2018北京二次函数代数综合题例讲(解析版)
2018年中考全国部分省市全省统一命题数学试卷《二次函数》压轴题精编(解析版)
两点(点 A 在点 B 左侧),与 y 轴交于点 C . ( 1)求点 A , B , C 的坐标; ( 2)点 P 从 A 点出发,在线段 AB 上以每秒 2 个单位长度的速度向 B 点运动,同时,点
Q 从 B 点出发,在线段 BC 上以每秒 1 个单位长度的速度向 C 点运动,当其中一个点 到达终点时,另一个点也停止运动.设运动时间为 t 秒,求运动时间 t 为多少秒时,
C1 ,直线 O3C1 分别与直线 AC , x 轴交于点 M , N .那么,在 △ O2 B2C 的整个旋转过
程中,是否存在恰当的位置,使 AMN 是以 MN 为腰的等腰三角形?若存在,请直接 写出所有符合条件的线段 O2 M 的长;若不存在,请说明理由.
7.(2018?吉林)如图,在平面直角坐标系中,抛物线 y ax2 2ax 3a(a 0) 与 x 轴相
PBQ 的面积 S 最大,并求出其最大面积; ( 3)在(2)的条件下,当 PBQ 面积最大时,在 BC 下方的抛物线上是否存在点 M ,使
BMC 的面积是 PBQ 面积的 1.6 倍?若存在,求点 M 的坐标;若不存在,请说明理 由.
15.(2018?安徽)小明大学毕业回家乡创业,第一期培植盆景与花卉各 50 盆.售后统 计,盆景的平均每盆利润是 160 元,花卉的平均每盆利润是 19 元.调研发现:
( 3)若运动员甲、乙同时从 A 处飞出,速度分别是 5 米 / 秒、 v乙 米 / 秒.当甲距 x 轴 1.8 米,且乙位于甲右侧超过 4.5 米的位置时,直接写出 t 的值及 v乙 的范围.
3.(2018?河南)如图,抛物线 y ax2 6x c 交 x 轴于 A , B 两点,交 y 轴于点 C .直线
2.(2018?河北)如图是轮滑场地的截面示意图,平台 AB 距 x 轴(水平) 18 米,与 y 轴 交于点 B ,与滑道 y k ( x…1) 交于点 A ,且 AB 1 米.运动员(看成点)在 BA 方向获
含参数的二次函数专题训练动态问题北京市中考数学题含答案解析
含参数的二次函数专题训练1.(2018·北京)在平面直角坐标系xOy 中,直线y=4x+4与x 轴、y 轴分别交于点A ,B ,抛物线y=ax 2 +bx −3a 经过点A ,将点B 向右平移5个单位长度,得到点C .(1)求点C 的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC 恰有一个公共点,结合函数图象,求a 的取值范围.2.(2019·北京)在平面直角坐标系xOy 中,抛物线y =ax 2 +bx −a 1 与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示);(2)求抛物线的对称轴;(3)已知点P ⎪⎭⎫ ⎝⎛-a 1,21 ,Q (2,2),若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.含参数的二次函数专题训练答案解析1. 解: (1)∵直线y=4x+4与x 轴、y 轴交于点A ,B .∴A (−1,0),B (0,4),∴C (5,4).(2)抛物线y=ax 2+bx −3a 过A (−1,0),∴a −b −3a=0,b=−2a ,∴y=ax 2 −2ax −3a ,∴对称轴为直线x=1.(3)①当抛物线过点C 时,如答图①.25a −10a −3a=4,解得a=31 . ②当抛物线过点B 时,如答图②.−3a=4,解得a=34- . ③当抛物线顶点在BC 上时,如答图③.此时顶点为(1,4).∴a −2a −3a=4,解得a=−1.综上所述,a 的取值范围为a<34-或a ≥31 或a=−1.2.(2019·北京)在平面直角坐标系xOy 中,抛物线y =ax +bx − 与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示);(2)求抛物线的对称轴;(3)已知点P ,Q (2,2),若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.解: (1)将x =0代入y =ax 2 +bx −a 1,得y =−a1 , ∴点A 的坐标为(0,a1-) . ∴点B 的坐标为(2,a 1-) . (2)∵抛物线经过点A (0,a 1-) 和点B(2,a1-) , ∴抛物线的对称轴为直线x =1.(3)①当a >0时,a1- <0.根据抛物线的对称性,可知抛物线不能同时经过点A 和点P ,也不能同时经过点B 和点Q ,所以此时抛物线与线段PQ 没有交点;②当a <0时,a1- >0.根据抛物线的对称性,可知抛物线不能同时经过点A 和点P ;当点Q 在点B 上方或与点B 重合时,抛物线与线段PQ 恰有一个公共点,此时a 1-≤2,即a ≤21- . 综上可知,当a ≤21-时,抛物线与线段PQ 恰有一个公共点.。
北京中考压轴二次函数综合分类解析
代数几何综合一、二次函数压轴题类类型解析在北京中考中二次函数的重要性不言而喻,稳坐压轴题倒数第三题,数学想上90分的学生,这道题严格意义上来说必须拿下的,基本的布置有三问,前两问比较简单,基本一半以上的学生都能拿下,但最后一问涉及临界点问题,有的题目甚至需要将图像想象成会动的函数来讲,对学生的分析能力来说是一个比较大的挑战。
在二次函数前两问中,通常考查函数的对称轴,与x轴的交点坐标,顶点坐标,求函数解析式,或者带点计算的基本能力。
常见考点:1.顶点(-b2a ,4ac−b24a),对称轴是直线x=-b2a2.与x轴交点坐标(−b+√b2−4ac2a ,0)(−b−√b2−4ac2a,0)3.顶点式求函数解析式4.函数图像平移以及翻折问题,平移规律左加右减,上加下减,函数图像关于x轴翻折图像类似M或W。
5.抛物线中对称性与距离问题6.抛物线常见的定点函数。
最后一问的解答过程中,一般情况从六个方面确定函数的图像的基本性质。
1.分析开口方向和大小,有的函数需要分类讨论2.分析抛物线的对称轴3. 分析定点坐标4. 分析抛物线与x 轴的交点坐标5. 分析抛物线与y 轴的交点坐标6. 分析抛物线的其它定点总的来说,给定的条件中,一定能确定二次函数某些性质,例如:开口大小固定,过固定点,与x 轴交点固定,截x 轴的线段长度固定等,具体情况还是要具体分析,但基本上都离不开对图像的分析。
一、公共点类型线段或直线与抛物线有交点时,考察类型较多,也是模拟考试中的重点内容,根据函数图像的性质,分析临界点,代数即可。
易(房山)26.在平面直角坐标系xOy 中,二次函数2y x mx n =++的图象经过点 A (−1,a ),B (3,a ),且顶点的纵坐标为 -4. (1)求 m ,n 和 a 的值;(2)记二次函数图象在点 A ,B 间的部分为 G (含 点A 和点B ),若直线 2y kx =+与 图象G 有公共点,结合函数图象,求 k 的取值范围.易(延庆)26.在平面直角坐标系xOy 中,抛物线2432y ax ax a =-+-(0a ≠)的对称轴与x 轴交于点A ,将点A 向右平移3个单位长度,向上平移2个单位长度,得到点B . (1)求抛物线的对称轴及点B 的坐标;(2)若抛物线与线段AB 有公共点,结合函数图象,求a 的取值范围.易(顺义)26.在平面直角坐标系xOy 中,抛物线 2(3)3y mx m x =+--(0m >)与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C , 4=AB ,点D 为抛物线的顶点. (1)求点A 和顶点D 的坐标;(2)将点D 向左平移4个单位长度,得到点E ,求直线BE 的表达式;(3)若抛物线26=-y ax 与线段DE 恰有一个公共点,结合函数图象,求a 的取值范围.中(平谷)26.平面直角坐标系xOy 中,抛物线3222-+-=m mx x y 与y 轴交于点A ,过A 作AB ∥x 轴与直线x =4交于B 点.(1)抛物线的对称轴为x = (用含m 的代数式表示); (2)当抛物线经过点A ,B 时,求此时抛物线的表达式;(3)记抛物线在线段AB 下方的部分图象为G (包含A ,B 两点),点P (m ,0)是x 轴上一动点,过P 作PD ⊥x 轴于P ,交图象G 于点D ,交AB 于点C ,若CD ≤1,求m 的取值范围.中(石景山)26.在平面直角坐标系xOy 中,直线1y kx =+(0)k ≠经过点(2,3)A ,与y 轴交于点B ,与抛物线2y ax bx a =++的对称轴交于点(,2)C m . (1)求m 的值;(2)求抛物线的顶点坐标;(3)11(,)N x y 是线段AB 上一动点,过点N 作垂直于y 轴的直线与抛物线交于点22(,)P x y ,33(,)Q x y (点P 在点Q 的左侧).若213x x x <<恒成立,结合函数的图象,求a 的取值范围.中(西城)26.在平面直角坐标系xOy 中,已知抛物线2y x mx n =-+.(1)当2m 时, ①求抛物线的对称轴,并用含n 的式子表示顶点的纵坐标;②若点1(2,)A y ,22(,)B x y 都在抛物线上,且21y y ,则2x 的取值范围是_______;(2)已知点P (-1,2),将点P 向右平移4个单位长度,得到点Q .当n =3时,若抛物线与线段PQ恰有一个公共点,结合函数图像,求m 的取值范围.中(东城)26.在平面直角坐标系xOy 中,抛物线2691(0)y mx mx m m =-++≠(1)求抛物线的顶点坐标;(2)若抛物线与x 轴的两个交点分别为A 和B (点A 在点B 的左侧),且AB =4,求m 的值;(3)已知四个点C (2,2),D (2,0),E (5,-2),F (5,6),若抛物线与线段CD 和线段EF 都没有公共点,请直接写出m 的取值范围.中(大兴)26. 在平面直角坐标系中xOy 中,抛物线(1)求抛物线的对称轴;(2)若抛物线过点A (-1,6),求二次函数的表达式;(3)将点A (-1,6)沿x 轴向右平移7个单位得到点B ,若抛物线与线段AB 始终有两个公共点,结合函数的图象,求a 的取值范围.中(密云)26.已知抛物线2224y x mx m =-+-,抛物线的顶点为P . (1)求点P 的纵坐标.(2)设抛物线x 轴交于A 、B 两点,1122(,),(,)A x y B x y ,21x x >. ①判断AB 长是否为定值,并证明.②已知点M (0,-4),且MA ≥5,求21-x x m +的取值范围.2-41y ax ax =+难(门头沟)26.在平面直角坐标系xOy中,一次函数4=+的图象与x轴交于点A,与过点(0,5)y x平行于x轴的直线l交于点B,点A关于直线l的对称点为点C.(1)求点B和点C坐标;(2)已知某抛物线的表达式为22=-+-.2y x mx m m①如果该抛物线顶点在直线4=+上,求m的值;y x②如果该抛物线与线段BC有公共点,结合函数图象,直接写出m的取值范围.难(朝阳)26.在平面直角坐标系xOy中,抛物线y=x2-2x+a-3,当a=0时,抛物线与y轴交于点A,将点A向右平移4 个单位长度,得到点B.(1)求点B的坐标;(2)将抛物线在直线y=a上方的部分沿直线y=a翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M,若图形M与线段AB恰有两个公共点,结合函数的图象,求a的取值范围.二、对称性对称性考察比较灵活,两点纵坐标相同时,说明两点关于对称轴对称。
北京市东城区普通中学2018届初三中考数学复习 二次函数y=ax2+bx+c的图象与性质 专题
北京市东城区普通中学2018届初三中考数学复习 二次函数y =ax 2+bx +c 的图象与性质 专题复习练习题1.在下列二次函数中,其图象对称轴为直线x =-2的是( ) A .y =(x +2)2 B .y =2x 2-2 C .y =-2x 2-2 D .y =2(x -2)2 2.将抛物线y =-2x 2+1向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为( )A .y =-2(x +1)2B .y =-2(x +1)2+2C .y =-2(x -1)2+2D .y =-2(x -1)2+13.若抛物线y =(x -m)2+(m +1)的顶点在第一象限,则m 的取值范围为( ) A .m >1 B .m >0 C .m >-1 D .-1<m <04.已知二次函数y =x 2+(m -1)x +1,当x >1时,y 随x 的增大而增大,则m 的取值范围是( )A .m =-1B .m =3C .m≤-1D .m≥-15. 二次函数y =ax 2+bx +c 的图象在平面直角坐标系中的位置如图所示,则一次函数y =ax +b 与反比例函数y =cx在同一平面直角坐标系中的图象可能是( )6. 二次函数y =x 2+x +c 的图象与x 轴的两个交点A(x 1,0),B(x 2,0),且x 1<x 2,点P(m ,n)是图象上一点,那么下列判断正确的是( ) A .当n <0时, m <0 B .当n >0时,m >x 2 C .当n <0时,x 1<m <x 2 D .当n >0时,m <x 17. 把二次函数y =x 2-12x 化为形如y =a(x -h)2+k 的形式是_________________. 8.二次函数y =x 2-4x -3的顶点坐标是(________,________).9.已知二次函数y =(x -2)2+3,当x________时,y 随x 的增大而减小. 10. 已知点A(4,y 1),B(2,y 2),C(-2,y 3)都在二次函数y =(x -2)2-1的图象上,则y 1,y 2,y 3的大小关系是_______________.11.如图,在平面直角坐标系中,点A 在抛物线y =x 2-2x +2上运动.过点A 作AC⊥x 轴于点C ,以AC 为对角线作矩形ABCD ,连结BD ,则对角线BD 最小值为________.12. 如图,抛物线y =ax 2+bx +c 的对称轴是x =-1,且过点(12,0),有下列结论:①abc>0;②a-2b +4c =0;③25a-10b +4c =0;④3b+2c >0;⑤a-b≥m(am-b).其中所有正确的结论是________.(填写正确结论的序号)13.已知抛物线y =ax 2+bx +3的对称轴是直线x =1. (1)求证:2a +b =0;(2)若关于x 的方程ax 2+bx -8=0的一个根为4,求方程的另一个根.14.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m 长的篱笆围成一个矩形花园ABCD(篱笆只围AB ,BC 两边),设AB =x m . (1)若花园的面积为192 m 2,求x 的值;(2)若在P 处有一棵树与墙CD ,AD 的距离分别是15 m 和6 m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S 的最大值.15.如图,在平面直角坐标系xOy 中,抛物线y =-16x 2+bx +c 过点A(0,4)和C(8,0),P(t ,0)是x 轴正半轴上的一个动点,M 是线段AP 的中点,将线段MP 绕点P 顺时针旋转90°得线段PB ,过点B 作x 轴的垂线,过点A 作y 轴的垂线,两直线交于点D.(1)求b、c的值.(2)当t为何值时,点D落在抛物线上?(3)是否存在t,使得以A,B,D为顶点的三角形与△AOP相似?若存在,求此时t 的值;若不存在,请说明理由.答案:1---6 ACBDC C 7. y =(x -6)2-36 8. 2 -7 9. <2 10. y 3>y 1>y 2 11. 1 12. ①③⑤13. (1)证明:∵对称轴是直线x =1=-b2a,∴2a +b =0.(2)∵ax 2+bx -8=0的一个根为4,∴16a +4b -8=0,∵2a +b =0,∴b =-2a ,∴16a -8a -8=0,解得a =1,则b =-2,∴ax 2+bx -8=0为x 2-2x -8=0,则(x -4)(x +2)=0,解得x 1=4,x 2=-2,故方程的另一个根为-2.14. (1)由AB =x m ,得BC =(28-x)m ,根据题意,得x(28-x)=192,解得x 1=12,x 2=16.答:若花园的面积为192 m 2,则x 的值为12或16.(2)S =x(28-x)=-x 2+28x =-(x -14)2+196,因为⎩⎪⎨⎪⎧x≥6,28-x≥15,所以6≤x≤13.因为a =-1<0,所以当6≤x≤13时,S 随x 的增大而增大,所以当x =13时,S 有最大值195 m 2.15. (1)b 的值为56,c 的值为4.(2)∵∠AOP=∠APB=90°,∠OAP =∠EPB=90°-∠APO,∴△AOP ∽△PEB ,且相似比为AO PE =APPB=2,∵AO =4,∴PE =2,OE =OP +PE =t +2,又∵DE =OA =4,∴点D的坐标为(t +2,4),∴点D 落在抛物线上时,有-16(t +2)2+56(t +2)+4=4,解得t =3或t =-2,∵t >0,∴t =3.故当t 为3时,点D 落在抛物线上.(3)存在t ,能够使得以A ,B ,D 为顶点的三角形与△AOP 相似,理由如下:①当0<t <8时,如图1.若△POA∽△ADB,则PO∶AD=AO∶BD,即t∶(t+2)=4∶(4-12t),整理,得t 2+16=0,∴t 无解;若△POA∽△BDA,同理,解得t =-2+25(负值舍去).②当t >8时,如图2,若△POA∽△A DB ,则PO∶AD=AO∶BD,即t∶(t +2)=4∶(12t -4),解得t =8+45(负值舍去);若△POA∽△BDA,同理,解得t无解.综上可知,当t =-2+25或8+45时,以A ,B ,D 为顶点的三角形与△AOP 相似.。
北京2018年中考数学复习课件13 二次函数与方程、不等式
考点聚焦 基础温故 考向探究
第13课时┃ 二次函数与方程、不等式
|针对训练| 1. 【2016· 海淀期中】太阳影子定位技术是通过分析视频中物 体的太阳影子变化,确定视频拍摄地点的一种方法.为了确定视 频拍摄地的经度,我们需要对比视频中影子最短的时刻与同一天 东经 120 度影子最短的时刻.在一定条件下,直杆的太阳影子长 度 l(单位:米)与时刻 t(单位:时)的关系满足函数关系 l=at2+bt +c(a,b,c 是常数),如图 13-3 记录了三个时刻的数据,根据 上述函数模型和记录的数据,则该地影子最短时,最接近的时刻 t 是( C )
第一部分
第三单元
第13课时
数与代数
函数及其图像
二次函数与方程、不等式
第13课时┃ 二次函数与方程、不等式
考 点 聚 焦
考点1
方法
用待定系数法求二次函数的解析式
适用条件及求法 若已知条件是图象上的三个点,则设所求二次函数为 y 一般 =ax2+bx+c(a≠0),将已知条件代入,求出 a,b,c 的 式 值 若已知二次函数的图象的顶点坐标或对称轴方程与最大 顶点 值 ( 或 最 小 值 ) , 则 设 所 求 二 次 函 数 为 y = a(x - h)2 + 式 k(a≠0),将已知条件代入,求出待定系数,最后将解析 式化为一般形式 若已知二次函数的图象与 x 轴的两个交点的坐标为(x1, 0),(x2,0),则设所求二次函数为 y=a(x-x1)· (x- 交点 x2)(a≠0),将第三点的坐标(m,n)(其中 m,n 为已知数) 式 或其他已知条件代入,求出待定系数 a,最后将解析式化 为一般形式
二次函数综合题专项讲解(经典)
第16题QP N Oyx初中二次函数综合题专项讲解引言:二次函数综合题题目难度较大,也称压轴题。
解压轴题有三个步骤:认真审题;理解题意、探究解题思路;正确解答。
审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。
二次函数一般会出现在选择题(或填空题)、解答题的倒数几个题目中。
选择题和填空题时易时难。
解答题较难,一般有2—3小题。
第1小题通常是求解析式:这一小题简单,直接找出坐标或者用线段长度而确定坐标,进而用待定系数法求出解析式即可。
第2—3小题通常是以动点为切入口,结合三角形、四边形、圆、平移、对称、解方程(组)与不等式(组)等知识呈现,知识面广,难度大;解这类题要善于运用转化、数形结合、分类讨论等数学思想,认真分析条件和结论、图形的几何特征与代数式的数量结构特征的关的关系,系,确定解题的思路和方法;同时需要心态平和,切记急躁:当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系;既要防止钻牛角尖,又要防止轻易放弃。
一、重庆一中13—14学年度上期半期考试二次函数习题1212..如图,直线y kx c =+与抛物线2y ax bx c =++的图象都经过y 轴上的D 点,抛物线与x 轴交于A 、B 两点,其对称轴为直线1x =,且OA OD =直线y kx c =+与x 轴交于点C (点C 在点B 的右侧)则下列命题中正确命题的个数是(下列命题中正确命题的个数是( )). ①0abc >; ; ②②30a b +>; ; ③③10k -<<; ④k a b >+; ; ⑤⑤0ac k +>A .1 B .2 C .3 D .4 16.如右图是二次函数2y ax bx c =++的部分图象,由图象可知20ax bx c ++>时x 的取值范围是的取值范围是_______________________________________________________________________________________..1818.已知抛物线.已知抛物线2122y x x =-+的图象如左图所示,点N 为抛物线的顶点,直线ON 上有两个动点P 和Q ,且满足22PQ =,在直线x=1DCBAoyx第12题xy OEB A第25题 xyOEBA备用图备用图轴的对称图象的解析式为轴的对称图象的解析式为 ________关于关于对称图象的解析式为对称图象的解析式为 __________________,关于顶点旋转______ 对称轴为 _ ____ _ ____ x 时,时,Yy x O 22x21(轴的交点:抛物线与的图像与轴的两个交点的横坐标、轴的交点情况可以由对应的一元二次方程的①有两个交点抛物线与24b acx a-③没有交点抛物线与)直线与抛物线的交点:一次函数:一次函数与二次函数的交点, 与与212212)()(y y x x -+- 元的苹果,物价部门规定每箱元的价格调查,平均每天销售90箱,价箱)之间的函数关系式.(3分)分)开口方向0112Oxy 对称轴对称轴在对称轴在与;与轴交于正半轴;与25.已知二次函数()22a +b=0+b=0;;的横坐标分别为的横坐标分别为-1,3-1,3-1,3,,0;②20a b +=; ③⑤只有 D.5x)三点. ,)三点.x,)过点xA 72x = B(0,4) A(6,0) E F xyO 为斜边且一个角为30的直角三角形?若存,5-4-3-2-1-1 2 3 4 5 5 4 3 2 1 AEBC¢1-O2l1lx y【陈老师*专用】二次函数综合题21 轴的另一个交点为B ,过B 作⊙作⊙A A 的切线L.(1)以直线l 为对称轴的抛物线过点A 及点(及点(00,9),求此抛物线的解析式;,求此抛物线的解析式;(2)抛物线与x 轴的另一个交点为D ,过D 作⊙作⊙A A 的切线DE DE,,E 为切点,求此切线长;为切点,求此切线长;(3)点F 是切线DE 上的一个动点,当△上的一个动点,当△BFD BFD 与EAD EAD△相似时,求出△相似时,求出BF 的长的长 .。
2018年全国中考数学真题汇编:二次函数(含答案)
中考數學真題彙編:二次函數一、選擇題1. 已知學校航模組設計製作の火箭の升空高度h(m)與飛行時間t(s)滿足函數運算式h=﹣t2+24t+1.則下列說法中正確の是()A. 點火後9s和點火後13sの升空高度相同B. 點火後24s火箭落於地面C. 點火後10sの升空高度為139mD. 火箭升空の最大高度為145m【答案】D2. 關於二次函數,下列說法正確の是()A . 圖像與軸の交點座標為 B. 圖像の對稱軸在軸の右側C. 當時,の值隨值の增大而減小D. の最小值為-3【答案】D3. 如圖,函數和( 是常數,且)在同一平面直角坐標系の圖象可能是()A. B. C. D.【答案】B4.二次函數の圖像如圖所示,下列結論正確是( )A. B. C. D. 有兩個不相等の實數根【答案】C5. 給出下列函數:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函數中符合條作“當x>1時,函數值y隨引數x增大而增大“の是()A. ①③B. ③④C. ②④D. ②③【答案】B6.若拋物線y=x2+ax+b與x軸兩個交點間の距離為2,稱此拋物線為定弦拋物線。
已知某定弦拋物線の對稱軸為直線x=1,將此拋物線向左平移2個單位,再向下平移3個單位,得到の拋物線過點()A. (-3,-6)B. (-3,0)C. (-3,-5)D. (-3,-1)【答案】B7. 如圖,若二次函數y=ax2+bx+c(a≠0)圖象の對稱軸為x=1,與y軸交於點C,與x軸交於點A、點B(﹣1,0),則①二次函數の最大值為a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④當y>0時,﹣1<x<3,其中正確の個數是()A. 1B. 2C. 3D. 4 【答案】B8. 若拋物線與軸兩個交點間の距離為2,稱此拋物線為定弦拋物線,已知某定弦拋物線の對稱軸為直線,將此拋物線向左平移2個單位,再向下平移3個單位,得到の拋物線過點( )A. B. C. D.【答案】B9.如圖是二次函數(,,是常數,)圖象の一部分,與軸の交點在點和之間,對稱軸是.對於下列說法:①;②;③;④(為實數);⑤當時,,其中正確の是()A. ①②④B. ①②⑤C. ②③④D. ③④⑤【答案】A10.如圖,二次函數y=ax2+bxの圖象開口向下,且經過第三象限の點P.若點Pの橫坐標為-1,則一次函數y=(a-b)x+bの圖象大致是()A. B. C. D.【答案】D11.四位同學在研究函數(b,c是常數)時,甲發現當時,函數有最小值;乙發現是方程の一個根;丙發現函數の最小值為3;丁發現當時,.已知這四位同學中只有一位發現の結論是錯誤の,則該同學是()A. 甲B. 乙C. 丙D. 丁【答案】B12.如圖所示,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜邊DF上一動點,過B作AB⊥DF於B,交邊DE(或邊EF)於點A,設BD=x,△ABDの面積為y,則y與x之間の函數圖象大致為()A. (B.C. D. (【答案】B二、填空題13.已知二次函數,當x>0時,y隨xの增大而________(填“增大”或“減小”)【答案】增大14.右圖是拋物線型拱橋,當拱頂離水面2m時,水面寬4m,水面下降2m,水面寬度增加________m。
北京市西城区普通中学2018届初三中考数学复习 二次函数 专题复习练习题 含答案
北京市西城区普通中学2018届初三中考数学复习二次函数 专题复习练习题1.二次函数y =-x 2+bx +c 的图象的最高点是(-1,-3),则b ,c 的值分别是( ) A .b =2,c =4 B .b =2,c =-4 C .b =-2,c =4 D .b =-2,c =-42.如图,二次函数y =x 2+bx +c 的图象过点B(0,-2).它与反比例函数y =-8x的图象交于点A(m ,4),则这个二次函数的表达式为( )A .y =x 2-x -2B .y =x 2-x +2C .y =x 2+x -2D .y =x 2+x +23.已知二次函数图象的对称轴为直线x =-1,函数的最大值为4,且图象经过点(2,-5),则此函数的表达式为________________.4.已知二次函数的图象开口向上,且对称轴在y 轴的右侧,请你写出一个满足条件的二次函数的表达式____________________________________________. 5. 有一个抛物线形桥拱,其最大高度为16 m ,跨度为40 m ,现把它的示意图放在如图所示的平面直角坐标系中,则此抛物线的表达式为______________________.6. 已知二次函数的图象经过原点及点(-12,-14),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的表达式为___________________________________.7.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:从上表可知,下列说法中正确的是________.(填序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是x=0.5;④在对称轴左侧,y随x增大而增大.8. 如图,抛物线y=x2+bx+c经过点A(-1,0),B(3,0).请解答下列问题:(1)求抛物线的表达式;(2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE的中点,连结FH,求线段FH的长.9. 某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s和t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式; (2)求截止到几月末公司累积利润可达到30万元; (3)求第8个月公司所获利润是多少万元?10.如图,直线y =x +2与抛物线y =ax 2+bx +6(a≠0)相交于点A(12,52)和B(4,m),点P 是线段AB 上异于A 、B 的动点,过点P 作PC⊥x 轴于点D ,交抛物线于点C.(1) 求抛物线的表达式.(2) 是否存在这样的P 点,使线段PC 的长有最大值?若存在,求出这个最大值;若不存在,请说明理由.(3) 求△PAC 为直角三角形时点P 的坐标.11. 分别求出符合下列条件的抛物线y =ax 2的解析式: (1)经过点(-3,2);(2)与y =13x 2开口大小相同,方向相反.12. 二次函数y =ax 2的图象与直线y =2x -1交于点P(1,m). (1)求a ,m 的值;(2)写出二次函数的解析式,并指出x 取何值时,y 随x 的增大而增大?3. 已知二次函数y=mxm2-2.(1)求m的值;(2)当m为何值时,二次函数有最小值?求出这个最小值,并指出x取何值时,y随x的增大而减小;(3)当m为何值时,二次函数的图象有最高点?求出这个最高点,并指出x取何值时,y随x的增大而增大.14. 如图,已知二次函数y=ax2(a≠0)与一次函数y=kx-2的图象相交于A,B两点,其中A(-1,-1),求△OAB的面积.答案: 1. D 2. A3. y =-x 2-2x +34. 答案不唯一,如y =x 2-x ,y =x 2-2x +85. y =-125x 2+85x6. y =x 2+x 或y =-13x 2+13x7. ①③④8. (1) 抛物线的表达式为:y =x 2-2x -3.(2) ∵点E(2,m)在抛物线上,∴m =4-4-3=-3,∴E(2,-3),∴由勾股定理,得BE =(3-2)2+32=10,∵点F 是AE 的中点,抛物线的对称轴与x 轴交于点H ,即H 为AB 的中点,连结BE(图略),则FH 是三角形ABE 的中位线,∴FH =12BE =12×10=102.9. (1)由图象可知其顶点坐标为(2,-2),故可设其函数关系式为:s =a(t -2)2-2.∵所求函数关系式的图象过点(0,0),∴a(0-2)2-2=0,解得a =12.∴s=12(t-2)2-2,即s =12t 2-2t.(2)把s =30代入s =12(t -2)2-2,得12(t -2)2-2=30.解得t 1=10,t 2=-6(舍去).答:截止到10月末公司累积利润可达30万元.(3)把t=7代入关系式,得s =12×72-2×7=10.5,把t =8代入关系式,得s =12×82-2×8=16,16-10.5=5.5.答:第8个月公司所获利润是5.5万元.10. (1)抛物线的表达式为y =2x 2-8x +6.(2)设动点P 的坐标为(n ,n +2),则点C 的坐标为(n ,2n 2-8n +6),∴PC =(n +2)-(2n 2-8n +6)=-2n 2+9n -4=-2(n -94)2+498,∵12<n<4,∴当n =94时,线段PC 最大且为498. (3)∵△PAC 为直角三角形,(ⅰ)若点P 为直角顶点,则∠APC=90°,由题意易知,PC ∥y 轴,∠APC =45°,因此这种情形不存在.(ⅱ)若点A 为直角顶点,则∠PAC =90°,如图①,过点A(12,52)作AN⊥x 轴于点N ,则ON =12,AN =52.过点A 作AM⊥直线AB ,交x 轴于点M ,则由题意易知,△AMN 为等腰直角三角形,∴MN =AN =52,∴OM =ON +MN =12+52=3,∴M(3,0).设直线AM 的表达式为y =kx +b ,则⎩⎪⎨⎪⎧12k +b =52,3k +b =0,解得⎩⎪⎨⎪⎧k =-1,b =3,∴直线AM 的表达式为y =-x +3①,又抛物线的表达式为y =2x 2-8x +6②,联立①②式,解得x =3或x =12(与点A 重合,舍去),∴C(3,0),即点C ,点M 重合,当x =3时,y =x +2=5,∴P 1(3,5).(ⅲ)若点C 为直角顶点,则∠ACP=90°,∴AC ∥x 轴.∵y=2x 2-8x +6=2(x -2)2-2,∴抛物线的对称轴为直线x =2,如图②,作点A(12,52)关于对称轴x =2的对称点C ,则点C 在抛物线上,且C(72,52).当x =72时,y =x +2=112,∴P 2(72,112).∵点P 1(3,5),P 2(72,112)均在线段AB 上,∴综上所述,点P 的坐标为(3,5)或(72,112).11. 解:(1)∵y =ax 2过点(-3,2),∴2=a ·(-3)2,则a =29,∴解析式为y =29x 2(2)∵y =ax 2与抛物线y =13x 2开口大小相同,方向相反,∴a =-13,∴解析式为y =-13x 212. 解:(1)把(1,m)代入y =2x -1 中,得m =1,所以P(1,1),把(1,1)代入y =ax 2中,得a =1(2)y =x 2,当x>0时,y 随x 的增大而增大 13. 解:(1)m =±2(2)m =2,y 最小=0,x <0时,y 随x 的增大而减小(3)m =-2,最高点(0,0),x <0时,y 随x 的增大而增大14. 解:∵点A(-1,-1)在抛物线y =ax 2(a ≠0)上,也在直线y =kx -2上, ∴-1=a ·(-1)2,-1=k ·(-1)-2, 解得a =-1,k =-1,∴两函数的解析式分别为y =-x 2,y =-x -2.由⎩⎪⎨⎪⎧y =-x 2,y =-x -2,解得⎩⎪⎨⎪⎧x 1=-1,y 1=-1,⎩⎪⎨⎪⎧x 2=2,y 2=-4,∴点B的坐标为(2,-4).∵y=-x-2与y轴交于点G,则G(0,-2),∴S△OAB=S△OAG+S△OBG=12×(1+2)×2=3。
2018北京市中考数学二模分类26题代数综合
- 让每一个人同等地提高自我2018 北京市中考数学二模分类26 题代数综合题2018 东城二模26.在平面直角坐标系xOy中,抛物线y ax2bx 3 a 0经过点A 1,0和点B 4,5.(1)求该抛物线的表达式;(2)求直线AB对于x轴的对称直线的表达式;(3)点P是x轴上的动点,过点P作垂直于x轴的直线l,直线l与该抛物线交于点M ,与直线 AB 交于点N.当PM<PN时,求点P的横坐标 x P的取值范围.2018 西城二模26. 抛物线 M:y ax 24ax a 1 (a≠0)与x轴交于A,B两点(点A 在点 B 左边),抛物线的极点为 D .(1)抛物线 M 的对称轴是直线 ____________;(2)当 AB=2 时,求抛物线 M 的函数表达式;(3)在( 2)的条件下,直线l:y kx b (k≠0)经过抛物线的极点D,直线y n 与抛物线 M 有两个公共点,它们的横坐标分别记为x1, x2,直线 y n 与直线l 的交点的横坐标- 让每一个人同等地提高自我记为 x3( x30),若当 2 ≤n≤1时,总有x1x3x3x20 ,请联合函数的图象,直接写出 k 的取值范围 .2018 海淀二模26.在平面直角坐标系xOy中,已知点A( 3,1) , B(1,1),C (m, n),此中n 1 ,以点A, B,C为极点的平行四边形有三个,记第四个极点分别为D1, D2 , D3,如下图.(1)若m1,n3,则点12 3 的坐标分别是(),(),();(2)能否存在点 C ,使得点A, B, D1, D 2 , D3在同一条抛物线上?若存在,求出点 C 的坐标;若不存在,说明原因.yD 1C D2A B- 让每一个人同等地提高自我2018 旭日二模26.已知二次函数y ax22ax 2(a0) .(1)该二次函数图象的对称轴是直线;(2)若该二次函数的图象张口向上,当1≤ x≤ 5 时,函数图象的最高点为M,最低点为N,点 M 的纵坐标为11,求点 M 和点 N 的坐标;2(3)对于该二次函数图象上的两点A( x1,y1),B( x2,y2),设 t ≤ x1≤ t+1,当 x2≥3 时,均有y1 ≥y2,请联合图象,直接写出t 的取值范围.- 让每一个人同等地提高自我2018 丰台二模26.在平面直角坐标系xOy 中,二次函数y x22hx h 的图象的极点为点D.(1)当h 1时,求点 D 的坐标;(2)当1≤x≤1时,求函数的最小值m.(用含 h 的代数式表示 m)y43214 3 2 1 O1 2 3 4x12342018 石景山二26.在平面直角坐标系xOy 中,抛物线y ax24x c a0 经过点 A 3, 4 和B0,2.- 让每一个人同等地提高自我(1)求抛物线的表达式和极点坐标;(2)将抛物线在 A、B 之间的部分记为图象M(含 A、B 两点).将图象 M 沿直线x 3 翻折,获得图象 N.若过点 C 9, 4的直线y kx b 与图象M、图象N都订交,且只有两个交点,求 b 的取值范围.2018 门头沟二模26. 在平面直角坐标系xOy 中,有一抛物线其表达式为y x22mx m2 .(1)当该抛物线过原点时,求 m 的值;(2)坐标系内有一矩形 OABC, 此中 A(4 , 0) 、 B (4 , 2) .①直接写出 C 点坐标;②假如抛物线y x22mx m2与该矩形有 2 个交点,求m 的取值范围 .y2018 顺义二模26.在平面直角坐标系中,二次函数y x2ax 2a 1 的图象经过点M ( 2, - 3).(1)求二次函数的表达式;(2)若一次函数y kx b ( k 0) 的图象与二次函数y x2ax 2a 1的图象经过x 轴上同一点,研究实数k, b 知足的关系式;(3)将二次函数y x2ax 2a 1 的图象向右平移2个单位,若点P( x0,m)和 Q( 2, n)在平移后的图象上,且m>n,联合图象求 x0的取值范围.yx2018 房山二模26. 在平面直角坐标系xOy 中,二次函数y ax2bx c ( a0)的图象经过A( 0,4),B( 2, 0),C(- 2, 0)三点 .(1)求二次函数的表达式;(2)在 x 轴上有一点D(- 4,0),将二次函数的图象沿射线DA 方向平移,使图象再次经过点 B.①求平移后图象极点 E 的坐标;②直接写出此二次函数的图象在A, B 两点之间(含A, B 两点)的曲线部分在平移过程中所扫过的面积 .yxO2018 怀柔二模- 让每一个人同等地提高自我26.在平面直角坐标系 xOy 中,二次函数 C 1: y mx 2m 3 x 3 ( m > 0)的图象与 x轴交于 A 、 B 两点(点 A 在点 B 的左边),与 y 轴交于点 C.(1) 求点 A 和点 C 的坐标;(2) 当 AB=4 时,y①求二次函数 C 1 的表达式;②在抛物线的对称轴上能否存在点D ,使 △DAC 的周长最小,若存在,求出点D 的坐标,若不存在,1O 1x请说明原因;(3) 将 (2)中抛物线 C 1 向上平移 n 个单位,获得抛物线 C 25时,抛物线 C 2与 x 轴只有一,若当 0≤ x ≤ 2个公共点,联合函数图象,求出n 的取值范围 .2018 平谷二模26.在平面直角坐标系中,点D 是抛物线y ax 2 2ax 3a a 0 的极点,抛物线与x轴交于点 A , B (点 A 在点 B 的左边).( 1)求点 A , B 的坐标;( 2)若 M 为对称轴与 x 轴交点,且 DM=2AM ,求抛物线表达式;( 3)当 30°<∠ ADM<45°时,求 a 的取值范围.2018 昌平二模26. 在平面直角坐标系xOy中,抛物线y ax 22ax 3a( a、两0) ,与x轴交于 A B点(点 A 在点 B 的左边 ).(1)求点 A 和点 B 的坐标;(2)若点 P(m, n)是抛物线上的一点,过点P 作 x 轴的垂线,垂足为点 D.①在 a 0 的条件下,当 2 m 2 时,n的取值范围是 4 n 5 ,求抛物线的表达式;②若 D 点坐标( 4,0),当PD AD 时,求a的取值范围.。
二次函数知识点、考点、典型试题集锦(带详细解析答案)
⼆次函数知识点、考点、典型试题集锦(带详细解析答案)⼆次函数知识点、考点、典型试题集锦(带详细解析答案)⼀、中考要求:1.经历探索、分析和建⽴两个变量之间的⼆次函数关系的过程,进⼀步体验如何⽤数学的⽅法描述变量之间的数量关系.2.能⽤表格、表达式、图象表⽰变量之间的⼆次函数关系,发展有条理的思考和语⾔表达能⼒;能根据具体问题,选取适当的⽅法表⽰变量之间的⼆次函数关系.3.会作⼆次函数的图象,并能根据图象对⼆次函数的性质进⾏分析,逐步积累研究函数性质的经验.4.能根据⼆次函数的表达式确定⼆次函数的开⼝⽅向,对称轴和顶点坐标.5.理解⼀元⼆次⽅程与⼆次函数的关系,并能利⽤⼆次函数的图象求⼀元⼆次⽅程的近似根.6.能利⽤⼆次函数解决实际问题,能对变量的变化趋势进⾏预测.⼆、中考卷研究(⼀)中考对知识点的考查::(⼆)中考热点:⼆次函数知识是每年中考的重点知识,是每卷必考的主要内容,本章主要考查⼆次函数的概念、图象、性质及应⽤,这些知识是考查学⽣综合能⼒,解决实际问题的能⼒.因此函数的实际应⽤是中考的热点,和⼏何、⽅程所组成的综合题是中考的热点问题.三、中考命题趋势及复习对策⼆次函数是数学中最重要的内容之⼀,题量约占全部试题的10%~15%,分值约占总分的10%~15%,题型既有低档的填空题和选择题,⼜有中档的解答题,更有⼤量的综合题,近⼏年中考试卷中还出现了设计新颖、贴近⽣活、反映时代特征的阅读理解题、开放探索题、函数应⽤题,这部分试题包括了初中代数的所有数学思想和⽅法,全⾯地考查学⽣的计算能⼒,逻辑思维能⼒,空间想象能⼒和创造能⼒。
针对中考命题趋势,在复习时应⾸先理解⼆次函数的概念,掌握其性质和图象,还应注重其应⽤以及⼆次函数与⼏何图形的联系,此外对各种函数的综合应⽤还应多加练习. ★★★(I)考点突破★★★考点1:⼆次函数的图象和性质⼀、考点讲解:1.⼆次函数的定义:形如c bx ax y ++=2(a ≠0,a ,b ,c 为常数)的函数为⼆次函数. 2.⼆次函数的图象及性质:⑴⼆次函数y=ax 2 (a ≠0)的图象是⼀条抛物线,其顶点是原点,对称轴是y 轴;当a >0时,抛物线开⼝向上,顶点是最低点;当a <0时,抛物线开⼝向下,顶点是最⾼点;a 越⼩,抛物线开⼝越⼤.y=a(x -h)2+k 的对称轴是x=h ,顶点坐标是(h ,k )。
2018年北京各区二次函数专题
2018年北京各区二次函数专题5.抛物线c-=2与x轴交与A(1,0),B(- 3,+y+bxx0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值.若没有,请说明理由.(4)若点M从B点以每秒4/3个单位沿BA方向向A点运动,同时,点N从C点以每秒根号2个单位向沿CB方向A点运动,问t当为何值时,以B,M,N为顶点的三角形与△OBC相似?43已知抛物线12++=bxxy的顶点在x轴上,且与y轴交于A点. 直线mkxy+=经过A、B两点,点B的坐标为(3,4).(1)求抛物线的解析式,并判断点B是否在抛物线上;(2)如果点B在抛物线上,P为线段AB上的一个动点(点P与A、B不重合),过P 作x 轴的垂线与这个..二次函数的图象交于点E ,设线段PE 的长为h ,点P 的横坐标为x .当x 为何值时,h 取得最大值,求出这时的h 值.(延一)7. 二次函数2y x mx n =-++的图象经过点A(﹣1,4),B (1,0),12y x b =-+经过 点B ,且与二次函数2y x mx n =-++交于点D .过点D 作DC ⊥x 轴,垂足为点C .(1)求二次函数的表达式;(2)点N 是二次函数图象上一点(点N 在BD 上方),过N 作NP ⊥x 轴,垂足为点P ,交BD 于点M ,求MN 的最大值.27.在平面直角坐标系xOy 中,抛物线()210y ax bx a =++≠过点()1,0A -,()1,1B ,与y 轴交于点C . (1)求抛物线()210y axbx a =++≠的函数表达式;(2)若点D 在抛物线()210y axbx a =++≠的对称轴上,当ACD△的周长最小时,求点D 的坐标;(3)在抛物线()210y axbx a =++≠的对称轴上是否存在点P ,使ACP △成为以AC 为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.(海一)27.在平面直角坐标系xOy 中,抛物线2212y x x =-+与y 轴交于点A ,顶点为点B ,点C 与点A 关于抛物线的对称轴对称.(1)求直线BC 的解析式; (2)点D 在抛物线上,且点D 的横坐标为4.将抛物线在点A ,D 之间的部分(包含点A ,D )记为图象G ,若图象G 向下平移t (0t >)个单位后与直线BC 只有一个公共点,求t 的取值范围.xy O–5–4–3–2–112345–7–6–5–4–3–2–1123456727.在平面直角坐标系xOy中,抛物线223(0)=--≠与x轴交于(3,0)y mx mx mA,B两点.(1)求抛物线的表达式及点B的坐标;(2)当23-<<时的函数图象记为G,求此时函x数y的取值范围;(3)在(2)的条件下,将图象G在x轴上方的部分沿x轴翻折,图象G的其余部分保持不变,得到一个新图象M.若经过点y kx b k=+≠与图象M在第三C的直线(0)(4,2)象限内有两个公共点,结合图象求b的取值范围.(27.二次函数2(0)y ax bx c a =++≠的图象与一次函数1y x b =+k的图象交于)10(,A 、B 两点,(1,0)C 为二次函数图象的顶点.1)求二次函数)0(21≠++=a c bx ax y 的解析式;(2)定义函数f :“当自变量x 任取一值时,x对应的函数值分别为y 1或y 2,若y 1≠y 2,函数f 的函数值等于y 1、y 2中的较小值;若y 1=y 2,函数f 的函数值等于y 1(或y 2).”当直线213-=kx y(k >0)与函数f 的图象只有两个交点时,求k 的值.(2014·石景山1月期末·24)如图,二次函数)0(21≠++=a c bx ax y 的图象与一次函数bx y+=2的图象交于)10(,A ,B 两点. C )(0,1为二次函数图象的顶点.(1)求二次函数2(0)y ax bx c a =++≠的表达式; (2)在所给的平面直角坐标系中画出二次函数2(0)y ax bx c a =++≠的图象和一次函数1y x b =+k 的图象;(3)把(1)中的二次函数2(0)y ax bx c a =++≠的图象平移后得到新的二次函数22(0,)y ax bx c m a m =+++≠为常数的图象,.定义新函数f :“当自变量x 任取一值时,x 对应的函数值分别为1y 或2y ,如果1y ≠2y ,函数f 的函数值等于1y 、2y 中的较小值;如果1y =2y ,函数f 的函数值等于1y (或2y ).” 当新函数f 的图象与x 轴有三个交点时,直接写出m 的取值范围.x23.已知:二次函数2314y x mx m =-++(m 为常数). (1)若这个二次函数的图象与x 轴只有一个公共点A ,且A 点在x 轴的正半轴上. ①求m 的值;②四边形AOBC 是正方形,且点B 在y 轴的负半轴上,现将这个二次函数的图象平移,使平移后的函数图象恰好经过B ,C 两点,求平移后的图象对应的函数解析式; (2)当0≤x ≤2时,求函数2314y x mx m =-++的最小值(用含m 的代数式表示).(怀一)27.在平面直角坐标系xOy 中,二次函数y=(a-1)x 2+2x+1与x 轴有交点,a 为正整数. (1)求a 的值.(2)将二次函数y=(a-1)x 2+2x+1的图象向右平移m 个单位,向下平移m 2+1个单位,当 -2≤x ≤1时,二次函数有最小值-3,求实数m 的值.yx11O27(朝一) 27.如图,将抛物线M 1: x ax y 42+=向右平移3个单位,再向上平移3个单位,得到抛物线M 2,直线x y =与M 1的一个交点记为A ,与M 2的一个交点记为B ,点A 的 横坐标是-3.(1)求a 的值及M 2的表达式; (2)点C 是线段AB 上的一个动点,过点C 作x轴的 垂线,垂足为D ,在CD 的右侧作正方形CDEF .①当点C 的横坐标为2时,直线n x y +=恰好经过正方形CDEF 的顶点F ,求此时n 的值; ②在点C 的运动过程中,若直线n x y +=与正方形CDEF 始终没有公共点,求n 的 取值范围(直接写出结果).O y x(门一)27.已知:关于x 的一元二次方程-x 2+(m +1)x +(m +2)=0(m >0).(1)求证:该方程有两个不相等的实数根;(2)当抛物线y =-x 2+(m +1)x +(m +2)经过点(3,0),求该抛物线的表达式; (3)在(2)的条件下,记抛物线y =-x 2+(m +1)x +(m +2)在第一象限之间的部分为图象G ,如果直线y =k (x +1)+4与图象G 有公共点,请结合函数的图象,求直线y =k (x +1)+4与y 轴交点的纵坐标t 的取值范围.(燕一) 27.抛物线cbx xy C ++=2121:与y 轴交于点C (0,3),其对称轴与x 轴交于点A (2,0). (1)求抛物线1C 的解析式;(2)将抛物线1C 适当平移,使平移后的抛物线2C 的顶点为D (0,k ).已知点B (2,2),若抛物线2C 与△OAB 的边界总有两个公共点,请结合函数图象,求k 的取值范围.112ACOxyB(丰一)27.在平面直角坐标系xOy 中,抛物线22y x mx n=++经过点A (-1,a ),B (3,a ),且最低点的纵坐标为-4. (1)求抛物线的表达式及a 的值; (2)设抛物线顶点C 关于y 轴的对称点为点D ,点P 是抛物线对称轴上一动点,记抛物线在点A ,B 之间的部分为图象G (包含A ,B 两点).如果直线DP 与图象G 恰有两个公共点,结合函数图象,求点P 纵坐标t 的取值范围.4444123123321213xOy(平一)27.已知抛物线y =ax 2+x +c (a ≠0)经过A (1 ,0),B (2,0)两点,与y 轴相交于点C ,点D 为该抛物线的顶点.(1)求该抛物线的解析式及点D 的坐标; (2)点E 是该抛物线上一动点,且位于第一象限,当点E 到直线BC 的距离为22时,求点E 的坐标;(3)在(2)的条件下,在x 轴上有一点P ,且∠EAO +∠EPO =∠α,当tanα=2时,求点P 的坐标.Oyx(东一27.在平面直角坐标系xOy 中,抛物线()210y axbx a =++≠过点()1,0A -,()1,1B ,与y 轴交于点C . (1)求抛物线()210y axbx a =++≠的函数表达式;(2)若点D 在抛物线()210y axbx a =++≠的对称轴上,当ACD△的周长最小时,求点D 的坐标;(3)在抛物线()210y axbx a =++≠的对称轴上是否存在点P ,使ACP △成为以AC 为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.(房一) 在平面直角坐标系中,抛物线32++=bx ax y 与x 轴的两个交点分别为A (-3,0), B (1,0),顶点为C .(1) 求抛物线的表达式和顶点坐标;(2) 过点C作CH⊥x轴于点H,若点P为x 轴上方的抛物线上一动点(点P与顶点C不重合),PQ⊥AC于点Q,当△PCQ与△ACH相似时,求点P的坐标.(石一)27.在平面直角坐标系xOy中,抛物线223(0)=--≠与x轴交于(3,0)y mx mx mA,B两点.(1)求抛物线的表达式及点B的坐标;(2)当23-<<时的函数图象记为G,求此时函x数y的取值范围;(3)在(2)的条件下,将图象G在x轴上方的部分沿x轴翻折,图象G的其余部分保持不变,得到一个新图象M.若经过点=+≠与图象M在第三(4,2)y kx b kC的直线(0)象限内有两个公共点,结合图象求b的取值范围.(兴一)27.已知抛物线222=++-与x轴有两y x x k个不同的交点.(1)求k的取值范围;(2)若k为正整数,且该抛物线与x轴的交点都是整数点,求k的值.(3)如果反比例函数m=的图象与(2)中的抛yx物线在第一象限内的交点的横坐标为x,且满足1<x<2,请直接写出m的取值范围.(顺义一)27.在平面直角坐标系xOy 中,抛物线21212y axx a =+-+与y 轴交于C 点,与x 轴交于A ,B 两点(点A 在点B 左侧),且点A 的横坐标为-1. (1)求a 的值;(2)设抛物线的顶点P 关于原点的对称点为'P ,求点'P 的坐标;(3)将抛物线在A ,B 两点之间的部分(包括A , B 两点),先向下平移3个单位,再向左平移m (0m >)个单位,平移后的图象记为图象G ,若图象G 与直线'PP 无交点,求m 的取值范围.xy O22-2-2。
2018北京各区初三数学一模试题分类——二次函数(含代数综合题)
二次函数(含代数综合题)(1)二次函数图像与性质基础1.(18朝阳毕业9)在平面直角坐标系xOy 中,二次函数172++=x x y 的图象如图所示,则方程0172=++x x 的根的情况是A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断2.(18朝阳毕业13)抛物线y =x 2-6x +5的顶点坐标为 .3.(18大兴一模11)请写出一个开口向下,并且对称轴为直线x =1的抛物线的表达式y =4.(18东城一模2) 当函数()212y x =--的函数值y 随着x 的增大而减小时,x 的取值范围是A .x >0B .x <1C .1x >D .x 为任意实数5. (18燕山一模12)写出经过点(0,0),(-2,0)的一个二次函数的解析式(写一个即可) 6.(18顺义一模15)如图,在边长为6cm 的正方形ABCD 中,点E 、F 、G 、H 分别从点A 、B 、C 、D 同时出发,均以1cm/s 的速度向点B 、C 、D 、A 匀速运动,当点E 到达点B 时,四个点同时停止运动,在运动过程中,当运动时间为 s 时,四边形EFGH 的面积最小,其最小值是 cm 2.(2)二次函数综合1.(18平谷一模26)在平面直角坐标系xOy 中,抛物线223y x bx =-+-的对称轴为直线x =2.(1)求b 的值;(2)在y 轴上有一动点P (0,m ),过点P 作垂直y 轴的直线交抛物线于点A (x 1,y 1),B (x 2 ,y 2),其中 12x x <.①当213x x -=时,结合函数图象,求出m 的值;②把直线PB 下方的函数图象,沿直线PB 向上翻折,图象的其余部分保持不变,得到一个新的图象W ,新图象W 在0≤x ≤5 时,44y -≤≤,求m 的取值范围.HG FE D CB A2.(18延庆一模26)在平面直角坐标系xOy 中,抛物线y =ax 2-4ax +3a (a >0)与x 轴交于A ,B 两点(A 在B的左侧).(1)求抛物线的对称轴及点A ,B 的坐标;(2)点C (t ,3)是抛物线243(0)y ax ax a a =-+>上一点,(点C 在对称轴的右侧),过点C 作x轴的垂线,垂足为点D .①当CD AD =时,求此时抛物线的表达式; ②当CD AD >时,求t 的取值范围.3. (18石景山一模26)在平面直角坐标系xOy 中,将抛物线21G y mx =+:0m ≠)单位长度后得到抛物线2G ,点A 是抛物线2G 的顶点. (1)直接写出点A 的坐标;(2)过点0(且平行于x 轴的直线l 与抛物线2G 交于B ,C 两点. ①当=90BAC ∠°时,求抛物线2G 的表达式;②若60120BAC <∠<°°,直接写出m 的取值范围.4.(18房山一模26)抛物线2y ax bx =+-x 轴于点A (-1,0),C (3,0),交y 轴于点B ,抛物线的对称轴与x 轴相交于点D . 点P 为线段OB 上的点,点E 为线段AB 上的点,且PE ⊥AB.(1)求抛物线的表达式;(2)计算PEPB的值;(3)请直接写出12PB +PD 的最小值为 .5. (18西城一模26)在平面直角坐标系xOy 中,抛物线G :221(0)y mx mx m m =++-≠与y 轴交于点C ,抛物线G 的顶点为D ,直线l :1(0)y mx m m =+-≠.(1)当1m =时,画出直线l 和抛物线G ,并直接写出直线l 被抛物线G 截得的线段长. (2)随着m 取值的变化,判断点C ,D 是否都在直线l 上并说明理由.(3)若直线l 被抛物线G 截得的线段长不小于2,结合函数的图象,直接写出m 的取值范围.x6.(18朝阳毕业26)抛物线c bx x y ++=2的对称轴为直线x =1,该抛物线与x 轴的两个交点分别为A 和B ,与 y 轴的交点为C ,其中A (-1,0).(1)写出B 点的坐标 ;(2)若抛物线上存在一点P ,使得△POC 的面积是△BOC 的面积的2倍,求点P 的坐标;(3)点M 是线段BC 上一点,过点M 作x 轴的垂线交抛物线于点D ,求线段MD 长度的最大值.7.(18怀柔一模26)在平面直角坐标系xOy 中,抛物线y=nx 2-4nx+4n-1(n ≠0),与x 轴交于点C ,D(点C在点D 的左侧),与y 轴交于点A . (1)求抛物线顶点M 的坐标; (2)若点A 的坐标为(0,3),AB ∥x 轴,交抛物线于点B ,求点B 的坐标;(3)在(2)的条件下,将抛物线在B ,C 两点之间的部分沿y 轴翻折,翻折后的图象记为G ,若直线与图象G 有一个交点,结合函数的图象,求m 的取值范围.m x y +=218.(18海淀一模26)在平面直角坐标系xOy 中,已知抛物线22y x ax b =-+的顶点在 x 轴上,1(,)P x m ,2(,)Q x m (12x x <)是此抛物线上的两点.(1)若1a =,①当m b =时,求1x ,2x 的值;②将抛物线沿y 轴平移,使得它与x 轴的两个交点间的距离为4,试描述出这一变化过程; (2)若存在实数c ,使得11x c ≤-,且27x c ≥+成立,则m 的取值范围是 .9.(18朝阳一模26)在平面直角坐标系xOy 中,抛物线()2440y ax ax a =--≠与y 轴交于点A ,其对称轴与x 轴交于点B .(1)求点A ,B 的坐标;(2)若方程有两个不相等的实数根,且两根都在1,3之间(包括1,3),结合函数的图象,求a 的取值范围.()244=00ax ax a --≠10.(18东城一模26)在平面直角坐标系xOy 中,抛物线()02342≠-+-=a a ax ax y 与x 轴交于A ,B两点(点A 在点B 左侧).(1)当抛物线过原点时,求实数a 的值; (2)①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a 的代数式表示); (3)当AB ≤4时,求实数a 的取值范围.11.(18丰台一模26)在平面直角坐标系xOy 中,抛物线243y ax ax a =-+的最高点的纵坐标是2.(1)求抛物线的对称轴及抛物线的表达式; (2)将抛物线在1≤x ≤4之间的部分记为图象G 1,将图象G 1沿直线x = 1翻折,翻折后的图象记为G 2,图象G 1和G 2组成图象G .过(0,b )作与y 轴垂直的直线l ,当直线l 和图象G 只有两个公共点时,将这两个公共点分别记为P 1(x 1,y 1),P 2(x 2,y 2),求b 的取值范围和x 1 + x 2的值.12.(18门头沟一模26)有一个二次函数满足以下条件:①函数图象与x 轴的交点坐标分别为(1,0)A ,22(,)B x y (点B 在点A 的右侧);②对称轴是3x =; ③该函数有最小值是-2.(1)请根据以上信息求出二次函数表达式;(2)将该函数图象2x x >的部分图象向下翻折与原图象未翻折的部分组成图象“G ”,平行于x 轴的直线与图象“G ”相交于点33(,)C x y 、44(,)D x y 、55(,)E x y (345x x x <<),结合画出的函数图象求345x x x ++的取值范围.13.(18大兴一模26)在平面直角坐标系xOy 中,抛物线22(31)2(0)y x m x m m m =-+++>,与y 轴交于点C ,与x 轴交于点A 1(,0)x ,B 2(,0)x ,且12x x <. (1)求1223-+x x 的值;(2)当m=1223-+x x 时,将此抛物线沿对称轴向上平移n 个单位,使平移后得到的抛物线顶点落在△ABC 的内部(不包括△ABC 的边),求n 的取值范围(直接写出答案即可).14.(18顺义一模26)在平面直角坐标系xOy 中,若抛物线2y x bx c =++顶点A 的横坐标是-1,且与y轴交于点B (0,-1),点P 为抛物线上一点. (1)求抛物线的表达式;(2)若将抛物线2y x bx c =++向下平移4个单位,点P 平移后的对应点为Q .如果OP =OQ ,求点Q 的坐标.15.(18通州一模26)在平面直角坐标系xOy 中,点C 是二次函数2441y mx mx m =+++的图象的顶点,一次函数4+=x y 的图象与x 轴、y 轴分别交于点A ,B . (1)请你求出点A ,B ,C 的坐标;(2)若二次函数2441y mx mx m =+++与线段AB 恰有一个公共点,求m 的取值范围.。
初中数学北京课标版用二次函数解决简单2018实际问题分析
初中数学北京课标版用二次函数解决简单实际问题分析1、阅读下面的文言文,完成下面5题。
李斯论;(清)姚鼐苏子瞻谓李斯以荀卿之学乱天下,是不然。
秦之乱答案【小题1】A【小题2】C【小题3】D【小题4】C【小题5】(1)秦国尝到(用)苛政(对人)的甜头并且认为严刑竣法是有利的已经很久了。
(2)他认为天下人将会谅解我对于我的国君的无可奈何(或没有办法),而不怪罪我。
(3)他们开始策略不同,而最终达到相同的目标,难道是李斯的本意吗?解析2、若点M(a,b)在第二象限,则点(,b)是在()A.第一象限B.第二象限答案A解析3、下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视答案C 解析4、-的相反数是(;)A.-B.-2 C.答案C 解析5、设为实数,则下列说法正确的是(;)A.若,则B.若,则答案D 解析6、下列说法正确的是;(; 答案解析7、如图是一个圆锥的主视图,则这个圆锥的全面积是shyshy;A.B.C.D.答案D 解析8、化简的结果是(;).A.B.C.D.答案B 解析9、已知,化简二次根式的正确结果是答案A 解析10、下列运算中,一定正确的是A.m5-m2=m3 答案C 解析11、下列运算正确的是A.2m3+m3=3m6B.m3·m2=m6C.(-m4)3=m7D.m6÷2m2=m4答案D 解析初中数学部审湘教版按问题的要求对结果取近似值一个几何体的三视图如下:其中主视图都是腰长为4、底边为2的等腰三角形,则这个几何体的侧面展开图的面积为A.m 答案C 解析如图,以A为位似中心,将△ADE放大2倍后,得位似图形△ABC,若表示△ADE的面积,表示四边形DBCE的面积答案B 解析12、如图,在矩形ABCD中,AB=11cm,BC=6cm,点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点答案B 解析考点:翻折变换(折叠问题).分析:延长A′E交CD于点G,由题意知GE=EH,FH=GF,则阴影部分的周长与原矩形的周长相等.解答:解:延长A′E 交CD于点G,由题意知,GE=EH,FH=GF,四边形EHD′A′≌四边形EGDA∴阴影部分的周长=矩形的周长=(11+6)×2=34cm.故选B.。
2018北京市中考数学一模分类27题二次函数及答案解析
2017年北京中考数学一模 27题“二次函数综合题”西城. 在平面直角坐标系xOy 中,二次函数5)12(2-++-=m x m mx y 的图象与x 轴有两个公共点. (1)求m 的取值范围;(2)若m 取满足条件的最小的整数,①写出这个二次函数的解析式;②当n ≤x ≤1时,函数值y 的取值范围是-6≤y ≤4-n ,求n 的值;③将此二次函数图象平移,使平移后的图象经过原点O . 设平移后的图象对应的函数表达式为k h x a y +-=2)(,当x <2时,y 随x 的增大而减小,求k 的取值范围东城.二次函数2(2)2(2)5y m x m x m =+-+-+,其中20m +>. (1)求该二次函数的对称轴方程; (2)过动点C (0, n )作直线l ⊥y 轴.① 当直线l 与抛物线只有一个公共点时, 求n 与m 的函数关系;② 若抛物线与x 轴有两个交点,将抛物线在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象. 当n =7时,直线l 与新的图象恰好有三个公共点,求此时m 的值; (3)若对于每一个给定的x 的值,它所对应的函数值都不小于1,求m 的取值范围.xy直线lCBA–1–21234–1–2–31234O朝阳.在平面直角坐标系中xOy 中,抛物线2211222y x mx m m =-++-的顶点在x 轴上. (1)求抛物线的表达式;(2)点Q 是x 轴上一点,①若在抛物线上存在点P ,使得∠POQ =45°,求点P 的坐标; ②抛物线与直线y =2交于点E ,F (点E 在点F 的左侧),将此抛物线在点E ,F (包含点E 和点F )之间的部分沿x 轴平移n 个单位后得到的图象记为G ,若在图象G 上存在点P ,使得∠POQ =45°,求n 的取值范围.房山. 在平面直角坐标系xOy 中,直线32-=x y 与y 轴交于点A ,点A 与点B 关于x 轴对称,过点B 作y 轴的垂线l ,直线l 与直线32-=x y 交于点C. (1)求点C 的坐标;(2)如果抛物线n nx nx y 542+-= (n >0)与线段BC 有唯一公共点,求n 的取值范围.顺义.如图,已知抛物线28(0)y ax bx a =++≠与x 轴交于A (-2,0),B 两点,与y 轴交于C 点,tan ∠ABC =2.(1)求抛物线的表达式及其顶点D 的坐标;(2)过点A 、B 作x 轴的垂线,交直线CD 于点E 、F ,将抛物线沿其对称轴向上平移m 个单位,使抛物线与线段EF (含线段端点)只有1个公共点.求m 的取值范围.平谷.直线33y x =-+与x 轴,y 轴分别交于A ,B 两点,点A 关于直线1x =-的对称点为点C . (1)求点C 的坐标;(2)若抛物线()230y mx nx m m =+-≠经过A ,B ,C 三点,求该抛物线的表达式;(3)若抛物线()230y ax bx a =++≠ 经过A ,B 两点,且顶点在第二象限,抛物线与线段AC 有两个公共点,求a 的取值范围. yx–2–112345–5–4–3–2–112O门头沟. 在平面直角坐标系xOy 中,抛物线()()13y a x x =+-与x 轴交于A ,B 两点,点A 在 点B 的左侧,抛物线的顶点为P ,规定:抛物线与x 轴围成的封闭区域称为“G 区域”(不包含边界).(1)如果该抛物线经过(1, 3),求a 的值,并指出此时“G 区域”有______个整数点;(整数点就是横纵坐标均为整数的点) (2)求抛物线()()13y a x x =+-的顶点P 的坐标(用含a 的代数式表示); (3)在(2)的条件下,如果G 区域中仅有4个整数点时,直接写出a 的取值范围.海淀.平面直角坐标系xOy 中,抛物线2222y mx m x =-+交y 轴于A 点,交直线x =4于B 点.(1)抛物线的对称轴为x = (用含m 的代数式表示);(2)若AB ∥x 轴,求抛物线的表达式;(3)记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点),若对于图象G 上任意一点P (P x ,P y ),2P y ≤,求m 的取值范围.丰台.在平面直角坐标系xOy 中,抛物线()01242≠-+-=m m mx mx y 与平行于x 轴的一条直线交于A ,B 两点. (1)求抛物线的对称轴;(2)如果点A 的坐标是(-1,-2),求点B 的坐标;(3)抛物线的对称轴交直线AB 于点C ,如果直线AB 与y 轴交点的纵坐标 为-1,且抛物线顶点D 到点C 的 距离大于2,求m 的取值范围.石景山.在平面直角坐标系xOy 中,抛物线2443(0)y ax ax a a =-+-≠的顶点为A .(1)求顶点A 的坐标;(2)过点(0,5)且平行于x 轴的直线l ,与抛物线2443(0)y ax ax a a =-+-≠交于B ,C 两点.①当2a =时,求线段BC 的长;②当线段BC 的长不小于6时,直接写出a 的 取值范围.通州.在平面直角坐标系xOy 中,抛物线2222+-+-=m m mx x y 的顶点为D.线段AB 的两个端点分别为A (-3,m ),B (1,m ).(1)求点D 的坐标(用含m 的代数式表示); (2)若该抛物线经过点B (1,m ),求m 的值;(3)若线段AB 与该抛物线只有一个公共点,结合函数的图象,求m 的取值范围.怀柔.已知二次函数122-++=a ax axy (a>0).(1)求证:抛物线与x 轴有两个交点; (2)求该抛物线的顶点坐标;(3)结合函数图象回答:当x ≥1时,其对应的函数值y 的最小值范围是2≤y ≤6,求a 的取值范围.西城.解:(1)∵ 二次函数5)12(2-++-=m x m mx y 的图象与x 轴有两个交点,∴m ≠0[]054122>)()+(---m m m解得 241->m 且m ≠0. ∴m 的取值范围是241->m 且m ≠0. ······················································· 2分(2)①m 取满足条件的最小的整数,由(1)可知m =1.∴ 二次函数的表达式为234y x x =--. ············································· 3分② 图象的对称轴为直线23=x . 当n ≤x ≤1<32时,函数值y ∵ 函数值y 的取值范围是-6≤y ≤∴ 当x =1时,函数值为- 6. 当x =n 时,函数值为4-n.∴ n 2 – 3n - 4 = 4-n.,解得n = - 2或∴ n 的值为- 2.③由①可知,a =1.又函数图像经过原点, ∴k =-h 2,∵当x <2时,y 随x ∴h ≥ 2 ∴k ≤-4.····················································································东城.解:(1)对称轴方程:2(2)12(2)m x m -+=-=+. …………1分(2)①∵直线l 与抛物线只有一个公共点,∴23n m =-+. …………3分② 依题可知:当237m -+=-时,直线l 与新的图象恰好有三个公共点.(3)抛物线2(2)2(2)5y m x m x m =+-+-+的顶点坐标是(1,23)m -+.依题可得 20,23 1.m m +>⎧⎨-+≥⎩解得2,1.m m >-⎧⎨≤⎩ ∴ m 的取值范围是21m -<≤. …………7分朝阳.解:(1)222111-2()2222y x mx m m x m m =++-=-+-. 由题意,可得m -2=0. ∴2m =. ∴21(2)2y x =-. (2)①由题意得,点P 是直线y x =与抛物线的交点.∴21-222x x x =+. 解得 135x =+,235x =-. ∴P 点坐标为(35,35)++或 (35,35)--.②当E 点移动到点(2,2)时,n =2.当F 点移动到点(-2,2)时,n =-6. 由图象可知,符合题意的n 的取值范围是26-≤≤n .房山解:(1)∵直线y=2x-3与y 轴交于点A (0,-3) ------1分 ∴点A 关于x 轴的对称点为B (0,3),l 为直线y=3 ∵直线y=2x-3与直线l 交于点C ,∴点C 的坐标为(3,3) ------2分(2)∵抛物线n nx nx y 542+-= (n >0)∴y = nx2-4nx+4n+n = n(x-2)2+n①当n >3时,抛物线最小值为n >3,与线段BC 无公共点; ②当n=3时,抛物线顶点为(2,3),在线段BC 上,此时抛物线与线段BC 有一个公共点; ------4分 ③当0<n <3时,抛物线最小值为n ,与直线BC 有两个交点 如果抛物线y=n(x-2)2+ n 经过点B (0,3),则3=5n ,解得53=n由抛物线的对称轴为直线x=2,可知抛物线经过点(4,3)点(4,3)不在线段BC 上,此时抛物线与线段BC 有一个公共点B ------5分如果抛物线y=n(x-2)2+ n 经过点C (3,3),则3=2n ,解得23=n 由抛物线的对称轴为直线x=2,可知抛物线经过点(1,3)点(1,3)在线段BC 上,此时抛物线与线段BC 有两个公共点 ------6分综上所述,当53≤n <23或n=3时,抛物线与线段BC 有一个公共点. ------7分 顺义27.解:(1)由抛物线的表达式知,点C (0,8),即 OC =8;Rt △OBC 中,OB =OC tan ∠ABC =8×12=4, 则点B (4,0). ………………………… 1分 将A 、B 的坐标代入抛物线的表达式中,得:428016480a b a b -+=⎧⎨++=⎩,解得12a b =-⎧⎨=⎩, ∴抛物线的表达式为228y x x =-++.…… 3分∵2228(1)9y x x x =-++=--+ ,∴抛物线的顶点坐标为D (1,9). ………… 4分(2)设直线CD 的表达式为y =kx +8,∵点D (1,9),∴直线CD 表达式为y =x +8.∵过点A 、B 作x 轴的垂线,交直线CD 于点E 、F , 可得:E (-2,6),F (4,12). ………… 6分 设抛物线向上平移m 个单位长度(m >0),则抛物线的表达式为:2(1)9y x m =--++;∵抛物线与线段EF (含线段端点)只有1个公共点,∴m 的取值范围是6<m ≤12. ………………………………………… 7分平谷27.解:(1)令y =0,得x =1.∴点A 的坐标为(1,0). ························································································· 1 ∵点A 关于直线x =﹣1对称点为点C , ∴点C 的坐标为(﹣3,0). ··························· 2 (2)令x =0,得y =3.∴点B 的坐标为(0,3). ∵抛物线经过点B , ∴﹣3m =3,解得m =﹣1.·····························3 ∵抛物线经过点A , ∴m+n ﹣3m =0,解得n =﹣2.∴抛物线表达式为223y x x =--+. (4)(3)由题意可知,a <0.根据抛物线的对称性,当抛物线经过(﹣1,0)时,开口最小,a =﹣3, ············ 5 此时抛物线顶点在y 轴上,不符合题意.当抛物线经过(﹣3,0)时,开口最大,a =﹣1. (6)结合函数图像可知,a 的取值范围为31a -<≤-. (7)门头沟27. (1)()()3a 1113=+- ……………1分解得:34a =-………………………2分 6个 ………………………3分(2)由()()y a 13x x =+-配方或变形()()()2y a 13=14x x a x a =+--- .所以顶点P 的坐标为(1,-4a ). ……………………………………5分 (3) a <0时, ; 6分a >0时, 7分2132a --≤<12≤(2)∵ 抛物线2222y mx m x =-+与y 轴交于A 点,∴ A (0,2).------------------------------------------------------------------------------------- 3分 ∵ AB ∥x 轴,B 点在直线x =4上,∴ B (4,2),抛物线的对称轴为直线x =2. --------------------------------------------- 4分 ∴ m =2.∴ 抛物线的表达式为2282y x x =-+. --------------------------------------------------- 5分 (3)当0m >时,如图1.∵()02A ,,∴要使04P x ≤≤时,始终满足2P y ≤,只需使抛物线2222y mx m x =-+的对称轴与直线x=2重合或在直线x=2的右侧.∴2m ≥. -------------------------------------------- 6分当0m <时,如图2,0m <时,2P y ≤恒成立. ------------------- 7分综上所述,0m <或2m ≥.丰台27. 解:(1)∵抛物线()12212422---=-+-=m x m m mx mx y ,∴对称轴为x = 2.…………………………………2分(2)①∵抛物线是轴对称图形,∴点A 点B 关于x = 2轴对称, ∵A (﹣1,-2) ,∴B (5,-2).……………………………………………3分 ②∵抛物线()12212422---=-+-=m x m m mx mx y ,∴顶点D (2,﹣2m -1). …………………………………………………4分∵直线AB 与y 轴交点的纵坐标为-1,∴C (2,-1). ……………………………………………………………5分∵顶点D 到点C 的距离大于2,∴﹣2m ﹣1 +1 > 2或﹣1+ 2m +1 > 2,∴m <﹣1或m > 1.………………………………………………………… 7分石景山27.解:(1)解法一:图1图2∵2443y ax ax a =-+-2(2)3a x =--, ………………………………… 1分∴顶点A 的坐标为(2,3)-. ………………………………… 2分 解法二: ∵244(43)(4)2,324a a a a aa-⨯----==-,∴顶点A 的坐标为(2,3)-. ………………………………… 2分(2)①当2a =时,抛物线为2285y x x =-+,如图. 令5y =,得22855x x -+=, ……………… 3分解得,1204x x ==,.……………… 4分∴线段BC 的长为4. ……………… 5分② 80<9a ≤. ……………… 7分通州27. 解:(1)D (m ,-m +2) ……………………..(2(2)m =3或m =1 ……………………..(5分)(3)1≤m ≤3 ……………………..(7分) 怀柔27.解:(1)令y=0. ∴0122=-++a ax ax .∵△=)1(442--a a a=4a,……………………………1分 ∵a>0,∴4a>0.∴△>0.∴抛物线与x 轴有两个交点. …………………2分 (2)212ax a=-=-.……………………………3分 把x=-1代入122-++=a ax ax y .∴y=-1.∴顶点坐标(-1,-1).…………………4分 (3)①把(1,2)代入122-++=a ax ax y . ∴43=a .……………………………5分 ②把(1,6)代入122-++=a ax axy . ∴74a =.……………………………6分 ∴由图象可知:43≤a ≤74.……………………………7分 y xB x =2–1–2–3–4–512345–1–2–3–41234567CA (2,-3)O。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数的图象和性质重点落实什么能力?2019北京中考26题重点题型------------ 必须会!!!!!!例1 在平面直角坐标系xOy 中,抛物线2443(0)y ax ax a a =-+-≠的顶点为A .(1)求顶点A 的坐标;(2)过点(0,5)且平行于x 轴的直线l ,与抛物线2443(0)y ax ax a a =-+-≠交于B ,C 两点.①当2a =时,求线段BC 的长;②当线段BC 的长不小于6时,直接写出a 的取值范围.代数变形能力:2443(0)y ax ax a a =-+-≠通过配方转化为2(2)(0)3y a x a =-≠- 几何作图能力:考点: 二次函数的性质 分析:(1)配方得到y=ax2-4ax+4a-3=a (x-2)2-3,于是得到结论;(2)①当a=2时,抛物线为y=2x2-8x+5,如图.令y=5得到2x2-8x+5=5,解方程即可得到结论;②令y=5得到ax2-4ax+4a-3=5,解方程即可得到结论. 解答:(1)∵y =ax 2−4ax +4a −3=a (x −2)2−3, ∴顶点A 的坐标为(2,−3);(2)①当a =2时,抛物线为y =2x 2−8x +5,如图。
令y =5,得 2x 2−8x +5=5,解得,x 1=0,x 2=4, ∴a2a4线段BC 的长为4, ②令y =5,得ax 2−4ax +4a −3=5, 解得,x 1=a a a 222 ,x 2=aaa 22-2∴线段BC 的长为a2a4 ∵线段BC 的长不小于6,∴a2a4≥6,∴0<a ≤8/9. 例2 已知:二次函数1422-++=m x x y ,与x 轴的公共点为A ,B .(1)如果A 与B 重合,求m 的值; (2)横、纵坐标都是整数的点叫做整点; ①当1=m 时,求线段AB 上整点的个数; ②若设抛物线在点A ,B 之间的部分与线段AB所围成的区域内(包括边界)整点的个数为n ,当1<<8n 时,结合函数的图象,求m 的取值范围.代数变形能力:1422-++=m x x y 通过配方转化为22(1)3y x m =++-*考点:抛物线与x 轴的交点,二次函数图象上点的坐标特征 分析:(1)当A 、B 重合时,抛物线与x 轴只有一个交点,此时△=0,从可求出m 的值. (2)①m=1代入抛物线解析式,然后求出该抛物线与x 轴的两个交点的坐标,从而可求出线段AB 上的整点;②根据二次函数表达式可以用带m 表达出两根之差,根据1<两根之差<8,即可解题. 解答:(1)∵A 与B 重合,∴二次函数y =2x 2+4x +m −1的图象与x 轴只有一个公共点, ∴方程2x 2+4x +m −1=0有两个相等的实数根, ∴△=42−4×2(m −1)=24−8m =0, 解得:m =3.∴如果A 与B 重合,m 的值为3.(2)①当m =1时,原二次函数为y =2x 2+4x +m −1=2x 2+4x , 令y =2x 2+4x =0,则x 1=0,x 2=−2, ∴线段AB 上的整点有(−2,0)、(−1,0)和(0,0). 故当m =1时,线段AB 上整点的个数有3个。
②由点A ,B 之间的部分与线段AB 所围成的区域内(包括边界)可用以下不等式表示 (3)如图,y =2x 2+4x +m −1=0时,二次函数求根公式可得aacb x b242-±-=;∴两个根之差为)1(242422--=-m aacb;∵整点的个数为n ,当1<n <8时,1<)(1-m 2-4<8;解得:0<m ≤2例3 在平面直角坐标系xOy 中,抛物线()01242≠-+-=m m mx mx y 与平行于x 轴的一条直线交于A ,B 两点. (1)求抛物线的对称轴;(2)如果点A 的坐标是(-1,-2),求点B 的坐标;(3)抛物线的对称轴交直线AB 于点C ,如果直线AB 与y 轴交点的纵坐标为-1,且抛物线顶点D 到点C 的距离大于2,求m 的取值范围.代数变形能力:()01242≠-+-=m m mx mx y 通过配方转化为(y m x =-几何作图能力:考点:二次函数的性质,二次函数图象上点的坐标特征分析:(1)化成顶点式即可求得;(2)根据轴对称的特点求得即可;(3)求得顶点坐标,根据题意求得C的坐标,分两种情况表示出顶点D到点C的距离,列出不等式,解不等式即可求得.解答:(1)∵抛物线y=mx2−4mx+2m−1=m(x−2)2−2m−1,∴对称轴为x=2;(2)∵抛物线是轴对称图形,∴点A点B关于x=2轴对称,∵A(−1,−2),∴B(5,−2).(3)∵抛物线y=mx2−4mx+2m−1=m(x−2)2−2m−1,∴顶点D(2,−2m−1).∵直线AB与y轴交点的纵坐标为−1,∴C(2,−1).∵顶点D到点C的距离大于2,∴−2m−1+1>2或−1+2m+1>2,∴m<−1或m>1.l例4 在平面直角坐标系xOy 中,直线32-=x y 与y 轴交于点A ,点A 与点B 关于x 轴对称,过点B 作y 轴的垂线l ,直线l 与直线32-=x y 交于点C. (1)求点C 的坐标;(2)如果抛物线n nx nx y 542+-= (n >0)与线段BC 有唯一 公共点,求n 的取值范围.代数变形能力:n nx nx y 542+-= (n >0)通过配方转化为2(2)y n x n =-+(n >0)考点:二次函数的性质,一次函数的性质分析:(1)根据题意分别求出点A、B、C的坐标;(2)求得抛物线的对称轴,顶点的坐标;再分类讨论①当n>3时;②当n=3时;③当0<n<3时,抛物线y=nx2-4nx+5n(n>0)与线段BC有唯一公共点,求n的取值范围.解答:(1)∵直线y=2x−3与y轴交于点A(0,−3),∴点A关于x轴的对称点B(0,3),l为直线y=3,∵直线y=2x−3与直线l交于点C,∴点C坐标为(3,3),(2)∵抛物线y=nx2−4nx+5n(n>0),∴y=nx2−4nx+4n+n=n(x−2)2+n(n>0)∴抛物线的对称轴为直线x=2,顶点坐标为(2,n),∵点B(0,3),点C(3,3),①当n>3时,抛物线的最小值为n>3,与线段BC无公共点;②当n=3时,抛物线的顶点为(2,3),在线段BC上,此时抛物线与线段BC有一个公共点;③当0<n<3时,抛物线最小值为n,与线段BC有两个公共点;如果抛物线y=n(x−2)2+n经过点B,则3=5n,解得n=3/5,由抛物线的对称轴为直线x=2,可知抛物线经过点(4,3),点(4,3)不在线段BC上,此时抛物线与线段BC有一个公共点B;如果抛物线y=n(x−2)2+n经过点C,则3=2n,解得n=3/2,由抛物线的对称轴为直线x=2,可知抛物线经过点(1,3),点(1,3)在线段BC上,此时抛物线与线段BC有两个公共点;综上所述,当3/5≤n<3/2或n=3时,抛物线与线段BC有一个公共点。
例5 在平面直角坐标系xOy中,抛物线y=mx2-2mx+2(m≠0)与y轴交于点A,其对称轴与x 轴交于点B.(2)点C,D在x轴上(点C在点D的左侧),且与点B的距离都为2,若该抛物线与线段CD有两个公共点,结合函数的图象,求m的取值范围.代数变形能力:y=mx2-2mx+2(m≠0)通过配方转化为2(1)2=-+-y m x m几何作图能力:考点:抛物线与x轴的交点分析:(1)求出x=0时y的值与y=0时x的值即可得答案;(2)分m>0和m<0两种情况,结合函数图象可得.解答:(1)由题意,当x=0时,y=2.∴A(0,2).∵y=mx2−2mx+2=m(x−1)2+2−m,∴对称轴为直线x=1.∴B(1,0).(2)由题意,C(−1,0),D(3,0).①当m>0时,结合函数图象可知,满足题意的抛物线的顶点须在x轴下方,即2−m<0.∴m>2.②当m<0时,过C(−1,0)的抛物线的顶点为E(1,8/3).结合函数图象可知,满足条件的抛物线的顶点须在点E上方或与点E重合,即2−m≥8/3.∴m≤−2/3.综上所述,m的取值范围为m>2或m≤−2/3.例6 在平面直角坐标系xOy 中,抛物线2222+-+-=m m mx x y 的顶点为D.线段AB 的两个端点分别为A (-3,m ),B (1,m ). (1)求点D 的坐标(用含m 的代数式表示); (2)若该抛物线经过点B (1,m ),求m 的值;(3)若线段AB 与该抛物线只有一个公共点,结合函数的图象,求m 的取值范围.代数变形能力:2222+-+-=m m mx x y 通过配方转化为2()2y x m m =-+- 几何作图能力:考点:二次函数的性质分析:(1)由y=x2-2mx+m2-m+2=(x-m)2-m+2,于是得到结论;(2)由于抛物线经过点B(1,m),得方程于是得到结论;(3)根据题意得到线段AB:y=m(-3≤x≤1),与y=x2-2mx+m2-m+2联立得到x2-2mx+m2-2m+2=0,令y′=x2-2mx+m2-2m+2,若抛物线y=x2-2mx+m2-m+2与线段AB只有1个公共点,于是得到结论.解答:(1)∵y=x2−2mx+m2−m+2=(x−m)2−m+2,∴D(m,−m+2);(2)∵抛物线经过点B(1,m),∴m=1−2m+m2−m+2,解得:m=3或m=1;(3)根据题意:线段AB:y=m(−3⩽x⩽1),与y=x2−2mx+m2−m+2联立得:x2−2mx+m2−2m+2=0,令y′=x2−2mx+m2−2m+2,若抛物线y=x2−2mx+m2−m+2与线段AB只有1个公共点,即函数y′在−3⩽x⩽1范围内只有一个零点,当x=−3时,y′=m2+4m+11<0,∵△>0,∴此种情况不存在,当x=1时,y′=m2+4m+11<0,解得1<m<3.例7 在平面直角坐标系xOy 中,抛物线223(0)y ax ax a a =--≠与x 轴交于A ,B 两点,点A 在点B 的左侧,抛物线的顶点为P ,规定:抛物线与x 轴围成的封闭区域称为“G 区域”(不包含边界).(1)如果该抛物线经过(1, 3),求a 的值,并指出此时“G 区域”有______个整数点;(整数点就是横纵坐标均为整数的点)(2)求抛物线223(0)y ax ax a a =--≠的顶点P 的坐标(用含a 的代数式表示); (3)如果G 区域中仅有4个整数点时,直接写出a 的取值范围.代数变形能力:223(0)y ax ax a a =--≠通过因式分解转化为()()13(0)y a x x a =+-≠ 几何作图能力:备用图考点:抛物线与x轴的交点,二次函数的性质分析:(1)将点(1,3)代入抛物线解析式中,即可求出a值,再分析当x=0、1、2时,在“G 区域”内整数点的坐标,由此即可得出结论;(2)利用配方法将抛物线的解析式变形为顶点式,由此即可得出顶点P的坐标;(3)分a<0及a>0两种情况考虑,依照题意画出图形,结合图形找出关于a的不等式组,解之即可得出结论.解答:(1)∵抛物线y=a(x+1)(x−3)经过(1,3),∴3=a(1+1)(1−3),解得:a=−3/4.当y=−3/4(x+1)(x−3)=0时,x1=−1,x2=3,∴点A(−1,0),点B(3,0).当x=0时,y=−3/4(x+1)(x−3)=9/4,∴(0,1)、(0,2)两个整数点在“G区域”;当x=1时,y=−3/4(x+1)(x−3)=3,∴(1,1)、(1,2)两个整数点在“G区域”;当x=2时,y=−3/4(x+1)(x−3)=9/4,∴(2,1)、(2,2)两个整数点在“G区域”。