电分析化学法导论

合集下载

07电化学分析法导论-2015

07电化学分析法导论-2015


RT aOx EE ln nF aRe d
0
30

例如一金属棒插入其盐溶液中,在金属与溶液界面 建立起“双电层”,引起位差,即为电极电位。 电极电位的测定:单个电极电位无法测定! 规定氢电极,在任何温度下的电位为零。



电极电位是反映电解质溶液性质的重要参数。
电极电位是个相对值。
31
电极电位的测量
第二种是采用盐桥的装置。 第三种是没有液体接界的情况。
21
化学电池中的电子及电荷流动
化学电池是化学能与电能互相转换的装置:

A) 在Zn、Cu电极及外接导线中,电子作为电荷载体在Zn 片与Cu片间传递. B) 在溶液中,导电由阴、阳离子的迁移来完成. 在左半电池中:Zn2+ → ←SO42在右半电池中:Cu2+ → ←SO42盐桥中:K+→右 左←Cl-


常在无活性物质的溶液中发生

第四 AgCl(s) + e ⇋ Ag(s)+Cl-
AgCl(s) ⇋ Ag+(aq)+Cl-(aq) Ksp
Ag+(aq)+ e ⇋ Ag(s)

第五 IO4-+ 2H++ 2e ⇋ IO3-+ H2O
25
阳极反应:


1. Cu(s) ⇋ Cu2++ 2e 铜电极上Cu→Cu2+

22

C) 电极表面/溶液界面,通过氧化还原反应(半反应)将电子 与离子两个通道结合起来: 阳极:Zn(s) ⇋ Zn2+ + 2e 氧化反应 阴极:Cu2+ + 2e⇋ Cu(s) 还原反应

1电分析化学导论

1电分析化学导论

例:甘汞电极

Hg—Hg2Cl2—Cl-
电极反应
Hg2Cl2+ 2e- = 2 Hg + 2Cl-

电极电位 (25℃)
Hg
2 Cl 2
/ Hg


Hg 2 Cl 2 / Hg
0 . 05电位取决于电极内参比溶液中的 αCl- ,当αCl-一定,甘汞电极的电极电位恒定。
衡电位(即能斯特公式计算的电位)的现象;
• 电极电位与平衡电位之差称为过(超)电位; • 极化产生的原因:浓差极化和电化学极化; • 一般阳极(正极)极化,电极电位更正,阴极(负极) 极化,电极电位更负。利用过电位的大小评价电极的极 化程度; • 一般来说,析出金属时过电位较小,但析出物为气体时, 尤其是H2(阴极析出)和O2(阳极析出),过电位很大。

减小浓差极化的方法:增大电极面积、减 小电流密度、提高温度、搅拌溶液等。
2. 电化学极化:电极反应速度慢引起的;

阴极反应:必须使阴极电位比平衡电位更 负一些;阳极反应:必须使阳极电位比平 衡电位更正,电极反应才能进行。
1. 第一类电极

由金属浸入含有该金属离子的溶液组成 电极反应 : Mn+ + ne- = M 25℃
二、按电极用途分类
1.指示电极和工作电极

能反映溶液中待测离子的活度或浓度; 在测试过程中,溶液主体浓度不发生变化的电极称为指
示电极;
例:电位分析中的离子选择性电极

在测试过程中,有较大电流通过,溶液的主体浓度发生
显著变化的电极称为工作电极。 例:电解分析和库仑分析中所用的Pt电极
2.参比电极
(1)作用 接通电路,消除或减小液接电位。 (2)使用条件 a.盐桥中电解质不含被测离子。

电化学分析导论

电化学分析导论

的电化学反应并非实验所需研究或测试的,它们只提供电子传递的场所
极化电极和去电Байду номын сангаас电极
在电解过程时,插入试液中电极的电位完全随着外加电压的变化 而变化,或当电极的电位改变很大而电流改变很小时,这一类电极称
为极化电极。
当电极电位不随外加电压的变化而变化,或当电极的电位改变很 小而电流改变很大时,这一类电极称为去极化电极。
8.2 电分析化学中的电极系统 一、 电极的种类 1、 根据电极的组成分类
第一类电极,由金属浸入该金属离子的溶液组成,如Ag/Ag+
Ag+ + eAg 电极电位表示为:E=E0 + 0.059V lg aAg+
第二类电极
由金属、金属的难溶盐的阴离子溶液组成的电极 例如银-氯化银电极 AgCl +eAg + Cl-
• 作业:
1. 何谓参比电极、指示电极和辅助电极(作用是什么)? 2. 在什么情况下要使用三电极系统?
二、二电极与三电极系统
电流小时,可用两电极;电流大时,要用辅助电极构成三电极系 统来测量
8.3 电分析化学方法分类 电化学分析根据物质在溶液中的电化学性质及其变化来进行分析 一、按测量参数分类 电导分析法 电位分析法 电重量分析法
库仑分析法
伏安分析法 二、IUPAC分类

不涉及双电层及电极反应,如电导分析及高频测定
三、 液接电位及其消除 1. 液接电位的形成
当两个不同种类或不同浓度的
溶液直接接触时,由于浓度梯度或离 子扩散使离子在相界面上产生迁移。 当这种迁移速率不同时会产生电位差 或称产生了液接电位,它不是电极反 应所产生,因此会影响电池电动势的 测定,实际工作中应消除。

仪器分析 第八章 电分析化学导论

仪器分析 第八章 电分析化学导论

42/68

盐桥:一个盛满饱和KCl和3%琼脂的U形管。

由于饱和KCl溶液浓度很高(3.5-4.2 mol/L), 因此,K+和Cl-离子向外扩散成为盐桥与两个溶 液液接界面上离子扩散的主要部分。
盐桥中,K+和Cl-的扩散速度几乎相等,因此在 两个液接界面上产生两个数值很小、且几乎相 等、方向相反的液接电位,近于完全消除。


38/68
39/68
40/68
2. 液体接界电位 L
定义:两种不同离子或不同浓度溶液接触界
面上,存在着微小电位差,称之为液体接界电位。 产生原因:各种离子具有不同的迁移速率。
41/68

电化学分析中,经常使用有液接界面的参比电 极,所以液接电位普遍存在。

液接电位往往难于测量,为减小其影响,实际 工作中通常在两个溶液之间用 盐桥 连接。
34/68
以锌电极为例:当锌片与含有Zn2+的溶液相
接触时:

金属锌有失去电子氧化为Zn2+的倾向;同时溶 液Zn2+中有从锌片上取得电子而沉积的倾向。

由于Zn氧化倾向大于Zn2+的还原倾向,致使锌 片上聚集了较多电子而带负电荷,溶液中Zn2+ 受锌片负电荷吸引,使溶液界面带正电荷,形 成双电层,产生电位差,即电极电位。
电极电位的测定方法。 液体接界电位的产生原因及消除方法。 浓差极化的产生原因与消除方法。 电化学极化的产生原因。
48/68
第八章 电分析化学导论
1. 根据电极的组成分类 2. 根据电极所起的作用分类
第四节 电极的种类
1. 根据电极的组成分类

第一类电极:金属-金属离子电极;

09电化学分析导论

09电化学分析导论
南京大学高鸿:各类电极和电极过程的电流理论与示波极谱 滴定。 复旦大学邓家祺教授:活化分析。 中国科学院环境生态研究中心:库仑分析。
湖南大学、核工业部Байду номын сангаас五所、上海工业大学、中国科学院南
京土壤研究所上海冶金研究所:离子选择性电极。
电化学分析导论
我国电分析化学方面的研究也很有特色
武汉大学:电化学传感器和生物电化学。
实用价值:金属和含共同配位体的两个难解离络合物组成的 电极(pM电极)
电化学分析导论
4、零类电极
惰性金属(Pt、Au、C等)电极,这类电极本身 不参与电极反应,仅作为氧化态和还原态物 质传递电子的场所,同时起传导电流的作用, 如
Fe3 , Fe2 Pt
Fe 0.0591lg Fe
Ag Ag

Ag
Ag Ag

0.0592 lg Ag 25C ,,由 Ag
Ag
S
2
, S 2
Cd
2

Ag
Ag
0.0592 K sp Ag2 S 0.0592 0.0592 lg lg Cd 2 lg Cd 2 Ag 2 K spCdS 2 2 Ag
电化学分析导论
电化学分析导论
定义:自发地将本身的化学能转变为电能。
阳极:发生氧化反应的电极; 阴极:发生还原反应的电极; 电流方向是Ag电极流向Cu电极
原电池
外电路中,电子流动的方向是Cu电极流向Ag电极。
正极:Ag电极;
负极:Cu电极 盐桥:使两个半电池保持电中性
电化学分析导论
定义:实现电化学反应所需能量由外部电源供给。
电化学分析导论

第11章电化学分析法导论

第11章电化学分析法导论

NCE 0.2828V
2020/1/17
21
双液接甘汞电极示意图:
导线 绝缘帽 加液口
饱和KCl溶液 内部电极
多孔物质
2020/1/17
22
外盐桥套管 0.1mol/L KNO3溶液
(2)指示电极 电极电位则随测量溶液和浓度不同而变
化。由电池电动势的大小可以确定待测溶液 的活度(常用浓度代替)大小。
适合于化工生产中的自动控制和在线分析。 4.传统电化学分析:无机离子的分析; 5.测定有机化合物也日益广泛。如药物分析
2020/1/17
4
三、电化学分析法的类别(主要) 1.电位分析法 ①直接电位法:电极电位与溶液中电活性物质
的活度有关。 ②电位滴定:用电位测量装置指示滴定分析过
程中被测组分的浓度变化。
第十一章
11-1 概述
电化学分析法导论 11-2 电化学分析基础
11-3电极的分类
2020/1/17 1
11-1 概述
一、电化学分析 1.定义
应用电化学的基本原理和实验技术,依据物 质的电化学性质来测定物质组成及含量的分 析方法称之为电化学分析或电分析化学。
2020/1/17
2
2.电化学分析法的重要特征 直接通过测定电流、电位、电导、电量
电极反应速度慢,电极上聚集了过多的电 荷(与平衡状态比)。 ★减小电化学极化的方法
只有增加外加电压, 克服反应的活化能,才 能使电解反应得以进行。
2020/1/17
18
二、电动势及电化学参数测量的基本原理
1.电动势的测量
当电池中的电流为零或接近零时,两电极间
的电位差即为电池的电动势E。

★为了使U外= E测 ,在外电路上加一大小相等、 方向相反的反向外加电压,并使外电位随两

09第九章 电分析化学法导论

09第九章  电分析化学法导论
池外加电压增加。当电流 i 很小时,电极可视为可逆,没有所谓的 “极化”现象产生。
9-5-1 浓差极化
有电流通过时,电 极表面电活性物质的 消耗若得不到有效补 充,电极电位将变得 与平衡电位不同。此 称浓差极化
平衡电位 指由Nernst方程按 本体溶液浓度计算 得到的电位。
9-5-1 浓差极化
对于还原反应,浓差极化将使电极电位变得更负。对于氧化反应, 浓差极化将使电极电位变正。
AgCl /Ag AgCl /Ag
'
RT ln aCl F
甘汞电极 Hg Hg2Cl2(s) KCl(a=xmol/L)
SCE 0.242
将Pt插入汞与甘汞的糊状物中,内充液多为饱和KCl,也可为0.1 或1.0mol/LKCl。内充液一般用Hg2Cl2饱和。盐桥为充满内充液的 多孔陶瓷。
9-5-3 超电位
由于极化,使实际电位和可逆电位之间存在差异 ,此差异即为 超电位 对于阳极和阴极,分别有阳极超电位a和阴极超电位c。对于单个 电极,超电位为浓差超电位和电化学超电位之和
= 浓差+电化
9-5-3 超电位
影响因素: a) 电流密度,
b) T,
c) 电极化学成份不同,不同。与电活性物质和电极材料 亲和力有关
≈ 右 - 左≈ c - a
当E>0,为原电池;E<0为电解池。
9-2 液接电位与盐桥
9-2-1 液接电位 Ej
因各离子迁移速度不同而产生 对于类型1的1:1型电解质接界:
RT a1 E j t t ln F a2
设a1=0.01,a2=0.1。则t+=0.83、t-=0.17, 25 ℃时

9第9章 电分析化学法导论

9第9章    电分析化学法导论

9-2-2 盐桥-液接电位的消除
盐桥中KCl浓度相应的液接电位
KCl盐桥作用
0.01mol· L-1 0.1mol· L-1
CKCl/ mol· L-1 0.1 0.2 0.5 1.0 2.5 3.5 饱和
液接电位/ mv 27 20 13 8.4 3.4 1.1 <1
液 1.2mV
作用:隔离、接通电路、减小液接电位
① H+ + e = H
② H+ H+ =H2+ 慢,决定整个反应速度
③ H2++e=H2↑ 要使反应 ② 加快,必须增加活化能,使
φc→负
9-5-3 超电位
定义:由于极化,使实际电位和可逆电位之间存在差异,此
差异即为 超电位
影响因素: ⑴电流密度, ⑵T, ⑶电极材料不同,不同 ⑷产物是气体的电极,其大,析出物为金属其小
第9章 电分析化学法导论
9-1 电化学电池
9-2 9-3 9-4 9-5 9-6
液体接界电位与盐桥 电极电位 一般电极反应过程 电极的极化和超电位 电极的类型
电分析化学法
又称电化学分析法---
应用电化学原理和实验技术建立起来的一类分析方
法的统称。 依据被测物溶液的电化学性质及其变化而建立起来 的分析方法。 根据电学参数可分为:电导法、电位法、电解分析法、 库仑分析法、伏安法和极谱法等
1.反应中的氧化剂与还原剂必须分隔开来,不能使其直接 接触,并保持两种溶液都处于电中性
2.电子由还原剂传递给氧化剂,要通过溶液之外的导线 (外电路) 反应装置-电化学电池(化学电池)
9-1-1 原电池与电解池
1.原电池 (以Cu-Zn原电池为例) 自发地将本身的化学能转变成电能的装置-化学电池

第8章-电化学分析法导论

第8章-电化学分析法导论

第8章电化学分析法导论(Chapter Introduction to Electrochemical Analysis) (2学时)教学目的和要求:1.了解电化学分析法的概念及分类。

2.了解电化学分析中常用的电极和分类。

3.熟悉自发电池和电解池。

4.掌握电极电位的计算方法。

5.了解扩散电位(液接电位和盐桥的作用)。

6.了解电解现象。

7.掌握分解电压、析出电位、过电压过电位的概念。

8.学会析出电位和分解电压的计算。

教学要点和所涵盖的知识点:电化学分析法的概念及分类;常用的电极和分类,自发电池和电解池;电极电位的计算方法,扩散电位(液接电位和盐桥的作用);电解现象(分解电压、析出电位、过电压、过电位)。

重点和难点:电解现象(分解电压、析出电位、过电压、过电位)。

一定义和内容(一)定义电化学分析法也称为电分析化学,尽管存在不同意见,一些著名学者还是提出了大多数人可接受的定义。

50年代,I.M. Kolthoff 提出:Electroanalytical Chemistry as the application of electrochemistry to analytical chemistry。

80 年代,由于分析化学的快速发展,电分析化学的内容的扩充和更新,这一定义不能准确适应,J.A.Plambeck 修正了这一定义:Electroanalytical chemistry is that branch of chemical analysis that employs electrochemical methods to obtain information related to the amounts,properties, and environments of chemical species.在我国早期引用Kolthoff 的定义。

80年代后,提出的中文定义为:“依据电化学和分析化学的原理及实验测量技术来获取物质的质和量及状态信息的一门科学。

2024版第08章电分析化学导论

2024版第08章电分析化学导论
生物医学应用
生物组织和体液中的电解质成分与生理状态密切相关。通过 测量生物样本的电导率,可获取有关生物体内部环境的信息。 例如,在临床上可利用血液电导率的测量来辅助诊断某些疾 病。
极谱分析法与伏安分
05
析法
极谱分析法基本原理及操作
基本原理
极谱分析是一种基于电解过程中电极电位与电流关系的 分析方法。在极谱分析中,待测物质在滴汞电极上发生 还原反应,产生极谱电流,通过测量电流与电位的关系, 可以确定待测物质的浓度。
伏安分析法应用举例
伏安分析法可用于测定无机物、有机物和生物样品等物 质的含量。例如,在药物分析中,可以利用伏安分析法 测定药物中的有效成分含量;在生物分析中,可以利用 伏安分析法测定生物样品中的代谢物含量。
现代电分析化学技术
06
进展
生物传感器在电分析中应用
01
生物传感器基本原理
利用生物活性物质(如酶、抗体、细胞等)与待测物质之间的特异性相
互作用,将生物化学反应转化为可测量的电信号。
02
生物传感器在电分析中的应用实例
如葡萄糖生物传感器用于糖尿病患者ቤተ መጻሕፍቲ ባይዱ血糖监测,乳酸生物传感器用于
运动医学中的乳酸测定等。
03
生物传感器的发展趋势
提高选择性、灵敏度和稳定性,实现多组分同时测定和在线实时监测。
微流控芯片技术在电分析中应用
微流控芯片技术基本原理
要点二
库仑分析法应用举例
环境水样中重金属离子的测定、食品中添加剂的测定等。
电导分析法
04
电导率测量原理及方法
电导率定义
01
电导率是物质导电能力的量度,其大小与物质中载流子的浓度
和迁移率有关。
测量原理

第2章电化学分析法导论仪器分析ppt课件

第2章电化学分析法导论仪器分析ppt课件
E电池= E+ - E-+ EL
式中EL为液体接界电位 。
铜锌原电池由于右边铜电极的电位比锌电极高,
故E电池为正值,表示电池反应能自发地进行;
铜锌电解池右边锌电极的电位比铜电极低,则其
E电池为负值,表示电池反应不能自发地进行,必须
外加一个大于该电池电动势的外加电压,才能使电 池反应进行。
15
二、电极电位(Electrode Potential)
ቤተ መጻሕፍቲ ባይዱ原电池
电解池
13
正确区分阴、阳极,正、负极
( ) 右 左
E为正时,为自发电池,为负时,是电解池。
原电池(Galvanic Cell) : 阳极—负极(左-,氧化反应,失电子) 阴极—正极(右+,还原反应,得电子)
电解池(Electrolytic Cell) : 阴极—负极(右-,与电源负极相连,得电子) 阳极—正极(左+,与电源正极相连,失电子)
30
以阴极还原过程为例,在电流密度较大的情 况下,单位时间内供给电极的电荷数量相当多, 如果电极反应速度很快,则可在维持平衡电位不 变的条件下,使金属离子被还原。
相反,如果电极反应速度有限,离子来不及 与电极表面上过剩的电子结合,就将使电子在电 极表面上积聚起来,从而使阴极电位变负。对于 阳极来说,则将使阳极电位变正。
可用于常量组分、微量组分和痕量组分的测定;
选择性高,应用范围广等。
3
2010年7月28日,吉林省永吉县境内发生特大洪水,永吉县经济
开发区新亚强化工厂一批装有三甲基一氯硅烷的原料桶被冲入松花江中。最新
统计称,流入松花江的化工物料桶达7000只左右,其中4000只左右为空桶,
3000只左右为原辅料桶。

13-电化学分析法导论

13-电化学分析法导论

二﹑电解池
将电能转换成化学能的装置。 该反应不能自发进行,必须外加能量。
阳极(正极): Cu = Cu2+ + 2e
阴极(负极): Zn2+ + 2e = Zn 反应: Cu + Zn2+ = Cu2+ + Zn
(氧化反应)
(还原反应)
写法:(-) Cu ‫ ׀‬CuSO4 (a1) ‫ ׀׀‬ZnSO4 (a2) ‫ ׀‬Zn (+)

,H 2
0.059 [ H ]2 lg 2 PH 2
13.3 离子选择性电极
1. 构成
内参比电极
内参比溶液
φm
膜(允许一定离子通过)
2. 膜电位
(1) 扩散电位(液接电位)
a1 0.1 mol/L
a2 0.05 mol/L Na+ Na+ Na+ Na+ Na+ Na+ Cl- Cl- Cl- Cl- Cl- Cl-
化学电池包括两种:原电池和电解池
一﹑原电池
能自发地将化学能转变成电能的装置。 锌-铜原电池电极反应: 阳极(负极): Zn = Zn2+ + 2e 阴极(正极): Cu2+ +2e = Cu 电池反应: (氧化反应) (还原反应)
Zn + Cu2+ = Zn2+ + Cu
电池写法: (-) Zn ‫ ׀‬ZnSO4(a1) ‫ ׀׀‬CuSO4(a2) ‫ ׀‬Cu (+) E电池 = E右-E左 = E正-E负 = 0.337-(-0.763) = 1.10V
3. 金属基电极分类
(1)第一类电极 反应:M2+ + ne M

《电化学分析法导论》PPT课件

《电化学分析法导论》PPT课件
若不注,则为1mol·L-1;101325Pa(1atm);25℃。 • 4. E电池=φ右-φ左=φ阴-φ阳
上述电解池则为 Cu | CuSO4 (y mol·L-1) || ZnSO4 (x mol·L-1) | Zn
编辑ppt
11
4.电池电动势
• 电池电动势——
• 当流过电池的电流为零或近于零时两电极 间的电位差。
编辑ppt
7
•1. 原电池——
5
•自发地将本身的化学能转变成电能的化学电池
• 电极反应: Zn-2e=Zn2+ 氧化反应 阳极 Cu2++2e=Cu 还原反应 阴极
• 电池反应: Zn+Cu2+=Zn2+ + Cu
编辑ppt
8
2.电解池
• 由外电池供给电能实行电化学反应的化学电池
•电 极 反 应 : Zn2++2e=Zn
电解分析法:恒电流电解分析法、恒电位电解分 析法
库仑分析法:控制电位库仑分析法、库仑滴定法 (恒电流) • 伏安和极谱分析法:极谱分析法、伏安分析法
编辑ppt
3
电化学分析法特点
• 准确度高 • 灵敏度高 一般10-4—10-8mol·L-1 • 选择性好 • 可测组分含量范围宽,适用范围广 • 仪器设备简单,易于自动化
测定电位都是在没有电流通过电极,当电池中各种
反应都处于平衡状态中所编测辑得ppt的值
13
2、实际电极电位的测定
• 标准电极电位
(NHE)|| 待测电极
• 实际 SCE || 待测电极
φSCE = 0.242V(VS·NHE) • 例:
若φX(VS·NHE)=0.344V, 则φX(VS·SCE)=? φX(VS·SCE)= φX(VS·NHE)-φSCE(VS·NHE)

2024年电分析化学导论教案(含多场合)

2024年电分析化学导论教案(含多场合)

电分析化学导论教案(含多场合)电分析化学导论教案一、教学目的本课程旨在让学生了解电分析化学的基本原理和方法,掌握电化学分析的基本技术,培养学生的实际操作能力和创新思维能力,为后续专业课程学习和科研工作打下坚实基础。

二、教学内容1.电分析化学概述电分析化学是研究物质在电场作用下产生的化学现象及其应用的科学。

本课程主要介绍电分析化学的基本原理、方法和技术,包括电位法、电解法、库仑法、伏安法等。

2.电化学基础知识(1)电极与电解质溶液界面现象(2)电极过程动力学(3)电极反应类型及电极电位3.电位法(1)电极电位与溶液中离子活度的关系(2)参比电极与指示电极(3)直接电位法与间接电位法4.电解法(1)电解原理与电解过程(2)电解装置与电解操作(3)电解分析法的应用5.库仑法(1)库仑滴定原理(2)库仑滴定装置与操作(3)库仑滴定法的应用6.伏安法(1)伏安分析原理(2)伏安分析仪与操作(3)伏安分析法的应用7.电分析化学新技术及应用(1)化学修饰电极(2)生物电分析化学(3)光谱电化学(4)电化学传感器三、教学方法1.理论教学:采用课堂讲授、案例分析、小组讨论等多种教学方式,使学生在理解基本原理的基础上,掌握电化学分析的方法和技术。

2.实验教学:结合理论教学,开展实验教学,培养学生的实际操作能力和创新思维能力。

3.现代教育技术:利用多媒体、网络等现代教育技术手段,丰富教学资源,提高教学效果。

四、考核方式1.平时成绩:包括课堂表现、作业、实验报告等。

2.期中考试:笔试,主要考查学生对电化学基础知识、电位法、电解法、库仑法、伏安法等理论知识的掌握。

3.期末考试:笔试,综合考查学生对电分析化学的基本原理、方法、技术的理解和应用能力。

4.实验考核:实验操作和实验报告,主要考查学生的实际操作能力和实验结果分析能力。

五、教学进度安排1.电分析化学概述(2学时)2.电化学基础知识(6学时)3.电位法(6学时)4.电解法(4学时)5.库仑法(4学时)6.伏安法(4学时)7.电分析化学新技术及应用(2学时)8.实验教学(12学时)六、教学资源1.教材:选用权威、实用的电分析化学教材。

第7部分电分析化学导论

第7部分电分析化学导论
当有电流通过电极时,总的反应速率不等于零,即 原有的热力学平衡被破坏,致使电极电位偏离平衡 电位,这种现象叫做极化现象。
电化学极化 浓差极化 理想极化电极 去极剂 不极化电极或去极化电极
超电位(η):η=E-Eeq
13.7 电化学电池中的电极系统
所谓电化学电池中的电极系统,是指电分析化学实 验中通常用到的二个或三个电极的测试体系。
规定阳极电流为正值,阴极电流为负值。这与传统 的习惯相反,过去前者定义为负值,后者为正值。
但是,国内外相关文献均未接受这一推荐,因此本 课程中仍按过去习惯,即阴极电流为正值,阳极电 流为负值。
13.9 电分析化学方法概述
13.9.1 静态和动态测试方法
静态方法又称稳态法:即平衡态或非极化条件下的 测量方法。体系没有电流通过,如电位法和电位滴 定法;有电流通过,但电流很小,电极表面能快速 地建立起扩散平衡,如微电极体系等。
第7部分电分析化学导论
7.1 电化学池
电化学池(electrochemical cells)通常简称 为电池,它是指两个电极被至少一个电解质 相所隔开的体系。
考察单个界面上发生的电化学现象在实验上 是困难的,实际上,必须研究电化学池的多 个界面集合体的性质。
就电化学体系而言,电极上的电荷转移是通 过电子(或空穴)运动实现,在电解液相中 电荷迁移是通过离子运动进行的,这就涉及 到一些基本概念。
目前通用的标准电极电位值都是相对值而非绝对值。
13.5.2 标准电极电位与条件电位
对于可逆电极反应
,用Nernst(能斯特)
公式表示电极电位与反应物活度之间的关系为
氧化态活度和还原态活度均等于1,此时的电极电位 即为标准电极电位(EӨ)。25℃时:
13.5.3 电极电位与电极反应的关系

第二章 电化学分析法导论 第二节 化学电池与电极电位

第二章 电化学分析法导论 第二节 化学电池与电极电位

M m
Mm+ 十n e- = M(m-n)+

M(m -n )
θ
M m M(m -n ) -
RT a (M m ) ln nF a(M ( m n ) )
如:Pt| Fe3+(a1) |

15:36:24
Fe3
Fe2+(a2)

Fe2
ቤተ መጻሕፍቲ ባይዱ
θ
Fe3 Fe2
a(Fe3 ) 0.05916lg a(Fe2 )
电解电池:由外电源提供电能,使电流 通过电极,在电极上发生电极反应的装 置。
电池工作时,电流必须在电池内部和外 部流过,构成回路。 溶液中的电流:正、负离子的移动。
15:36:24
15:36:24
原电池
阳极:发生 氧化反应的 电极(负 极); 阴极:发生 还原反应的 电极(正 极); 阳极≠正极 阴极≠负极 电极电位较 正的为正极
电位差:+0.799 V; 银电极的标准电极电位:+0.799 V。 在298.15 K 时,以水为溶剂,当氧化态和还原态的活度等 于1 时的电极电位称为:标准电极电位。
15:36:24
15:36:24
15:36:24
四、电极与电极分类
1.参比电极 标准氢电极
基准,电位值为零(任何温度)。
甘汞电极
0.1mol/LAg-AgCl 电极 KCl 浓度 电极电位(V) 0.1 mol / L +0.2880 标准 Ag-AgCl 电极 1.0 mol / L +0.2223 饱和 Ag-AgCl 电极 饱和溶液 +0.2000
温度校正,(标准Ag-AgCl电极),t ℃时的电极电位为: Et= 0.2223- 6×10-4(t-25) (V)

第十三章电分析化学导论

第十三章电分析化学导论

十三章电化学分析导论13-1为什么不能测定电极的绝对电位,我们通常使用的电极电位是如何得到的答:不能。

电池都是至少有两个电极组成的,根据它们的电极电位,可以计算出电池的电动势。

但是目前还无法测量单个电极的电位绝对值,而只能使用另一个电极标准化,通过测量电池的电动势来获得其相对值。

我们使用的电极电位是以标准氢电极作为标准,即人为规定起电极电位为零,将它与待测电极组成电池,所测得的电池电动势即为该电极的电极电位。

应该注意的是,当测量的电流较大或溶液电阻较高时,一般测量值中常包含有溶液的电阻所引起的电压降iR,所以应当加以校正。

13-2能否通过测定电池电动势求得弱酸或弱碱的电离常数、水的离子积、溶解积和络合物的稳定常数试举例说明。

答:可以。

例如:已知下列半反应以及其标准电极电位为Cu2++I-+e-=CuI (1) E⊙(1)=Cu2+ + e- = Cu+ (2) E⊙(2)=计算CuI的溶度积。

解E Cu2+/Cu+= E⊙Cu2+/Cu++ [Cu2+]/[ Cu+]∵Cu++I-+e-=CuI∴[Cu+][I-]=K SPCuI即[Cu+]= K SPCuI/[I-]E Cu2+/Cu+= E⊙Cu2+/Cu++ [Cu2+]*[I-]/K SPCuI当[Cu2+]=[I-]=1mol*L-1E= E⊙(1)=E⊙Cu2+/Cu+= E⊙(2)==+K SPCuIK SPCuI=*10-1213-3电化学中的氧化还原反应与非电化学的氧化还原反应有什么区别答:电化学的氧化还原是电子在电极上发生转移,有电流通过,方程式可写成两极的反应;而非电化学的氧化还原没有电流,方程式不能拆开写.13-4充电电流是如何形成的它与时间的关系有何特征能否通过降低和消除充电电流来发展灵敏的电分析方法答:电极表面双电层类似一个电容器,当向体系施加电扰动的时,双电层所负载的电荷会发生相应该变,导致电流的产生,这一部分电流称为充电电流.当施加一个电位阶跃,充电电流随时间成指数衰减,时间常数为RC,不能通过降低或消除充电电流来发展灵敏的电分析方法。

电化学分析法导论

电化学分析法导论
湖南大学、核工业部第五所、上海工业大学、中国科学院南京土壤研究所上 海冶金研究所等研究离子选择性电极。 武汉大学研究电化学传感器核生物电化学。 华东师范大学研究化学修饰电极。 中国科技大学研究药物有机电分析。 中国科学院长春应化研究所研究电分析化学始于1950年,是我国最早建立的极 谱实验室,该室已被中国科学院批准为“电分析化学开放研究实验室”,集中研 究电分析化学技术发展的前沿领域。
在我国早期引用Kolthoff 的定义。80年代后,提出的中文定义 为:“依据电化学和分析化学的原理及实验测量技术来获取物 质的质和量及状态信息的一门科学。”



电分析化学的发展具有悠久的历史,是与尖端科学技术 和学科的发展紧密相关的。近代电分析化学,不仅进行组成 的形态和成分含量的分析,而且对电极过程理论,生命科学、 能源科学、信息科学和环境科学的发展具有重要的作用。作 为一种分析方法,早在18世纪,就出现了电解分析和库仑滴 定法。 19世纪,出现了电导滴定法,玻璃电极测pH值和高频滴 定法。 1922年,极谱法问世,标志着电分析方法的发展进入了 新的阶段。 二十世纪六十年代,离子选择电极及酶固定化制作酶电 极相继问世。 二十世纪70年代,发展了不仅限于酶体系的各种生物传 感器之后,微电极伏安法的产生扩展了电分析化学研究的时 空范围,适应了生物分析及生命科学发展的需要。
1、工作电极 2、参比电极 3、辅助电极 或对电极
四、电流的性质与符号 IUPAC规定: 阳极电流:起纯氧化反应所产生的电流,为正值; 阴极电流:起纯还原反应所产生的电流,为负值。 我国习惯: (1)原电池:阳极起氧化反应,为负值 阴极起还原反应,为正值。
Fe 3 , Fe 2 Pt


0 .0591 lg H
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9章电分析化学法导论
【9-1】解释下列名词。

原电池,电解池,电池电动势,电极电位,液接电位,标准电位,条件电位,平衡电位,浓差极化,电化学极化,超电位,指示电极,参比电极,工作电极。

答:原电池:将化学能编为电能的装置。

电解池:将电能变为化学能的装置。

电池电动势:流过电池的电流为零或接近于零时两电极间的电位差,以E池表示。

电极电位:任何电极与标准氢电极构成原电池所测得的电动势作为该电极的电极电位。

液接电位:在两个组成不同或浓度不同的电解质溶液互相接触的液-液界面间所存在的一个微小的电位差,称为液体接界电位,简称液接电位。

标准电位:298.15K时,以水为溶剂,当氧化态和还原态活度等于1时的电极电位。

条件电位:由于电极电位受溶液离子强度、配位效应、酸效应等因素的影响,因此使用标准电极电位ϕ0有其局限性。

对于一个实际体系在某一特定条件下,该电对的氧化型总浓度和还原型总浓度均为1mol·.L-1时的实际电位的实际电位。

平衡电位:在一个可逆电极中,金属成为阳离子进入溶液以及溶液中的金属离子沉积到金属表面的速度相等时,反应达到动态平衡,亦即正逆过程的物质迁移和电荷运送速度都相同,此时该电极上的电位值称为平衡电极电位。

浓差极化:发生电极反应时,电极表面附近溶液浓度与主体溶液浓度不同所产生的现象称为浓差极化。

电化学极化:由于电极反应的速率较慢而引起的电极电位对平衡电位值的偏离现象。

超电位:由于极化,使实际电位和可逆电位之间存在差异,此差异即为超电位η。

指示电极:用于无电极反应发生的平衡体系或在测量过程中溶液浓度不发生可觉察变化体系的电极。

参比电极:在测量过程中其电极电位几乎不发生变化的电极。

工作电极:有电极反应发生电极表面溶液浓度随电极反应发生显著变化体系的电极的电极。

【9-2】盐桥的作用是什么?对盐桥中的电解质溶液应有什么要求?
答:盐桥的作用是尽可能降低液接电位。

盐桥电解质的要求是:(1)正、负离子的迁移速率大致相等(如KCl,KNO3, NH4NO3等),且可达到较高浓度;(2)与半电池中溶液不发生化学反应。

【9-3】为什么不能测定电极的绝对电位?通常使用的电极电位是如何得到的?
答:电池都是至少有两个电极组成的,根据它们的电极电位,可以计算出电池的电动势。

但是目前还无法测量单个电极的电位绝对值,而只能使用另一个电极标准化,通过测量电池的电动势来获得其相对值。

我们使用的电极电位是以标准氢电极作为标准,即人为规定起电极电位为零,将它与待测电极组成电池,所测得的电池电动势即为该电极的电极电位。

应该注意的是,当测量的电流较大
或溶液电阻较高时,一般测量值中常包含有溶液的电阻所引起的电压降iR ,所以应当加以校正。

【9-4】 正极是阳极,负极是阴极的说法对吗?阳极和阴极,正极和负极的定义是什么?
答:正极是阳极、负极是阴极的说法不对。

阳极是发生氧化反应的电极;阴极是发生还原反应的电极。

正极是电子流入的一极;负极是电子流出的一极。

因此,原电池的正极是阴极,负极是阳极;电解池的阳极是正极;阴极是负极。

定义电位较高者为正极,电位低者为负极;发生氧化反应的为阳极,发生还原反应的为阴极。

因而并非正极就是阳极,负极就是阴极。

【9-5】 对下述电池:(1)写出两个电极上的半电池反应;(2)计算电池电动势;(3)按题中的写法,该电池是原电池还是电解池。

(a )3+-4-12+-4-12+-2-1
Pt Cr (1.0010mol L ),Cr (1.0010mol L )Pb (8.0010mol L )Pb ⨯⋅⨯⋅⨯⋅ 已知: 3+-2+Θ 2+-
ΘCr +e Cr =-0.41V Pb +2e Pb =-0.126V ϕϕ−−→←−−
−−→←−− (b )2+-3-12+-1-1Fe Fe 2.0010mol L d 1.0010mol Cd C ⨯⋅⨯⋅()(
L ) 已知:
2+-Θ 2+-ΘFe +2e Fe =-0.44V Cd +2e Cd =-0.403V ϕϕ−−→←−−
−−→←−−
解:(a )
2+3+Cr Cr +e =-0.41v ϕΘ−−→←−−:(-)阳极
2+Pb +2e Pb =-0.126v ϕΘ−−→←−−: (+)阴极 32341/20.0590.059 1.00100.41lg 0.41lg 0.59V 12 1.0010Cr Cr Cr Cr ϕ+++--+⎡⎤⨯⎣⎦=-+=-+=-⨯⎡⎤⎣⎦
[]222/0.0590.0598.00100.126lg 0.126lg 0.158V 221Pb Pb Pb Pb ϕ++
-⎡⎤⨯⎣⎦=-+=-+=
-=-0.158V--0.59V =0.43V
E ϕϕ=()阴阳
(b )同理,计算得0.087V 。

【9-6】 根据下列电池测得的电池电动势数值,计算右边电极相当于NHE 的电极电位。

(a )饱和甘汞电极║M z+│M ,Pt
E 池=0.809V (b )摩尔甘汞电极║X 2+,X 2+│Pt E 池=0.362V
(c )饱和银-氯化银电极║MA (饱和),A 2-│M E 池=-0.122V
解:查得饱和甘汞电极=0.241V ϕΘ,摩尔甘汞电极=0.268V ϕΘ,饱和银-氯化银电极
=0.197V
ϕΘ。

根据=cell c a E ϕϕ-,在电池表达式中,习惯将阳极写在左边,阴极写在右边, 所以,Z+M /M =0.809V+0.241V=1.050V ϕ
32X /X =0.362V+0.268V=0.630V ϕ++
MA/M =-0.122V 0.197V 0.075V ϕ+=
【9-7】 将下列电极电位转换成相对于饱和甘汞电极的电位。

(a )- 2+ Cu s =-Cu +20.41V e ϕΘ−−→←−−()
(b ) 4+-3+124Ce +e Ce =1.45V 0.5mol L H SO ϕΘ-−−→⋅←−−
() (c ) +-Tl +e Tl s =-0.41V ϕΘ−−→←−−()
答:(a )0.092V ;(b )1.21V ;(c )-0.572V 。

相关文档
最新文档