列管式换热器课程设计..

合集下载

列管式换热器课程设计报告书

列管式换热器课程设计报告书

一、设计题目:列管式换热器设计二、设计任务及操作条件1、设计任务处理能力:3000吨/日设备型式:固定管板式换热器2、操作条件(1)苯:入口温度80.1℃出口温度40℃(2)冷却介质:循环水入口温度25℃出口温度35℃(3)允许压降:管程不大于30kPa壳程不大于30kPa三、设计内容(一)、概述目前板式换热器产品达到了一个成熟阶段,凭借其高效、节能、环保的优势,在各行业领域中被频繁使用, 并被用以替换原有管壳式和翅片式换热器,取得了很好的效果。

板式换热器的优点(1) 换热效率高,热损失小在最好的工况条件下, 换热系数可以达到6000W/ m2K, 在一般的工况条件下, 换热系数也可以在3000~4000 W/ m2K左右,是管壳式换热器的3~5倍。

设备本身不存在旁路,所有通过设备的流体都能在板片波纹的作用下形成湍流,进行充分的换热。

完成同一项换热过程, 板式换热器的换热面积仅为管壳式的1/ 3~1/ 4。

(2) 占地面积小重量轻除设备本身体积外, 不需要预留额外的检修和安装空间。

换热所用板片的厚度仅为0. 6~0. 8mm。

同样的换热效果, 板式换热器比管壳式换热器的占地面积和重量要少五分之四。

(3) 污垢系数低流体在板片间剧烈翻腾形成湍流, 优秀的板片设计避免了死区的存在, 使得杂质不易在通道中沉积堵塞,保证了良好的换热效果。

(4) 检修、清洗方便换热板片通过夹紧螺柱的夹紧力组装在一起,当检修、清洗时, 仅需松开夹紧螺柱即可卸下板片进行冲刷清洗。

(5) 产品适用面广设备最高耐温可达180 ℃, 耐压2. 0MPa , 特别适应各种工艺过程中的加热、冷却、热回收、冷凝以及单元设备食品消毒等方面, 在低品位热能回收方面, 具有明显的经济效益。

各类材料的换热板片也可适应工况对腐蚀性的要求。

当然板式换热器也存在一定的缺点, 比如工作压力和工作温度不是很高, 限制了其在较为复杂工况中的使用。

同时由于板片通道较小,也不适宜用于杂质较多,颗粒较大的介质。

列管氏换热器课程设计图

列管氏换热器课程设计图

列管氏换热器课程设计图一、教学目标本节课的学习目标包括知识目标、技能目标和情感态度价值观目标。

知识目标要求学生掌握列管式换热器的结构、工作原理和分类;技能目标要求学生能够运用所学知识分析和解决实际问题;情感态度价值观目标要求学生培养对化工工艺的兴趣,提高环保意识和安全意识。

结合课程性质、学生特点和教学要求,我们将目标分解为具体的学习成果:了解列管式换热器的结构及其组成部分,掌握其工作原理和分类;能运用所学知识分析实际问题,如换热器的选用和设计;培养环保意识和安全意识,关注化工工艺在生产中的应用和可持续发展。

二、教学内容本节课的教学内容主要包括列管式换热器的结构、工作原理、分类和应用。

教学大纲安排如下:1.列管式换热器的结构:介绍换热器的基本结构,包括壳体、管束、管板、管盖等组成部分,以及各种类型换热器的结构特点。

2.列管式换热器的工作原理:讲解换热器的工作原理,包括热交换过程、流体流动状态、传热速率等。

3.列管式换热器的分类:介绍换热器的分类及各类换热器的适用范围和优缺点。

4.列管式换热器的应用:分析换热器在化工、石油、电力等领域的应用实例,探讨换热器在生产过程中的重要作用。

三、教学方法为激发学生的学习兴趣和主动性,本节课采用多种教学方法相结合:1.讲授法:讲解换热器的结构、工作原理、分类和应用,使学生掌握基本概念和理论知识。

2.案例分析法:分析实际生产中的换热器应用案例,帮助学生将理论知识与实际应用相结合。

3.实验法:安排实验室参观或动手实验,让学生直观地了解换热器的结构和操作原理。

4.讨论法:学生分组讨论,分享学习心得和观点,提高学生的合作能力和沟通能力。

四、教学资源为实现教学目标,本节课将采用以下教学资源:1.教材:选用权威、实用的教材,为学生提供系统的理论知识。

2.参考书:提供相关领域的参考书籍,丰富学生的知识储备。

3.多媒体资料:制作精美的PPT,直观地展示换热器的结构和操作原理。

4.实验设备:安排实验室参观或动手实验,让学生亲身体验换热器的运行过程。

化工原理课程设计 列管式换热器

化工原理课程设计 列管式换热器

化工原理课程设计列管式换热器设计要求:设计一个列管式换热器,实现两种不同温度的流体之间的热量传递。

设计要求如下:1. 列管式换热器采用直管式结构,热传导介质为水和油;2. 设计流量分别为水流量 Q1 = 500 L/h,油流量 Q2 = 300 L/h;3. 设计温度分别为水的进口温度 T1i = 80℃,油的进口温度T2i = 120℃;4. 确定水的出口温度 T1o 和油的出口温度 T2o;5. 选择合适的换热器材料,确保换热效果良好;6. 根据设计参数计算所需的换热面积 A 和换热效率η。

设计方案:1. 确定管径和管长:首先根据水和油的流量和温度差,计算所需的换热面积。

然后确定换热器的尺寸,其中包括管径和管长。

2. 选择换热器材料:根据换热介质的性质和工作条件,选择合适的换热器材料,例如不锈钢。

3. 计算出口温度:根据热平衡原理,计算水和油的出口温度。

假设换热器满足热平衡条件,即水的热量损失等于油的热量增加。

4. 计算换热面积:根据换热器的尺寸和热传导方程,计算所需的换热面积。

5. 计算换热效率:根据热平衡原理和换热器的热传导性能,计算换热效率。

实施步骤:1. 根据设计流量和温度差,计算所需的换热面积。

假设水和油的传热系数均为常数,可以使用换热传导方程进行计算。

2. 根据所需的换热面积和理论计算值,选择合适的换热器尺寸。

3. 根据所选换热器材料,计算换热器的尺寸和管径。

假设管壁温度近似等于流体温度。

4. 根据热平衡原理,计算出口温度。

假设热平衡条件满足,即水的热量损失等于油的热量增加。

5. 根据所选材料和尺寸,计算换热效率。

假设换热器的热传导系数为常数,使用换热效率计算公式进行计算。

总结:本课程设计主要针对列管式换热器的设计,通过选择合适的换热器材料和计算换热器的尺寸,实现了水和油之间的热量传递。

根据设计要求,通过计算出口温度和换热效率,验证了设计方案的合理性。

设计过程需要考虑多方面的因素,如流体性质、流量和温度差等。

列管式换热器-课程设计

列管式换热器-课程设计

列管式换热器-课程设计
换热器是一种重要的化工设备。

随着其应用的不断扩大,对换热器的性能要求也越来越高。

以管式换热器为例,管式换热器具有结构简单、布置便利、运行可靠、热传递效率高、体积小、投资低等优点,在化工领域及各种壳管式再生塔、热交换器、海水-蒸汽换热器等热量转换系统中应用广泛。

本次课程设计的主题为管式换热器,围绕管式换热器的原理、性能与结构特性、设计过程、工艺流程展开设计与分析,具体的实习任务包括:
1. 熟悉管式换热器的基本原理、结构形式及性能特点;
2.学习管式换热器的性能计算方法,包括热量传递系数计算和散热量、传热量、温度梯度计算;
3.访问管式换热器制造厂,了解其生产工艺,深入了解管式换热器的结构、组成;
4.使用半求解数值模拟软件,进行现有管式换热器的模拟计算,提高热量传递性能;
5.按照管式换热器的设计原则、计算手段,进行管式换热器系列设计,并进行实验验证;
6.基于工作介质特性及换热器特点,进行管式换热器优化设计;
7.编制课程设计报告,完成本次课程设计任务。

课程设计任务的实施,将要求设计者在前期研究及样本实验的基础上,熟练掌握管式换热器的传热特性并能够根据不同的实验数据正确分析特性曲线,对比实验做适当的变化和选择,给出精确的设计值,从而客观地反映出不同材料的热传递特性差异;在实验室中勤奋地实践和调整,进一步加深对管式换热器热传递特性及设计方法的认识,提高使用者对新工艺材料和新设备的分析能力及设计能力。

列管式换热器课程设计

列管式换热器课程设计

列管式换热器课程设计第1章⼯艺流程1.1 ARGG装置ARGG装置包括反应-再⽣、分馏、吸收塔、⽓压机、能量回收及余热锅炉、产品精制⼏部分租成,ARGG⼯艺以常压渣油等重油质油为原料,采⽤重油转化和抗⾦属能⼒强,选择性好的ARG催化剂,以⽣产富含丙烯、异丁烯、异丁烷的液化⽓、并⽣产⾼⾟烷只汽油。

1.2⼯艺原理1.2.1催化裂化部分催化裂化是炼油⼯业中最重要的⼆次加⼯过程,是重油轻质化的重要⼿段。

它是使原料油在适宜的温度、压⼒和催化剂存在的条件下,进⾏分解、异构化、氢转移、芳构化、缩和等⼀系列化学反应,原料油转化为⽓体、汽油、柴油等主要产品及油浆、焦炭的⽣产过程。

催化裂化的原料油来源⼴泛,主要是常减压的馏分油、常压渣油、减压渣油及丙烷脱沥青油、蜡膏、蜡下油等。

随着⽯油资源的短缺和原油的⽇趋变重,重油催化裂化有了较快发展,处理的原料可以是全常渣甚⾄是全减渣。

在硫含量较⾼时,则需⽤加氢脱硫装置进⾏处理,提供催化原料。

催化裂化过程具有轻质油收率⾼、汽油⾟烷值较⾼、⽓体产品中烯烃含量⾼等特点。

催化裂化⽣产过程的主要产品是⽓体、汽油和柴油,其中⽓体产品包括⼲⽓和液化⽯油⽓,⼲⽓作为本装置燃料⽓烧掉,液化⽯油⽓是宝贵的⽯油化⼯原料和民⽤燃料。

催化裂化的⽣产过程包括以下⼏个部分:反应再⽣部分:其主要任务是完成原料油的转化。

原料油通过反应器与催化剂接粗并反应,不断输出反应物,催化剂则在反应器和再⽣器之间不断循环,在再⽣器中通⼊空⽓烧去催化剂上的积灰,恢复催化剂的活性,使催化剂能够循环使⽤。

烧焦放出的热量⼜以催化剂为载体,不断带回反应器,供给反应所需的热量,过剩的热量由专门的取热设施取出并加以利⽤。

分馏部分:主要任务根据反应油⽓中各组分沸点的不同,将他们分离成富⽓、粗油⽓、轻柴油、回炼油、油浆,并保证油⽓⼲点、轻柴油的凝固点和闪点合格。

吸收稳定部分:利⽤各组分之间在液体中溶解度的不同把富⽓和粗油⽓分离成⼲⽓、液化⽓、稳定汽油。

列管式换热器课程设计报告书

列管式换热器课程设计报告书

列管式换热器课程设计报告书设计报告书:列管式换热器引言:设计报告书旨在对列管式换热器进行综合性的设计分析,详细讨论设计过程及结果。

本文档包括换热器的设计背景、设计目标、设计计算、设计结果及讨论以及结论等主要内容。

一、设计背景:二、设计目标:本次设计的目标是设计一台列管式换热器,用于将一种流体的温度从80℃升高到120℃,另一种流体的温度从150℃降至100℃。

设计要求包括:换热器的热功率、设计压力、流体入口温度和出口温度、换热面积等参数。

三、设计计算:1.确定热负荷和流体流量:根据流体的温度变化和流量要求,确定热负荷和流体流量。

并结合换热器的传热特性,计算出换热面积。

2.选择换热器类型和材料:根据设计要求,选择适合的列管式换热器类型和材料,考虑到流体性质、压力和温度等因素。

3.计算传热过程中的压降:根据流体性质和流体流量,计算流体在换热器中的压降。

4.确定换热器的尺寸:根据计算得到的换热面积和流体流量,确定换热器的尺寸和结构。

四、设计结果及讨论:根据实际情况及设计计算,确定了列管式换热器的参数和结构。

设计结果展示了换热器的尺寸、换热面积、流量参数等,并进行了相关讨论。

同时,设计结果还包括选择的换热器材料、设计压力和温度等。

五、结论:本次设计报告书综合分析了列管式换热器的设计过程及结果。

根据设计目标和计算得出的结果,可得出以下结论:1.设计的列管式换热器满足了设计要求,能够实现流体的热交换。

2.使用合适的材料和尺寸,可以优化换热器的性能和效率。

3.设计过程中需要考虑流体的性质、温度、压力和流量等因素,以确保换热器的安全和稳定运行。

结语:本设计报告书详细介绍了列管式换热器的设计背景、设计目标、设计计算、设计结果及讨论,以及最终得出的结论。

通过本次设计,我们加深了对列管式换热器的理解,并提高了设计能力。

在实际工程中,将根据需求及具体情况进行设计,并综合考虑各种因素,以确保换热器的优化运行。

(完整版)列管式换热器设计

(完整版)列管式换热器设计

第一章列管式换热器的设计1.1概述列管式换热器是一种较早发展起来的型式,设计资料和数据比较完善,目前在许多国家中已有系列化标准。

列管式换热器在换热效率,紧凑性和金属消耗量等方面不及其他新型换热器,但是它具有结构牢固,适应性大,材料范围广泛等独特优点,因而在各种换热器的竞争发展中得以继续应用下去。

目前仍是化工、石油和石油化工中换热器的主要类型,在高温高压和大型换热器中,仍占绝对优势。

例如在炼油厂中作为加热或冷却用的换热器、蒸馏操作中蒸馏釜(或再沸器)和冷凝器、化工厂中蒸发设备的加热室等,大都采用列管式换热器[3]。

1.2列管换热器型式的选择列管式换热器种类很多,目前广泛使用的按其温度差补偿结构来分,主要有以下几种:(1)固定管板式换热器:这类换热器的结构比较简单、紧凑,造价便宜,但管外不能机械清洗。

此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。

通常在管外装置一系列垂直于管束的挡板。

同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。

因此,当管壁与壳壁温度相差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或使管子从管板上松脱,甚至毁坏整个换热器。

为了克服温差应力必须有温度补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。

(2)浮头换热器:换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以便管子受热或冷却时可以自由伸缩,但在这块管板上来连接有一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。

这种型式的优点为:管束可以拉出,以便清洗;管束的膨胀不受壳体的约束,因而当两种换热介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。

其缺点为结构复杂,造价高。

(3)填料函式换热器:这类换热器管束一端可以自由膨胀,结构与比浮头式简单,造价也比浮头式低。

但壳程内介质有外漏的可能,壳程终不应处理易挥发、易爆、易燃和有毒的介质。

列管式换热器课程设计

列管式换热器课程设计

列管式换热器课程设计一、课程目标知识目标:1. 学生能理解并掌握列管式换热器的工作原理及其在工业中的应用。

2. 学生能够描述列管式换热器的结构特点,并解释其设计参数对换热效率的影响。

3. 学生能够运用基本的物理和数学原理分析换热器内的热量传递过程。

技能目标:1. 学生能够运用所学知识,设计简单的列管式换热器,并进行基本的性能分析。

2. 学生能够通过计算软件或手动计算,完成换热器换热面积的计算。

3. 学生能够运用图表和数据分析方法,评价不同设计参数对换热性能的影响。

情感态度价值观目标:1. 培养学生对能源转换和利用中换热技术的兴趣,激发其探索热能工程领域的热情。

2. 通过团队合作完成换热器的设计,增强学生的团队合作意识和解决问题的能力。

3. 增进学生对工业节能和环境保护意识,培养其负责任的工程伦理观。

本课程针对高年级工程技术类专业的学生,结合学科特点,课程性质偏重于应用实践。

学生应具备一定的物理、数学基础及工程制图能力。

教学要求注重理论联系实际,通过课程学习,使学生不仅掌握换热器的基础知识,还能通过实际操作提高解决实际工程问题的能力,为未来从事相关领域工作打下坚实基础。

二、教学内容1. 列管式换热器基础理论- 换热器概述:定义、分类及在工业中的应用。

- 工作原理:热量传递的基本方式,流体流动与传热的关系。

2. 列管式换热器结构及设计参数- 结构特点:管壳式换热器的构造,管程与壳程的设计。

- 设计参数:影响换热性能的主要参数,包括换热面积、流体流速、温差等。

3. 换热器内的热量传递计算- 热量传递方程:导热、对流和辐射的基本方程。

- 换热系数:不同流体和工况下的换热系数计算。

4. 列管式换热器的设计与性能分析- 设计步骤:换热器设计的基本流程,包括换热面积、管径、管长等计算。

- 性能分析:运用图表和数据分析方法,评价设计参数对换热性能的影响。

5. 案例分析与实操练习- 案例分析:实际工程中的换热器设计案例,分析其设计原理和优化方法。

列管式换热器课程设计报告书

列管式换热器课程设计报告书

列管式换热器课程设计报告书列管式换热器是一种常见的换热设备,其结构简单、效率高,广泛应用于石化、电力、制药等工业领域。

为了进一步了解列管式换热器的工作原理和设计方法,本课程设计以列管式换热器的设计与优化为主题,旨在培养学生运用所学知识解决实际工程问题的能力。

一、课程设计的目标与任务本课程设计的目标是通过学习列管式换热器的设计原理和方法,培养学生的设计能力和创新思维,使其掌握列管式换热器的设计与优化方法。

具体任务如下:1.研究列管式换热器的原理和结构,了解其工作过程和基本参数;2.学习换热器设计的基本原理和方法,包括换热面积计算、传热系数估算等;3.进行列管式换热器的设计计算和优化分析;4.编写课程设计报告书,总结设计过程和结果。

二、课程设计的内容和方法1.理论学习通过教材、参考书籍和互联网资源,学习列管式换热器的基本原理、结构和工作过程。

学生还需深入了解换热器的传热理论和设计方法,了解不同种类的换热器。

2.设计计算学生根据教师提供的设计要求和实际工况数据,进行列管式换热器的设计计算。

包括换热面积的计算、传热系数的估算、管束的选择等。

学生可以借助计算机软件进行设计计算,加深对设计原理和方法的理解。

3.优化分析学生在设计计算的基础上,进行列管式换热器的优化分析。

通过调整设计参数,寻求更优的设计方案。

优化目标可以包括换热效率、压降、材料成本等。

学生需要运用数学方法和工程经验,进行综合评价和决策。

4.报告撰写学生根据设计计算和优化分析的结果,撰写课程设计报告书。

报告需要包括设计计算的过程和结果、优化分析的方法和结果、结论和建议等。

同时,学生还需要附上设计过程中的数据、图表和计算公式,以便他人理解和复现设计过程。

三、评价方法和标准1.设计计算和优化分析的准确性和合理性;2.报告书的内容完整、结构合理、文字准确、图表清晰;3.学生对设计中关键问题的分析和讨论;4.学生对设计过程的理解程度和设计思路的合理性。

化工原理课程设计列管式换热器

化工原理课程设计列管式换热器

化工原理课程设计列管式换热器化工原理课程设计是化学工程学科的重要环节,其设计的目的是让学生在理论基础知识的基础上,能够熟练掌握工业化学反应装置和过程的设计方法,并能灵活运用各种装置和工艺条件来实现设备的最优化。

其中列管式换热器是常用于化工生产过程中的一种重要装置,本文将对其进行详细介绍。

一、列管式换热器的结构与原理列管式换热器是通过管壳型构造,由许多纵向的管子构成,管子两侧通过流体工质进行换热。

其主要结构包括壳体、管板、管束、进出口法兰等部分。

换热原理是将热量从高温的流体传给低温的流体,实现两种流体之间的热量交换。

二、列管式换热器的特点和应用列管式换热器具有结构简单、换热效率高、应用范围广、容易清洗维修等特点。

其在化工生产中广泛应用于热回收、冷却、加热等方面,如在石油、化工、冶金、食品、制药、造纸等行业的反应过程中都有重要的应用。

三、列管式换热器的设计方法在设计列管式换热器时,主要需考虑的参数有流体介质、流量、温度、压力等等,其中最核心的是确定热量传递系数与压降。

常用的设计方法有总热传系数法、等效径法、NTU法等。

其中总热传系数法是最常用的方法,其计算的公式为:1/U = 1/hi + Δx/k + Δy/ho其中U为总热传系数,hi、ho分别为热传分界面内的内、外热传系数,k为扩散系数(介质传热系数),Δx、Δy为介质的平均厚度与壁层厚度。

在设计时应根据具体情况选用合适的计算方法。

四、列管式换热器的操作和维护在使用列管式换热器时,应注意清洗维护工作。

由于该装置的结构特殊,应定期进行化学清洗,以避免沉积物和腐蚀物堵塞换热器内壁。

同时还应注意防止介质的过于浓缩,以免产生结晶、沉积、腐蚀等情况。

综上所述,列管式换热器是化工生产中不可缺少的一种装置,其结构特殊、应用范围广泛、换热效率高,并且容易维护操作,是值得研究和推广的一种装置。

在化工原理的课程设计中,学生能够通过对列管式换热器的深入理解和设计方案的完善,培养出创新思维和实际操作能力,为将来化工行业的发展奠定坚实的基础。

列管式换热器课程设计

列管式换热器课程设计
管板加工:将管板切割、钻孔、焊接等加工成所需的形状 和尺寸
组装:将管子和管板组装成换热器
焊接:将换热器焊接成一体
检验:对换热器进行压力试验、泄漏试验等检验,确保其 质量和性能符合要求
焊接工艺和要求
焊接方法:采用电弧焊、气焊或激光焊等方法
焊接材料:选用耐腐蚀、耐高温、高强度的合金材料
焊接工艺参数:控制焊接电流、电压、速度等参数,保证焊接质量 焊接检验:进行无损检测,如X射线、超声波等,确保焊接质量符合要 求
Part Four
列管式换热器的传 热计算
传热系数的计算
传热系数的影响因素:包括 流体的性质、流速、温度、 压力等
传热系数的定义:表示单位 时间内单位面积上的传热量
传热系数的计算方法:包括 实验法、理论法和数值法
传热系数的应用:用于计算 换热器的传热量、传热面积
等参数
传热面积的计算
传热面积的定 义:换热器中 流体与壁面接
触的面积
计算公式: A=πD*L,其 中A为传热面 积,D为管径,
L为管长
影响因素:流 体的种类、温 度、流速、压
力等
计算方法:根 据流体的种类、 温度、流速、 压力等参数, 选择合适的计 算公式进行计

流体阻力的计算
流体阻力的定义:流体在流动 过程中产生的阻力
流体阻力的计算公式: f=1/2*ρ*v^2*A
检验和试验要求
压力试验:进行压力试验, 检查换热器是否泄漏
尺寸检查:检查换热器尺寸 是否符合设计要求
外观检查:检查换热器外观 是否完好,有无破损、变形 等
热工性能试验:进行热工性 能试验,检查换热器传热效
率是否符合设计要求
耐腐蚀试验:进行耐腐蚀试 验,检查换热器是否耐腐蚀

列管式换热器-课程设计

列管式换热器-课程设计

列管式换热器-课程设计一、概述列管式换热器是一种将多个平行管道嵌入到圆柱形壳体中、同时将流体分别流过内、外两侧实现热量传递的设备。

本次课程设计将要探讨的是该设备的设计过程。

二、设计过程1. 确定设计参数设计前需要先确定所需的设计参数,如换热器的设计热负荷、流量、压力等,这些参数将决定换热器的尺寸和布局,为后续设计提供基础。

2. 换热器类型选择根据设计参数、使用场景、材料成本等因素选择适合的换热器类型,如单相流、双相流、冷凝器、蒸发器等。

3. 确定材料和尺寸选择适合的材料和尺寸以满足设计参数,同时考虑生产和运输的成本和实际情况。

4. 确定管束参数确定管束长度、管束密度、管道直径和布局等参数,保证管束的压力和流速符合设计要求,并达到最佳热传导效果。

5. 热传导计算进行热传导计算,以确定管束长度和直径,根据流动状态和温度场计算出换热系数、平均温差和热效率等参数。

6. 设计壳体结构设计壳体的结构和尺寸,确定支撑方式和绝热方式,同时考虑安全和易于维护的因素。

7. 流体力学分析进行流体力学分析,确定流体在管道中的流动状态,以保证衬里的材料和厚度设计得足够坚固,以避免漏泄和磨损。

8. 设计精度分析进行精度分析和优化,以确定设备的运行效率和稳定性,并满足设计和生产的要求。

9. 制造和安装根据设计图纸制造和安装换热器,并进行预试运行和调试,最终达到设计要求。

三、总结以上是列管式换热器的设计过程,该过程需要深入掌握流体力学、热传导学、结构力学等知识,同时也需要掌握计算机辅助设计软件的使用,以提高效率和质量。

设计合理的列管式换热器能够提高生产效率,降低能耗,并为工业生产的可持续发展提供支持。

列管式换热器课程设计

列管式换热器课程设计

列管式换热器 课程设计一、课程目标知识目标:1. 让学生掌握列管式换热器的基本结构和工作原理,理解换热过程中的热量传递机制。

2. 使学生了解列管式换热器的类型、特点及应用场景,能够区分不同类型的换热器。

3. 引导学生掌握换热器设计的基本原则和步骤,学会运用相关公式计算换热器的传热系数和换热面积。

技能目标:1. 培养学生运用所学知识分析实际换热问题,具备解决换热器设计问题的能力。

2. 提高学生运用计算工具(如Excel、计算器等)进行换热器相关计算的速度和准确性。

3. 培养学生团队合作意识,提高沟通与协作能力,通过小组讨论、汇报等形式,共同完成换热器设计任务。

情感态度价值观目标:1. 培养学生对换热器设计及工程应用的兴趣,激发创新意识和探索精神。

2. 引导学生关注换热器在能源、环保等领域的重要性,培养节能环保意识和社会责任感。

3. 培养学生严谨、踏实的科学态度,养成认真负责的工作作风。

本课程针对高年级学生,结合学科特点和教学要求,将目标分解为具体的学习成果。

课程注重理论与实践相结合,以实际工程案例为载体,引导学生通过自主学习、小组合作等方式,掌握换热器设计的基本知识和技能。

在教学过程中,关注学生的个体差异,鼓励提问和讨论,以提高学生的思维能力和解决问题的能力。

通过本课程的学习,使学生能够具备独立设计换热器的能力,为未来从事相关工作打下坚实基础。

二、教学内容1. 列管式换热器的基本概念:介绍换热器的作用、分类及其在工业中的应用。

教材章节:第二章 换热器的基本概念与分类2. 列管式换热器的工作原理:讲解列管式换热器中的热量传递过程,包括对流传热和导热。

教材章节:第三章 列管式换热器的工作原理与热量传递3. 列管式换热器的设计原则与步骤:阐述换热器设计的基本原则,介绍设计步骤及注意事项。

教材章节:第四章 列管式换热器的设计原则与步骤4. 列管式换热器传热系数的计算:分析影响换热器传热系数的因素,介绍相关计算公式。

食品工程原理——列管式换热器课程设计[1][1]

食品工程原理——列管式换热器课程设计[1][1]

列管式换热器的设计班级:xxxx姓名:xxx学号:xxxxxxxx指导教师:xxx时间:xxxxx目录工程原理课程设计任务书 (2)(一) 概述及设计方案简介 (3)1概述 (3)2设计方案简介 (8)(二)工艺及设备设计计算 (8)1确定物性数据 (8)2计算总传热系数 (9)3传热面积的计算 (10)4工艺结构尺寸 (10)5换热器核算 (12)(三)辅助设备的计算及选型 (14)(四)设计结果汇总表 (15)(五)设计评述 (15)(六)参考资料 (15)(七)主要符号说明 (16)(八)致谢 (16)工程原理课程设计任务书(一) 概述及设计方案简介1 概述在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。

在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。

在工程实践中有时也会存在两种以上流体参加换热的换热器,但它的基本原理与上述情形并无本质上的差别。

在食品、化工、石油、动力、制冷等行业中广泛使用各种换热器,它不仅可以单独作为加热器、冷却器等使用,而且是一些化工单元操作的重要附属设备,因此在化工生产中占有重要地位。

随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器各有优缺点,性能各异。

在换热器设计中,首先应根据工艺要求选择适用的类型然后计算换热所需传热面积,并确定换热器的结构尺寸。

1.2 换热器的选择换热器的种类很多,根据其热量传递的方法的不同,可以分为3种形式:坚壁式、直接接触式和蓄热式。

列管式换热器的应用已有很悠久的历史,现在,它被当作一种传统的标准换热设备在很多工业部门中大量使用,尤其在石油、化工、能源设备等部门所使用的换热设备中,列管式换热器仍处于主导地位。

虽然列管式换热器在传热效率、紧凑性和金属耗量等方面不及某些新型换热器,但它具有结构简单、坚固耐用、适应性强、制造材料广泛等独特的优点,因而在换热设备中仍处于主导地位。

列管式换热器的设计(化工原理课程设计)

列管式换热器的设计(化工原理课程设计)

目录§一.任务书1.1.化工原理课程设计的重要性1.2.课程设计的基本内容和程序1.3.列管式换热器设计内容1.4.设计任务和操作条件1.5.主要设备结构图§二.概述及设计要求2.1.换热器概述2.2.固定管板式换热器2.3.设计要求§三.设计条件及主要物理参数3.1.初选换热器的类型3.2.确定物性参数3.3.计算热流量及平均温差3.4.管程安排(流动空间的选择)及流速确定3.5.计算传热系数k3.6.计算传热面积§四.设计结果汇总§五.设计评述§六.工艺流程图§七.符号说明§八.参考资料§一化工原理课程设计任务书1.1.化工原理课程设计的重要性化工原理课程设计是学生学完基础课程以及化工原理课程以后,进一步学习工程设计的基础知识,培养学生工程设计能力的重要教学环节,也是学生综合运用化工原理和相关选修课程的知识,联系生产实际,完成以单元操作为主的一次工程设计的实践。

通过这一环节,使学生掌握单元操作设计的基本程序和方法,熟悉查阅技术资料、国家技术标准,正确选用公式和数据,运用简洁文字和工程语言正确表述设计思想和结果;并在此过程中使学生养成尊重实际问题向实践学习,实事求是的科学态度,逐步树立正确的设计思想、经济观点和严谨、认真的工作作风,提高学生综合运用所学的知识,独立解决实际问题的能力。

1.2.课程设计的基本内容和程序化工原理课程设计的基本内容有:1、设计方案简介:对给定或选定的工艺流程、主要设备的型式进行简要的论述。

2、主要设备的工艺计算:物料衡算、能量衡算、工艺参数的选定、设备的结构设计和工艺尺寸的设计计算。

3、辅助设备的选型:典型辅助设备主要工艺尺寸的计算,设备规格型号的选定。

4、工艺流程图:以单线图的形式描绘,标出主体设备与辅助设备的物料方向、物流量、主要测量点。

5、主要设备的工艺条件图:图面应包括设备的主要工艺尺寸,技术特性表和接管表。

列管式换热器课程设计

列管式换热器课程设计
5.列管式换热器的性能评价及优化方法。
2、教Байду номын сангаас内容
1.列管式换热器的类型及适用场合;
2.热力学第一定律和第二定律在列管式换热器中的应用;
3.列管式换热器中常见流动及换热问题的解决方法;
4.列管式换热器设计过程中需考虑的安全、经济和环保因素;
5.结合实际案例,分析列管式换热器的设计过程及注意事项。
3、教学内容
1.列管式换热器内流体流动的压降与流速的关系;
2.传热过程中的对数平均温差计算及应用;
3.列管式换热器设计中常用的换热系数关联式和选取方法;
4.列管式换热器的设计软件应用及模拟分析;
5.实验教学:列管式换热器性能测试实验,包括数据采集、处理与分析。
4、教学内容
1.列管式换热器的制造工艺及其对换热性能的影响;
2.列管式换热器的安装、维护及常见故障排除方法;
3.列管式换热器在工业应用中的节能技术与案例分析;
4.列管式换热器设计方案的评估与优化,包括成本分析、效能比较;
5.列管式换热器课程设计报告撰写要求及评价标准。
5、教学内容
1.列管式换热器在环保和可持续发展方面的考虑;
2.列管式换热器设计中的创新思维与案例分析;
列管式换热器课程设计
一、教学内容
本章节内容源自《热工学》教材第四章“换热器”,重点探讨列管式换热器的课程设计。内容包括:
1.列管式换热器的基本结构和工作原理;
2.列管式换热器的设计计算方法,包括换热面积、流体流动及传热系数的计算;
3.列管式换热器中壳程和管程的流动与换热特点;
4.列管式换热器的选材和结构设计;
3.学生分组讨论:探讨不同行业对列管式换热器性能要求及设计差异;

化工原理课程设计列管式换热器

化工原理课程设计列管式换热器
缺陷: 1)在管子旳U型处易冲蚀,应控制管内流速; 2)管程不合用于结垢较重旳场合;
可用旳场合:
1)管程走清洁流体;
2)管程压力尤其高;
3)管壳程金属温差很大,固定管板换热器连设置膨胀节都无法 满足要求旳场合.
2、流动空间旳选择
3、流速旳拟定
4、流动方式旳选择
除逆流和并流之外,在列管式换热器中冷、 热流体还能够作多种多管程多壳程旳复杂 流动。当流量一定时,管程或壳程越多, 表面传热系数越大,对传热过程越有利。 但是,采用多管程或多壳程必造成流体阻 力损失,即输送流体旳动力费用增长。所 以,在决定换热器旳程数时,需权衡传热 和流体输送两方面旳损失。
5、流体出口温度旳拟定
若换热器中冷、热流体旳温度都由工艺条件所要求,则不存在 拟定流体两端温度旳问题。若其中一流体仅已知进口温度,则 出口温度应由设计者来拟定。例如用冷水冷却一热流体,冷水 旳进口温度可根据本地旳气温条件作出估计,而其出口温度则 可根据经济核实来拟定:为了节省冷水量,可使出口温度提升 某些,但是传热面积就需要增长;为了减小传热面积,则需要 增长冷水量。两者是相互矛盾旳。一般来说,水源丰富旳地域 选用较小旳温差,缺水地域选用较大旳温差。但是,工业冷却 用水旳出口温度一般不宜高于45℃,因为工业用水中所含旳部 分盐类(如CaCO3、CaSO4、 MgCO3和MgSO4等)旳溶解度 随温度升高而减小,如出口温度过高,盐类析出,将形成传热 性能很差旳污垢,而使传热过程恶化。假如是用加热介质加热 冷流体,可按一样旳原则选择加热介质旳出口温度。
取管长应根据出厂旳钢管长度合理截用。 我国生产系列原则中管长有1.5m,2m, 3m,4.5m,6m和9m六种,其中以3m和 6m更为普遍。同步,管子旳长度又应与管 径相适应,一般管长与管径之比,即L/D约 为4~6

列管式换热器课程设计(含有CAD格式流程图和换热器图)

列管式换热器课程设计(含有CAD格式流程图和换热器图)
完善图纸细节
检查并调整图纸中的线条、颜色、字体等细节,确保图纸清晰易读, 符合规范要求。
关键节点参数设置与调整
设备参数设置
根据换热器、泵等设备的性能参 数,设置相应的CAD图纸中的属 性,如设备尺寸、处理能力、扬 程等。
管道参数调整
根据工艺流程需求和管道设计规 范,调整管道的直径、壁厚、材 质等参数,确保管道系统的安全 性和经济性。
阀门与控制点设置
在关键位置设置阀门以控制物料 流动,并根据控制需求设置相应 的控制点,如温度传感器、压力 传感器等。
流程图在课程设计中的作用
明确工艺流程
通过流程图可以清晰地展示物料在换热器中的流动过程, 帮助学生理解工艺流程和设备的相互关系。
指导设备布局与管道设计
流程图可以作为设备布局和管道设计的依据,有助于优化 设备布局和减少管道长度,提高系统的效率。
方式和换热器图纸中的局部结构。
建议措施
03
加强CAD制图技能的训练,提高图纸的准确性和规范
性。
经验教训分享与未来展望
经验教训
在课程设计过程中,应注重团队协作,合理分配任务,及时沟通交流,确保设计进度和 质量。
未来展望
随着CAD技术的不断发展,应积极探索新的设计理念和方法,提高课程设计的创新性 和实用性。同时,鼓励学生参与实际工程项目,将理论知识与实践相结合,提升综合素
流程图绘制步骤及规范
确定流程图的类型和范围
根据课程设计需求,明确要绘制的流程图类型(如工艺流程图、控制 流程图等)和所涵盖的范围。
绘制主要设备和管道
使用CAD软件中的绘图工具,按照比例和规范要求,绘制出换热器、 泵、阀门等主要设备以及连接它们的管道。
添加流向箭头和标注
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计说明书学院:机电工程学院专业:自动化班级:(1)班题目:列管式换热器的设计指导教师:职称:目录一、设计的目的、要求及任务________________________________________21.1 设计目的_______________________________________________21.2 设计要求_______________________________________________21.3 设计任务_______________________________________________21.3.1 列管式换热器的简介______________________________21.3.2 设计的工艺流程__________________________________31.3.3 有关数据和已知条件_______________________________4二、控制方案的选择________________________________________________52.1 主回路设计______________________________________________52.2 副回路选择______________________________________________62.3 主、副调节器规律选择____________________________________62.4 主、副调节器正反作用方式确定____________________________62.5工艺流程图______________________________________________7三、调节阀的选择_________________________________________________73.1 阀的类型选择___________________________________________73.2 确定起开与气关_________________________________________8四、仪表类型的选择_______________________________________________84.1流量变送器的选择________________________________________84.2温度变送器______________________________________________94.3安全栅的选择____________________________________________10五、总结_________________________________________________________11 参考文献_______________________________________________________12一、设计的目的、要求及任务1.1 设计目的本设计是学生第一次进行的综合性专业训练,是自动化专业的一个重要教学环节,其设计目的是进一步巩固和加深对所学理论知识的理解,培养学生独立分析和解决工程实际问题的能力,使学生对自控设计有较完整的概念,培养学生综合运用所学的控制理论、仪表、控制工程等知识进行工程设计的能力,进一步提高设计计算、制图、视图、编写技术文件,查阅参考文献与资料、仪表类型选择的能力。

1.2 设计要求在设计内容选择上要结合具体的生产实际,题目要有一定的实际意义,做到理论联系实际。

自控设备设计要求采用计算机控制系统(如DCS、PLC、FCS等)。

本设计应当在教师指导下,由学生独立完成下面内容:(1)设计说明书:包括设计指导思想和设计依据,自动化水平和控制方案的确定,设计计算,仪表选型,以及采用新技术新产品的依据,安全技术措施,重要的复杂调节系统的说明,设计中存在的问题等等;(2)填写表格:如自控设备汇总表、调节阀计算数据表、综合材料表等。

设计要求方案合理、计算数据准确、图面图形和标注符合国家标准和有关技术规范要求,说明书编写符合指导书规定要求。

1.3 设计任务1.3.1 列管式换热器的简介列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。

一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。

管束的壁面即为传热面。

其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。

为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。

折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。

列管式换热器是目前化工及酒精生产上应用最广的一种换热器。

它主要由壳体、管板、换热管、封头、折流挡板等组成。

所需材质,可分别采用普通碳钢、紫铜、或不锈钢制作。

在进行换热时,一种流体由封头的连结管处进入,在管流动,从封头另一端的出口管流出,这称之管程;另-种流体由壳体的接管进入,从壳体上的另一接管处流出,这称为壳程。

1.3.2 设计的工艺流程将原油储罐的原油用泵打入列管式换热器,经列管式换热器将其加热到T=150℃±2℃,进入后的原油进入下一工段加工。

载热体为250℃的饱和蒸汽。

图1 列管式换热器工艺流程图1.3.3 有关数据和已知条件①换热器出口温度的调节通道动态特性,可以近似看成一阶惯性环节的对象。

设其放大倍数KP =0.6 TP=1.2分。

②饱和蒸汽:Qmax =360m3/h,QC=280m3/h,P=40kgf/cm2,T=250℃。

③原油:Qmax=50m3/h,Q=39m3/h,P=7kgf/cm2, T=10℃, ρ=0.9g/cm3。

④加热后的原油温度T=150℃±2℃。

⑤工艺上要求在仪表盘上记录原油流量、加热原油温度、饱和蒸汽流量。

⑥工艺上要求就地指示原油泵后压力、温度、加热原油出口温度。

⑦要求控制换热器原油出口温度。

⑧设计尺寸:如下图所示在设计过程中除了上述的已知数据和要求,其它问题可以自己设定。

二、控制方案的选择2.1 主回路设计换热器温度串级控制系统是以原料油出口温度为主要被控参数的控制系统。

温度调节器对被控参数精确控制与温度调节器对来自外界干扰的及时控制相结合,先根据被控的变化,改变蒸汽量,快速消除来自外界的干扰、对炉膛温度的影响;然后再根据原油出口温度与设定值的偏差,改变炉膛温度调节器的设定值,进一步调节蒸汽量,使原料油出口温度恒定,达到温度控制的目的。

大部分的温度检测采用温度变送器,如果单纯采用温度控制得系统的控制质量将不会得到改善。

因此换热器的控制系统中,采用温度-压力的串级控制系统。

其中,温度为主回路,压力为副回路。

控制系统方框图如图2所示:图2列管式换热器的温度串级控制系统方框图上图为列管式换热器的温度串级控制系统方框图。

由于系统中工艺要求是控制原油加热出口温度,温度控制器为主控制器。

压力控制器为副控制器,温度控制器的输出是压力控制器的给定。

串级控制系统比单回路系统响应速度更快,有更强的控制作用和更好的鲁棒特性,能明显的改善控制品质。

2.2 副回路选择副回路的选择也就是确定副回路的被控参数。

蒸汽由于其成分和流量变化,对控制过程产生极大干扰。

所以,我们选择蒸汽量为串级控制系统的辅助被控参数。

串级系统中,通过调整副参数蒸汽量能够有效地影响主参数原料油出口温度,提高了主参数的控制效果。

2.3 主、副调节器规律选择在串级控制系统中,主、副调节器所起的作用不同。

主调节器起定值控制作用,副调节器起随动控制作用,这是选择调节器规律的基本出发点。

在换热器温度串级控制系统中,我们选择原料油出口温度为主要被控参数,原料油温度影响产品生产质量,工艺要求严格,又因为加热炉串级控制系统有较大容量滞后,所以,选择PID调节作为住调节器的调节规律。

控制副参数是为了保证和提高主参数的控制质量,对副参数的要求一般不严格,可以在一定范围内变化,允许有残差,所以我们的负调节器调节规律选择P 控制。

2.4 主、副调节器正反作用方式确定由生产工艺安全考虑,燃料调节阀应选气开方式,这样保证系统出现故障时调节阀处于全关状态,防止燃料进入加热炉,确保设备安全,调节阀的Kv﹥0。

主调节器作用方式确定:蒸汽流量升高,物料出口温度也升高,主被控过程Ko1﹥0。

为保证主回路为负反馈,各环节放大系数成绩必须为正,所以负调节器的放大系数K1﹥0,主调节器作用方式为反作用。

又为保证副回路是负反馈,各环节放大系数乘积必须为正,所以负调节器大于0,负调节器作用方式为反作用方式。

2.5工艺流程图三、调节阀的选择3.1 阀的类型选择调节阀是过程控制系统的一个重要组成部分,其特性好坏对控制质量的影响是很大的。

由于其结构较简单又较粗糙,所以往往不被人们所重视。

实践证明,在过程控制系统设计中,若调节阀特性选用不当,阀门动作不灵活,口径大小不合适,都会严重影响控制质量。

通过调节阀的选择原则,及本系统的要求,选择ZZWPE温度自力式[电子型]调节阀。

自力式电控温度调节阀(适用于较大口径及导热油控制),该阀最大的特点只需普通220V电源,利用被调介质自身能量,直接对蒸汽、热气、热油与气体等介质的温度实行自动调节和控制,亦可使用在防止对过热或热交换场合,该阀结构简单,操作方便,选用调温范围广、响应时间快、密封性能可靠,并可在运行中随意进行调节,因而广泛应用于化工、石油、食品、轻纺等部门。

自力式电控温度调节阀公称通径由20至200mm,公称压力有1.0、1.6、4.0、6.4MPa,使用温度范围由-20℃~350℃,接受信号为0~10mA.DC或4~20mA.DC来改变被调介质流量,使被控工艺参数保持在给定值,其中单座调节型适用于压差较小,介质粘度较大或稍有颗粒杂质场合。

套筒调节型适用于压差较大场合。

一.自力式电控温度调节阀技术参数:1.公称通径(阀座直径mm):10、12、15、25、80、100、125、150等。

2.公称压力(Mpa):1.0、1.4、4.0、6.43.固有流量特性:直线、等百分比4.信号范围:0-10V或4-20mA5.作用方式:气开、气关3.2 确定气开与气关由前面可以知道,从生产工艺安全出发,原油调节阀选用气开式,即一旦出现故障或气源断气,调节阀应完全关闭,切断燃料油进入加热炉,确保设备安全为了保证。

调节阀按其工作能源形式可分为气动、电动和液动三类。

气动调节阀用压缩空气作为工作能源,主要特点是能在易燃易爆环境中工作,广泛地应用于化工、炼油等生产过程中;电动调节阀用电源工作,其特点是能源取用方便,信号传递迅速,但难以在易燃易爆环境中工作;液动调节阀用液压推动,推力很大,一般生产过程中很少使用。

相关文档
最新文档