.﹣5【解析】根据相反数的定义有:5的相反数是﹣5.故选:D.2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×1010【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.4000000000=4×109.故选:C.3.已知∠A=70°,则∠A的补角为()A.110°B.70°C.30°D.20°【解析】∵∠A=70°,∴∠A的补角为110°,故选A4.如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣2【解析】∵2是一元二次方程x2﹣3x+k=0的一个根,∴22﹣3×2+k=0,解得,k=2.故选:B.5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.80【解析】数据90出现了两次,次数最多,所以这组数据的众数是90.故选B.6.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆【解析】等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选D.7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)【解析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.∵点A与B关于原点对称,∴B点的坐标为(﹣1,﹣2).故选:A.8.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5 C.(a4)2=a6D.a4+a2=a4【解析】A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.9.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°【解析】∵∠CBE=50°,∴∠ABC=180°﹣∠CBE=180°﹣50°=130°,∵四边形ABCD为⊙O的内接四边形,∴∠D=180°﹣∠ABC=180°﹣130°=50°,∵DA=DC,∴∠DAC==65°,故选C.10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()论:①S△ABFA.①③B.②③C.①④D.②④【解析】∵四边形ABCD是正方形,∴AD∥CB,AD=BC=AB,∠FAD=∠FAB,在△AFD和△AFB中,,∴△AFD≌△AFB,=S△ADF,故①正确,∴S△ABF∵BE=EC=BC=AD,AD∥EC,∴===,=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,∴S△CDF故②③错误④正确,故选C.二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a2+a=a(a+1).【解析】a2+a=a(a+1).故答案为:a(a+1).12.一个n边形的内角和是720°,则n=6.【解析】设所求正n边形边数为n,则(n﹣2)•180°=720°,解得n=6.13.已知实数a,b在数轴上的对应点的位置如图所示,则a+b<0.(填“>”,“<”或“=”)【解析】∵a在原点左边,b在原点右边,∴a<0<b,∵a离开原点的距离比b离开原点的距离大,∴|a|>|b|,∴a+b<0.故答案为:<.14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.【解析】∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是,故答案为:15.已知4a+3b=1,则整式8a+6b﹣3的值为﹣1.【解析】解:∵4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A 的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.【解析】解:如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,∴AH===,故答案为.三、解答题(本大题共3小题,每小题6分,共18分)17.计算:|﹣7|﹣(1﹣π)0+()﹣1.【分析】直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案.【解】原式=7﹣1+3=9.18.先化简,再求值:(+)•(x2﹣4),其中x=.【分析】先计算括号内分式的加法,再计算乘法即可化简原式,将x的值代入求解可得.【解】原式=[+]•(x+2)(x﹣2)=•(x+2)(x﹣2)=2x,当x=时,原式=2.19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【分析】设男生志愿者有x人,女生志愿者有y人,根据“若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解】设男生志愿者有x人,女生志愿者有y人,根据题意得:,解得:.答:男生志愿者有12人,女生志愿者有16人.四、解答题(本大题共3小题,每小题7分,共21分)20.如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.【分析】(1)根据题意作出图形即可;(2)由于DE是AB的垂直平分线,得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B=50°,由三角形的外角的性质即可得到结论.【解答】解:(1)如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.21.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【分析】(1)连结DB、DF.根据菱形四边相等得出AB=AD=FA,再利用SAS证明△BAD≌△FAD,得出DB=DF,那么D在线段BF的垂直平分线上,又AB=AF,即A在线段BF的垂直平分线上,进而证明AD⊥BF;(2)设AD⊥BF于H,作DG⊥BC于G,证明DG=CD.在直角△CDG中得出∠C=30°,再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°.【解】(1)证明:如图,连结DB、DF.∵四边形ABCD,ADEF都是菱形,∴AB=BC=CD=DA,AD=DE=EF=FA.在△BAD与△FAD中,,∴△BAD≌△FAD,∴DB=DF,∴D在线段BF的垂直平分线上,∵AB=AF,∴A在线段BF的垂直平分线上,∴AD是线段BF的垂直平分线,∴AD⊥BF;(2)如图,设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形,∴DG=BH=BF.∵BF=BC,BC=CD,∴DG=CD.在直角△CDG中,∵∠CGD=90°,DG=CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=52(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于144度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【分析】(1)①根据D组的人数及百分比进行计算即可得到m的值;②根据C组的百分比即可得到所在扇形的圆心角的度数;(2)根据体重低于60千克的学生的百分比乘上九年级学生总数,即可得到九年级体重低于60千克的学生数量.【解】(1)①调查的人数为:40÷20%=200(人),∴m=200﹣12﹣80﹣40﹣16=52;②C组所在扇形的圆心角的度数为×360°=144°;故答案为:52,144;(2)九年级体重低于60千克的学生大约有×1000=720(人).五、解答题(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.【分析】(1)将点A、B代入抛物线y=﹣x2+ax+b,解得a,b可得解析式;(2)由C点横坐标为0可得P点横坐标,将P点横坐标代入(1)中抛物线解析式,易得P 点坐标;(3)由P点的坐标可得C点坐标,A、B、C的坐标,利用勾股定理可得BC长,利用sin∠OCB=可得结果.【解答】解:(1)将点A、B代入抛物线y=﹣x2+ax+b可得,,解得,a=4,b=﹣3,∴抛物线的解析式为:y=﹣x2+4x﹣3;(2)∵点C在y轴上,所以C点横坐标x=0,∵点P是线段BC的中点,∴点P横坐标x P==,∵点P在抛物线y=﹣x2+4x﹣3上,∴y P=﹣3=,∴点P的坐标为(,);(3)∵点P的坐标为(,),点P是线段BC的中点,∴点C的纵坐标为2×﹣0=,∴点C的坐标为(0,),∴BC==,∴sin∠OCB===.24.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC 于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)【分析】(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【解】(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,∵△BMC∽△PMB,∴=,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴的长==π.25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE ⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y 的最小值.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.连接BE,取BE的中点K,连接DK、KC.首先证明B、D、E、C四点共圆,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO==,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①由(2)可知,B、D、E、C四点共圆,推出∠DBC=∠DCE=30°,由此即可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解】(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:连接BE,取BE的中点K,连接DK、KC.∵∠BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C四点共圆,∴∠DBC=∠DCE,∠EDC=∠EBC,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DBC=∠DCE=∠EDC=∠EBC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,中考数学试卷精选中考数学试卷精选 在Rt △AOC 中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC ﹣CD=4﹣2=2.∴当AD=2时,△DEC 是等腰三角形.②如图2中,∵△DCE 是等腰三角形,易知CD=CE ,∠DBC=∠DEC=∠CDE=15°, ∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD 的值为2或2.(3)①由(2)可知,B 、D 、E 、C 四点共圆,∴∠DBC=∠DCE=30°,∴tan ∠DBE=,∴=. ②如图2中,作DH ⊥AB 于H .在Rt △ADH 中,∵AD=x ,∠DAH=∠ACO=30°,∴DH=AD=x ,AH==x , ∴BH=2﹣x ,在Rt △BDH 中,BD==, ∴DE=BD=•,∴矩形BDEF 的面积为y=[]2=(x 2﹣6x +12), 即y=x 2﹣2x +4, ∴y=(x ﹣3)2+,∵>0, ∴x=3时,y 有最小值.。

2017年广东省中考数学试卷(含答案,word高清版)(2021年整理精品文档)

2017年广东省中考数学试卷(含答案,word高清版)(2021年整理精品文档)

(完整版)2017年广东省中考数学试卷(含答案,word高清版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2017年广东省中考数学试卷(含答案,word高清版))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2017年广东省中考数学试卷(含答案,word高清版)的全部内容。

2017年广东省中考数学试卷一、选择题(共10小题;共50分)1. 的相反数是A。

B。

C. D.2。

“一带一路”倡议提出三年以来,广东企业到“一带一路"国家投资越来越活跃。

据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过 4000000000美元,将 4000000000用科学记数法表示为A. B。

C. D。

3. 已知,则的补角为A. B。

C. D.4. 如果是方程的一个根,则常数的值为A。

B。

C. D.5. 在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:,,,,,则这组的数据的众数是A. B。

C。

D.6. 下列所述图形中,既是轴对称图形又是中心对称图形的是A. 等边三角形B。

平行四边形 C. 正五边形 D. 圆7. 如图,在同一平面直角坐标系中,直线与双曲线相交于,两点,已知点的坐标为,则点的坐标为A。

D。

8。

下列运算正确的是A。

B。

C. D.9. 如图,四边形内接于,,,则的大小为A. B. C. D。

10。

如图,已知正方形,点是边的中点,与相交于点,连接,下列结论:① ;② ;③ ;④,其中正确的是A。

①③ B. ②③C。

①④ D. ②④二、填空题(共6小题;共30分)11. 分解因式:.12. 一个边形的内角和是,那么.13。

2017年广东省中考数学试卷解析版

2017年广东省中考数学试卷解析版

2017年广东省中考数学试卷(解)析版.年广东省中考数学试卷2017分)分,共30一、选择题(本大题共10小题,每小题3) 1.5的相反数是(.﹣ D.﹣.5 CA5. B2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超)用科学记数法表示为(过4000000000美元,将400000000010991010D.4 C.4×10A.0.4×10× B.0.4×10) 3.已知∠A=70°,则∠A的补角为(.20°DC.30° A.110° B.70°2﹣3x+k=0的一个根,则常数k的值为(.如果2是方程x )42.﹣C.﹣1 DA.1 B.25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()80.85 DB.90 C.A.95 6.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.平行四边形 C.正五边形 D.圆y=0)与双曲线x(k≠.如图,在同一平面直角坐标系中,直线7y=kk(112≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为())22,﹣) D.(﹣(﹣2,﹣1)C.(﹣1,﹣1 1A.(﹣,﹣2)B.) 8.下列运算正确的是(6452222443(a.a+a)=aB.a?a=a=a C.a+2a=3aA. D9.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()第2页(共26页).50° DA.130° B.100° C.65°,连接F10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点,其中S,下列结论:①=S;②S=4S;③S=2S=2S;④SBF CDF△ABF△△ADFCEF△CDFADF△CEF△ADF△△)正确的是(.②④ D.②③ C.①④BA.①③分)分,共6小题,每小题424二、填空题(本大题共2.+a= a 11.分解因式:.n= 12.一个n边形的内角和是720°,则(填0,b在数轴上的对应点的位置如图所示,则.a+b 13.已知实数a“>”,“<”或“=”),,214.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1.,5,随机摸出一个小球,摸出的小球标号为偶数的概率是,34.的值为 15.已知4a+3b=1,则整式8a+6b﹣3ABCD,先按图(2)操作:将矩形纸片中,16.如图,矩形纸片ABCDAB=5,BC=3);再按图(3EAB上的点处,折痕为AF沿过点A的直线折叠,使点D落在边HA、,则上的点C落在EFH处,折痕为FG的直线折叠,使点操作,沿过点F.两点间的距离为263第页(共页)分)186分,共三、解答题(本大题共3小题,每小题1﹣0.(+17.计算:|﹣7|﹣(1﹣π))2x=,其中(﹣+4).)?(x18.先化简,再求值:本,若男生每人整理3019.学校团委组织志愿者到图书馆整理一批新进的图书.本,女生每人整理本;若男生每人整理5020本,共能整理680女生每人整理本.求男生、女生志愿者各有多少人?40本,共能整理1240分)21小题,每小题7分,共四、解答题(本大题共3.BA>∠20.如图,在△ABC中,∠(用尺规作图,,E,BC分别相交于点D,与(1)作边AB的垂直平分线DEAB;保留作图痕迹,不要求写作法)的度数.AEC)的条件下,连接AE,若∠B=50°,求∠1(2)在(为锐角.BAD∠FAD,∠∠ABCD21.如图所示,已知四边形,ADEF都是菱形,BAD=;BF⊥(1)求证:AD的度数.ADC)若2BF=BC,求∠( 264第页(共页).某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,22将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表体重(千人数组边克)5045A ≤x<1255xB<50m≤60<C≤5580x65<60≤D40x7065≤x16E<; m= (直接写出结果))填空:①(1度;组所在扇形的圆心角的度数等于②在扇形统计图中,C千克的学生大名学生,请估算九年级体重低于60(2)如果该校九年级有1000约有多少人?分)27小题,每小题9分,共五、解答题(本大题共32,3,B(0A+ax+b交x 轴于(1,)xy=在平面直角坐标系中,.23如图,抛物线﹣.C与BPy轴相交于点是抛物线上在第一象限内的一点,直线)两点,点0P 265第页(共页)2的解析式;x+ax+b(1)求抛物线y=﹣的坐标;P是线段BC的中点时,求点(2)当点P的值.sin∠OCB)在((32)的条件下,求,,B重合)为线段OB上一点(不与O24.如图,AB是⊙O的直径,AB=4,点E 的延长的切线交DBE,作直径CD,过点COB作CE⊥,交⊙O于点C,垂足为点.CBPC 于点F,连接AF线于点P,⊥的平分线;CB是∠ECP1()求证:;)求证:CF=CE2(π)时,求劣弧(3=)当的长度(结果保留的坐C是矩形,点A,25.如图,在平面直角坐标系中,O为原点,四边形ABCO重,CAC,点D是对角线上一动点(不与AA标分别是(0,2)和C(2,0).,DB为邻边作矩形BDEFE,作DE⊥DB,交x轴于点,以线段DEBD合),连结;的坐标为(1)填空:点B(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;; =(3)①求证:②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),的最小值.y并求出第6页(共26页)页)26页(共7第年广东省中考数学试卷2017参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.5的相反数是().﹣ D.﹣B.5 CA5.:相反数.14【考点】【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:5的相反数是﹣5..D故选:2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超)4000000000美元,将4000000000用科学记数法表示为(过109910104×10× D..0.4×10B .0.4×10. C4A:科学记数法—表示较大的数.1I【考点】n的形式,其中1≤|a|<10,n【分析】科学记数法的表示形式为a×10为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1是负数.n 时,9.10解:4000000000=4×【解答】.C故选:3.已知∠A=70°,则∠A的补角为()A.110° B.70° D.20°C.30°:余角和补角.IL【考点】页)26页(共8第的度数求出其补角即可.A【分析】由∠解:∵∠A=70°,【解答】110°,A的补角为∴∠A故选2﹣3x+k=0的一个根,则常数kx的值为()4.如果2是方程A.1 B.2 C.﹣1 D.﹣2【考点】A3:一元二次方程的解.【分析】把x=2代入已知方程列出关于k的新方程,通过解方程来求k的值.2﹣3x+k=0的一个根,2是一元二次方程x解:∵【解答】2,×2+k=0﹣3∴2.解得,k=2.故选:B 5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()80D.90 C.85 .A.95 B:众数.W5【考点】【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90..B故选6.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.平行四边形 C.正五边形 D.圆:轴对称图形.:中心对称图形;R5P3【考点】【分析】根据中心对称图形和轴对称图形的定义对各选项进行判断.【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形. 269第页(共页).故选Dy=0)与双曲线(k(k≠7.如图,在同一平面直角坐标系中,直线y=kx112≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为())22,﹣) D.(﹣1(﹣2,﹣1) C.(﹣,﹣11A.(﹣,﹣2) B.:反比例函数与一次函数的交点问题.G8【考点】【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:∵点A与B关于原点对称,∴B点的坐标为(﹣1,﹣2)..故选:A8.下列运算正确的是()2325264244a?aA=a C.(a)..Da=a+a=aa+2a=3aB.【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】根据整式的加法和幂的运算法则逐一判断即可.,此选项错误;a+2a=3aA、【解答】解:325,此选项正确;a?a=aB、428,此选项错误;)C、(a=a24不是同类项,不能合并,此选项错误;与D、aa.B故选:9.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()页(共10第26页).50°DC.65° A.130° B.100°:圆内接四边形的性质.【考点】M6再由圆内接四边形的性质求出∠的度数,【分析】先根据补角的性质求出∠ABC的度数.DACADC的度数,由等腰三角形的性质求得∠解:∵∠CBE=50°,【解答】∴∠ABC=180°﹣∠CBE=180°﹣50°=130°,的内接四边形,OABCD为⊙∵四边形∴∠D=180°﹣∠ABC=180°﹣130°=50°,,∵DA=DC=65°,∴∠DAC=.C故选,连接相交于点F边的中点,DE与AC.如图,已知正方形10ABCD,点E是BC,其中=2S=2SS;④S=SBF,下列结论:①S;②S=4S;③CDFADF△ABF△△ADFCEFCDF△ADF△CEF△△△)正确的是(.②④D.①④ B.②③ CA.①③:正方形的性质.【考点】LE,BE=EC=AD故①正确,即可推出AFB,S=S,由BC=AFD【分析】由△≌△ADFABF△△,故②③S=2S,S,推出=2S==,可得=S,=4SECAD∥CDFADF△CEF△CDF△ADF△△CEF△页)26页(共11第错误④正确,由此即可判断.是正方形,解:∵四边形ABCD【解答】,FAB,AD=BC=AB,∠FAD=∠∴AD∥CB中,AFB在△AFD和△,,AFB∴△AFD≌△,故①正确,=S∴S ADFABF△△,,AD∵∥BE=EC=ECBC=AD,∴===,S=2S=2S∴S,S=4S,CDF△△CDF△CEFADF△△ADF△CEF故②③错误④正确,.C 故选分)46小题,每小题分,共24二、填空题(本大题共2.) 11.分解因式:a+a= a(a+1:因式分解﹣提公因式法.【考点】53直接提取公因式分解因式得出即可.【分析】2.a)+a=a(a+1【解答】解:.a(a+1)故答案为:.n= .一个12n边形的内角和是720°,则6:多边形内角与外角.【考点】L3 2612第页(共页))?180°,依此列方程可求解.n﹣2【分析】多边形的内角和可以表示成(,边形边数为n【解答】解:设所求正n)?180°=720°,则(n﹣2.n=6解得< 0,b在数轴上的对应点的位置如图所示,则.(填“>”,a+b 13.已知实数a“<”或“=”)【考点】2A:实数大小比较;29:实数与数轴.【分析】首先根据数轴判断出a、b的符号和二者绝对值的大小,根据“异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值”来解答即可.【解答】解:∵a在原点左边,b在原点右边,∴a<0<b,∵a离开原点的距离比b离开原点的距离大,∴|a|>|b|,.<0∴a+b故答案为:<.14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,,随机摸出一个小球,摸出的小球标号为偶数的概率是,5,. 34:概率公式.【考点】X4【分析】确定出偶数有2个,然后根据概率公式列式计算即可得解.【解答】解:∵5个小球中,标号为偶数的有2、4这2个,,∴摸出的小球标号为偶数的概率是故答案为:2613第页(共页).1 的值为﹣15.已知4a+3b=1,则整式8a+6b﹣3:代数式求值.【考点】33【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.,4a+3b=1【解答】解:∵,∴8a+6b=28a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD 沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H.两点间的距离为:矩形的性质.LB:翻折变换(折叠问题);【考点】PB【分析】如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3,计算即可.AH=﹣2=1,根据.AH3中,连接【解答】解:如图,2=1﹣HF=3﹣EH=EFAEH由题意可知在Rt△中,AE=AD=3,,==∴AH=.故答案为2614第页(共页)分)18小题,每小题6分,共三、解答题(本大题共310﹣.+﹣π)()17.计算:|﹣7|﹣(1【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案.【解答】解:原式=7﹣1+3.=92(.先化简,再求值:x)?(.﹣4),其中18x=+【考点】6D:分式的化简求值.【分析】先计算括号内分式的加法,再计算乘法即可化简原式,将x的值代入求解可得.=[【解答】解:原式xx+2)(﹣2)+]?()2x+2)(x﹣?(=,=2x时,x=当.=2原式19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理本.求男生、女生志愿者各有多少人?124040本,共能整理:二元一次方程组的应用.【考点】9A【分析】设男生志愿者有x人,女生志愿者有y人,根据“若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设男生志愿者有x人,女生志愿者有y人,页(共15第26页),根据题意得:.解得:人.人,女生志愿者有16答:男生志愿者有12分)分,共213小题,每小题7四、解答题(本大题共.B中,∠A>∠ABC20.如图,在△(用尺规作图,ED,分别相交于点DE,与AB,BC)作边(1AB的垂直平分线;保留作图痕迹,不要求写作法)的度数.AECAE,若∠B=50°,求∠2)在(1)的条件下,连接(:线段垂直平分线的性质.KG【考点】N2:作图—基本作图;)根据题意作出图形即可;【分析】(1,根据等腰三角形的性质得到∠AE=BE是AB的垂直平分线,得到(2)由于DE∠B=50°,由三角形的外角的性质即可得到结论.EAB=)如图所示;(1【解答】解:的垂直平分线,是AB(2)∵DE,∴AE=BE∠B=50°,EAB=∴∠∠B=100°.EAB+∠∴∠AEC=2616第页(共页)21.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【考点】L8:菱形的性质.【分析】(1)连结DB、DF.根据菱形四边相等得出AB=AD=FA,再利用SAS证明△BAD≌△FAD,得出DB=DF,那么D在线段BF的垂直平分线上,又AB=AF,即A;⊥BFBF的垂直平分线上,进而证明AD在线段DG=CD.在直角△CDG于G,证明中得出∠C=30°,BC⊥(2)设ADBF于H,作DG⊥再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°..DFDB、【解答】(1)证明:如图,连结∵四边形ABCD,ADEF都是菱形,.AD=DE=EF=FAAB=BC=CD=DA∴,中,FAD在△BAD与△,∴△BAD≌△FAD,,DB=DF∴∴D在线段BF的垂直平分线上,∵AB=AF,∴A在线段BF的垂直平分线上,的垂直平分线,BF是线段∴AD;BF⊥∴AD 第17页(共26页)是矩形,,则四边形BGDHBC于G,作AD⊥BF于HDG⊥(2)如图,设.∴BFDG=BH=∵BF=BC,BC=CD,.∴CDDG=DG=CD中,∵∠CGD=90°,,在直角△CDG∴∠C=30°,,ADBC∥∵∴∠ADC=180°﹣∠C=150°.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表体重(千组边人数克)50<xA≤451255x50mB≤<60x55C≤80<65<40Dx≤60第页(共1826页)1665<70≤xE52 (直接写出结果)(1)填空:①m= ;②在扇形统计图中,C组所在扇形的圆心角的度数等于 144 度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?:频数(率)分布表.V7V5:用样本估计总体;【考点】VB:扇形统计图;【分析】(1)①根据D组的人数及百分比进行计算即可得到m的值;②根据C组的百分比即可得到所在扇形的圆心角的度数;(2)根据体重低于60千克的学生的百分比乘上九年级学生总数,即可得到九千克的学生数量.60年级体重低于【解答】解:(1)①调查的人数为:40÷20%=200(人),;﹣16=5280﹣4012∴m=200﹣﹣组所在扇形的圆心角的度数为②C×360°=144°;;,故答案为:52144×1000=720(人).(2)九年级体重低于60千克的学生大约有五、解答题(本大题共3小题,每小题9分,共27分)2+ax+b交x轴于A(1,0),B(3,﹣如图,23.在平面直角坐标系中,抛物线y=x0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.2的解析式;+ax+b ﹣1)求抛物线y=x((2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.第19页(共26页):T7轴的交点;H8:待定系数法求二次函数解析式;HA【考点】:抛物线与x解直角三角形.2可得解析式;b,解得ay=﹣x,+ax+b、【分析】(1)将点AB代入抛物线)中抛物线解1P点横坐标代入(点横坐标为0可得P点横坐标,将C (2)由点坐标;析式,易得P长,BCC的坐标,利用勾股定理可得A、B、(3)由P点的坐标可得C点坐标,可得结果.OCB=sin利用∠2可得,+ax+b代入抛物线y=﹣x【解答】解:(1)将点A、B,,﹣3a=4,b=解得,2;3+4x﹣∴抛物线的解析式为:y=﹣x轴上,yC在(2)∵点,x=0所以C点横坐标的中点,是线段BC∵点P,==x∴点P横坐标P2上,3+4x﹣y=∵点P在抛物线﹣x,∴y﹣3==P;P,的坐标为()∴点的中点,BC,点)P是线段P3()∵点的坐标为(, 2620第页(共页),0=×﹣∴点C的纵坐标为2,,)∴点C的坐标为(0,∴=BC==OCB=.∴sin∠=AB=4的直径,是⊙O重合),24.如图,AB,点E为线段OB上一点(不与O,B 作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.的平分线;是∠ECP)求证:(1CB;CF=CE)求证:(2π)=3(的长度(结果保留)当时,求劣弧【考点】S9:相似三角形的判定与性质;M2:垂径定理;MC:切线的性质;MN:弧长的计算.【分析】(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;,)证明:∵OC=OB(【解答】1,OBC∴∠OCB=∠∵PF是⊙O的切线,CE⊥AB,∠CEB=90°,∴∠OCP=第2621页(共页)∠OBC=90°,BCE+PCB+∠OCB=90°,∠∴∠∴∠BCE=∠BCP,.平分∠PCE ∴BC.)证明:连接AC(2∵AB是直径,∴∠ACB=90°,∠BCE=90°,∠ACF=90°,∠ACE+∴∠BCP+∵∠BCP=∠BCE,,∴∠ACF=∠ACE,AC=AC∵∠F=∠AEC=90°,,ACF≌△ACE∴△.∴CF=CE(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,,∽△PMB∵△BMC,∴=22,∴BM=CM?PM=3aBM=a∴,BCM=,∴=tan∠∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,=∴=π.的长第22页(共26页)的坐,C.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A252((0,重2)和C标分别是AD,0),点是对角线AC上一动点(不与A,C.DE,DB为邻边作矩形BDEF,以线段合),连结BD,作DE⊥DB,交x轴于点E; 2,(1)填空:点B2)的坐标为(的长是等腰三角形?若存在,请求出ADDEC2)是否存在这样的点D,使得△(度;若不存在,请说明理由;;(3)①求证: =,的函数关系式(可利用①的结论)y关于x矩形AD=x,BDEF的面积为y,求②设的最小值.y并求出:相似形综合题.SO【考点】的长即可解决问题;BC)求出AB、【分析】(1四点、C、D、EBK)存在.连接BE,取BE的中点,连接DK、KC.首先证明(2ACO=∠,由tan∠DBC=∠DCE,∠,=推出∠ACO=30°,EDC=EBC共圆,可得∠∠DBC=ED=EC,推出∠DEC∠ACD=60°由△是等腰三角形,观察图象可知,只有是等边三角形,推∠BCD=60°,可得△DBCEDC=DCE=∠∠EBC=30°,推出∠DBC=,由此即可解决问题;DC=BC=2出∠DCE=30°,由此即DBC=、EC四点共圆,推出∠、、)可知,)①由((32BD 2623第页(共页)可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;是矩形,AOCB1)∵四边形【解答】解:(∠BAO=90°,BCO=OC=AB=2∴BC=OA=2,,∠.),B(22∴.2故答案为()2,)存在.理由如下:(2.、KCK,连接DKBE连接,取BE的中点∠BCE=90°,∵∠BDE=,KD=KB=KE=KC∴四点共圆,C、E、∴B、D,EBCEDC=∠DBC=∴∠∠DCE,∠,ACO=∵tan∠=∴∠ACO=30°,∠ACB=60°,是等腰三角形,观察图象可知,只有ED=EC①如图1中,△DEC∠EBC=30°,EDC=∠DCE=∠∴∠DBC=∠BCD=60°,∴∠DBC=是等边三角形,∴△DBC,∴DC=BC=2,OA=2Rt在△AOC 中,∵∠ACO=30°,,AC=2AO=4∴.﹣2=2AD=AC∴﹣CD=4是等腰三角形.AD=2∴当时,△DEC 2624第页(共页)∠CDE=15°,DEC=,∠DBC=∠②如图2中,∵△DCE是等腰三角形,易知CD=CE ∠ADB=75°,∴∠ABD=,AB=AD=2∴2或AD.的值为2综上所述,满足条件的(3)①由(2)可知,B、D、E、C四点共圆,∠DCE=30°,DBC=∴∠,DBE=∴tan∠.∴=②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,,x∴AH=DH==AD=x,,﹣∴xBH=2BD=中,Rt=在△BDH,?,DE=∴BD=22 [BDEF6x+12),的面积为]y==x(∴矩形﹣2,2﹣y=x+4即x2+﹣,3)(x∴y=,0>∵有最小值时,∴x=3y.页(共25第26页)页)26页(共26第。

广东省2017年中考数学试卷含答案

广东省2017年中考数学试卷含答案

三、解答题
1 17.计算: | 7 | (1 ) . 3
2
1 1 2 18.先化简,再求值 (x 4) ,其中 x= 5 . x2 x2
19.学校团委组织志愿者到图书馆整理一批新进的图书。若干男生每人整理 30 本,女生每人 整理 20 本,共能整理 680 本;若男生每人整理 50 本,女生每人整理 40 本,共能整理 1240 本,求男生 、女生志愿者各有多少人?
四、解答题 20.如是 20 图,在 ABC 中, A B . (1)作边 AB 的垂直平分线 DE,与 AB、BC 分别相交于点 D、E(用尺规作图,保留作图 痕迹,不要求写作法): (2)在(1)的条件下,连接 AE,若 B 50 ,求 AEC 的度数。
21.如图 21 图所示,已知四边形 ABCD、ADEF 都是菱形, BAD FAD、BAD 为锐角. (1)求证: AD BF ; (2)若 BF=BC,求 ADC 的度数。
6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( A.等边三角形 C.正五边形 B.平行四边形 D.圆
7.如题 7 图,在同一平面直角坐标系中,直线 y k1 x(k1 0) 与双曲线 y 交于 A、B 两点,已知点 A 的坐标为(1,2),则点 B 的坐标为( A.(-1,-2) B.(-2,-1) C.(-1,-1) D.(-2,-2) )
二、填空题 11.分解因式: a 2 a . . 0(填“>”,“<”或 12.一个 n 边形的内角和是 720 ,那么 n= “=”).
13.已知实数 a,b 在数轴上的对应点的位置如题 13 图所示,则 a b
14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为 1,2,3,4,5.随 机摸出一个小球,摸出的小球标号为偶数的概率是 15.已知 4a 3b 1 ,则整式 8a 6b 3 的值为 . .

广东省2017年中考数学真题试题(含答案)

广东省2017年中考数学真题试题(含答案)

2017年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。

2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。

用2B 铅笔把对应该号码的标号涂黑。

3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。

4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

5.考生务必保持答题卡的整洁。

考试结束时,将试卷和答题卡一并交回。

一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 5的相反数是( ) A.15 B.5 C.-15D.-5 2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。

2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×910B.0.4×1010C.4×910D.4×1010 3.已知70A ∠=︒,则A ∠的补角为( )A.110︒B.70︒C.30︒D.20︒ 4.如果2是方程230x x k -+=的一个根,则常数k 的值为( )A.1B.2C.-1D.-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A.95B.90C.85D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆7.如题7图,在同一平面直角坐标系中,直线11(0)y k x k =≠与双曲 线22(0)k y k x=≠ 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( )A.(-1,-2)B.(-2,-1)C.(-1,-1)D.(-2,-2) 8.下列运算正确的是( )题7图A.223a a a += B.325·a a a = C.426()a a = D.424a a a +=9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①ABF ADF S S =△△;②4CDF CBF S S =△△;③2ADF CEF S S =△△;④2ADF CDF S S =△△,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上. 11.分解因式:a a +2 .12.一个n 边形的内角和是720︒,那么n= .13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则a b ÷ 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知431a b ÷=,则整式863a b ÷-的值为 .16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:21|7|(1)3π-⎛⎫---+ ⎪⎝⎭.18.先化简,再求值211(x 4)22x x ⎛⎫+÷- ⎪-+⎝⎭,其中.19.学校团委组织志愿者到图书馆整理一批新进的图书。

(完整版)2017年广东省中考数学试题与参考答案

(完整版)2017年广东省中考数学试题与参考答案

2017年广东省初中毕业生学业考试数学说明:1。

全卷共6页,满分为120 分,考试用时为100分钟。

2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。

用2B铅笔把对应该号码的标号涂黑。

3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。

4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效.5。

考生务必保持答题卡的整洁。

考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。

1. 5的相反数是( )A。

15 B.5 C.-15D.-52。

“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。

2016年广东省对沿线国家的实际投资额超过4 000 000 000美元。

将4 000 000 000用科学记数法表示为( )A.0。

4×910 B.0.4×1010 C。

4×910 D。

4×10103.已知70A∠=︒,则A∠的补角为( )A.110︒B.70︒ C。

30︒ D.20︒4.如果2是方程230x x k-+=的一个根,则常数k的值为( )A。

1 B。

2 C。

—1 D。

-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A 。

95B 。

90 C.85 D 。

80 6。

下列所述图形中, 既是轴对称图形又是中心对称图形的是( ) A.等边三角形 B.平行四边形C 。

广东省茂名2017年中考真题 数学(茂名卷)

广东省茂名2017年中考真题 数学(茂名卷)

2017年广东省茂名市中考数学试卷一、精心选一选(本大题共10小题,每小题3分,共30分.每小题给出四个答案,其中只有一个是正确的)1.(3分)(2017•茂名)a的倒数是3,则a的值是()B2.(3分)(2017•茂名)位于环水东湾新城区的茂名市第一中学新校区占地面积约为536.5亩.将536.5用科学记数法可表示为()3.(3分)(2017•茂名)如图,AB是⊙O的直径,AB⊥CD于点E,若CD=6,则DE=()4.(3分)(2017•茂名)方程组的解为()B C D.5.(3分)(2017•茂名)一个正方体的表面展开图如图所示,则原正方体的“建”字所在的面的对面所标的字是()6.(3分)(2017•茂名)从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n的值是()7.(3分)(2017•茂名)下列调查中,适宜采用全面调查(普查)方式的是()8.(3分)(2017•茂名)某中学初三(1)班的一次数学测试的平均成绩为80分,男生平均成绩为82分,女生平均成绩为77分,则该班男、女生的人数之比为().9.(3分)(2017•茂名)如果x<0,y>0,x+y<0,那么下列关系式中正确的是()10.(3分)(2017•茂名)如图,四边形ABCD四边的中点分别为E,F,G,H,对角线AC 与BD相交于点O,若四边形EFGH的面积是3,则四边形ABCD的面积是()二、细心填一填(本大题共5小题,每小题3分,共15分.请你把答案填在横线的上方).11.(3分)分解因式:x2y﹣y=_________.12.(3分)(2017•茂名)如图所示,建高楼常需要用塔吊来吊建筑材料,而塔吊的上部是三角形结构,这是应用了三角形的哪个性质?答:_________.(填“稳定性”或“不稳定性”)13.(3分)(2017•茂名)若分式的值为0,则a的值是_________.14.(3分)(2017•茂名)如图,在3×3的方格中(共有9个小格),每个小方格都是边长为1的正方形,O、B、C是格点,则扇形OBC的面积等于_________(结果保留π)15.(3分)(2017•茂名)如图,⊙O与直线l1相离,圆心O到直线l1的距离OB=2,OA=4,将直线l1绕点A逆时针旋转30°后得到的直线l2刚好与⊙O相切于点C,则OC=_________.三、用心做一做(本大题共3小题,每小题7分,共21分)16.(7分)(2017•茂名)先化简,后求值:a(a+1)﹣(a+1)(a﹣1),其中a=3.17.(7分)(2017•茂名)求不等式组的整数解.18.(7分)(2017•茂名)如图,在直角坐标系中,线段AB的两个端点的坐标分别为A(﹣3,0),B(0,4).(1)画出线段AB先向右平移3个单位,再向下平移4个单位后得到的线段CD,并写出A 的对应点D的坐标,B的对应点C的坐标;(2)连接AD、BC,判断所得图形的形状.(直接回答,不必证明)四、沉着冷静,缜密思考(本大题共2小题,每小题7分,共14分)19.(7分)(2017•茂名)某校计划组织学生到市影剧院观看大型感恩歌舞剧,为了解学生如何去影剧院的问题,学校随机抽取部分学生进行调查,并将调查结果制成了表格、条形统计图和扇形统计图(均不完整).(1)此次共调查了多少位学生?(2)将表格填充完整;(3)将条形统计图补充完整.20.(7分)(2017•茂名)在4张完全相同的卡片正面分别写上数字1,2,3,3,现将它们的背面朝上洗均匀.(1)随机抽出一张卡片,求抽到数字“3”的概率;(2)若随机抽出一张卡片记下数字后放回并洗均匀,再随机抽出一张卡片,求两次都是抽到数字“3”的概率;(要求画树状图或列表求解)(3)如果再增加若干张写有数字“3”的同样卡片,洗均匀后,使得随机抽出一张卡片是数字“3”的概率为,问增加了多少张卡片?五、满怀信心,再接再厉(本大题共3小题,每小题8分,共24分)21.(8分)(2017•茂名)如图,已知矩形ABCD中,F是BC上一点,且AF=BC,DE⊥AF,垂足是E,连接DF.求证:(1)△ABF≌△DEA;(2)DF是∠EDC的平分线.22.(8分)(2017•茂名)每年六七月份我市荔枝大量上市,今年某水果商以5元/千克的价格购进一批荔枝进行销售,运输过程中质量损耗5%,运输费用是0.7元/千克,假设不计其他费用.(1)水果商要把荔枝售价至少定为多少才不会亏本?(2)在销售过程中,水果商发现每天荔枝的销售量m(千克)与销售单价x(元/千克)之间满足关系:m=﹣10x+120,那么当销售单价定为多少时,每天获得的利润w最大?23.(8分)(2017•茂名)如图,以AB为直径的⊙O是△ADC的外接圆,过点O作PO⊥AB,交AC于点E,PC的延长线交AB的延长线于点F,∠PEC=∠PCE.(1)求证:FC为⊙O的切线;(2)若△ADC是边长为a的等边三角形,求AB的长.(用含a的代数式表示)六、灵动智慧,超越自我(本大题共2小题,每小题8分,共16分)24.(8分)(2017•茂名)阅读下面材料,然后解答问题:在平面直角坐标系中,以任意两点P(x1,y1),Q(x2,y2)为端点的线段的中点坐标为(,).如图,在平面直角坐标系xOy中,双曲线y=(x<0)和y=(x>0)的图象关于y轴对称,直线y=+与两个图象分别交于A(a,1),B(1,b)两点,点C为线段AB的中点,连接OC、OB.(1)求a、b、k的值及点C的坐标;(2)若在坐标平面上有一点D,使得以O、C、B、D为顶点的四边形是平行四边形,请求出点D的坐标.25.(8分)(2017•茂名)如图所示,抛物线y=ax2++c经过原点O和A(4,2),与x轴交于点C,点M、N同时从原点O出发,点M以2个单位/秒的速度沿y轴正方向运动,点N以1个单位/秒的速度沿x轴正方向运动,当其中一个点停止运动时,另一点也随之停止.(1)求抛物线的解析式和点C的坐标;(2)在点M、N运动过程中,①若线段MN与OA交于点G,试判断MN与OA的位置关系,并说明理由;②若线段MN与抛物线相交于点P,探索:是否存在某一时刻t,使得以O、P、A、C为顶点的四边形是等腰梯形?若存在,请求出t值;若不存在,请说明理由.。

2017年广东省中考数学试卷(带完整解析)

2017年广东省中考数学试卷(带完整解析)

2017年广东省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.5的相反数是()A.B.5 C.﹣ D.﹣52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×10103.已知∠A=70°,则∠A的补角为()A.110°B.70°C.30°D.20°4.如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.806.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)8.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5 C.(a4)2=a6D.a4+a2=a49.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a2+a=.12.一个n边形的内角和是720°,则n=.13.已知实数a,b在数轴上的对应点的位置如图所示,则a+b0.(填“>”,“<”或“=”)14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.15.已知4a+3b=1,则整式8a+6b﹣3的值为.16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD 沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H 两点间的距离为.三、解答题(本大题共3小题,每小题6分,共18分)17.计算:|﹣7|﹣(1﹣π)0+()﹣1.18.先化简,再求值:(+)•(x2﹣4),其中x=.19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?四、解答题(本大题共3小题,每小题7分,共21分)20.如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.21.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?五、解答题(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.24.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C 重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.2017年广东省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.5的相反数是()A.B.5 C.﹣ D.﹣5【考点】14:相反数.【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:5的相反数是﹣5.故选:D.2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×1010【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:4000000000=4×109.故选:C.3.已知∠A=70°,则∠A的补角为()A.110°B.70°C.30°D.20°【考点】IL:余角和补角.【分析】由∠A的度数求出其补角即可.【解答】解:∵∠A=70°,∴∠A的补角为110°,故选A4.如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣2【考点】A3:一元二次方程的解.【分析】把x=2代入已知方程列出关于k的新方程,通过解方程来求k的值.【解答】解:∵2是一元二次方程x2﹣3x+k=0的一个根,∴22﹣3×2+k=0,解得,k=2.故选:B.5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.80【考点】W5:众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选B.6.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据中心对称图形和轴对称图形的定义对各选项进行判断.【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选D.7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)【考点】G8:反比例函数与一次函数的交点问题.【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:∵点A与B关于原点对称,∴B点的坐标为(﹣1,﹣2).故选:A.8.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5 C.(a4)2=a6D.a4+a2=a4【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】根据整式的加法和幂的运算法则逐一判断即可.【解答】解:A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.9.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°【考点】M6:圆内接四边形的性质.【分析】先根据补角的性质求出∠ABC的度数,再由圆内接四边形的性质求出∠ADC的度数,由等腰三角形的性质求得∠DAC的度数.【解答】解:∵∠CBE=50°,∴∠ABC=180°﹣∠CBE=180°﹣50°=130°,∵四边形ABCD为⊙O的内接四边形,∴∠D=180°﹣∠ABC=180°﹣130°=50°,∵DA=DC,∴∠DAC==65°,故选C.10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④【考点】LE:正方形的性质.【分析】由△AFD≌△AFB,即可推出S△ABF =S△ADF,故①正确,由BE=EC=BC=AD,AD∥EC,推出===,可得S△CDF=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故②③错误④正确,由此即可判断.【解答】解:∵四边形ABCD是正方形,∴AD∥CB,AD=BC=AB,∠FAD=∠FAB,在△AFD和△AFB中,,∴△AFD≌△AFB,=S△ADF,故①正确,∴S△ABF∵BE=EC=BC=AD,AD∥EC,∴===,=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,∴S△CDF故②③错误④正确,故选C.二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a2+a=a(a+1).【考点】53:因式分解﹣提公因式法.【分析】直接提取公因式分解因式得出即可.【解答】解:a2+a=a(a+1).故答案为:a(a+1).12.一个n边形的内角和是720°,则n=6.【考点】L3:多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设所求正n边形边数为n,则(n﹣2)•180°=720°,解得n=6.13.已知实数a,b在数轴上的对应点的位置如图所示,则a+b<0.(填“>”,“<”或“=”)【考点】2A:实数大小比较;29:实数与数轴.【分析】首先根据数轴判断出a、b的符号和二者绝对值的大小,根据“异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值”来解答即可.【解答】解:∵a在原点左边,b在原点右边,∴a<0<b,∵a离开原点的距离比b离开原点的距离大,∴|a|>|b|,∴a+b<0.故答案为:<.14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.【考点】X4:概率公式.【分析】确定出偶数有2个,然后根据概率公式列式计算即可得解.【解答】解:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是,故答案为:15.已知4a+3b=1,则整式8a+6b﹣3的值为﹣1.【考点】33:代数式求值.【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.【解答】解:∵4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD 沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H 两点间的距离为.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,根据AH=,计算即可.【解答】解:如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,∴AH===,故答案为.三、解答题(本大题共3小题,每小题6分,共18分)17.计算:|﹣7|﹣(1﹣π)0+()﹣1.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案.【解答】解:原式=7﹣1+3=9.18.先化简,再求值:(+)•(x2﹣4),其中x=.【考点】6D:分式的化简求值.【分析】先计算括号内分式的加法,再计算乘法即可化简原式,将x的值代入求解可得.【解答】解:原式=[+]•(x+2)(x﹣2)=•(x+2)(x﹣2)=2x,当x=时,原式=2.19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【考点】9A:二元一次方程组的应用.【分析】设男生志愿者有x人,女生志愿者有y人,根据“若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设男生志愿者有x人,女生志愿者有y人,根据题意得:,解得:.答:男生志愿者有12人,女生志愿者有16人.四、解答题(本大题共3小题,每小题7分,共21分)20.如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】(1)根据题意作出图形即可;(2)由于DE是AB的垂直平分线,得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B=50°,由三角形的外角的性质即可得到结论.【解答】解:(1)如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.21.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【考点】L8:菱形的性质.【分析】(1)连结DB、DF.根据菱形四边相等得出AB=AD=FA,再利用SAS证明△BAD≌△FAD,得出DB=DF,那么D在线段BF的垂直平分线上,又AB=AF,即A在线段BF的垂直平分线上,进而证明AD⊥BF;(2)设AD⊥BF于H,作DG⊥BC于G,证明DG=CD.在直角△CDG中得出∠C=30°,再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°.【解答】(1)证明:如图,连结DB、DF.∵四边形ABCD,ADEF都是菱形,∴AB=BC=CD=DA,AD=DE=EF=FA.在△BAD与△FAD中,,∴△BAD≌△FAD,∴DB=DF,∴D在线段BF的垂直平分线上,∵AB=AF,∴A在线段BF的垂直平分线上,∴AD是线段BF的垂直平分线,∴AD⊥BF;(2)如图,设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形,∴DG=BH=BF.∵BF=BC,BC=CD,∴DG=CD.在直角△CDG中,∵∠CGD=90°,DG=CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表人数组边体重(千克)A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=52(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于144度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【考点】VB:扇形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)①根据D组的人数及百分比进行计算即可得到m的值;②根据C 组的百分比即可得到所在扇形的圆心角的度数;(2)根据体重低于60千克的学生的百分比乘上九年级学生总数,即可得到九年级体重低于60千克的学生数量.【解答】解:(1)①调查的人数为:40÷20%=200(人),∴m=200﹣12﹣80﹣40﹣16=52;②C组所在扇形的圆心角的度数为×360°=144°;故答案为:52,144;(2)九年级体重低于60千克的学生大约有×1000=720(人).五、解答题(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.【考点】HA:抛物线与x轴的交点;H8:待定系数法求二次函数解析式;T7:解直角三角形.【分析】(1)将点A、B代入抛物线y=﹣x2+ax+b,解得a,b可得解析式;(2)由C点横坐标为0可得P点横坐标,将P点横坐标代入(1)中抛物线解析式,易得P点坐标;(3)由P点的坐标可得C点坐标,A、B、C的坐标,利用勾股定理可得BC长,利用sin∠OCB=可得结果.【解答】解:(1)将点A、B代入抛物线y=﹣x2+ax+b可得,,解得,a=4,b=﹣3,∴抛物线的解析式为:y=﹣x2+4x﹣3;(2)∵点C在y轴上,所以C点横坐标x=0,∵点P是线段BC的中点,∴点P横坐标x P==,∵点P在抛物线y=﹣x2+4x﹣3上,∴y P=﹣3=,∴点P的坐标为(,);(3)∵点P的坐标为(,),点P是线段BC的中点,∴点C的纵坐标为2×﹣0=,∴点C的坐标为(0,),∴BC==,∴sin∠OCB===.24.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)【考点】S9:相似三角形的判定与性质;M2:垂径定理;MC:切线的性质;MN:弧长的计算.【分析】(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【解答】(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,∵△BMC∽△PMB,∴=,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴的长==π.25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C 重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【考点】SO:相似形综合题.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.连接BE,取BE的中点K,连接DK、KC.首先证明B、D、E、C四点共圆,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO==,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①由(2)可知,B、D、E、C四点共圆,推出∠DBC=∠DCE=30°,由此即可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:连接BE,取BE的中点K,连接DK、KC.∵∠BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C四点共圆,∴∠DBC=∠DCE,∠EDC=∠EBC,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DBC=∠DCE=∠EDC=∠EBC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,∵△DCE是等腰三角形,易知CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①由(2)可知,B、D、E、C四点共圆,∴∠DBC=∠DCE=30°,∴tan∠DBE=,∴=.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y= []2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值.2017年7月3日。

广东省2017年中考数学试卷含答案

广东省2017年中考数学试卷含答案

24.如题 24 图,AB 是⊙O 的直径, 一点(不与 O、B 重合),作
,点 E 为线段 OB 上 ,交⊙O 于点 C,垂足为
点 E, 作直径 CD, 过点 C 的切线交 DB 的延长线于点 P, 于点 F,连结 CB. (1)求证:CB 是 (2)求证:CF=CE; (3)当 的平分线;
» 的长度(结果保留 π). 时,求劣弧 BC
16.如题 16 图(1),矩形纸片 ABCD 中,AB=5,BC=3,先按题 16 图(2)操作,将矩形纸片 ABCD 沿过点 A 的直线折叠, 使点 D 落在边 AB 上的点 E 处, 折痕为 AF; 再按题 16 图 (3) 操作:沿过点 F 的直线折叠,使点 C 落在 EF 上的点 H 处,折痕为 FG,则 A、H 两点间的距 离为 .
6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( A.等边三角形 C.正五边形 B.平行四边形 D.圆
7.如题 7 图,在同一平面直角坐标系中,直线 y k1 x(k1 0) 与双曲线 y 交于 A、B 两点,已知点 A 的坐标为(1,2),则点 B 的坐标为( A.(-1,-2) B.(-2,-1) C.(-1,-1) D.(-2,-2) 8.下列运算正确的是( A. a 2a 3a C. (a 4 )2 a6
25.如题 25 图,在平面直角坐标系中,O 为原点,四边形 ABCD 是矩形,点 A、C 的坐标 分别是 BD,作 和 ,点 D 是对角线 AC 上一动点(不与 A、C 重合),连结
,交 x 轴于点 E,以线段 DE、DB 为邻边作矩形 BDEF. ;
(1)填空:点 B 的坐标为 存在,请说明理由; (3)①求证: ;
2
k2 (k2 0) 相 x

2017年广东省中考数学试卷及答案

2017年广东省中考数学试卷及答案

页脚内容- 1 -2017年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。

2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。

用2B 铅笔把对应该号码的标号涂黑。

3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。

4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

5.考生务必保持答题卡的整洁。

考试结束时,将试卷和答题卡一并交回。

一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 5的相反数是( )A.15B.5C.-15D.-52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。

2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×910B.0.4×1010C.4×910D.4×1010 3.已知70A ∠=︒,则A ∠的补角为( )页脚内容- 2 -A.110︒B.70︒C.30︒D.20︒ 4.如果2是方程230x x k -+=的一个根,则常数k 的值为( ) A.1 B.2 C.-1 D.-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( ) A.95 B.90 C.85 D.806.下列所述图形中, 既是轴对称图形又是中心对称图形的是( ) A.等边三角形 B.平行四边形 C.正五边形 D.圆7.如题7图,在同一平面直角坐标系中,直线11(0)y k x k =≠与双曲 线22(0)k y k x=≠ 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( )A.(-1,-2)B.(-2,-1)C.(-1,-1)D.(-2,-2) 8.下列运算正确的是( )A.223a a a += B.325·a a a = C.426()a a = D.424a a a +=9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )题7图页脚内容- 3 -A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①ABF ADF S S =△△;②4CDF CBF S S =△△;③2ADF CEF S S =△△;④2ADF CDF S S =△△,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是720︒,那么n= .13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则a b ÷ 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知431a b ÷=,则整式863a b ÷-的值为 .16.如题16图(1),矩形纸片ABCD中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按题16图(3)操作:沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为 .三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:21|7|(1)3π-⎛⎫---+ ⎪⎝⎭.18.先化简,再求值211(x4)22x x⎛⎫+÷-⎪-+⎝⎭,其中.19.学校团委组织志愿者到图书馆整理一批新进的图书。

2017年广东省中考数学试卷及答案

2017年广东省中考数学试卷及答案

2017年广东省初中毕业生学业考试·数学一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 5的相反数是 ( )A. 15B. 5C. -15D. -5 2. “一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元.将4000000000用科学记数法表示为 ( )A. 0.4×109B. 0.4×1010C. 4×109D. 4×1010 3. 已知∠A =70°,则∠A 的补角为 ( ) A. 110° B. 70° C. 30° D. 20°4. 如果2是方程x 2-3x +k =0的一个根,则常数k 的值为 ( ) A. 1 B. 2 C. -1 D. -25. 在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是 ( )A. 95B. 90C. 85D. 806. 下列所述图形中,既是轴对称图形又是中心对称图形的是 ( ) A. 等边三角形 B. 平行四边形 C. 正五边形 D. 圆7. 如图,在同一平面直角坐标系中,直线y =k 1x (k 1≠0)与双曲线y =k 2x (k 2≠0)相交于A 、B 两点,已知点A 的坐标为(1,2),则点B 的坐标为 ( )A. (-1,-2)B. (-2,-1)C. (-1,-1)D. (-2,-2)8. 下列运算正确的是 ( )A. a +2a =3a 2B. a 3·a 2=a 5 第7题图C. (a 4)2=a 6D. a 8÷a 2=a 49. 如图,已知四边形ABCD 内接于⊙O ,DA =DC ,∠CBE =50°,则∠DAC 的大小为 ( ) A. 130° B. 100° C. 65° D. 50°第9题图 第10题图10. 如图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接 BF ,下列结论:①S △ABF =S △ADF ;②S △CDF =4S △CEF ;③S △ADF =2S △CEF ;④S △ADF =2S △CDF ,其中正确的是 ( )A. ①③B. ②③C. ①④D. ②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11. 分解因式:a 2+a = . 12. 一个n 边形的内角和是720°,那么n = .第13题图13. 已知实数a ,b 在数轴上的对应点的位置如图所示,则a +b 0(填“>”,“<”或“=”). 14. 在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是 .15. 已知4a +3b =1,则整式8a +6b -3的值为 .16. 如图①,矩形纸片ABCD 中,AB =5,BC =3,先按图②操作,将矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按图③操作,沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG ,则A 、H 两点间的距离为 .第16题图三、解答题(一)(本大题3小题,每小题6分,共18分) 17. 计算:|-7|-(1-π)0+(13)-1.18. 先化简,再求值:(1x -2+1x +2)·(x 2-4),其中x = 5.19. 学校团委组织志愿者到图书馆整理一批新进的图书,若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本,求男生、女生志愿者各有多少人?四、解答题(二)(本大题3小题,每小题7分,共21分) 20. 如图,在△ABC 中,∠A >∠B.(1)作边AB 的垂直平分线DE ,与AB 、BC 分别相交于点D 、E (用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE ,若∠B =50°,求∠AEC 的度数.第20题图21. 如图所示,已知四边形ABCD 、ADEF 都是菱形,∠BAD =∠F AD ,∠BAD 为锐角. (1)求证:AD ⊥BF ;(2)若BF =BC ,求∠ADC 的度数.第21题图22. 某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表 体重扇形统计图第22题图 (1)填空:①m =52(直接写出结果);②在扇形统计图中,C 组所在扇形的圆心角度数等于 度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?组别 体重(千克) 人数 A 45≤x <50 12B 50≤x <55 mC 55≤x <60 80D 60≤x <65 40E 65≤x <70 16五、解答题(三)(本大题3小题,每小题9分,共27分)23. 如图,在平面直角坐标系中,抛物线y=-x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=-x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.第23题图24. 如图,AB是⊙O的直径,AB=43,点E为线段OB上一点(不与O、B重合),作CE⊥OB,交⊙O 于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接C B.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当CFCP=34时,求劣弧BC︵的长度(结果保留π).第24题图25. 如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A、C的坐标分别是A(0,2)和C(23,0),点D是对角线AC上一动点(不与A、C重合),连接BD,作DE⊥DB,交x轴于点E,以线段DE、DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:DEDB=3 3;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.第25题图2017年广东省中考数学试卷参考答案与试题解析1.D2.C3.A4.B5.B6.D7.A8.B9.C 10.C 11. a (a +1) 12. 6 13. > 14. 25 15. -1 16. 1017. 解:原式=7-1+3(3分) =9.18. 解:原式=x +2+x -2(x -2)(x +2)·(x -2)(x +2)=2x ,当x =5时,原式=2x =2 5.19. 解:设男生志愿者有x 人,女生志愿者有y 人,则⎩⎪⎨⎪⎧30x +20y =68050x +40y =1240,(3分) 解得⎩⎪⎨⎪⎧x =12y =16,(5分)答:男生、女生志愿者各有12人、16人.20. 解:(1)如解图,DE 是边AB 的垂直平分线.第20题解图(2)如解图,连接AE .∵DE 是AB 的垂直平分线, ∴AE =BE ,∴∠BAE =∠B =50°.∵∠AEC 是△ABE 的外角, ∴∠AEC =∠BAE +∠B =100°.21. (1)证明:∵四边形ABCD 、四边形ADEF 都是菱形,∴AB =AD =AF ,∴△ABF 是等腰三角形, 又∵∠BAD =∠F AD ,∴AD ⊥BF (三线合一);(3分) (2)解:由(1)知AB =AD =AF , 又∵AB =BC ,BF =BC , ∴AB =AF =BF ,∴△ABF 是等边三角形, ∴∠BAF =60°,又∵∠BAD =∠F AD , ∴∠BAD =30°,又∵四边形ABCD 是菱形, ∴∠ADC +∠BAD =180°, ∴∠ADC =180°-∠BAD =150°.(7分) 22. (1)解:(1)①52;(2分) ②144;(4分)(2)∵被调查的九年级体重低于60千克的学生有:12+52+80=144(人), ∴该校九年级体重低于60千克的学生大约有:1000×144200×100%=720(人).答:九年级体重低于60千克的学生大约有720人.(7分)23.解:(1)把A (1,0),B (3,0)代入y =-x 2+ax +b 得⎩⎪⎨⎪⎧-1+a +b =0-9+3a +b =0, 解得⎩⎪⎨⎪⎧a =4b =-3,∴y =-x 2+4x -3;(3分)(2)如解图,过点P 作 PD ⊥x 轴于点D.第23题解图∵P 为BC 的中点,PD ∥y 轴, ∴PD 为△BOC 的中位线, 又∵B (3,0), ∴点P 的横坐标为32,把x =32代入y =-x 2+4x -3得y =34,∴P (32,34);(6分)(3)由(2)知PD 为△BOC 的中位线, ∴OC =2PD =2×34=32,又∵OB =3,∴在Rt △BCO 中,BC =OC 2+OB 2=(32)2+32 =454=352, ∴sin ∠OCB =OB BC =3352=255.(9分)24. (1)证明:如解图,连接A C.第24题解图∵AB 为⊙O 的直径, ∴∠ACB =90°, ∴∠2+∠3=90°, 又∵CE ⊥OB , ∴∠1+∠2=90°, ∴∠1=∠3,又∵CP 为⊙O 的切线, ∴∠OCP =90°, ∴∠4+∠BCD =90°,∵CD 为⊙O 的直径, ∴∠CBD =90°, ∴∠BCD +∠D =90°, ∴∠4=∠D , 又∵∠3=∠D , ∴∠3=∠4, ∴∠1=∠4,∴CB 是∠ECP 的平分线;(3分) (2)证明:∵∠ACB =90°, ∴∠5+∠4=90°,∠ACE +∠1=90°. 由(1)得∠1=∠4, ∴∠5=∠ACE ,又∵∠CAF +∠5=∠3+∠ACE =90°, ∴∠CAF =∠3, ∴AC 平分∠F AB ,又∵CF ⊥AF 、CE ⊥AB ,∴CF =CE ;(6分)(3)解:如解图,延长CE 交BD 于点Q . 由CF CP =34,可设CF =3x ,CP =4x .由(2)得CF =CE =3x . ∵BC 是∠PCQ 的角平分线,BC ⊥PQ , ∴CP =CQ =4x , ∴EQ =4x -3x =x .∵CE ⊥EB ,∠CBQ =90°,∠1+∠CQB =90°,∠1+∠2=90°, ∴∠2=∠CQB , ∴△CEB ∽△BEQ , ∴CE BE =BE EQ, ∴BE 2=CE ·EQ , ∴BE 2=3x ·x , ∴BE =3x .在Rt △BCE 中,tan ∠CBE =CE BE =3x 3x=3, ∴∠CBE =60°, 又∵OB =OC ,∴△OBC 是等边三角形, ∴∠COB =60°. ∵AB =43,∴OB =23, ∴l BC ︵=60180π×23=233π.(9分)25. (1)解:(23,2);(2分)【解法提示】∵在矩形ABCD 中,A (0,2)和C (23,0), ∴B (23,2).第25题解图①(2)解:存在.理由如下:①如解图①, DE =CE ,点E 在线段OC 上. ∵在矩形ABCD 中,A (0,2)和C (23,0), ∴OA =2,OC =23,∴在Rt △OAC 中,tan ∠ACO =OA OC =33,∴∠CDE =∠DCE =30°. ∵DE ⊥BD , ∴∠BDC =60°. ∵∠BCD =90°-∠ECD =60°,∴△BCD 是等边三角形,CD =BD =BC =2,∵AC =OA 2+OC 2=4,∴AD =AC -CD =4-2=2;(3分)②如解图②,CD =CE ,点E 在OC 的延长线上.第25题解图②∵∠ACO =30°, ∴∠ACE =150°, ∵CD =CE ,∴∠CDE =∠CED =12(180°-∠ACE )=15°.∵DE ⊥BD , ∴∠BDE =90°, ∴∠ADB =180°-∠BDE -∠CDE =75°. ∵∠BAC =∠OCA =30°, ∴∠ABD =180°-∠ADB -∠BAC =75°, ∴△ABD 是等腰三角形,∴AD =AB =OC =23;(4分)③若CD =DE ,则∠DEC =∠DCE =30°或∠DEC =∠DCE =150°(舍去), ∴∠CDE =120°,此时,点D 在AC 的延长线上,不符合题意,舍去. 综上所述,当△EDC 为等腰三角形时,AD 的长为2或23;(5分)(3)①证明:如解图③,过点D 分别作DG ⊥OC 于点G ,DH ⊥BC 于点H .第25题解图③∵∠EDG +∠EDH =∠BDH +∠EDH =90°, ∴∠EDG =∠BDH . 在△EDG 和△BDH 中,⎩⎪⎨⎪⎧∠EDG =∠BDH ∠DGE = ∠DHB =90°, ∴△EDG ∽△BDH , ∴DG DH =DEDB. ∵DH =CG , ∴DG CG =tan ∠ACO =tan 30°=33, ∴DE DB =33;(7分) ②解:如解图④,过点D 作DI ⊥AB 于点I .— 11 — ∵AD =x ,∴DI =x 2,AI =3x2,又∵AB =23,∴BD 2=BI 2+DI 2 =(23-3x2)2+x 24, ∵DEDB =33,∴DE =33DB ,∴y =BD ·DE =33BD 2, =33[x 24+(23-32x )2 ]第25题解图④ =33[(x -3)2+3],∴当x =3时,y 有最小值,为 3.。

2017年广东省中考数学真题试卷

2017年广东省中考数学真题试卷

2017年广东省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)5的相反数是()A.B.5 C.﹣ D.﹣52.(3分)“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×10103.(3分)已知∠A=70°,则∠A的补角为()A.110°B.70°C.30°D.20°4.(3分)如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣25.(3分)在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.806.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆7.(3分)如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)8.(3分)下列运算正确的是()A.a+2a=3a2B.a3•a2=a5 C.(a4)2=a6D.a4+a2=a49.(3分)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°10.(3分)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S 连接BF,下列结论:①S△ABF,其中正确的是()△CDFA.①③B.②③C.①④D.②④二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:a2+a=.12.(4分)一个n边形的内角和是720°,则n=.13.(4分)已知实数a,b在数轴上的对应点的位置如图所示,则a+b0.(填“>”,“<”或“=”)14.(4分)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.15.(4分)已知4a+3b=1,则整式8a+6b﹣3的值为.16.(4分)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)计算:|﹣7|﹣(1﹣π)0+()﹣1.18.(6分)先化简,再求值:(+)•(x2﹣4),其中x=.19.(6分)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?四、解答题(本大题共3小题,每小题7分,共21分)20.(7分)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.21.(7分)如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD 为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.22.(7分)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表(1)填空:①m=(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.24.(9分)如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)25.(9分)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.2017年广东省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•广东)5的相反数是()A.B.5 C.﹣ D.﹣5【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:5的相反数是﹣5.故选:D.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(2017•广东)“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:4000000000=4×109.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•广东)已知∠A=70°,则∠A的补角为()A.110°B.70°C.30°D.20°【分析】由∠A的度数求出其补角即可.【解答】解:∵∠A=70°,∴∠A的补角为110°,故选A【点评】此题考查了余角与补角,熟练掌握补角的性质是解本题的关键.4.(3分)(2017•广东)如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣2【分析】把x=2代入已知方程列出关于k的新方程,通过解方程来求k的值.【解答】解:∵2是一元二次方程x2﹣3x+k=0的一个根,∴22﹣3×2+k=0,解得,k=2.故选:B.【点评】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.5.(3分)(2017•广东)在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.80【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选B.【点评】考查了众数的定义,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.6.(3分)(2017•广东)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆【分析】根据中心对称图形和轴对称图形的定义对各选项进行判断.【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选D.【点评】本题考查了中心对称图形:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.也考查了轴对称图形.7.(3分)(2017•广东)如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B 的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)【分析】反比例函数的图象是中心对称图形,则它与经过原点的直线的两个交点一定关于原点对称.【解答】解:∵点A与B关于原点对称,∴B点的坐标为(﹣1,﹣2).故选:A.【点评】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握.8.(3分)(2017•广东)下列运算正确的是()A.a+2a=3a2B.a3•a2=a5 C.(a4)2=a6D.a4+a2=a4【分析】根据整式的加法和幂的运算法则逐一判断即可.【解答】解:A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.【点评】本题主要考查幂的运算和整式的加法,掌握同类项的定义和同底数幂相乘、幂的乘方法则是解题的关键.9.(3分)(2017•广东)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°【分析】先根据补角的性质求出∠ABC的度数,再由圆内接四边形的性质求出∠ADC的度数,由等腰三角形的性质求得∠DAC的度数.【解答】解:∵∠CBE=50°,∴∠ABC=180°﹣∠CBE=180°﹣50°=130°,∵四边形ABCD为⊙O的内接四边形,∴∠D=180°﹣∠ABC=180°﹣130°=50°,∵DA=DC,∴∠DAC==65°,故选C.【点评】本题考查的是圆内接四边形的性质及等腰三角形的性质,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.(3分)(2017•广东)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF ;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④=S△ADF,故①正确,由BE=EC=BC=AD,【分析】由△AFD≌△AFB,即可推出S△ABFAD∥EC,推出===,可得S△CDF=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故②③错误④正确,由此即可判断.【解答】解:∵四边形ABCD是正方形,∴AD∥CB,AD=BC=AB,∠FAD=∠FAB,在△AFD和△AFB中,,∴△AFD≌△AFB,=S△ADF,故①正确,∴S△ABF∵BE=EC=BC=AD,AD∥EC,∴===,=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,∴S△CDF故②③错误④正确,故选C.【点评】本题考查正方形的性质、全等三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)(2017•广东)分解因式:a2+a=a(a+1).【分析】直接提取公因式分解因式得出即可.【解答】解:a2+a=a(a+1).故答案为:a(a+1).【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.12.(4分)(2017•广东)一个n边形的内角和是720°,则n=6.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:依题意有:(n﹣2)•180°=720°,解得n=6.故答案为:6.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.13.(4分)(2017•广东)已知实数a,b在数轴上的对应点的位置如图所示,则a+b>0.(填“>”,“<”或“=”)【分析】首先根据数轴判断出a、b的符号和二者绝对值的大小,根据“异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值”来解答即可.【解答】解:∵a在原点左边,b在原点右边,∴a<0<b,∵a离开原点的距离比b离开原点的距离小,∴|a|<|b|,∴a+b>0.故答案为:>.【点评】本题考查了实数与数轴,有理数的加法法则,根据数轴得出a、b的符号和二者绝对值的大小关系是解题的关键.14.(4分)(2017•广东)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.【分析】确定出偶数有2个,然后根据概率公式列式计算即可得解.【解答】解:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是,故答案为:【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.15.(4分)(2017•广东)已知4a+3b=1,则整式8a+6b﹣3的值为﹣1.【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.【解答】解:∵4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.16.(4分)(2017•广东)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.【分析】如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,根据AH=,计算即可.【解答】解:如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,∴AH===,故答案为.【点评】本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)(2017•广东)计算:|﹣7|﹣(1﹣π)0+()﹣1.【分析】直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案.【解答】解:原式=7﹣1+3=9.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、负整数指数幂的性质、绝对值等考点的运算.18.(6分)(2017•广东)先化简,再求值:(+)•(x2﹣4),其中x=.【分析】先计算括号内分式的加法,再计算乘法即可化简原式,将x的值代入求解可得.【解答】解:原式=[+]•(x+2)(x﹣2)=•(x+2)(x﹣2)=2x,当x=时,原式=2.【点评】本题主要考查分式的化简求值,熟练掌握分式的混合运算顺序和法则是解题的关键.19.(6分)(2017•广东)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【分析】设男生志愿者有x人,女生志愿者有y人,根据“若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设男生志愿者有x人,女生志愿者有y人,根据题意得:,解得:.答:男生志愿者有12人,女生志愿者有16人.【点评】本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.四、解答题(本大题共3小题,每小题7分,共21分)20.(7分)(2017•广东)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.【分析】(1)根据题意作出图形即可;(2)由于DE是AB的垂直平分线,得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B=50°,由三角形的外角的性质即可得到结论.【解答】解:(1)如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.【点评】本题考查了作图﹣基本作图,线段垂直平分线的性质,三角形的外角的性质,等腰三角形的性质,熟练掌握线段垂直平分线的性质是解题的关键.21.(7分)(2017•广东)如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【分析】(1)连结DB、DF.根据菱形四边相等得出AB=AD=FA,再利用SAS证明△BAD≌△FAD,得出DB=DF,那么D在线段BF的垂直平分线上,又AB=AF,即A在线段BF的垂直平分线上,进而证明AD⊥BF;(2)设AD⊥BF于H,作DG⊥BC于G,证明DG=CD.在直角△CDG中得出∠C=30°,再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°.【解答】(1)证明:如图,连结DB、DF.∵四边形ABCD,ADEF都是菱形,∴AB=BC=CD=DA,AD=DE=EF=FA.在△BAD与△FAD中,,∴△BAD≌△FAD,∴DB=DF,∴D在线段BF的垂直平分线上,∵AB=AF,∴A在线段BF的垂直平分线上,∴AD是线段BF的垂直平分线,∴AD⊥BF;(2)如图,设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形,∴DG=BH=BF.∵BF=BC,BC=CD,∴DG=CD.在直角△CDG中,∵∠CGD=90°,DG=CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.【点评】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线的判定,平行线的性质等知识,证明出AD是线段BF的垂直平分线是解题的关键.22.(7分)(2017•广东)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表(1)填空:①m=52(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于144度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【分析】(1)①根据D组的人数及百分比进行计算即可得到m的值;②根据C 组的百分比即可得到所在扇形的圆心角的度数;(2)根据体重低于60千克的学生的百分比乘上九年级学生总数,即可得到九年级体重低于60千克的学生数量.【解答】解:(1)①调查的人数为:40÷20%=200(人),∴m=200﹣12﹣80﹣40﹣16=52;②C组所在扇形的圆心角的度数为×360°=144°;故答案为:52,144;(2)九年级体重低于60千克的学生大约有×1000=720(人).【点评】本题主要考查了扇形统计图,用样本估计总体以及频数分布表的运用,从扇形图上可以清楚地看出各部分数量和总数量之间的关系.各部分扇形圆心角的度数=部分占总体的百分比×360°.五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)(2017•广东)如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x 轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.【分析】(1)将点A、B代入抛物线y=﹣x2+ax+b,解得a,b可得解析式;(2)由C点横坐标为0可得P点横坐标,将P点横坐标代入(1)中抛物线解析式,易得P点坐标;(3)由P点的坐标可得C点坐标,由B、C的坐标,利用勾股定理可得BC长,利用sin∠OCB=可得结果.【解答】解:(1)将点A、B代入抛物线y=﹣x2+ax+b可得,,解得,a=4,b=﹣3,∴抛物线的解析式为:y=﹣x2+4x﹣3;(2)∵点C在y轴上,所以C点横坐标x=0,∵点P是线段BC的中点,∴点P横坐标x P==,∵点P在抛物线y=﹣x2+4x﹣3上,∴y P=﹣3=,∴点P的坐标为(,);(3)∵点P的坐标为(,),点P是线段BC的中点,∴点C的纵坐标为2×﹣0=,∴点C的坐标为(0,),∴BC==,∴sin∠OCB===.【点评】本题主要考查了待定系数法求二次函数解析式和解直角三角形,利用中点求得点P的坐标是解答此题的关键.24.(9分)(2017•广东)如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)【分析】(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【解答】(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,∵△BMC∽△PMB,∴=,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴的长==π.【点评】本题考查切线的性质、角平分线的判定、全等三角形的判定和性质、相似三角形的判定和性质、锐角三角函数、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.25.(9分)(2017•广东)如图,在平面直角坐标系中,O为原点,四边形ABCO 是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.连接BE,取BE的中点K,连接DK、KC.首先证明B、D、E、C四点共圆,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO==,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①由(2)可知,B、D、E、C四点共圆,推出∠DBC=∠DCE=30°,由此即可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:连接BE,取BE的中点K,连接DK、KC.∵∠BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C四点共圆,∴∠DBE=∠DCE,∠EDC=∠EBC,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,当E在线段CO上时,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DBE=∠DCE=∠EDC=∠EBC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,当E在OC的延长线上时,△DCE是等腰三角形,只有CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①由(2)可知,B、D、E、C四点共圆,∴∠DBE=∠DCO=30°,∴tan∠DBE=,∴=.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y=[]2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值.【点评】本题考查相似形综合题、四点共圆、锐角三角函数、相似三角形的判定和性质、勾股定理、二次函数的性质等知识,解题的关键是学会添加辅助线,证明B、D、E、C四点共圆,学会构建二次函数解决问题,属于中考压轴题.2017年湖北省黄石市中考数学试卷一、选择题1.(3分)下列各数是有理数的是()A.﹣ B.C.D.π2.(3分)地球绕太阳公转的速度约为110000km/h,则110000用科学记数法可表示为()A.0.11×106B.1.1×105C.0.11×105D.1.1×1063.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(3分)下列运算正确的是()A.a0=0 B.a2+a3=a5 C.a2•a﹣1=a D.+=5.(3分)如图,该几何体主视图是()A.B.C.D.6.(3分)下表是某位男子马拉松长跑运动员近6次的比赛成绩(单位:分钟)则这组成绩的中位数和平均数分别为()A.137、138 B.138、137 C.138、138 D.137、1397.(3分)如图,△ABC中,E为BC边的中点,CD⊥AB,AB=2,AC=1,DE=,则∠CDE+∠ACD=()A.60°B.75°C.90°D.105°8.(3分)如图,是二次函数y=ax2+bx+c的图象,对下列结论①ab>0,②abc>0,③<1,其中错误的个数是()A.3 B.2 C.1 D.09.(3分)如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为()A.B.C.D.10.(3分)如图,已知凸五边形ABCDE的边长均相等,且∠DBE=∠ABE+∠CBD,AC=1,则BD必定满足()A.BD<2 B.BD=2C.BD>2 D.以上情况均有可能二、填空题11.(3分)因式分解:x2y﹣4y=.12.(3分)分式方程=﹣2的解为.13.(3分)如图,已知扇形OAB的圆心角为60°,扇形的面积为6π,则该扇形的弧长为.14.(3分)如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC向前走了100米后到达D处,在D处测得A处的仰角大小为30°,则建筑物AB的高度约为米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据:≈1.41,≈1.73)15.(3分)甲、乙两位同学各抛掷一枚质地均匀的骰子,他们抛掷的点数分别记为a、b,则a+b=9的概率为.16.(3分)观察下列格式:=1﹣=+=1﹣+﹣=++=1﹣+﹣+﹣=…请按上述规律,写出第n个式子的计算结果(n为正整数).(写出最简计算结果即可)三、解答题17.(7分)计算:(﹣2)3++10+|﹣3+|.18.(7分)先化简,再求值:(﹣)÷,其中a=2sin60°﹣tan45°.19.(7分)已知关于x的不等式组恰好有两个整数解,求实数a的取值范围.20.(8分)已知关于x的一元二次方程x2﹣4x﹣m2=0(1)求证:该方程有两个不等的实根;(2)若该方程的两个实数根x1、x2满足x1+2x2=9,求m的值.21.(8分)如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为⊙O的切线.22.(8分)随着社会的发展,私家车变得越来越普及,使用节能低油耗汽车,对环保有着非常积极的意义,某市有关部门对本市的某一型号的若干辆汽车,进行了一项油耗抽样实验:即在同一条件下,被抽样的该型号汽车,在油耗1L的情况下,所行驶的路程(单位:km)进行统计分析,结果如图所示:(注:记A为12~12.5,B为12.5~13,C为13~13.5,D为13.5~14,E为14~14.5)请依据统计结果回答以下问题:(1)试求进行该试验的车辆数;(2)请补全频数分布直方图;(3)若该市有这种型号的汽车约900辆(不考虑其他因素),请利用上述统计数据初步预测,该市约有多少辆该型号的汽车,在耗油1L的情况下可以行驶13km 以上?23.(8分)小明同学在一次社会实践活动中,通过对某种蔬菜在1月份至7月份的市场行情进行统计分析后得出如下规律:①该蔬菜的销售价P(单位:元/千克)与时间x(单位:月份)满足关系:P=9﹣x;②该蔬菜的平均成本y(单位:元/千克)与时间x(单位:月份)满足二次函数关系y=ax2+bx+10.已知4月份的平均成本为2元/千克,6月份的平均成本为1元/千克.(1)求该二次函数的解析式;(2)请运用小明统计的结论,求出该蔬菜在第几月份的平均利润L(单位:元/千克)最大?最大平均利润是多少?(注:平均利润=销售价﹣平均成本)24.(9分)在现实生活中,我们会看到许多“标准”的矩形,如我们的课本封面、A4的打印纸等,其实这些矩形的长与宽之比都为:1,我们不妨就把这样的矩形称为“标准矩形”,在“标准矩形”ABCD中,P为DC边上一定点,且CP=BC,如图所示.(1)如图①,求证:BA=BP;(2)如图②,点Q在DC上,且DQ=CP,若G为BC边上一动点,当△AGQ的周长最小时,求的值;(3)如图③,已知AD=1,在(2)的条件下,连接AG并延长交DC的延长线于点F,连接BF,T为BF的中点,M、N分别为线段PF与AB上的动点,且始终保持PM=BN,请证明:△MNT的面积S为定值,并求出这个定值.25.(10分)如图,直线l:y=kx+b(k<0)与函数y=(x>0)的图象相交于A、C两点,与x轴相交于T点,过A、C两点作x轴的垂线,垂足分别为B、D,过A、C两点作y轴的垂线,垂足分别为E、F;直线AE与CD相交于点P,连接DE.设A、C两点的坐标分别为(a,)、(c,),其中a>c>0.(1)如图①,求证:∠EDP=∠ACP;(2)如图②,若A、D、E、C四点在同一圆上,求k的值;(3)如图③,已知c=1,且点P在直线BF上,试问:在线段AT上是否存在点M,使得OM⊥AM?请求出点M的坐标;若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年广东省茂名市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分,每小题给出的四个答案,其中只有一个是正确的)1.(3分)(2017•茂名)|﹣3|等于()A.3B.﹣3 C.D.﹣2.(3分)(2017•茂名)如图是一个正方体的平面展开图,折叠成正方体后与“建”字所在面相对的面的字是()A.创B.教C.强D.市3.(3分)(2017•茂名)下列各式计算正确的是()A.5a+3a=8a2B.(a﹣b)2=a2﹣b2C.a3•a7=a10D.(a3)2=a7 4.(3分)(2017•茂名)如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A.110°B.90°C.70°D.50°5.(3分)(2017•茂名)在等腰三角形、平行四边形、直角梯形和圆中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.平行四边形C.直角梯形D.圆6.(3分)(2017•茂名)下列说法正确的是()A.面积相等的两个三角形全等B.矩形的四条边一定相等C.一个图形和它旋转后所得图形的对应线段相等D.随机投掷一枚质地均匀的硬币,落地后一定是正面朝上7.(3分)(2017•茂名)为了帮扶本市一名特困儿童,某班有20名同学积极捐款,他们捐款的数额如下表:捐款的数额(单位:元) 20 50 80 100人数(单位:名) 6 7 4 3对于这20名同学的捐款,众数是()A.20元B.50元C.80元D.100元8.(3分)(2017•茂名)如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为()A.6B.5C.4D.39.(3分)(2017•茂名)在平面直角坐标系中,下列函数的图象经过原点的是()A.B.y=﹣2x﹣3 C.y=2x2+1 D.y=5x y=10.(3分)(2017•茂名)张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时经过这种零件x个,则下面列出的方程正确的是()A.=B.=C.=D.=二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)(2017•茂名)﹣8的立方根是.12.(3分)(2017•茂名)一个多边形的内角和是720°,那么这个多边形是边形.13.(3分)(2017•茂名)不等式x﹣4<0的解集是.14.(3分)(2017•茂名)如图,将矩形ABCD沿对角线BD折叠,使点C与C′重合.若AB=3,则C′D的长为.15.(3分)(2017•茂名)为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52017的值是.三、用心做一做(本大题共3小题,每小题7分,共21分)16.(7分)(2017•茂名)计算:(﹣)﹣1﹣|﹣4|++(sin30°)0.17.(7分)(2017•茂名)设y=ax,若代数式(x+y)(x﹣2y)+3y(x+y)化简的结果为x2,请你求出满足条件的a值.18.(7分)(2017•茂名)补充完整三角形中位线定理,并加以证明:(1)三角形中位线定理:三角形的中位线;(2)已知:如图,DE是△ABC的中位线,求证:DE∥BC,DE=BC.四、沉着冷静,缜密思考(本大题共2小题,每小题7分,共14分)19.(7分)(2017•茂名)某校为了丰富学生的第二课堂,对学生参与演讲、舞蹈、书法和摄影活动的兴趣情况进行调查,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中最感兴趣的一项),对调查结果进行统计后,绘制了如下两个统计图:(1)此次调查抽取的学生人数m=名,其中选择“书法”的学生占抽样人数的百分比n=;(2)若该校有3000名学生,请根据以上数据估计该校对“书法”最感兴趣的学生人数.20.(7分)(2017•茂名)在一个不透明的袋中装有2个黄球,3个黑球和5个红球,它们除颜色外其他都相同.(1)将袋中的球摇均匀后,求从袋中随机摸出一个球是黄球的概率;(2)现在再将若干个红球放入袋中,与原来的10个球均匀混合在一起,使从袋中随机摸出一个球是红球的概率是,请求出后来放入袋中的红球的个数.五、满怀信心,再接再厉(本大题共3小题,每小题8分,共24分)21.(8分)(2017•茂名)如图,一条输电线路从A地到B地需要经过C地,图中AC=20千米,∠CAB=30°,∠CBA=45°,因线路整改需要,将从A地到B地之间铺设一条笔直的输电线路.(1)求新铺设的输电线路AB的长度;(结果保留根号)(2)问整改后从A地到B地的输电线路比原来缩短了多少千米?(结果保留根号)22.(8分)(2017•茂名)在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(﹣2,﹣4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有有无数多个.(1)若点M(2,a)是反比例函数y=(k为常数,k≠0)图象上的“理想点”,求这个反比例函数的表达式;(2)函数y=3mx﹣1(m为常数,m≠0)的图象上存在“理想点”吗?若存在,请求出“理想点”的坐标;若不存在,请说明理由.23.(8分)(2017•茂名)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:时间(第x天) 1 3 6 10 …日销售量(m件)198 194 188 180 …②该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天)1≤x<50 50≤x≤90销售价格(元/件)x+60 100(1)求m关于x的一次函数表达式;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×(每件销售价格﹣每件成本)】(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.六、灵动管理,超越自我(本大题共2小题,每小题8分,共16分)24.(8分)(2017•茂名)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M 从点B出发,在BA边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速度向点B运动,运动时间为t秒(0<t<),连接MN.(1)若△BMN与△ABC相似,求t的值;(2)连接AN,CM,若AN⊥CM,求t的值.25.(8分)(2017•茂名)如图,在平面直角坐标系中,⊙A与x轴相交于C(﹣2,0),D (﹣8,0)两点,与y轴相切于点B(0,4).(1)求经过B,C,D三点的抛物线的函数表达式;(2)设抛物线的顶点为E,证明:直线CE与⊙A相切;(3)在x轴下方的抛物线上,是否存在一点F,使△BDF面积最大,最大值是多少?并求出点F的坐标.2017年广东省茂名市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,每小题给出的四个答案,其中只有一个是正确的)1.(3分)(2017•茂名)|﹣3|等于()A.3B.﹣3 C.D.﹣考点:绝对值.分析:绝对值的性质:负数的绝对值等于它的相反数,正数的绝对值等于它本身,0的绝对值是0.解答:解:根据负数的绝对值是它的相反数,得|﹣3|=﹣(﹣3)=3.故选A.点评:本题考查了绝对值的意义.2.(3分)(2017•茂名)如图是一个正方体的平面展开图,折叠成正方体后与“建”字所在面相对的面的字是()A.创B.教C.强D.市考点:专题:正方体相对两个面上的文字.分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解答:解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“建”与“强”是相对面.故选C.点评:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.3.(3分)(2017•茂名)下列各式计算正确的是()A.5a+3a=8a2B.(a﹣b)2=a2﹣b2C.a3•a7=a10D.(a3)2=a7考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.分析:利用幂的运算性质、合并同类项及完全平方公式进行计算后即可确定正确的选项.解答:解:A、5a+3a=8a,故错误;B、(a﹣b)2=a2﹣2ab+b2,故错误;C、a3•a7=a10,正确;D、(a3)2=a6,故错误.故选C.点评:本题考查了幂的运算性质、合并同类项及完全平方公式,解题的关键是能够了解有关幂的运算性质,难度不大.4.(3分)(2017•茂名)如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A.110°B.90°C.70°D.50°考点:圆内接四边形的性质.分析:先根据圆内接四边形的对角互补得出∠D+∠B=180°,即可解答.解答:解:∵四边形ABCD是⊙O的内接四边形,∴∠D+∠B=180°,∴∠D=180°﹣70°=110°,故选:A.点评:本题考查的是圆内接四边形的性质,熟知圆内接四边形对角互补的性质是解答此题的关键.5.(3分)(2017•茂名)在等腰三角形、平行四边形、直角梯形和圆中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.平行四边形C.直角梯形D.圆考点:中心对称图形;轴对称图形.专题:计算题.分析:利用轴对称图形与中心对称图形的性质判断即可.解答:解:在等腰三角形、平行四边形、直角梯形和圆中,既是轴对称图形又是中心对称图形的是圆.故选D.点评:此题考查了中心对称图形与轴对称图形,熟练掌握各自的定义是解本题的关键.6.(3分)(2017•茂名)下列说法正确的是()A.面积相等的两个三角形全等B.矩形的四条边一定相等C.一个图形和它旋转后所得图形的对应线段相等D.随机投掷一枚质地均匀的硬币,落地后一定是正面朝上考点:命题与定理.分析:直接根据全等三角形的判定定理、矩形的性质、旋转的性质以及概率的知识对各个选项进行判断即可.解答:解:A、面积相等的两个三角形不一定全等,此选项错误;B、矩形的对边相等,此选项错误;C、一个图形和它旋转后所得图形的对应线段相等,此选项正确;D、随机投掷一枚质地均匀的硬币,落地后不一定是正面朝上,此选项错误;故选C.点评:本题主要考查了命题与定理的知识,解答本题的关键是掌握全等三角形的判定定理、矩形的性质、旋转的性质以及概率的知识,此题难度不大.7.(3分)(2017•茂名)为了帮扶本市一名特困儿童,某班有20名同学积极捐款,他们捐款的数额如下表:捐款的数额(单位:元) 20 50 80 100人数(单位:名) 6 7 4 3对于这20名同学的捐款,众数是()A.20元B.50元C.80元D.100元考点:众数.分析:众数指一组数据中出现次数最多的数据,结合题意即可得出答案.解答:解:由题意得,所给数据中,50元出现了7次,次数最多,即这组数据的众数为50元.故选B.点评:此题考查了众数的定义及求法,一组数据中出现次数最多的数据叫做众数.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.8.(3分)(2017•茂名)如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为()A.6B.5C.4D.3考点:角平分线的性质.分析:过点P作PE⊥OB于点E,根据角平分线上的点到角的两边的距离相等可得PE=PD,从而得解.解答:解:如图,过点P作PE⊥OB于点E,∵OC是∠AOB的平分线,PD⊥OA于D,∴PE=PD,∵PD=6,∴PE=6,即点P到OB的距离是6.故选:A.点评:本题考查了角平分线上的点到角的两边的距离相等的性质,是基础题,比较简单,熟记性质是解题的关键.9.(3分)(2017•茂名)在平面直角坐标系中,下列函数的图象经过原点的是()B.y=﹣2x﹣3 C.y=2x2+1 D.y=5xA.y=考点:二次函数图象上点的坐标特征;一次函数图象上点的坐标特征;反比例函数图象上点的坐标特征.分析:将(0,0)代入各选项进行判断即可.解答:解:A、当x=0时,y=无意义,不经过原点,故本选项错误;B、当x=0时,y=3,不经过原点,故本选项错误;C、当x=0时,y=1,不经过原点,故本选项错误;D、当x=0时,y=0,经过原点,故本选项正确.故选:D.点评:本题考查了一次函数图象、反比例函数图象及二次函数图象上点的坐标特征,注意代入判断,难度一般10.(3分)(2017•茂名)张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时经过这种零件x个,则下面列出的方程正确的是()A.=B.=C.=D.=考点:由实际问题抽象出分式方程.分析:根据每小时张三比李四多加工5个零件和张三每小时加工这种零件x个,可知李四每小时加工这种零件的个数,根据张三加工120个这种零件与李四加工100个这种零件所用时间相等,列出方程即可.解答:解:设张三每小时加工这种零件x个,则李四每小时加工这种零件(x﹣5)个,由题意得,=,故选B.点评:本题考查的是列分式方程解应用题,根据题意准确找出等量关系是解题的关键.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)(2017•茂名)﹣8的立方根是﹣2.考点:立方根.分析:利用立方根的定义即可求解.解答:解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.点评:本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.12.(3分)(2017•茂名)一个多边形的内角和是720°,那么这个多边形是六边形.考点:多边形内角与外角.分析:n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.解答:解:这个正多边形的边数是n,则(n﹣2)•180°=720°,解得:n=6.则这个正多边形的边数是六,故答案为:六.点评:考查了多边形内角和定理,此题比较简单,只要结合多边形的内角和公式,寻求等量关系,构建方程求解.13.(3分)(2017•茂名)不等式x﹣4<0的解集是x<4.考点:解一元一次不等式;不等式的性质.专题:计算题.分析:根据不等式的性质移项后即可得到答案.解答:解:x﹣4<0,移项得:x<4.故答案为:x<4.点评:本题主要考查对不等式的性质,解一元一次不等式等知识点的理解和掌握,能根据不等式的性质正确解一元一次不等式是解此题的关键.14.(3分)(2017•茂名)如图,将矩形ABCD沿对角线BD折叠,使点C与C′重合.若AB=3,则C′D的长为3.考点:翻折变换(折叠问题).分析:根据矩形的对边相等可得CD=AB,再根据翻折变换的性质可得C′D=CD,代入数据即可得解.解答:解:在矩形ABCD中,CD=AB,∵矩形ABCD沿对角线BD折叠后点C和点C′重合,∴C′D=CD,∴C′D=AB,∵AB=3,∴C′D=3.故答案为3.点评:本题考查了矩形的对边相等的性质,翻折变换的性质,是基础题,熟记性质是解题的关键.15.(3分)(2017•茂名)为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52017的值是.考点:有理数的乘方.分析:根据题目信息,设M=1+5+52+53+…+52017,求出5M,然后相减计算即可得解.解答:解:设M=1+5+52+53+ (52017)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.点评:本题考查了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.三、用心做一做(本大题共3小题,每小题7分,共21分)16.(7分)(2017•茂名)计算:(﹣)﹣1﹣|﹣4|++(sin30°)0.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:本题涉及负整数指数幂、零指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:(﹣)﹣1﹣|﹣4|++(sin30°)0=﹣3﹣4+5+1=﹣1.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.17.(7分)(2017•茂名)设y=ax,若代数式(x+y)(x﹣2y)+3y(x+y)化简的结果为x2,请你求出满足条件的a值.考点:整式的混合运算;平方根.分析:先利用因式分解得到原式(x+y)(x﹣2y)+3y(x+y)=(x+y)2,再把当y=ax代入得到原式=(a+1)2x2,所以当(a+1)2=1满足条件,然后解关于a的方程即可.解答:解:原式=(x+y)(x﹣2y)+3y(x+y)=(x+y)2,当y=ax,代入原式得(1+a)2x2=x2,即(1+a)2=1,解得:a=﹣2或0.点评:本题考查了因式分解的运用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.18.(7分)(2017•茂名)补充完整三角形中位线定理,并加以证明:(1)三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半;(2)已知:如图,DE是△ABC的中位线,求证:DE∥BC,DE=BC.考点:三角形中位线定理.分析:(1)根据三角形的中位线定理填写即可;(2)延长DE到F,使FE=DE,连接CF,利用“边角边”证明△ADE和△CFE全等,根据全等三角形对应角相等可得∠A=∠ECF,全等三角形对应边相等可得AD=CF,然后求出四边形BCFD是平行四边形,根据平行四边形的性质证明即可.解答:(1)解:三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半;故答案为:平行于第三边,且等于第三边的一半;(2)证明:如图,延长DE到F,使FE=DE,连接CF,在△ADE和△CFE中,,∴△ADE≌△CFE(SAS),∴∠A=∠ECF,AD=CF,∴CF∥AB,又∵AD=BD,∴CF=BD,∴四边形BCFD是平行四边形,∴DF∥BC,DF=BC,∴DE∥BC,DE=BC.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键,难点在于作辅助线构造出全等三角形和平行四边形.四、沉着冷静,缜密思考(本大题共2小题,每小题7分,共14分)19.(7分)(2017•茂名)某校为了丰富学生的第二课堂,对学生参与演讲、舞蹈、书法和摄影活动的兴趣情况进行调查,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中最感兴趣的一项),对调查结果进行统计后,绘制了如下两个统计图:(1)此次调查抽取的学生人数m=150名,其中选择“书法”的学生占抽样人数的百分比n=30%;(2)若该校有3000名学生,请根据以上数据估计该校对“书法”最感兴趣的学生人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)利用扇形统计图和条形统计图得出参与演讲的人数和所占百分比,进而求出总人数,再求出参加书法的人数,进而求出占抽样人数的百分比;(2)利用(1)中所求得出该校对“书法”最感兴趣的学生人数.解答:解:(1)由题意可得:此次调查抽取的学生人数m=30÷20%=150,选择“书法”的学生占抽样人数的百分比n=(150﹣30﹣60﹣15)÷150×100%=30%;故答案为:150,30%;(2)由(1)得:3000×30%=900(名),答:该校对“书法”最感兴趣的学生人数为900名.点评:此题主要考查了条形统计图与扇形统计图的综合应用,根据已知图形得出正确信息是解题关键.20.(7分)(2017•茂名)在一个不透明的袋中装有2个黄球,3个黑球和5个红球,它们除颜色外其他都相同.(1)将袋中的球摇均匀后,求从袋中随机摸出一个球是黄球的概率;(2)现在再将若干个红球放入袋中,与原来的10个球均匀混合在一起,使从袋中随机摸出一个球是红球的概率是,请求出后来放入袋中的红球的个数.考点:概率公式.分析:(1)用黄球的个数除以所有球的个数即可求得概率;(2)根据概率公式列出方程求得红球的个数即可.解答:解:(1)∵共10个球,有2个黄球,∴P(黄球)==;(2)设有x个红球,根据题意得:=,解得:x=5.故后来放入袋中的红球有5个.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.五、满怀信心,再接再厉(本大题共3小题,每小题8分,共24分)21.(8分)(2017•茂名)如图,一条输电线路从A地到B地需要经过C地,图中AC=20千米,∠CAB=30°,∠CBA=45°,因线路整改需要,将从A地到B地之间铺设一条笔直的输电线路.(1)求新铺设的输电线路AB的长度;(结果保留根号)(2)问整改后从A地到B地的输电线路比原来缩短了多少千米?(结果保留根号)考点:解直角三角形的应用.专题:应用题.分析:(1)过C作CD⊥AB,交AB于点D,在直角三角形ACD中,利用锐角三角函数定义求出CD与AD的长,在直角三角形BCD中,利用锐角三角函数定义求出BD的长,由AD+DB求出AB的长即可;(2)在直角三角形BCD中,利用勾股定理求出BC的长,由AC+CB﹣AB即可求出输电线路比原来缩短的千米数.解答:解:(1)过C作CD⊥AB,交AB于点D,在Rt△ACD中,CD=AC•sin∠CAD=20×=10(千米),AD=AC•cos∠CAD=20×=10(千米),在Rt△BCD中,BD===10(千米),∴AB=AD+DB=10+10=10(+1)(千米),则新铺设的输电线路AB的长度10(+1)(千米);(2)在Rt△BCD中,根据勾股定理得:BC==10(千米),∴AC+CB﹣AB=20+10﹣(10+10)=10(1+﹣)(千米),则整改后从A地到B地的输电线路比原来缩短了10(1+﹣)千米.点评:此题考查了解直角三角形的应用,涉及的知识有:锐角三角函数定义,勾股定理,熟练掌握勾股定理是解本题的关键.22.(8分)(2017•茂名)在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(﹣2,﹣4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有有无数多个.(1)若点M(2,a)是反比例函数y=(k为常数,k≠0)图象上的“理想点”,求这个反比例函数的表达式;(2)函数y=3mx﹣1(m为常数,m≠0)的图象上存在“理想点”吗?若存在,请求出“理想点”的坐标;若不存在,请说明理由.考点:反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征.专题:新定义.分析:(1)根据“理想点”,确定a的值,即可确定M点的坐标,代入反比例函数解析式,即可解答;(2)假设函数y=3mx﹣1(m为常数,m≠0)的图象上存在“理想点”(x,2x),则有3mx﹣1=2x,整理得:(3m﹣2)x=1,分两种情况讨论:当3m﹣2≠0,即m≠时,解得:x=,当3m﹣2=0,即m=时,x无解,即可解答.解答:解:∵点M(2,a)是反比例函数y=(k为常数,k≠0)图象上的“理想点”,∴a=4,∵点M(2,4)在反比例函数y=(k为常数,k≠0)图象上,∴k=2×4=8,∴反比例函数的解析式为.(2)假设函数y=3mx﹣1(m为常数,m≠0)的图象上存在“理想点”(x,2x),则有3mx﹣1=2x,整理得:(3m﹣2)x=1,当3m﹣2≠0,即m≠时,解得:x=,当3m﹣2=0,即m=时,x无解,综上所述,当m≠时,函数图象上存在“理想点”,为();当m=时,函数图象上不存在“理想点”.点评:本题考查了反比例函数图形上点的坐标特征,解决本题的关键是理解“理想点”的定义,确定点的坐标.23.(8分)(2017•茂名)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:时间(第x天) 1 3 6 10 …日销售量(m件)198 194 188 180 …②该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天)1≤x<50 50≤x≤90销售价格(元/件)x+60 100(1)求m关于x的一次函数表达式;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×(每件销售价格﹣每件成本)】(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.考点:二次函数的应用.分析:(1)根据待定系数法解出一次函数解析式即可;(2)设利润为y元,则当1≤x<50时,y=﹣2x2+160x+4000;当50≤x≤90时,y=﹣120x+12000,分别求出各段上的最大值,比较即可得到结论;(3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元.解答:解:(1)∵m与x成一次函数,∴设m=kx+b,将x=1,m=198,x=3,m=194代入,得:,解得:.所以m关于x的一次函数表达式为m=﹣2x+200;(2)设销售该产品每天利润为y元,y关于x的函数表达式为:,当1≤x<50时,y=﹣2x2+160x+4000=﹣2(x﹣40)2+7200,∵﹣2<0,∴当x=40时,y有最大值,最大值是7200;当50≤x≤90时,y=﹣120x+12000,∵﹣120<0,∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;综上所述,当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;(3)在该产品销售的过程中,共有46天销售利润不低于5400元.点评:本题考查分段函数,考查函数的最值,解题的关键是正确写出分段函数的解析式,属于中档题.六、灵动管理,超越自我(本大题共2小题,每小题8分,共16分)24.(8分)(2017•茂名)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M 从点B出发,在BA边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速度向点B运动,运动时间为t秒(0<t<),连接MN.(1)若△BMN与△ABC相似,求t的值;(2)连接AN,CM,若AN⊥CM,求t的值.考点:相似三角形的判定与性质;解直角三角形.专题:动点型.分析:(1)根据题意得出BM,CN,易得BN,BA,分类讨论当△BMN∽△BAC时,利用相似三角形的性质得,解得t;当△BMN∽△BCA时,,解得t,综上所述,△BMN与△ABC相似,得t的值;(2)过点M作MD⊥CB于点D,利用锐角三角函数易得DM,BD,由BM=3tcm,CN=2tcm,易得CD,利用三角形相似的判定定理得△CAN∽△DCM,由三角形相似的性质得,解得t.解答:解:(1)由题意知,BM=3tcm,CN=2tcm,∴BN=(8﹣2t)cm,BA==10(cm),当△BMN∽△BAC时,,∴,解得:t=;当△BMN∽△BCA时,,∴,解得:t=,∴△BMN与△ABC相似时,t的值为或;(2)过点M作MD⊥CB于点D,由题意得:DM=BMsinB=3t=(cm),BD=BMcosB=3t=t(cm),BM=3tcm,CN=2tcm,∴CD=(8﹣)cm,∵AN⊥CM,∠ACB=90°,∴∠CAN+∠ACM=90°,∠MCD+∠ACM=90°,∴∠CAN=∠MCD,∵MD⊥CB,∴∠MDC=∠ACB=90°,∴△CAN∽△DCM,∴,∴=,解得t=.点评:本题主要考查了动点问题,相似三角形的判定及性质等,分类讨论,数形结合是解答此题的关键.25.(8分)(2017•茂名)如图,在平面直角坐标系中,⊙A与x轴相交于C(﹣2,0),D (﹣8,0)两点,与y轴相切于点B(0,4).(1)求经过B,C,D三点的抛物线的函数表达式;(2)设抛物线的顶点为E,证明:直线CE与⊙A相切;(3)在x轴下方的抛物线上,是否存在一点F,使△BDF面积最大,最大值是多少?并求出点F的坐标.考点:二次函数综合题.分析:(1)把B(0,4),C(﹣2,0),D(﹣8,0)代入二次函数的解析式即可得到结果;(2)由y=x2+x+4=(x+5)2﹣,得到顶点坐标E(﹣5,﹣),求得直线CE 的函数解析式y=x+,在y=x+中,令x=0,y=,得到G(0,),如图1,连接AB,AC,AG,得BG=OB﹣OG=4﹣=,CG=,得到BG=CG,AB=AC,证得△ABG≌△ACG,得到∠ACG=∠ABG,由于⊙A与y轴相切于点B(0,4),于是得到∠ABG=90°,即可求得结论;(3)如图2,连接BD,BF,DF,设F(t,t2+t+4),过F作FN∥y轴交BD于点N,求得直线BD的解析式为y=x+4,得到点N的坐标为(t,t+4),于是得到FN=t+4﹣(t2+t+4)=﹣t2﹣2t,推出S△DBF=S△DNF+S△BNF=OD•FN=(﹣t2﹣2t)=﹣t2﹣8t=﹣(t+4)2+16,即可得到结论.解答:解:(1)设抛物线的解析式为:y=ax2+bx+c,把B(0,4),C(﹣2,0),D(﹣8,0)代入得:,解得.∴经过B,C,D三点的抛物线的函数表达式为:y=x2+x+4;(2)∵y=x2+x+4=(x+5)2﹣,。

相关文档
最新文档