彩色与多光谱图像处理
多光谱图像
多光谱图像图像理解是在数字图像处理、计算机技术和人工智能不断发展的基础上产生的一种模拟人的图像识别机理的理论,它与计算机视觉理论有许多共同的部分,或者说有许多交叉的部分,它与人工智能、专家系统也有着一些共同的地方。
图像理解主要包括三个层次,其低层为一般图像处理;中层为图像中特征的符号化组织过程;高层为抽象的符号推理。
因此,计算机视觉主要与其低层,人工智能主要与其高层产生重叠。
目前,就图像理解这一理论的研究探讨有了专门的期刊;有关大学设置了专门的课程;有关专家学者写了专著。
比如国防科技大学的王润生教授就系统地介绍和总结了图像理解的基本理论、方法和国内外研究现状等〔1〕。
这一方面的基础理论和方法引起了有关学者和科研人员的注意和浓厚兴趣,他们结合自己的工作领域,进行了更深入的研究。
应当说,有关的理论和方法已经被极大地丰富了。
比如,有关图像纹理分析这方面的论文、论著数不胜数,其中,有关新理论新方法(如分形分维方法)的应用,更为这一理论注入了新内容;再如,我国数字摄影测量界已经将“双目”图像的分析理论和方法推向了具有世界先进水平的境界。
尽管如此,图像理解的理论与方法仍有严重不足之处。
这并不是指这一理论尚未成熟,而是指它的理论与方法还存在着片面性,还没有成为一个完整的体系。
因为图像理解的对象是各类图像,并没有限定是某一类图像,那么,现在的问题就是遥感图像理解(主要是多光谱图像理解)的理论十分贫乏。
以人类生存环境及地球资源为主要研究目标获取的各种遥感图像已经得到越来越广泛的应用,丰富的光谱信息及其在时间空间域的分辨率的提高,配合着地理信息系统技术,全球定位系统技术和因特网技术的发展和普及,为图像信息的广泛应用创造了空前繁荣的局面,成为信息时代的显著特征,在信息高速公路和数字地球战略中占据着极其重要的地位。
然而,现有的图像理解理论和方法在如此丰富的信息面前却显得苍白无力。
应当说,面对丰富的遥感信息,人们一直在研究如何处理和应用,有关这方面的理论和方法的研究成果也是不少的,但似乎并没有从图像理解的角度加以总结、提练,有的方面甚至缺乏系统的研究。
数字图像处理课后参考答案
数字图像处理第一章1、1解释术语(2) 数字图像:为了便于用计算机对图像进行处理,通过将二维连续(模拟)图像在空间上离散化,也即采样,并同时将二维连续图像的幅值等间隔的划分成多个等级(层次)也即均匀量化,以此来用二维数字阵列并表示其中各个像素的空间位置与每个像素的灰度级数的图像形式称为数字图像。
(3)图像处理:就是指对图像信息进行加工以满足人的视觉或应用需求的行为。
1、7 包括图像变化、图像增强、图像恢复、图像压缩编码、图像的特征提取、形态学图像处理方法等。
彩色图像、多光谱图像与高光谱图像的处理技术沿用了前述的基本图像处理技术,也发展除了一些特有的图像处理技术与方法。
1、8基本思路就是,或简单地突出图像中感兴趣的特征,或想方法显现图像中那些模糊了的细节,以使图像更清晰地被显示或更适合于人或及其的处理与分析。
1、9基本思路就是,从图像退化的数学或概率模型出发,研究改进图像的外观,从而使恢复以后的图像尽可能地反映原始图像的本来面目,从而获得与景物真实面貌相像的图像。
1、10基本思路就是,,在不损失图像质量或少损失图像质量的前提下,尽可能的减少图像的存储量,以满足图像存储与实时传输的应用需求。
1、11基本思路就是,通过数学方法与图像变换算法对图像的某种变换,以便简化图像进一步处理过程,或在进一步的图像处理中获得更好的处理效果。
1、12基本目的就是,找出便于区分与描述一幅图像中背景与目标的方法,以方便图像中感兴趣的目标的提取与描述。
第二章2、1解释下列术语(18)空间分辨率:定义为单位距离内可分辨的最少黑白线对的数目,用于表示图像中可分辨的最小细节,主要取决于采样间隔值的大小。
(19)灰度分辨率:就是指在灰度级别中可分辨的最小变化,通常把灰度级数L称为图像的灰度级分辨率。
(20)像素的4邻域:对于图像中位于(x,y)的像素p来说,与其水平相邻与垂直相邻的4个像素称为该像素的4邻域像素,她们的坐标分别为(x-1,y)(x,y-1)(x,y+1)(x+1,y)。
图像颜色增强处理——彩色变换实验报告
图像颜色增强处理(彩色变换)实验专题讲座课程:遥感科学与图像处理实验:图像颜色增强处理(彩色变换)姓名:学号:指导老师:一、实验名称图像颜色增强处理(彩色变换)二、实验目的对图像进行彩色变换;观察图像在不同色彩空间之间相互转换的结果异同,理解影像光谱增强中彩色变换的原理及其增强效果,将图象转换成一种更适合于人或机器进行分析处理的形式,提高图像的使用价值。
三、实验原理光谱增强是基于多光谱数据对波段进行变换达到图像增强处理,采用一系列技术去改善图象的视觉效果,或将图象转换成一种更适合于人或机器进行分析处理的形式。
有选择地突出某些对人或机器分析有意义的信息,抑制无用信息,提高图象的使用价值。
在使用单波段图像时,由于成像系统动态范围的限制,地物显示的亮度值差异较小。
又由于人眼对黑白图像亮度级的分辨能力仅有10~20级左右,而对色彩和强度的分辨力可达100多种,因此将黑白图像转换成彩色图像可使地物的差别易于分辨[1,2]。
1. 彩色合成(color composite)在通过滤光片、衍射光栅等分光系统而获得的多波段图像中选出三个波段,分别赋予三原色进行合成。
根据各波段的赋色不同,可以得到不同的彩色合成图像。
1)图像主成分变换融合主成分变换融合[2]是建立在图像统计基础上的多维线性变换,具有方差信息浓缩、数据量压缩的作用, 可以更准确地揭示多波段数据结构内部的遥感信息, 常常是以高空间分辨率数据代替多波段数据变换以后的第一主成分来达到融合的目的。
具体过程是: a. 对多波段遥感数据进行主成分变换( K- L 变换) ; b. 以高空间分辨率遥感数据替代变换以后的第一主成分; c. 进行主成分逆变换,生成具有高空间分辨率的多波段融合图像。
2) 真彩色合成在通过蓝、绿、红三原色的滤光片而拍摄的同一地物的三张图像上,若使用同样的三原色进行合成,可得到接近天然色的颜色,此方法称为真彩色合成。
3) 假彩色合成由于多波段摄影中,一副图像多不是三原色的波长范围内获得的,如采用人眼看不见的红外波段等,因此由这些图像所进行的彩色合成称假彩色合成。
第四章 遥感图像处理—数字图像增强
同一景物不同波段图像之间的运算—识别地物
图像的差值运算有利于目标与背景反差较小 的信息提取。 如在红光波段,植被和水体难以区 分,在红外波段,植被和土壤难以区分,通过相 减,可以有效的区分出三种地物
2、比值运算 两幅同样行、列数的图像,对应像元的亮度值相除 (除数不为0)就是比值运算,即:
真彩色合成 假彩色合成
彩色合成的原理图
①真彩色合成
红光波段赋成红 绿光波段赋成绿 蓝光波段赋成蓝
真彩色合成 红光波段赋成红
真彩色合成 红光波段赋成红 绿光波段赋成绿
真彩色合成 红光波段赋成红 绿光波段赋成绿 蓝光波段赋成蓝
②假彩色合成 假彩色合成 近红外波段赋成红 红光波段赋成绿 绿光波段赋成蓝
1 图像卷积运算
数字图像的局部
模板
z1 z2 z3
z4 z5 z6 z7 z8 z9
w1 w2 w3 w4 w5 w6 w7 w8 w9
1/9
1/9 1/9
1/9 1/9 1/9 1/9 1/9 1/9
Replace with R
= w1z1 + w2z2 + ….. +w9z9
模板按像元依次向右移动,而后换行,直到整幅图 像全部处理完为止
对于亮点噪音,用中值滤波好
带有椒盐噪声的ikonos图像
中值滤波后的图像
均值平滑后的图像
3
图像锐化
(1)图像锐化的目的是突出图像中景物的边缘、线状目 标或某些亮度变化率大的部分。 (2)边缘或轮廓通常位于灰度突变或不连续的地方,具
有一阶微分最大值和二阶微分为0的特点;
锐化的方法很多,在此只介绍常用的几种:
数字图像处理(许录平着)课后答案(全)
+a
+b
−b +a −a
h ( x, y )e − jux e − jvy dxdy e − jux dx ∫ e − jvy dy
−b
jua
+b
− e e − jvb − e jvb − ju − jv sin ua sin vb = 4E uv =E e
(3) H (u, v ) =
− jua
图像通信
图像输入
处理和分析
图像输出
图像存储
各个模块的作用分别为: 图像输入模块:图像输入也称图像采集或图像数字化,它是利用图像采集设备(如数码照相机、数 码摄像机等)来获取数字图像,或通过数字化设备(如图像扫描仪)将要处理的连续图像转换成适于计 算机处理的数字图像。 图像存储模块:主要用来存储图像信息。 图像输出模块:将处理前后的图像显示出来或将处理结果永久保存。 图像通信模块:对图像信息进行传输或通信。 图像处理与分析模块:数字图像处理与分析模块包括处理算法、实现软件和数字计算机,以完成图 像信息处理的所有功能。
《数字图像处理》各章要求及必做题参考答案
第一章要求 了解图像及图像处理的概念、图像的表达方法、图像处理系统的构成及数字图像处理技术的应用。 必做题及参考答案 1.4 请说明图像数学表达式 像? 解答:
I = f (x, y, z, λ , t,) 图像数学表达式 中, (x,y,z)是空间坐标,λ是波长,t 是时间,I 是光点(x,y,z) 的强度(幅度) 。 上式表示一幅运动 (t) 的、彩色/多光谱 (λ) 的、立体(x,y,z)图像。
⎡10 ⎢0 则 F1 = H 4 f1 H 4 = ⎢ ⎢0 ⎢ ⎣0 ⎡16 ⎢0 F3 = H 4 f 3 H 4 = ⎢ ⎢0 ⎢ ⎣0
数字图像处理第六章色彩模型与彩色处理课件
Chapter 6 Color Image Processing
6.1 彩色基础
在颜料或着色剂中 ,原色的定义是这样 的:
白:减去一种原色 , 反射或传输另两种 原色。故其原色是: 深红、青、黄。而二 次色是R、G、B。如 图6.4所示。
Chapter 6 Color Image Processing
Chapter 6 Color Image Processing
6.2 彩色模型
6.2.1 RGB彩色模型
下面介绍所谓 全RGB彩色子集。
Chapter 6
Color Image Processing
6.2 彩色模型
Chapter 6 Color Image Processing
6.2 彩色模型
6.3 伪彩色处理
6.3 伪彩色处理 给特定的灰度值赋以彩色。伪彩色的 目的是为了人眼观察和解释图像中的目标。
Chapter 6 Color Image Processing
6.3 伪彩色处理
6.3.1 强度分层
参见图6.18,图像被看成三维函数。
Chapter 6 Color Image Processing
6.3.2 灰度级到 彩色转换
例6.5是一突出 装在行李内的爆炸物 的伪彩色应用。
Chapter 6 Color Image Processing
6.3 伪彩色处理
6.3.2 灰度级到彩 色转换
例6.5是一突出装 在行李内的爆炸物的伪彩 色应用。
Chapter 6 Color Image Processing
6.3 伪彩色处理
Chapter 6 Color Image Processing
6.3 伪彩色处理
rs解释
可见光和近红外地物反射光谱测试的作用:①传感器波段的选择、验证、评价的依据;②建立地面、航空和航天遥感数据的定量关系;③将地物光谱数据直接与地物特征进行相关分析并建立应用模型
遥感器:遥感器又称为传感器,是接收、记录目标电磁波特性的仪器。常见的传感器有摄影机、扫描仪、雷达、辐射计、散射计等。
遥感数字图像:以数字形式表示的遥感影像,便于计算机存储、处理和使用,常用多维矩阵来表示。
遥感数字图像的计算机分类:根据地物的分类特征建立统计识别模式,利用建立的识别模式或算法对遥感数字图像进行类型识别的过程,以实现地学专题信息的智能化获取。
扫描成像:依靠探测元件和扫描镜对目标地物以瞬时视场为单位进行逐点、逐行取样,以得到目标地物电磁波特性信息,形成一定谱段图像的成像方式。
摄影成像:依靠光学镜头及放置在焦平面的感光记录介质(胶片or CCD)来记录物体的影像的成像方式
水体的光谱特征:水面性质、水体中悬浮物的性质和含量、水深水底的性质
空间滤波:通过像元与其周围相邻像元的关系,采用空间域的邻域处理方法(开窗卷积运算),以重点突出图像上某些特征的图像处理方法。常用算法:平滑、锐化。平滑的效果:去除尖锐“噪声”、平缓图像亮度。锐化的效果:突出边缘和线状目标
气象卫星和海洋遥感的特点:【气象卫星】的特点: 高时间分辨率(短周期); 扫描范围广、探测面积大;数据连续、实时性强;成本低廉;【海洋遥感】需高空平台,以便大面积同步覆盖观测;以微波为主,实现全天候全天时实时观测;海面实测资料校正,协同发挥作用 。
多光谱相机谱线与图像处理流程
多光谱相机谱线与图像处理流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!多光谱相机是一种能够同时获取多个波段光谱信息的相机,它可以在不同的光谱波段上对目标进行成像,从而提供更丰富的信息。
实验5多光谱彩色合成
实验5 多光谱图像合成一、实习目的和要求1、了解彩色的基本特性和相互关系。
2、掌握三原色及其补色,掌握加色法及其减色法。
3、认识彩色正负像片的产生过程。
4、彩色合成原理二、材料和工具卫星图像、计算机,遥感图像处理软件等。
三、原理与方法遥感图像光学处理的目的是通过光学手段增强目标地物的影像差异或影响特征,将目标地物从环境背景信息中突出出来。
1、色度学的基础知识(1)颜色与视觉:在电磁波谱中,波长在0.38~76um范围的电磁波能够引起视觉反应,产生色觉的差异。
物体的颜色取决于两方面的因素,对发光体而言,物体的颜色由其发出的光所具有的波长而定。
常见的地物多为非发光体,其颜色取决于地物对可见光各波段的吸收、反射和透射等特性。
对不透明地物而言,其颜色取决于地物对可见光的吸收、反射特性。
地物对可见光各波段具有选择性的吸收和反射,则产生了彩色;地物对可见光各波段不具有选择性的吸收和反射,即对各波段具有等量吸收和反射,则产生非彩色。
(2)彩色的基本特性:明度、色调和饱和度为彩色的基本特性。
明度是指彩色的明亮程度,是人眼对光源或物体明亮程度的感觉,彩色光亮度越高,人眼感觉越明亮,即有较高的明度。
明度的高低取决于光源光强及物体表面对光的的反射率。
色调是色彩彼此相互区分的特性,色调取决于光源的光谱组成和物体表面的光谱反射特性。
饱和度是彩色的纯洁性,取决于物体表面的反射光谱的选择性程度,反射光谱越窄,即光谱的选择性越强,彩色的饱和度就越高。
非彩色,即黑白色只用明度来描述,不使用色调和饱和度。
(3)颜色立体:下左图是表示明度、色调和饱和度三者之间关系的理想模型。
模型呈枣核形,中间垂直轴代表明度,从底端到顶端,由黑到灰再到白,明度逐渐递增。
中间水平面的圆周代表色调,顺时针方向由红、黄、绿、蓝到紫逐步过渡。
圆周上的半径大小代表饱和度,半径最大饱和度最大,沿半径向圆心移动时饱和度逐渐降低,到了中心便成了中灰色。
如果离开水平圆周向上、下(白或黑)的方向移动,也说明饱和度降低。
全色影像和多光谱影像融合原理
全色影像和多光谱影像融合是指将全色影像(仅包含黑白灰度信息)和多光谱影像(包含多个波段的彩色信息)进行合并,得到具有高空间分辨率和丰富光谱信息的影像。
其原理基于以下步骤:
预处理:对全色影像和多光谱影像进行预处理。
这可能包括去噪、辐射校正、几何校正等。
分辨率匹配:由于全色影像通常具有较高的空间分辨率,而多光谱影像具有较低的空间分辨率,需要将它们的空间分辨率匹配。
可以使用插值等技术对多光谱影像进行上采样,使其与全色影像具有一致的分辨率。
融合算法:融合算法用于将全色影像和多光谱影像合并成一幅高分辨率彩色影像。
常用的融合方法包括:基于变换的方法(如基于小波变换、纹理合成等)、基于统计的方法(如主成分分析、拉普拉斯金字塔变换等)以及基于特征的方法(如IHS变换、HSV变换等)。
增强和调整:对融合后的影像进行增强和调整,以达到更好的视觉效果。
这可能包括对比度调整、色彩平衡、锐化等操作。
通过全色影像和多光谱影像的融合,可以获得既具有高空间分辨率又具有丰富光谱信息的影像,提高了遥感图像的解译能力和应用效果。
常见的应用包括土地利用分类、环境监测、资源调查等。
第九章彩色与多光谱图像处理解析
9.1.2 CIE色度图(chromaticity diagram)
◆纯色(可见光谱中包含的一系列单色光)是全饱和 的,随着白光的加入饱和度会逐渐降低,也即变成欠饱和。
◆色调与饱和度两者合起来称为色度(chromaticity), 颜色用亮度和色度共同表示。
9.1.2 CIE色度图
2、CIE色度图
色调(hue)及饱和度(saturation)表示颜色的特性。
9.1.2 CIE色度图
◆在彩色图像中: 亮度反映了该颜色的明亮程度。颜色中掺入的白色越 多亮度就越大,掺入的黑色越多亮度就越小。 色调用于描述纯色(如纯黄色、纯红色),反映了观 察者接收到的主要颜色。 饱和度给出一种纯色被白光稀释的程度的度量,与加 入到纯色(色调)中的白光成正比(由于加入了白光,观 察者接收到的不再是某种纯色,而是反应该纯色属性的混 合颜色)。
设f(x,y)为输入彩色图像,彩色分量的量化级别 为256,则反色图像g(x,y)与输入图像f(x,y)的R、G、 B分量之间的关系可表示为:
gR(x, y) 255 fR(x, y) gG(x, y) 255 fG(x, y) gB(x, y) 255 fB(x, y)
(9.23)
9.3.1 反色变换
◆ 相减混色的基色为青、品红色、黄。
白色 – 红色 = 青色 白色 – 绿色 = 品红色 白色 – 蓝色 = 黄色 白色 – 绿色 – 红色 – 蓝色 = 黑色
(9.3 a) (9.3 b) (9.3 c) (9.3 d)
9.1.1 三基色原理
◆对不同颜料配色过程的理解:
品红色颜料+黄色颜料=红色颜料=>白色–绿色–蓝色 青色颜料+黄色颜料=绿色颜料 => 白色–红色–蓝色 品红色颜料+青色颜料=蓝色颜料=>白色–绿色–红色 品红色颜料+青色颜料+黄色颜料=黑色颜料
《计算机视觉与空间技术》教学大纲
《计算机视觉与空间技术》教学大纲一、课程基本信息1.课程代码:211281002.课程中文名称:计算机视觉与空间技术课程英文名称:Computer vision and space technology3.面向对象:信息工程专业4.开课学院(课部)、系(中心、室):信息工程学院信息工程系5.总学时数:40讲课学时数:40,实验学时数:06.学分数:2.57.授课语种:中文,考试语种:中文8.教材:伯特霍尔德·霍恩,王亮,蒋欣兰,机器视觉,中国青年出版社2014年8月1日二、课程内容简介《计算机视觉与空间技术》是一门涉及多个交叉学科领域的课程。
本课程侧重于图像理解和计算机视觉中的基本理论,主要对图像处理、目标识别以及计算机视觉方面的理论,及基于计算机视觉的虚拟现实、空间三维重建及可视化技术的应用进行系统介绍。
三、课程的地位、作用和教学目标计算机视觉是自二十世纪六十年代中的期迅速发展起来的一门新学科。
计算机视觉是计算机及相关设备对生物视觉的一种模拟。
主要任务就是通过对采集的图片或视频进行处理以获得相应场景的三维信息,就像人类和许多其他类生物每天所做的那样。
计算机视觉将在工农业生产,地质学,天文学,气象学,医学及军事学等等领域有着极大潜在的应用价值,所以它在国际上越来越受到重视,以及其应用前景广泛。
目标是使学生学习了本课程之后,对图像理解和计算机视觉的基本理论,尤其是图像处理的概念、基本原理以及解决问题的基本思想方法有一个较为全面的了解和领会;学习计算机视觉的基本理论和技术,了解各种智能图像处理与计算机视觉技术的相关应用;具备解决智能化检测与识别、控制等应用问题的初步能力,为以后从事模式识别、基于CV的空间三维重建、虚拟现实、多媒体技术等领域的研究与开发工作打下扎实的基础。
四、与本课程相联系的其他课程为了学好本课程,学生应先修:高等数学、概率论、离散数学;高级语言程序设计、面向对象程序设计、数据结构、算法与分析等课程、信号与系统、数字信号处理等课程。
第15章 多光谱图像融合技术与
(c)通过不同时刻的图像序列融合来检测场景/目标的 变化情况;
(d)通过融合多个二维图像产生具有立体视觉的三维 图像,可用于三维重建或立体摄影、测量等;
(e)利用来自其它传感器的图像来替代/弥补某一传感 器图像中的丢失/故障信息。
j)
ij
ij
融合结果
原始微光
原始红外
加权平均
基于Laplace金字塔分解
融合结果
原始微光
原始红外
基于低通比率金字塔分解
基于小波变换
融合结果
4. 彩色图像融合
(1) 直接映射法 (2) TNO融合法 (3)MIT融合法 (4) 基于空间色彩传递的图像融合方法 (5)基于空间色彩传递的图像融合方法
多光谱图像融合的基本方法
像素级融合 特征级融合 决策级融合
1. 加权融合
设A(x,y)和B(x,y)分别为两幅图像A和B的 像素点,经融合后得到的融合结果图像为 F(x,y),那么对源图像的像素灰度值加权 融合的过程可以表示为:
F(x, y) wA A(x, y) wBB(x, y)
第15章 多光谱图像融合技术与 系统
为什么进行图像融合?
为什么进行图像融合?
为什么进行图像融合?
为什么进行图像融合?
为什么进行图像融合?
为什么进行图像融合?
多光谱图像融合的概念
冗余信息
图像传感器A
图像传感器B
互补信息
多光谱图像融合是为了克服单一光谱成像系统 图像信息不够丰富的缺点,利用不同光谱图像 的冗余特性和互补特性重新进行信息组合,获 得能反映各种光谱特点的图像的过程。
5彩色和多光谱图像处理2教程
2. 目的:
⑴ 目标(物)之于特定彩色中,更引人注目; ⑵ 形成与人眼彩色感觉灵敏度相匹配之彩色;
1. 彩色 → 彩色
f(x,y,r)=[Rf Gf Bf] →[R G B]
三对三映射 举例:{ 红,绿,蓝} → { 绿,蓝,红} 绿,蓝,红 ⎡ Rf ⎤ R 0 0 1 ⎤ ⎡ ⎤ ⎡ ⎡ ⎤ α β γ R R ⎡ ⎤ ⎡ 1 1 1⎤ f ⎢G ⎥ = ⎢ 1 0 0 ⎥ ⎢G ⎥ ⎢G ⎥ = ⎢α β γ ⎥ ⎢G ⎥ f ⎥ ⎢ ⎢ ⎥ ⎢ ⎥ f 2 2 2 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ Bf ⎥ ⎢ ⎥ ⎢ ⎥ 0 1 0 B ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ B ⎦ ⎣α 3 β 3 γ 3 ⎦ ⎣ B f ⎦
MSS 举例
例如扫描形式成像的MSS,产生 的几何畸变主要是由于扫描镜 的非线性振动和其它一些偶然 因素引起的。在地面上影响可 达395米。
全景畸变:
2
外部因素引起的畸变
影响图像变形的外部因素包括: 1) 地球的曲率 2) 大气密度差引起的折光 3) 地形起伏 4) 地球自传 5) 遥感器轨道位置和姿态等
图象的辐射纠正方法
1)遥感器纠正:遥感器的设计 2)大气辐射纠正: 3)地形辐射纠正:需要DEM 4)地物反射模型纠正:需要和成像 时刻取得同步的地面地物光谱测量 数据。
图象的辐射纠正方法
大气纠正方法
1)以红外波段最低值校正可见光波段
(1)前提假设:大气散射的影响主要在短波波段 ,红外波段中清洁的水体几乎不受影响,反射 率值应当为0。由于散射影响,而使得水体的 反射率不等于0,推定是由于受到了天空辐射 项的影响。 (2)直方图法确定 (3)纠正方法:差值法
彩色图像复原操作步骤
envi图像处理基本操作
使用ENVI进行图像处理主要介绍利用envi进行图像处理的基本操作,主要分为图像合成、图像裁减、图像校正、图像镶嵌、图像融合、图像增强。
分辨率:空间分辨率、波谱分辨率、时间分辨率、辐射分辨率。
咱们平时所说的分辨率是指?怎么理解?1、图像合成对于多光谱影像,当我们要得到彩色影像时,需要进行图像合成,产生一个与自然界颜色一致的真彩色(假彩色)图像。
对于不同类型的影像需要不同的波段进行合成,如中巴CCD影像共5个波段,一般选择2、4、3进行合成。
(为什么不选择其他波段?重影/不是真彩色)。
SOPT5影像共7个波段,一般选择7、4、3三个波段。
操作过程以中巴资源卫星影像为例中巴资源卫星影像共有五个波段,选择2、4、3三个波段对R、G、B赋值进行赋值。
在ENVI中的操作如下:(1)file→open image file→打开2、3、4三个波段,选择RGB,分别将2、4、3赋予RGB。
(2)在#1窗口file---〉save image as-→image file。
(3)在主菜单中将合成的文件存为tiff格式(file-→save file as-→tiff/geotiff)即可得到我们需要的彩色图像。
2、图像裁减有时如果处理较大的图像比较困难,需要我们进行裁减,以方便处理。
如在上海出差时使用的P6、SOPT5,图幅太大不能直接校正需要裁减。
裁减图像,首先制作AOI文件再根据AOI进行裁减。
一般分为两种:指定范围裁减、不指定范围裁减。
不指定范围裁减在ENVI中的操作如下:(1)首先将感兴趣区存为AOI文件file→open image file打开原图像→选择IMAGE窗口菜单overlay→region of interesting选择划定感兴趣区的窗口如scroll,从ROI_Type菜单选择ROI的类型如Rectangle,在窗口中选出需要选择的区域。
在ROI窗口file→Save ROIs将感兴趣区存为ROI文件。
遥感卫星影像数据全色波段和多光谱波段介绍
北京揽宇方圆信息技术有限公司遥感卫星影像数据全色波段和多光谱波段介绍全色波段(Panchromatic band),因为是单波段,在图上显示是灰度图片。
全色遥感影象一般空间分辨率高,但无法显示地物色彩。
实际操作中,我们经常将之与多波段影象融合处理,得到既有全色影象的高分辨率,又有多波段影象的彩色信息的影象。
全色波段,一般指使用0.5微米到0.75微米左右的单波段,即从绿色往后的可见光波段。
全色遥感影象也就是对地物辐射中全色波段的影象摄取,因为是单波段,在图上显示是灰度图片。
全色遥感影象一般空间分辨率高,但无法显示地物色彩。
多波段,又叫多光谱,是指对地物辐射中多个单波段的摄取。
得到的影象数据中会有多个波段的光谱信息。
对各个不同的波段分别赋予RGB颜色将得到彩色影象。
例如,将R,G,B分别赋予R,G,B三个波段的光谱信息,合成将得到模拟真彩色图象。
多波段遥感影象可以得到地物的色彩信息,但是空间分辨率较低。
北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,而且是整合全球的遥感卫星数据资源,分发不同性能、技术应用上可以互补的多种卫星影像,包括光学、雷达卫星影像、历史遥感影像等各种卫星数据服务,各种专业应用目的的图像处理、解译、顾问服务以及基于卫星影像的各种解决方案等。
遥感卫星影像数据贯穿中国1960年至今的所有卫星影像数据,是中国遥感卫星数据资源最多的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫星影像数据服务,最大限度的保证了遥感影像数据获取的及时性和完整性。
优势:1:北京揽宇方圆国内老牌卫星数据公司,经营时间久,行业口碑相传,1800个行业用户选择的实力见证。
2:北京揽宇方圆遥感数据购买专人数据查询一对一服务,数据查询网址是卫星公司网。
3:北京揽宇方圆拥有大型正版遥感处理软件,遥感数据处理工程师有10年以上遥感处理工作经验,并有国家大型项目工作经验自主卫星数据处理软件著作权,最大限度保持遥感卫星影像处理的真实度。
多光谱图像处理与分析算法研究
多光谱图像处理与分析算法研究多光谱图像处理与分析是计算机视觉领域的一个重要研究方向。
随着遥感技术的发展以及高光谱遥感数据的广泛应用,对多光谱图像的高效处理和准确分析变得日益重要。
本文将对多光谱图像处理与分析算法进行研究,重点探讨其在农业、环境监测和医学领域的应用。
多光谱图像是指由多个波段的光谱数据组成的图像。
传统的图像处理算法主要针对彩色图像,而多光谱图像的处理则需要考虑更多的光谱信息。
针对多光谱图像的处理与分析问题,研究人员提出了许多算法和方法。
首先,多光谱图像的预处理是算法研究的重点之一。
由于原始的多光谱图像往往存在噪声和失真,预处理的目标是减少这些干扰,提高图像质量。
常见的预处理方法包括噪声滤波、图像增强和空间域频率域转换等。
噪声滤波方法可以采用均值滤波、中值滤波等,以消除图像中的噪声干扰。
图像增强方法则可以调整图像的对比度和亮度,使其更适合后续处理和分析。
空间域频率域转换方法可以通过傅里叶变换等技术将图像从空间域转换到频率域,在频率域进行滤波和增强,然后再转换回空间域。
其次,多光谱图像的特征提取是算法研究的另一个关键问题。
多光谱图像的每个波段代表了不同的光谱信息,通过对每个波段的特征提取,可以获取到更全面的图像信息。
常用的特征提取方法包括直方图均衡化、灰度共生矩阵、小波变换和主成分分析等。
直方图均衡化可以调整图像的像素分布,增强图像的对比度。
灰度共生矩阵可以表征图像中像素灰度级别之间的关系,提取纹理特征。
小波变换可以将图像分解成不同频率的子图像,从而提取出不同频率范围内的特征。
主成分分析是一种常用的降维方法,通过线性变换将多维数据转换为低维数据,从而提取出最重要的特征。
最后,多光谱图像的分类和识别是算法研究的核心目标。
通过对预处理和特征提取后的图像进行分类和识别,可以实现对不同特征的目标的准确判定。
常见的分类和识别方法包括支持向量机、人工神经网络和深度学习等。
支持向量机是一种常用的监督学习方法,通过构建一个超平面来分割不同类别的数据。
数字图像处理题库
[题目]数字图像[参考答案]为了便于用计算机对图像进行处理,通过将二维连续(模拟)图像在空间上离散化,也即采样,并同时将二维连续图像的幅值等间隔地划分成多个等级(层次),也即均匀量化,以此来用二维数字阵列表示其中各个像素的空间位置和每个像素的灰度级数(灰度值)的图像形式称为数字图像。
图像处理[参考答案]是指对图像信息进行加工以满足人的视觉或应用需求的行为。
题目]数字图像处理[参考答案]是指利用计算机技术或其他数字技术,对一图像信息进行某此数学运算及各种加工处理,以改善图像的视觉效果和提高图像实用性的技术。
一、绪论(名词解释,易,3分)[题目]图像[参考答案]是指用各种观测系统以不同形式和手段观测客观世界而获得的、可以直接或间接作用于人的视觉系统而产生的视知觉的实体。
一、绪论(简答题,难,6分)[题目]什么是图像如何区分数字图像和模拟图像[参考答案]“图”是物体透射或反射光的分布,是客观存在的。
“像”是人的视觉系统对图在大脑中形成的印象或认识,是人的感觉。
图像是图和像的有机结合,既反映物体的客观存在,又体现人的心理因素;图像是对客观存在的物体的一种相似性的生动模仿或描述,或者说图像是客观对象的一种可视表示,它包含了被描述对象的有关信息。
模拟图像是空间坐标和亮度(或色彩)都连续变化的图像;数字图像是空间坐标和亮度(或色彩)均不连续的、用离散数字(一般是整数)表示的图像。
[题目]简述研究图像恢复的基本思路。
[参考答案]基本思路是,从图像退化的数学或概率模型出发,研究改进图像的外观,从而使恢复以后的图像尽可能地反映原始图像的本来面日,从而获得与景物真实面貌相像的图像。
一、绪论(简答题,易,5分)[题目]简述研究图像变换的基本思路。
[参考答案]基本思路是通过数学方法和图像变换算法对图像的某种变换,以便简化图像进一步处理的过程,或在进一步的图像处理中获得更好的处理效果。
一、绪论(简答题,易,5分)[题目]简述一个你所熟悉的图像处理的应用实例。
第二十一章 彩色和多光谱图像处理
视觉彩色模型
在上面讨论的几种颜色模型中,RGB、CMYK、YIQ是为便于研究用硬件显示 彩色的方法提出来的;XYZ、UCS是为便于色度学的理论研究而提出来的,它们都 不能很好地与人眼的视觉特性相匹配。 从视觉的角度来讲,颜色可分为彩色和非彩色两大类。非彩色是指黑色、白 色及其两者之间深浅不同的灰色,称为非彩色或无色系列(achromatic series)。彩 色系列或有色系列(chromatic series)是指除了白色系列以外的各种颜色.为了定量 地描述颜色对人眼的视觉作用,可以选用亮度( brightness)、色调(hue)、饱和度 (saturation)这三个与视觉特征有关的量来计算描述,这三个量称为颜色的三个基 本属性. 色调是指光的颜色,不同波长的光呈现不同的颜色,具有不同的色调。发光 物体的色调取决于它产生的辐射光谱的分布特征;不发光物体的色调则由它的吸 收、反射、透射和照明光源的特性所共同决定。饱和度指颜色的深浅或浓淡程 度。饱和度的深浅与颜色中加入白色的比例有关。一种纯颜色中加入的白色成分 越多,则其饱和度越低,因而饱和度反映了某种颜色被白色冲淡的程度。白色成 分为0,则饱和度为100%;只有白色,则饱和度为0。亮度就是人眼感觉到的光 的明暗程度。光波的能量越大,亮度就越大。颜色的色调和饱和度说明了颜色的 深浅,合称为色度。
0.114 R Y 0.299 0.587 I = 0.596 0.274 0.322 G Q 0.211 0.523 0.312 B
工业彩色模型
由于计算机显示器和许多电子显示设备采用的CRT直接使用R、G、 B三色电子枪在荧光屏上显示颜色,为了便于处理,大多数图像格式都 采用RGB模型来表示像素的颜色。 RGB彩色模型的优点是:(1)简单;(2)其它表色系统必须最后转化成 RGB系统才能在彩色显示器上显示。 RGB系统的缺点:(1)RGB空间用红、绿、蓝三原色的混合比例 定义不同的色彩,使不同的色彩难以用准确的数值来表示,并进行定量分 析;(2)在RGB系统中,由于彩色合成图像通道之间相关性很高,使合成图 像的饱和度偏低,色调变化不大,图像视觉效果差;(3)人眼不能直接感觉 红、绿、蓝三色的比例, 而只能通过感知颜色的亮度、色调以及饱和度 来区分物体,而色调和饱和度与红、绿、蓝的关系是非线性的,因此,在R GB空间中对图像进行增强处理结果难以控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
彩 色 电 视 信 号
Y,U,V
黑 白 电 视 信 号 Y
Y Y,0,0
黑白电视机
彩色电视机
9.2 彩色变换
9.3.1 反色变换
反色是指与某种色调互补的另一种色调。
绿色 。
。 黄色
青色 。
互补
。红色ቤተ መጻሕፍቲ ባይዱ
。
蓝色
。
品红
图9.8 颜色间的互补关系
9.3.1 反色变换
设f(x,y)为输入彩色图像,彩色分量的量化级别 为256,则反色图像g(x,y)与输入图像f(x,y)的R、G、 B分量之间的关系可表示为:
红(255,0,0)
黑(0,0,0)
绿(0,255,0)
黄(255,255,0)
9.2.1 RGB彩色模型
品红
(1,0,0) R红
B
(0,0,1)
蓝
青
白
黑
灰度级
(0,1,0)
G
绿
黄
图9.4 RGB彩色立方体示意图
9.2.1 HSI彩色模型
HSI(hue-saturation-intensity)彩色模型比 较适合于人用色调(H)、饱和度(S)和亮度(I) 描述被观察物体颜色的解释,对于开发基于彩色描述 的图像处理方法是一个理想的工具。
9.2.1 HSI彩色模型
HSI色系 —— 亮度分量I
I 表示光照强度或称为亮度,它确定了像 素的整体亮度,而不管其颜色是什么。
I: 小
大
9.2.1 HSI彩色模型
HSI色系 —— 亮度(I)效果示意图
9.2.1 HSI彩色模型
HSI色系 —— 色度分量H
H:表示色度,由角度表示。反映了该颜色 最接近什么样的光谱波长。0o为红色,120o 为绿色,240o为蓝色。
和度表示颜色的特性。
9.1.2 CIE色度图
◆在彩色图像中: 亮度反映了该颜色的明亮程度。颜色中掺入的白色越 多亮度就越大,掺入的黑色越多亮度就越小。 色调用于描述纯色(如纯黄色、纯红色),反映了观 察者接收到的主要颜色。 饱和度给出一种纯色被白光稀释的程度的度量,与加 入到纯色(色调)中的白光成正比(由于加入了白光,观 察者接收到的不再是某种纯色,而是反应该纯色属性的混 合颜色)。
C xX yY zZ
且 x X
y Y
X Y Z
X Y Z
(9.5)
z Z X Y Z
(9.6-8)
显然有: x y z 1
(9.9)
9.1.1 三基色原理
1 y绿
图9.3 CIE色度图
520nm
0.8 510
530 540
绿
550
空间能量位置 (波长,以nm为单位)
9.1.1 三基色原理
2. 相加混色
一般把三基色按不同比例相加进行的混色称为相加混
色。
红色 + 蓝色 = 品红色 所以,一般把青(色9、.1 a)
红色 + 绿色 = 黄色 品红色和黄色称为(红9.、1 b)
绿色 + 蓝色 = 青色 绿、篮三色的补(色9。.1 c)
红色 + 绿色 + 蓝色 = 白色
9.2.3 RGB彩色模型到HSI彩色模型的转换
白
青 蓝
品红 黄
红 绿
黑
图9.7 RGB立方体旋转示意图
9.2.3 RGB彩色模型到HSI彩色模型的转换
arc
c
os[(R
1 [(R G) (R 2 G)2 (R G)(G
B)] B)]1
/
2
2、YUV表色系—— 基本概念
在这种表色系统中 Y:亮度;U,V:色差信号
目的是为了可以使电视节目可用同时被黑白 电视及彩色电视接收。
电视信号在发射时,转换成YUV形式;接收 时再还原成RGB三基色信号,由显像管显示。
9.2.5 其它彩色模型简介
YUV表色系
—— 电视信号接收原理示意图
R I[1 S cos(H ) ] cos(60 H )
G 3I (B R)
(9.14) (9.15) (9.16)
9.2.4 HSI彩色模型到RGB彩色模型的转换
(2)当120º≤H < 240º:
R I (1 S )
(9.17)
G I[1 S cos(H 120 ) ] (9.18) cos(180 H )
《数字图像处理》研究生课程
第九章 彩色与多光谱图像处理
李俊山 主讲 第二炮兵工程学院
9.1 彩色视觉
彩色视觉是人眼对射入的可见光光谱的强弱及波 长成份的一种感觉。
9.1 彩色视觉
9.1.1 三基色原理
1. 三基色与三基色原理 ◆自然界中的绝大多数的颜色都可看作是由红、绿、 蓝三种颜色组合而成;自然界中的绝大多数的颜色都 可以分解成红、绿、蓝这三种颜色。这即是色度学中 的三基色原理。 ◆ 一般就将红、绿、篮这三种颜色称为三基色。
9.2.5 其它彩色模型简介
1、CMYK色系—— 着色原理
既然是减色系统,其着色原理是基于光吸收 的,这有别于RGB的光射入的方式。
C与M叠加:同时吸收了R与G,则为蓝色; C与Y叠加:同时吸收了R与B,则为绿色; M与Y叠加:同时吸收了G与B,则为红色。
9.2.5 其它彩色模型简介
9.1.1 三基色原理
2. 相加混色
相加灰色中涉及到灰色比例问题:
R:200 G:50 B:120
9.1.1 三基色原理
2. 相减混色
利用颜料和染料等的吸色性质可以实现相减混色。
◆相减混色就是从白光中虑去某种颜色而得到另一种颜色。
◆ 相减混色的基色为青、品红色、黄。
白色 – 红色 = 青色 白色 – 绿色 = 品红色 白色 – 蓝色 = 黄色 白色 – 绿色 – 红色 – 蓝色 = 黑色
gR (x, y) gG (x, y) gB (x, y) ( fR (x, y) fG (x, y) fB (x, y)) /3 (9.25)
9.3.2 彩色图像的灰度化
(3) 加权平均法 即将输入图像中的每个像素的R、G、B分量的加 权平均值赋给输出图像中对应像素的R、G、B分量的 方法 。用公式可表示为:
9.2.2 HSI彩色模型
绿。 青。
。黄 P
S
H
·
。红
蓝
。 品红
图9.6 HSI彩色模型中的色调和饱和度
9.2.2 HSI彩色模型
HSI色系 —— 饱和度(S)效果示意图
S=0
S=1/4
S=1/2
S=1
9.2.2 HSI彩色模型
白 I=1
青 I=0.5
绿
黄
H
红
I
S
蓝
品红
I=0
黑
图9.5 基于圆形彩色平面的HSI彩色模型
(9.22)
值得注意的是: 300~360之间为非可见 光谱色,没有定义。
9.2.5 其它彩色模型简介
1、CMYK色系—— 基本概念
这种表色系用于印刷行业。 是一种减色系统,将从白光中滤出三种原色
之后获得的颜色作为其表色系的三原色CMY。 K为黑色,为了印刷时对黑色可用黑色墨来
印刷。
• C:青色,从白色中滤去红色。 • M:品红,从白色中滤去绿色。 • Y: 黄色,从白色中滤去蓝色。
(9.1 d)
红色 + 青色 = 白色 绿色 + 品红色 = 白色 蓝色 + 黄色 = 白色
(9.2 a) (9.2 b) (9.2 c)
9.1.1 三基色原理
2. 相加混色
红黄绿 30% 89% 59%
白
品红 100% 青
41%
70%
蓝 11%
绿
黄白 青
红紫 蓝
图9.1 相加混色的三基色及其补色的亮度比例
B 3I (R G)
(9.19)
9.2.4 HSI彩色模型到RGB彩色模型的转换
(3)当240º≤H < 120º:
G I (1 S)
(9.20)
B I[1 S cos(H 240 ) ] (9.21) cos(300 H )
R 3I (G B)
gR (x, y) gG (x, y) gB (x, y) max( fR (x, y), fG (x, y), fB (x, y)) (9.24)
9.3.2 彩色图像的灰度化
(2) 平均值法 即将输入图像中的每个像素的R、G、B分量的算 术平均值赋给输出图像中对应像素的R、G、B分量的 方法。用公式可表示为:
◆将彩色图像转变为灰度图像的处理称为彩色图 像的灰度化处理。
◆将彩色图像转换为灰度图像的实质,就是通过 对图像R、G、B分量的变换,使得每个像素点的R、G、 B分量值相等。
◆彩色图像的灰度化方法主要包括:最大值法、 平均值法和加权平均值法。
9.3.2 彩色图像的灰度化
(1) 最大值法 即将输入图像中的每个像素的R、G、B分量值的 最大者赋给输出图像中对应像素的R、G、B分量的方 法。用公式可表示为:
9.2.2 HSI彩色模型
HSI色系 —— 色度(H)效果示意图
H=0º
H=60º
H=120º
H=180º
H=240º
H=300º
9.2.2 HSI彩色模型
HSI色系 —— 饱和度分量S
S:表示饱和度,饱和度参数是色环的原点 到彩色点的半径长度。
在环的外围圆周是纯的或称饱和的颜色,其 饱和度值为1。在中心是中性(灰)色,即 饱和度为0。
(9.3 a) (9.3 b) (9.3 c) (9.3 d)