电磁学基本知识与基本定律

合集下载

大学物理电磁学

大学物理电磁学

大学物理电磁学是物理学的一个重要分支,主要研究电磁现象的规律和本质。

电磁学在科学技术、工业生产和日常生活中都有着广泛的应用。

本文将从电磁学的基本概念、基本定律和电磁波的传播等方面对大学物理电磁学进行介绍。

一、基本概念1.电荷:电荷是物质的一种属性,分为正电荷和负电荷。

电荷间的相互作用规律是:同种电荷相互排斥,异种电荷相互吸引。

2.电场:电场是电荷及变化磁场周围空间里存在的一种特殊物质,它对放入其中的电荷有作用力。

电场的强度用电场强度E表示,单位是牛/库仑。

3.磁场:磁场是磁体周围空间里存在的一种特殊物质,它对放入其中的磁体有作用力。

磁场的强度用磁感应强度B表示,单位是特斯拉。

4.电磁波:电磁波是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效的传递能量。

电磁波在真空传播速度与光速一样,速度为30万千米/秒。

二、基本定律1.库仑定律:库仑定律是描述电荷之间相互作用的定律,其内容为:真空中两点电荷间的作用力与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力在它们的连线上。

2.安培定律:安培定律是描述电流和电流激发磁场的定律,其内容为:电流I1通过一条无限长直导线时,在距离导线r处产生的磁场强度H1与I1成正比,与r成反比,即H1与I1r成反比。

磁场方向垂直于电流方向和通过点的平面。

3.法拉第电磁感应定律:法拉第电磁感应定律是描述磁场变化引起电场变化的定律,其内容为:穿过电路的磁通量发生变化时,产生感应电动势。

感应电动势的大小与磁通量变化率成正比,与电路的匝数成正比。

4.麦克斯韦方程组:麦克斯韦方程组是描述电磁场分布和电磁波传播的四个偏微分方程,包括库仑定律、法拉第电磁感应定律、安培定律和位移电流定律。

三、电磁波的传播1.电磁波的发射:电磁波的产生通常是通过振荡电路实现的。

当振荡电路中的电场和磁场相互垂直且同相振荡时,电磁波便会产生并向外传播。

电磁学基础知识

电磁学基础知识
几百到上万。材料如铁、钴、镍及其合金等。 所以电器设备如变压器、电机都将绕组套装在铁磁 性材料制成的铁心上。 注意
铁磁性物质的磁导率µ是个变量,它随磁场的强弱而变化。 电磁学基础知识
7.1.3 磁场强度
磁场强度H :介质中某点的磁感应强度 B 与介质
磁导率 之比。 H B
磁场强度H的单位 :安培/米(A/m)
在1831年英国科学家法拉第发现:,变化的磁场能使闭合的回路产生感应 电动势和感应电流。感应电动势的大小正比于回路内磁通对电流的变化率。
楞次定律:
1833年,楞次对法拉第电磁感应定律进行补充:闭合回路中感应 电流的方向,总是使它所产生的磁场阻碍引起感应电流的原磁通的变 化。这就是楞次定律。 具体地说,如果回路由于磁通增加而引起的电磁感应,则感应电流的磁场与原 来的磁场反向;如果回路由于磁通减少引起电磁感应,则感应电流的磁场与原 来的磁场相同。简要地说,感应电流总是阻碍原磁通的变化。
非线
对于铁心线圈来说,电感L不为常数。
性电
感 若为线性电感元件
eLdd t d(dL ti)Ld dti (2)

式(1)与式(2)是电动势的两种表达式,

一般当电感L为常数时,多采用式(2)。 而分析非线性电感时,由于L可变,一般采用式(1)。
电磁学基础知识
3、电感元件上电压与电流的关系
习惯上选择电感元件上的电流、电压、自感 电动势三者参考方向一致,则
1. 概述 电磁铁是利用通电的铁心线圈吸引衔铁或保
持某种机械零件、工件于固定位置的一种电器。 当电源断开时电磁铁的磁性消失,衔铁或其它零 件即被释放。电磁铁衔铁的动作可使其它机械装 置发生联动。
根据使用电源类型分为: 直流电磁铁:用直流电源励磁;

第一章 电磁学基本定律

第一章 电磁学基本定律

e = −N
其中ψ = N Φ 叫做磁链。
dΦ dψ =− dt dt
(1.3-1)
7
运动控制系统 第一章
磁通 Φ (t , x ) 是时间 t 和线圈对磁场相对位移 x 的函数。将式(1-23)写成全微分形式
e = −N
若 dx dt = 0 ,则
d Φ (t, x ) ⎛ ∂Φ ( t , x ) ∂Φ ( t , x ) dx ⎞ = −N ⎜ + ⋅ ⎟ dt ∂x dt ⎠ ⎝ ∂t
F 954.6 = = 9.546 A N 100
铁心的磁路虽然很短,仅仅为磁路总长度的千分之一,但是磁场强度却达到了铁心中磁场强 度的5000 倍,所以磁压降却可以明显大于铁心的磁压降。在本例中气隙的磁压降达到了铁心 磁压降的 5 倍。励磁电流增加了 5 倍。
1.3 电磁感应定律
线圈中的磁通量 Φ 发生变化时,在该线圈中将产生与磁通变化率成正比的电动势,若线圈匝数为 N,则
磁路欧姆定律可以写为
(1.2-15)
F = RmΦ 或者 Φ = Λ m F
材料的磁导率。由磁阻的定义 Rm = l
(1.2-16)
作用在磁路上的磁动势等于磁阻乘以磁通。磁阻(磁导)取决于磁路的几何尺寸和构成磁路
μ S 可以得到,磁阻于磁路的长度成正比,与磁导率和横截
δ Φ = ( RmFe + Rmδ ) Φ μ0 S
(1.2-11)
B = μH
根据安培环流定律,可以得到如下的形式
(1.2-12)
F = Ni = Hl =
B
μ
l=
l Φ μS
(1.2-13)
其中定义磁路的磁阻(magnetic reluctance)为

高中物理复习电磁学部分

高中物理复习电磁学部分

高中物理复习电磁学部分电磁学是高中物理中的重要内容之一,也是学生们较为困惑的部分之一。

本文将对电磁学的相关知识进行复习和总结,帮助学生们更好地理解和掌握这一内容。

一、电磁学基础知识1. 电荷和电场在电磁学中,电荷是基本粒子,可以带正电荷或负电荷。

同性电荷相斥,异性电荷相吸。

电场是电荷周围产生的一个物理场,描述了电荷之间相互作用的规律。

2. 静电场和静电力静电场是指电荷静止时产生的电场。

静电力是指电荷之间由于电场作用而产生的力。

根据库仑定律,两个电荷之间的电力与电荷的大小和距离的平方成正比。

3. 电场线电场线是描述电场分布形态的一种图示方法。

电场线的特点是从正电荷出发,指向负电荷,密集区域代表电场强,稀疏区域代表电场弱。

电场线不会相交,且垂直于导体表面。

二、电磁感应和法拉第电磁感应定律1. 磁感线和磁感应强度磁感线是描述磁场分布形态的一种图示方法。

磁感应强度是磁场对单位面积垂直于磁力线方向的力的大小。

2. 法拉第电磁感应定律法拉第电磁感应定律是指导体中的磁感应强度变化会诱导出感应电动势的规律。

根据法拉第电磁感应定律,感应电动势的大小与磁感应强度变化速率成正比。

3. 感应电流和楞次定律根据楞次定律,感应电流的方向总是阻碍引起它产生的因素,如磁感应强度的变化。

感应电流具有闭合电路的特点。

三、电磁波和麦克斯韦方程组1. 电磁波的特点电磁波是由电场和磁场交替变化产生的一种波动现象。

电磁波可以传播在真空中和介质中,具有波长、频率和速度等特性。

2. 麦克斯韦方程组麦克斯韦方程组是描述电场和磁场相互作用的基本定律。

包括麦克斯韦第一和第二个定律、高斯定律和法拉第定律。

3. 电磁波的分类根据频率的不同,电磁波可以分为射线、微波、红外线、可见光、紫外线、X射线和γ射线等。

四、电磁学的应用1. 电磁感应的应用电磁感应在发电机、变压器等电器设备中有广泛应用。

电磁感应还可以用于磁悬浮列车、无线充电等领域。

2. 电磁波的应用电磁波在通信、雷达、医学影像等方面有重要应用。

常用基本电磁定律

常用基本电磁定律
磁通量F
垂直穿过某截面积的磁力线总和。单位:Wb
F SΒ dA
对于均匀磁场,若B与S垂直,则 F BA
磁场强度H
计算磁场时引用的物理量(实际也在存在的)。单位:A/m B=μH
μ:导磁材料的磁导率。
注意:B的大小与磁场环境有关,H的大小与磁场内在因素有关.
3
电磁学的基本定律
1.3.2 法拉第电磁感应定律—— 磁生电
14
1.4.2 软磁材料与硬磁材料
1、软磁材料——磁滞回线较窄。 硅钢片、铸铁、铸钢、铁氧体等。 用于制作电器设备的铁心。
2、硬磁材料——磁滞回线较宽。 铷铁硼、铁钴钐。 用于制作永久磁铁。
B H(i)
B H(i)
15
1.4.3 铁心损耗
铁耗
磁滞损耗 :由磁畴相互摩擦发热造成
Ñ ph fV HdB Ch fBmnV
11
二、磁化曲线和磁滞回线
1、起始磁化曲线
Φ i
物体从无磁性开始,磁
场强度H(i)由零逐渐增
加时,磁通密度B将随 B μ= B/H
பைடு நூலகம்
之增加。用B=f (H)描述
c
的曲线就称为起始磁化
b
曲线。
a
O
磁饱和现象
d B=f (H)
导磁性能的 非线性现象
H∝i
12
2、磁滞回线
Φ
磁滞回线——当H在Hm和- Hm i 之间反复变化时,呈现磁滞现
第1章 磁路 本章内容
磁路的基本知识 电磁学基本定律 常用磁性材料及其特性
1
第一节 磁路的基本定律
一、磁场的几个常用物理量
1.磁感应强度(磁密) B
•表征磁场强弱及方向的物理量。单位:特斯拉T(Wb/m2)

电磁学四大基本定律

电磁学四大基本定律

电磁学四大基本定律电磁学四大基本定律1、磁感应定律(法拉第定律)磁感应定律是指磁感应量与电流强度成正比,只有电流存在时,才能引起磁感应量。

这个定律被发现者法拉第于1820 年提出,故称法拉第定律:当一磁感应源(比如电流)引起一磁感应效应时,磁感应量H(磁感应强度)等于磁感应源的电流强度I的乘积:H=K × I其中K是一个系数,不同的情况K的值是不同的,这取决于磁场建立的介质及介质中磁性物质的种类和数量等。

2、电磁感应定律(迪瓦茨定律)电磁感应定律是指当一磁场和一电流交叉存在时,一电动势便会被产生,其大小与交叉面积及其形状有关,只有在磁场和电流都存在时,才能引起电动势。

该定律由迪瓦茨于1820 年提出,因此称为“迪瓦茨定律”:当一磁场与一电流交叉存在时,交叉面积上的电动势U 与磁场强度H和电流强度I的乘积成正比:U=K × H× I其中K是一个系数,取决于磁场建立的介质及介质中磁性物质的种类和数量等。

3、电流螺旋定律(麦克斯韦定律)电流螺旋定律是指电流在一磁场中的线路是螺旋状的。

该定律亦由法拉第提出,故称法拉第定律:当一电流在一磁场中传播,其线路同时会被磁场以螺旋状把电流围绕其方向线而改变。

该电流的方向与磁场强度和螺旋线圈数成反比:I ∝ --1/N其中N是螺旋线圈数(又称为电磁感应系数),表示电流的方向与每一圈半径r的变化方向保持一致。

4、等效电势定律(高斯定律)等效电势定律是指磁场的强度可用电势的梯度来表示,即:H= -V这个定律于1835 年由高斯提出,因此称为“高斯定律”:如果一磁场中只有一点源(比如电流)分布,磁场强度H可以用电势梯度的向量(由电势的变化率组成)来表示。

因而磁场的强度H可用电势梯度的公式来表示:H= -V其中V是电势,是导数的简写。

大学物理电磁学知识点总结

大学物理电磁学知识点总结

大学物理电磁学总结一、三大定律库仑定律:在真空中,两个静止的点电荷q1 和q2 之间的静电相互作用力与这两个点电荷所带电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着两个点电荷的连线,同号电荷相斥,异号电荷相吸。

uuu r q q ur F21 = k 1 2 2 er rur u r 高斯定理:a) 静电场:Φ e = E d S = ∫s∑qiiε0(真空中)b) 稳恒磁场:Φ m =u u r r Bd S = 0 ∫s环路定理:a) 静电场的环路定理:b) 安培环路定理:二、对比总结电与磁∫Lur r L E dl = 0 ∫ ur r B dl = 0 ∑ I i (真空中)L电磁学静电场稳恒磁场稳恒磁场电场强度:E磁感应强度:B 定义:B =ur ur F 定义:E = (N/C) q0基本计算方法:1、点电荷电场强度:E =ur r u r dF (d F = Idl × B )(T) Idl sin θ方向:沿该点处静止小磁针的N 极指向。

基本计算方法:urq ur er 4πε 0 r 2 1r ur u Idl × e r 0 r 1、毕奥-萨伐尔定律:d B = 2 4π r2、连续分布的电流元的磁场强度:2、电场强度叠加原理:ur n ur 1 E = ∑ Ei = 4πε 0 i =1r qi uu eri ∑ r2 i =1 inr ur u r u r 0 Idl × er B = ∫dB = ∫ 4π r 23、安培环路定理(后面介绍)4、通过磁通量解得(后面介绍)3、连续分布电荷的电场强度:ur ρ dV ur E=∫ e v 4πε r 2 r 0 ur σ dS ur ur λ dl ur E=∫ er , E = ∫ e s 4πε r 2 l 4πε r 2 r 0 04、高斯定理(后面介绍)5、通过电势解得(后面介绍)几种常见的带电体的电场强度公式:几种常见的磁感应强度公式:1、无限长直载流导线外:B = 2、圆电流圆心处:B = 3、圆电流轴线上:B =ur 1、点电荷:E =q ur er 4πε 0 r 2 10 I2R0 I 2π r2、均匀带电圆环轴线上一点:ur E=r qx i 2 2 32 4πε 0 ( R + x )R 2 IN 2 ( x 2 + R 2 )3 21 0α 23、均匀带电无限大平面:E =σ 2ε 0(N 为线圈匝数)4、无限大均匀载流平面:B =4、均匀带电球壳:E = 0( r < R )(α 是流过单位宽度的电流)ur E=q ur er (r > R ) 4πε 0 r 25、无限长密绕直螺线管内部:B = 0 nI (n 是单位长度上的线圈匝数)6、一段载流圆弧线在圆心处:B = (是弧度角,以弧度为单位)7、圆盘圆心处:B =r ur qr (r < R) 5、均匀带电球体:E = 4πε 0 R 3 ur E= q 4πε 0 r ur er (r > R ) 20 I 4π R0σω R2(σ 是圆盘电荷面密度,ω 圆盘转动的角速度)6、无限长直导线:E =λ 2πε 0 x λ 0(r > R ) 2πε 0 r7、无限长直圆柱体:E =E=λr (r < R) 4πε 0 R 2电场强度通量:N·m2·c-1)(磁通量:wb)(sΦ e = ∫ d Φ e = ∫ E cos θ dS = ∫s sur u r E d S通量u u r r Φ m = ∫ d Φ m = ∫ Bd S = ∫ B cos θ dS s s s若为闭合曲面:Φ e =∫sur u r E d S若为闭合曲面:u u r r Φ m = Bd S = B cos θ dS ∫ ∫s s均匀电场通过闭合曲面的通量为零。

电磁学的基础知识

电磁学的基础知识

电磁学的基础知识电磁学是物理学中的一个重要分支,研究电荷和电磁场之间的相互作用。

从静电学到电动力学,从麦克斯韦方程组到电磁辐射,掌握电磁学的基础知识对于理解电磁现象和应用电磁技术具有关键意义。

一、电荷和电场在电磁学中,最基本的概念是电荷和电场。

电荷是物质的基本属性,可以分为正电荷和负电荷。

正负电荷之间相互吸引,同类电荷之间相互排斥。

电场则是电荷周围所产生的力场,负责传递相互作用力。

二、库仑定律库仑定律描述了电荷之间的相互作用力。

根据库仑定律,电荷对之间的相互作用力与电荷之间的距离成正比,与电荷的大小成正比。

三、电场强度电场强度是电场中单位正电荷所受的力,用E表示。

对于点电荷,电场强度的大小与距离的平方成反比。

由于电荷的性质,电场是以向外的径向方向存在。

四、电势差和电位电势差是指电场中两点之间的电势能差,用V表示。

单位正电荷从一个点移动到另一个点时所做的功,就是电势差。

电势差与电场强度的积成正比。

五、电场线电场线是描述电场空间分布的图形。

电场线以电场强度方向为切线,线的密度表示电场强度的大小。

电场线从正电荷出发,进入负电荷或者无穷远。

六、电荷分布电荷分布可以分为均匀分布和非均匀分布。

对于均匀分布的电荷,可以通过积分来求解电场。

对于非均匀分布的电荷,则需要运用高斯定律或者数值计算来求解。

七、电场能量电场能量是指电荷在电场中所具有的能量。

电场能量与电荷的大小和电势差的平方成正比。

八、电场的叠加原理在多个电荷存在的情况下,各电荷所产生的电场可以叠加。

即总电场等于各电荷所产生的电场之和。

九、电流和电阻电流是指电荷在单位时间内通过导体的数量,用I表示。

电流的方向被约定为正电荷从正极流向负极。

电阻则是导体对电流的阻碍程度。

根据欧姆定律,电流与电压成正比,与电阻成反比。

十、电阻与电导率电阻与电导率成反比,电导率是导体的属性。

电导率越大,电阻越小。

常见的导体包括金属和电解质。

十一、麦克斯韦方程组麦克斯韦方程组是描述电磁场的基本方程。

高中物理电磁学知识点总结

高中物理电磁学知识点总结

高中物理电磁学知识点总结一、静电场1. 电荷与库仑定律- 基本电荷(元电荷)的概念- 电荷守恒定律- 库仑定律:两个点电荷之间的相互作用力2. 电场- 电场强度的定义和计算- 电场线的性质- 电场的叠加原理3. 电势能与电势- 电势能和电势的定义- 电势差的计算- 等势面的概念4. 电容与电容器- 电容的定义和计算- 平行板电容器的电容公式- 电容器的串联和并联5. 静电场中的导体- 导体的静电平衡状态- 电荷在导体表面的分布- 尖端放电现象二、直流电路1. 电流与电压- 电流的定义和单位- 电压的概念和测量- 欧姆定律2. 串联和并联电路- 串联电路的电流和电压规律 - 并联电路的电流和电压规律3. 电阻- 电阻的定义和单位- 电阻的计算- 电阻的串联和并联4. 基尔霍夫定律- 基尔霍夫电流定律- 基尔霍夫电压定律- 基尔霍夫定律的应用5. 电源与电动势- 电源的概念- 电动势的定义和计算- 电池组的电动势和电压三、磁场1. 磁场的基本概念- 磁极和磁力线- 磁通量和磁通量密度2. 磁场的产生- 电流产生磁场的原理- 磁矩的概念3. 磁场对电流的作用- 安培力的计算- 洛伦兹力公式4. 电磁感应- 法拉第电磁感应定律- 楞次定律- 感应电动势的计算5. 电磁铁与变压器- 电磁铁的工作原理- 变压器的基本原理- 变压器的效率和功率传输四、交流电路1. 交流电的基本概念- 交流电的周期和频率- 瞬时值、最大值和有效值2. 交流电路中的电阻、电容和电感 - 交流电路中的电阻特性- 电容和电感对交流电的影响 - 阻抗的概念3. 交流电路的分析- 串联和并联交流电路的分析 - 相量法的应用- 功率因数的计算4. 谐振电路- 串联谐振和并联谐振的条件- 谐振频率的计算- 谐振电路的应用五、电磁波1. 电磁波的产生- 振荡电路产生电磁波的原理- 电磁波的传播特性2. 电磁波的性质- 电磁波的速度和波长- 电磁谱的概念3. 电磁波的应用- 无线电通信- 微波技术- 光波和光通信以上是高中物理电磁学的主要知识点总结。

大学物理电磁学基础知识点汇总

大学物理电磁学基础知识点汇总

大学物理电磁学基础知识点汇总一、电场1、库仑定律库仑定律描述了真空中两个静止点电荷之间的相互作用力与它们电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着它们的连线。

其表达式为:$F = k\frac{q_1q_2}{r^2}$,其中$k$为库仑常量,$q_1$和$q_2$为两个点电荷的电荷量,$r$为它们之间的距离。

2、电场强度电场强度是描述电场力的性质的物理量,定义为单位正电荷在电场中所受到的力。

其表达式为:$E =\frac{F}{q}$。

对于点电荷产生的电场,其电场强度的表达式为:$E = k\frac{q}{r^2}$,方向沿径向向外(正电荷)或向内(负电荷)。

3、电场线电场线是用来形象地描述电场的一种工具。

电场线的疏密表示电场强度的大小,电场线的切线方向表示电场强度的方向。

静电场的电场线不闭合,始于正电荷或无穷远,终于负电荷或无穷远。

4、电通量电通量是通过某一面积的电场线条数。

对于匀强电场,通过平面的电通量为:$\Phi = ES\cos\theta$,其中$E$为电场强度,$S$为平面面积,$\theta$为电场强度与平面法线的夹角。

5、高斯定理高斯定理表明,通过闭合曲面的电通量等于该闭合曲面所包围的电荷量的代数和除以$\epsilon_0$。

即:$\oint_S E\cdot dS =\frac{1}{\epsilon_0}\sum q$。

高斯定理是求解具有对称性电场分布的重要工具。

二、电势1、电势电势是描述电场能的性质的物理量,定义为把单位正电荷从电场中某点移动到参考点(通常取无穷远处)时电场力所做的功。

某点的电势等于该点到参考点的电势差。

点电荷产生的电场中某点的电势为:$V = k\frac{q}{r}$。

2、等势面等势面是电势相等的点构成的面。

等势面与电场线垂直,沿电场线方向电势降低。

3、电势差电场中两点之间的电势之差称为电势差,也称为电压。

其表达式为:$U_{AB} = V_A V_B$。

磁学知识点总结电磁感应定律和电磁感应现象

磁学知识点总结电磁感应定律和电磁感应现象

磁学知识点总结电磁感应定律和电磁感应现象电磁感应定律是电磁学中的重要理论基础,描述了电磁感应现象的规律。

本文将对电磁感应定律和电磁感应现象进行总结。

1. 法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的基本规律。

当磁场的磁感应强度发生变化时,在磁场中的闭合回路内会产生感应电动势和感应电流。

法拉第电磁感应定律可以用一个简洁的数学公式表示:ε = -dΦ/dt其中,ε表示感应电动势,dΦ/dt表示磁通量的变化率。

该定律说明,当磁通量变化时,感应电动势的大小与磁通量变化率成正比。

2. 楞次定律楞次定律是法拉第电磁感应定律的推论,描述了感应电流的方向。

楞次定律表明,感应电流的方向总是使得产生它的磁场的磁通量发生变化的趋势减弱。

根据楞次定律,当磁通量增加时,感应电流的方向会使磁场的磁感应强度减小;当磁通量减少时,感应电流的方向会使磁场的磁感应强度增加。

楞次定律保证了能量守恒的原则。

3. 电磁感应现象电磁感应现象是电动势和电流产生的实际过程。

根据电磁感应定律,只有当磁通量发生变化时才会产生感应电动势。

常见的电磁感应现象包括:(1) 电磁感应发电机:在电磁感应发电机中,通过转动的磁场使得线圈中的磁通量发生变化,从而产生感应电动势,驱动电流产生。

(2) 电磁感应涡流:当导体在磁场中运动或磁场发生变化时,会产生感应电动势,从而使电流在导体内部形成环状的涡流。

(3) 电磁感应感应加热:利用电磁感应现象可以进行感应加热,即将交变磁场通过导体产生涡流,利用涡流的阻碍作用产生热量。

(4) 变压器:变压器是利用电磁感应原理工作的电气设备,通过磁场感应导体中的电动势,将电能从一个线圈传输到另一个线圈。

4. 应用领域电磁感应定律和电磁感应现象在许多领域有着广泛的应用,例如:(1) 发电和能量转换:发电机和变压器是电能转换和传输的重要装置,利用电磁感应原理将机械能转化为电能。

(2) 感应加热:利用电磁感应产生的涡流可以用于感应加热,广泛应用于工业加热、熔炼和医学领域。

电磁学讲义

电磁学讲义

SI中库仑定律的常用形式 (有理化)
F21
=
k
q1q2 r122
er12

K
=
1 4π ε0
F21
=
q1q2 4πε0r122
er12
NOTE:
ε0 = 8.8542 ×10−12 C 2 / N ⋅ m2
Permittivity of free space
r12
真空介电常数
(或真空电容率)
e12 + q1
Ex
=
λ 2πε 0 x
Ey = 0 P
半无限长均匀带电直
线,θ1 = 0
θ2
=
π 2
E+
Ex
=
Ey
=
λ 4πε0 x
E+
x
P
E-
x
E = E x = ∫0qdE x
dq
= ∫0qdE cos θ
∫ E =
q 0
dq 4πε 0 r
2
cosθ
∫ =
1 4πε0r 2
cosθ
q dq
0
q R
o
r dE y ' d E '
+
F q2
21
2. Principle of Superposition 电力叠加原理
两个点电荷的之间的作用力并不因第三
个点电荷的存在而改变。
多个点电荷对一个点电荷的作用力等于
各个点电荷单独存在时对该点电荷的作用
力的矢量和。vector sum
− Q3
+ Q1
r1
r3 F3 r2
+ Q2
n
F2

电磁学的基本理论和应用

电磁学的基本理论和应用

电磁学的基本理论和应用电磁学是研究电荷与电磁场相互作用的学科,涉及电场、磁场、电磁波等内容。

电磁学理论的发展促进了现代科学技术的进步,广泛应用于工程、通信、医学等领域。

本文将介绍电磁学的基本理论和一些常见应用。

一、电磁学的基本理论1. 库仑定律库仑定律是电磁学的基础之一。

根据库仑定律,两个点电荷之间的电力大小与它们之间的距离平方成反比,与电荷的大小成正比。

这一定律表明了电荷的相互作用与距离和电荷之间的属性有关。

2. 高斯定律高斯定律是研究电场的基本定律之一。

根据高斯定律,电场通过封闭曲面的电通量与该曲面内的电荷量成正比。

这一定律可以帮助我们计算电场分布并解释电场的性质。

3. 法拉第电磁感应定律法拉第电磁感应定律描述了磁场变化引起的感应电流。

根据法拉第电磁感应定律,当闭合线圈或导体中的磁通量发生变化时,会产生感应电动势或感应电流。

该定律为发电机、变压器等电磁设备的工作原理提供了理论基础。

4. 安培定律安培定律是研究磁场的基本定律之一。

根据安培定律,通过闭合电路的磁场强度与该电路上所包围的电流成正比。

这一定律揭示了电流产生的磁场特性,为设计电磁铁、磁共振成像等设备提供了依据。

5. 麦克斯韦方程组麦克斯韦方程组是电磁学研究的核心方程,由麦克斯韦整理和总结了电磁学的基本理论。

麦克斯韦方程组包括了电场、磁场与它们的相互关系,形成了统一的电磁理论。

这一理论奠定了电磁学的基础,指导了电磁波的研究与应用。

二、电磁学的应用1. 电力工程电磁学在电力工程中的应用广泛。

例如,利用电场的力作用和磁场的感应效应,发明了电动机、发电机、变压器等电力设备,实现了能量的转换和传输。

电磁学的理论指导了电力系统的设计、运行和维护,保障了电力供应的稳定性和可靠性。

2. 通信技术电磁学在通信技术中起着关键作用。

无线通信依赖于电磁波的传播和接收。

通过电磁场的调制和解调,信息可以在远距离传输。

电磁学的原理为无线电、雷达、卫星通信、光纤通信等技术的发展提供了基础。

电磁学的三大定律

电磁学的三大定律

电磁学的三大定律电磁学的三大定律是电荷守恒定律、安培环路定律和法拉第电磁感应定律。

本文将分别对这三大定律进行解释和描述,旨在帮助读者更好地理解电磁学的基本原理。

一、电荷守恒定律电荷守恒定律是电磁学中最基本的定律之一。

它表明在任何一个封闭系统中,电荷的总量是守恒的。

也就是说,电荷既不能被创建,也不能被销毁,只能通过电荷的转移来改变。

这个定律可以用一个简单的方程来表示:ΣQ = 0其中,ΣQ表示系统中所有电荷的总和。

二、安培环路定律安培环路定律是描述电流与磁场相互作用的定律。

它指出,通过一个闭合回路的磁场的总和等于该回路内的电流的总和乘以一个常数。

具体而言,安培环路定律可以用以下公式表示:∮B·dl = μ0I其中,∮B·dl表示磁场在闭合回路上的环路积分,μ0为真空中的磁导率,I为通过闭合回路的电流。

三、法拉第电磁感应定律法拉第电磁感应定律是描述磁场与电流变化相互作用的定律。

它表明,当一个闭合回路中的磁通量发生变化时,该回路中会产生感应电动势。

具体而言,法拉第电磁感应定律可以用以下公式表示:ε = -dΦ/dt其中,ε表示感应电动势,dΦ/dt表示磁通量随时间的变化率。

这三大定律是电磁学的基础,贯穿于整个电磁学的研究和应用过程中。

它们的发现和应用对于现代科学和技术的发展起到了重要的推动作用。

电荷守恒定律保证了电荷在物质界中的稳定性和守恒性。

它告诉我们,电荷是一种基本的物理量,不会凭空产生或消失,只能通过电荷的转移来改变。

这个定律在电路设计和电荷传输等领域有着广泛的应用。

安培环路定律揭示了电流与磁场之间的相互作用关系。

它告诉我们,电流在产生磁场的同时也受到磁场的作用。

这个定律在电磁感应、电磁波传播等领域有着重要的应用,比如电动机、发电机、变压器等设备的设计和工作原理都离不开安培环路定律的指导。

法拉第电磁感应定律揭示了磁场与电流变化之间的相互作用关系。

它告诉我们,当磁通量发生变化时,会在闭合回路中产生感应电动势。

高中物理电磁学知识点总结

高中物理电磁学知识点总结

高中物理电磁学知识点总结电磁学是高中物理的重要组成部分,它涵盖了众多概念、规律和应用。

以下是对高中物理电磁学知识点的详细总结。

一、电场1、库仑定律真空中两个静止的点电荷之间的作用力,与它们电荷量的乘积成正比,与它们距离的平方成反比,作用力的方向在它们的连线上。

其表达式为:$F = k\frac{q_1q_2}{r^2}$,其中$k$为静电力常量。

2、电场强度描述电场强弱和方向的物理量。

定义式为$E =\frac{F}{q}$,点电荷产生的电场强度公式为$E = k\frac{Q}{r^2}$。

电场强度是矢量,其方向与正电荷在该点所受电场力的方向相同。

3、电场线用于形象地描述电场分布的曲线。

电场线从正电荷或无限远出发,终止于负电荷或无限远。

电场线的疏密表示电场强度的大小,电场线上某点的切线方向表示该点的电场强度方向。

4、电势能电荷在电场中具有的势能。

电荷在电场中某点的电势能等于把电荷从该点移动到零势能位置时电场力所做的功。

5、电势描述电场能的性质的物理量。

电场中某点的电势等于单位正电荷在该点所具有的电势能。

电势是标量,其大小与零电势点的选取有关。

6、等势面电场中电势相等的点构成的面。

等势面与电场线垂直,并且沿电场线方向电势逐渐降低。

二、电容器1、电容器的电容电容器所带电荷量$Q$与电容器两极板间的电势差$U$的比值,叫做电容器的电容。

定义式为$C =\frac{Q}{U}$。

电容是反映电容器容纳电荷本领的物理量,其大小与电容器的形状、大小、介质等有关。

2、平行板电容器的电容平行板电容器的电容与极板的正对面积$S$成正比,与极板间的距离$d$成反比,与介质的介电常数$\epsilon$成正比。

其表达式为$C =\frac{\epsilon S}{4\pi kd}$。

三、电路1、电流电荷的定向移动形成电流。

定义式为$I =\frac{Q}{t}$,单位是安培(A)。

2、电阻导体对电流的阻碍作用。

电阻定律表达式为$R =\rho\frac{l}{S}$,其中$\rho$是电阻率,$l$是导体的长度,$S$是导体的横截面积。

电磁学的基本知识与基本定律

电磁学的基本知识与基本定律
第1章 磁路
1.1 磁场的基本知识
磁通密度或磁感应强度 B 单位:特斯拉(T) (magnetic flux density) (magnetic induction)
用于表征磁场的强弱和方向。
磁通量 Φ
单位:韦伯(Wb)
(magnetic flux) 穿过某一截面积S的磁力线总数
S B dS
eddy-current loss
为什么电机中经常使用的铁磁材料是 硅钢片(silicon steel sheet)?
磁滞损耗
ph f V HdB Ch f BmnV
涡流损耗
pe Ce 2 f 2 Bm2 V
铁耗
pFe ph pe (Ch f Bmn Ce2 f 2Bm2 )V CFe f 1.3Bm2G
1.2 基本电磁 (electromagnetic)定律
电生磁的基本定律——安培环路定律 磁生电的基本定律——法拉第电磁感应定律 电磁力定律 磁路的欧姆定律
1.2.1 电生磁的基本定律——安培环路定律
沿着任何一条闭合回线L,磁场强度H的线积分 等于该闭合回线所包围的总电流值(代数和)


铁磁材料与非铁磁材料的磁化曲线
几种常见磁性物质的磁化曲线
B/T 1 2 3 4 5 6 7 8 9 10 103 H/(A/m)
1.8 1.6
1.4
1.2
c
b
1.0
0.8
0.6
0.4
0.2
a
a
H/(A/m)
O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0103
a 铸铁 b 铸钢 c 硅钢片
dl
ik
H • dl Ii (I2 I3 )

电磁学基本原理

电磁学基本原理

电磁学基本原理电磁学是研究电荷和电流之间相互作用的学科,其基本原理包括库仑定律、安培定律、法拉第电磁感应定律和麦克斯韦方程组等。

1. 库仑定律库仑定律是描述带电粒子之间相互作用的基本定律。

它指出,两个电荷之间的相互作用力与它们的电荷量成正比,与它们之间的距离的平方成反比。

这个定律可以用数学公式表示为:F = k * |q1 * q2| / r^2,其中F是两个电荷之间的相互作用力,q1和q2是两个电荷的电荷量,r是它们之间的距离,k是库仑常数。

2. 安培定律安培定律是描述电流所产生的磁场的定律。

它指出,通过一段导线的电流所产生的磁场的强度与电流的大小成正比,与导线离电流的距离成反比。

这个定律可以用数学公式表示为:B = (μ0 / 4π) * (I / r),其中B是磁场的强度,μ0是真空中的磁导率,I是电流的大小,r是导线离电流的距离。

3. 法拉第电磁感应定律法拉第电磁感应定律是描述磁场变化所诱导出的电动势的定律。

它指出,当磁场的强度相对于一个导线发生变化时,导线中就会产生感应电动势,从而产生感应电流。

这个定律可以用数学公式表示为:ε = -dΦ / dt,其中ε是感应电动势,dΦ是磁通量的变化量,dt是时间的变化量。

4. 麦克斯韦方程组麦克斯韦方程组是描述电磁场的方程组,它由麦克斯韦根据实验结果总结得出。

它包括四个方程:高斯定律、安培环路定律、法拉第电磁感应定律和法拉第电磁感应定律的推广形式。

这四个方程描述了电场和磁场的产生和相互作用。

电磁学的基本原理包括库仑定律、安培定律、法拉第电磁感应定律和麦克斯韦方程组。

这些原理揭示了电荷和电流之间相互作用的规律,为电磁学的研究提供了基础。

通过对这些原理的深入研究,我们可以更好地理解和应用电磁学的知识,推动科学技术的发展。

电磁感应三大定律

电磁感应三大定律

电磁感应三大定律电磁学三大基本定律是库伦定律、安培定律和法拉第电磁感应定律,这三个定律的建立标志着人类对于电磁现象的认识发展到了新的阶段。

一、库伦定律:1、库仑定律定义:“库仑定律”是电磁场理论的基本定律。

真空中两个静止的点电荷之间的作用力与这两个电荷所带电量的乘积成正比,和它们距离的平方成反比,作用力的方向沿着这两个点电荷的连线,同名电荷相斥,异名电荷相吸。

2、公式:F=k(q1*q2)/r^2 (中学在利用库仑定律表达式进行计算时即使碰到负电荷也带入电荷量的绝对值进行计算,斥力或引力计算完后根据电性判断。

矢量运算正负电荷只需带入代数值即可。

)3、库仑定律成立的条件:(1)真空中;(2)静止;(3)点电荷(静止是在观测者的参考系中静止,至少有一个静止,中学计算一般不做要求)。

二、安培定律:“安培定律”(安培定则)也叫右手螺旋定则,是表示电流和电流激发磁场的磁感线方向间关系的定则。

通电直导线中的安培定则(安培定则一):用右手握住通电直导线,让大拇指指向直导线中电流方向,那么四指指向就是通电导线周围磁场的方向。

通电螺线管中的安培定则(安培定则二):用右手握住通电螺线管,让四指指向电流的方向,那么大拇指所指的那一端是通电螺线管的N极。

三、法拉第电磁感应定律:1、定义:“电磁感应定律”也叫法拉第电磁感应定律,电磁感应现象是指因磁通量变化产生感应电动势的现象,例如,闭合电路的一部分导体在磁场里做切割磁感线的运动时,导体中就会产生电流,产生的电流称为感应电流,产生的电动势(电压)称为感应电动势。

2、右手定则:电磁感应定律中电动势的方向可以通过楞次定律或右手定则来确定。

右手定则内容:伸平右手使拇指与四指垂直,手心向着磁场的N极,拇指的方向与导体运动的方向一致,四指所指的方向即为导体中感应电流的方向(感应电动势的方向与感应电流的方向相同)。

楞次定律指出:感应电流的磁场要阻碍原磁通的变化。

简而言之,就是磁通量变大,产生的电流有让其变小的趋势;而磁通量变小,产生的电流有让其变大的趋势。

电磁学几大定律

电磁学几大定律

电磁学的几大定律是描述电场、磁场以及它们相互作用的基本原理,下面是几大核心定律:1. 库仑定律(Coulomb's Law)库仑定律描述了电荷之间的相互作用力。

它指出两个静止的点电荷之间的相互作用力,与它们之间的距离平方成反比,并且与电荷量的乘积成正比:F=keq1q2r2F = k_e \frac{q_1 q_2}{r^2}其中:•FF 是电荷之间的力;•kek_e 是库仑常数,约为8.99×109 N⋅m2/C28.99 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2;•q1q_1 和q2q_2 是两电荷的电量;•rr 是两电荷之间的距离。

2. 高斯定律(Gauss's Law)高斯定律是描述电场与电荷分布之间关系的基本定律。

它指出通过一个闭合表面的电通量与包围该表面的电荷总量成正比:ΦE=∮SE⋅dA=Qencϵ0\Phi_E = \oint_S \mathbf{E} \cdot d\mathbf{A} =\frac{Q_{\text{enc}}}{\epsilon_0}其中:•ΦE\Phi_E 是电通量;•E\mathbf{E} 是电场强度;•dAd\mathbf{A} 是面积元的矢量;•QencQ_{\text{enc}} 是闭合表面内的总电荷;•ϵ0\epsilon_0 是真空电容率,约为8.85×10−12 C2/N⋅m28.85 \times 10^{-12} \, \text{C}^2/\text{N} \cdot \text{m}^2。

3. 安培定律(Ampère's Law)安培定律描述了电流产生的磁场与电流之间的关系。

它指出通过一条闭合路径的磁场线积分等于路径内电流总量的乘积,并与常数μ0\mu_0(真空磁导率)成正比:∮CB⋅dl=μ0Ienc\oint_C \mathbf{B} \cdot d\mathbf{l} = \mu_0I_{\text{enc}}其中:•B\mathbf{B} 是磁场强度;•dld\mathbf{l} 是路径上的线元素;•IencI_{\text{enc}} 是路径内的总电流;•μ0\mu_0 是真空的磁导率,约为4π×10−7 N/A24\pi \times 10^{-7} \, \text{N}/\text{A}^2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

漏磁通:围绕载流线圈、部分铁心 和铁心周围的空间,还存在少量分 散的磁通,这部分磁通称为漏磁通。
二、磁路基本电磁定律 1.全电流定律—安培环路定律
? 磁场强度矢量H沿 任一闭合路径的线
? ? 积分等于穿过该闭
合路径的限定面积 H ?dl ? I
中流过电流的代数 L 和。且积分回路的 绕行方向和产生该 磁场的电流方向符 合右手螺旋定则
? 不同的磁 性材料有 不同的磁 导率同一 材料当其 磁通密度 不同时, 亦有不同 的磁导率
饱和区
线性区,磁导 率大且不变
起始段,磁导 率较小
? 磁通量
通过磁场中某一面积的磁感应线数称为 通过该面积的磁通量(磁通),符号? 、单 位Wb ,? =BScos?.
? 磁通连续性原理
? 由于磁感应线是闭合的,因此对任意封 闭曲面来说,进入该闭合曲面的磁感应 线,一定等于穿出该闭合曲面的磁感应 线。如规定磁感应线从曲面穿出为正, 穿入为负,则通过任意封闭曲面的磁通 量总和必等于零
4.电磁感应定律
运动电动势:
判断方向:右手定 则
? 5.电磁力定律:
判断方向:左手定 则(主要用于分析 旋转电机的电磁转 矩)。
e ? ? d? ? ? N d?
dt
Hale Waihona Puke dte ? Blvf ? Bil
图1-3 右 手定则
? 图1-4 左手定则 图1 -4 左手定则
? 三、磁材料及其特性
1、铁磁物质的磁化 铁磁材料在外磁场中呈现很强的 磁性,此现象称为铁磁物质的磁
? 2.硬磁材料:μ不高,Br大,磁滞回线宽, 如:铁氧体、钕铁硼等制造永久磁铁;
化。
? 2.磁化曲线:特性:①具有高的导磁性 能;②磁化曲线呈非线性(饱和特性)
磁滞现象与磁滞回线
? 磁场强度H缓 慢地循环变化, B 一 H 曲线是一 封闭曲线 —— 磁滞回线
? 矫顽磁力Hc
? 剩余磁感应强 度Br
? 3、铁磁材料
? 1.软磁材料:高,小,磁滞回线窄而长, 如:铸钢、硅钢片、制作电机铁心;
? 注意:
磁路和电路仍有本质的区别:
1)电路中可以有电动势而无电流,磁路 中有磁动势必有磁通 。
2)电路中有电流就有功率损耗,而在恒 磁通下,磁路中无损耗。
3)电流只在导体中流过,而磁路中除了 主磁通外还必须考虑到漏磁通的影响。
4)电路中电阻率在一定温度下恒定不变, 而由于铁磁材料构成的磁路中,磁导率 是随着磁密而变化的,所以磁导率不是 一个常数 。
2.磁路欧姆定律:
?
?
F Rm
?
l
?S
F
?
Rm
?
l
?S
铁磁材料的 Rm 不为常数。
? ? 3.磁路的基尔霍夫第一定律: ? ? 0
? 磁路的基尔霍夫第二定律: Hl ? ? NI
说明磁通是连续的。
对比:电路中的两个基本定律
? ①基尔霍夫第一定律: i ? 0
? ? ②基尔霍夫第二定律: e ? u
电机及电力拖动基础
第一章 电磁学的基本知识与基本定理
本章知识主线: 一、磁路的概念 二、磁路基本电磁定律 :5 个定律 三、磁材料及其特性 :2条曲线
一、磁路的概念 1.两种常见的磁路
磁路:磁通所通过的路径。 2.主磁通和漏磁通
主磁通:由于铁心的导磁性能比空气 要好得多,所以绝大部分磁通将在铁心 内通过,这部分磁通称为主磁通。
?sBcos? ds ? 0
? 磁场强度H、磁导率? B=? H
? 磁导率,决定于介质性质,H/m。变化 范围很大。
真空磁导率? 0=4?×10-7H/m 非铁磁物质如空气、铜、铝和绝缘材料 等,近似等于真空磁导率
铁磁物质如铁、镍、铝及其合金,磁导 率远大于真空磁导率达数千甚至上万倍。 通常以相对磁导率? ?表示铁磁物质的磁 导率比真空磁导率增大的倍数
相关文档
最新文档