2014年全等三角形复习资料(整理版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形复习(整理)
一、全等三角形
能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到它的全等形。
2、全等三角形有哪些性质
(1):全等三角形的对应边相等、对应角相等。
(2):全等三角形的周长相等、面积相等。
(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定
边边边:三边对应相等的两个三角形全等(可简写成“SSS”)
边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)
2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。
三、学习全等三角形应注意以下几个问题:
(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;
(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;
(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”
第十二章轴对称
一、轴对称图形
1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫
做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。
2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点
4.轴对称的性质
①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
二、线段的垂直平分线
1. 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
2.线段垂直平分线上的点与这条线段的两个端点的距离相等
3.与一条线段两个端点距离相等的点,在线段的垂直平分线上
三、用坐标表示轴对称小结:
在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.
点(x, y)关于x轴对称的点的坐标为______.
点(x, y)关于y轴对称的点的坐标为______.
2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等
四、(等腰三角形)知识点回顾
1.等腰三角形的性质
①.等腰三角形的两个底角相等。(等边对等角)
②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)
2、等腰三角形的判定:
如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)
五、(等边三角形)知识点回顾
1.等边三角形的性质:
等边三角形的三个角都相等,并且每一个角都等于600 。
2、等边三角形的判定:
①三个角都相等的三角形是等边三角形。
②有一个角是600的等腰三角形是等边三角形。
3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。
4.直角三角形,斜边上的中线等于斜边的一半、
常见图形
一、轴对称型:
二、相交线型
三、旋转型
1.三角形全等的判定一(SSS )
1.如图,AB =AD ,CB =CD .△ABC 与△ADC 全等吗?为什么?
2.如图,C 是AB 的中点,AD =CE ,CD =BE .
求证△ACD ≌△CBE .
3.如图,点B ,E ,C ,F 在一条直线上,AB =DE ,AC =DF ,
F
E D
C
B
A
BE =CF . 求证∠A =∠D .
4.已知,如图,AB=AD ,DC=CB .求证:∠B=∠D 。
5.如图, AD =BC, AB =DC, DE =BF. 求证:BE =DF.
2.三角形全等的判定二(SAS )
1.如图,AC 和BD 相交于点O ,OA =OC ,OB =OD .求证DC ∥AB .
2.如图,△ABC ≌△A B C ''',AD ,A D ''分别是△ABC ,△A B C '''的对应边上的中线,AD 与A D ''有什么关系?证明你的结论.
3.如图,已知AC ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD ,试猜想线段CE 与DE 的大小与
位置关系,并证明你的结论.
4.已知:如图,AD ∥BC ,AD=CB ,求证:△ADC ≌△CBA .
A
C E
D
B
A
D
C
B
H F E
D C
B A
5.已知:如图AD ∥BC ,AD=CB ,AE=CF 。求证:△AFD ≌△CEB .
6.已知,如图,AB=AC ,AD=AE ,∠1=∠2。求证:△ABD ≌△ACE .
7.已知:如图,点B,E,C,F 在同一直线上,AB ∥DE,且AB=DE,BE=CF. 求证:AC ∥DF .
8.已知:如图,AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .
9.如图, 在△ABC 中, 分别延长中线BE 、CD 至F 、H, 使EF =BE, DH =CD, 连结AF 、AH . 求证:(1) AF =AH ;
(2)点A 、F 、H 三点在同一直线上; (3)HF ∥BC.
10.如图, 在△ABC 中, AC ⊥BC, AC =BC, 直线EF 交AC 于F, 交AB 于E, 交BC 的延长线于D, 连结AD 、BF, CF =CD. 求证:BF =AD, BF ⊥AD.
A
E B C
F
D 2 A
C B
E D
1 A
B
E F